xref: /netbsd-src/sys/dev/pci/if_sk.c (revision e77448e07be3174235c13f58032a0d6d0ab7638d)
1 /*	$NetBSD: if_sk.c,v 1.49 2008/04/28 20:23:55 martin Exp $	*/
2 
3 /*-
4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*	$OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $	*/
30 
31 /*
32  * Copyright (c) 1997, 1998, 1999, 2000
33  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
34  *
35  * Redistribution and use in source and binary forms, with or without
36  * modification, are permitted provided that the following conditions
37  * are met:
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 3. All advertising materials mentioning features or use of this software
44  *    must display the following acknowledgement:
45  *	This product includes software developed by Bill Paul.
46  * 4. Neither the name of the author nor the names of any co-contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
54  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
60  * THE POSSIBILITY OF SUCH DAMAGE.
61  *
62  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
63  */
64 
65 /*
66  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
67  *
68  * Permission to use, copy, modify, and distribute this software for any
69  * purpose with or without fee is hereby granted, provided that the above
70  * copyright notice and this permission notice appear in all copies.
71  *
72  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
73  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
74  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
75  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
76  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
77  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
78  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
79  */
80 
81 /*
82  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
83  * the SK-984x series adapters, both single port and dual port.
84  * References:
85  * 	The XaQti XMAC II datasheet,
86  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
87  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
88  *
89  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
90  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
91  * convenience to others until Vitesse corrects this problem:
92  *
93  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94  *
95  * Written by Bill Paul <wpaul@ee.columbia.edu>
96  * Department of Electrical Engineering
97  * Columbia University, New York City
98  */
99 
100 /*
101  * The SysKonnect gigabit ethernet adapters consist of two main
102  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
103  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
104  * components and a PHY while the GEnesis controller provides a PCI
105  * interface with DMA support. Each card may have between 512K and
106  * 2MB of SRAM on board depending on the configuration.
107  *
108  * The SysKonnect GEnesis controller can have either one or two XMAC
109  * chips connected to it, allowing single or dual port NIC configurations.
110  * SysKonnect has the distinction of being the only vendor on the market
111  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
112  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
113  * XMAC registers. This driver takes advantage of these features to allow
114  * both XMACs to operate as independent interfaces.
115  */
116 
117 #include <sys/cdefs.h>
118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.49 2008/04/28 20:23:55 martin Exp $");
119 
120 #include "bpfilter.h"
121 #include "rnd.h"
122 
123 #include <sys/param.h>
124 #include <sys/systm.h>
125 #include <sys/sockio.h>
126 #include <sys/mbuf.h>
127 #include <sys/malloc.h>
128 #include <sys/kernel.h>
129 #include <sys/socket.h>
130 #include <sys/device.h>
131 #include <sys/queue.h>
132 #include <sys/callout.h>
133 #include <sys/sysctl.h>
134 #include <sys/endian.h>
135 
136 #include <net/if.h>
137 #include <net/if_dl.h>
138 #include <net/if_types.h>
139 
140 #include <net/if_media.h>
141 
142 #if NBPFILTER > 0
143 #include <net/bpf.h>
144 #endif
145 #if NRND > 0
146 #include <sys/rnd.h>
147 #endif
148 
149 #include <dev/mii/mii.h>
150 #include <dev/mii/miivar.h>
151 #include <dev/mii/brgphyreg.h>
152 
153 #include <dev/pci/pcireg.h>
154 #include <dev/pci/pcivar.h>
155 #include <dev/pci/pcidevs.h>
156 
157 /* #define SK_USEIOSPACE */
158 
159 #include <dev/pci/if_skreg.h>
160 #include <dev/pci/if_skvar.h>
161 
162 int skc_probe(struct device *, struct cfdata *, void *);
163 void skc_attach(struct device *, struct device *self, void *aux);
164 int sk_probe(struct device *, struct cfdata *, void *);
165 void sk_attach(struct device *, struct device *self, void *aux);
166 int skcprint(void *, const char *);
167 int sk_intr(void *);
168 void sk_intr_bcom(struct sk_if_softc *);
169 void sk_intr_xmac(struct sk_if_softc *);
170 void sk_intr_yukon(struct sk_if_softc *);
171 void sk_rxeof(struct sk_if_softc *);
172 void sk_txeof(struct sk_if_softc *);
173 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
174 void sk_start(struct ifnet *);
175 int sk_ioctl(struct ifnet *, u_long, void *);
176 int sk_init(struct ifnet *);
177 void sk_init_xmac(struct sk_if_softc *);
178 void sk_init_yukon(struct sk_if_softc *);
179 void sk_stop(struct ifnet *, int);
180 void sk_watchdog(struct ifnet *);
181 void sk_shutdown(void *);
182 int sk_ifmedia_upd(struct ifnet *);
183 void sk_reset(struct sk_softc *);
184 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
185 int sk_alloc_jumbo_mem(struct sk_if_softc *);
186 void sk_free_jumbo_mem(struct sk_if_softc *);
187 void *sk_jalloc(struct sk_if_softc *);
188 void sk_jfree(struct mbuf *, void *, size_t, void *);
189 int sk_init_rx_ring(struct sk_if_softc *);
190 int sk_init_tx_ring(struct sk_if_softc *);
191 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
192 void sk_vpd_read_res(struct sk_softc *,
193 					struct vpd_res *, int);
194 void sk_vpd_read(struct sk_softc *);
195 
196 void sk_update_int_mod(struct sk_softc *);
197 
198 int sk_xmac_miibus_readreg(struct device *, int, int);
199 void sk_xmac_miibus_writereg(struct device *, int, int, int);
200 void sk_xmac_miibus_statchg(struct device *);
201 
202 int sk_marv_miibus_readreg(struct device *, int, int);
203 void sk_marv_miibus_writereg(struct device *, int, int, int);
204 void sk_marv_miibus_statchg(struct device *);
205 
206 u_int32_t sk_xmac_hash(void *);
207 u_int32_t sk_yukon_hash(void *);
208 void sk_setfilt(struct sk_if_softc *, void *, int);
209 void sk_setmulti(struct sk_if_softc *);
210 void sk_tick(void *);
211 
212 /* #define SK_DEBUG 2 */
213 #ifdef SK_DEBUG
214 #define DPRINTF(x)	if (skdebug) printf x
215 #define DPRINTFN(n,x)	if (skdebug >= (n)) printf x
216 int	skdebug = SK_DEBUG;
217 
218 void sk_dump_txdesc(struct sk_tx_desc *, int);
219 void sk_dump_mbuf(struct mbuf *);
220 void sk_dump_bytes(const char *, int);
221 #else
222 #define DPRINTF(x)
223 #define DPRINTFN(n,x)
224 #endif
225 
226 static int sk_sysctl_handler(SYSCTLFN_PROTO);
227 static int sk_root_num;
228 
229 /* supported device vendors */
230 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
231 static const struct sk_product {
232 	pci_vendor_id_t		sk_vendor;
233 	pci_product_id_t	sk_product;
234 } sk_products[] = {
235 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
236 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
237 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
238 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
239 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
240 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
241 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
242 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
243 	{ 0, 0, }
244 };
245 
246 #define SK_LINKSYS_EG1032_SUBID	0x00151737
247 
248 static inline u_int32_t
249 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
250 {
251 #ifdef SK_USEIOSPACE
252 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
253 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
254 #else
255 	return CSR_READ_4(sc, reg);
256 #endif
257 }
258 
259 static inline u_int16_t
260 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
261 {
262 #ifdef SK_USEIOSPACE
263 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
264 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
265 #else
266 	return CSR_READ_2(sc, reg);
267 #endif
268 }
269 
270 static inline u_int8_t
271 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
272 {
273 #ifdef SK_USEIOSPACE
274 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
275 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
276 #else
277 	return CSR_READ_1(sc, reg);
278 #endif
279 }
280 
281 static inline void
282 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
283 {
284 #ifdef SK_USEIOSPACE
285 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
286 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
287 #else
288 	CSR_WRITE_4(sc, reg, x);
289 #endif
290 }
291 
292 static inline void
293 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
294 {
295 #ifdef SK_USEIOSPACE
296 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
297 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
298 #else
299 	CSR_WRITE_2(sc, reg, x);
300 #endif
301 }
302 
303 static inline void
304 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
305 {
306 #ifdef SK_USEIOSPACE
307 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
308 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
309 #else
310 	CSR_WRITE_1(sc, reg, x);
311 #endif
312 }
313 
314 /*
315  * The VPD EEPROM contains Vital Product Data, as suggested in
316  * the PCI 2.1 specification. The VPD data is separared into areas
317  * denoted by resource IDs. The SysKonnect VPD contains an ID string
318  * resource (the name of the adapter), a read-only area resource
319  * containing various key/data fields and a read/write area which
320  * can be used to store asset management information or log messages.
321  * We read the ID string and read-only into buffers attached to
322  * the controller softc structure for later use. At the moment,
323  * we only use the ID string during sk_attach().
324  */
325 u_int8_t
326 sk_vpd_readbyte(struct sk_softc *sc, int addr)
327 {
328 	int			i;
329 
330 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
331 	for (i = 0; i < SK_TIMEOUT; i++) {
332 		DELAY(1);
333 		if (sk_win_read_2(sc,
334 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
335 			break;
336 	}
337 
338 	if (i == SK_TIMEOUT)
339 		return 0;
340 
341 	return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
342 }
343 
344 void
345 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
346 {
347 	int			i;
348 	u_int8_t		*ptr;
349 
350 	ptr = (u_int8_t *)res;
351 	for (i = 0; i < sizeof(struct vpd_res); i++)
352 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
353 }
354 
355 void
356 sk_vpd_read(struct sk_softc *sc)
357 {
358 	int			pos = 0, i;
359 	struct vpd_res		res;
360 
361 	if (sc->sk_vpd_prodname != NULL)
362 		free(sc->sk_vpd_prodname, M_DEVBUF);
363 	if (sc->sk_vpd_readonly != NULL)
364 		free(sc->sk_vpd_readonly, M_DEVBUF);
365 	sc->sk_vpd_prodname = NULL;
366 	sc->sk_vpd_readonly = NULL;
367 
368 	sk_vpd_read_res(sc, &res, pos);
369 
370 	if (res.vr_id != VPD_RES_ID) {
371 		aprint_error_dev(&sc->sk_dev, "bad VPD resource id: expected %x got %x\n",
372 		    VPD_RES_ID, res.vr_id);
373 		return;
374 	}
375 
376 	pos += sizeof(res);
377 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
378 	if (sc->sk_vpd_prodname == NULL)
379 		panic("sk_vpd_read");
380 	for (i = 0; i < res.vr_len; i++)
381 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
382 	sc->sk_vpd_prodname[i] = '\0';
383 	pos += i;
384 
385 	sk_vpd_read_res(sc, &res, pos);
386 
387 	if (res.vr_id != VPD_RES_READ) {
388 		aprint_error_dev(&sc->sk_dev, "bad VPD resource id: expected %x got %x\n",
389 		    VPD_RES_READ, res.vr_id);
390 		return;
391 	}
392 
393 	pos += sizeof(res);
394 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
395 	if (sc->sk_vpd_readonly == NULL)
396 		panic("sk_vpd_read");
397 	for (i = 0; i < res.vr_len ; i++)
398 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
399 }
400 
401 int
402 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
403 {
404 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
405 	int i;
406 
407 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
408 
409 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
410 		return 0;
411 
412 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
413 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
414 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
415 		for (i = 0; i < SK_TIMEOUT; i++) {
416 			DELAY(1);
417 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
418 			    XM_MMUCMD_PHYDATARDY)
419 				break;
420 		}
421 
422 		if (i == SK_TIMEOUT) {
423 			aprint_error_dev(&sc_if->sk_dev, "phy failed to come ready\n");
424 			return 0;
425 		}
426 	}
427 	DELAY(1);
428 	return SK_XM_READ_2(sc_if, XM_PHY_DATA);
429 }
430 
431 void
432 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
433 {
434 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
435 	int i;
436 
437 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
438 
439 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
440 	for (i = 0; i < SK_TIMEOUT; i++) {
441 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
442 			break;
443 	}
444 
445 	if (i == SK_TIMEOUT) {
446 		aprint_error_dev(&sc_if->sk_dev, "phy failed to come ready\n");
447 		return;
448 	}
449 
450 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
451 	for (i = 0; i < SK_TIMEOUT; i++) {
452 		DELAY(1);
453 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
454 			break;
455 	}
456 
457 	if (i == SK_TIMEOUT)
458 		aprint_error_dev(&sc_if->sk_dev, "phy write timed out\n");
459 }
460 
461 void
462 sk_xmac_miibus_statchg(struct device *dev)
463 {
464 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
465 	struct mii_data *mii = &sc_if->sk_mii;
466 
467 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
468 
469 	/*
470 	 * If this is a GMII PHY, manually set the XMAC's
471 	 * duplex mode accordingly.
