xref: /netbsd-src/sys/dev/pci/if_sk.c (revision d48f14661dda8638fee055ba15d35bdfb29b9fa8)
1 /*	$NetBSD: if_sk.c,v 1.26 2006/05/31 21:46:32 riz Exp $	*/
2 
3 /*-
4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the NetBSD
18  *	Foundation, Inc. and its contributors.
19  * 4. Neither the name of The NetBSD Foundation nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 /*	$OpenBSD: if_sk.c,v 1.33 2003/08/12 05:23:06 nate Exp $	*/
37 
38 /*
39  * Copyright (c) 1997, 1998, 1999, 2000
40  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. All advertising materials mentioning features or use of this software
51  *    must display the following acknowledgement:
52  *	This product includes software developed by Bill Paul.
53  * 4. Neither the name of the author nor the names of any co-contributors
54  *    may be used to endorse or promote products derived from this software
55  *    without specific prior written permission.
56  *
57  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
61  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
67  * THE POSSIBILITY OF SUCH DAMAGE.
68  *
69  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
70  */
71 
72 /*
73  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
74  *
75  * Permission to use, copy, modify, and distribute this software for any
76  * purpose with or without fee is hereby granted, provided that the above
77  * copyright notice and this permission notice appear in all copies.
78  *
79  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
80  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
81  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
82  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
83  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
84  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
85  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
86  */
87 
88 /*
89  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
90  * the SK-984x series adapters, both single port and dual port.
91  * References:
92  * 	The XaQti XMAC II datasheet,
93  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
95  *
96  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
97  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
98  * convenience to others until Vitesse corrects this problem:
99  *
100  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
101  *
102  * Written by Bill Paul <wpaul@ee.columbia.edu>
103  * Department of Electrical Engineering
104  * Columbia University, New York City
105  */
106 
107 /*
108  * The SysKonnect gigabit ethernet adapters consist of two main
109  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
110  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
111  * components and a PHY while the GEnesis controller provides a PCI
112  * interface with DMA support. Each card may have between 512K and
113  * 2MB of SRAM on board depending on the configuration.
114  *
115  * The SysKonnect GEnesis controller can have either one or two XMAC
116  * chips connected to it, allowing single or dual port NIC configurations.
117  * SysKonnect has the distinction of being the only vendor on the market
118  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
119  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
120  * XMAC registers. This driver takes advantage of these features to allow
121  * both XMACs to operate as independent interfaces.
122  */
123 
124 #include "bpfilter.h"
125 #include "rnd.h"
126 
127 #include <sys/param.h>
128 #include <sys/systm.h>
129 #include <sys/sockio.h>
130 #include <sys/mbuf.h>
131 #include <sys/malloc.h>
132 #include <sys/kernel.h>
133 #include <sys/socket.h>
134 #include <sys/device.h>
135 #include <sys/queue.h>
136 #include <sys/callout.h>
137 #include <sys/sysctl.h>
138 
139 #include <net/if.h>
140 #include <net/if_dl.h>
141 #include <net/if_types.h>
142 
143 #ifdef INET
144 #include <netinet/in.h>
145 #include <netinet/in_systm.h>
146 #include <netinet/in_var.h>
147 #include <netinet/ip.h>
148 #include <netinet/if_ether.h>
149 #endif
150 
151 #include <net/if_media.h>
152 
153 #if NBPFILTER > 0
154 #include <net/bpf.h>
155 #endif
156 #if NRND > 0
157 #include <sys/rnd.h>
158 #endif
159 
160 #include <dev/mii/mii.h>
161 #include <dev/mii/miivar.h>
162 #include <dev/mii/brgphyreg.h>
163 
164 #include <dev/pci/pcireg.h>
165 #include <dev/pci/pcivar.h>
166 #include <dev/pci/pcidevs.h>
167 
168 #define	SK_VERBOSE
169 /* #define SK_USEIOSPACE */
170 
171 #include <dev/pci/if_skreg.h>
172 #include <dev/pci/if_skvar.h>
173 
174 int skc_probe(struct device *, struct cfdata *, void *);
175 void skc_attach(struct device *, struct device *self, void *aux);
176 int sk_probe(struct device *, struct cfdata *, void *);
177 void sk_attach(struct device *, struct device *self, void *aux);
178 int skcprint(void *, const char *);
179 int sk_intr(void *);
180 void sk_intr_bcom(struct sk_if_softc *);
181 void sk_intr_xmac(struct sk_if_softc *);
182 void sk_intr_yukon(struct sk_if_softc *);
183 void sk_rxeof(struct sk_if_softc *);
184 void sk_txeof(struct sk_if_softc *);
185 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
186 void sk_start(struct ifnet *);
187 int sk_ioctl(struct ifnet *, u_long, caddr_t);
188 int sk_init(struct ifnet *);
189 void sk_init_xmac(struct sk_if_softc *);
190 void sk_init_yukon(struct sk_if_softc *);
191 void sk_stop(struct ifnet *, int);
192 void sk_watchdog(struct ifnet *);
193 void sk_shutdown(void *);
194 int sk_ifmedia_upd(struct ifnet *);
195 void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
196 void sk_reset(struct sk_softc *);
197 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
198 int sk_alloc_jumbo_mem(struct sk_if_softc *);
199 void sk_free_jumbo_mem(struct sk_if_softc *);
200 void *sk_jalloc(struct sk_if_softc *);
201 void sk_jfree(struct mbuf *, caddr_t, size_t, void *);
202 int sk_init_rx_ring(struct sk_if_softc *);
203 int sk_init_tx_ring(struct sk_if_softc *);
204 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
205 void sk_vpd_read_res(struct sk_softc *,
206 					struct vpd_res *, int);
207 void sk_vpd_read(struct sk_softc *);
208 
209 void sk_update_int_mod(struct sk_softc *);
210 
211 int sk_xmac_miibus_readreg(struct device *, int, int);
212 void sk_xmac_miibus_writereg(struct device *, int, int, int);
213 void sk_xmac_miibus_statchg(struct device *);
214 
215 int sk_marv_miibus_readreg(struct device *, int, int);
216 void sk_marv_miibus_writereg(struct device *, int, int, int);
217 void sk_marv_miibus_statchg(struct device *);
218 
219 u_int32_t sk_xmac_hash(caddr_t);
220 u_int32_t sk_yukon_hash(caddr_t);
221 void sk_setfilt(struct sk_if_softc *, caddr_t, int);
222 void sk_setmulti(struct sk_if_softc *);
223 void sk_tick(void *);
224 
225 /* #define SK_DEBUG 2 */
226 #ifdef SK_DEBUG
227 #define DPRINTF(x)	if (skdebug) printf x
228 #define DPRINTFN(n,x)	if (skdebug >= (n)) printf x
229 int	skdebug = SK_DEBUG;
230 
231 void sk_dump_txdesc(struct sk_tx_desc *, int);
232 void sk_dump_mbuf(struct mbuf *);
233 void sk_dump_bytes(const char *, int);
234 #else
235 #define DPRINTF(x)
236 #define DPRINTFN(n,x)
237 #endif
238 
239 #define SK_SETBIT(sc, reg, x)		\
240 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
241 
242 #define SK_CLRBIT(sc, reg, x)		\
243 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
244 
245 #define SK_WIN_SETBIT_4(sc, reg, x)	\
246 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
247 
248 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
249 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
250 
251 #define SK_WIN_SETBIT_2(sc, reg, x)	\
252 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
253 
254 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
255 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
256 
257 static int sk_sysctl_handler(SYSCTLFN_PROTO);
258 static int sk_root_num;
259 
260 /* supported device vendors */
261 static const struct sk_product {
262 	pci_vendor_id_t		sk_vendor;
263 	pci_product_id_t	sk_product;
264 } sk_products[] = {
265 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
266 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
267 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T, },
268 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
269 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
270 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
271 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
272 	{ PCI_VENDOR_GALILEO, PCI_PRODUCT_GALILEO_SKNET, },
273 	{ PCI_VENDOR_GALILEO, PCI_PRODUCT_GALILEO_BELKIN, },
274 	{ 0, 0, }
275 };
276 
277 #define SK_LINKSYS_EG1032_SUBID	0x00151737
278 
279 static inline u_int32_t
280 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
281 {
282 #ifdef SK_USEIOSPACE
283 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
284 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
285 #else
286 	return CSR_READ_4(sc, reg);
287 #endif
288 }
289 
290 static inline u_int16_t
291 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
292 {
293 #ifdef SK_USEIOSPACE
294 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
295 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
296 #else
297 	return CSR_READ_2(sc, reg);
298 #endif
299 }
300 
301 static inline u_int8_t
302 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
303 {
304 #ifdef SK_USEIOSPACE
305 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
306 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
307 #else
308 	return CSR_READ_1(sc, reg);
309 #endif
310 }
311 
312 static inline void
313 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
314 {
315 #ifdef SK_USEIOSPACE
316 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
317 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
318 #else
319 	CSR_WRITE_4(sc, reg, x);
320 #endif
321 }
322 
323 static inline void
324 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
325 {
326 #ifdef SK_USEIOSPACE
327 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
328 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
329 #else
330 	CSR_WRITE_2(sc, reg, x);
331 #endif
332 }
333 
334 static inline void
335 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
336 {
337 #ifdef SK_USEIOSPACE
338 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
339 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
340 #else
341 	CSR_WRITE_1(sc, reg, x);
342 #endif
343 }
344 
345 /*
346  * The VPD EEPROM contains Vital Product Data, as suggested in
347  * the PCI 2.1 specification. The VPD data is separared into areas
348  * denoted by resource IDs. The SysKonnect VPD contains an ID string
349  * resource (the name of the adapter), a read-only area resource
350  * containing various key/data fields and a read/write area which
351  * can be used to store asset management information or log messages.
352  * We read the ID string and read-only into buffers attached to
353  * the controller softc structure for later use. At the moment,
354  * we only use the ID string during sk_attach().
