xref: /netbsd-src/sys/dev/pci/if_sk.c (revision de1dfb1250df962f1ff3a011772cf58e605aed11)
1 /*	$NetBSD: if_sk.c,v 1.10 2004/05/24 20:12:01 kleink Exp $	*/
2 
3 /*-
4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the NetBSD
18  *	Foundation, Inc. and its contributors.
19  * 4. Neither the name of The NetBSD Foundation nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 /*	$OpenBSD: if_sk.c,v 1.33 2003/08/12 05:23:06 nate Exp $	*/
37 
38 /*
39  * Copyright (c) 1997, 1998, 1999, 2000
40  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. All advertising materials mentioning features or use of this software
51  *    must display the following acknowledgement:
52  *	This product includes software developed by Bill Paul.
53  * 4. Neither the name of the author nor the names of any co-contributors
54  *    may be used to endorse or promote products derived from this software
55  *    without specific prior written permission.
56  *
57  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
61  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
67  * THE POSSIBILITY OF SUCH DAMAGE.
68  *
69  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
70  */
71 
72 /*
73  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
74  *
75  * Permission to use, copy, modify, and distribute this software for any
76  * purpose with or without fee is hereby granted, provided that the above
77  * copyright notice and this permission notice appear in all copies.
78  *
79  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
80  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
81  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
82  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
83  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
84  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
85  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
86  */
87 
88 /*
89  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
90  * the SK-984x series adapters, both single port and dual port.
91  * References:
92  * 	The XaQti XMAC II datasheet,
93  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
95  *
96  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
97  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
98  * convenience to others until Vitesse corrects this problem:
99  *
100  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
101  *
102  * Written by Bill Paul <wpaul@ee.columbia.edu>
103  * Department of Electrical Engineering
104  * Columbia University, New York City
105  */
106 
107 /*
108  * The SysKonnect gigabit ethernet adapters consist of two main
109  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
110  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
111  * components and a PHY while the GEnesis controller provides a PCI
112  * interface with DMA support. Each card may have between 512K and
113  * 2MB of SRAM on board depending on the configuration.
114  *
115  * The SysKonnect GEnesis controller can have either one or two XMAC
116  * chips connected to it, allowing single or dual port NIC configurations.
117  * SysKonnect has the distinction of being the only vendor on the market
118  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
119  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
120  * XMAC registers. This driver takes advantage of these features to allow
121  * both XMACs to operate as independent interfaces.
122  */
123 
124 #include "bpfilter.h"
125 
126 #include <sys/param.h>
127 #include <sys/systm.h>
128 #include <sys/sockio.h>
129 #include <sys/mbuf.h>
130 #include <sys/malloc.h>
131 #include <sys/kernel.h>
132 #include <sys/socket.h>
133 #include <sys/device.h>
134 #include <sys/queue.h>
135 #include <sys/callout.h>
136 
137 #include <net/if.h>
138 #include <net/if_dl.h>
139 #include <net/if_types.h>
140 
141 #ifdef INET
142 #include <netinet/in.h>
143 #include <netinet/in_systm.h>
144 #include <netinet/in_var.h>
145 #include <netinet/ip.h>
146 #include <netinet/if_ether.h>
147 #endif
148 
149 #include <net/if_media.h>
150 
151 #if NBPFILTER > 0
152 #include <net/bpf.h>
153 #endif
154 
155 #include <dev/mii/mii.h>
156 #include <dev/mii/miivar.h>
157 #include <dev/mii/brgphyreg.h>
158 
159 #include <dev/pci/pcireg.h>
160 #include <dev/pci/pcivar.h>
161 #include <dev/pci/pcidevs.h>
162 
163 #define	SK_VERBOSE
164 /* #define SK_USEIOSPACE */
165 
166 #include <dev/pci/if_skreg.h>
167 #include <dev/pci/if_skvar.h>
168 
169 int skc_probe(struct device *, struct cfdata *, void *);
170 void skc_attach(struct device *, struct device *self, void *aux);
171 int sk_probe(struct device *, struct cfdata *, void *);
172 void sk_attach(struct device *, struct device *self, void *aux);
173 int skcprint(void *, const char *);
174 int sk_intr(void *);
175 void sk_intr_bcom(struct sk_if_softc *);
176 void sk_intr_xmac(struct sk_if_softc *);
177 void sk_intr_yukon(struct sk_if_softc *);
178 void sk_rxeof(struct sk_if_softc *);
179 void sk_txeof(struct sk_if_softc *);
180 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
181 void sk_start(struct ifnet *);
182 int sk_ioctl(struct ifnet *, u_long, caddr_t);
183 int sk_init(struct ifnet *);
184 void sk_init_xmac(struct sk_if_softc *);
185 void sk_init_yukon(struct sk_if_softc *);
186 void sk_stop(struct ifnet *, int);
187 void sk_watchdog(struct ifnet *);
188 void sk_shutdown(void *);
189 int sk_ifmedia_upd(struct ifnet *);
190 void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
191 void sk_reset(struct sk_softc *);
192 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
193 int sk_init_rx_ring(struct sk_if_softc *);
194 int sk_init_tx_ring(struct sk_if_softc *);
195 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
196 void sk_vpd_read_res(struct sk_softc *,
197 					struct vpd_res *, int);
198 void sk_vpd_read(struct sk_softc *);
199 
200 int sk_xmac_miibus_readreg(struct device *, int, int);
201 void sk_xmac_miibus_writereg(struct device *, int, int, int);
202 void sk_xmac_miibus_statchg(struct device *);
203 
204 int sk_marv_miibus_readreg(struct device *, int, int);
205 void sk_marv_miibus_writereg(struct device *, int, int, int);
206 void sk_marv_miibus_statchg(struct device *);
207 
208 u_int32_t sk_xmac_hash(caddr_t);
209 u_int32_t sk_yukon_hash(caddr_t);
210 void sk_setfilt(struct sk_if_softc *, caddr_t, int);
211 void sk_setmulti(struct sk_if_softc *);
212 void sk_tick(void *);
213 
214 /* #define SK_DEBUG 2 */
215 #ifdef SK_DEBUG
216 #define DPRINTF(x)	if (skdebug) printf x
217 #define DPRINTFN(n,x)	if (skdebug >= (n)) printf x
218 int	skdebug = SK_DEBUG;
219 
220 void sk_dump_txdesc(struct sk_tx_desc *, int);
221 void sk_dump_mbuf(struct mbuf *);
222 void sk_dump_bytes(const char *, int);
223 #else
224 #define DPRINTF(x)
225 #define DPRINTFN(n,x)
226 #endif
227 
228 #define SK_SETBIT(sc, reg, x)		\
229 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
230 
231 #define SK_CLRBIT(sc, reg, x)		\
232 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
233 
234 #define SK_WIN_SETBIT_4(sc, reg, x)	\
235 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
236 
237 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
238 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
239 
240 #define SK_WIN_SETBIT_2(sc, reg, x)	\
241 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
242 
243 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
244 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
245 
246 /* supported device vendors */
247 static const struct sk_product {
248 	pci_vendor_id_t		sk_vendor;
249 	pci_product_id_t	sk_product;
250 } sk_products[] = {
251 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
252 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
253 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032, },
254 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
255 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
256 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
257 	{ PCI_VENDOR_GALILEO, PCI_PRODUCT_GALILEO_SKNET, },
258 	{ 0, 0, }
259 };
260 
261 static inline u_int32_t
262 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
263 {
264 #ifdef SK_USEIOSPACE
265 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
266 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
267 #else
268 	return CSR_READ_4(sc, reg);
269 #endif
270 }
271 
272 static inline u_int16_t
273 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
274 {
275 #ifdef SK_USEIOSPACE
276 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
277 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
278 #else
279 	return CSR_READ_2(sc, reg);
280 #endif
281 }
282 
283 static inline u_int8_t
284 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
285 {
286 #ifdef SK_USEIOSPACE
287 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
288 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
289 #else
290 	return CSR_READ_1(sc, reg);
291 #endif
292 }
293 
294 static inline void
295 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
296 {
297 #ifdef SK_USEIOSPACE
298 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
299 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
300 #else
301 	CSR_WRITE_4(sc, reg, x);
302 #endif
303 }
304 
305 static inline void
306 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
307 {
308 #ifdef SK_USEIOSPACE
309 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
310 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
311 #else
312 	CSR_WRITE_2(sc, reg, x);
313 #endif
314 }
315 
316 static inline void
317 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
318 {
319 #ifdef SK_USEIOSPACE
320 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
321 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
322 #else
323 	CSR_WRITE_1(sc, reg, x);
324 #endif
325 }
326 
327 /*
328  * The VPD EEPROM contains Vital Product Data, as suggested in
329  * the PCI 2.1 specification. The VPD data is separared into areas
330  * denoted by resource IDs. The SysKonnect VPD contains an ID string
331  * resource (the name of the adapter), a read-only area resource
332  * containing various key/data fields and a read/write area which
333  * can be used to store asset management information or log messages.
334  * We read the ID string and read-only into buffers attached to
335  * the controller softc structure for later use. At the moment,
336  * we only use the ID string during sk_attach().