472 	 */
473 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
474 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
475 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
476 		else
477 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
478 	}
479 }
480 
481 int
482 sk_marv_miibus_readreg(struct device *dev, int phy, int reg)
483 {
484 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
485 	u_int16_t val;
486 	int i;
487 
488 	if (phy != 0 ||
489 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
490 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
491 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
492 			     phy, reg));
493 		return 0;
494 	}
495 
496         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
497 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
498 
499 	for (i = 0; i < SK_TIMEOUT; i++) {
500 		DELAY(1);
501 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
502 		if (val & YU_SMICR_READ_VALID)
503 			break;
504 	}
505 
506 	if (i == SK_TIMEOUT) {
507 		aprint_error_dev(&sc_if->sk_dev, "phy failed to come ready\n");
508 		return 0;
509 	}
510 
511  	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
512 		     SK_TIMEOUT));
513 
514         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
515 
516 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
517 		     phy, reg, val));
518 
519 	return val;
520 }
521 
522 void
523 sk_marv_miibus_writereg(struct device *dev, int phy, int reg, int val)
524 {
525 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
526 	int i;
527 
528 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
529 		     phy, reg, val));
530 
531 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
532 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
533 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
534 
535 	for (i = 0; i < SK_TIMEOUT; i++) {
536 		DELAY(1);
537 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
538 			break;
539 	}
540 
541 	if (i == SK_TIMEOUT)
542 		printf("%s: phy write timed out\n", device_xname(&sc_if->sk_dev));
543 }
544 
545 void
546 sk_marv_miibus_statchg(struct device *dev)
547 {
548 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
549 		     SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
550 }
551 
552 #define SK_HASH_BITS		6
553 
554 u_int32_t
555 sk_xmac_hash(void *addr)
556 {
557 	u_int32_t		crc;
558 
559 	crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
560 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
561 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
562 	return crc;
563 }
564 
565 u_int32_t
566 sk_yukon_hash(void *addr)
567 {
568 	u_int32_t		crc;
569 
570 	crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
571 	crc &= ((1 << SK_HASH_BITS) - 1);
572 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
573 	return crc;
574 }
575 
576 void
577 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
578 {
579 	char *addr = addrv;
580 	int base = XM_RXFILT_ENTRY(slot);
581 
582 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
583 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
584 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
585 }
586 
587 void
588 sk_setmulti(struct sk_if_softc *sc_if)
589 {
590 	struct sk_softc *sc = sc_if->sk_softc;
591 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
592 	u_int32_t hashes[2] = { 0, 0 };
593 	int h = 0, i;
594 	struct ethercom *ec = &sc_if->sk_ethercom;
595 	struct ether_multi *enm;
596 	struct ether_multistep step;
597 	u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
598 
599 	/* First, zot all the existing filters. */
600 	switch (sc->sk_type) {
601 	case SK_GENESIS:
602 		for (i = 1; i < XM_RXFILT_MAX; i++)
603 			sk_setfilt(sc_if, (void *)&dummy, i);
604 
605 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
606 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
607 		break;
608 	case SK_YUKON:
609 	case SK_YUKON_LITE:
610 	case SK_YUKON_LP:
611 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
612 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
613 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
614 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
615 		break;
616 	}
617 
618 	/* Now program new ones. */
619 allmulti:
620 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
621 		hashes[0] = 0xFFFFFFFF;
622 		hashes[1] = 0xFFFFFFFF;
623 	} else {
624 		i = 1;
625 		/* First find the tail of the list. */
626 		ETHER_FIRST_MULTI(step, ec, enm);
627 		while (enm != NULL) {
628 			if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
629 				 ETHER_ADDR_LEN)) {
630 				ifp->if_flags |= IFF_ALLMULTI;
631 				goto allmulti;
632 			}
633 			DPRINTFN(2,("multicast address %s\n",
634 	    			ether_sprintf(enm->enm_addrlo)));
635 			/*
636 			 * Program the first XM_RXFILT_MAX multicast groups
637 			 * into the perfect filter. For all others,
638 			 * use the hash table.
639 			 */
640 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
641 				sk_setfilt(sc_if, enm->enm_addrlo, i);
642 				i++;
643 			}
644 			else {
645 				switch (sc->sk_type) {
646 				case SK_GENESIS:
647 					h = sk_xmac_hash(enm->enm_addrlo);
648 					break;
649 				case SK_YUKON:
650 				case SK_YUKON_LITE:
651 				case SK_YUKON_LP:
652 					h = sk_yukon_hash(enm->enm_addrlo);
653 					break;
654 				}
655 				if (h < 32)
656 					hashes[0] |= (1 << h);
657 				else
658 					hashes[1] |= (1 << (h - 32));
659 			}
660 
661 			ETHER_NEXT_MULTI(step, enm);
662 		}
663 	}
664 
665 	switch (sc->sk_type) {
666 	case SK_GENESIS:
667 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
668 			       XM_MODE_RX_USE_PERFECT);
669 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
670 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
671 		break;
672 	case SK_YUKON:
673 	case SK_YUKON_LITE:
674 	case SK_YUKON_LP:
675 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
676 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
677 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
678 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
679 		break;
680 	}
681 }
682 
683 int
684 sk_init_rx_ring(struct sk_if_softc *sc_if)
685 {
686 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
687 	struct sk_ring_data	*rd = sc_if->sk_rdata;
688 	int			i;
689 
690 	bzero((char *)rd->sk_rx_ring,
691 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
692 
693 	for (i = 0; i < SK_RX_RING_CNT; i++) {
694 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
695 		if (i == (SK_RX_RING_CNT - 1)) {
696 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
697 			rd->sk_rx_ring[i].sk_next =
698 				htole32(SK_RX_RING_ADDR(sc_if, 0));
699 		} else {
700 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
701 			rd->sk_rx_ring[i].sk_next =
702 				htole32(SK_RX_RING_ADDR(sc_if,i+1));
703 		}
704 	}
705 
706 	for (i = 0; i < SK_RX_RING_CNT; i++) {
707 		if (sk_newbuf(sc_if, i, NULL,
708 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
709 			aprint_error_dev(&sc_if->sk_dev, "failed alloc of %dth mbuf\n", i);
710 			return ENOBUFS;
711 		}
712 	}
713 	sc_if->sk_cdata.sk_rx_prod = 0;
714 	sc_if->sk_cdata.sk_rx_cons = 0;
715 
716 	return 0;
717 }
718 
719 int
720 sk_init_tx_ring(struct sk_if_softc *sc_if)
721 {
722 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
723 	struct sk_ring_data	*rd = sc_if->sk_rdata;
724 	int			i;
725 
726 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
727 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
728 
729 	for (i = 0; i < SK_TX_RING_CNT; i++) {
730 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
731 		if (i == (SK_TX_RING_CNT - 1)) {
732 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
733 			rd->sk_tx_ring[i].sk_next =
734 				htole32(SK_TX_RING_ADDR(sc_if, 0));
735 		} else {
736 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
737 			rd->sk_tx_ring[i].sk_next =
738 				htole32(SK_TX_RING_ADDR(sc_if,i+1));
739 		}
740 	}
741 
742 	sc_if->sk_cdata.sk_tx_prod = 0;
743 	sc_if->sk_cdata.sk_tx_cons = 0;
744 	sc_if->sk_cdata.sk_tx_cnt = 0;
745 
746 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
747 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
748 
749 	return 0;
750 }
751 
752 int
753 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
754 	  bus_dmamap_t dmamap)
755 {
756 	struct mbuf		*m_new = NULL;
757 	struct sk_chain		*c;
758 	struct sk_rx_desc	*r;
759 
760 	if (m == NULL) {
761 		void *buf = NULL;
762 
763 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
764 		if (m_new == NULL) {
765 			aprint_error_dev(&sc_if->sk_dev, "no memory for rx list -- "
766 			    "packet dropped!\n");
767 			return ENOBUFS;
768 		}
769 
770 		/* Allocate the jumbo buffer */
771 		buf = sk_jalloc(sc_if);
772 		if (buf == NULL) {
773 			m_freem(m_new);
774 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
775 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
776 			return ENOBUFS;
777 		}
778 
779 		/* Attach the buffer to the mbuf */
780 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
781 		MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
782 
783 	} else {
784 		/*
785 	 	 * We're re-using a previously allocated mbuf;
786 		 * be sure to re-init pointers and lengths to
787 		 * default values.
788 		 */
789 		m_new = m;
790 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
791 		m_new->m_data = m_new->m_ext.ext_buf;
792 	}
793 	m_adj(m_new, ETHER_ALIGN);
794 
795 	c = &sc_if->sk_cdata.sk_rx_chain[i];
796 	r = c->sk_desc;
797 	c->sk_mbuf = m_new;
798 	r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
799 	    (((vaddr_t)m_new->m_data
800 		- (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
801 	r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
802 
803 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
804 
805 	return 0;
806 }
807 
808 /*
809  * Memory management for jumbo frames.