355  */
356 u_int8_t
357 sk_vpd_readbyte(struct sk_softc *sc, int addr)
358 {
359 	int			i;
360 
361 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
362 	for (i = 0; i < SK_TIMEOUT; i++) {
363 		DELAY(1);
364 		if (sk_win_read_2(sc,
365 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
366 			break;
367 	}
368 
369 	if (i == SK_TIMEOUT)
370 		return(0);
371 
372 	return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
373 }
374 
375 void
376 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
377 {
378 	int			i;
379 	u_int8_t		*ptr;
380 
381 	ptr = (u_int8_t *)res;
382 	for (i = 0; i < sizeof(struct vpd_res); i++)
383 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
384 }
385 
386 void
387 sk_vpd_read(struct sk_softc *sc)
388 {
389 	int			pos = 0, i;
390 	struct vpd_res		res;
391 
392 	if (sc->sk_vpd_prodname != NULL)
393 		free(sc->sk_vpd_prodname, M_DEVBUF);
394 	if (sc->sk_vpd_readonly != NULL)
395 		free(sc->sk_vpd_readonly, M_DEVBUF);
396 	sc->sk_vpd_prodname = NULL;
397 	sc->sk_vpd_readonly = NULL;
398 
399 	sk_vpd_read_res(sc, &res, pos);
400 
401 	if (res.vr_id != VPD_RES_ID) {
402 		printf("%s: bad VPD resource id: expected %x got %x\n",
403 		    sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
404 		return;
405 	}
406 
407 	pos += sizeof(res);
408 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
409 	if (sc->sk_vpd_prodname == NULL)
410 		panic("sk_vpd_read");
411 	for (i = 0; i < res.vr_len; i++)
412 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
413 	sc->sk_vpd_prodname[i] = '\0';
414 	pos += i;
415 
416 	sk_vpd_read_res(sc, &res, pos);
417 
418 	if (res.vr_id != VPD_RES_READ) {
419 		printf("%s: bad VPD resource id: expected %x got %x\n",
420 		    sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
421 		return;
422 	}
423 
424 	pos += sizeof(res);
425 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
426 	if (sc->sk_vpd_readonly == NULL)
427 		panic("sk_vpd_read");
428 	for (i = 0; i < res.vr_len ; i++)
429 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
430 }
431 
432 int
433 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
434 {
435 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
436 	int i;
437 
438 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
439 
440 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
441 		return(0);
442 
443 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
444 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
445 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
446 		for (i = 0; i < SK_TIMEOUT; i++) {
447 			DELAY(1);
448 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
449 			    XM_MMUCMD_PHYDATARDY)
450 				break;
451 		}
452 
453 		if (i == SK_TIMEOUT) {
454 			printf("%s: phy failed to come ready\n",
455 			    sc_if->sk_dev.dv_xname);
456 			return(0);
457 		}
458 	}
459 	DELAY(1);
460 	return(SK_XM_READ_2(sc_if, XM_PHY_DATA));
461 }
462 
463 void
464 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
465 {
466 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
467 	int i;
468 
469 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
470 
471 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
472 	for (i = 0; i < SK_TIMEOUT; i++) {
473 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
474 			break;
475 	}
476 
477 	if (i == SK_TIMEOUT) {
478 		printf("%s: phy failed to come ready\n",
479 		    sc_if->sk_dev.dv_xname);
480 		return;
481 	}
482 
483 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
484 	for (i = 0; i < SK_TIMEOUT; i++) {
485 		DELAY(1);
486 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
487 			break;
488 	}
489 
490 	if (i == SK_TIMEOUT)
491 		printf("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
492 }
493 
494 void
495 sk_xmac_miibus_statchg(struct device *dev)
496 {
497 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
498 	struct mii_data *mii = &sc_if->sk_mii;
499 
500 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
501 
502 	/*
503 	 * If this is a GMII PHY, manually set the XMAC's
504 	 * duplex mode accordingly.
505 	 */
506 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
507 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
508 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
509 		} else {
510 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
511 		}
512 	}
513 }
514 
515 int
516 sk_marv_miibus_readreg(dev, phy, reg)
517 	struct device *dev;
518 	int phy, reg;
519 {
520 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
521 	u_int16_t val;
522 	int i;
523 
524 	if (phy != 0 ||
525 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
526 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
527 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
528 			     phy, reg));
529 		return(0);
530 	}
531 
532         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
533 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
534 
535 	for (i = 0; i < SK_TIMEOUT; i++) {
536 		DELAY(1);
537 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
538 		if (val & YU_SMICR_READ_VALID)
539 			break;
540 	}
541 
542 	if (i == SK_TIMEOUT) {
543 		printf("%s: phy failed to come ready\n",
544 		       sc_if->sk_dev.dv_xname);
545 		return 0;
546 	}
547 
548  	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
549 		     SK_TIMEOUT));
550 
551         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
552 
553 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
554 		     phy, reg, val));
555 
556 	return val;
557 }
558 
559 void
560 sk_marv_miibus_writereg(dev, phy, reg, val)
561 	struct device *dev;
562 	int phy, reg, val;
563 {
564 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
565 	int i;
566 
567 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
568 		     phy, reg, val));
569 
570 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
571 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
572 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
573 
574 	for (i = 0; i < SK_TIMEOUT; i++) {
575 		DELAY(1);
576 		if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
577 			break;
578 	}
579 }
580 
581 void
582 sk_marv_miibus_statchg(dev)
583 	struct device *dev;
584 {
585 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
586 		     SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
587 }
588 
589 #define SK_HASH_BITS		6
590 
591 u_int32_t
592 sk_xmac_hash(caddr_t addr)
593 {
594 	u_int32_t		crc;
595 
596 	crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
597 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
598 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
599 	return (crc);
600 }
601 
602 u_int32_t
603 sk_yukon_hash(caddr_t addr)
604 {
605 	u_int32_t		crc;
606 
607 	crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
608 	crc &= ((1 << SK_HASH_BITS) - 1);
609 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
610 	return (crc);
611 }
612 
613 void
614 sk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot)
615 {
616 	int base = XM_RXFILT_ENTRY(slot);
617 
618 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
619 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
620 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
621 }
622 
623 void
624 sk_setmulti(struct sk_if_softc *sc_if)
625 {
626 	struct sk_softc *sc = sc_if->sk_softc;
627 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
628 	u_int32_t hashes[2] = { 0, 0 };
629 	int h = 0, i;
630 	struct ethercom *ec = &sc_if->sk_ethercom;
631 	struct ether_multi *enm;
632 	struct ether_multistep step;
633 	u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
634 
635 	/* First, zot all the existing filters. */
636 	switch(sc->sk_type) {
637 	case SK_GENESIS:
638 		for (i = 1; i < XM_RXFILT_MAX; i++)
639 			sk_setfilt(sc_if, (caddr_t)&dummy, i);
640 
641 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
642 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
643 		break;
644 	case SK_YUKON:
645 	case SK_YUKON_LITE:
646 	case SK_YUKON_LP:
647 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
648 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
649 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
650 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
651 		break;
652 	}
653 
654 	/* Now program new ones. */
655 allmulti:
656 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
657 		hashes[0] = 0xFFFFFFFF;
658 		hashes[1] = 0xFFFFFFFF;
659 	} else {
660 		i = 1;
661 		/* First find the tail of the list. */
662 		ETHER_FIRST_MULTI(step, ec, enm);
663 		while (enm != NULL) {
664 			if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
665 				 ETHER_ADDR_LEN)) {
666 				ifp->if_flags |= IFF_ALLMULTI;
667 				goto allmulti;
668 			}
669 			DPRINTFN(2,("multicast address %s\n",
670 	    			ether_sprintf(enm->enm_addrlo)));
671 			/*
672 			 * Program the first XM_RXFILT_MAX multicast groups
673 			 * into the perfect filter. For all others,
674 			 * use the hash table.
675 			 */
676 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
677 				sk_setfilt(sc_if, enm->enm_addrlo, i);
678 				i++;
679 			}
680 			else {
681 				switch (sc->sk_type) {
682 				case SK_GENESIS:
683 					h = sk_xmac_hash(enm->enm_addrlo);
684 					break;
685 				case SK_YUKON:
686 				case SK_YUKON_LITE:
687 				case SK_YUKON_LP:
688 					h = sk_yukon_hash(enm->enm_addrlo);
689 					break;
690 				}
691 				if (h < 32)
692 					hashes[0] |= (1 << h);
693 				else
694 					hashes[1] |= (1 << (h - 32));
695 			}
696 
697 			ETHER_NEXT_MULTI(step, enm);
698 		}
699 	}
700 
701 	switch(sc->sk_type) {
702 	case SK_GENESIS:
703 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
704 			       XM_MODE_RX_USE_PERFECT);
705 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
706 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
707 		break;
708 	case SK_YUKON:
709 	case SK_YUKON_LITE:
710 	case SK_YUKON_LP:
711 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
712 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
713 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
714 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
715 		break;
716 	}
717 }
718 
719 int
720 sk_init_rx_ring(struct sk_if_softc *sc_if)
721 {
722 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
723 	struct sk_ring_data	*rd = sc_if->sk_rdata;
724 	int			i;
725 
726 	bzero((char *)rd->sk_rx_ring,
727 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
728 
729 	for (i = 0; i < SK_RX_RING_CNT; i++) {
730 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
731 		if (i == (SK_RX_RING_CNT - 1)) {
732 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
733 			rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if, 0);
734 		} else {
735 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
736 			rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if,i+1);
737 		}
738 	}
739 
740 	for (i = 0; i < SK_RX_RING_CNT; i++) {
741 		if (sk_newbuf(sc_if, i, NULL,
742 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
743 			printf("%s: failed alloc of %dth mbuf\n",
744 			    sc_if->sk_dev.dv_xname, i);
745 			return(ENOBUFS);
746 		}
747 	}
748 	sc_if->sk_cdata.sk_rx_prod = 0;
749 	sc_if->sk_cdata.sk_rx_cons = 0;
750 
751 	return(0);
752 }
753 
754 int
755 sk_init_tx_ring(struct sk_if_softc *sc_if)
756 {
757 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
758 	struct sk_ring_data	*rd = sc_if->sk_rdata;
759 	int			i;
760 
761 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
762 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
763 
764 	for (i = 0; i < SK_TX_RING_CNT; i++) {
765 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
766 		if (i == (SK_TX_RING_CNT - 1)) {
767 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
768 			rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if, 0);
769 		} else {
770 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
771 			rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if,i+1);
772 		}
773 	}
774 
775 	sc_if->sk_cdata.sk_tx_prod = 0;
776 	sc_if->sk_cdata.sk_tx_cons = 0;
777 	sc_if->sk_cdata.sk_tx_cnt = 0;
778 
779 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
780 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
781 
782 	return (0);
783 }
784 
785 int
786 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
787 	  bus_dmamap_t dmamap)
788 {
789 	struct mbuf		*m_new = NULL;
790 	struct sk_chain		*c;
791 	struct sk_rx_desc	*r;
792 
793 	if (m == NULL) {
794 		caddr_t buf = NULL;
795 
796 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
797 		if (m_new == NULL) {
798 			printf("%s: no memory for rx list -- "
799 			    "packet dropped!\n", sc_if->sk_dev.dv_xname);
800 			return(ENOBUFS);
801 		}
802 
803 		/* Allocate the jumbo buffer */
804 		buf = sk_jalloc(sc_if);
805 		if (buf == NULL) {
806 			m_freem(m_new);
807 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
808 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
809 			return(ENOBUFS);
810 		}
811 
812 		/* Attach the buffer to the mbuf */
813 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
814 		MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
815 
816 	} else {
817 		/*
818 	 	 * We're re-using a previously allocated mbuf;
819 		 * be sure to re-init pointers and lengths to
820 		 * default values.
821 		 */
822 		m_new = m;
823 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
824 		m_new->m_data = m_new->m_ext.ext_buf;
825 	}
826 	m_adj(m_new, ETHER_ALIGN);
827 
828 	c = &sc_if->sk_cdata.sk_rx_chain[i];
829 	r = c->sk_desc;
830 	c->sk_mbuf = m_new;
831 	r->sk_data_lo = dmamap->dm_segs[0].ds_addr +
832 	    (((vaddr_t)m_new->m_data
833 		- (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf));
834 	r->sk_ctl = SK_JLEN | SK_RXSTAT;
835 
836 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
837 
838 	return(0);
839 }
840 
841 /*
842  * Memory management for jumbo frames.