337  */
338 u_int8_t
339 sk_vpd_readbyte(struct sk_softc *sc, int addr)
340 {
341 	int			i;
342 
343 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
344 	for (i = 0; i < SK_TIMEOUT; i++) {
345 		DELAY(1);
346 		if (sk_win_read_2(sc,
347 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
348 			break;
349 	}
350 
351 	if (i == SK_TIMEOUT)
352 		return(0);
353 
354 	return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
355 }
356 
357 void
358 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
359 {
360 	int			i;
361 	u_int8_t		*ptr;
362 
363 	ptr = (u_int8_t *)res;
364 	for (i = 0; i < sizeof(struct vpd_res); i++)
365 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
366 }
367 
368 void
369 sk_vpd_read(struct sk_softc *sc)
370 {
371 	int			pos = 0, i;
372 	struct vpd_res		res;
373 
374 	if (sc->sk_vpd_prodname != NULL)
375 		free(sc->sk_vpd_prodname, M_DEVBUF);
376 	if (sc->sk_vpd_readonly != NULL)
377 		free(sc->sk_vpd_readonly, M_DEVBUF);
378 	sc->sk_vpd_prodname = NULL;
379 	sc->sk_vpd_readonly = NULL;
380 
381 	sk_vpd_read_res(sc, &res, pos);
382 
383 	if (res.vr_id != VPD_RES_ID) {
384 		printf("%s: bad VPD resource id: expected %x got %x\n",
385 		    sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
386 		return;
387 	}
388 
389 	pos += sizeof(res);
390 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
391 	if (sc->sk_vpd_prodname == NULL)
392 		panic("sk_vpd_read");
393 	for (i = 0; i < res.vr_len; i++)
394 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
395 	sc->sk_vpd_prodname[i] = '\0';
396 	pos += i;
397 
398 	sk_vpd_read_res(sc, &res, pos);
399 
400 	if (res.vr_id != VPD_RES_READ) {
401 		printf("%s: bad VPD resource id: expected %x got %x\n",
402 		    sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
403 		return;
404 	}
405 
406 	pos += sizeof(res);
407 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
408 	if (sc->sk_vpd_readonly == NULL)
409 		panic("sk_vpd_read");
410 	for (i = 0; i < res.vr_len + 1; i++)
411 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
412 }
413 
414 int
415 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
416 {
417 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
418 	int i;
419 
420 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
421 
422 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
423 		return(0);
424 
425 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
426 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
427 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
428 		for (i = 0; i < SK_TIMEOUT; i++) {
429 			DELAY(1);
430 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
431 			    XM_MMUCMD_PHYDATARDY)
432 				break;
433 		}
434 
435 		if (i == SK_TIMEOUT) {
436 			printf("%s: phy failed to come ready\n",
437 			    sc_if->sk_dev.dv_xname);
438 			return(0);
439 		}
440 	}
441 	DELAY(1);
442 	return(SK_XM_READ_2(sc_if, XM_PHY_DATA));
443 }
444 
445 void
446 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
447 {
448 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
449 	int i;
450 
451 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
452 
453 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
454 	for (i = 0; i < SK_TIMEOUT; i++) {
455 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
456 			break;
457 	}
458 
459 	if (i == SK_TIMEOUT) {
460 		printf("%s: phy failed to come ready\n",
461 		    sc_if->sk_dev.dv_xname);
462 		return;
463 	}
464 
465 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
466 	for (i = 0; i < SK_TIMEOUT; i++) {
467 		DELAY(1);
468 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
469 			break;
470 	}
471 
472 	if (i == SK_TIMEOUT)
473 		printf("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
474 }
475 
476 void
477 sk_xmac_miibus_statchg(struct device *dev)
478 {
479 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
480 	struct mii_data *mii = &sc_if->sk_mii;
481 
482 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
483 
484 	/*
485 	 * If this is a GMII PHY, manually set the XMAC's
486 	 * duplex mode accordingly.
487 	 */
488 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
489 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
490 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
491 		} else {
492 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
493 		}
494 	}
495 }
496 
497 int
498 sk_marv_miibus_readreg(dev, phy, reg)
499 	struct device *dev;
500 	int phy, reg;
501 {
502 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
503 	u_int16_t val;
504 	int i;
505 
506 	if (phy != 0 ||
507 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
508 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
509 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
510 			     phy, reg));
511 		return(0);
512 	}
513 
514         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
515 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
516 
517 	for (i = 0; i < SK_TIMEOUT; i++) {
518 		DELAY(1);
519 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
520 		if (val & YU_SMICR_READ_VALID)
521 			break;
522 	}
523 
524 	if (i == SK_TIMEOUT) {
525 		printf("%s: phy failed to come ready\n",
526 		       sc_if->sk_dev.dv_xname);
527 		return 0;
528 	}
529 
530  	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
531 		     SK_TIMEOUT));
532 
533         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
534 
535 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
536 		     phy, reg, val));
537 
538 	return val;
539 }
540 
541 void
542 sk_marv_miibus_writereg(dev, phy, reg, val)
543 	struct device *dev;
544 	int phy, reg, val;
545 {
546 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
547 	int i;
548 
549 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
550 		     phy, reg, val));
551 
552 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
553 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
554 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
555 
556 	for (i = 0; i < SK_TIMEOUT; i++) {
557 		DELAY(1);
558 		if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
559 			break;
560 	}
561 }
562 
563 void
564 sk_marv_miibus_statchg(dev)
565 	struct device *dev;
566 {
567 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
568 		     SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
569 }
570 
571 #define SK_HASH_BITS		6
572 
573 u_int32_t
574 sk_xmac_hash(caddr_t addr)
575 {
576 	u_int32_t		crc;
577 
578 	crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
579 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
580 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
581 	return (crc);
582 }
583 
584 u_int32_t
585 sk_yukon_hash(caddr_t addr)
586 {
587 	u_int32_t		crc;
588 
589 	crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
590 	crc &= ((1 << SK_HASH_BITS) - 1);
591 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
592 	return (crc);
593 }
594 
595 void
596 sk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot)
597 {
598 	int base = XM_RXFILT_ENTRY(slot);
599 
600 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
601 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
602 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
603 }
604 
605 void
606 sk_setmulti(struct sk_if_softc *sc_if)
607 {
608 	struct sk_softc *sc = sc_if->sk_softc;
609 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
610 	u_int32_t hashes[2] = { 0, 0 };
611 	int h = 0, i;
612 	struct ethercom *ec = &sc_if->sk_ethercom;
613 	struct ether_multi *enm;
614 	struct ether_multistep step;
615 	u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
616 
617 	/* First, zot all the existing filters. */
618 	switch(sc->sk_type) {
619 	case SK_GENESIS:
620 		for (i = 1; i < XM_RXFILT_MAX; i++)
621 			sk_setfilt(sc_if, (caddr_t)&dummy, i);
622 
623 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
624 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
625 		break;
626 	case SK_YUKON:
627 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
628 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
629 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
630 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
631 		break;
632 	}
633 
634 	/* Now program new ones. */
635 allmulti:
636 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
637 		hashes[0] = 0xFFFFFFFF;
638 		hashes[1] = 0xFFFFFFFF;
639 	} else {
640 		i = 1;
641 		/* First find the tail of the list. */
642 		ETHER_FIRST_MULTI(step, ec, enm);
643 		while (enm != NULL) {
644 			if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
645 				 ETHER_ADDR_LEN)) {
646 				ifp->if_flags |= IFF_ALLMULTI;
647 				goto allmulti;
648 			}
649 			DPRINTFN(2,("multicast address %s\n",
650 	    			ether_sprintf(enm->enm_addrlo)));
651 			/*
652 			 * Program the first XM_RXFILT_MAX multicast groups
653 			 * into the perfect filter. For all others,
654 			 * use the hash table.
