xref: /netbsd-src/sys/dev/pci/if_sk.c (revision d20841bb642898112fe68f0ad3f7b26dddf56f07)
1 /*	$NetBSD: if_sk.c,v 1.7 2004/01/28 17:07:21 chs Exp $	*/
2 
3 /*-
4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the NetBSD
18  *	Foundation, Inc. and its contributors.
19  * 4. Neither the name of The NetBSD Foundation nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 /*	$OpenBSD: if_sk.c,v 1.33 2003/08/12 05:23:06 nate Exp $	*/
37 
38 /*
39  * Copyright (c) 1997, 1998, 1999, 2000
40  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. All advertising materials mentioning features or use of this software
51  *    must display the following acknowledgement:
52  *	This product includes software developed by Bill Paul.
53  * 4. Neither the name of the author nor the names of any co-contributors
54  *    may be used to endorse or promote products derived from this software
55  *    without specific prior written permission.
56  *
57  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
61  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
67  * THE POSSIBILITY OF SUCH DAMAGE.
68  *
69  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
70  */
71 
72 /*
73  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
74  *
75  * Permission to use, copy, modify, and distribute this software for any
76  * purpose with or without fee is hereby granted, provided that the above
77  * copyright notice and this permission notice appear in all copies.
78  *
79  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
80  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
81  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
82  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
83  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
84  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
85  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
86  */
87 
88 /*
89  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
90  * the SK-984x series adapters, both single port and dual port.
91  * References:
92  * 	The XaQti XMAC II datasheet,
93  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
95  *
96  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
97  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
98  * convenience to others until Vitesse corrects this problem:
99  *
100  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
101  *
102  * Written by Bill Paul <wpaul@ee.columbia.edu>
103  * Department of Electrical Engineering
104  * Columbia University, New York City
105  */
106 
107 /*
108  * The SysKonnect gigabit ethernet adapters consist of two main
109  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
110  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
111  * components and a PHY while the GEnesis controller provides a PCI
112  * interface with DMA support. Each card may have between 512K and
113  * 2MB of SRAM on board depending on the configuration.
114  *
115  * The SysKonnect GEnesis controller can have either one or two XMAC
116  * chips connected to it, allowing single or dual port NIC configurations.
117  * SysKonnect has the distinction of being the only vendor on the market
118  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
119  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
120  * XMAC registers. This driver takes advantage of these features to allow
121  * both XMACs to operate as independent interfaces.
122  */
123 
124 #include "bpfilter.h"
125 
126 #include <sys/param.h>
127 #include <sys/systm.h>
128 #include <sys/sockio.h>
129 #include <sys/mbuf.h>
130 #include <sys/malloc.h>
131 #include <sys/kernel.h>
132 #include <sys/socket.h>
133 #include <sys/device.h>
134 #include <sys/queue.h>
135 #include <sys/callout.h>
136 
137 #include <net/if.h>
138 #include <net/if_dl.h>
139 #include <net/if_types.h>
140 
141 #ifdef INET
142 #include <netinet/in.h>
143 #include <netinet/in_systm.h>
144 #include <netinet/in_var.h>
145 #include <netinet/ip.h>
146 #include <netinet/if_ether.h>
147 #endif
148 
149 #include <net/if_media.h>
150 
151 #if NBPFILTER > 0
152 #include <net/bpf.h>
153 #endif
154 
155 #include <dev/mii/mii.h>
156 #include <dev/mii/miivar.h>
157 #include <dev/mii/brgphyreg.h>
158 
159 #include <dev/pci/pcireg.h>
160 #include <dev/pci/pcivar.h>
161 #include <dev/pci/pcidevs.h>
162 
163 #define	SK_VERBOSE
164 /* #define SK_USEIOSPACE */
165 
166 #include <dev/pci/if_skreg.h>
167 #include <dev/pci/if_skvar.h>
168 
169 int skc_probe(struct device *, struct cfdata *, void *);
170 void skc_attach(struct device *, struct device *self, void *aux);
171 int sk_probe(struct device *, struct cfdata *, void *);
172 void sk_attach(struct device *, struct device *self, void *aux);
173 int skcprint(void *, const char *);
174 int sk_intr(void *);
175 void sk_intr_bcom(struct sk_if_softc *);
176 void sk_intr_xmac(struct sk_if_softc *);
177 void sk_intr_yukon(struct sk_if_softc *);
178 void sk_rxeof(struct sk_if_softc *);
179 void sk_txeof(struct sk_if_softc *);
180 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
181 void sk_start(struct ifnet *);
182 int sk_ioctl(struct ifnet *, u_long, caddr_t);
183 int sk_init(struct ifnet *);
184 void sk_init_xmac(struct sk_if_softc *);
185 void sk_init_yukon(struct sk_if_softc *);
186 void sk_stop(struct ifnet *, int);
187 void sk_watchdog(struct ifnet *);
188 void sk_shutdown(void *);
189 int sk_ifmedia_upd(struct ifnet *);
190 void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
191 void sk_reset(struct sk_softc *);
192 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
193 int sk_init_rx_ring(struct sk_if_softc *);
194 int sk_init_tx_ring(struct sk_if_softc *);
195 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
196 void sk_vpd_read_res(struct sk_softc *,
197 					struct vpd_res *, int);
198 void sk_vpd_read(struct sk_softc *);
199 
200 int sk_xmac_miibus_readreg(struct device *, int, int);
201 void sk_xmac_miibus_writereg(struct device *, int, int, int);
202 void sk_xmac_miibus_statchg(struct device *);
203 
204 int sk_marv_miibus_readreg(struct device *, int, int);
205 void sk_marv_miibus_writereg(struct device *, int, int, int);
206 void sk_marv_miibus_statchg(struct device *);
207 
208 u_int32_t sk_calchash(caddr_t);
209 void sk_setfilt(struct sk_if_softc *, caddr_t, int);
210 void sk_setmulti(struct sk_if_softc *);
211 void sk_tick(void *);
212 
213 /* #define SK_DEBUG 2 */
214 #ifdef SK_DEBUG
215 #define DPRINTF(x)	if (skdebug) printf x
216 #define DPRINTFN(n,x)	if (skdebug >= (n)) printf x
217 int	skdebug = SK_DEBUG;
218 
219 void sk_dump_txdesc(struct sk_tx_desc *, int);
220 void sk_dump_mbuf(struct mbuf *);
221 void sk_dump_bytes(const char *, int);
222 #else
223 #define DPRINTF(x)
224 #define DPRINTFN(n,x)
225 #endif
226 
227 #define SK_SETBIT(sc, reg, x)		\
228 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
229 
230 #define SK_CLRBIT(sc, reg, x)		\
231 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
232 
233 #define SK_WIN_SETBIT_4(sc, reg, x)	\
234 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
235 
236 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
237 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
238 
239 #define SK_WIN_SETBIT_2(sc, reg, x)	\
240 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
241 
242 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
243 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
244 
245 /* supported device vendors */
246 static const struct sk_product {
247 	pci_vendor_id_t		sk_vendor;
248 	pci_product_id_t	sk_product;
249 } sk_products[] = {
250 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
251 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
252 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032, },
253 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
254 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
255 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
256 	{ PCI_VENDOR_GALILEO, PCI_PRODUCT_GALILEO_SKNET, },
257 	{ 0, 0, }
258 };
259 
260 static inline u_int32_t
261 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
262 {
263 #ifdef SK_USEIOSPACE
264 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
265 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
266 #else
267 	return CSR_READ_4(sc, reg);
268 #endif
269 }
270 
271 static inline u_int16_t
272 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
273 {
274 #ifdef SK_USEIOSPACE
275 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
276 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
277 #else
278 	return CSR_READ_2(sc, reg);
279 #endif
280 }
281 
282 static inline u_int8_t
283 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
284 {
285 #ifdef SK_USEIOSPACE
286 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
287 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
288 #else
289 	return CSR_READ_1(sc, reg);
290 #endif
291 }
292 
293 static inline void
294 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
295 {
296 #ifdef SK_USEIOSPACE
297 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
298 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
299 #else
300 	CSR_WRITE_4(sc, reg, x);
301 #endif
302 }
303 
304 static inline void
305 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
306 {
307 #ifdef SK_USEIOSPACE
308 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
309 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
310 #else
311 	CSR_WRITE_2(sc, reg, x);
312 #endif
313 }
314 
315 static inline void
316 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
317 {
318 #ifdef SK_USEIOSPACE
319 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
320 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
321 #else
322 	CSR_WRITE_1(sc, reg, x);
323 #endif
324 }
325 
326 /*
327  * The VPD EEPROM contains Vital Product Data, as suggested in
328  * the PCI 2.1 specification. The VPD data is separared into areas
329  * denoted by resource IDs. The SysKonnect VPD contains an ID string
330  * resource (the name of the adapter), a read-only area resource
331  * containing various key/data fields and a read/write area which
332  * can be used to store asset management information or log messages.
333  * We read the ID string and read-only into buffers attached to
334  * the controller softc structure for later use. At the moment,
335  * we only use the ID string during sk_attach().