843  */
844 
845 int
846 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
847 {
848 	struct sk_softc		*sc = sc_if->sk_softc;
849 	caddr_t			ptr, kva;
850 	bus_dma_segment_t	seg;
851 	int		i, rseg, state, error;
852 	struct sk_jpool_entry   *entry;
853 
854 	state = error = 0;
855 
856 	/* Grab a big chunk o' storage. */
857 	if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
858 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
859 		printf("%s: can't alloc rx buffers\n", sc->sk_dev.dv_xname);
860 		return (ENOBUFS);
861 	}
862 
863 	state = 1;
864 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, &kva,
865 			   BUS_DMA_NOWAIT)) {
866 		printf("%s: can't map dma buffers (%d bytes)\n",
867 		    sc->sk_dev.dv_xname, SK_JMEM);
868 		error = ENOBUFS;
869 		goto out;
870 	}
871 
872 	state = 2;
873 	if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
874 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
875 		printf("%s: can't create dma map\n", sc->sk_dev.dv_xname);
876 		error = ENOBUFS;
877 		goto out;
878 	}
879 
880 	state = 3;
881 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
882 			    kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
883 		printf("%s: can't load dma map\n", sc->sk_dev.dv_xname);
884 		error = ENOBUFS;
885 		goto out;
886 	}
887 
888 	state = 4;
889 	sc_if->sk_cdata.sk_jumbo_buf = (caddr_t)kva;
890 	DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
891 
892 	LIST_INIT(&sc_if->sk_jfree_listhead);
893 	LIST_INIT(&sc_if->sk_jinuse_listhead);
894 
895 	/*
896 	 * Now divide it up into 9K pieces and save the addresses
897 	 * in an array.
898 	 */
899 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
900 	for (i = 0; i < SK_JSLOTS; i++) {
901 		sc_if->sk_cdata.sk_jslots[i] = ptr;
902 		ptr += SK_JLEN;
903 		entry = malloc(sizeof(struct sk_jpool_entry),
904 		    M_DEVBUF, M_NOWAIT);
905 		if (entry == NULL) {
906 			printf("%s: no memory for jumbo buffer queue!\n",
907 			    sc->sk_dev.dv_xname);
908 			error = ENOBUFS;
909 			goto out;
910 		}
911 		entry->slot = i;
912 		if (i)
913 		LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
914 				 entry, jpool_entries);
915 		else
916 		LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
917 				 entry, jpool_entries);
918 	}
919 out:
920 	if (error != 0) {
921 		switch (state) {
922 		case 4:
923 			bus_dmamap_unload(sc->sc_dmatag,
924 			    sc_if->sk_cdata.sk_rx_jumbo_map);
925 		case 3:
926 			bus_dmamap_destroy(sc->sc_dmatag,
927 			    sc_if->sk_cdata.sk_rx_jumbo_map);
928 		case 2:
929 			bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
930 		case 1:
931 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
932 			break;
933 		default:
934 			break;
935 		}
936 	}
937 
938 	return (error);
939 }
940 
941 /*
942  * Allocate a jumbo buffer.
943  */
944 void *
945 sk_jalloc(struct sk_if_softc *sc_if)
946 {
947 	struct sk_jpool_entry   *entry;
948 
949 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
950 
951 	if (entry == NULL)
952 		return (NULL);
953 
954 	LIST_REMOVE(entry, jpool_entries);
955 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
956 	return (sc_if->sk_cdata.sk_jslots[entry->slot]);
957 }
958 
959 /*
960  * Release a jumbo buffer.
961  */
962 void
963 sk_jfree(struct mbuf *m, caddr_t buf, size_t size, void	*arg)
964 {
965 	struct sk_jpool_entry *entry;
966 	struct sk_if_softc *sc;
967 	int i, s;
968 
969 	/* Extract the softc struct pointer. */
970 	sc = (struct sk_if_softc *)arg;
971 
972 	if (sc == NULL)
973 		panic("sk_jfree: can't find softc pointer!");
974 
975 	/* calculate the slot this buffer belongs to */
976 
977 	i = ((vaddr_t)buf
978 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
979 
980 	if ((i < 0) || (i >= SK_JSLOTS))
981 		panic("sk_jfree: asked to free buffer that we don't manage!");
982 
983 	s = splvm();
984 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
985 	if (entry == NULL)
986 		panic("sk_jfree: buffer not in use!");
987 	entry->slot = i;
988 	LIST_REMOVE(entry, jpool_entries);
989 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
990 
991 	if (__predict_true(m != NULL))
992 		pool_cache_put(&mbpool_cache, m);
993 	splx(s);
994 }
995 
996 /*
997  * Set media options.
998  */
999 int
1000 sk_ifmedia_upd(struct ifnet *ifp)
1001 {
1002 	struct sk_if_softc *sc_if = ifp->if_softc;
1003 
1004 	(void) sk_init(ifp);
1005 	mii_mediachg(&sc_if->sk_mii);
1006 	return(0);
1007 }
1008 
1009 /*
1010  * Report current media status.
1011  */
1012 void
1013 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1014 {
1015 	struct sk_if_softc *sc_if = ifp->if_softc;
1016 
1017 	mii_pollstat(&sc_if->sk_mii);
1018 	ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
1019 	ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
1020 }
1021 
1022 int
1023 sk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1024 {
1025 	struct sk_if_softc *sc_if = ifp->if_softc;
1026 	struct sk_softc *sc = sc_if->sk_softc;
1027 	struct ifreq *ifr = (struct ifreq *) data;
1028 	/* struct ifaddr *ifa = (struct ifaddr *) data; */
1029 	struct mii_data *mii;
1030 	int s, error = 0;
1031 
1032 	/* DPRINTFN(2, ("sk_ioctl\n")); */
1033 
1034 	s = splnet();
1035 
1036 	switch(command) {
1037 
1038 	case SIOCSIFFLAGS:
1039 	        DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1040 		if (ifp->if_flags & IFF_UP) {
1041 			if (ifp->if_flags & IFF_RUNNING &&
1042 			    ifp->if_flags & IFF_PROMISC &&
1043 			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
1044 				switch(sc->sk_type) {
1045 				case SK_GENESIS:
1046 					SK_XM_SETBIT_4(sc_if, XM_MODE,
1047 					    XM_MODE_RX_PROMISC);
1048 					break;
1049 				case SK_YUKON:
1050 				case SK_YUKON_LITE:
1051 				case SK_YUKON_LP:
1052 					SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1053 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
1054 					break;
1055 				}
1056 				sk_setmulti(sc_if);
1057 			} else if (ifp->if_flags & IFF_RUNNING &&
1058 			    !(ifp->if_flags & IFF_PROMISC) &&
1059 			    sc_if->sk_if_flags & IFF_PROMISC) {
1060 				switch(sc->sk_type) {
1061 				case SK_GENESIS:
1062 					SK_XM_CLRBIT_4(sc_if, XM_MODE,
1063 					    XM_MODE_RX_PROMISC);
1064 					break;
1065 				case SK_YUKON:
1066 				case SK_YUKON_LITE:
1067 				case SK_YUKON_LP:
1068 					SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1069 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
1070 					break;
1071 				}
1072 
1073 				sk_setmulti(sc_if);
1074 			} else
1075 				(void) sk_init(ifp);
1076 		} else {
1077 			if (ifp->if_flags & IFF_RUNNING)
1078 				sk_stop(ifp,0);
1079 		}
1080 		sc_if->sk_if_flags = ifp->if_flags;
1081 		error = 0;
1082 		break;
1083 
1084 	case SIOCGIFMEDIA:
1085 	case SIOCSIFMEDIA:
1086 	        DPRINTFN(2, ("sk_ioctl MEDIA\n"));
1087 		mii = &sc_if->sk_mii;
1088 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1089 		break;
1090 	default:
1091 	        DPRINTFN(2, ("sk_ioctl ETHER\n"));
1092 		error = ether_ioctl(ifp, command, data);
1093 
1094 		if ( error == ENETRESET) {
1095 			if (ifp->if_flags & IFF_RUNNING) {
1096 				sk_setmulti(sc_if);
1097 				DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1098 			}
1099 			error = 0;
1100 		} else if ( error ) {
1101 			splx(s);
1102 			return error;
1103 		}
1104 		break;
1105 	}
1106 
1107 	splx(s);
1108 	return(error);
1109 }
1110 
1111 void
1112 sk_update_int_mod(struct sk_softc *sc)
1113 {
1114 	u_int32_t sk_imtimer_ticks;
1115 
1116 	/*
1117          * Configure interrupt moderation. The moderation timer
1118 	 * defers interrupts specified in the interrupt moderation
1119 	 * timer mask based on the timeout specified in the interrupt
1120 	 * moderation timer init register. Each bit in the timer
1121 	 * register represents one tick, so to specify a timeout in
1122 	 * microseconds, we have to multiply by the correct number of
1123 	 * ticks-per-microsecond.
1124 	 */
1125 	switch (sc->sk_type) {
1126 	case SK_GENESIS:
1127 		sk_imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1128 		break;
1129 	case SK_YUKON_EC:
1130 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1131 		break;
1132 	default:
1133 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1134 	}
1135 	aprint_verbose("%s: interrupt moderation is %d us\n",
1136 	    sc->sk_dev.dv_xname, sc->sk_int_mod);
1137         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1138         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1139 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1140         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1141 	sc->sk_int_mod_pending = 0;
1142 }
1143 
1144 /*
1145  * Lookup: Check the PCI vendor and device, and return a pointer to
1146  * The structure if the IDs match against our list.
1147  */
1148 
1149 static const struct sk_product *
1150 sk_lookup(const struct pci_attach_args *pa)
1151 {
1152 	const struct sk_product *psk;
1153 
1154 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1155 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1156 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1157 			return (psk);
1158 	}
1159 	return (NULL);
1160 }
1161 
1162 /*
1163  * Probe for a SysKonnect GEnesis chip.
1164  */
1165 
1166 int
1167 skc_probe(struct device *parent, struct cfdata *match, void *aux)
1168 {
1169 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1170 	const struct sk_product *psk;
1171 	pcireg_t subid;
1172 
1173 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1174 
1175 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
1176 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1177 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1178 	    subid == SK_LINKSYS_EG1032_SUBID)
1179 		return(1);
1180 
1181 	if ((psk = sk_lookup(pa))) {
1182 		return(1);
1183 	}
1184 	return(0);
1185 }
1186 
1187 /*
1188  * Force the GEnesis into reset, then bring it out of reset.