655 			 */
656 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
657 				sk_setfilt(sc_if, enm->enm_addrlo, i);
658 				i++;
659 			}
660 			else {
661 				switch (sc->sk_type) {
662 				case SK_GENESIS:
663 					h = sk_xmac_hash(enm->enm_addrlo);
664 					break;
665 				case SK_YUKON:
666 					h = sk_yukon_hash(enm->enm_addrlo);
667 					break;
668 				}
669 				if (h < 32)
670 					hashes[0] |= (1 << h);
671 				else
672 					hashes[1] |= (1 << (h - 32));
673 			}
674 
675 			ETHER_NEXT_MULTI(step, enm);
676 		}
677 	}
678 
679 	switch(sc->sk_type) {
680 	case SK_GENESIS:
681 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
682 			       XM_MODE_RX_USE_PERFECT);
683 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
684 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
685 		break;
686 	case SK_YUKON:
687 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
688 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
689 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
690 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
691 		break;
692 	}
693 }
694 
695 int
696 sk_init_rx_ring(struct sk_if_softc *sc_if)
697 {
698 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
699 	struct sk_ring_data	*rd = sc_if->sk_rdata;
700 	int			i;
701 
702 	bzero((char *)rd->sk_rx_ring,
703 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
704 
705 	for (i = 0; i < SK_RX_RING_CNT; i++) {
706 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
707 		if (i == (SK_RX_RING_CNT - 1)) {
708 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
709 			rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if, 0);
710 		} else {
711 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
712 			rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if,i+1);
713 		}
714 	}
715 
716 	for (i = 0; i < SK_RX_RING_CNT; i++) {
717 		if (sk_newbuf(sc_if, i, NULL, NULL) == ENOBUFS) {
718 			printf("%s: failed alloc of %dth mbuf\n",
719 			    sc_if->sk_dev.dv_xname, i);
720 			return(ENOBUFS);
721 		}
722 	}
723 	sc_if->sk_cdata.sk_rx_prod = 0;
724 	sc_if->sk_cdata.sk_rx_cons = 0;
725 
726 	return(0);
727 }
728 
729 int
730 sk_init_tx_ring(struct sk_if_softc *sc_if)
731 {
732 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
733 	struct sk_ring_data	*rd = sc_if->sk_rdata;
734 	int			i;
735 
736 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
737 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
738 
739 	for (i = 0; i < SK_TX_RING_CNT; i++) {
740 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
741 		if (i == (SK_TX_RING_CNT - 1)) {
742 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
743 			rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if, 0);
744 		} else {
745 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
746 			rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if,i+1);
747 		}
748 	}
749 
750 	sc_if->sk_cdata.sk_tx_prod = 0;
751 	sc_if->sk_cdata.sk_tx_cons = 0;
752 	sc_if->sk_cdata.sk_tx_cnt = 0;
753 
754 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
755 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
756 
757 	return (0);
758 }
759 
760 int
761 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
762 	  bus_dmamap_t dmamap)
763 {
764 	struct sk_softc		*sc = sc_if->sk_softc;
765 	struct mbuf		*m_new = NULL;
766 	struct sk_chain		*c;
767 	struct sk_rx_desc	*r;
768 
769 	if (dmamap == NULL) {
770 		/* if (m) panic() */
771 
772 		if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1, MCLBYTES,
773 				      0, BUS_DMA_NOWAIT, &dmamap)) {
774 			printf("%s: can't create recv map\n",
775 			       sc_if->sk_dev.dv_xname);
776 			return(ENOMEM);
777 		}
778 	} else if (m == NULL)
779 		bus_dmamap_unload(sc->sc_dmatag, dmamap);
780 
781 	sc_if->sk_cdata.sk_rx_map[i] = dmamap;
782 
783 	if (m == NULL) {
784 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
785 		if (m_new == NULL) {
786 			printf("%s: no memory for rx list -- "
787 			    "packet dropped!\n", sc_if->sk_dev.dv_xname);
788 			return(ENOBUFS);
789 		}
790 
791 		/* Allocate the jumbo buffer */
792 		MCLGET(m_new, M_DONTWAIT);
793 		if (!(m_new->m_flags & M_EXT)) {
794 			m_freem(m_new);
795 			return (ENOBUFS);
796 		}
797 
798 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
799 
800 		m_adj(m_new, ETHER_ALIGN);
801 
802 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m_new,
803 					 BUS_DMA_NOWAIT))
804 			return(ENOBUFS);
805 	} else {
806 		/*
807 	 	 * We're re-using a previously allocated mbuf;
808 		 * be sure to re-init pointers and lengths to
809 		 * default values.
810 		 */
811 		m_new = m;
812 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
813 		m_adj(m_new, ETHER_ALIGN);
814 		m_new->m_data = m_new->m_ext.ext_buf;
815 	}
816 
817 	c = &sc_if->sk_cdata.sk_rx_chain[i];
818 	r = c->sk_desc;
819 	c->sk_mbuf = m_new;
820 	r->sk_data_lo = dmamap->dm_segs[0].ds_addr;
821 	r->sk_ctl = dmamap->dm_segs[0].ds_len | SK_RXSTAT;
822 
823 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
824 
825 	return(0);
826 }
827 
828 /*
829  * Set media options.
830  */
831 int
832 sk_ifmedia_upd(struct ifnet *ifp)
833 {
834 	struct sk_if_softc *sc_if = ifp->if_softc;
835 
836 	(void) sk_init(ifp);
837 	mii_mediachg(&sc_if->sk_mii);
838 	return(0);
839 }
840 
841 /*
842  * Report current media status.
843  */
844 void
845 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
846 {
847 	struct sk_if_softc *sc_if = ifp->if_softc;
848 
849 	mii_pollstat(&sc_if->sk_mii);
850 	ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
851 	ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
852 }
853 
854 int
855 sk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
856 {
857 	struct sk_if_softc *sc_if = ifp->if_softc;
858 	struct sk_softc *sc = sc_if->sk_softc;
859 	struct ifreq *ifr = (struct ifreq *) data;
860 	/* struct ifaddr *ifa = (struct ifaddr *) data; */
861 	struct mii_data *mii;
862 	int s, error = 0;
863 
864 	/* DPRINTFN(2, ("sk_ioctl\n")); */
865 
866 	s = splnet();
867 
868 	switch(command) {
869 
870 	case SIOCSIFFLAGS:
871 	        DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
872 		if (ifp->if_flags & IFF_UP) {
873 			if (ifp->if_flags & IFF_RUNNING &&
874 			    ifp->if_flags & IFF_PROMISC &&
875 			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
876 				switch(sc->sk_type) {
877 				case SK_GENESIS:
878 					SK_XM_SETBIT_4(sc_if, XM_MODE,
879 					    XM_MODE_RX_PROMISC);
880 					break;
881 				case SK_YUKON:
882 					SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
883 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
884 					break;
885 				}
886 				sk_setmulti(sc_if);
887 			} else if (ifp->if_flags & IFF_RUNNING &&
888 			    !(ifp->if_flags & IFF_PROMISC) &&
889 			    sc_if->sk_if_flags & IFF_PROMISC) {
890 				switch(sc->sk_type) {
891 				case SK_GENESIS:
892 					SK_XM_CLRBIT_4(sc_if, XM_MODE,
893 					    XM_MODE_RX_PROMISC);
894 					break;
895 				case SK_YUKON:
896 					SK_YU_SETBIT_2(sc_if, YUKON_RCR,
897 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
898 					break;
899 				}
900 
901 				sk_setmulti(sc_if);
902 			} else
903 				(void) sk_init(ifp);
904 		} else {
905 			if (ifp->if_flags & IFF_RUNNING)
906 				sk_stop(ifp,0);
907 		}
908 		sc_if->sk_if_flags = ifp->if_flags;
909 		error = 0;
910 		break;
911 
912 	case SIOCGIFMEDIA:
913 	case SIOCSIFMEDIA:
914 	        DPRINTFN(2, ("sk_ioctl MEDIA\n"));
915 		mii = &sc_if->sk_mii;
916 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
917 		break;
918 	default:
919 	        DPRINTFN(2, ("sk_ioctl ETHER\n"));
920 		error = ether_ioctl(ifp, command, data);
921 
922 		if ( error == ENETRESET) {
923 			sk_setmulti(sc_if);
924 			DPRINTFN(2, ("sk_ioctl setmulti called\n"));
925 			error = 0;
926 		} else if ( error ) {
927 			splx(s);
928 			return error;
929 		}
930 		break;
931 	}
932 
933 	splx(s);
934 	return(error);
935 }
936 
937 /*
938  * Lookup: Check the PCI vendor and device, and return a pointer to
939  * The structure if the IDs match against our list.
940  */
941 
942 static const struct sk_product *
943 sk_lookup(const struct pci_attach_args *pa)
944 {
945 	const struct sk_product *psk;
946 
947 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
948 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
949 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
950 			return (psk);
951 	}
952 	return (NULL);
953 }
954 
955 /*
956  * Probe for a SysKonnect GEnesis chip.
957  */
958 
959 int
960 skc_probe(struct device *parent, struct cfdata *match, void *aux)
961 {
962 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
963 	const struct sk_product *psk;
964 
965 	if ((psk = sk_lookup(pa))) {
966 		return(1);
967 	}
968 	return(0);
969 }
970 
971 /*
972  * Force the GEnesis into reset, then bring it out of reset.
973  */
974 void sk_reset(struct sk_softc *sc)
975 {
976 	DPRINTFN(2, ("sk_reset\n"));
977 
978 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
979 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
980 	if (sc->sk_type == SK_YUKON)
981 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
982 
983 	DELAY(1000);
984 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
985 	DELAY(2);
986 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
987 	if (sc->sk_type == SK_YUKON)
988 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
989 
990 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
991 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
992 		     CSR_READ_2(sc, SK_LINK_CTRL)));
993 
994 	if (sc->sk_type == SK_GENESIS) {
995 		/* Configure packet arbiter */
996 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
997 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
998 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
999 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1000 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1001 	}
1002 
1003 	/* Enable RAM interface */
1004 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1005 
1006 	/*
1007          * Configure interrupt moderation. The moderation timer
1008 	 * defers interrupts specified in the interrupt moderation
1009 	 * timer mask based on the timeout specified in the interrupt
1010 	 * moderation timer init register. Each bit in the timer
1011 	 * register represents 18.825ns, so to specify a timeout in
1012 	 * microseconds, we have to multiply by 54.
1013 	 */
1014         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(200));
1015         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1016 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1017         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1018 }
1019 
1020 int
1021 sk_probe(struct device *parent, struct cfdata *match, void *aux)
1022 {
1023 	struct skc_attach_args *sa = aux;
1024 
1025 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1026 		return(0);
1027 
1028 	return (1);
1029 }
1030 
1031 /*
1032  * Each XMAC chip is attached as a separate logical IP interface.
1033  * Single port cards will have only one logical interface of course.
1034  */
1035 void
1036 sk_attach(struct device *parent, struct device *self, void *aux)
1037 {
1038 	struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
1039 	struct sk_softc *sc = (struct sk_softc *)parent;
1040 	struct skc_attach_args *sa = aux;
1041 	struct sk_txmap_entry	*entry;
1042 	struct ifnet *ifp;
1043 	bus_dma_segment_t seg;
1044 	bus_dmamap_t dmamap;
1045 	caddr_t kva;
1046 	int i, rseg;
1047 
1048 	sc_if->sk_port = sa->skc_port;
1049 	sc_if->sk_softc = sc;
1050 	sc->sk_if[sa->skc_port] = sc_if;
1051 
1052 	if (sa->skc_port == SK_PORT_A)
1053 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1054 	if (sa->skc_port == SK_PORT_B)
1055 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1056 
1057 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1058 
1059 	/*
1060 	 * Get station address for this interface. Note that
1061 	 * dual port cards actually come with three station
1062 	 * addresses: one for each port, plus an extra. The
1063 	 * extra one is used by the SysKonnect driver software
1064 	 * as a 'virtual' station address for when both ports
1065 	 * are operating in failover mode. Currently we don't
1066 	 * use this extra address.