810  */
811 
812 int
813 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
814 {
815 	struct sk_softc		*sc = sc_if->sk_softc;
816 	char *ptr, *kva;
817 	bus_dma_segment_t	seg;
818 	int		i, rseg, state, error;
819 	struct sk_jpool_entry   *entry;
820 
821 	state = error = 0;
822 
823 	/* Grab a big chunk o' storage. */
824 	if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
825 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
826 		aprint_error_dev(&sc->sk_dev, "can't alloc rx buffers\n");
827 		return ENOBUFS;
828 	}
829 
830 	state = 1;
831 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
832 			   BUS_DMA_NOWAIT)) {
833 		aprint_error_dev(&sc->sk_dev, "can't map dma buffers (%d bytes)\n",
834 		    SK_JMEM);
835 		error = ENOBUFS;
836 		goto out;
837 	}
838 
839 	state = 2;
840 	if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
841 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
842 		aprint_error_dev(&sc->sk_dev, "can't create dma map\n");
843 		error = ENOBUFS;
844 		goto out;
845 	}
846 
847 	state = 3;
848 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
849 			    kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
850 		aprint_error_dev(&sc->sk_dev, "can't load dma map\n");
851 		error = ENOBUFS;
852 		goto out;
853 	}
854 
855 	state = 4;
856 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
857 	DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
858 
859 	LIST_INIT(&sc_if->sk_jfree_listhead);
860 	LIST_INIT(&sc_if->sk_jinuse_listhead);
861 
862 	/*
863 	 * Now divide it up into 9K pieces and save the addresses
864 	 * in an array.
865 	 */
866 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
867 	for (i = 0; i < SK_JSLOTS; i++) {
868 		sc_if->sk_cdata.sk_jslots[i] = ptr;
869 		ptr += SK_JLEN;
870 		entry = malloc(sizeof(struct sk_jpool_entry),
871 		    M_DEVBUF, M_NOWAIT);
872 		if (entry == NULL) {
873 			aprint_error_dev(&sc->sk_dev, "no memory for jumbo buffer queue!\n");
874 			error = ENOBUFS;
875 			goto out;
876 		}
877 		entry->slot = i;
878 		if (i)
879 			LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
880 				 entry, jpool_entries);
881 		else
882 			LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
883 				 entry, jpool_entries);
884 	}
885 out:
886 	if (error != 0) {
887 		switch (state) {
888 		case 4:
889 			bus_dmamap_unload(sc->sc_dmatag,
890 			    sc_if->sk_cdata.sk_rx_jumbo_map);
891 		case 3:
892 			bus_dmamap_destroy(sc->sc_dmatag,
893 			    sc_if->sk_cdata.sk_rx_jumbo_map);
894 		case 2:
895 			bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
896 		case 1:
897 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
898 			break;
899 		default:
900 			break;
901 		}
902 	}
903 
904 	return error;
905 }
906 
907 /*
908  * Allocate a jumbo buffer.
909  */
910 void *
911 sk_jalloc(struct sk_if_softc *sc_if)
912 {
913 	struct sk_jpool_entry   *entry;
914 
915 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
916 
917 	if (entry == NULL)
918 		return NULL;
919 
920 	LIST_REMOVE(entry, jpool_entries);
921 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
922 	return sc_if->sk_cdata.sk_jslots[entry->slot];
923 }
924 
925 /*
926  * Release a jumbo buffer.
927  */
928 void
929 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
930 {
931 	struct sk_jpool_entry *entry;
932 	struct sk_if_softc *sc;
933 	int i, s;
934 
935 	/* Extract the softc struct pointer. */
936 	sc = (struct sk_if_softc *)arg;
937 
938 	if (sc == NULL)
939 		panic("sk_jfree: can't find softc pointer!");
940 
941 	/* calculate the slot this buffer belongs to */
942 
943 	i = ((vaddr_t)buf
944 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
945 
946 	if ((i < 0) || (i >= SK_JSLOTS))
947 		panic("sk_jfree: asked to free buffer that we don't manage!");
948 
949 	s = splvm();
950 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
951 	if (entry == NULL)
952 		panic("sk_jfree: buffer not in use!");
953 	entry->slot = i;
954 	LIST_REMOVE(entry, jpool_entries);
955 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
956 
957 	if (__predict_true(m != NULL))
958 		pool_cache_put(mb_cache, m);
959 	splx(s);
960 }
961 
962 /*
963  * Set media options.
964  */
965 int
966 sk_ifmedia_upd(struct ifnet *ifp)
967 {
968 	struct sk_if_softc *sc_if = ifp->if_softc;
969 	int rc;
970 
971 	(void) sk_init(ifp);
972 	if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
973 		return 0;
974 	return rc;
975 }
976 
977 int
978 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
979 {
980 	struct sk_if_softc *sc_if = ifp->if_softc;
981 	struct sk_softc *sc = sc_if->sk_softc;
982 	int s, error = 0;
983 
984 	/* DPRINTFN(2, ("sk_ioctl\n")); */
985 
986 	s = splnet();
987 
988 	switch (command) {
989 
990 	case SIOCSIFFLAGS:
991 	        DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
992 		if (ifp->if_flags & IFF_UP) {
993 			if (ifp->if_flags & IFF_RUNNING &&
994 			    ifp->if_flags & IFF_PROMISC &&
995 			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
996 				switch (sc->sk_type) {
997 				case SK_GENESIS:
998 					SK_XM_SETBIT_4(sc_if, XM_MODE,
999 					    XM_MODE_RX_PROMISC);
1000 					break;
1001 				case SK_YUKON:
1002 				case SK_YUKON_LITE:
1003 				case SK_YUKON_LP:
1004 					SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1005 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
1006 					break;
1007 				}
1008 				sk_setmulti(sc_if);
1009 			} else if (ifp->if_flags & IFF_RUNNING &&
1010 			    !(ifp->if_flags & IFF_PROMISC) &&
1011 			    sc_if->sk_if_flags & IFF_PROMISC) {
1012 				switch (sc->sk_type) {
1013 				case SK_GENESIS:
1014 					SK_XM_CLRBIT_4(sc_if, XM_MODE,
1015 					    XM_MODE_RX_PROMISC);
1016 					break;
1017 				case SK_YUKON:
1018 				case SK_YUKON_LITE:
1019 				case SK_YUKON_LP:
1020 					SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1021 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
1022 					break;
1023 				}
1024 
1025 				sk_setmulti(sc_if);
1026 			} else
1027 				(void) sk_init(ifp);
1028 		} else {
1029 			if (ifp->if_flags & IFF_RUNNING)
1030 				sk_stop(ifp,0);
1031 		}
1032 		sc_if->sk_if_flags = ifp->if_flags;
1033 		error = 0;
1034 		break;
1035 
1036 	default:
1037 	        DPRINTFN(2, ("sk_ioctl ETHER\n"));
1038 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1039 			break;
1040 
1041 		error = 0;
1042 
1043 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1044 			;
1045 		else if (ifp->if_flags & IFF_RUNNING) {
1046 			sk_setmulti(sc_if);
1047 			DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1048 		}
1049 		break;
1050 	}
1051 
1052 	splx(s);
1053 	return error;
1054 }
1055 
1056 void
1057 sk_update_int_mod(struct sk_softc *sc)
1058 {
1059 	u_int32_t imtimer_ticks;
1060 
1061 	/*
1062          * Configure interrupt moderation. The moderation timer
1063 	 * defers interrupts specified in the interrupt moderation
1064 	 * timer mask based on the timeout specified in the interrupt
1065 	 * moderation timer init register. Each bit in the timer
1066 	 * register represents one tick, so to specify a timeout in
1067 	 * microseconds, we have to multiply by the correct number of
1068 	 * ticks-per-microsecond.
1069 	 */
1070 	switch (sc->sk_type) {
1071 	case SK_GENESIS:
1072 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1073 		break;
1074 	case SK_YUKON_EC:
1075 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1076 		break;
1077 	default:
1078 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1079 	}
1080 	aprint_verbose_dev(&sc->sk_dev, "interrupt moderation is %d us\n",
1081 	    sc->sk_int_mod);
1082         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1083         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1084 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1085         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1086 	sc->sk_int_mod_pending = 0;
1087 }
1088 
1089 /*
1090  * Lookup: Check the PCI vendor and device, and return a pointer to
1091  * The structure if the IDs match against our list.
1092  */
1093 
1094 static const struct sk_product *
1095 sk_lookup(const struct pci_attach_args *pa)
1096 {
1097 	const struct sk_product *psk;
1098 
1099 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1100 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1101 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1102 			return psk;
1103 	}
1104 	return NULL;
1105 }
1106 
1107 /*
1108  * Probe for a SysKonnect GEnesis chip.
1109  */
1110 
1111 int
1112 skc_probe(struct device *parent, struct cfdata *match,
1113     void *aux)
1114 {
1115 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1116 	const struct sk_product *psk;
1117 	pcireg_t subid;
1118 
1119 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1120 
1121 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
1122 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1123 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1124 	    subid == SK_LINKSYS_EG1032_SUBID)
1125 		return 1;
1126 
1127 	if ((psk = sk_lookup(pa))) {
1128 		return 1;
1129 	}
1130 	return 0;
1131 }
1132 
1133 /*
1134  * Force the GEnesis into reset, then bring it out of reset.
1135  */
1136 void sk_reset(struct sk_softc *sc)
1137 {
1138 	DPRINTFN(2, ("sk_reset\n"));
1139 
1140 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1141 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1142 	if (SK_YUKON_FAMILY(sc->sk_type))
1143 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1144 
1145 	DELAY(1000);
1146 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1147 	DELAY(2);
1148 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1149 	if (SK_YUKON_FAMILY(sc->sk_type))
1150 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1151 
1152 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1153 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1154 		     CSR_READ_2(sc, SK_LINK_CTRL)));
1155 
1156 	if (sc->sk_type == SK_GENESIS) {
1157 		/* Configure packet arbiter */
1158 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1159 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1160 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1161 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1162 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1163 	}
1164 
1165 	/* Enable RAM interface */
1166 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1167 
1168 	sk_update_int_mod(sc);
1169 }
1170 
1171 int
1172 sk_probe(struct device *parent, struct cfdata *match,
1173     void *aux)
1174 {
1175 	struct skc_attach_args *sa = aux;
1176 
1177 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1178 		return 0;
1179 
1180 	return 1;
1181 }
1182 
1183 /*
1184  * Each XMAC chip is attached as a separate logical IP interface.
1185  * Single port cards will have only one logical interface of course.
1186  */
1187 void
1188 sk_attach(struct device *parent, struct device *self, void *aux)
1189 {
1190 	struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
1191 	struct sk_softc *sc = (struct sk_softc *)parent;
1192 	struct skc_attach_args *sa = aux;
1193 	struct sk_txmap_entry	*entry;
1194 	struct ifnet *ifp;
1195 	bus_dma_segment_t seg;
1196 	bus_dmamap_t dmamap;
1197 	void *kva;
1198 	int i, rseg;
1199 
1200 	aprint_naive("\n");
1201 
1202 	sc_if->sk_port = sa->skc_port;
1203 	sc_if->sk_softc = sc;
1204 	sc->sk_if[sa->skc_port] = sc_if;
1205 
1206 	if (sa->skc_port == SK_PORT_A)
1207 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1208 	if (sa->skc_port == SK_PORT_B)
1209 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1210 
1211 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1212 
1213 	/*
1214 	 * Get station address for this interface. Note that
1215 	 * dual port cards actually come with three station
1216 	 * addresses: one for each port, plus an extra. The
1217 	 * extra one is used by the SysKonnect driver software
1218 	 * as a 'virtual' station address for when both ports
1219 	 * are operating in failover mode. Currently we don't
1220 	 * use this extra address.