1189  */
1190 void sk_reset(struct sk_softc *sc)
1191 {
1192 	DPRINTFN(2, ("sk_reset\n"));
1193 
1194 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1195 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1196 	if (SK_YUKON_FAMILY(sc->sk_type))
1197 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1198 
1199 	DELAY(1000);
1200 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1201 	DELAY(2);
1202 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1203 	if (SK_YUKON_FAMILY(sc->sk_type))
1204 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1205 
1206 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1207 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1208 		     CSR_READ_2(sc, SK_LINK_CTRL)));
1209 
1210 	if (sc->sk_type == SK_GENESIS) {
1211 		/* Configure packet arbiter */
1212 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1213 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1214 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1215 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1216 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1217 	}
1218 
1219 	/* Enable RAM interface */
1220 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1221 
1222 	sk_update_int_mod(sc);
1223 }
1224 
1225 int
1226 sk_probe(struct device *parent, struct cfdata *match, void *aux)
1227 {
1228 	struct skc_attach_args *sa = aux;
1229 
1230 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1231 		return(0);
1232 
1233 	return (1);
1234 }
1235 
1236 /*
1237  * Each XMAC chip is attached as a separate logical IP interface.
1238  * Single port cards will have only one logical interface of course.
1239  */
1240 void
1241 sk_attach(struct device *parent, struct device *self, void *aux)
1242 {
1243 	struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
1244 	struct sk_softc *sc = (struct sk_softc *)parent;
1245 	struct skc_attach_args *sa = aux;
1246 	struct sk_txmap_entry	*entry;
1247 	struct ifnet *ifp;
1248 	bus_dma_segment_t seg;
1249 	bus_dmamap_t dmamap;
1250 	caddr_t kva;
1251 	int i, rseg;
1252 
1253 	sc_if->sk_port = sa->skc_port;
1254 	sc_if->sk_softc = sc;
1255 	sc->sk_if[sa->skc_port] = sc_if;
1256 
1257 	if (sa->skc_port == SK_PORT_A)
1258 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1259 	if (sa->skc_port == SK_PORT_B)
1260 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1261 
1262 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1263 
1264 	/*
1265 	 * Get station address for this interface. Note that
1266 	 * dual port cards actually come with three station
1267 	 * addresses: one for each port, plus an extra. The
1268 	 * extra one is used by the SysKonnect driver software
1269 	 * as a 'virtual' station address for when both ports
1270 	 * are operating in failover mode. Currently we don't
1271 	 * use this extra address.
1272 	 */
1273 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1274 		sc_if->sk_enaddr[i] =
1275 			sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1276 
1277 
1278 	aprint_normal(": Ethernet address %s\n",
1279 	    ether_sprintf(sc_if->sk_enaddr));
1280 
1281 	/*
1282 	 * Set up RAM buffer addresses. The NIC will have a certain
1283 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1284 	 * need to divide this up a) between the transmitter and
1285  	 * receiver and b) between the two XMACs, if this is a
1286 	 * dual port NIC. Our algorithm is to divide up the memory
1287 	 * evenly so that everyone gets a fair share.
1288 	 */
1289 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1290 		u_int32_t		chunk, val;
1291 
1292 		chunk = sc->sk_ramsize / 2;
1293 		val = sc->sk_rboff / sizeof(u_int64_t);
1294 		sc_if->sk_rx_ramstart = val;
1295 		val += (chunk / sizeof(u_int64_t));
1296 		sc_if->sk_rx_ramend = val - 1;
1297 		sc_if->sk_tx_ramstart = val;
1298 		val += (chunk / sizeof(u_int64_t));
1299 		sc_if->sk_tx_ramend = val - 1;
1300 	} else {
1301 		u_int32_t		chunk, val;
1302 
1303 		chunk = sc->sk_ramsize / 4;
1304 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1305 		    sizeof(u_int64_t);
1306 		sc_if->sk_rx_ramstart = val;
1307 		val += (chunk / sizeof(u_int64_t));
1308 		sc_if->sk_rx_ramend = val - 1;
1309 		sc_if->sk_tx_ramstart = val;
1310 		val += (chunk / sizeof(u_int64_t));
1311 		sc_if->sk_tx_ramend = val - 1;
1312 	}
1313 
1314 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1315 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
1316 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1317 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1318 
1319 	/* Read and save PHY type and set PHY address */
1320 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1321 	switch (sc_if->sk_phytype) {
1322 	case SK_PHYTYPE_XMAC:
1323 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1324 		break;
1325 	case SK_PHYTYPE_BCOM:
1326 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1327 		break;
1328 	case SK_PHYTYPE_MARV_COPPER:
1329 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1330 		break;
1331 	default:
1332 		aprint_error("%s: unsupported PHY type: %d\n",
1333 		    sc->sk_dev.dv_xname, sc_if->sk_phytype);
1334 		return;
1335 	}
1336 
1337 	/* Allocate the descriptor queues. */
1338 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1339 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1340 		aprint_error("%s: can't alloc rx buffers\n",
1341 		    sc->sk_dev.dv_xname);
1342 		goto fail;
1343 	}
1344 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1345 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1346 		aprint_error("%s: can't map dma buffers (%lu bytes)\n",
1347 		       sc_if->sk_dev.dv_xname,
1348 		       (u_long) sizeof(struct sk_ring_data));
1349 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1350 		goto fail;
1351 	}
1352 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1353 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1354             &sc_if->sk_ring_map)) {
1355 		aprint_error("%s: can't create dma map\n",
1356 		    sc_if->sk_dev.dv_xname);
1357 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1358 		    sizeof(struct sk_ring_data));
1359 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1360 		goto fail;
1361 	}
1362 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1363 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1364 		aprint_error("%s: can't load dma map\n",
1365 		    sc_if->sk_dev.dv_xname);
1366 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1367 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1368 		    sizeof(struct sk_ring_data));
1369 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1370 		goto fail;
1371 	}
1372 
1373 	for (i = 0; i < SK_RX_RING_CNT; i++)
1374 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1375 
1376 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1377 	for (i = 0; i < SK_TX_RING_CNT; i++) {
1378 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1379 
1380 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1381 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1382 			aprint_error("%s: Can't create TX dmamap\n",
1383 				sc_if->sk_dev.dv_xname);
1384 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1385 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1386 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1387 			    sizeof(struct sk_ring_data));
1388 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1389 			goto fail;
1390 		}
1391 
1392 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1393 		if (!entry) {
1394 			aprint_error("%s: Can't alloc txmap entry\n",
1395 				sc_if->sk_dev.dv_xname);
1396 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1397 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1398 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1399 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1400 			    sizeof(struct sk_ring_data));
1401 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1402 			goto fail;
1403 		}
1404 		entry->dmamap = dmamap;
1405 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1406 	}
1407 
1408         sc_if->sk_rdata = (struct sk_ring_data *)kva;
1409 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1410 
1411 	ifp = &sc_if->sk_ethercom.ec_if;
1412 	/* Try to allocate memory for jumbo buffers. */
1413 	if (sk_alloc_jumbo_mem(sc_if)) {
1414 		printf("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1415 		goto fail;
1416 	}
1417 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1418 		| ETHERCAP_JUMBO_MTU;
1419 
1420 	ifp->if_softc = sc_if;
1421 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1422 	ifp->if_ioctl = sk_ioctl;
1423 	ifp->if_start = sk_start;
1424 	ifp->if_stop = sk_stop;
1425 	ifp->if_init = sk_init;
1426 	ifp->if_watchdog = sk_watchdog;
1427 	ifp->if_capabilities = 0;
1428 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1429 	IFQ_SET_READY(&ifp->if_snd);
1430 	strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
1431 
1432 	/*
1433 	 * Do miibus setup.
1434 	 */
1435 	switch (sc->sk_type) {
1436 	case SK_GENESIS:
1437 		sk_init_xmac(sc_if);
1438 		break;
1439 	case SK_YUKON:
1440 	case SK_YUKON_LITE:
1441 	case SK_YUKON_LP:
1442 		sk_init_yukon(sc_if);
1443 		break;
1444 	default:
1445 		panic("%s: unknown device type %d", sc->sk_dev.dv_xname,
1446 		      sc->sk_type);
1447 	}
1448 
1449  	DPRINTFN(2, ("sk_attach: 1\n"));
1450 
1451 	sc_if->sk_mii.mii_ifp = ifp;
1452 	switch (sc->sk_type) {
1453 	case SK_GENESIS:
1454 		sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1455 		sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1456 		sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1457 		break;
1458 	case SK_YUKON:
1459 	case SK_YUKON_LITE:
1460 	case SK_YUKON_LP:
1461 		sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1462 		sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1463 		sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1464 		break;
1465 	}
1466 
1467 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1468 	    sk_ifmedia_upd, sk_ifmedia_sts);
1469 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1470 	    MII_OFFSET_ANY, 0);
1471 	if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1472 		printf("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
1473 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1474 			    0, NULL);
1475 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1476 	}
1477 	else
1478 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1479 
1480 	callout_init(&sc_if->sk_tick_ch);
1481 	callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1482 
1483 	DPRINTFN(2, ("sk_attach: 1\n"));
1484 
1485 	/*
1486 	 * Call MI attach routines.
1487 	 */
1488 	if_attach(ifp);
1489 
1490 	ether_ifattach(ifp, sc_if->sk_enaddr);
1491 
1492 #if NRND > 0
1493         rnd_attach_source(&sc->rnd_source, sc->sk_dev.dv_xname,
1494             RND_TYPE_NET, 0);
1495 #endif
1496 
1497 	DPRINTFN(2, ("sk_attach: end\n"));
1498 
1499 	return;
1500 
1501 fail:
1502 	sc->sk_if[sa->skc_port] = NULL;
1503 }
1504 
1505 int
1506 skcprint(void *aux, const char *pnp)
1507 {
1508 	struct skc_attach_args *sa = aux;
1509 
1510 	if (pnp)
1511 		aprint_normal("sk port %c at %s",
1512 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1513 	else
1514 		aprint_normal(" port %c",
1515 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1516 	return (UNCONF);
1517 }
1518 
1519 /*
1520  * Attach the interface. Allocate softc structures, do ifmedia
1521  * setup and ethernet/BPF attach.
1522  */
1523 void
1524 skc_attach(struct device *parent, struct device *self, void *aux)
1525 {
1526 	struct sk_softc *sc = (struct sk_softc *)self;
1527 	struct pci_attach_args *pa = aux;
1528 	struct skc_attach_args skca;
1529 	pci_chipset_tag_t pc = pa->pa_pc;
1530 	pcireg_t memtype;
1531 	pci_intr_handle_t ih;
1532 	const char *intrstr = NULL;
1533 	bus_addr_t iobase;
1534 	bus_size_t iosize;
1535 	int s, rc, sk_nodenum;
1536 	u_int32_t command;
1537 	const char *revstr;
1538 	const struct sysctlnode *node;
1539 
1540 	DPRINTFN(2, ("begin skc_attach\n"));
1541 
1542 	s = splnet();
1543 
1544 	/*
1545 	 * Handle power management nonsense.
1546 	 */
1547 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1548 
1549 	if (command == 0x01) {
1550 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1551 		if (command & SK_PSTATE_MASK) {
1552 			u_int32_t		xiobase, membase, irq;
1553 
1554 			/* Save important PCI config data. */
1555 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1556 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1557 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1558 
1559 			/* Reset the power state. */
1560 			aprint_normal("%s chip is in D%d power mode "
1561 			    "-- setting to D0\n", sc->sk_dev.dv_xname,
1562 			    command & SK_PSTATE_MASK);
1563 			command &= 0xFFFFFFFC;
1564 			pci_conf_write(pc, pa->pa_tag,
1565 			    SK_PCI_PWRMGMTCTRL, command);
1566 
1567 			/* Restore PCI config data. */
1568 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1569 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1570 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1571 		}
1572 	}
1573 
1574 	/*
1575 	 * Map control/status registers.