1067 	 */
1068 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1069 		sc_if->sk_enaddr[i] =
1070 			sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1071 
1072 
1073 	aprint_normal(": Ethernet address %s\n",
1074 	    ether_sprintf(sc_if->sk_enaddr));
1075 
1076 	/*
1077 	 * Set up RAM buffer addresses. The NIC will have a certain
1078 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1079 	 * need to divide this up a) between the transmitter and
1080  	 * receiver and b) between the two XMACs, if this is a
1081 	 * dual port NIC. Our algotithm is to divide up the memory
1082 	 * evenly so that everyone gets a fair share.
1083 	 */
1084 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1085 		u_int32_t		chunk, val;
1086 
1087 		chunk = sc->sk_ramsize / 2;
1088 		val = sc->sk_rboff / sizeof(u_int64_t);
1089 		sc_if->sk_rx_ramstart = val;
1090 		val += (chunk / sizeof(u_int64_t));
1091 		sc_if->sk_rx_ramend = val - 1;
1092 		sc_if->sk_tx_ramstart = val;
1093 		val += (chunk / sizeof(u_int64_t));
1094 		sc_if->sk_tx_ramend = val - 1;
1095 	} else {
1096 		u_int32_t		chunk, val;
1097 
1098 		chunk = sc->sk_ramsize / 4;
1099 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1100 		    sizeof(u_int64_t);
1101 		sc_if->sk_rx_ramstart = val;
1102 		val += (chunk / sizeof(u_int64_t));
1103 		sc_if->sk_rx_ramend = val - 1;
1104 		sc_if->sk_tx_ramstart = val;
1105 		val += (chunk / sizeof(u_int64_t));
1106 		sc_if->sk_tx_ramend = val - 1;
1107 	}
1108 
1109 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1110 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
1111 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1112 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1113 
1114 	/* Read and save PHY type and set PHY address */
1115 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1116 	switch (sc_if->sk_phytype) {
1117 	case SK_PHYTYPE_XMAC:
1118 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1119 		break;
1120 	case SK_PHYTYPE_BCOM:
1121 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1122 		break;
1123 	case SK_PHYTYPE_MARV_COPPER:
1124 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1125 		break;
1126 	default:
1127 		aprint_error("%s: unsupported PHY type: %d\n",
1128 		    sc->sk_dev.dv_xname, sc_if->sk_phytype);
1129 		return;
1130 	}
1131 
1132 	/* Allocate the descriptor queues. */
1133 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1134 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1135 		aprint_error("%s: can't alloc rx buffers\n",
1136 		    sc->sk_dev.dv_xname);
1137 		goto fail;
1138 	}
1139 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1140 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1141 		aprint_error("%s: can't map dma buffers (%lu bytes)\n",
1142 		       sc_if->sk_dev.dv_xname,
1143 		       (u_long) sizeof(struct sk_ring_data));
1144 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1145 		goto fail;
1146 	}
1147 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1148 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1149             &sc_if->sk_ring_map)) {
1150 		aprint_error("%s: can't create dma map\n",
1151 		    sc_if->sk_dev.dv_xname);
1152 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1153 		    sizeof(struct sk_ring_data));
1154 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1155 		goto fail;
1156 	}
1157 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1158 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1159 		aprint_error("%s: can't load dma map\n",
1160 		    sc_if->sk_dev.dv_xname);
1161 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1162 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1163 		    sizeof(struct sk_ring_data));
1164 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1165 		goto fail;
1166 	}
1167 
1168 	for (i = 0; i < SK_RX_RING_CNT; i++)
1169 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1170 
1171 	SLIST_INIT(&sc_if->sk_txmap_listhead);
1172 	for (i = 0; i < SK_TX_RING_CNT; i++) {
1173 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1174 
1175 		if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, SK_NTXSEG,
1176 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap)) {
1177 			aprint_error("%s: Can't create TX dmamap\n",
1178 				sc_if->sk_dev.dv_xname);
1179 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1180 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1181 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1182 			    sizeof(struct sk_ring_data));
1183 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1184 			goto fail;
1185 		}
1186 
1187 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1188 		if (!entry) {
1189 			aprint_error("%s: Can't alloc txmap entry\n",
1190 				sc_if->sk_dev.dv_xname);
1191 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1192 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1193 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1194 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1195 			    sizeof(struct sk_ring_data));
1196 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1197 			goto fail;
1198 		}
1199 		entry->dmamap = dmamap;
1200 		SLIST_INSERT_HEAD(&sc_if->sk_txmap_listhead, entry, link);
1201 	}
1202 
1203         sc_if->sk_rdata = (struct sk_ring_data *)kva;
1204 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1205 
1206 	/* XXX TLS It's not clear what's wrong with the Jumbo MTU
1207 	   XXX TLS support in this driver, so we don't enable it. */
1208 
1209 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1210 
1211 	ifp = &sc_if->sk_ethercom.ec_if;
1212 	ifp->if_softc = sc_if;
1213 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1214 	ifp->if_ioctl = sk_ioctl;
1215 	ifp->if_start = sk_start;
1216 	ifp->if_stop = sk_stop;
1217 	ifp->if_init = sk_init;
1218 	ifp->if_watchdog = sk_watchdog;
1219 	ifp->if_capabilities = 0;
1220 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1221 	IFQ_SET_READY(&ifp->if_snd);
1222 	strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
1223 
1224 	/*
1225 	 * Do miibus setup.
1226 	 */
1227 	switch (sc->sk_type) {
1228 	case SK_GENESIS:
1229 		sk_init_xmac(sc_if);
1230 		break;
1231 	case SK_YUKON:
1232 		sk_init_yukon(sc_if);
1233 		break;
1234 	default:
1235 		panic("%s: unknown device type %d", sc->sk_dev.dv_xname,
1236 		      sc->sk_type);
1237 	}
1238 
1239  	DPRINTFN(2, ("sk_attach: 1\n"));
1240 
1241 	sc_if->sk_mii.mii_ifp = ifp;
1242 	switch (sc->sk_type) {
1243 	case SK_GENESIS:
1244 		sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1245 		sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1246 		sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1247 		break;
1248 	case SK_YUKON:
1249 		sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1250 		sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1251 		sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1252 		break;
1253 	}
1254 
1255 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1256 	    sk_ifmedia_upd, sk_ifmedia_sts);
1257 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1258 	    MII_OFFSET_ANY, 0);
1259 	if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1260 		printf("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
1261 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1262 			    0, NULL);
1263 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1264 	}
1265 	else
1266 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1267 
1268 	callout_init(&sc_if->sk_tick_ch);
1269 	callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1270 
1271 	DPRINTFN(2, ("sk_attach: 1\n"));
1272 
1273 	/*
1274 	 * Call MI attach routines.
1275 	 */
1276 	if_attach(ifp);
1277 
1278 	ether_ifattach(ifp, sc_if->sk_enaddr);
1279 
1280 #if NRND > 0
1281         rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1282             RND_TYPE_NET, 0);
1283 #endif
1284 
1285 	DPRINTFN(2, ("sk_attach: end\n"));
1286 
1287 	return;
1288 
1289 fail:
1290 	sc->sk_if[sa->skc_port] = NULL;
1291 }
1292 
1293 int
1294 skcprint(void *aux, const char *pnp)
1295 {
1296 	struct skc_attach_args *sa = aux;
1297 
1298 	if (pnp)
1299 		aprint_normal("sk port %c at %s",
1300 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1301 	else
1302 		aprint_normal(" port %c",
1303 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1304 	return (UNCONF);
1305 }
1306 
1307 /*
1308  * Attach the interface. Allocate softc structures, do ifmedia
1309  * setup and ethernet/BPF attach.
1310  */
1311 void
1312 skc_attach(struct device *parent, struct device *self, void *aux)
1313 {
1314 	struct sk_softc *sc = (struct sk_softc *)self;
1315 	struct pci_attach_args *pa = aux;
1316 	struct skc_attach_args skca;
1317 	pci_chipset_tag_t pc = pa->pa_pc;
1318 	pcireg_t memtype;
1319 	pci_intr_handle_t ih;
1320 	const char *intrstr = NULL;
1321 	bus_addr_t iobase;
1322 	bus_size_t iosize;
1323 	int s;
1324 	u_int32_t command;
1325 
1326 	DPRINTFN(2, ("begin skc_attach\n"));
1327 
1328 	s = splnet();
1329 
1330 	/*
1331 	 * Handle power management nonsense.
1332 	 */
1333 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1334 
1335 	if (command == 0x01) {
1336 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1337 		if (command & SK_PSTATE_MASK) {
1338 			u_int32_t		iobase, membase, irq;
1339 
1340 			/* Save important PCI config data. */
1341 			iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1342 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1343 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1344 
1345 			/* Reset the power state. */
1346 			aprint_normal("%s chip is in D%d power mode "
1347 			    "-- setting to D0\n", sc->sk_dev.dv_xname,
1348 			    command & SK_PSTATE_MASK);
1349 			command &= 0xFFFFFFFC;
1350 			pci_conf_write(pc, pa->pa_tag,
1351 			    SK_PCI_PWRMGMTCTRL, command);
1352 
1353 			/* Restore PCI config data. */
1354 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1355 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1356 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1357 		}
1358 	}
1359 
1360 	/*
1361 	 * Map control/status registers.