1221 	 */
1222 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1223 		sc_if->sk_enaddr[i] =
1224 			sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1225 
1226 
1227 	aprint_normal(": Ethernet address %s\n",
1228 	    ether_sprintf(sc_if->sk_enaddr));
1229 
1230 	/*
1231 	 * Set up RAM buffer addresses. The NIC will have a certain
1232 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1233 	 * need to divide this up a) between the transmitter and
1234  	 * receiver and b) between the two XMACs, if this is a
1235 	 * dual port NIC. Our algorithm is to divide up the memory
1236 	 * evenly so that everyone gets a fair share.
1237 	 */
1238 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1239 		u_int32_t		chunk, val;
1240 
1241 		chunk = sc->sk_ramsize / 2;
1242 		val = sc->sk_rboff / sizeof(u_int64_t);
1243 		sc_if->sk_rx_ramstart = val;
1244 		val += (chunk / sizeof(u_int64_t));
1245 		sc_if->sk_rx_ramend = val - 1;
1246 		sc_if->sk_tx_ramstart = val;
1247 		val += (chunk / sizeof(u_int64_t));
1248 		sc_if->sk_tx_ramend = val - 1;
1249 	} else {
1250 		u_int32_t		chunk, val;
1251 
1252 		chunk = sc->sk_ramsize / 4;
1253 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1254 		    sizeof(u_int64_t);
1255 		sc_if->sk_rx_ramstart = val;
1256 		val += (chunk / sizeof(u_int64_t));
1257 		sc_if->sk_rx_ramend = val - 1;
1258 		sc_if->sk_tx_ramstart = val;
1259 		val += (chunk / sizeof(u_int64_t));
1260 		sc_if->sk_tx_ramend = val - 1;
1261 	}
1262 
1263 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1264 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
1265 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1266 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1267 
1268 	/* Read and save PHY type and set PHY address */
1269 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1270 	switch (sc_if->sk_phytype) {
1271 	case SK_PHYTYPE_XMAC:
1272 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1273 		break;
1274 	case SK_PHYTYPE_BCOM:
1275 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1276 		break;
1277 	case SK_PHYTYPE_MARV_COPPER:
1278 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1279 		break;
1280 	default:
1281 		aprint_error_dev(&sc->sk_dev, "unsupported PHY type: %d\n",
1282 		    sc_if->sk_phytype);
1283 		return;
1284 	}
1285 
1286 	/* Allocate the descriptor queues. */
1287 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1288 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1289 		aprint_error_dev(&sc->sk_dev, "can't alloc rx buffers\n");
1290 		goto fail;
1291 	}
1292 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1293 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1294 		aprint_error_dev(&sc_if->sk_dev, "can't map dma buffers (%lu bytes)\n",
1295 		       (u_long) sizeof(struct sk_ring_data));
1296 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1297 		goto fail;
1298 	}
1299 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1300 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1301             &sc_if->sk_ring_map)) {
1302 		aprint_error_dev(&sc_if->sk_dev, "can't create dma map\n");
1303 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1304 		    sizeof(struct sk_ring_data));
1305 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1306 		goto fail;
1307 	}
1308 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1309 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1310 		aprint_error_dev(&sc_if->sk_dev, "can't load dma map\n");
1311 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1312 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1313 		    sizeof(struct sk_ring_data));
1314 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1315 		goto fail;
1316 	}
1317 
1318 	for (i = 0; i < SK_RX_RING_CNT; i++)
1319 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1320 
1321 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1322 	for (i = 0; i < SK_TX_RING_CNT; i++) {
1323 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1324 
1325 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1326 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1327 			aprint_error_dev(&sc_if->sk_dev, "Can't create TX dmamap\n");
1328 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1329 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1330 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1331 			    sizeof(struct sk_ring_data));
1332 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1333 			goto fail;
1334 		}
1335 
1336 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1337 		if (!entry) {
1338 			aprint_error_dev(&sc_if->sk_dev, "Can't alloc txmap entry\n");
1339 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1340 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1341 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1342 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1343 			    sizeof(struct sk_ring_data));
1344 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1345 			goto fail;
1346 		}
1347 		entry->dmamap = dmamap;
1348 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1349 	}
1350 
1351         sc_if->sk_rdata = (struct sk_ring_data *)kva;
1352 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1353 
1354 	ifp = &sc_if->sk_ethercom.ec_if;
1355 	/* Try to allocate memory for jumbo buffers. */
1356 	if (sk_alloc_jumbo_mem(sc_if)) {
1357 		aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1358 		goto fail;
1359 	}
1360 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1361 		| ETHERCAP_JUMBO_MTU;
1362 
1363 	ifp->if_softc = sc_if;
1364 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1365 	ifp->if_ioctl = sk_ioctl;
1366 	ifp->if_start = sk_start;
1367 	ifp->if_stop = sk_stop;
1368 	ifp->if_init = sk_init;
1369 	ifp->if_watchdog = sk_watchdog;
1370 	ifp->if_capabilities = 0;
1371 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1372 	IFQ_SET_READY(&ifp->if_snd);
1373 	strlcpy(ifp->if_xname, device_xname(&sc_if->sk_dev), IFNAMSIZ);
1374 
1375 	/*
1376 	 * Do miibus setup.
1377 	 */
1378 	switch (sc->sk_type) {
1379 	case SK_GENESIS:
1380 		sk_init_xmac(sc_if);
1381 		break;
1382 	case SK_YUKON:
1383 	case SK_YUKON_LITE:
1384 	case SK_YUKON_LP:
1385 		sk_init_yukon(sc_if);
1386 		break;
1387 	default:
1388 		aprint_error_dev(&sc->sk_dev, "unknown device type %d\n",
1389 			sc->sk_type);
1390 		goto fail;
1391 	}
1392 
1393  	DPRINTFN(2, ("sk_attach: 1\n"));
1394 
1395 	sc_if->sk_mii.mii_ifp = ifp;
1396 	switch (sc->sk_type) {
1397 	case SK_GENESIS:
1398 		sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1399 		sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1400 		sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1401 		break;
1402 	case SK_YUKON:
1403 	case SK_YUKON_LITE:
1404 	case SK_YUKON_LP:
1405 		sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1406 		sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1407 		sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1408 		break;
1409 	}
1410 
1411 	sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1412 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1413 	    sk_ifmedia_upd, ether_mediastatus);
1414 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1415 	    MII_OFFSET_ANY, 0);
1416 	if (LIST_EMPTY(&sc_if->sk_mii.mii_phys)) {
1417 		aprint_error_dev(&sc_if->sk_dev, "no PHY found!\n");
1418 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1419 			    0, NULL);
1420 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1421 	} else
1422 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1423 
1424 	callout_init(&sc_if->sk_tick_ch, 0);
1425 	callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1426 
1427 	DPRINTFN(2, ("sk_attach: 1\n"));
1428 
1429 	/*
1430 	 * Call MI attach routines.
1431 	 */
1432 	if_attach(ifp);
1433 
1434 	ether_ifattach(ifp, sc_if->sk_enaddr);
1435 
1436 #if NRND > 0
1437         rnd_attach_source(&sc->rnd_source, device_xname(&sc->sk_dev),
1438             RND_TYPE_NET, 0);
1439 #endif
1440 
1441 	DPRINTFN(2, ("sk_attach: end\n"));
1442 
1443 	return;
1444 
1445 fail:
1446 	sc->sk_if[sa->skc_port] = NULL;
1447 }
1448 
1449 int
1450 skcprint(void *aux, const char *pnp)
1451 {
1452 	struct skc_attach_args *sa = aux;
1453 
1454 	if (pnp)
1455 		aprint_normal("sk port %c at %s",
1456 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1457 	else
1458 		aprint_normal(" port %c",
1459 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1460 	return UNCONF;
1461 }
1462 
1463 /*
1464  * Attach the interface. Allocate softc structures, do ifmedia
1465  * setup and ethernet/BPF attach.
1466  */
1467 void
1468 skc_attach(struct device *parent, struct device *self, void *aux)
1469 {
1470 	struct sk_softc *sc = (struct sk_softc *)self;
1471 	struct pci_attach_args *pa = aux;
1472 	struct skc_attach_args skca;
1473 	pci_chipset_tag_t pc = pa->pa_pc;
1474 #ifndef SK_USEIOSPACE
1475 	pcireg_t memtype;
1476 #endif
1477 	pci_intr_handle_t ih;
1478 	const char *intrstr = NULL;
1479 	bus_addr_t iobase;
1480 	bus_size_t iosize;
1481 	int rc, sk_nodenum;
1482 	u_int32_t command;
1483 	const char *revstr;
1484 	const struct sysctlnode *node;
1485 
1486 	aprint_naive("\n");
1487 
1488 	DPRINTFN(2, ("begin skc_attach\n"));
1489 
1490 	/*
1491 	 * Handle power management nonsense.
1492 	 */
1493 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1494 
1495 	if (command == 0x01) {
1496 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1497 		if (command & SK_PSTATE_MASK) {
1498 			u_int32_t		xiobase, membase, irq;
1499 
1500 			/* Save important PCI config data. */
1501 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1502 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1503 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1504 
1505 			/* Reset the power state. */
1506 			aprint_normal_dev(&sc->sk_dev, "chip is in D%d power mode "
1507 			    "-- setting to D0\n",
1508 			    command & SK_PSTATE_MASK);
1509 			command &= 0xFFFFFFFC;
1510 			pci_conf_write(pc, pa->pa_tag,
1511 			    SK_PCI_PWRMGMTCTRL, command);
1512 
1513 			/* Restore PCI config data. */
1514 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1515 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1516 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1517 		}
1518 	}
1519 
1520 	/*
1521 	 * Map control/status registers.
1522 	 */
1523 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1524 	command |= PCI_COMMAND_IO_ENABLE |
1525 	    PCI_COMMAND_MEM_ENABLE |
1526 	    PCI_COMMAND_MASTER_ENABLE;
1527 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1528 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1529 
1530 #ifdef SK_USEIOSPACE
1531 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
1532 		aprint_error(": failed to enable I/O ports!\n");
1533 		return;
1534 	}
1535 	/*
1536 	 * Map control/status registers.