336  */
337 u_int8_t
338 sk_vpd_readbyte(struct sk_softc *sc, int addr)
339 {
340 	int			i;
341 
342 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
343 	for (i = 0; i < SK_TIMEOUT; i++) {
344 		DELAY(1);
345 		if (sk_win_read_2(sc,
346 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
347 			break;
348 	}
349 
350 	if (i == SK_TIMEOUT)
351 		return(0);
352 
353 	return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
354 }
355 
356 void
357 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
358 {
359 	int			i;
360 	u_int8_t		*ptr;
361 
362 	ptr = (u_int8_t *)res;
363 	for (i = 0; i < sizeof(struct vpd_res); i++)
364 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
365 }
366 
367 void
368 sk_vpd_read(struct sk_softc *sc)
369 {
370 	int			pos = 0, i;
371 	struct vpd_res		res;
372 
373 	if (sc->sk_vpd_prodname != NULL)
374 		free(sc->sk_vpd_prodname, M_DEVBUF);
375 	if (sc->sk_vpd_readonly != NULL)
376 		free(sc->sk_vpd_readonly, M_DEVBUF);
377 	sc->sk_vpd_prodname = NULL;
378 	sc->sk_vpd_readonly = NULL;
379 
380 	sk_vpd_read_res(sc, &res, pos);
381 
382 	if (res.vr_id != VPD_RES_ID) {
383 		printf("%s: bad VPD resource id: expected %x got %x\n",
384 		    sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
385 		return;
386 	}
387 
388 	pos += sizeof(res);
389 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
390 	if (sc->sk_vpd_prodname == NULL)
391 		panic("sk_vpd_read");
392 	for (i = 0; i < res.vr_len; i++)
393 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
394 	sc->sk_vpd_prodname[i] = '\0';
395 	pos += i;
396 
397 	sk_vpd_read_res(sc, &res, pos);
398 
399 	if (res.vr_id != VPD_RES_READ) {
400 		printf("%s: bad VPD resource id: expected %x got %x\n",
401 		    sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
402 		return;
403 	}
404 
405 	pos += sizeof(res);
406 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
407 	if (sc->sk_vpd_readonly == NULL)
408 		panic("sk_vpd_read");
409 	for (i = 0; i < res.vr_len + 1; i++)
410 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
411 }
412 
413 int
414 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
415 {
416 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
417 	int i;
418 
419 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
420 
421 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
422 		return(0);
423 
424 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
425 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
426 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
427 		for (i = 0; i < SK_TIMEOUT; i++) {
428 			DELAY(1);
429 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
430 			    XM_MMUCMD_PHYDATARDY)
431 				break;
432 		}
433 
434 		if (i == SK_TIMEOUT) {
435 			printf("%s: phy failed to come ready\n",
436 			    sc_if->sk_dev.dv_xname);
437 			return(0);
438 		}
439 	}
440 	DELAY(1);
441 	return(SK_XM_READ_2(sc_if, XM_PHY_DATA));
442 }
443 
444 void
445 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
446 {
447 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
448 	int i;
449 
450 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
451 
452 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
453 	for (i = 0; i < SK_TIMEOUT; i++) {
454 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
455 			break;
456 	}
457 
458 	if (i == SK_TIMEOUT) {
459 		printf("%s: phy failed to come ready\n",
460 		    sc_if->sk_dev.dv_xname);
461 		return;
462 	}
463 
464 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
465 	for (i = 0; i < SK_TIMEOUT; i++) {
466 		DELAY(1);
467 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
468 			break;
469 	}
470 
471 	if (i == SK_TIMEOUT)
472 		printf("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
473 }
474 
475 void
476 sk_xmac_miibus_statchg(struct device *dev)
477 {
478 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
479 	struct mii_data *mii = &sc_if->sk_mii;
480 
481 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
482 
483 	/*
484 	 * If this is a GMII PHY, manually set the XMAC's
485 	 * duplex mode accordingly.
486 	 */
487 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
488 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
489 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
490 		} else {
491 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
492 		}
493 	}
494 }
495 
496 int
497 sk_marv_miibus_readreg(dev, phy, reg)
498 	struct device *dev;
499 	int phy, reg;
500 {
501 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
502 	u_int16_t val;
503 	int i;
504 
505 	if (phy != 0 ||
506 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
507 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
508 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
509 			     phy, reg));
510 		return(0);
511 	}
512 
513         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
514 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
515 
516 	for (i = 0; i < SK_TIMEOUT; i++) {
517 		DELAY(1);
518 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
519 		if (val & YU_SMICR_READ_VALID)
520 			break;
521 	}
522 
523 	if (i == SK_TIMEOUT) {
524 		printf("%s: phy failed to come ready\n",
525 		       sc_if->sk_dev.dv_xname);
526 		return 0;
527 	}
528 
529  	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
530 		     SK_TIMEOUT));
531 
532         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
533 
534 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
535 		     phy, reg, val));
536 
537 	return val;
538 }
539 
540 void
541 sk_marv_miibus_writereg(dev, phy, reg, val)
542 	struct device *dev;
543 	int phy, reg, val;
544 {
545 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
546 	int i;
547 
548 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
549 		     phy, reg, val));
550 
551 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
552 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
553 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
554 
555 	for (i = 0; i < SK_TIMEOUT; i++) {
556 		DELAY(1);
557 		if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
558 			break;
559 	}
560 }
561 
562 void
563 sk_marv_miibus_statchg(dev)
564 	struct device *dev;
565 {
566 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
567 		     SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
568 }
569 
570 #define SK_BITS		6
571 #define SK_POLY	0xEDB88320
572 
573 u_int32_t
574 sk_calchash(caddr_t addr)
575 {
576 	u_int32_t		crc;
577 
578 	crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
579         crc = ~crc & ((1<< SK_BITS) - 1);
580 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
581         return (crc);
582 }
583 
584 void
585 sk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot)
586 {
587 	int base = XM_RXFILT_ENTRY(slot);
588 
589 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
590 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
591 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
592 }
593 
594 void
595 sk_setmulti(struct sk_if_softc *sc_if)
596 {
597 	struct sk_softc *sc = sc_if->sk_softc;
598 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
599 	u_int32_t hashes[2] = { 0, 0 };
600 	int h, i;
601 	struct ethercom *ec = &sc_if->sk_ethercom;
602 	struct ether_multi *enm;
603 	struct ether_multistep step;
604 	u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
605 
606 	/* First, zot all the existing filters. */
607 	switch(sc->sk_type) {
608 	case SK_GENESIS:
609 		for (i = 1; i < XM_RXFILT_MAX; i++)
610 			sk_setfilt(sc_if, (caddr_t)&dummy, i);
611 
612 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
613 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
614 		break;
615 	case SK_YUKON:
616 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
617 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
618 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
619 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
620 		break;
621 	}
622 
623 	/* Now program new ones. */
624 allmulti:
625 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
626 		hashes[0] = 0xFFFFFFFF;
627 		hashes[1] = 0xFFFFFFFF;
628 	} else {
629 		i = 1;
630 		/* First find the tail of the list. */
631 		ETHER_FIRST_MULTI(step, ec, enm);
632 		while (enm != NULL) {
633 			if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
634 				 ETHER_ADDR_LEN)) {
635 				ifp->if_flags |= IFF_ALLMULTI;
636 				goto allmulti;
637 			}
638 			DPRINTFN(2,("multicast address %s\n",
639 	    			ether_sprintf(enm->enm_addrlo)));
640 			/*
641 			 * Program the first XM_RXFILT_MAX multicast groups
642 			 * into the perfect filter. For all others,
643 			 * use the hash table.