1576 	 */
1577 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1578 	command |= PCI_COMMAND_IO_ENABLE |
1579 	    PCI_COMMAND_MEM_ENABLE |
1580 	    PCI_COMMAND_MASTER_ENABLE;
1581 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1582 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1583 
1584 #ifdef SK_USEIOSPACE
1585 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
1586 		aprint_error(": failed to enable I/O ports!\n");
1587 		goto fail;
1588 	}
1589 	/*
1590 	 * Map control/status registers.
1591 	 */
1592 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1593 			   &iobase, &iosize)) {
1594 		aprint_error(": can't find i/o space\n");
1595 		goto fail;
1596 	}
1597 #else
1598 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1599 		aprint_error(": failed to enable memory mapping!\n");
1600 		goto fail;
1601 	}
1602 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1603 	switch (memtype) {
1604         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1605         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1606                 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1607 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1608 				   &iobase, &iosize) == 0)
1609                         break;
1610         default:
1611                 aprint_error("%s: can't find mem space\n",
1612 		       sc->sk_dev.dv_xname);
1613                 return;
1614 	}
1615 
1616 	DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
1617 #endif
1618 	sc->sc_dmatag = pa->pa_dmat;
1619 
1620 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1621 	sc->sk_rev  = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1622 
1623 	/* bail out here if chip is not recognized */
1624 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1625 		aprint_error("%s: unknown chip type\n",sc->sk_dev.dv_xname);
1626 		goto fail;
1627 	}
1628 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1629 
1630 	/* Allocate interrupt */
1631 	if (pci_intr_map(pa, &ih)) {
1632 		aprint_error(": couldn't map interrupt\n");
1633 		goto fail;
1634 	}
1635 
1636 	intrstr = pci_intr_string(pc, ih);
1637 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1638 	if (sc->sk_intrhand == NULL) {
1639 		aprint_error(": couldn't establish interrupt");
1640 		if (intrstr != NULL)
1641 			aprint_normal(" at %s", intrstr);
1642 		goto fail;
1643 	}
1644 	aprint_normal(": %s\n", intrstr);
1645 
1646 	/* Reset the adapter. */
1647 	sk_reset(sc);
1648 
1649 	/* Read and save vital product data from EEPROM. */
1650 	sk_vpd_read(sc);
1651 
1652 	if (sc->sk_type == SK_GENESIS) {
1653 		u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1654 		/* Read and save RAM size and RAMbuffer offset */
1655 		switch(val) {
1656 		case SK_RAMSIZE_512K_64:
1657 			sc->sk_ramsize = 0x80000;
1658 			sc->sk_rboff = SK_RBOFF_0;
1659 			break;
1660 		case SK_RAMSIZE_1024K_64:
1661 			sc->sk_ramsize = 0x100000;
1662 			sc->sk_rboff = SK_RBOFF_80000;
1663 			break;
1664 		case SK_RAMSIZE_1024K_128:
1665 			sc->sk_ramsize = 0x100000;
1666 			sc->sk_rboff = SK_RBOFF_0;
1667 			break;
1668 		case SK_RAMSIZE_2048K_128:
1669 			sc->sk_ramsize = 0x200000;
1670 			sc->sk_rboff = SK_RBOFF_0;
1671 			break;
1672 		default:
1673 			aprint_error("%s: unknown ram size: %d\n",
1674 			       sc->sk_dev.dv_xname, val);
1675 			goto fail;
1676 			break;
1677 		}
1678 
1679 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1680 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
1681 			     sc->sk_rboff));
1682 	} else {
1683 	  	u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1684 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
1685 		sc->sk_rboff = SK_RBOFF_0;
1686 
1687 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1688 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
1689 			     sc->sk_rboff));
1690 	}
1691 
1692 	/* Read and save physical media type */
1693 	switch(sk_win_read_1(sc, SK_PMDTYPE)) {
1694 	case SK_PMD_1000BASESX:
1695 		sc->sk_pmd = IFM_1000_SX;
1696 		break;
1697 	case SK_PMD_1000BASELX:
1698 		sc->sk_pmd = IFM_1000_LX;
1699 		break;
1700 	case SK_PMD_1000BASECX:
1701 		sc->sk_pmd = IFM_1000_CX;
1702 		break;
1703 	case SK_PMD_1000BASETX:
1704 	case SK_PMD_1000BASETX_ALT:
1705 		sc->sk_pmd = IFM_1000_T;
1706 		break;
1707 	default:
1708 		aprint_error("%s: unknown media type: 0x%x\n",
1709 		    sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
1710 		goto fail;
1711 	}
1712 
1713 	/* determine whether to name it with vpd or just make it up */
1714 	/* Marvell Yukon VPD's can freqently be bogus */
1715 
1716 	switch (pa->pa_id) {
1717 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1718 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1719 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1720 	case PCI_PRODUCT_3COM_3C940:
1721 	case PCI_PRODUCT_DLINK_DGE530T:
1722 	case PCI_PRODUCT_DLINK_DGE560T:
1723 	case PCI_PRODUCT_DLINK_DGE560T_2:
1724 	case PCI_PRODUCT_LINKSYS_EG1032:
1725 	case PCI_PRODUCT_LINKSYS_EG1064:
1726 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1727 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1728 	case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1729 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1730 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
1731 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
1732 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1733 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1734  		sc->sk_name = sc->sk_vpd_prodname;
1735  		break;
1736 	case PCI_ID_CODE(PCI_VENDOR_GALILEO,PCI_PRODUCT_GALILEO_SKNET):
1737 	/* whoops yukon vpd prodname bears no resemblance to reality */
1738 		switch (sc->sk_type) {
1739 		case SK_GENESIS:
1740 			sc->sk_name = sc->sk_vpd_prodname;
1741 			break;
1742 		case SK_YUKON:
1743 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1744 			break;
1745 		case SK_YUKON_LITE:
1746 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1747 			break;
1748 		case SK_YUKON_LP:
1749 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1750 			break;
1751 		default:
1752 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1753 		}
1754 
1755 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1756 
1757 		if ( sc->sk_type == SK_YUKON ) {
1758 			uint32_t flashaddr;
1759 			uint8_t testbyte;
1760 
1761 			flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1762 
1763 			/* test Flash-Address Register */
1764 			sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1765 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1766 
1767 			if (testbyte != 0) {
1768 				/* this is yukon lite Rev. A0 */
1769 				sc->sk_type = SK_YUKON_LITE;
1770 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
1771 				/* restore Flash-Address Register */
1772 				sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1773 			}
1774 		}
1775 		break;
1776 	case PCI_ID_CODE(PCI_VENDOR_GALILEO,PCI_PRODUCT_GALILEO_BELKIN):
1777 		sc->sk_name = sc->sk_vpd_prodname;
1778 		break;
1779  	default:
1780 		sc->sk_name = "Unknown Marvell";
1781 	}
1782 
1783 
1784 	if ( sc->sk_type == SK_YUKON_LITE ) {
1785 		switch (sc->sk_rev) {
1786 		case SK_YUKON_LITE_REV_A0:
1787 			revstr = "A0";
1788 			break;
1789 		case SK_YUKON_LITE_REV_A1:
1790 			revstr = "A1";
1791 			break;
1792 		case SK_YUKON_LITE_REV_A3:
1793 			revstr = "A3";
1794 			break;
1795 		default:
1796 			revstr = "";
1797 		}
1798 	} else {
1799 		revstr = "";
1800 	}
1801 
1802 	/* Announce the product name. */
1803 	aprint_normal("%s: %s rev. %s(0x%x)\n", sc->sk_dev.dv_xname,
1804 			      sc->sk_name, revstr, sc->sk_rev);
1805 
1806 	skca.skc_port = SK_PORT_A;
1807 	(void)config_found(&sc->sk_dev, &skca, skcprint);
1808 
1809 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1810 		skca.skc_port = SK_PORT_B;
1811 		(void)config_found(&sc->sk_dev, &skca, skcprint);
1812 	}
1813 
1814 	/* Turn on the 'driver is loaded' LED. */
1815 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1816 
1817 	/* skc sysctl setup */
1818 
1819 	sc->sk_int_mod = SK_IM_DEFAULT;
1820 	sc->sk_int_mod_pending = 0;
1821 
1822 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1823 	    0, CTLTYPE_NODE, sc->sk_dev.dv_xname,
1824 	    SYSCTL_DESCR("skc per-controller controls"),
1825 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1826 	    CTL_EOL)) != 0) {
1827 		aprint_normal("%s: couldn't create sysctl node\n",
1828 		    sc->sk_dev.dv_xname);
1829 		goto fail;
1830 	}
1831 
1832 	sk_nodenum = node->sysctl_num;
1833 
1834 	/* interrupt moderation time in usecs */
1835 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1836 	    CTLFLAG_READWRITE,
1837 	    CTLTYPE_INT, "int_mod",
1838 	    SYSCTL_DESCR("sk interrupt moderation timer"),
1839 	    sk_sysctl_handler, 0, sc,
1840 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1841 	    CTL_EOL)) != 0) {
1842 		aprint_normal("%s: couldn't create int_mod sysctl node\n",
1843 		    sc->sk_dev.dv_xname);
1844 		goto fail;
1845 	}
1846 
1847 fail:
1848 	splx(s);
1849 }
1850 
1851 int
1852 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1853 {
1854 	struct sk_softc		*sc = sc_if->sk_softc;
1855 	struct sk_tx_desc	*f = NULL;
1856 	u_int32_t		frag, cur, cnt = 0;
1857 	int			i;
1858 	struct sk_txmap_entry	*entry;
1859 	bus_dmamap_t		txmap;
1860 
1861 	DPRINTFN(3, ("sk_encap\n"));
1862 
1863 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1864 	if (entry == NULL) {
1865 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
1866 		return ENOBUFS;
1867 	}
1868 	txmap = entry->dmamap;
1869 
1870 	cur = frag = *txidx;
1871 
1872 #ifdef SK_DEBUG
1873 	if (skdebug >= 3)
1874 		sk_dump_mbuf(m_head);
1875 #endif
1876 
1877 	/*
1878 	 * Start packing the mbufs in this chain into
1879 	 * the fragment pointers. Stop when we run out
1880 	 * of fragments or hit the end of the mbuf chain.