1537 	 */
1538 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1539 			&sc->sk_btag, &sc->sk_bhandle,
1540 			&iobase, &iosize)) {
1541 		aprint_error(": can't find i/o space\n");
1542 		return;
1543 	}
1544 #else
1545 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1546 		aprint_error(": failed to enable memory mapping!\n");
1547 		return;
1548 	}
1549 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1550 	switch (memtype) {
1551         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1552         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1553                 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1554 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1555 				   &iobase, &iosize) == 0)
1556                         break;
1557         default:
1558                 aprint_error_dev(&sc->sk_dev, "can't find mem space\n");
1559                 return;
1560 	}
1561 
1562 	DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
1563 #endif
1564 	sc->sc_dmatag = pa->pa_dmat;
1565 
1566 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1567 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1568 
1569 	/* bail out here if chip is not recognized */
1570 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1571 		aprint_error_dev(&sc->sk_dev, "unknown chip type\n");
1572 		goto fail;
1573 	}
1574 	if (SK_IS_YUKON2(sc)) {
1575 		aprint_error_dev(&sc->sk_dev, "Does not support Yukon2--try msk(4).\n");
1576 		goto fail;
1577 	}
1578 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1579 
1580 	/* Allocate interrupt */
1581 	if (pci_intr_map(pa, &ih)) {
1582 		aprint_error(": couldn't map interrupt\n");
1583 		goto fail;
1584 	}
1585 
1586 	intrstr = pci_intr_string(pc, ih);
1587 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1588 	if (sc->sk_intrhand == NULL) {
1589 		aprint_error(": couldn't establish interrupt");
1590 		if (intrstr != NULL)
1591 			aprint_normal(" at %s", intrstr);
1592 		goto fail;
1593 	}
1594 	aprint_normal(": %s\n", intrstr);
1595 
1596 	/* Reset the adapter. */
1597 	sk_reset(sc);
1598 
1599 	/* Read and save vital product data from EEPROM. */
1600 	sk_vpd_read(sc);
1601 
1602 	if (sc->sk_type == SK_GENESIS) {
1603 		u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1604 		/* Read and save RAM size and RAMbuffer offset */
1605 		switch (val) {
1606 		case SK_RAMSIZE_512K_64:
1607 			sc->sk_ramsize = 0x80000;
1608 			sc->sk_rboff = SK_RBOFF_0;
1609 			break;
1610 		case SK_RAMSIZE_1024K_64:
1611 			sc->sk_ramsize = 0x100000;
1612 			sc->sk_rboff = SK_RBOFF_80000;
1613 			break;
1614 		case SK_RAMSIZE_1024K_128:
1615 			sc->sk_ramsize = 0x100000;
1616 			sc->sk_rboff = SK_RBOFF_0;
1617 			break;
1618 		case SK_RAMSIZE_2048K_128:
1619 			sc->sk_ramsize = 0x200000;
1620 			sc->sk_rboff = SK_RBOFF_0;
1621 			break;
1622 		default:
1623 			aprint_error_dev(&sc->sk_dev, "unknown ram size: %d\n",
1624 			       val);
1625 			goto fail_1;
1626 			break;
1627 		}
1628 
1629 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1630 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
1631 			     sc->sk_rboff));
1632 	} else {
1633 	  	u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1634 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
1635 		sc->sk_rboff = SK_RBOFF_0;
1636 
1637 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1638 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
1639 			     sc->sk_rboff));
1640 	}
1641 
1642 	/* Read and save physical media type */
1643 	switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1644 	case SK_PMD_1000BASESX:
1645 		sc->sk_pmd = IFM_1000_SX;
1646 		break;
1647 	case SK_PMD_1000BASELX:
1648 		sc->sk_pmd = IFM_1000_LX;
1649 		break;
1650 	case SK_PMD_1000BASECX:
1651 		sc->sk_pmd = IFM_1000_CX;
1652 		break;
1653 	case SK_PMD_1000BASETX:
1654 	case SK_PMD_1000BASETX_ALT:
1655 		sc->sk_pmd = IFM_1000_T;
1656 		break;
1657 	default:
1658 		aprint_error_dev(&sc->sk_dev, "unknown media type: 0x%x\n",
1659 		    sk_win_read_1(sc, SK_PMDTYPE));
1660 		goto fail_1;
1661 	}
1662 
1663 	/* determine whether to name it with vpd or just make it up */
1664 	/* Marvell Yukon VPD's can freqently be bogus */
1665 
1666 	switch (pa->pa_id) {
1667 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1668 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1669 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1670 	case PCI_PRODUCT_3COM_3C940:
1671 	case PCI_PRODUCT_DLINK_DGE530T:
1672 	case PCI_PRODUCT_DLINK_DGE560T:
1673 	case PCI_PRODUCT_DLINK_DGE560T_2:
1674 	case PCI_PRODUCT_LINKSYS_EG1032:
1675 	case PCI_PRODUCT_LINKSYS_EG1064:
1676 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1677 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1678 	case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1679 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1680 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
1681 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
1682 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1683 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1684  		sc->sk_name = sc->sk_vpd_prodname;
1685  		break;
1686 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
1687 	/* whoops yukon vpd prodname bears no resemblance to reality */
1688 		switch (sc->sk_type) {
1689 		case SK_GENESIS:
1690 			sc->sk_name = sc->sk_vpd_prodname;
1691 			break;
1692 		case SK_YUKON:
1693 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1694 			break;
1695 		case SK_YUKON_LITE:
1696 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1697 			break;
1698 		case SK_YUKON_LP:
1699 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1700 			break;
1701 		default:
1702 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1703 		}
1704 
1705 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1706 
1707 		if ( sc->sk_type == SK_YUKON ) {
1708 			uint32_t flashaddr;
1709 			uint8_t testbyte;
1710 
1711 			flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1712 
1713 			/* test Flash-Address Register */
1714 			sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1715 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1716 
1717 			if (testbyte != 0) {
1718 				/* this is yukon lite Rev. A0 */
1719 				sc->sk_type = SK_YUKON_LITE;
1720 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
1721 				/* restore Flash-Address Register */
1722 				sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1723 			}
1724 		}
1725 		break;
1726 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
1727 		sc->sk_name = sc->sk_vpd_prodname;
1728 		break;
1729  	default:
1730 		sc->sk_name = "Unknown Marvell";
1731 	}
1732 
1733 
1734 	if ( sc->sk_type == SK_YUKON_LITE ) {
1735 		switch (sc->sk_rev) {
1736 		case SK_YUKON_LITE_REV_A0:
1737 			revstr = "A0";
1738 			break;
1739 		case SK_YUKON_LITE_REV_A1:
1740 			revstr = "A1";
1741 			break;
1742 		case SK_YUKON_LITE_REV_A3:
1743 			revstr = "A3";
1744 			break;
1745 		default:
1746 			revstr = "";
1747 		}
1748 	} else {
1749 		revstr = "";
1750 	}
1751 
1752 	/* Announce the product name. */
1753 	aprint_normal_dev(&sc->sk_dev, "%s rev. %s(0x%x)\n",
1754 			      sc->sk_name, revstr, sc->sk_rev);
1755 
1756 	skca.skc_port = SK_PORT_A;
1757 	(void)config_found(&sc->sk_dev, &skca, skcprint);
1758 
1759 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1760 		skca.skc_port = SK_PORT_B;
1761 		(void)config_found(&sc->sk_dev, &skca, skcprint);
1762 	}
1763 
1764 	/* Turn on the 'driver is loaded' LED. */
1765 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1766 
1767 	/* skc sysctl setup */
1768 
1769 	sc->sk_int_mod = SK_IM_DEFAULT;
1770 	sc->sk_int_mod_pending = 0;
1771 
1772 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1773 	    0, CTLTYPE_NODE, device_xname(&sc->sk_dev),
1774 	    SYSCTL_DESCR("skc per-controller controls"),
1775 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1776 	    CTL_EOL)) != 0) {
1777 		aprint_normal_dev(&sc->sk_dev, "couldn't create sysctl node\n");
1778 		goto fail_1;
1779 	}
1780 
1781 	sk_nodenum = node->sysctl_num;
1782 
1783 	/* interrupt moderation time in usecs */
1784 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1785 	    CTLFLAG_READWRITE,
1786 	    CTLTYPE_INT, "int_mod",
1787 	    SYSCTL_DESCR("sk interrupt moderation timer"),
1788 	    sk_sysctl_handler, 0, sc,
1789 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1790 	    CTL_EOL)) != 0) {
1791 		aprint_normal_dev(&sc->sk_dev, "couldn't create int_mod sysctl node\n");
1792 		goto fail_1;
1793 	}
1794 
1795 	return;
1796 
1797 fail_1:
1798 	pci_intr_disestablish(pc, sc->sk_intrhand);
1799 fail:
1800 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1801 }
1802 
1803 int
1804 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1805 {
1806 	struct sk_softc		*sc = sc_if->sk_softc;
1807 	struct sk_tx_desc	*f = NULL;
1808 	u_int32_t		frag, cur, cnt = 0, sk_ctl;
1809 	int			i;
1810 	struct sk_txmap_entry	*entry;
1811 	bus_dmamap_t		txmap;
1812 
1813 	DPRINTFN(3, ("sk_encap\n"));
1814 
1815 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1816 	if (entry == NULL) {
1817 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
1818 		return ENOBUFS;
1819 	}
1820 	txmap = entry->dmamap;
1821 
1822 	cur = frag = *txidx;
1823 
1824 #ifdef SK_DEBUG
1825 	if (skdebug >= 3)
1826 		sk_dump_mbuf(m_head);
1827 #endif
1828 
1829 	/*
1830 	 * Start packing the mbufs in this chain into
1831 	 * the fragment pointers. Stop when we run out
1832 	 * of fragments or hit the end of the mbuf chain.
1833 	 */
1834 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1835 	    BUS_DMA_NOWAIT)) {
1836 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1837 		return ENOBUFS;
1838 	}
1839 
1840 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1841 
1842 	/* Sync the DMA map. */
1843 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1844 	    BUS_DMASYNC_PREWRITE);
1845 
1846 	for (i = 0; i < txmap->dm_nsegs; i++) {
1847 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1848 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1849 			return ENOBUFS;
1850 		}
1851 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
1852 		f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1853 		sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1854 		if (cnt == 0)
1855 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
1856 		else
1857 			sk_ctl |= SK_TXCTL_OWN;
1858 		f->sk_ctl = htole32(sk_ctl);
1859 		cur = frag;
1860 		SK_INC(frag, SK_TX_RING_CNT);
1861 		cnt++;
1862 	}
1863 
1864 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1865 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1866 
1867 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
1868 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1869 		htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1870 
1871 	/* Sync descriptors before handing to chip */
1872 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1873 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1874 
1875 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1876 		htole32(SK_TXCTL_OWN);
1877 
1878 	/* Sync first descriptor to hand it off */
1879 	SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1880 
1881 	sc_if->sk_cdata.sk_tx_cnt += cnt;
1882 
1883 #ifdef SK_DEBUG
1884 	if (skdebug >= 3) {
1885 		struct sk_tx_desc *desc;
1886 		u_int32_t idx;
1887 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1888 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1889 			sk_dump_txdesc(desc, idx);
1890 		}
1891 	}
1892 #endif
1893 
1894 	*txidx = frag;
1895 
1896 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
1897 
1898 	return 0;
1899 }
1900 
1901 void
1902 sk_start(struct ifnet *ifp)
1903 {
1904         struct sk_if_softc	*sc_if = ifp->if_softc;
1905         struct sk_softc		*sc = sc_if->sk_softc;
1906         struct mbuf		*m_head = NULL;
1907         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
1908 	int			pkts = 0;
1909 
1910 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1911 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1912 
1913 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1914 		IFQ_POLL(&ifp->if_snd, m_head);
1915 		if (m_head == NULL)
1916 			break;
1917 
1918 		/*
1919 		 * Pack the data into the transmit ring. If we
1920 		 * don't have room, set the OACTIVE flag and wait
1921 		 * for the NIC to drain the ring.