1362 	 */
1363 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1364 	command |= PCI_COMMAND_IO_ENABLE |
1365 	    PCI_COMMAND_MEM_ENABLE |
1366 	    PCI_COMMAND_MASTER_ENABLE;
1367 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1368 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1369 
1370 	switch (PCI_PRODUCT(pa->pa_id)) {
1371 	case PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE:
1372 		sc->sk_type = SK_GENESIS;
1373 		break;
1374 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1375 	case PCI_PRODUCT_3COM_3C940:
1376 	case PCI_PRODUCT_DLINK_DGE530T:
1377 	case PCI_PRODUCT_LINKSYS_EG1032:
1378 	case PCI_PRODUCT_LINKSYS_EG1064:
1379 		sc->sk_type = SK_YUKON;
1380 		break;
1381 	default:
1382 		aprint_error(": unknown device!\n");
1383 		goto fail;
1384 	}
1385 
1386 #ifdef SK_USEIOSPACE
1387 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
1388 		aprint_error(": failed to enable I/O ports!\n");
1389 		goto fail;
1390 	}
1391 	/*
1392 	 * Map control/status registers.
1393 	 */
1394 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1395 			   &iobase, &iosize)) {
1396 		aprint_error(": can't find i/o space\n");
1397 		goto fail;
1398 	}
1399 #else
1400 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1401 		aprint_error(": failed to enable memory mapping!\n");
1402 		goto fail;
1403 	}
1404 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1405 	switch (memtype) {
1406         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1407         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1408                 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1409 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1410 				   &iobase, &iosize) == 0)
1411                         break;
1412         default:
1413                 aprint_error("%s: can't find mem space\n",
1414 		       sc->sk_dev.dv_xname);
1415                 return;
1416 	}
1417 
1418 	DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
1419 #endif
1420 	sc->sc_dmatag = pa->pa_dmat;
1421 
1422 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1423 
1424 	/* Allocate interrupt */
1425 	if (pci_intr_map(pa, &ih)) {
1426 		aprint_error(": couldn't map interrupt\n");
1427 		goto fail;
1428 	}
1429 
1430 	intrstr = pci_intr_string(pc, ih);
1431 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1432 	if (sc->sk_intrhand == NULL) {
1433 		aprint_error(": couldn't establish interrupt");
1434 		if (intrstr != NULL)
1435 			aprint_normal(" at %s", intrstr);
1436 		goto fail;
1437 	}
1438 	aprint_normal(": %s\n", intrstr);
1439 
1440 	/* Reset the adapter. */
1441 	sk_reset(sc);
1442 
1443 	/* Read and save vital product data from EEPROM. */
1444 	sk_vpd_read(sc);
1445 
1446 	if (sc->sk_type == SK_GENESIS) {
1447 		u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1448 		/* Read and save RAM size and RAMbuffer offset */
1449 		switch(val) {
1450 		case SK_RAMSIZE_512K_64:
1451 			sc->sk_ramsize = 0x80000;
1452 			sc->sk_rboff = SK_RBOFF_0;
1453 			break;
1454 		case SK_RAMSIZE_1024K_64:
1455 			sc->sk_ramsize = 0x100000;
1456 			sc->sk_rboff = SK_RBOFF_80000;
1457 			break;
1458 		case SK_RAMSIZE_1024K_128:
1459 			sc->sk_ramsize = 0x100000;
1460 			sc->sk_rboff = SK_RBOFF_0;
1461 			break;
1462 		case SK_RAMSIZE_2048K_128:
1463 			sc->sk_ramsize = 0x200000;
1464 			sc->sk_rboff = SK_RBOFF_0;
1465 			break;
1466 		default:
1467 			aprint_error("%s: unknown ram size: %d\n",
1468 			       sc->sk_dev.dv_xname, val);
1469 			goto fail;
1470 			break;
1471 		}
1472 
1473 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1474 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
1475 			     sc->sk_rboff));
1476 	} else {
1477 		sc->sk_ramsize = 0x20000;
1478 		sc->sk_rboff = SK_RBOFF_0;
1479 
1480 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1481 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
1482 			     sc->sk_rboff));
1483 	}
1484 
1485 	/* Read and save physical media type */
1486 	switch(sk_win_read_1(sc, SK_PMDTYPE)) {
1487 	case SK_PMD_1000BASESX:
1488 		sc->sk_pmd = IFM_1000_SX;
1489 		break;
1490 	case SK_PMD_1000BASELX:
1491 		sc->sk_pmd = IFM_1000_LX;
1492 		break;
1493 	case SK_PMD_1000BASECX:
1494 		sc->sk_pmd = IFM_1000_CX;
1495 		break;
1496 	case SK_PMD_1000BASETX:
1497 		sc->sk_pmd = IFM_1000_T;
1498 		break;
1499 	default:
1500 		aprint_error("%s: unknown media type: 0x%x\n",
1501 		    sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
1502 		goto fail;
1503 	}
1504 
1505 	/* Announce the product name. */
1506 	aprint_normal("%s: %s\n", sc->sk_dev.dv_xname, sc->sk_vpd_prodname);
1507 
1508 	skca.skc_port = SK_PORT_A;
1509 	(void)config_found(&sc->sk_dev, &skca, skcprint);
1510 
1511 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1512 		skca.skc_port = SK_PORT_B;
1513 		(void)config_found(&sc->sk_dev, &skca, skcprint);
1514 	}
1515 
1516 	/* Turn on the 'driver is loaded' LED. */
1517 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1518 
1519 fail:
1520 	splx(s);
1521 }
1522 
1523 int
1524 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1525 {
1526 	struct sk_softc		*sc = sc_if->sk_softc;
1527 	struct sk_tx_desc	*f = NULL;
1528 	u_int32_t		frag, cur, cnt = 0;
1529 	int			i;
1530 	struct sk_txmap_entry	*entry;
1531 	bus_dmamap_t		txmap;
1532 
1533 	DPRINTFN(3, ("sk_encap\n"));
1534 
1535 	entry = SLIST_FIRST(&sc_if->sk_txmap_listhead);
1536 	if (entry == NULL) {
1537 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
1538 		return ENOBUFS;
1539 	}
1540 	txmap = entry->dmamap;
1541 
1542 	cur = frag = *txidx;
1543 
1544 #ifdef SK_DEBUG
1545 	if (skdebug >= 3)
1546 		sk_dump_mbuf(m_head);
1547 #endif
1548 
1549 	/*
1550 	 * Start packing the mbufs in this chain into
1551 	 * the fragment pointers. Stop when we run out
1552 	 * of fragments or hit the end of the mbuf chain.
1553 	 */
1554 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1555 	    BUS_DMA_NOWAIT)) {
1556 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1557 		return(ENOBUFS);
1558 	}
1559 
1560 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1561 
1562 	/* Sync the DMA map. */
1563 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1564 	    BUS_DMASYNC_PREWRITE);
1565 
1566 	for (i = 0; i < txmap->dm_nsegs; i++) {
1567 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1568 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1569 			return(ENOBUFS);
1570 		}
1571 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
1572 		f->sk_data_lo = txmap->dm_segs[i].ds_addr;
1573 		f->sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1574 		if (cnt == 0)
1575 			f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
1576 		else
1577 			f->sk_ctl |= SK_TXCTL_OWN;
1578 
1579 		cur = frag;
1580 		SK_INC(frag, SK_TX_RING_CNT);
1581 		cnt++;
1582 	}
1583 
1584 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1585 	SLIST_REMOVE_HEAD(&sc_if->sk_txmap_listhead, link);
1586 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
1587 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1588 		SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
1589 
1590 	/* Sync descriptors before handing to chip */
1591 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1592 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1593 
1594 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
1595 
1596 	/* Sync first descriptor to hand it off */
1597 	SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1598 
1599 	sc_if->sk_cdata.sk_tx_cnt += cnt;
1600 
1601 #ifdef SK_DEBUG
1602 	if (skdebug >= 3) {
1603 		struct sk_tx_desc *desc;
1604 		u_int32_t idx;
1605 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1606 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1607 			sk_dump_txdesc(desc, idx);
1608 		}
1609 	}
1610 #endif
1611 
1612 	*txidx = frag;
1613 
1614 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
1615 
1616 	return(0);
1617 }
1618 
1619 void
1620 sk_start(struct ifnet *ifp)
1621 {
1622         struct sk_if_softc	*sc_if = ifp->if_softc;
1623         struct sk_softc		*sc = sc_if->sk_softc;
1624         struct mbuf		*m_head = NULL;
1625         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
1626 	int			pkts = 0;
1627 
1628 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1629 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1630 
1631 	while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1632 
1633 		IFQ_POLL(&ifp->if_snd, m_head);
1634 		if (m_head == NULL)
1635 			break;
1636 
1637 		/*
1638 		 * Pack the data into the transmit ring. If we
1639 		 * don't have room, set the OACTIVE flag and wait
1640 		 * for the NIC to drain the ring.
1641 		 */
1642 		if (sk_encap(sc_if, m_head, &idx)) {
1643 			ifp->if_flags |= IFF_OACTIVE;
1644 			break;
1645 		}
1646 
1647 		/* now we are committed to transmit the packet */
1648 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1649 		pkts++;
1650 
1651 		/*
1652 		 * If there's a BPF listener, bounce a copy of this frame
1653 		 * to him.