644 			 */
645 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
646 				sk_setfilt(sc_if, enm->enm_addrlo, i);
647 				i++;
648 			}
649 			else {
650 				h = sk_calchash(enm->enm_addrlo);
651 				if (h < 32)
652 					hashes[0] |= (1 << h);
653 				else
654 					hashes[1] |= (1 << (h - 32));
655 			}
656 
657 			ETHER_NEXT_MULTI(step, enm);
658 		}
659 	}
660 
661 	switch(sc->sk_type) {
662 	case SK_GENESIS:
663 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
664 			       XM_MODE_RX_USE_PERFECT);
665 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
666 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
667 		break;
668 	case SK_YUKON:
669 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
670 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
671 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
672 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
673 		break;
674 	}
675 }
676 
677 int
678 sk_init_rx_ring(struct sk_if_softc *sc_if)
679 {
680 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
681 	struct sk_ring_data	*rd = sc_if->sk_rdata;
682 	int			i;
683 
684 	bzero((char *)rd->sk_rx_ring,
685 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
686 
687 	for (i = 0; i < SK_RX_RING_CNT; i++) {
688 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
689 		if (i == (SK_RX_RING_CNT - 1)) {
690 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
691 			rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if, 0);
692 		} else {
693 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
694 			rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if,i+1);
695 		}
696 	}
697 
698 	for (i = 0; i < SK_RX_RING_CNT; i++) {
699 		if (sk_newbuf(sc_if, i, NULL, NULL) == ENOBUFS) {
700 			printf("%s: failed alloc of %dth mbuf\n",
701 			    sc_if->sk_dev.dv_xname, i);
702 			return(ENOBUFS);
703 		}
704 	}
705 	sc_if->sk_cdata.sk_rx_prod = 0;
706 	sc_if->sk_cdata.sk_rx_cons = 0;
707 
708 	return(0);
709 }
710 
711 int
712 sk_init_tx_ring(struct sk_if_softc *sc_if)
713 {
714 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
715 	struct sk_ring_data	*rd = sc_if->sk_rdata;
716 	int			i;
717 
718 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
719 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
720 
721 	for (i = 0; i < SK_TX_RING_CNT; i++) {
722 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
723 		if (i == (SK_TX_RING_CNT - 1)) {
724 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
725 			rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if, 0);
726 		} else {
727 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
728 			rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if,i+1);
729 		}
730 	}
731 
732 	sc_if->sk_cdata.sk_tx_prod = 0;
733 	sc_if->sk_cdata.sk_tx_cons = 0;
734 	sc_if->sk_cdata.sk_tx_cnt = 0;
735 
736 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
737 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
738 
739 	return (0);
740 }
741 
742 int
743 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
744 	  bus_dmamap_t dmamap)
745 {
746 	struct sk_softc		*sc = sc_if->sk_softc;
747 	struct mbuf		*m_new = NULL;
748 	struct sk_chain		*c;
749 	struct sk_rx_desc	*r;
750 
751 	if (dmamap == NULL) {
752 		/* if (m) panic() */
753 
754 		if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1, MCLBYTES,
755 				      0, BUS_DMA_NOWAIT, &dmamap)) {
756 			printf("%s: can't create recv map\n",
757 			       sc_if->sk_dev.dv_xname);
758 			return(ENOMEM);
759 		}
760 	} else if (m == NULL)
761 		bus_dmamap_unload(sc->sc_dmatag, dmamap);
762 
763 	sc_if->sk_cdata.sk_rx_map[i] = dmamap;
764 
765 	if (m == NULL) {
766 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
767 		if (m_new == NULL) {
768 			printf("%s: no memory for rx list -- "
769 			    "packet dropped!\n", sc_if->sk_dev.dv_xname);
770 			return(ENOBUFS);
771 		}
772 
773 		/* Allocate the jumbo buffer */
774 		MCLGET(m_new, M_DONTWAIT);
775 		if (!(m_new->m_flags & M_EXT)) {
776 			m_freem(m_new);
777 			return (ENOBUFS);
778 		}
779 
780 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
781 
782 		m_adj(m_new, ETHER_ALIGN);
783 
784 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m_new,
785 					 BUS_DMA_NOWAIT))
786 			return(ENOBUFS);
787 	} else {
788 		/*
789 	 	 * We're re-using a previously allocated mbuf;
790 		 * be sure to re-init pointers and lengths to
791 		 * default values.
792 		 */
793 		m_new = m;
794 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
795 		m_adj(m_new, ETHER_ALIGN);
796 		m_new->m_data = m_new->m_ext.ext_buf;
797 	}
798 
799 	c = &sc_if->sk_cdata.sk_rx_chain[i];
800 	r = c->sk_desc;
801 	c->sk_mbuf = m_new;
802 	r->sk_data_lo = dmamap->dm_segs[0].ds_addr;
803 	r->sk_ctl = dmamap->dm_segs[0].ds_len | SK_RXSTAT;
804 
805 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
806 
807 	return(0);
808 }
809 
810 /*
811  * Set media options.
812  */
813 int
814 sk_ifmedia_upd(struct ifnet *ifp)
815 {
816 	struct sk_if_softc *sc_if = ifp->if_softc;
817 
818 	(void) sk_init(ifp);
819 	mii_mediachg(&sc_if->sk_mii);
820 	return(0);
821 }
822 
823 /*
824  * Report current media status.
825  */
826 void
827 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
828 {
829 	struct sk_if_softc *sc_if = ifp->if_softc;
830 
831 	mii_pollstat(&sc_if->sk_mii);
832 	ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
833 	ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
834 }
835 
836 int
837 sk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
838 {
839 	struct sk_if_softc *sc_if = ifp->if_softc;
840 	struct sk_softc *sc = sc_if->sk_softc;
841 	struct ifreq *ifr = (struct ifreq *) data;
842 	/* struct ifaddr *ifa = (struct ifaddr *) data; */
843 	struct mii_data *mii;
844 	int s, error = 0;
845 
846 	/* DPRINTFN(2, ("sk_ioctl\n")); */
847 
848 	s = splnet();
849 
850 	switch(command) {
851 
852 	case SIOCSIFFLAGS:
853 	        DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
854 		if (ifp->if_flags & IFF_UP) {
855 			if (ifp->if_flags & IFF_RUNNING &&
856 			    ifp->if_flags & IFF_PROMISC &&
857 			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
858 				switch(sc->sk_type) {
859 				case SK_GENESIS:
860 					SK_XM_SETBIT_4(sc_if, XM_MODE,
861 					    XM_MODE_RX_PROMISC);
862 					break;
863 				case SK_YUKON:
864 					SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
865 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
866 					break;
867 				}
868 				sk_setmulti(sc_if);
869 			} else if (ifp->if_flags & IFF_RUNNING &&
870 			    !(ifp->if_flags & IFF_PROMISC) &&
871 			    sc_if->sk_if_flags & IFF_PROMISC) {
872 				switch(sc->sk_type) {
873 				case SK_GENESIS:
874 					SK_XM_CLRBIT_4(sc_if, XM_MODE,
875 					    XM_MODE_RX_PROMISC);
876 					break;
877 				case SK_YUKON:
878 					SK_YU_SETBIT_2(sc_if, YUKON_RCR,
879 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
880 					break;
881 				}
882 
883 				sk_setmulti(sc_if);
884 			} else
885 				(void) sk_init(ifp);
886 		} else {
887 			if (ifp->if_flags & IFF_RUNNING)
888 				sk_stop(ifp,0);
889 		}
890 		sc_if->sk_if_flags = ifp->if_flags;
891 		error = 0;
892 		break;
893 
894 	case SIOCGIFMEDIA:
895 	case SIOCSIFMEDIA:
896 	        DPRINTFN(2, ("sk_ioctl MEDIA\n"));
897 		mii = &sc_if->sk_mii;
898 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
899 		break;
900 	default:
901 	        DPRINTFN(2, ("sk_ioctl ETHER\n"));
902 		error = ether_ioctl(ifp, command, data);
903 
904 		if ( error == ENETRESET) {
905 			sk_setmulti(sc_if);
906 			DPRINTFN(2, ("sk_ioctl setmulti called\n"));
907 			error = 0;
908 		} else if ( error ) {
909 			splx(s);
910 			return error;
911 		}
912 		break;
913 	}
914 
915 	splx(s);
916 	return(error);
917 }
918 
919 /*
920  * Lookup: Check the PCI vendor and device, and return a pointer to
921  * The structure if the IDs match against our list.
922  */
923 
924 static const struct sk_product *
925 sk_lookup(const struct pci_attach_args *pa)
926 {
927 	const struct sk_product *psk;
928 
929 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
930 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
931 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
932 			return (psk);
933 	}
934 	return (NULL);
935 }
936 
937 /*
938  * Probe for a SysKonnect GEnesis chip.
939  */
940 
941 int
942 skc_probe(struct device *parent, struct cfdata *match, void *aux)
943 {
944 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
945 	const struct sk_product *psk;
946 
947 	if ((psk = sk_lookup(pa))) {
948 		return(1);
949 	}
950 	return(0);
951 }
952 
953 /*
954  * Force the GEnesis into reset, then bring it out of reset.
955  */
956 void sk_reset(struct sk_softc *sc)
957 {
958 	DPRINTFN(2, ("sk_reset\n"));
959 
960 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
961 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
962 	if (sc->sk_type == SK_YUKON)
963 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
964 
965 	DELAY(1000);
966 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
967 	DELAY(2);
968 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
969 	if (sc->sk_type == SK_YUKON)
970 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
971 
972 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
973 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
974 		     CSR_READ_2(sc, SK_LINK_CTRL)));
975 
976 	if (sc->sk_type == SK_GENESIS) {
977 		/* Configure packet arbiter */
978 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
979 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
980 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
981 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
982 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
983 	}
984 
985 	/* Enable RAM interface */
986 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
987 
988 	/*
989          * Configure interrupt moderation. The moderation timer
990 	 * defers interrupts specified in the interrupt moderation
991 	 * timer mask based on the timeout specified in the interrupt
992 	 * moderation timer init register. Each bit in the timer
993 	 * register represents 18.825ns, so to specify a timeout in
994 	 * microseconds, we have to multiply by 54.
995 	 */
996         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(200));
997         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
998 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
999         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1000 }
1001 
1002 int
1003 sk_probe(struct device *parent, struct cfdata *match, void *aux)
1004 {
1005 	struct skc_attach_args *sa = aux;
1006 
1007 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1008 		return(0);
1009 
1010 	return (1);
1011 }
1012 
1013 /*
1014  * Each XMAC chip is attached as a separate logical IP interface.
1015  * Single port cards will have only one logical interface of course.
1016  */
1017 void
1018 sk_attach(struct device *parent, struct device *self, void *aux)
1019 {
1020 	struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
1021 	struct sk_softc *sc = (struct sk_softc *)parent;
1022 	struct skc_attach_args *sa = aux;
1023 	struct sk_txmap_entry	*entry;
1024 	struct ifnet *ifp;
1025 	bus_dma_segment_t seg;
1026 	bus_dmamap_t dmamap;
1027 	caddr_t kva;
1028 	int i, rseg;
1029 
1030 	sc_if->sk_port = sa->skc_port;
1031 	sc_if->sk_softc = sc;
1032 	sc->sk_if[sa->skc_port] = sc_if;
1033 
1034 	if (sa->skc_port == SK_PORT_A)
1035 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1036 	if (sa->skc_port == SK_PORT_B)
1037 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1038 
1039 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1040 
1041 	/*
1042 	 * Get station address for this interface. Note that
1043 	 * dual port cards actually come with three station
1044 	 * addresses: one for each port, plus an extra. The
1045 	 * extra one is used by the SysKonnect driver software
1046 	 * as a 'virtual' station address for when both ports
1047 	 * are operating in failover mode. Currently we don't
1048 	 * use this extra address.