1922 		 */
1923 		if (sk_encap(sc_if, m_head, &idx)) {
1924 			ifp->if_flags |= IFF_OACTIVE;
1925 			break;
1926 		}
1927 
1928 		/* now we are committed to transmit the packet */
1929 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1930 		pkts++;
1931 
1932 		/*
1933 		 * If there's a BPF listener, bounce a copy of this frame
1934 		 * to him.
1935 		 */
1936 #if NBPFILTER > 0
1937 		if (ifp->if_bpf)
1938 			bpf_mtap(ifp->if_bpf, m_head);
1939 #endif
1940 	}
1941 	if (pkts == 0)
1942 		return;
1943 
1944 	/* Transmit */
1945 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
1946 		sc_if->sk_cdata.sk_tx_prod = idx;
1947 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1948 
1949 		/* Set a timeout in case the chip goes out to lunch. */
1950 		ifp->if_timer = 5;
1951 	}
1952 }
1953 
1954 
1955 void
1956 sk_watchdog(struct ifnet *ifp)
1957 {
1958 	struct sk_if_softc *sc_if = ifp->if_softc;
1959 
1960 	/*
1961 	 * Reclaim first as there is a possibility of losing Tx completion
1962 	 * interrupts.
1963 	 */
1964 	sk_txeof(sc_if);
1965 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1966 		aprint_error_dev(&sc_if->sk_dev, "watchdog timeout\n");
1967 
1968 		ifp->if_oerrors++;
1969 
1970 		sk_init(ifp);
1971 	}
1972 }
1973 
1974 void
1975 sk_shutdown(void *v)
1976 {
1977 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
1978 	struct sk_softc		*sc = sc_if->sk_softc;
1979 	struct ifnet 		*ifp = &sc_if->sk_ethercom.ec_if;
1980 
1981 	DPRINTFN(2, ("sk_shutdown\n"));
1982 	sk_stop(ifp,1);
1983 
1984 	/* Turn off the 'driver is loaded' LED. */
1985 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1986 
1987 	/*
1988 	 * Reset the GEnesis controller. Doing this should also
1989 	 * assert the resets on the attached XMAC(s).
1990 	 */
1991 	sk_reset(sc);
1992 }
1993 
1994 void
1995 sk_rxeof(struct sk_if_softc *sc_if)
1996 {
1997 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
1998 	struct mbuf		*m;
1999 	struct sk_chain		*cur_rx;
2000 	struct sk_rx_desc	*cur_desc;
2001 	int			i, cur, total_len = 0;
2002 	u_int32_t		rxstat, sk_ctl;
2003 	bus_dmamap_t		dmamap;
2004 
2005 	i = sc_if->sk_cdata.sk_rx_prod;
2006 
2007 	DPRINTFN(3, ("sk_rxeof %d\n", i));
2008 
2009 	for (;;) {
2010 		cur = i;
2011 
2012 		/* Sync the descriptor */
2013 		SK_CDRXSYNC(sc_if, cur,
2014 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2015 
2016 		sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2017 		if (sk_ctl & SK_RXCTL_OWN) {
2018 			/* Invalidate the descriptor -- it's not ready yet */
2019 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2020 			sc_if->sk_cdata.sk_rx_prod = i;
2021 			break;
2022 		}
2023 
2024 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2025 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2026 		dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2027 
2028 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2029 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2030 
2031 		rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2032 		m = cur_rx->sk_mbuf;
2033 		cur_rx->sk_mbuf = NULL;
2034 		total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2035 
2036 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
2037 
2038 		SK_INC(i, SK_RX_RING_CNT);
2039 
2040 		if (rxstat & XM_RXSTAT_ERRFRAME) {
2041 			ifp->if_ierrors++;
2042 			sk_newbuf(sc_if, cur, m, dmamap);
2043 			continue;
2044 		}
2045 
2046 		/*
2047 		 * Try to allocate a new jumbo buffer. If that
2048 		 * fails, copy the packet to mbufs and put the
2049 		 * jumbo buffer back in the ring so it can be
2050 		 * re-used. If allocating mbufs fails, then we
2051 		 * have to drop the packet.
2052 		 */
2053 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2054 			struct mbuf		*m0;
2055 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2056 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
2057 			sk_newbuf(sc_if, cur, m, dmamap);
2058 			if (m0 == NULL) {
2059 				aprint_error_dev(&sc_if->sk_dev, "no receive buffers "
2060 				    "available -- packet dropped!\n");
2061 				ifp->if_ierrors++;
2062 				continue;
2063 			}
2064 			m_adj(m0, ETHER_ALIGN);
2065 			m = m0;
2066 		} else {
2067 			m->m_pkthdr.rcvif = ifp;
2068 			m->m_pkthdr.len = m->m_len = total_len;
2069 		}
2070 
2071 		ifp->if_ipackets++;
2072 
2073 #if NBPFILTER > 0
2074 		if (ifp->if_bpf)
2075 			bpf_mtap(ifp->if_bpf, m);
2076 #endif
2077 		/* pass it on. */
2078 		(*ifp->if_input)(ifp, m);
2079 	}
2080 }
2081 
2082 void
2083 sk_txeof(struct sk_if_softc *sc_if)
2084 {
2085 	struct sk_softc		*sc = sc_if->sk_softc;
2086 	struct sk_tx_desc	*cur_tx;
2087 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2088 	u_int32_t		idx, sk_ctl;
2089 	struct sk_txmap_entry	*entry;
2090 
2091 	DPRINTFN(3, ("sk_txeof\n"));
2092 
2093 	/*
2094 	 * Go through our tx ring and free mbufs for those
2095 	 * frames that have been sent.
2096 	 */
2097 	idx = sc_if->sk_cdata.sk_tx_cons;
2098 	while (idx != sc_if->sk_cdata.sk_tx_prod) {
2099 		SK_CDTXSYNC(sc_if, idx, 1,
2100 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2101 
2102 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2103 		sk_ctl = le32toh(cur_tx->sk_ctl);
2104 #ifdef SK_DEBUG
2105 		if (skdebug >= 3)
2106 			sk_dump_txdesc(cur_tx, idx);
2107 #endif
2108 		if (sk_ctl & SK_TXCTL_OWN) {
2109 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2110 			break;
2111 		}
2112 		if (sk_ctl & SK_TXCTL_LASTFRAG)
2113 			ifp->if_opackets++;
2114 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2115 			entry = sc_if->sk_cdata.sk_tx_map[idx];
2116 
2117 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2118 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2119 
2120 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2121 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2122 
2123 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2124 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2125 					  link);
2126 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2127 		}
2128 		sc_if->sk_cdata.sk_tx_cnt--;
2129 		SK_INC(idx, SK_TX_RING_CNT);
2130 	}
2131 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
2132 		ifp->if_timer = 0;
2133 	else /* nudge chip to keep tx ring moving */
2134 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2135 
2136 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2137 		ifp->if_flags &= ~IFF_OACTIVE;
2138 
2139 	sc_if->sk_cdata.sk_tx_cons = idx;
2140 }
2141 
2142 void
2143 sk_tick(void *xsc_if)
2144 {
2145 	struct sk_if_softc *sc_if = xsc_if;
2146 	struct mii_data *mii = &sc_if->sk_mii;
2147 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2148 	int i;
2149 
2150 	DPRINTFN(3, ("sk_tick\n"));
2151 
2152 	if (!(ifp->if_flags & IFF_UP))
2153 		return;
2154 
2155 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2156 		sk_intr_bcom(sc_if);
2157 		return;
2158 	}
2159 
2160 	/*
2161 	 * According to SysKonnect, the correct way to verify that
2162 	 * the link has come back up is to poll bit 0 of the GPIO
2163 	 * register three times. This pin has the signal from the
2164 	 * link sync pin connected to it; if we read the same link
2165 	 * state 3 times in a row, we know the link is up.
2166 	 */
2167 	for (i = 0; i < 3; i++) {
2168 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2169 			break;
2170 	}
2171 
2172 	if (i != 3) {
2173 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2174 		return;
2175 	}
2176 
2177 	/* Turn the GP0 interrupt back on. */
2178 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2179 	SK_XM_READ_2(sc_if, XM_ISR);
2180 	mii_tick(mii);
2181 	mii_pollstat(mii);
2182 	callout_stop(&sc_if->sk_tick_ch);
2183 }
2184 
2185 void
2186 sk_intr_bcom(struct sk_if_softc *sc_if)
2187 {
2188 	struct mii_data *mii = &sc_if->sk_mii;
2189 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2190 	int status;
2191 
2192 
2193 	DPRINTFN(3, ("sk_intr_bcom\n"));
2194 
2195 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2196 
2197 	/*
2198 	 * Read the PHY interrupt register to make sure
2199 	 * we clear any pending interrupts.