1654 		 */
1655 #if NBPFILTER > 0
1656 		if (ifp->if_bpf)
1657 			bpf_mtap(ifp->if_bpf, m_head);
1658 #endif
1659 	}
1660 	if (pkts == 0)
1661 		return;
1662 
1663 	/* Transmit */
1664 	sc_if->sk_cdata.sk_tx_prod = idx;
1665 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1666 
1667 	/* Set a timeout in case the chip goes out to lunch. */
1668 	ifp->if_timer = 5;
1669 }
1670 
1671 
1672 void
1673 sk_watchdog(struct ifnet *ifp)
1674 {
1675 	struct sk_if_softc *sc_if = ifp->if_softc;
1676 
1677 	printf("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
1678 	(void) sk_init(ifp);
1679 }
1680 
1681 void
1682 sk_shutdown(void * v)
1683 {
1684 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
1685 	struct sk_softc		*sc = sc_if->sk_softc;
1686 	struct ifnet 		*ifp = &sc_if->sk_ethercom.ec_if;
1687 
1688 	DPRINTFN(2, ("sk_shutdown\n"));
1689 	sk_stop(ifp,1);
1690 
1691 	/* Turn off the 'driver is loaded' LED. */
1692 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1693 
1694 	/*
1695 	 * Reset the GEnesis controller. Doing this should also
1696 	 * assert the resets on the attached XMAC(s).
1697 	 */
1698 	sk_reset(sc);
1699 }
1700 
1701 void
1702 sk_rxeof(struct sk_if_softc *sc_if)
1703 {
1704 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
1705 	struct mbuf		*m;
1706 	struct sk_chain		*cur_rx;
1707 	struct sk_rx_desc	*cur_desc;
1708 	int			i, cur, total_len = 0;
1709 	u_int32_t		rxstat;
1710 	bus_dmamap_t		dmamap;
1711 
1712 	i = sc_if->sk_cdata.sk_rx_prod;
1713 
1714 	DPRINTFN(3, ("sk_rxeof %d\n", i));
1715 
1716 	for (;;) {
1717 		cur = i;
1718 
1719 		/* Sync the descriptor */
1720 		SK_CDRXSYNC(sc_if, cur,
1721 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1722 
1723 		if (sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl & SK_RXCTL_OWN) {
1724 			/* Invalidate the descriptor -- it's not ready yet */
1725 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
1726 			sc_if->sk_cdata.sk_rx_prod = i;
1727 			break;
1728 		}
1729 
1730 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
1731 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
1732 		dmamap = sc_if->sk_cdata.sk_rx_map[cur];
1733 
1734 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
1735 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1736 
1737 		rxstat = cur_desc->sk_xmac_rxstat;
1738 		m = cur_rx->sk_mbuf;
1739 		cur_rx->sk_mbuf = NULL;
1740 		total_len = SK_RXBYTES(cur_desc->sk_ctl);
1741 
1742 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
1743 
1744 		SK_INC(i, SK_RX_RING_CNT);
1745 
1746 		if (rxstat & XM_RXSTAT_ERRFRAME) {
1747 			ifp->if_ierrors++;
1748 			sk_newbuf(sc_if, cur, m, dmamap);
1749 			continue;
1750 		}
1751 
1752 		/*
1753 		 * Try to allocate a new jumbo buffer. If that
1754 		 * fails, copy the packet to mbufs and put the
1755 		 * jumbo buffer back in the ring so it can be
1756 		 * re-used. If allocating mbufs fails, then we
1757 		 * have to drop the packet.
1758 		 */
1759 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
1760 			struct mbuf		*m0;
1761 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1762 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
1763 			sk_newbuf(sc_if, cur, m, dmamap);
1764 			if (m0 == NULL) {
1765 				printf("%s: no receive buffers "
1766 				    "available -- packet dropped!\n",
1767 				    sc_if->sk_dev.dv_xname);
1768 				ifp->if_ierrors++;
1769 				continue;
1770 			}
1771 			m_adj(m0, ETHER_ALIGN);
1772 			m = m0;
1773 		} else {
1774 			m->m_pkthdr.rcvif = ifp;
1775 			m->m_pkthdr.len = m->m_len = total_len;
1776 		}
1777 
1778 		ifp->if_ipackets++;
1779 
1780 #if NBPFILTER > 0
1781 		if (ifp->if_bpf)
1782 			bpf_mtap(ifp->if_bpf, m);
1783 #endif
1784 		/* pass it on. */
1785 		(*ifp->if_input)(ifp, m);
1786 	}
1787 }
1788 
1789 void
1790 sk_txeof(struct sk_if_softc *sc_if)
1791 {
1792 	struct sk_softc		*sc = sc_if->sk_softc;
1793 	struct sk_tx_desc	*cur_tx = NULL;
1794 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
1795 	u_int32_t		idx;
1796 	struct sk_txmap_entry	*entry;
1797 
1798 	DPRINTFN(3, ("sk_txeof\n"));
1799 
1800 	/*
1801 	 * Go through our tx ring and free mbufs for those
1802 	 * frames that have been sent.
1803 	 */
1804 	idx = sc_if->sk_cdata.sk_tx_cons;
1805 	while(idx != sc_if->sk_cdata.sk_tx_prod) {
1806 		SK_CDTXSYNC(sc_if, idx, 1,
1807 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1808 
1809 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
1810 #ifdef SK_DEBUG
1811 		if (skdebug >= 3)
1812 			sk_dump_txdesc(cur_tx, idx);
1813 #endif
1814 		if (cur_tx->sk_ctl & SK_TXCTL_OWN) {
1815 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
1816 			break;
1817 		}
1818 		if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
1819 			ifp->if_opackets++;
1820 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
1821 			entry = sc_if->sk_cdata.sk_tx_map[idx];
1822 
1823 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
1824 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
1825 
1826 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
1827 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1828 
1829 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
1830 			SLIST_INSERT_HEAD(&sc_if->sk_txmap_listhead, entry,
1831 					  link);
1832 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
1833 		}
1834 		sc_if->sk_cdata.sk_tx_cnt--;
1835 		SK_INC(idx, SK_TX_RING_CNT);
1836 	}
1837 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
1838 		ifp->if_timer = 0;
1839 
1840 	sc_if->sk_cdata.sk_tx_cons = idx;
1841 
1842 	if (cur_tx != NULL)
1843 		ifp->if_flags &= ~IFF_OACTIVE;
1844 }
1845 
1846 void
1847 sk_tick(void *xsc_if)
1848 {
1849 	struct sk_if_softc *sc_if = xsc_if;
1850 	struct mii_data *mii = &sc_if->sk_mii;
1851 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1852 	int i;
1853 
1854 	DPRINTFN(3, ("sk_tick\n"));
1855 
1856 	if (!(ifp->if_flags & IFF_UP))
1857 		return;
1858 
1859 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
1860 		sk_intr_bcom(sc_if);
1861 		return;
1862 	}
1863 
1864 	/*
1865 	 * According to SysKonnect, the correct way to verify that
1866 	 * the link has come back up is to poll bit 0 of the GPIO
1867 	 * register three times. This pin has the signal from the
1868 	 * link sync pin connected to it; if we read the same link
1869 	 * state 3 times in a row, we know the link is up.
1870 	 */
1871 	for (i = 0; i < 3; i++) {
1872 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
1873 			break;
1874 	}
1875 
1876 	if (i != 3) {
1877 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
1878 		return;
1879 	}
1880 
1881 	/* Turn the GP0 interrupt back on. */
1882 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
1883 	SK_XM_READ_2(sc_if, XM_ISR);
1884 	mii_tick(mii);
1885 	mii_pollstat(mii);
1886 	callout_stop(&sc_if->sk_tick_ch);
1887 }
1888 
1889 void
1890 sk_intr_bcom(struct sk_if_softc *sc_if)
1891 {
1892 	struct mii_data *mii = &sc_if->sk_mii;
1893 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1894 	int status;
1895 
1896 
1897 	DPRINTFN(3, ("sk_intr_bcom\n"));
1898 
1899 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
1900 
1901 	/*
1902 	 * Read the PHY interrupt register to make sure
1903 	 * we clear any pending interrupts.