1049 	 */
1050 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1051 		sc_if->sk_enaddr[i] =
1052 			sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1053 
1054 
1055 	aprint_normal(": Ethernet address %s\n",
1056 	    ether_sprintf(sc_if->sk_enaddr));
1057 
1058 	/*
1059 	 * Set up RAM buffer addresses. The NIC will have a certain
1060 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1061 	 * need to divide this up a) between the transmitter and
1062  	 * receiver and b) between the two XMACs, if this is a
1063 	 * dual port NIC. Our algotithm is to divide up the memory
1064 	 * evenly so that everyone gets a fair share.
1065 	 */
1066 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1067 		u_int32_t		chunk, val;
1068 
1069 		chunk = sc->sk_ramsize / 2;
1070 		val = sc->sk_rboff / sizeof(u_int64_t);
1071 		sc_if->sk_rx_ramstart = val;
1072 		val += (chunk / sizeof(u_int64_t));
1073 		sc_if->sk_rx_ramend = val - 1;
1074 		sc_if->sk_tx_ramstart = val;
1075 		val += (chunk / sizeof(u_int64_t));
1076 		sc_if->sk_tx_ramend = val - 1;
1077 	} else {
1078 		u_int32_t		chunk, val;
1079 
1080 		chunk = sc->sk_ramsize / 4;
1081 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1082 		    sizeof(u_int64_t);
1083 		sc_if->sk_rx_ramstart = val;
1084 		val += (chunk / sizeof(u_int64_t));
1085 		sc_if->sk_rx_ramend = val - 1;
1086 		sc_if->sk_tx_ramstart = val;
1087 		val += (chunk / sizeof(u_int64_t));
1088 		sc_if->sk_tx_ramend = val - 1;
1089 	}
1090 
1091 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1092 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
1093 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1094 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1095 
1096 	/* Read and save PHY type and set PHY address */
1097 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1098 	switch (sc_if->sk_phytype) {
1099 	case SK_PHYTYPE_XMAC:
1100 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1101 		break;
1102 	case SK_PHYTYPE_BCOM:
1103 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1104 		break;
1105 	case SK_PHYTYPE_MARV_COPPER:
1106 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1107 		break;
1108 	default:
1109 		aprint_error("%s: unsupported PHY type: %d\n",
1110 		    sc->sk_dev.dv_xname, sc_if->sk_phytype);
1111 		return;
1112 	}
1113 
1114 	/* Allocate the descriptor queues. */
1115 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1116 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1117 		aprint_error("%s: can't alloc rx buffers\n",
1118 		    sc->sk_dev.dv_xname);
1119 		goto fail;
1120 	}
1121 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1122 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1123 		aprint_error("%s: can't map dma buffers (%lu bytes)\n",
1124 		       sc_if->sk_dev.dv_xname,
1125 		       (u_long) sizeof(struct sk_ring_data));
1126 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1127 		goto fail;
1128 	}
1129 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1130 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1131             &sc_if->sk_ring_map)) {
1132 		aprint_error("%s: can't create dma map\n",
1133 		    sc_if->sk_dev.dv_xname);
1134 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1135 		    sizeof(struct sk_ring_data));
1136 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1137 		goto fail;
1138 	}
1139 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1140 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1141 		aprint_error("%s: can't load dma map\n",
1142 		    sc_if->sk_dev.dv_xname);
1143 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1144 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1145 		    sizeof(struct sk_ring_data));
1146 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1147 		goto fail;
1148 	}
1149 
1150 	for (i = 0; i < SK_RX_RING_CNT; i++)
1151 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1152 
1153 	SLIST_INIT(&sc_if->sk_txmap_listhead);
1154 	for (i = 0; i < SK_TX_RING_CNT; i++) {
1155 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1156 
1157 		if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, SK_NTXSEG,
1158 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap)) {
1159 			aprint_error("%s: Can't create TX dmamap\n",
1160 				sc_if->sk_dev.dv_xname);
1161 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1162 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1163 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1164 			    sizeof(struct sk_ring_data));
1165 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1166 			goto fail;
1167 		}
1168 
1169 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1170 		if (!entry) {
1171 			aprint_error("%s: Can't alloc txmap entry\n",
1172 				sc_if->sk_dev.dv_xname);
1173 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1174 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1175 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1176 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1177 			    sizeof(struct sk_ring_data));
1178 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1179 			goto fail;
1180 		}
1181 		entry->dmamap = dmamap;
1182 		SLIST_INSERT_HEAD(&sc_if->sk_txmap_listhead, entry, link);
1183 	}
1184 
1185         sc_if->sk_rdata = (struct sk_ring_data *)kva;
1186 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1187 
1188 	/* XXX TLS It's not clear what's wrong with the Jumbo MTU
1189 	   XXX TLS support in this driver, so we don't enable it. */
1190 
1191 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1192 
1193 	ifp = &sc_if->sk_ethercom.ec_if;
1194 	ifp->if_softc = sc_if;
1195 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1196 	ifp->if_ioctl = sk_ioctl;
1197 	ifp->if_start = sk_start;
1198 	ifp->if_stop = sk_stop;
1199 	ifp->if_init = sk_init;
1200 	ifp->if_watchdog = sk_watchdog;
1201 	ifp->if_capabilities = 0;
1202 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1203 	IFQ_SET_READY(&ifp->if_snd);
1204 	strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
1205 
1206 	/*
1207 	 * Do miibus setup.
1208 	 */
1209 	switch (sc->sk_type) {
1210 	case SK_GENESIS:
1211 		sk_init_xmac(sc_if);
1212 		break;
1213 	case SK_YUKON:
1214 		sk_init_yukon(sc_if);
1215 		break;
1216 	default:
1217 		panic("%s: unknown device type %d", sc->sk_dev.dv_xname,
1218 		      sc->sk_type);
1219 	}
1220 
1221  	DPRINTFN(2, ("sk_attach: 1\n"));
1222 
1223 	sc_if->sk_mii.mii_ifp = ifp;
1224 	switch (sc->sk_type) {
1225 	case SK_GENESIS:
1226 		sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1227 		sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1228 		sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1229 		break;
1230 	case SK_YUKON:
1231 		sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1232 		sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1233 		sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1234 		break;
1235 	}
1236 
1237 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1238 	    sk_ifmedia_upd, sk_ifmedia_sts);
1239 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1240 	    MII_OFFSET_ANY, 0);
1241 	if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1242 		printf("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
1243 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1244 			    0, NULL);
1245 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1246 	}
1247 	else
1248 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1249 
1250 	callout_init(&sc_if->sk_tick_ch);
1251 	callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1252 
1253 	DPRINTFN(2, ("sk_attach: 1\n"));
1254 
1255 	/*
1256 	 * Call MI attach routines.
1257 	 */
1258 	if_attach(ifp);
1259 
1260 	ether_ifattach(ifp, sc_if->sk_enaddr);
1261 
1262 #if NRND > 0
1263         rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1264             RND_TYPE_NET, 0);
1265 #endif
1266 
1267 	DPRINTFN(2, ("sk_attach: end\n"));
1268 
1269 	return;
1270 
1271 fail:
1272 	sc->sk_if[sa->skc_port] = NULL;
1273 }
1274 
1275 int
1276 skcprint(void *aux, const char *pnp)
1277 {
1278 	struct skc_attach_args *sa = aux;
1279 
1280 	if (pnp)
1281 		aprint_normal("sk port %c at %s",
1282 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1283 	else
1284 		aprint_normal(" port %c",
1285 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1286 	return (UNCONF);
1287 }
1288 
1289 /*
1290  * Attach the interface. Allocate softc structures, do ifmedia
1291  * setup and ethernet/BPF attach.
1292  */
1293 void
1294 skc_attach(struct device *parent, struct device *self, void *aux)
1295 {
1296 	struct sk_softc *sc = (struct sk_softc *)self;
1297 	struct pci_attach_args *pa = aux;
1298 	struct skc_attach_args skca;
1299 	pci_chipset_tag_t pc = pa->pa_pc;
1300 	pcireg_t memtype;
1301 	pci_intr_handle_t ih;
1302 	const char *intrstr = NULL;
1303 	bus_addr_t iobase;
1304 	bus_size_t iosize;
1305 	int s;
1306 	u_int32_t command;
1307 
1308 	DPRINTFN(2, ("begin skc_attach\n"));
1309 
1310 	s = splnet();
1311 
1312 	/*
1313 	 * Handle power management nonsense.