2200 	 */
2201 	status = sk_xmac_miibus_readreg((struct device *)sc_if,
2202 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2203 
2204 	if (!(ifp->if_flags & IFF_RUNNING)) {
2205 		sk_init_xmac(sc_if);
2206 		return;
2207 	}
2208 
2209 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2210 		int lstat;
2211 		lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
2212 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2213 
2214 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2215 			(void)mii_mediachg(mii);
2216 			/* Turn off the link LED. */
2217 			SK_IF_WRITE_1(sc_if, 0,
2218 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
2219 			sc_if->sk_link = 0;
2220 		} else if (status & BRGPHY_ISR_LNK_CHG) {
2221 			sk_xmac_miibus_writereg((struct device *)sc_if,
2222 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2223 			mii_tick(mii);
2224 			sc_if->sk_link = 1;
2225 			/* Turn on the link LED. */
2226 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2227 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2228 			    SK_LINKLED_BLINK_OFF);
2229 			mii_pollstat(mii);
2230 		} else {
2231 			mii_tick(mii);
2232 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2233 		}
2234 	}
2235 
2236 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2237 }
2238 
2239 void
2240 sk_intr_xmac(struct sk_if_softc	*sc_if)
2241 {
2242 	u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2243 
2244 	DPRINTFN(3, ("sk_intr_xmac\n"));
2245 
2246 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2247 		if (status & XM_ISR_GP0_SET) {
2248 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2249 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2250 		}
2251 
2252 		if (status & XM_ISR_AUTONEG_DONE) {
2253 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2254 		}
2255 	}
2256 
2257 	if (status & XM_IMR_TX_UNDERRUN)
2258 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2259 
2260 	if (status & XM_IMR_RX_OVERRUN)
2261 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2262 }
2263 
2264 void
2265 sk_intr_yukon(struct sk_if_softc *sc_if)
2266 {
2267 	int status;
2268 
2269 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2270 
2271 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2272 }
2273 
2274 int
2275 sk_intr(void *xsc)
2276 {
2277 	struct sk_softc		*sc = xsc;
2278 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
2279 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
2280 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2281 	u_int32_t		status;
2282 	int			claimed = 0;
2283 
2284 	if (sc_if0 != NULL)
2285 		ifp0 = &sc_if0->sk_ethercom.ec_if;
2286 	if (sc_if1 != NULL)
2287 		ifp1 = &sc_if1->sk_ethercom.ec_if;
2288 
2289 	for (;;) {
2290 		status = CSR_READ_4(sc, SK_ISSR);
2291 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2292 
2293 		if (!(status & sc->sk_intrmask))
2294 			break;
2295 
2296 		claimed = 1;
2297 
2298 		/* Handle receive interrupts first. */
2299 		if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2300 			sk_rxeof(sc_if0);
2301 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2302 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2303 		}
2304 		if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2305 			sk_rxeof(sc_if1);
2306 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2307 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2308 		}
2309 
2310 		/* Then transmit interrupts. */
2311 		if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2312 			sk_txeof(sc_if0);
2313 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2314 			    SK_TXBMU_CLR_IRQ_EOF);
2315 		}
2316 		if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2317 			sk_txeof(sc_if1);
2318 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2319 			    SK_TXBMU_CLR_IRQ_EOF);
2320 		}
2321 
2322 		/* Then MAC interrupts. */
2323 		if (sc_if0 && (status & SK_ISR_MAC1) &&
2324 		    (ifp0->if_flags & IFF_RUNNING)) {
2325 			if (sc->sk_type == SK_GENESIS)
2326 				sk_intr_xmac(sc_if0);
2327 			else
2328 				sk_intr_yukon(sc_if0);
2329 		}
2330 
2331 		if (sc_if1 && (status & SK_ISR_MAC2) &&
2332 		    (ifp1->if_flags & IFF_RUNNING)) {
2333 			if (sc->sk_type == SK_GENESIS)
2334 				sk_intr_xmac(sc_if1);
2335 			else
2336 				sk_intr_yukon(sc_if1);
2337 
2338 		}
2339 
2340 		if (status & SK_ISR_EXTERNAL_REG) {
2341 			if (sc_if0 != NULL &&
2342 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2343 				sk_intr_bcom(sc_if0);
2344 
2345 			if (sc_if1 != NULL &&
2346 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2347 				sk_intr_bcom(sc_if1);
2348 		}
2349 	}
2350 
2351 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2352 
2353 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2354 		sk_start(ifp0);
2355 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2356 		sk_start(ifp1);
2357 
2358 #if NRND > 0
2359 	if (RND_ENABLED(&sc->rnd_source))
2360 		rnd_add_uint32(&sc->rnd_source, status);
2361 #endif
2362 
2363 	if (sc->sk_int_mod_pending)
2364 		sk_update_int_mod(sc);
2365 
2366 	return claimed;
2367 }
2368 
2369 void
2370 sk_init_xmac(struct sk_if_softc	*sc_if)
2371 {
2372 	struct sk_softc		*sc = sc_if->sk_softc;
2373 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2374 	static const struct sk_bcom_hack     bhack[] = {
2375 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2376 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2377 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2378 	{ 0, 0 } };
2379 
2380 	DPRINTFN(1, ("sk_init_xmac\n"));
2381 
2382 	/* Unreset the XMAC. */
2383 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2384 	DELAY(1000);
2385 
2386 	/* Reset the XMAC's internal state. */
2387 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2388 
2389 	/* Save the XMAC II revision */
2390 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2391 
2392 	/*
2393 	 * Perform additional initialization for external PHYs,
2394 	 * namely for the 1000baseTX cards that use the XMAC's
2395 	 * GMII mode.
2396 	 */
2397 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2398 		int			i = 0;
2399 		u_int32_t		val;
2400 
2401 		/* Take PHY out of reset. */
2402 		val = sk_win_read_4(sc, SK_GPIO);
2403 		if (sc_if->sk_port == SK_PORT_A)
2404 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2405 		else
2406 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2407 		sk_win_write_4(sc, SK_GPIO, val);
2408 
2409 		/* Enable GMII mode on the XMAC. */
2410 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2411 
2412 		sk_xmac_miibus_writereg((struct device *)sc_if,
2413 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2414 		DELAY(10000);
2415 		sk_xmac_miibus_writereg((struct device *)sc_if,
2416 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2417 
2418 		/*
2419 		 * Early versions of the BCM5400 apparently have
2420 		 * a bug that requires them to have their reserved
2421 		 * registers initialized to some magic values. I don't
2422 		 * know what the numbers do, I'm just the messenger.
2423 		 */
2424 		if (sk_xmac_miibus_readreg((struct device *)sc_if,
2425 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2426 			while (bhack[i].reg) {
2427 				sk_xmac_miibus_writereg((struct device *)sc_if,
2428 				    SK_PHYADDR_BCOM, bhack[i].reg,
2429 				    bhack[i].val);
2430 				i++;
2431 			}
2432 		}
2433 	}
2434 
2435 	/* Set station address */
2436 	SK_XM_WRITE_2(sc_if, XM_PAR0,
2437 		      *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2438 	SK_XM_WRITE_2(sc_if, XM_PAR1,
2439 		      *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2440 	SK_XM_WRITE_2(sc_if, XM_PAR2,
2441 		      *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2442 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2443 
2444 	if (ifp->if_flags & IFF_PROMISC)
2445 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2446 	else
2447 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2448 
2449 	if (ifp->if_flags & IFF_BROADCAST)
2450 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2451 	else
2452 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2453 
2454 	/* We don't need the FCS appended to the packet. */
2455 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2456 
2457 	/* We want short frames padded to 60 bytes. */
2458 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2459 
2460 	/*
2461 	 * Enable the reception of all error frames. This is is
2462 	 * a necessary evil due to the design of the XMAC. The
2463 	 * XMAC's receive FIFO is only 8K in size, however jumbo
2464 	 * frames can be up to 9000 bytes in length. When bad
2465 	 * frame filtering is enabled, the XMAC's RX FIFO operates
2466 	 * in 'store and forward' mode. For this to work, the
2467 	 * entire frame has to fit into the FIFO, but that means
2468 	 * that jumbo frames larger than 8192 bytes will be
2469 	 * truncated. Disabling all bad frame filtering causes
2470 	 * the RX FIFO to operate in streaming mode, in which
2471 	 * case the XMAC will start transfering frames out of the
2472 	 * RX FIFO as soon as the FIFO threshold is reached.
2473 	 */
2474 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2475 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2476 	    XM_MODE_RX_INRANGELEN);
2477 
2478 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2479 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2480 	else
2481 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2482 
2483 	/*
2484 	 * Bump up the transmit threshold. This helps hold off transmit
2485 	 * underruns when we're blasting traffic from both ports at once.
2486 	 */
2487 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2488 
2489 	/* Set multicast filter */
2490 	sk_setmulti(sc_if);
2491 
2492 	/* Clear and enable interrupts */
2493 	SK_XM_READ_2(sc_if, XM_ISR);
2494 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2495 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2496 	else
2497 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2498 
2499 	/* Configure MAC arbiter */
2500 	switch (sc_if->sk_xmac_rev) {
2501 	case XM_XMAC_REV_B2:
2502 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2503 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2504 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2505 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2506 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2507 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2508 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2509 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2510 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2511 		break;
2512 	case XM_XMAC_REV_C1:
2513 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2514 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2515 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2516 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2517 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2518 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2519 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2520 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2521 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2522 		break;
2523 	default:
2524 		break;
2525 	}
2526 	sk_win_write_2(sc, SK_MACARB_CTL,
2527 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2528 
2529 	sc_if->sk_link = 1;
2530 }
2531 
2532 void sk_init_yukon(struct sk_if_softc *sc_if)
2533 {
2534 	u_int32_t		/*mac, */phy;
2535 	u_int16_t		reg;
2536 	struct sk_softc		*sc;
2537 	int			i;
2538 
2539 	DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2540 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2541 
2542 	sc = sc_if->sk_softc;
2543 	if (sc->sk_type == SK_YUKON_LITE &&
2544 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2545 		/* Take PHY out of reset. */
2546 		sk_win_write_4(sc, SK_GPIO,
2547 			(sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2548 	}
2549 
2550 
2551 	/* GMAC and GPHY Reset */
2552 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2553 
2554 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
2555 
2556 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2557 	DELAY(1000);
2558 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2559 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2560 	DELAY(1000);
2561 
2562 
2563 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
2564 
2565 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2566 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2567 
2568 	switch (sc_if->sk_softc->sk_pmd) {
2569 	case IFM_1000_SX:
2570 	case IFM_1000_LX:
2571 		phy |= SK_GPHY_FIBER;
2572 		break;
2573 
2574 	case IFM_1000_CX:
2575 	case IFM_1000_T:
2576 		phy |= SK_GPHY_COPPER;
2577 		break;
2578 	}
2579 
2580 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2581 
2582 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2583 	DELAY(1000);
2584 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2585 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2586 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2587 
2588 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2589 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2590 
2591 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
2592 
2593 	/* unused read of the interrupt source register */
2594 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
2595 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2596 
2597 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2598 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2599 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2600 
2601 	/* MIB Counter Clear Mode set */
2602         reg |= YU_PAR_MIB_CLR;
2603 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2604 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2605 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2606 
2607 	/* MIB Counter Clear Mode clear */
2608 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
2609         reg &= ~YU_PAR_MIB_CLR;
2610 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2611 
2612 	/* receive control reg */
2613 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
2614 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2615 		      YU_RCR_CRCR);
2616 
2617 	/* transmit parameter register */
2618 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
2619 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2620 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2621 
2622 	/* serial mode register */
2623 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
2624 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2625 		      YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2626 		      YU_SMR_IPG_DATA(0x1e));
2627 
2628 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
2629 	/* Setup Yukon's address */
2630 	for (i = 0; i < 3; i++) {
2631 		/* Write Source Address 1 (unicast filter) */
2632 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2633 			      sc_if->sk_enaddr[i * 2] |
2634 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
2635 	}
2636 
2637 	for (i = 0; i < 3; i++) {
2638 		reg = sk_win_read_2(sc_if->sk_softc,
2639 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2640 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2641 	}
2642 
2643 	/* Set multicast filter */
2644 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
2645 	sk_setmulti(sc_if);
2646 
2647 	/* enable interrupt mask for counter overflows */
2648 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
2649 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2650 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2651 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2652 
2653 	/* Configure RX MAC FIFO */
2654 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2655 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2656 
2657 	/* Configure TX MAC FIFO */
2658 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2659 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2660 
2661 	DPRINTFN(6, ("sk_init_yukon: end\n"));
2662 }
2663 
2664 /*
2665  * Note that to properly initialize any part of the GEnesis chip,
2666  * you first have to take it out of reset mode.