1881 	 */
1882 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1883 	    BUS_DMA_NOWAIT)) {
1884 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1885 		return(ENOBUFS);
1886 	}
1887 
1888 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1889 
1890 	/* Sync the DMA map. */
1891 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1892 	    BUS_DMASYNC_PREWRITE);
1893 
1894 	for (i = 0; i < txmap->dm_nsegs; i++) {
1895 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1896 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1897 			return(ENOBUFS);
1898 		}
1899 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
1900 		f->sk_data_lo = txmap->dm_segs[i].ds_addr;
1901 		f->sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1902 		if (cnt == 0)
1903 			f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
1904 		else
1905 			f->sk_ctl |= SK_TXCTL_OWN;
1906 
1907 		cur = frag;
1908 		SK_INC(frag, SK_TX_RING_CNT);
1909 		cnt++;
1910 	}
1911 
1912 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1913 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1914 
1915 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
1916 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1917 		SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
1918 
1919 	/* Sync descriptors before handing to chip */
1920 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1921 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1922 
1923 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
1924 
1925 	/* Sync first descriptor to hand it off */
1926 	SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1927 
1928 	sc_if->sk_cdata.sk_tx_cnt += cnt;
1929 
1930 #ifdef SK_DEBUG
1931 	if (skdebug >= 3) {
1932 		struct sk_tx_desc *desc;
1933 		u_int32_t idx;
1934 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1935 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1936 			sk_dump_txdesc(desc, idx);
1937 		}
1938 	}
1939 #endif
1940 
1941 	*txidx = frag;
1942 
1943 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
1944 
1945 	return(0);
1946 }
1947 
1948 void
1949 sk_start(struct ifnet *ifp)
1950 {
1951         struct sk_if_softc	*sc_if = ifp->if_softc;
1952         struct sk_softc		*sc = sc_if->sk_softc;
1953         struct mbuf		*m_head = NULL;
1954         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
1955 	int			pkts = 0;
1956 
1957 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1958 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1959 
1960 	while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1961 
1962 		IFQ_POLL(&ifp->if_snd, m_head);
1963 		if (m_head == NULL)
1964 			break;
1965 
1966 		/*
1967 		 * Pack the data into the transmit ring. If we
1968 		 * don't have room, set the OACTIVE flag and wait
1969 		 * for the NIC to drain the ring.
1970 		 */
1971 		if (sk_encap(sc_if, m_head, &idx)) {
1972 			ifp->if_flags |= IFF_OACTIVE;
1973 			break;
1974 		}
1975 
1976 		/* now we are committed to transmit the packet */
1977 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1978 		pkts++;
1979 
1980 		/*
1981 		 * If there's a BPF listener, bounce a copy of this frame
1982 		 * to him.
1983 		 */
1984 #if NBPFILTER > 0
1985 		if (ifp->if_bpf)
1986 			bpf_mtap(ifp->if_bpf, m_head);
1987 #endif
1988 	}
1989 	if (pkts == 0)
1990 		return;
1991 
1992 	/* Transmit */
1993 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
1994 		sc_if->sk_cdata.sk_tx_prod = idx;
1995 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1996 
1997 		/* Set a timeout in case the chip goes out to lunch. */
1998 		ifp->if_timer = 5;
1999 	}
2000 }
2001 
2002 
2003 void
2004 sk_watchdog(struct ifnet *ifp)
2005 {
2006 	struct sk_if_softc *sc_if = ifp->if_softc;
2007 
2008 	printf("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
2009 	(void) sk_init(ifp);
2010 }
2011 
2012 void
2013 sk_shutdown(void * v)
2014 {
2015 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
2016 	struct sk_softc		*sc = sc_if->sk_softc;
2017 	struct ifnet 		*ifp = &sc_if->sk_ethercom.ec_if;
2018 
2019 	DPRINTFN(2, ("sk_shutdown\n"));
2020 	sk_stop(ifp,1);
2021 
2022 	/* Turn off the 'driver is loaded' LED. */
2023 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2024 
2025 	/*
2026 	 * Reset the GEnesis controller. Doing this should also
2027 	 * assert the resets on the attached XMAC(s).
2028 	 */
2029 	sk_reset(sc);
2030 }
2031 
2032 void
2033 sk_rxeof(struct sk_if_softc *sc_if)
2034 {
2035 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2036 	struct mbuf		*m;
2037 	struct sk_chain		*cur_rx;
2038 	struct sk_rx_desc	*cur_desc;
2039 	int			i, cur, total_len = 0;
2040 	u_int32_t		rxstat;
2041 	bus_dmamap_t		dmamap;
2042 
2043 	i = sc_if->sk_cdata.sk_rx_prod;
2044 
2045 	DPRINTFN(3, ("sk_rxeof %d\n", i));
2046 
2047 	for (;;) {
2048 		cur = i;
2049 
2050 		/* Sync the descriptor */
2051 		SK_CDRXSYNC(sc_if, cur,
2052 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2053 
2054 		if (sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl & SK_RXCTL_OWN) {
2055 			/* Invalidate the descriptor -- it's not ready yet */
2056 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2057 			sc_if->sk_cdata.sk_rx_prod = i;
2058 			break;
2059 		}
2060 
2061 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2062 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2063 		dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2064 
2065 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2066 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2067 
2068 		rxstat = cur_desc->sk_xmac_rxstat;
2069 		m = cur_rx->sk_mbuf;
2070 		cur_rx->sk_mbuf = NULL;
2071 		total_len = SK_RXBYTES(cur_desc->sk_ctl);
2072 
2073 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
2074 
2075 		SK_INC(i, SK_RX_RING_CNT);
2076 
2077 		if (rxstat & XM_RXSTAT_ERRFRAME) {
2078 			ifp->if_ierrors++;
2079 			sk_newbuf(sc_if, cur, m, dmamap);
2080 			continue;
2081 		}
2082 
2083 		/*
2084 		 * Try to allocate a new jumbo buffer. If that
2085 		 * fails, copy the packet to mbufs and put the
2086 		 * jumbo buffer back in the ring so it can be
2087 		 * re-used. If allocating mbufs fails, then we
2088 		 * have to drop the packet.
2089 		 */
2090 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2091 			struct mbuf		*m0;
2092 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2093 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
2094 			sk_newbuf(sc_if, cur, m, dmamap);
2095 			if (m0 == NULL) {
2096 				printf("%s: no receive buffers "
2097 				    "available -- packet dropped!\n",
2098 				    sc_if->sk_dev.dv_xname);
2099 				ifp->if_ierrors++;
2100 				continue;
2101 			}
2102 			m_adj(m0, ETHER_ALIGN);
2103 			m = m0;
2104 		} else {
2105 			m->m_pkthdr.rcvif = ifp;
2106 			m->m_pkthdr.len = m->m_len = total_len;
2107 		}
2108 
2109 		ifp->if_ipackets++;
2110 
2111 #if NBPFILTER > 0
2112 		if (ifp->if_bpf)
2113 			bpf_mtap(ifp->if_bpf, m);
2114 #endif
2115 		/* pass it on. */
2116 		(*ifp->if_input)(ifp, m);
2117 	}
2118 }
2119 
2120 void
2121 sk_txeof(struct sk_if_softc *sc_if)
2122 {
2123 	struct sk_softc		*sc = sc_if->sk_softc;
2124 	struct sk_tx_desc	*cur_tx;
2125 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2126 	u_int32_t		idx;
2127 	struct sk_txmap_entry	*entry;
2128 
2129 	DPRINTFN(3, ("sk_txeof\n"));
2130 
2131 	/*
2132 	 * Go through our tx ring and free mbufs for those
2133 	 * frames that have been sent.
2134 	 */
2135 	idx = sc_if->sk_cdata.sk_tx_cons;
2136 	while(idx != sc_if->sk_cdata.sk_tx_prod) {
2137 		SK_CDTXSYNC(sc_if, idx, 1,
2138 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2139 
2140 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2141 #ifdef SK_DEBUG
2142 		if (skdebug >= 3)
2143 			sk_dump_txdesc(cur_tx, idx);
2144 #endif
2145 		if (cur_tx->sk_ctl & SK_TXCTL_OWN) {
2146 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2147 			break;
2148 		}
2149 		if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
2150 			ifp->if_opackets++;
2151 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2152 			entry = sc_if->sk_cdata.sk_tx_map[idx];
2153 
2154 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2155 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2156 
2157 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2158 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2159 
2160 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2161 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2162 					  link);
2163 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2164 		}
2165 		sc_if->sk_cdata.sk_tx_cnt--;
2166 		SK_INC(idx, SK_TX_RING_CNT);
2167 	}
2168 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
2169 		ifp->if_timer = 0;
2170 	else /* nudge chip to keep tx ring moving */
2171 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2172 
2173 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2174 		ifp->if_flags &= ~IFF_OACTIVE;
2175 
2176 	sc_if->sk_cdata.sk_tx_cons = idx;
2177 }
2178 
2179 void
2180 sk_tick(void *xsc_if)
2181 {
2182 	struct sk_if_softc *sc_if = xsc_if;
2183 	struct mii_data *mii = &sc_if->sk_mii;
2184 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2185 	int i;
2186 
2187 	DPRINTFN(3, ("sk_tick\n"));
2188 
2189 	if (!(ifp->if_flags & IFF_UP))
2190 		return;
2191 
2192 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2193 		sk_intr_bcom(sc_if);
2194 		return;
2195 	}
2196 
2197 	/*
2198 	 * According to SysKonnect, the correct way to verify that
2199 	 * the link has come back up is to poll bit 0 of the GPIO
2200 	 * register three times. This pin has the signal from the
2201 	 * link sync pin connected to it; if we read the same link
2202 	 * state 3 times in a row, we know the link is up.
2203 	 */
2204 	for (i = 0; i < 3; i++) {
2205 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2206 			break;
2207 	}
2208 
2209 	if (i != 3) {
2210 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2211 		return;
2212 	}
2213 
2214 	/* Turn the GP0 interrupt back on. */
2215 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2216 	SK_XM_READ_2(sc_if, XM_ISR);
2217 	mii_tick(mii);
2218 	mii_pollstat(mii);
2219 	callout_stop(&sc_if->sk_tick_ch);
2220 }
2221 
2222 void
2223 sk_intr_bcom(struct sk_if_softc *sc_if)
2224 {
2225 	struct mii_data *mii = &sc_if->sk_mii;
2226 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2227 	int status;
2228 
2229 
2230 	DPRINTFN(3, ("sk_intr_bcom\n"));
2231 
2232 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2233 
2234 	/*
2235 	 * Read the PHY interrupt register to make sure
2236 	 * we clear any pending interrupts.