1314 	 */
1315 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1316 
1317 	if (command == 0x01) {
1318 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1319 		if (command & SK_PSTATE_MASK) {
1320 			u_int32_t		iobase, membase, irq;
1321 
1322 			/* Save important PCI config data. */
1323 			iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1324 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1325 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1326 
1327 			/* Reset the power state. */
1328 			aprint_normal("%s chip is in D%d power mode "
1329 			    "-- setting to D0\n", sc->sk_dev.dv_xname,
1330 			    command & SK_PSTATE_MASK);
1331 			command &= 0xFFFFFFFC;
1332 			pci_conf_write(pc, pa->pa_tag,
1333 			    SK_PCI_PWRMGMTCTRL, command);
1334 
1335 			/* Restore PCI config data. */
1336 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1337 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1338 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1339 		}
1340 	}
1341 
1342 	/*
1343 	 * Map control/status registers.
1344 	 */
1345 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1346 	command |= PCI_COMMAND_IO_ENABLE |
1347 	    PCI_COMMAND_MEM_ENABLE |
1348 	    PCI_COMMAND_MASTER_ENABLE;
1349 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1350 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1351 
1352 	switch (PCI_PRODUCT(pa->pa_id)) {
1353 	case PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE:
1354 		sc->sk_type = SK_GENESIS;
1355 		break;
1356 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1357 	case PCI_PRODUCT_3COM_3C940:
1358 	case PCI_PRODUCT_DLINK_DGE530T:
1359 	case PCI_PRODUCT_LINKSYS_EG1032:
1360 	case PCI_PRODUCT_LINKSYS_EG1064:
1361 		sc->sk_type = SK_YUKON;
1362 		break;
1363 	default:
1364 		aprint_error(": unknown device!\n");
1365 		goto fail;
1366 	}
1367 
1368 #ifdef SK_USEIOSPACE
1369 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
1370 		aprint_error(": failed to enable I/O ports!\n");
1371 		goto fail;
1372 	}
1373 	/*
1374 	 * Map control/status registers.
1375 	 */
1376 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1377 			   &iobase, &iosize)) {
1378 		aprint_error(": can't find i/o space\n");
1379 		goto fail;
1380 	}
1381 #else
1382 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1383 		aprint_error(": failed to enable memory mapping!\n");
1384 		goto fail;
1385 	}
1386 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1387 	switch (memtype) {
1388         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1389         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1390                 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1391 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1392 				   &iobase, &iosize) == 0)
1393                         break;
1394         default:
1395                 aprint_error("%s: can't find mem space\n",
1396 		       sc->sk_dev.dv_xname);
1397                 return;
1398 	}
1399 
1400 	DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
1401 #endif
1402 	sc->sc_dmatag = pa->pa_dmat;
1403 
1404 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1405 
1406 	/* Allocate interrupt */
1407 	if (pci_intr_map(pa, &ih)) {
1408 		aprint_error(": couldn't map interrupt\n");
1409 		goto fail;
1410 	}
1411 
1412 	intrstr = pci_intr_string(pc, ih);
1413 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1414 	if (sc->sk_intrhand == NULL) {
1415 		aprint_error(": couldn't establish interrupt");
1416 		if (intrstr != NULL)
1417 			aprint_normal(" at %s", intrstr);
1418 		goto fail;
1419 	}
1420 	aprint_normal(": %s\n", intrstr);
1421 
1422 	/* Reset the adapter. */
1423 	sk_reset(sc);
1424 
1425 	/* Read and save vital product data from EEPROM. */
1426 	sk_vpd_read(sc);
1427 
1428 	if (sc->sk_type == SK_GENESIS) {
1429 		u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1430 		/* Read and save RAM size and RAMbuffer offset */
1431 		switch(val) {
1432 		case SK_RAMSIZE_512K_64:
1433 			sc->sk_ramsize = 0x80000;
1434 			sc->sk_rboff = SK_RBOFF_0;
1435 			break;
1436 		case SK_RAMSIZE_1024K_64:
1437 			sc->sk_ramsize = 0x100000;
1438 			sc->sk_rboff = SK_RBOFF_80000;
1439 			break;
1440 		case SK_RAMSIZE_1024K_128:
1441 			sc->sk_ramsize = 0x100000;
1442 			sc->sk_rboff = SK_RBOFF_0;
1443 			break;
1444 		case SK_RAMSIZE_2048K_128:
1445 			sc->sk_ramsize = 0x200000;
1446 			sc->sk_rboff = SK_RBOFF_0;
1447 			break;
1448 		default:
1449 			aprint_error("%s: unknown ram size: %d\n",
1450 			       sc->sk_dev.dv_xname, val);
1451 			goto fail;
1452 			break;
1453 		}
1454 
1455 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1456 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
1457 			     sc->sk_rboff));
1458 	} else {
1459 		sc->sk_ramsize = 0x20000;
1460 		sc->sk_rboff = SK_RBOFF_0;
1461 
1462 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1463 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
1464 			     sc->sk_rboff));
1465 	}
1466 
1467 	/* Read and save physical media type */
1468 	switch(sk_win_read_1(sc, SK_PMDTYPE)) {
1469 	case SK_PMD_1000BASESX:
1470 		sc->sk_pmd = IFM_1000_SX;
1471 		break;
1472 	case SK_PMD_1000BASELX:
1473 		sc->sk_pmd = IFM_1000_LX;
1474 		break;
1475 	case SK_PMD_1000BASECX:
1476 		sc->sk_pmd = IFM_1000_CX;
1477 		break;
1478 	case SK_PMD_1000BASETX:
1479 		sc->sk_pmd = IFM_1000_T;
1480 		break;
1481 	default:
1482 		aprint_error("%s: unknown media type: 0x%x\n",
1483 		    sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
1484 		goto fail;
1485 	}
1486 
1487 	/* Announce the product name. */
1488 	aprint_normal("%s: %s\n", sc->sk_dev.dv_xname, sc->sk_vpd_prodname);
1489 
1490 	skca.skc_port = SK_PORT_A;
1491 	(void)config_found(&sc->sk_dev, &skca, skcprint);
1492 
1493 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1494 		skca.skc_port = SK_PORT_B;
1495 		(void)config_found(&sc->sk_dev, &skca, skcprint);
1496 	}
1497 
1498 	/* Turn on the 'driver is loaded' LED. */
1499 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1500 
1501 fail:
1502 	splx(s);
1503 }
1504 
1505 int
1506 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1507 {
1508 	struct sk_softc		*sc = sc_if->sk_softc;
1509 	struct sk_tx_desc	*f = NULL;
1510 	u_int32_t		frag, cur, cnt = 0;
1511 	int			i;
1512 	struct sk_txmap_entry	*entry;
1513 	bus_dmamap_t		txmap;
1514 
1515 	DPRINTFN(3, ("sk_encap\n"));
1516 
1517 	entry = SLIST_FIRST(&sc_if->sk_txmap_listhead);
1518 	if (entry == NULL) {
1519 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
1520 		return ENOBUFS;
1521 	}
1522 	txmap = entry->dmamap;
1523 
1524 	cur = frag = *txidx;
1525 
1526 #ifdef SK_DEBUG
1527 	if (skdebug >= 3)
1528 		sk_dump_mbuf(m_head);
1529 #endif
1530 
1531 	/*
1532 	 * Start packing the mbufs in this chain into
1533 	 * the fragment pointers. Stop when we run out
1534 	 * of fragments or hit the end of the mbuf chain.
1535 	 */
1536 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1537 	    BUS_DMA_NOWAIT)) {
1538 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1539 		return(ENOBUFS);
1540 	}
1541 
1542 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1543 
1544 	/* Sync the DMA map. */
1545 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1546 	    BUS_DMASYNC_PREWRITE);
1547 
1548 	for (i = 0; i < txmap->dm_nsegs; i++) {
1549 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1550 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1551 			return(ENOBUFS);
1552 		}
1553 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
1554 		f->sk_data_lo = txmap->dm_segs[i].ds_addr;
1555 		f->sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1556 		if (cnt == 0)
1557 			f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
1558 		else
1559 			f->sk_ctl |= SK_TXCTL_OWN;
1560 
1561 		cur = frag;
1562 		SK_INC(frag, SK_TX_RING_CNT);
1563 		cnt++;
1564 	}
1565 
1566 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1567 	SLIST_REMOVE_HEAD(&sc_if->sk_txmap_listhead, link);
1568 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
1569 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1570 		SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
1571 
1572 	/* Sync descriptors before handing to chip */
1573 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1574 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1575 
1576 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
1577 
1578 	/* Sync first descriptor to hand it off */
1579 	SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1580 
1581 	sc_if->sk_cdata.sk_tx_cnt += cnt;
1582 
1583 #ifdef SK_DEBUG
1584 	if (skdebug >= 3) {
1585 		struct sk_tx_desc *desc;
1586 		u_int32_t idx;
1587 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1588 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1589 			sk_dump_txdesc(desc, idx);
1590 		}
1591 	}
1592 #endif
1593 
1594 	*txidx = frag;
1595 
1596 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
1597 
1598 	return(0);
1599 }
1600 
1601 void
1602 sk_start(struct ifnet *ifp)
1603 {
1604         struct sk_if_softc	*sc_if = ifp->if_softc;
1605         struct sk_softc		*sc = sc_if->sk_softc;
1606         struct mbuf		*m_head = NULL;
1607         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
1608 	int			pkts = 0;
1609 
1610 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1611 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1612 
1613 	while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1614 
1615 		IFQ_POLL(&ifp->if_snd, m_head);
1616 		if (m_head == NULL)
1617 			break;
1618 
1619 		/*
1620 		 * Pack the data into the transmit ring. If we
1621 		 * don't have room, set the OACTIVE flag and wait
1622 		 * for the NIC to drain the ring.