2667  */
2668 int
2669 sk_init(struct ifnet *ifp)
2670 {
2671 	struct sk_if_softc	*sc_if = ifp->if_softc;
2672 	struct sk_softc		*sc = sc_if->sk_softc;
2673 	struct mii_data		*mii = &sc_if->sk_mii;
2674 	int			rc = 0, s;
2675 	u_int32_t		imr, imtimer_ticks;
2676 
2677 	DPRINTFN(1, ("sk_init\n"));
2678 
2679 	s = splnet();
2680 
2681 	if (ifp->if_flags & IFF_RUNNING) {
2682 		splx(s);
2683 		return 0;
2684 	}
2685 
2686 	/* Cancel pending I/O and free all RX/TX buffers. */
2687 	sk_stop(ifp,0);
2688 
2689 	if (sc->sk_type == SK_GENESIS) {
2690 		/* Configure LINK_SYNC LED */
2691 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2692 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2693 			      SK_LINKLED_LINKSYNC_ON);
2694 
2695 		/* Configure RX LED */
2696 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2697 			      SK_RXLEDCTL_COUNTER_START);
2698 
2699 		/* Configure TX LED */
2700 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2701 			      SK_TXLEDCTL_COUNTER_START);
2702 	}
2703 
2704 	/* Configure I2C registers */
2705 
2706 	/* Configure XMAC(s) */
2707 	switch (sc->sk_type) {
2708 	case SK_GENESIS:
2709 		sk_init_xmac(sc_if);
2710 		break;
2711 	case SK_YUKON:
2712 	case SK_YUKON_LITE:
2713 	case SK_YUKON_LP:
2714 		sk_init_yukon(sc_if);
2715 		break;
2716 	}
2717 	if ((rc = mii_mediachg(mii)) == ENXIO)
2718 		rc = 0;
2719 	else if (rc != 0)
2720 		goto out;
2721 
2722 	if (sc->sk_type == SK_GENESIS) {
2723 		/* Configure MAC FIFOs */
2724 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2725 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2726 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2727 
2728 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2729 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2730 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2731 	}
2732 
2733 	/* Configure transmit arbiter(s) */
2734 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2735 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2736 
2737 	/* Configure RAMbuffers */
2738 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2739 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2740 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2741 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2742 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2743 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2744 
2745 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2746 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2747 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2748 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2749 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2750 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2751 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2752 
2753 	/* Configure BMUs */
2754 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2755 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2756 	    SK_RX_RING_ADDR(sc_if, 0));
2757 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2758 
2759 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2760 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2761             SK_TX_RING_ADDR(sc_if, 0));
2762 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2763 
2764 	/* Init descriptors */
2765 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2766 		aprint_error_dev(&sc_if->sk_dev, "initialization failed: no "
2767 		    "memory for rx buffers\n");
2768 		sk_stop(ifp,0);
2769 		splx(s);
2770 		return ENOBUFS;
2771 	}
2772 
2773 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2774 		aprint_error_dev(&sc_if->sk_dev, "initialization failed: no "
2775 		    "memory for tx buffers\n");
2776 		sk_stop(ifp,0);
2777 		splx(s);
2778 		return ENOBUFS;
2779 	}
2780 
2781 	/* Set interrupt moderation if changed via sysctl. */
2782 	switch (sc->sk_type) {
2783 	case SK_GENESIS:
2784 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2785 		break;
2786 	case SK_YUKON_EC:
2787 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2788 		break;
2789 	default:
2790 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2791 	}
2792 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2793 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2794 		sk_win_write_4(sc, SK_IMTIMERINIT,
2795 		    SK_IM_USECS(sc->sk_int_mod));
2796 		aprint_verbose_dev(&sc->sk_dev, "interrupt moderation is %d us\n",
2797 		    sc->sk_int_mod);
2798 	}
2799 
2800 	/* Configure interrupt handling */
2801 	CSR_READ_4(sc, SK_ISSR);
2802 	if (sc_if->sk_port == SK_PORT_A)
2803 		sc->sk_intrmask |= SK_INTRS1;
2804 	else
2805 		sc->sk_intrmask |= SK_INTRS2;
2806 
2807 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2808 
2809 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2810 
2811 	/* Start BMUs. */
2812 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2813 
2814 	if (sc->sk_type == SK_GENESIS) {
2815 		/* Enable XMACs TX and RX state machines */
2816 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2817 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2818 			       XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2819 	}
2820 
2821 	if (SK_YUKON_FAMILY(sc->sk_type)) {
2822 		u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2823 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2824 #if 0
2825 		/* XXX disable 100Mbps and full duplex mode? */
2826 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2827 #endif
2828 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2829 	}
2830 
2831 
2832 	ifp->if_flags |= IFF_RUNNING;
2833 	ifp->if_flags &= ~IFF_OACTIVE;
2834 
2835 out:
2836 	splx(s);
2837 	return rc;
2838 }
2839 
2840 void
2841 sk_stop(struct ifnet *ifp, int disable)
2842 {
2843         struct sk_if_softc	*sc_if = ifp->if_softc;
2844 	struct sk_softc		*sc = sc_if->sk_softc;
2845 	int			i;
2846 
2847 	DPRINTFN(1, ("sk_stop\n"));
2848 
2849 	callout_stop(&sc_if->sk_tick_ch);
2850 
2851 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2852 		u_int32_t		val;
2853 
2854 		/* Put PHY back into reset. */
2855 		val = sk_win_read_4(sc, SK_GPIO);
2856 		if (sc_if->sk_port == SK_PORT_A) {
2857 			val |= SK_GPIO_DIR0;
2858 			val &= ~SK_GPIO_DAT0;
2859 		} else {
2860 			val |= SK_GPIO_DIR2;
2861 			val &= ~SK_GPIO_DAT2;
2862 		}
2863 		sk_win_write_4(sc, SK_GPIO, val);
2864 	}
2865 
2866 	/* Turn off various components of this interface. */
2867 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2868 	switch (sc->sk_type) {
2869 	case SK_GENESIS:
2870 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2871 			      SK_TXMACCTL_XMAC_RESET);
2872 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2873 		break;
2874 	case SK_YUKON:
2875 	case SK_YUKON_LITE:
2876 	case SK_YUKON_LP:
2877 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2878 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2879 		break;
2880 	}
2881 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2882 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2883 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2884 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2885 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2886 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2887 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2888 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2889 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2890 
2891 	/* Disable interrupts */
2892 	if (sc_if->sk_port == SK_PORT_A)
2893 		sc->sk_intrmask &= ~SK_INTRS1;
2894 	else
2895 		sc->sk_intrmask &= ~SK_INTRS2;
2896 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2897 
2898 	SK_XM_READ_2(sc_if, XM_ISR);
2899 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2900 
2901 	/* Free RX and TX mbufs still in the queues. */
2902 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2903 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2904 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2905 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2906 		}
2907 	}
2908 
2909 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2910 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2911 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2912 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2913 		}
2914 	}
2915 
2916 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2917 }
2918 
2919 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
2920 
2921 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
2922 
2923 #ifdef SK_DEBUG
2924 void
2925 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2926 {
2927 #define DESC_PRINT(X)					\
2928 	if (X)					\
2929 		printf("txdesc[%d]." #X "=%#x\n",	\
2930 		       idx, X);
2931 
2932 	DESC_PRINT(le32toh(desc->sk_ctl));
2933 	DESC_PRINT(le32toh(desc->sk_next));
2934 	DESC_PRINT(le32toh(desc->sk_data_lo));
2935 	DESC_PRINT(le32toh(desc->sk_data_hi));
2936 	DESC_PRINT(le32toh(desc->sk_xmac_txstat));
2937 	DESC_PRINT(le16toh(desc->sk_rsvd0));
2938 	DESC_PRINT(le16toh(desc->sk_csum_startval));
2939 	DESC_PRINT(le16toh(desc->sk_csum_startpos));
2940 	DESC_PRINT(le16toh(desc->sk_csum_writepos));
2941 	DESC_PRINT(le16toh(desc->sk_rsvd1));
2942 #undef PRINT
2943 }
2944 
2945 void
2946 sk_dump_bytes(const char *data, int len)
2947 {
2948 	int c, i, j;
2949 
2950 	for (i = 0; i < len; i += 16) {
2951 		printf("%08x  ", i);
2952 		c = len - i;
2953 		if (c > 16) c = 16;
2954 
2955 		for (j = 0; j < c; j++) {
2956 			printf("%02x ", data[i + j] & 0xff);
2957 			if ((j & 0xf) == 7 && j > 0)
2958 				printf(" ");
2959 		}
2960 
2961 		for (; j < 16; j++)
2962 			printf("   ");
2963 		printf("  ");
2964 
2965 		for (j = 0; j < c; j++) {
2966 			int ch = data[i + j] & 0xff;
2967 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2968 		}
2969 
2970 		printf("\n");
2971 
2972 		if (c < 16)
2973 			break;
2974 	}
2975 }
2976 
2977 void
2978 sk_dump_mbuf(struct mbuf *m)
2979 {
2980 	int count = m->m_pkthdr.len;
2981 
2982 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2983 
2984 	while (count > 0 && m) {
2985 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2986 		       m, m->m_data, m->m_len);
2987 		sk_dump_bytes(mtod(m, char *), m->m_len);
2988 
2989 		count -= m->m_len;
2990 		m = m->m_next;
2991 	}
2992 }
2993 #endif
2994 
2995 static int
2996 sk_sysctl_handler(SYSCTLFN_ARGS)
2997 {
2998 	int error, t;
2999 	struct sysctlnode node;
3000 	struct sk_softc *sc;
3001 
3002 	node = *rnode;
3003 	sc = node.sysctl_data;
3004 	t = sc->sk_int_mod;
3005 	node.sysctl_data = &t;
3006 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3007 	if (error || newp == NULL)
3008 		return error;
3009 
3010 	if (t < SK_IM_MIN || t > SK_IM_MAX)
3011 		return EINVAL;
3012 
3013 	/* update the softc with sysctl-changed value, and mark
3014 	   for hardware update */
3015 	sc->sk_int_mod = t;
3016 	sc->sk_int_mod_pending = 1;
3017 	return 0;
3018 }
3019 
3020 /*
3021  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3022  * set up in skc_attach()
3023  */
3024 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3025 {
3026 	int rc;
3027 	const struct sysctlnode *node;
3028 
3029 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3030 	    0, CTLTYPE_NODE, "hw", NULL,
3031 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3032 		goto err;
3033 	}
3034 
3035 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
3036 	    0, CTLTYPE_NODE, "sk",
3037 	    SYSCTL_DESCR("sk interface controls"),
3038 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3039 		goto err;
3040 	}
3041 
3042 	sk_root_num = node->sysctl_num;
3043 	return;
3044 
3045 err:
3046 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3047 }
3048