2237 	 */
2238 	status = sk_xmac_miibus_readreg((struct device *)sc_if,
2239 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2240 
2241 	if (!(ifp->if_flags & IFF_RUNNING)) {
2242 		sk_init_xmac(sc_if);
2243 		return;
2244 	}
2245 
2246 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2247 		int lstat;
2248 		lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
2249 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2250 
2251 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2252 			mii_mediachg(mii);
2253 			/* Turn off the link LED. */
2254 			SK_IF_WRITE_1(sc_if, 0,
2255 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
2256 			sc_if->sk_link = 0;
2257 		} else if (status & BRGPHY_ISR_LNK_CHG) {
2258 			sk_xmac_miibus_writereg((struct device *)sc_if,
2259 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2260 			mii_tick(mii);
2261 			sc_if->sk_link = 1;
2262 			/* Turn on the link LED. */
2263 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2264 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2265 			    SK_LINKLED_BLINK_OFF);
2266 			mii_pollstat(mii);
2267 		} else {
2268 			mii_tick(mii);
2269 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2270 		}
2271 	}
2272 
2273 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2274 }
2275 
2276 void
2277 sk_intr_xmac(struct sk_if_softc	*sc_if)
2278 {
2279 	u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2280 
2281 	DPRINTFN(3, ("sk_intr_xmac\n"));
2282 
2283 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2284 		if (status & XM_ISR_GP0_SET) {
2285 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2286 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2287 		}
2288 
2289 		if (status & XM_ISR_AUTONEG_DONE) {
2290 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2291 		}
2292 	}
2293 
2294 	if (status & XM_IMR_TX_UNDERRUN)
2295 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2296 
2297 	if (status & XM_IMR_RX_OVERRUN)
2298 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2299 }
2300 
2301 void
2302 sk_intr_yukon(sc_if)
2303 	struct sk_if_softc *sc_if;
2304 {
2305 	int status;
2306 
2307 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2308 
2309 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2310 }
2311 
2312 int
2313 sk_intr(void *xsc)
2314 {
2315 	struct sk_softc		*sc = xsc;
2316 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
2317 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
2318 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2319 	u_int32_t		status;
2320 	int			claimed = 0;
2321 
2322 	if (sc_if0 != NULL)
2323 		ifp0 = &sc_if0->sk_ethercom.ec_if;
2324 	if (sc_if1 != NULL)
2325 		ifp1 = &sc_if1->sk_ethercom.ec_if;
2326 
2327 	for (;;) {
2328 		status = CSR_READ_4(sc, SK_ISSR);
2329 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2330 
2331 		if (!(status & sc->sk_intrmask))
2332 			break;
2333 
2334 		claimed = 1;
2335 
2336 		/* Handle receive interrupts first. */
2337 		if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2338 			sk_rxeof(sc_if0);
2339 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2340 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2341 		}
2342 		if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2343 			sk_rxeof(sc_if1);
2344 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2345 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2346 		}
2347 
2348 		/* Then transmit interrupts. */
2349 		if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2350 			sk_txeof(sc_if0);
2351 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2352 			    SK_TXBMU_CLR_IRQ_EOF);
2353 		}
2354 		if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2355 			sk_txeof(sc_if1);
2356 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2357 			    SK_TXBMU_CLR_IRQ_EOF);
2358 		}
2359 
2360 		/* Then MAC interrupts. */
2361 		if (sc_if0 && (status & SK_ISR_MAC1) &&
2362 		    (ifp0->if_flags & IFF_RUNNING)) {
2363 			if (sc->sk_type == SK_GENESIS)
2364 				sk_intr_xmac(sc_if0);
2365 			else
2366 				sk_intr_yukon(sc_if0);
2367 		}
2368 
2369 		if (sc_if1 && (status & SK_ISR_MAC2) &&
2370 		    (ifp1->if_flags & IFF_RUNNING)) {
2371 			if (sc->sk_type == SK_GENESIS)
2372 				sk_intr_xmac(sc_if1);
2373 			else
2374 				sk_intr_yukon(sc_if1);
2375 
2376 		}
2377 
2378 		if (status & SK_ISR_EXTERNAL_REG) {
2379 			if (sc_if0 != NULL &&
2380 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2381 				sk_intr_bcom(sc_if0);
2382 
2383 			if (sc_if1 != NULL &&
2384 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2385 				sk_intr_bcom(sc_if1);
2386 		}
2387 	}
2388 
2389 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2390 
2391 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2392 		sk_start(ifp0);
2393 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2394 		sk_start(ifp1);
2395 
2396 #if NRND > 0
2397 	if (RND_ENABLED(&sc->rnd_source))
2398 		rnd_add_uint32(&sc->rnd_source, status);
2399 #endif
2400 
2401 	if (sc->sk_int_mod_pending)
2402 		sk_update_int_mod(sc);
2403 
2404 	return (claimed);
2405 }
2406 
2407 void
2408 sk_init_xmac(struct sk_if_softc	*sc_if)
2409 {
2410 	struct sk_softc		*sc = sc_if->sk_softc;
2411 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2412 	static const struct sk_bcom_hack     bhack[] = {
2413 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2414 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2415 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2416 	{ 0, 0 } };
2417 
2418 	DPRINTFN(1, ("sk_init_xmac\n"));
2419 
2420 	/* Unreset the XMAC. */
2421 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2422 	DELAY(1000);
2423 
2424 	/* Reset the XMAC's internal state. */
2425 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2426 
2427 	/* Save the XMAC II revision */
2428 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2429 
2430 	/*
2431 	 * Perform additional initialization for external PHYs,
2432 	 * namely for the 1000baseTX cards that use the XMAC's
2433 	 * GMII mode.
2434 	 */
2435 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2436 		int			i = 0;
2437 		u_int32_t		val;
2438 
2439 		/* Take PHY out of reset. */
2440 		val = sk_win_read_4(sc, SK_GPIO);
2441 		if (sc_if->sk_port == SK_PORT_A)
2442 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2443 		else
2444 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2445 		sk_win_write_4(sc, SK_GPIO, val);
2446 
2447 		/* Enable GMII mode on the XMAC. */
2448 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2449 
2450 		sk_xmac_miibus_writereg((struct device *)sc_if,
2451 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2452 		DELAY(10000);
2453 		sk_xmac_miibus_writereg((struct device *)sc_if,
2454 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2455 
2456 		/*
2457 		 * Early versions of the BCM5400 apparently have
2458 		 * a bug that requires them to have their reserved
2459 		 * registers initialized to some magic values. I don't
2460 		 * know what the numbers do, I'm just the messenger.
2461 		 */
2462 		if (sk_xmac_miibus_readreg((struct device *)sc_if,
2463 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2464 			while(bhack[i].reg) {
2465 				sk_xmac_miibus_writereg((struct device *)sc_if,
2466 				    SK_PHYADDR_BCOM, bhack[i].reg,
2467 				    bhack[i].val);
2468 				i++;
2469 			}
2470 		}
2471 	}
2472 
2473 	/* Set station address */
2474 	SK_XM_WRITE_2(sc_if, XM_PAR0,
2475 		      *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2476 	SK_XM_WRITE_2(sc_if, XM_PAR1,
2477 		      *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2478 	SK_XM_WRITE_2(sc_if, XM_PAR2,
2479 		      *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2480 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2481 
2482 	if (ifp->if_flags & IFF_PROMISC) {
2483 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2484 	} else {
2485 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2486 	}
2487 
2488 	if (ifp->if_flags & IFF_BROADCAST) {
2489 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2490 	} else {
2491 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2492 	}
2493 
2494 	/* We don't need the FCS appended to the packet. */
2495 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2496 
2497 	/* We want short frames padded to 60 bytes. */
2498 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2499 
2500 	/*
2501 	 * Enable the reception of all error frames. This is is
2502 	 * a necessary evil due to the design of the XMAC. The
2503 	 * XMAC's receive FIFO is only 8K in size, however jumbo
2504 	 * frames can be up to 9000 bytes in length. When bad
2505 	 * frame filtering is enabled, the XMAC's RX FIFO operates
2506 	 * in 'store and forward' mode. For this to work, the
2507 	 * entire frame has to fit into the FIFO, but that means
2508 	 * that jumbo frames larger than 8192 bytes will be
2509 	 * truncated. Disabling all bad frame filtering causes
2510 	 * the RX FIFO to operate in streaming mode, in which
2511 	 * case the XMAC will start transfering frames out of the
2512 	 * RX FIFO as soon as the FIFO threshold is reached.
2513 	 */
2514 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2515 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2516 	    XM_MODE_RX_INRANGELEN);
2517 
2518 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2519 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2520 	else
2521 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2522 
2523 	/*
2524 	 * Bump up the transmit threshold. This helps hold off transmit
2525 	 * underruns when we're blasting traffic from both ports at once.
2526 	 */
2527 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2528 
2529 	/* Set multicast filter */
2530 	sk_setmulti(sc_if);
2531 
2532 	/* Clear and enable interrupts */
2533 	SK_XM_READ_2(sc_if, XM_ISR);
2534 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2535 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2536 	else
2537 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2538 
2539 	/* Configure MAC arbiter */
2540 	switch(sc_if->sk_xmac_rev) {
2541 	case XM_XMAC_REV_B2:
2542 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2543 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2544 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2545 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2546 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2547 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2548 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2549 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2550 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2551 		break;
2552 	case XM_XMAC_REV_C1:
2553 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2554 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2555 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2556 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2557 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2558 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2559 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2560 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2561 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2562 		break;
2563 	default:
2564 		break;
2565 	}
2566 	sk_win_write_2(sc, SK_MACARB_CTL,
2567 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2568 
2569 	sc_if->sk_link = 1;
2570 }
2571 
2572 void sk_init_yukon(sc_if)
2573 	struct sk_if_softc	*sc_if;
2574 {
2575 	u_int32_t		/*mac, */phy;
2576 	u_int16_t		reg;
2577 	struct sk_softc		*sc;
2578 	int			i;
2579 
2580 	DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2581 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2582 
2583 	sc = sc_if->sk_softc;
2584 	if (sc->sk_type == SK_YUKON_LITE &&
2585 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2586 		/* Take PHY out of reset. */
2587 		sk_win_write_4(sc, SK_GPIO,
2588 			(sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2589 	}
2590 
2591 
2592 	/* GMAC and GPHY Reset */
2593 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2594 
2595 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
2596 
2597 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2598 	DELAY(1000);
2599 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2600 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2601 	DELAY(1000);
2602 
2603 
2604 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
2605 
2606 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2607 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2608 
2609 	switch(sc_if->sk_softc->sk_pmd) {
2610 	case IFM_1000_SX:
2611 	case IFM_1000_LX:
2612 		phy |= SK_GPHY_FIBER;
2613 		break;
2614 
2615 	case IFM_1000_CX:
2616 	case IFM_1000_T:
2617 		phy |= SK_GPHY_COPPER;
2618 		break;
2619 	}
2620 
2621 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2622 
2623 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2624 	DELAY(1000);
2625 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2626 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2627 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2628 
2629 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2630 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2631 
2632 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
2633 
2634 	/* unused read of the interrupt source register */
2635 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
2636 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2637 
2638 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2639 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2640 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2641 
2642 	/* MIB Counter Clear Mode set */
2643         reg |= YU_PAR_MIB_CLR;
2644 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2645 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2646 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2647 
2648 	/* MIB Counter Clear Mode clear */
2649 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
2650         reg &= ~YU_PAR_MIB_CLR;
2651 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2652 
2653 	/* receive control reg */
2654 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
2655 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2656 		      YU_RCR_CRCR);
2657 
2658 	/* transmit parameter register */
2659 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
2660 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2661 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2662 
2663 	/* serial mode register */
2664 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
2665 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2666 		      YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2667 		      YU_SMR_IPG_DATA(0x1e));
2668 
2669 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
2670 	/* Setup Yukon's address */
2671 	for (i = 0; i < 3; i++) {
2672 		/* Write Source Address 1 (unicast filter) */
2673 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2674 			      sc_if->sk_enaddr[i * 2] |
2675 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
2676 	}
2677 
2678 	for (i = 0; i < 3; i++) {
2679 		reg = sk_win_read_2(sc_if->sk_softc,
2680 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2681 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2682 	}
2683 
2684 	/* Set multicast filter */
2685 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
2686 	sk_setmulti(sc_if);
2687 
2688 	/* enable interrupt mask for counter overflows */
2689 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
2690 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2691 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2692 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2693 
2694 	/* Configure RX MAC FIFO */
2695 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2696 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2697 
2698 	/* Configure TX MAC FIFO */
2699 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2700 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2701 
2702 	DPRINTFN(6, ("sk_init_yukon: end\n"));
2703 }
2704 
2705 /*
2706  * Note that to properly initialize any part of the GEnesis chip,
2707  * you first have to take it out of reset mode.