1623 		 */
1624 		if (sk_encap(sc_if, m_head, &idx)) {
1625 			ifp->if_flags |= IFF_OACTIVE;
1626 			break;
1627 		}
1628 
1629 		/* now we are committed to transmit the packet */
1630 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1631 		pkts++;
1632 
1633 		/*
1634 		 * If there's a BPF listener, bounce a copy of this frame
1635 		 * to him.
1636 		 */
1637 #if NBPFILTER > 0
1638 		if (ifp->if_bpf)
1639 			bpf_mtap(ifp->if_bpf, m_head);
1640 #endif
1641 	}
1642 	if (pkts == 0)
1643 		return;
1644 
1645 	/* Transmit */
1646 	sc_if->sk_cdata.sk_tx_prod = idx;
1647 	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1648 
1649 	/* Set a timeout in case the chip goes out to lunch. */
1650 	ifp->if_timer = 5;
1651 }
1652 
1653 
1654 void
1655 sk_watchdog(struct ifnet *ifp)
1656 {
1657 	struct sk_if_softc *sc_if = ifp->if_softc;
1658 
1659 	printf("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
1660 	(void) sk_init(ifp);
1661 }
1662 
1663 void
1664 sk_shutdown(void * v)
1665 {
1666 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
1667 	struct sk_softc		*sc = sc_if->sk_softc;
1668 	struct ifnet 		*ifp = &sc_if->sk_ethercom.ec_if;
1669 
1670 	DPRINTFN(2, ("sk_shutdown\n"));
1671 	sk_stop(ifp,1);
1672 
1673 	/* Turn off the 'driver is loaded' LED. */
1674 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1675 
1676 	/*
1677 	 * Reset the GEnesis controller. Doing this should also
1678 	 * assert the resets on the attached XMAC(s).
1679 	 */
1680 	sk_reset(sc);
1681 }
1682 
1683 void
1684 sk_rxeof(struct sk_if_softc *sc_if)
1685 {
1686 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
1687 	struct mbuf		*m;
1688 	struct sk_chain		*cur_rx;
1689 	struct sk_rx_desc	*cur_desc;
1690 	int			i, cur, total_len = 0;
1691 	u_int32_t		rxstat;
1692 	bus_dmamap_t		dmamap;
1693 
1694 	i = sc_if->sk_cdata.sk_rx_prod;
1695 
1696 	DPRINTFN(3, ("sk_rxeof %d\n", i));
1697 
1698 	for (;;) {
1699 		cur = i;
1700 
1701 		/* Sync the descriptor */
1702 		SK_CDRXSYNC(sc_if, cur,
1703 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1704 
1705 		if (sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl & SK_RXCTL_OWN) {
1706 			/* Invalidate the descriptor -- it's not ready yet */
1707 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
1708 			sc_if->sk_cdata.sk_rx_prod = i;
1709 			break;
1710 		}
1711 
1712 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
1713 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
1714 		dmamap = sc_if->sk_cdata.sk_rx_map[cur];
1715 
1716 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
1717 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1718 
1719 		rxstat = cur_desc->sk_xmac_rxstat;
1720 		m = cur_rx->sk_mbuf;
1721 		cur_rx->sk_mbuf = NULL;
1722 		total_len = SK_RXBYTES(cur_desc->sk_ctl);
1723 
1724 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
1725 
1726 		SK_INC(i, SK_RX_RING_CNT);
1727 
1728 		if (rxstat & XM_RXSTAT_ERRFRAME) {
1729 			ifp->if_ierrors++;
1730 			sk_newbuf(sc_if, cur, m, dmamap);
1731 			continue;
1732 		}
1733 
1734 		/*
1735 		 * Try to allocate a new jumbo buffer. If that
1736 		 * fails, copy the packet to mbufs and put the
1737 		 * jumbo buffer back in the ring so it can be
1738 		 * re-used. If allocating mbufs fails, then we
1739 		 * have to drop the packet.
1740 		 */
1741 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
1742 			struct mbuf		*m0;
1743 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1744 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
1745 			sk_newbuf(sc_if, cur, m, dmamap);
1746 			if (m0 == NULL) {
1747 				printf("%s: no receive buffers "
1748 				    "available -- packet dropped!\n",
1749 				    sc_if->sk_dev.dv_xname);
1750 				ifp->if_ierrors++;
1751 				continue;
1752 			}
1753 			m_adj(m0, ETHER_ALIGN);
1754 			m = m0;
1755 		} else {
1756 			m->m_pkthdr.rcvif = ifp;
1757 			m->m_pkthdr.len = m->m_len = total_len;
1758 		}
1759 
1760 		ifp->if_ipackets++;
1761 
1762 #if NBPFILTER > 0
1763 		if (ifp->if_bpf)
1764 			bpf_mtap(ifp->if_bpf, m);
1765 #endif
1766 		/* pass it on. */
1767 		(*ifp->if_input)(ifp, m);
1768 	}
1769 }
1770 
1771 void
1772 sk_txeof(struct sk_if_softc *sc_if)
1773 {
1774 	struct sk_softc		*sc = sc_if->sk_softc;
1775 	struct sk_tx_desc	*cur_tx = NULL;
1776 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
1777 	u_int32_t		idx;
1778 	struct sk_txmap_entry	*entry;
1779 
1780 	DPRINTFN(3, ("sk_txeof\n"));
1781 
1782 	/*
1783 	 * Go through our tx ring and free mbufs for those
1784 	 * frames that have been sent.
1785 	 */
1786 	idx = sc_if->sk_cdata.sk_tx_cons;
1787 	while(idx != sc_if->sk_cdata.sk_tx_prod) {
1788 		SK_CDTXSYNC(sc_if, idx, 1,
1789 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1790 
1791 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
1792 #ifdef SK_DEBUG
1793 		if (skdebug >= 3)
1794 			sk_dump_txdesc(cur_tx, idx);
1795 #endif
1796 		if (cur_tx->sk_ctl & SK_TXCTL_OWN) {
1797 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
1798 			break;
1799 		}
1800 		if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
1801 			ifp->if_opackets++;
1802 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
1803 			entry = sc_if->sk_cdata.sk_tx_map[idx];
1804 
1805 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
1806 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
1807 
1808 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
1809 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1810 
1811 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
1812 			SLIST_INSERT_HEAD(&sc_if->sk_txmap_listhead, entry,
1813 					  link);
1814 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
1815 		}
1816 		sc_if->sk_cdata.sk_tx_cnt--;
1817 		SK_INC(idx, SK_TX_RING_CNT);
1818 	}
1819 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
1820 		ifp->if_timer = 0;
1821 
1822 	sc_if->sk_cdata.sk_tx_cons = idx;
1823 
1824 	if (cur_tx != NULL)
1825 		ifp->if_flags &= ~IFF_OACTIVE;
1826 }
1827 
1828 void
1829 sk_tick(void *xsc_if)
1830 {
1831 	struct sk_if_softc *sc_if = xsc_if;
1832 	struct mii_data *mii = &sc_if->sk_mii;
1833 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1834 	int i;
1835 
1836 	DPRINTFN(3, ("sk_tick\n"));
1837 
1838 	if (!(ifp->if_flags & IFF_UP))
1839 		return;
1840 
1841 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
1842 		sk_intr_bcom(sc_if);
1843 		return;
1844 	}
1845 
1846 	/*
1847 	 * According to SysKonnect, the correct way to verify that
1848 	 * the link has come back up is to poll bit 0 of the GPIO
1849 	 * register three times. This pin has the signal from the
1850 	 * link sync pin connected to it; if we read the same link
1851 	 * state 3 times in a row, we know the link is up.
1852 	 */
1853 	for (i = 0; i < 3; i++) {
1854 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
1855 			break;
1856 	}
1857 
1858 	if (i != 3) {
1859 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
1860 		return;
1861 	}
1862 
1863 	/* Turn the GP0 interrupt back on. */
1864 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
1865 	SK_XM_READ_2(sc_if, XM_ISR);
1866 	mii_tick(mii);
1867 	mii_pollstat(mii);
1868 	callout_stop(&sc_if->sk_tick_ch);
1869 }
1870 
1871 void
1872 sk_intr_bcom(struct sk_if_softc *sc_if)
1873 {
1874 	struct mii_data *mii = &sc_if->sk_mii;
1875 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1876 	int status;
1877 
1878 
1879 	DPRINTFN(3, ("sk_intr_bcom\n"));
1880 
1881 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
1882 
1883 	/*
1884 	 * Read the PHY interrupt register to make sure
1885 	 * we clear any pending interrupts.