1904 	 */
1905 	status = sk_xmac_miibus_readreg((struct device *)sc_if,
1906 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
1907 
1908 	if (!(ifp->if_flags & IFF_RUNNING)) {
1909 		sk_init_xmac(sc_if);
1910 		return;
1911 	}
1912 
1913 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
1914 		int lstat;
1915 		lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
1916 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
1917 
1918 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
1919 			mii_mediachg(mii);
1920 			/* Turn off the link LED. */
1921 			SK_IF_WRITE_1(sc_if, 0,
1922 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
1923 			sc_if->sk_link = 0;
1924 		} else if (status & BRGPHY_ISR_LNK_CHG) {
1925 			sk_xmac_miibus_writereg((struct device *)sc_if,
1926 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
1927 			mii_tick(mii);
1928 			sc_if->sk_link = 1;
1929 			/* Turn on the link LED. */
1930 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
1931 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
1932 			    SK_LINKLED_BLINK_OFF);
1933 			mii_pollstat(mii);
1934 		} else {
1935 			mii_tick(mii);
1936 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
1937 		}
1938 	}
1939 
1940 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
1941 }
1942 
1943 void
1944 sk_intr_xmac(struct sk_if_softc	*sc_if)
1945 {
1946 	u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
1947 
1948 	DPRINTFN(3, ("sk_intr_xmac\n"));
1949 
1950 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
1951 		if (status & XM_ISR_GP0_SET) {
1952 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
1953 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
1954 		}
1955 
1956 		if (status & XM_ISR_AUTONEG_DONE) {
1957 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
1958 		}
1959 	}
1960 
1961 	if (status & XM_IMR_TX_UNDERRUN)
1962 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
1963 
1964 	if (status & XM_IMR_RX_OVERRUN)
1965 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
1966 }
1967 
1968 void
1969 sk_intr_yukon(sc_if)
1970 	struct sk_if_softc *sc_if;
1971 {
1972 	int status;
1973 
1974 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
1975 
1976 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
1977 }
1978 
1979 int
1980 sk_intr(void *xsc)
1981 {
1982 	struct sk_softc		*sc = xsc;
1983 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
1984 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
1985 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
1986 	u_int32_t		status;
1987 	int			claimed = 0;
1988 
1989 	if (sc_if0 != NULL)
1990 		ifp0 = &sc_if0->sk_ethercom.ec_if;
1991 	if (sc_if1 != NULL)
1992 		ifp1 = &sc_if1->sk_ethercom.ec_if;
1993 
1994 	for (;;) {
1995 		status = CSR_READ_4(sc, SK_ISSR);
1996 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
1997 
1998 		if (!(status & sc->sk_intrmask))
1999 			break;
2000 
2001 		claimed = 1;
2002 
2003 		/* Handle receive interrupts first. */
2004 		if (status & SK_ISR_RX1_EOF) {
2005 			sk_rxeof(sc_if0);
2006 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2007 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2008 		}
2009 		if (status & SK_ISR_RX2_EOF) {
2010 			sk_rxeof(sc_if1);
2011 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2012 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2013 		}
2014 
2015 		/* Then transmit interrupts. */
2016 		if (status & SK_ISR_TX1_S_EOF) {
2017 			sk_txeof(sc_if0);
2018 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2019 			    SK_TXBMU_CLR_IRQ_EOF);
2020 		}
2021 		if (status & SK_ISR_TX2_S_EOF) {
2022 			sk_txeof(sc_if1);
2023 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2024 			    SK_TXBMU_CLR_IRQ_EOF);
2025 		}
2026 
2027 		/* Then MAC interrupts. */
2028 		if (status & SK_ISR_MAC1 && (ifp0->if_flags & IFF_RUNNING)) {
2029 			if (sc->sk_type == SK_GENESIS)
2030 				sk_intr_xmac(sc_if0);
2031 			else
2032 				sk_intr_yukon(sc_if0);
2033 		}
2034 
2035 		if (status & SK_ISR_MAC2 && (ifp1->if_flags & IFF_RUNNING)) {
2036 			if (sc->sk_type == SK_GENESIS)
2037 				sk_intr_xmac(sc_if1);
2038 			else
2039 				sk_intr_yukon(sc_if1);
2040 
2041 		}
2042 
2043 		if (status & SK_ISR_EXTERNAL_REG) {
2044 			if (ifp0 != NULL &&
2045 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2046 				sk_intr_bcom(sc_if0);
2047 
2048 			if (ifp1 != NULL &&
2049 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2050 				sk_intr_bcom(sc_if1);
2051 		}
2052 	}
2053 
2054 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2055 
2056 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2057 		sk_start(ifp0);
2058 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2059 		sk_start(ifp1);
2060 
2061 	return (claimed);
2062 }
2063 
2064 void
2065 sk_init_xmac(struct sk_if_softc	*sc_if)
2066 {
2067 	struct sk_softc		*sc = sc_if->sk_softc;
2068 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2069 	static const struct sk_bcom_hack     bhack[] = {
2070 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2071 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2072 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2073 	{ 0, 0 } };
2074 
2075 	DPRINTFN(1, ("sk_init_xmac\n"));
2076 
2077 	/* Unreset the XMAC. */
2078 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2079 	DELAY(1000);
2080 
2081 	/* Reset the XMAC's internal state. */
2082 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2083 
2084 	/* Save the XMAC II revision */
2085 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2086 
2087 	/*
2088 	 * Perform additional initialization for external PHYs,
2089 	 * namely for the 1000baseTX cards that use the XMAC's
2090 	 * GMII mode.
2091 	 */
2092 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2093 		int			i = 0;
2094 		u_int32_t		val;
2095 
2096 		/* Take PHY out of reset. */
2097 		val = sk_win_read_4(sc, SK_GPIO);
2098 		if (sc_if->sk_port == SK_PORT_A)
2099 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2100 		else
2101 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2102 		sk_win_write_4(sc, SK_GPIO, val);
2103 
2104 		/* Enable GMII mode on the XMAC. */
2105 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2106 
2107 		sk_xmac_miibus_writereg((struct device *)sc_if,
2108 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2109 		DELAY(10000);
2110 		sk_xmac_miibus_writereg((struct device *)sc_if,
2111 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2112 
2113 		/*
2114 		 * Early versions of the BCM5400 apparently have
2115 		 * a bug that requires them to have their reserved
2116 		 * registers initialized to some magic values. I don't
2117 		 * know what the numbers do, I'm just the messenger.
2118 		 */
2119 		if (sk_xmac_miibus_readreg((struct device *)sc_if,
2120 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2121 			while(bhack[i].reg) {
2122 				sk_xmac_miibus_writereg((struct device *)sc_if,
2123 				    SK_PHYADDR_BCOM, bhack[i].reg,
2124 				    bhack[i].val);
2125 				i++;
2126 			}
2127 		}
2128 	}
2129 
2130 	/* Set station address */
2131 	SK_XM_WRITE_2(sc_if, XM_PAR0,
2132 		      *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2133 	SK_XM_WRITE_2(sc_if, XM_PAR1,
2134 		      *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2135 	SK_XM_WRITE_2(sc_if, XM_PAR2,
2136 		      *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2137 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2138 
2139 	if (ifp->if_flags & IFF_PROMISC) {
2140 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2141 	} else {
2142 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2143 	}
2144 
2145 	if (ifp->if_flags & IFF_BROADCAST) {
2146 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2147 	} else {
2148 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2149 	}
2150 
2151 	/* We don't need the FCS appended to the packet. */
2152 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2153 
2154 	/* We want short frames padded to 60 bytes. */
2155 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2156 
2157 	/*
2158 	 * Enable the reception of all error frames. This is is
2159 	 * a necessary evil due to the design of the XMAC. The
2160 	 * XMAC's receive FIFO is only 8K in size, however jumbo
2161 	 * frames can be up to 9000 bytes in length. When bad
2162 	 * frame filtering is enabled, the XMAC's RX FIFO operates
2163 	 * in 'store and forward' mode. For this to work, the
2164 	 * entire frame has to fit into the FIFO, but that means
2165 	 * that jumbo frames larger than 8192 bytes will be
2166 	 * truncated. Disabling all bad frame filtering causes
2167 	 * the RX FIFO to operate in streaming mode, in which
2168 	 * case the XMAC will start transfering frames out of the
2169 	 * RX FIFO as soon as the FIFO threshold is reached.
2170 	 */
2171 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2172 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2173 	    XM_MODE_RX_INRANGELEN);
2174 
2175 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2176 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2177 	else
2178 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2179 
2180 	/*
2181 	 * Bump up the transmit threshold. This helps hold off transmit
2182 	 * underruns when we're blasting traffic from both ports at once.
2183 	 */
2184 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2185 
2186 	/* Set multicast filter */
2187 	sk_setmulti(sc_if);
2188 
2189 	/* Clear and enable interrupts */
2190 	SK_XM_READ_2(sc_if, XM_ISR);
2191 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2192 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2193 	else
2194 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2195 
2196 	/* Configure MAC arbiter */
2197 	switch(sc_if->sk_xmac_rev) {
2198 	case XM_XMAC_REV_B2:
2199 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2200 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2201 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2202 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2203 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2204 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2205 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2206 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2207 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2208 		break;
2209 	case XM_XMAC_REV_C1:
2210 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2211 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2212 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2213 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2214 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2215 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2216 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2217 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2218 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2219 		break;
2220 	default:
2221 		break;
2222 	}
2223 	sk_win_write_2(sc, SK_MACARB_CTL,
2224 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2225 
2226 	sc_if->sk_link = 1;
2227 }
2228 
2229 void sk_init_yukon(sc_if)
2230 	struct sk_if_softc	*sc_if;
2231 {
2232 	u_int32_t		/*mac, */phy;
2233 	u_int16_t		reg;
2234 	int			i;
2235 
2236 	DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2237 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2238 
2239 	/* GMAC and GPHY Reset */
2240 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2241 
2242 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
2243 
2244 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2245 	DELAY(1000);
2246 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2247 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2248 	DELAY(1000);
2249 
2250 
2251 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
2252 
2253 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2254 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2255 
2256 	switch(sc_if->sk_softc->sk_pmd) {
2257 	case IFM_1000_SX:
2258 	case IFM_1000_LX:
2259 		phy |= SK_GPHY_FIBER;
2260 		break;
2261 
2262 	case IFM_1000_CX:
2263 	case IFM_1000_T:
2264 		phy |= SK_GPHY_COPPER;
2265 		break;
2266 	}
2267 
2268 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2269 
2270 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2271 	DELAY(1000);
2272 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2273 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2274 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2275 
2276 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2277 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2278 
2279 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
2280 
2281 	/* unused read of the interrupt source register */
2282 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
2283 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2284 
2285 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2286 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2287 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2288 
2289 	/* MIB Counter Clear Mode set */
2290         reg |= YU_PAR_MIB_CLR;
2291 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2292 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2293 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2294 
2295 	/* MIB Counter Clear Mode clear */
2296 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
2297         reg &= ~YU_PAR_MIB_CLR;
2298 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2299 
2300 	/* receive control reg */
2301 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
2302 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2303 		      YU_RCR_CRCR);
2304 
2305 	/* transmit parameter register */
2306 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
2307 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2308 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2309 
2310 	/* serial mode register */
2311 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
2312 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2313 		      YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e));
2314 
2315 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
2316 	/* Setup Yukon's address */
2317 	for (i = 0; i < 3; i++) {
2318 		/* Write Source Address 1 (unicast filter) */
2319 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2320 			      sc_if->sk_enaddr[i * 2] |
2321 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
2322 	}
2323 
2324 	for (i = 0; i < 3; i++) {
2325 		reg = sk_win_read_2(sc_if->sk_softc,
2326 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2327 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2328 	}
2329 
2330 	/* Set multicast filter */
2331 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
2332 	sk_setmulti(sc_if);
2333 
2334 	/* enable interrupt mask for counter overflows */
2335 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
2336 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2337 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2338 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2339 
2340 	/* Configure RX MAC FIFO */
2341 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2342 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2343 
2344 	/* Configure TX MAC FIFO */
2345 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2346 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2347 
2348 	DPRINTFN(6, ("sk_init_yukon: end\n"));
2349 }
2350 
2351 /*
2352  * Note that to properly initialize any part of the GEnesis chip,
2353  * you first have to take it out of reset mode.