2708  */
2709 int
2710 sk_init(struct ifnet *ifp)
2711 {
2712 	struct sk_if_softc	*sc_if = ifp->if_softc;
2713 	struct sk_softc		*sc = sc_if->sk_softc;
2714 	struct mii_data		*mii = &sc_if->sk_mii;
2715 	int			s;
2716 	u_int32_t		imr, sk_imtimer_ticks;
2717 
2718 	DPRINTFN(1, ("sk_init\n"));
2719 
2720 	s = splnet();
2721 
2722 	if (ifp->if_flags & IFF_RUNNING) {
2723 		splx(s);
2724 		return 0;
2725 	}
2726 
2727 	/* Cancel pending I/O and free all RX/TX buffers. */
2728 	sk_stop(ifp,0);
2729 
2730 	if (sc->sk_type == SK_GENESIS) {
2731 		/* Configure LINK_SYNC LED */
2732 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2733 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2734 			      SK_LINKLED_LINKSYNC_ON);
2735 
2736 		/* Configure RX LED */
2737 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2738 			      SK_RXLEDCTL_COUNTER_START);
2739 
2740 		/* Configure TX LED */
2741 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2742 			      SK_TXLEDCTL_COUNTER_START);
2743 	}
2744 
2745 	/* Configure I2C registers */
2746 
2747 	/* Configure XMAC(s) */
2748 	switch (sc->sk_type) {
2749 	case SK_GENESIS:
2750 		sk_init_xmac(sc_if);
2751 		break;
2752 	case SK_YUKON:
2753 	case SK_YUKON_LITE:
2754 	case SK_YUKON_LP:
2755 		sk_init_yukon(sc_if);
2756 		break;
2757 	}
2758 	mii_mediachg(mii);
2759 
2760 	if (sc->sk_type == SK_GENESIS) {
2761 		/* Configure MAC FIFOs */
2762 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2763 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2764 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2765 
2766 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2767 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2768 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2769 	}
2770 
2771 	/* Configure transmit arbiter(s) */
2772 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2773 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2774 
2775 	/* Configure RAMbuffers */
2776 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2777 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2778 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2779 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2780 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2781 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2782 
2783 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2784 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2785 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2786 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2787 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2788 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2789 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2790 
2791 	/* Configure BMUs */
2792 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2793 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2794 	    SK_RX_RING_ADDR(sc_if, 0));
2795 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2796 
2797 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2798 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2799             SK_TX_RING_ADDR(sc_if, 0));
2800 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2801 
2802 	/* Init descriptors */
2803 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2804 		printf("%s: initialization failed: no "
2805 		    "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
2806 		sk_stop(ifp,0);
2807 		splx(s);
2808 		return(ENOBUFS);
2809 	}
2810 
2811 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2812 		printf("%s: initialization failed: no "
2813 		    "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
2814 		sk_stop(ifp,0);
2815 		splx(s);
2816 		return(ENOBUFS);
2817 	}
2818 
2819 	/* Set interrupt moderation if changed via sysctl. */
2820 	switch (sc->sk_type) {
2821 	case SK_GENESIS:
2822 		sk_imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2823 		break;
2824 	case SK_YUKON_EC:
2825 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2826 		break;
2827 	default:
2828 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2829 	}
2830 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2831 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2832 		sk_win_write_4(sc, SK_IMTIMERINIT,
2833 		    SK_IM_USECS(sc->sk_int_mod));
2834 		aprint_verbose("%s: interrupt moderation is %d us\n",
2835 		    sc->sk_dev.dv_xname, sc->sk_int_mod);
2836 	}
2837 
2838 	/* Configure interrupt handling */
2839 	CSR_READ_4(sc, SK_ISSR);
2840 	if (sc_if->sk_port == SK_PORT_A)
2841 		sc->sk_intrmask |= SK_INTRS1;
2842 	else
2843 		sc->sk_intrmask |= SK_INTRS2;
2844 
2845 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2846 
2847 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2848 
2849 	/* Start BMUs. */
2850 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2851 
2852 	if (sc->sk_type == SK_GENESIS) {
2853 		/* Enable XMACs TX and RX state machines */
2854 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2855 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2856 			       XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2857 	}
2858 
2859 	if (SK_YUKON_FAMILY(sc->sk_type)) {
2860 		u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2861 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2862 		reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
2863 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2864 	}
2865 
2866 
2867 	ifp->if_flags |= IFF_RUNNING;
2868 	ifp->if_flags &= ~IFF_OACTIVE;
2869 
2870 	splx(s);
2871 	return(0);
2872 }
2873 
2874 void
2875 sk_stop(struct ifnet *ifp, int disable)
2876 {
2877         struct sk_if_softc	*sc_if = ifp->if_softc;
2878 	struct sk_softc		*sc = sc_if->sk_softc;
2879 	//struct sk_txmap_entry	*dma;
2880 	int			i;
2881 
2882 	DPRINTFN(1, ("sk_stop\n"));
2883 
2884 	callout_stop(&sc_if->sk_tick_ch);
2885 
2886 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2887 		u_int32_t		val;
2888 
2889 		/* Put PHY back into reset. */
2890 		val = sk_win_read_4(sc, SK_GPIO);
2891 		if (sc_if->sk_port == SK_PORT_A) {
2892 			val |= SK_GPIO_DIR0;
2893 			val &= ~SK_GPIO_DAT0;
2894 		} else {
2895 			val |= SK_GPIO_DIR2;
2896 			val &= ~SK_GPIO_DAT2;
2897 		}
2898 		sk_win_write_4(sc, SK_GPIO, val);
2899 	}
2900 
2901 	/* Turn off various components of this interface. */
2902 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2903 	switch (sc->sk_type) {
2904 	case SK_GENESIS:
2905 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2906 			      SK_TXMACCTL_XMAC_RESET);
2907 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2908 		break;
2909 	case SK_YUKON:
2910 	case SK_YUKON_LITE:
2911 	case SK_YUKON_LP:
2912 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2913 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2914 		break;
2915 	}
2916 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2917 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2918 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2919 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2920 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2921 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2922 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2923 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2924 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2925 
2926 	/* Disable interrupts */
2927 	if (sc_if->sk_port == SK_PORT_A)
2928 		sc->sk_intrmask &= ~SK_INTRS1;
2929 	else
2930 		sc->sk_intrmask &= ~SK_INTRS2;
2931 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2932 
2933 	SK_XM_READ_2(sc_if, XM_ISR);
2934 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2935 
2936 	/* Free RX and TX mbufs still in the queues. */
2937 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2938 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2939 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2940 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2941 		}
2942 	}
2943 
2944 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2945 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2946 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2947 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2948 		}
2949 	}
2950 
2951 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2952 }
2953 
2954 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
2955 
2956 /*
2957 struct cfdriver skc_cd = {
2958 	0, "skc", DV_DULL
2959 };
2960 */
2961 
2962 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
2963 
2964 /*
2965 struct cfdriver sk_cd = {
2966 	0, "sk", DV_IFNET
2967 };
2968 */
2969 
2970 #ifdef SK_DEBUG
2971 void
2972 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2973 {
2974 #define DESC_PRINT(X)					\
2975 	if (desc->X)					\
2976 		printf("txdesc[%d]." #X "=%#x\n",	\
2977 		       idx, desc->X);
2978 
2979 	DESC_PRINT(sk_ctl);
2980 	DESC_PRINT(sk_next);
2981 	DESC_PRINT(sk_data_lo);
2982 	DESC_PRINT(sk_data_hi);
2983 	DESC_PRINT(sk_xmac_txstat);
2984 	DESC_PRINT(sk_rsvd0);
2985 	DESC_PRINT(sk_csum_startval);
2986 	DESC_PRINT(sk_csum_startpos);
2987 	DESC_PRINT(sk_csum_writepos);
2988 	DESC_PRINT(sk_rsvd1);
2989 #undef PRINT
2990 }
2991 
2992 void
2993 sk_dump_bytes(const char *data, int len)
2994 {
2995 	int c, i, j;
2996 
2997 	for (i = 0; i < len; i += 16) {
2998 		printf("%08x  ", i);
2999 		c = len - i;
3000 		if (c > 16) c = 16;
3001 
3002 		for (j = 0; j < c; j++) {
3003 			printf("%02x ", data[i + j] & 0xff);
3004 			if ((j & 0xf) == 7 && j > 0)
3005 				printf(" ");
3006 		}
3007 
3008 		for (; j < 16; j++)
3009 			printf("   ");
3010 		printf("  ");
3011 
3012 		for (j = 0; j < c; j++) {
3013 			int ch = data[i + j] & 0xff;
3014 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
3015 		}
3016 
3017 		printf("\n");
3018 
3019 		if (c < 16)
3020 			break;
3021 	}
3022 }
3023 
3024 void
3025 sk_dump_mbuf(struct mbuf *m)
3026 {
3027 	int count = m->m_pkthdr.len;
3028 
3029 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3030 
3031 	while (count > 0 && m) {
3032 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3033 		       m, m->m_data, m->m_len);
3034 		sk_dump_bytes(mtod(m, char *), m->m_len);
3035 
3036 		count -= m->m_len;
3037 		m = m->m_next;
3038 	}
3039 }
3040 #endif
3041 
3042 static int
3043 sk_sysctl_handler(SYSCTLFN_ARGS)
3044 {
3045 	int error, t;
3046 	struct sysctlnode node;
3047 	struct sk_softc *sc;
3048 
3049 	node = *rnode;
3050 	sc = node.sysctl_data;
3051 	t = sc->sk_int_mod;
3052 	node.sysctl_data = &t;
3053 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3054 	if (error || newp == NULL)
3055 		return (error);
3056 
3057 	if (t < SK_IM_MIN || t > SK_IM_MAX)
3058 		return (EINVAL);
3059 
3060 	/* update the softc with sysctl-changed value, and mark
3061 	   for hardware update */
3062 	sc->sk_int_mod = t;
3063 	sc->sk_int_mod_pending = 1;
3064 	return (0);
3065 }
3066 
3067 /*
3068  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3069  * set up in skc_attach()
3070  */
3071 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3072 {
3073 	int rc;
3074 	const struct sysctlnode *node;
3075 
3076 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3077 	    0, CTLTYPE_NODE, "hw", NULL,
3078 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3079 		goto err;
3080 	}
3081 
3082 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
3083 	    0, CTLTYPE_NODE, "sk",
3084 	    SYSCTL_DESCR("sk interface controls"),
3085 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3086 		goto err;
3087 	}
3088 
3089 	sk_root_num = node->sysctl_num;
3090 	return;
3091 
3092 err:
3093 	printf("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3094 }
3095