1886 	 */
1887 	status = sk_xmac_miibus_readreg((struct device *)sc_if,
1888 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
1889 
1890 	if (!(ifp->if_flags & IFF_RUNNING)) {
1891 		sk_init_xmac(sc_if);
1892 		return;
1893 	}
1894 
1895 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
1896 		int lstat;
1897 		lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
1898 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
1899 
1900 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
1901 			mii_mediachg(mii);
1902 			/* Turn off the link LED. */
1903 			SK_IF_WRITE_1(sc_if, 0,
1904 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
1905 			sc_if->sk_link = 0;
1906 		} else if (status & BRGPHY_ISR_LNK_CHG) {
1907 			sk_xmac_miibus_writereg((struct device *)sc_if,
1908 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
1909 			mii_tick(mii);
1910 			sc_if->sk_link = 1;
1911 			/* Turn on the link LED. */
1912 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
1913 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
1914 			    SK_LINKLED_BLINK_OFF);
1915 			mii_pollstat(mii);
1916 		} else {
1917 			mii_tick(mii);
1918 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
1919 		}
1920 	}
1921 
1922 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
1923 }
1924 
1925 void
1926 sk_intr_xmac(struct sk_if_softc	*sc_if)
1927 {
1928 	u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
1929 
1930 	DPRINTFN(3, ("sk_intr_xmac\n"));
1931 
1932 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
1933 		if (status & XM_ISR_GP0_SET) {
1934 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
1935 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
1936 		}
1937 
1938 		if (status & XM_ISR_AUTONEG_DONE) {
1939 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
1940 		}
1941 	}
1942 
1943 	if (status & XM_IMR_TX_UNDERRUN)
1944 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
1945 
1946 	if (status & XM_IMR_RX_OVERRUN)
1947 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
1948 }
1949 
1950 void
1951 sk_intr_yukon(sc_if)
1952 	struct sk_if_softc *sc_if;
1953 {
1954 	int status;
1955 
1956 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
1957 
1958 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
1959 }
1960 
1961 int
1962 sk_intr(void *xsc)
1963 {
1964 	struct sk_softc		*sc = xsc;
1965 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
1966 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
1967 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
1968 	u_int32_t		status;
1969 	int			claimed = 0;
1970 
1971 	if (sc_if0 != NULL)
1972 		ifp0 = &sc_if0->sk_ethercom.ec_if;
1973 	if (sc_if1 != NULL)
1974 		ifp1 = &sc_if1->sk_ethercom.ec_if;
1975 
1976 	for (;;) {
1977 		status = CSR_READ_4(sc, SK_ISSR);
1978 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
1979 
1980 		if (!(status & sc->sk_intrmask))
1981 			break;
1982 
1983 		claimed = 1;
1984 
1985 		/* Handle receive interrupts first. */
1986 		if (status & SK_ISR_RX1_EOF) {
1987 			sk_rxeof(sc_if0);
1988 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
1989 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
1990 		}
1991 		if (status & SK_ISR_RX2_EOF) {
1992 			sk_rxeof(sc_if1);
1993 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
1994 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
1995 		}
1996 
1997 		/* Then transmit interrupts. */
1998 		if (status & SK_ISR_TX1_S_EOF) {
1999 			sk_txeof(sc_if0);
2000 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2001 			    SK_TXBMU_CLR_IRQ_EOF);
2002 		}
2003 		if (status & SK_ISR_TX2_S_EOF) {
2004 			sk_txeof(sc_if1);
2005 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2006 			    SK_TXBMU_CLR_IRQ_EOF);
2007 		}
2008 
2009 		/* Then MAC interrupts. */
2010 		if (status & SK_ISR_MAC1 && (ifp0->if_flags & IFF_RUNNING)) {
2011 			if (sc->sk_type == SK_GENESIS)
2012 				sk_intr_xmac(sc_if0);
2013 			else
2014 				sk_intr_yukon(sc_if0);
2015 		}
2016 
2017 		if (status & SK_ISR_MAC2 && (ifp1->if_flags & IFF_RUNNING)) {
2018 			if (sc->sk_type == SK_GENESIS)
2019 				sk_intr_xmac(sc_if1);
2020 			else
2021 				sk_intr_yukon(sc_if1);
2022 
2023 		}
2024 
2025 		if (status & SK_ISR_EXTERNAL_REG) {
2026 			if (ifp0 != NULL &&
2027 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2028 				sk_intr_bcom(sc_if0);
2029 
2030 			if (ifp1 != NULL &&
2031 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2032 				sk_intr_bcom(sc_if1);
2033 		}
2034 	}
2035 
2036 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2037 
2038 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2039 		sk_start(ifp0);
2040 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2041 		sk_start(ifp1);
2042 
2043 	return (claimed);
2044 }
2045 
2046 void
2047 sk_init_xmac(struct sk_if_softc	*sc_if)
2048 {
2049 	struct sk_softc		*sc = sc_if->sk_softc;
2050 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2051 	static const struct sk_bcom_hack     bhack[] = {
2052 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2053 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2054 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2055 	{ 0, 0 } };
2056 
2057 	DPRINTFN(1, ("sk_init_xmac\n"));
2058 
2059 	/* Unreset the XMAC. */
2060 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2061 	DELAY(1000);
2062 
2063 	/* Reset the XMAC's internal state. */
2064 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2065 
2066 	/* Save the XMAC II revision */
2067 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2068 
2069 	/*
2070 	 * Perform additional initialization for external PHYs,
2071 	 * namely for the 1000baseTX cards that use the XMAC's
2072 	 * GMII mode.
2073 	 */
2074 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2075 		int			i = 0;
2076 		u_int32_t		val;
2077 
2078 		/* Take PHY out of reset. */
2079 		val = sk_win_read_4(sc, SK_GPIO);
2080 		if (sc_if->sk_port == SK_PORT_A)
2081 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2082 		else
2083 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2084 		sk_win_write_4(sc, SK_GPIO, val);
2085 
2086 		/* Enable GMII mode on the XMAC. */
2087 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2088 
2089 		sk_xmac_miibus_writereg((struct device *)sc_if,
2090 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2091 		DELAY(10000);
2092 		sk_xmac_miibus_writereg((struct device *)sc_if,
2093 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2094 
2095 		/*
2096 		 * Early versions of the BCM5400 apparently have
2097 		 * a bug that requires them to have their reserved
2098 		 * registers initialized to some magic values. I don't
2099 		 * know what the numbers do, I'm just the messenger.
2100 		 */
2101 		if (sk_xmac_miibus_readreg((struct device *)sc_if,
2102 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2103 			while(bhack[i].reg) {
2104 				sk_xmac_miibus_writereg((struct device *)sc_if,
2105 				    SK_PHYADDR_BCOM, bhack[i].reg,
2106 				    bhack[i].val);
2107 				i++;
2108 			}
2109 		}
2110 	}
2111 
2112 	/* Set station address */
2113 	SK_XM_WRITE_2(sc_if, XM_PAR0,
2114 		      *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2115 	SK_XM_WRITE_2(sc_if, XM_PAR1,
2116 		      *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2117 	SK_XM_WRITE_2(sc_if, XM_PAR2,
2118 		      *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2119 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2120 
2121 	if (ifp->if_flags & IFF_PROMISC) {
2122 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2123 	} else {
2124 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2125 	}
2126 
2127 	if (ifp->if_flags & IFF_BROADCAST) {
2128 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2129 	} else {
2130 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2131 	}
2132 
2133 	/* We don't need the FCS appended to the packet. */
2134 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2135 
2136 	/* We want short frames padded to 60 bytes. */
2137 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2138 
2139 	/*
2140 	 * Enable the reception of all error frames. This is is
2141 	 * a necessary evil due to the design of the XMAC. The
2142 	 * XMAC's receive FIFO is only 8K in size, however jumbo
2143 	 * frames can be up to 9000 bytes in length. When bad
2144 	 * frame filtering is enabled, the XMAC's RX FIFO operates
2145 	 * in 'store and forward' mode. For this to work, the
2146 	 * entire frame has to fit into the FIFO, but that means
2147 	 * that jumbo frames larger than 8192 bytes will be
2148 	 * truncated. Disabling all bad frame filtering causes
2149 	 * the RX FIFO to operate in streaming mode, in which
2150 	 * case the XMAC will start transfering frames out of the
2151 	 * RX FIFO as soon as the FIFO threshold is reached.
2152 	 */
2153 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2154 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2155 	    XM_MODE_RX_INRANGELEN);
2156 
2157 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2158 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2159 	else
2160 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2161 
2162 	/*
2163 	 * Bump up the transmit threshold. This helps hold off transmit
2164 	 * underruns when we're blasting traffic from both ports at once.