2354  */
2355 int
2356 sk_init(struct ifnet *ifp)
2357 {
2358 	struct sk_if_softc	*sc_if = ifp->if_softc;
2359 	struct sk_softc		*sc = sc_if->sk_softc;
2360 	struct mii_data		*mii = &sc_if->sk_mii;
2361 	int			s;
2362 
2363 	DPRINTFN(1, ("sk_init\n"));
2364 
2365 	s = splnet();
2366 
2367 	/* Cancel pending I/O and free all RX/TX buffers. */
2368 	sk_stop(ifp,0);
2369 
2370 	if (sc->sk_type == SK_GENESIS) {
2371 		/* Configure LINK_SYNC LED */
2372 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2373 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2374 			      SK_LINKLED_LINKSYNC_ON);
2375 
2376 		/* Configure RX LED */
2377 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2378 			      SK_RXLEDCTL_COUNTER_START);
2379 
2380 		/* Configure TX LED */
2381 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2382 			      SK_TXLEDCTL_COUNTER_START);
2383 	}
2384 
2385 	/* Configure I2C registers */
2386 
2387 	/* Configure XMAC(s) */
2388 	switch (sc->sk_type) {
2389 	case SK_GENESIS:
2390 		sk_init_xmac(sc_if);
2391 		break;
2392 	case SK_YUKON:
2393 		sk_init_yukon(sc_if);
2394 		break;
2395 	}
2396 	mii_mediachg(mii);
2397 
2398 	if (sc->sk_type == SK_GENESIS) {
2399 		/* Configure MAC FIFOs */
2400 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2401 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2402 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2403 
2404 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2405 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2406 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2407 	}
2408 
2409 	/* Configure transmit arbiter(s) */
2410 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2411 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2412 
2413 	/* Configure RAMbuffers */
2414 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2415 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2416 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2417 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2418 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2419 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2420 
2421 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2422 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2423 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2424 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2425 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2426 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2427 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2428 
2429 	/* Configure BMUs */
2430 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2431 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2432 	    SK_RX_RING_ADDR(sc_if, 0));
2433 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2434 
2435 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2436 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2437             SK_TX_RING_ADDR(sc_if, 0));
2438 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2439 
2440 	/* Init descriptors */
2441 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2442 		printf("%s: initialization failed: no "
2443 		    "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
2444 		sk_stop(ifp,0);
2445 		splx(s);
2446 		return(ENOBUFS);
2447 	}
2448 
2449 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2450 		printf("%s: initialization failed: no "
2451 		    "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
2452 		sk_stop(ifp,0);
2453 		splx(s);
2454 		return(ENOBUFS);
2455 	}
2456 
2457 	/* Configure interrupt handling */
2458 	CSR_READ_4(sc, SK_ISSR);
2459 	if (sc_if->sk_port == SK_PORT_A)
2460 		sc->sk_intrmask |= SK_INTRS1;
2461 	else
2462 		sc->sk_intrmask |= SK_INTRS2;
2463 
2464 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2465 
2466 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2467 
2468 	/* Start BMUs. */
2469 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2470 
2471 	if (sc->sk_type == SK_GENESIS) {
2472 		/* Enable XMACs TX and RX state machines */
2473 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2474 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2475 			       XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2476 	}
2477 
2478 	if (sc->sk_type == SK_YUKON) {
2479 		u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2480 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2481 		reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
2482 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2483 	}
2484 
2485 
2486 	ifp->if_flags |= IFF_RUNNING;
2487 	ifp->if_flags &= ~IFF_OACTIVE;
2488 
2489 	splx(s);
2490 	return(0);
2491 }
2492 
2493 void
2494 sk_stop(struct ifnet *ifp, int disable)
2495 {
2496         struct sk_if_softc	*sc_if = ifp->if_softc;
2497 	struct sk_softc		*sc = sc_if->sk_softc;
2498 	int			i;
2499 
2500 	DPRINTFN(1, ("sk_stop\n"));
2501 
2502 	callout_stop(&sc_if->sk_tick_ch);
2503 
2504 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2505 		u_int32_t		val;
2506 
2507 		/* Put PHY back into reset. */
2508 		val = sk_win_read_4(sc, SK_GPIO);
2509 		if (sc_if->sk_port == SK_PORT_A) {
2510 			val |= SK_GPIO_DIR0;
2511 			val &= ~SK_GPIO_DAT0;
2512 		} else {
2513 			val |= SK_GPIO_DIR2;
2514 			val &= ~SK_GPIO_DAT2;
2515 		}
2516 		sk_win_write_4(sc, SK_GPIO, val);
2517 	}
2518 
2519 	/* Turn off various components of this interface. */
2520 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2521 	switch (sc->sk_type) {
2522 	case SK_GENESIS:
2523 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2524 			      SK_TXMACCTL_XMAC_RESET);
2525 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2526 		break;
2527 	case SK_YUKON:
2528 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2529 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2530 		break;
2531 	}
2532 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2533 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2534 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2535 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2536 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2537 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2538 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2539 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2540 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2541 
2542 	/* Disable interrupts */
2543 	if (sc_if->sk_port == SK_PORT_A)
2544 		sc->sk_intrmask &= ~SK_INTRS1;
2545 	else
2546 		sc->sk_intrmask &= ~SK_INTRS2;
2547 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2548 
2549 	SK_XM_READ_2(sc_if, XM_ISR);
2550 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2551 
2552 	/* Free RX and TX mbufs still in the queues. */
2553 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2554 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2555 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2556 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2557 		}
2558 	}
2559 
2560 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2561 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2562 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2563 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2564 		}
2565 	}
2566 
2567 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2568 }
2569 
2570 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
2571 
2572 /*
2573 struct cfdriver skc_cd = {
2574 	0, "skc", DV_DULL
2575 };
2576 */
2577 
2578 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
2579 
2580 /*
2581 struct cfdriver sk_cd = {
2582 	0, "sk", DV_IFNET
2583 };
2584 */
2585 
2586 #ifdef SK_DEBUG
2587 void
2588 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2589 {
2590 #define DESC_PRINT(X)					\
2591 	if (desc->X)					\
2592 		printf("txdesc[%d]." #X "=%#x\n",	\
2593 		       idx, desc->X);
2594 
2595 	DESC_PRINT(sk_ctl);
2596 	DESC_PRINT(sk_next);
2597 	DESC_PRINT(sk_data_lo);
2598 	DESC_PRINT(sk_data_hi);
2599 	DESC_PRINT(sk_xmac_txstat);
2600 	DESC_PRINT(sk_rsvd0);
2601 	DESC_PRINT(sk_csum_startval);
2602 	DESC_PRINT(sk_csum_startpos);
2603 	DESC_PRINT(sk_csum_writepos);
2604 	DESC_PRINT(sk_rsvd1);
2605 #undef PRINT
2606 }
2607 
2608 void
2609 sk_dump_bytes(const char *data, int len)
2610 {
2611 	int c, i, j;
2612 
2613 	for (i = 0; i < len; i += 16) {
2614 		printf("%08x  ", i);
2615 		c = len - i;
2616 		if (c > 16) c = 16;
2617 
2618 		for (j = 0; j < c; j++) {
2619 			printf("%02x ", data[i + j] & 0xff);
2620 			if ((j & 0xf) == 7 && j > 0)
2621 				printf(" ");
2622 		}
2623 
2624 		for (; j < 16; j++)
2625 			printf("   ");
2626 		printf("  ");
2627 
2628 		for (j = 0; j < c; j++) {
2629 			int ch = data[i + j] & 0xff;
2630 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2631 		}
2632 
2633 		printf("\n");
2634 
2635 		if (c < 16)
2636 			break;
2637 	}
2638 }
2639 
2640 void
2641 sk_dump_mbuf(struct mbuf *m)
2642 {
2643 	int count = m->m_pkthdr.len;
2644 
2645 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2646 
2647 	while (count > 0 && m) {
2648 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2649 		       m, m->m_data, m->m_len);
2650 		sk_dump_bytes(mtod(m, char *), m->m_len);
2651 
2652 		count -= m->m_len;
2653 		m = m->m_next;
2654 	}
2655 }
2656 #endif
2657