2165 	 */
2166 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2167 
2168 	/* Set multicast filter */
2169 	sk_setmulti(sc_if);
2170 
2171 	/* Clear and enable interrupts */
2172 	SK_XM_READ_2(sc_if, XM_ISR);
2173 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2174 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2175 	else
2176 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2177 
2178 	/* Configure MAC arbiter */
2179 	switch(sc_if->sk_xmac_rev) {
2180 	case XM_XMAC_REV_B2:
2181 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2182 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2183 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2184 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2185 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2186 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2187 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2188 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2189 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2190 		break;
2191 	case XM_XMAC_REV_C1:
2192 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2193 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2194 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2195 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2196 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2197 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2198 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2199 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2200 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2201 		break;
2202 	default:
2203 		break;
2204 	}
2205 	sk_win_write_2(sc, SK_MACARB_CTL,
2206 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2207 
2208 	sc_if->sk_link = 1;
2209 }
2210 
2211 void sk_init_yukon(sc_if)
2212 	struct sk_if_softc	*sc_if;
2213 {
2214 	u_int32_t		/*mac, */phy;
2215 	u_int16_t		reg;
2216 	int			i;
2217 
2218 	DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2219 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2220 
2221 	/* GMAC and GPHY Reset */
2222 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2223 
2224 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
2225 
2226 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2227 	DELAY(1000);
2228 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2229 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2230 	DELAY(1000);
2231 
2232 
2233 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
2234 
2235 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2236 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2237 
2238 	switch(sc_if->sk_softc->sk_pmd) {
2239 	case IFM_1000_SX:
2240 	case IFM_1000_LX:
2241 		phy |= SK_GPHY_FIBER;
2242 		break;
2243 
2244 	case IFM_1000_CX:
2245 	case IFM_1000_T:
2246 		phy |= SK_GPHY_COPPER;
2247 		break;
2248 	}
2249 
2250 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2251 
2252 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2253 	DELAY(1000);
2254 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2255 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2256 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2257 
2258 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2259 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2260 
2261 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
2262 
2263 	/* unused read of the interrupt source register */
2264 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
2265 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2266 
2267 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2268 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2269 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2270 
2271 	/* MIB Counter Clear Mode set */
2272         reg |= YU_PAR_MIB_CLR;
2273 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2274 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2275 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2276 
2277 	/* MIB Counter Clear Mode clear */
2278 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
2279         reg &= ~YU_PAR_MIB_CLR;
2280 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2281 
2282 	/* receive control reg */
2283 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
2284 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2285 		      YU_RCR_CRCR);
2286 
2287 	/* transmit parameter register */
2288 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
2289 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2290 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2291 
2292 	/* serial mode register */
2293 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
2294 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2295 		      YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e));
2296 
2297 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
2298 	/* Setup Yukon's address */
2299 	for (i = 0; i < 3; i++) {
2300 		/* Write Source Address 1 (unicast filter) */
2301 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2302 			      sc_if->sk_enaddr[i * 2] |
2303 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
2304 	}
2305 
2306 	for (i = 0; i < 3; i++) {
2307 		reg = sk_win_read_2(sc_if->sk_softc,
2308 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2309 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2310 	}
2311 
2312 	/* clear all Multicast filter hash registers */
2313 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
2314 	SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
2315 	SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
2316 	SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
2317 	SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
2318 
2319 	/* enable interrupt mask for counter overflows */
2320 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
2321 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2322 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2323 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2324 
2325 	/* Configure RX MAC FIFO */
2326 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2327 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2328 
2329 	/* Configure TX MAC FIFO */
2330 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2331 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2332 
2333 	DPRINTFN(6, ("sk_init_yukon: end\n"));
2334 }
2335 
2336 /*
2337  * Note that to properly initialize any part of the GEnesis chip,
2338  * you first have to take it out of reset mode.
2339  */
2340 int
2341 sk_init(struct ifnet *ifp)
2342 {
2343 	struct sk_if_softc	*sc_if = ifp->if_softc;
2344 	struct sk_softc		*sc = sc_if->sk_softc;
2345 	struct mii_data		*mii = &sc_if->sk_mii;
2346 	int			s;
2347 
2348 	DPRINTFN(1, ("sk_init\n"));
2349 
2350 	s = splnet();
2351 
2352 	/* Cancel pending I/O and free all RX/TX buffers. */
2353 	sk_stop(ifp,0);
2354 
2355 	if (sc->sk_type == SK_GENESIS) {
2356 		/* Configure LINK_SYNC LED */
2357 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2358 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2359 			      SK_LINKLED_LINKSYNC_ON);
2360 
2361 		/* Configure RX LED */
2362 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2363 			      SK_RXLEDCTL_COUNTER_START);
2364 
2365 		/* Configure TX LED */
2366 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2367 			      SK_TXLEDCTL_COUNTER_START);
2368 	}
2369 
2370 	/* Configure I2C registers */
2371 
2372 	/* Configure XMAC(s) */
2373 	switch (sc->sk_type) {
2374 	case SK_GENESIS:
2375 		sk_init_xmac(sc_if);
2376 		break;
2377 	case SK_YUKON:
2378 		sk_init_yukon(sc_if);
2379 		break;
2380 	}
2381 	mii_mediachg(mii);
2382 
2383 	if (sc->sk_type == SK_GENESIS) {
2384 		/* Configure MAC FIFOs */
2385 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2386 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2387 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2388 
2389 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2390 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2391 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2392 	}
2393 
2394 	/* Configure transmit arbiter(s) */
2395 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2396 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2397 
2398 	/* Configure RAMbuffers */
2399 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2400 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2401 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2402 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2403 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2404 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2405 
2406 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2407 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2408 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2409 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2410 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2411 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2412 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2413 
2414 	/* Configure BMUs */
2415 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2416 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2417 	    SK_RX_RING_ADDR(sc_if, 0));
2418 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2419 
2420 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2421 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2422             SK_TX_RING_ADDR(sc_if, 0));
2423 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2424 
2425 	/* Init descriptors */
2426 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2427 		printf("%s: initialization failed: no "
2428 		    "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
2429 		sk_stop(ifp,0);
2430 		splx(s);
2431 		return(ENOBUFS);
2432 	}
2433 
2434 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2435 		printf("%s: initialization failed: no "
2436 		    "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
2437 		sk_stop(ifp,0);
2438 		splx(s);
2439 		return(ENOBUFS);
2440 	}
2441 
2442 	/* Configure interrupt handling */
2443 	CSR_READ_4(sc, SK_ISSR);
2444 	if (sc_if->sk_port == SK_PORT_A)
2445 		sc->sk_intrmask |= SK_INTRS1;
2446 	else
2447 		sc->sk_intrmask |= SK_INTRS2;
2448 
2449 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2450 
2451 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2452 
2453 	/* Start BMUs. */
2454 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2455 
2456 	if (sc->sk_type == SK_GENESIS) {
2457 		/* Enable XMACs TX and RX state machines */
2458 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2459 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2460 			       XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2461 	}
2462 
2463 	if (sc->sk_type == SK_YUKON) {
2464 		u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2465 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2466 		reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
2467 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2468 	}
2469 
2470 
2471 	ifp->if_flags |= IFF_RUNNING;
2472 	ifp->if_flags &= ~IFF_OACTIVE;
2473 
2474 	splx(s);
2475 	return(0);
2476 }
2477 
2478 void
2479 sk_stop(struct ifnet *ifp, int disable)
2480 {
2481         struct sk_if_softc	*sc_if = ifp->if_softc;
2482 	struct sk_softc		*sc = sc_if->sk_softc;
2483 	int			i;
2484 
2485 	DPRINTFN(1, ("sk_stop\n"));
2486 
2487 	callout_stop(&sc_if->sk_tick_ch);
2488 
2489 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2490 		u_int32_t		val;
2491 
2492 		/* Put PHY back into reset. */
2493 		val = sk_win_read_4(sc, SK_GPIO);
2494 		if (sc_if->sk_port == SK_PORT_A) {
2495 			val |= SK_GPIO_DIR0;
2496 			val &= ~SK_GPIO_DAT0;
2497 		} else {
2498 			val |= SK_GPIO_DIR2;
2499 			val &= ~SK_GPIO_DAT2;
2500 		}
2501 		sk_win_write_4(sc, SK_GPIO, val);
2502 	}
2503 
2504 	/* Turn off various components of this interface. */
2505 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2506 	switch (sc->sk_type) {
2507 	case SK_GENESIS:
2508 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2509 			      SK_TXMACCTL_XMAC_RESET);
2510 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2511 		break;
2512 	case SK_YUKON:
2513 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2514 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2515 		break;
2516 	}
2517 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2518 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2519 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2520 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2521 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2522 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2523 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2524 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2525 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2526 
2527 	/* Disable interrupts */
2528 	if (sc_if->sk_port == SK_PORT_A)
2529 		sc->sk_intrmask &= ~SK_INTRS1;
2530 	else
2531 		sc->sk_intrmask &= ~SK_INTRS2;
2532 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2533 
2534 	SK_XM_READ_2(sc_if, XM_ISR);
2535 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2536 
2537 	/* Free RX and TX mbufs still in the queues. */
2538 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2539 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2540 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2541 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2542 		}
2543 	}
2544 
2545 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2546 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2547 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2548 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2549 		}
2550 	}
2551 
2552 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2553 }
2554 
2555 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
2556 
2557 /*
2558 struct cfdriver skc_cd = {
2559 	0, "skc", DV_DULL
2560 };
2561 */
2562 
2563 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
2564 
2565 /*
2566 struct cfdriver sk_cd = {
2567 	0, "sk", DV_IFNET
2568 };
2569 */
2570 
2571 #ifdef SK_DEBUG
2572 void
2573 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2574 {
2575 #define DESC_PRINT(X)					\
2576 	if (desc->X)					\
2577 		printf("txdesc[%d]." #X "=%#x\n",	\
2578 		       idx, desc->X);
2579 
2580 	DESC_PRINT(sk_ctl);
2581 	DESC_PRINT(sk_next);
2582 	DESC_PRINT(sk_data_lo);
2583 	DESC_PRINT(sk_data_hi);
2584 	DESC_PRINT(sk_xmac_txstat);
2585 	DESC_PRINT(sk_rsvd0);
2586 	DESC_PRINT(sk_csum_startval);
2587 	DESC_PRINT(sk_csum_startpos);
2588 	DESC_PRINT(sk_csum_writepos);
2589 	DESC_PRINT(sk_rsvd1);
2590 #undef PRINT
2591 }
2592 
2593 void
2594 sk_dump_bytes(const char *data, int len)
2595 {
2596 	int c, i, j;
2597 
2598 	for (i = 0; i < len; i += 16) {
2599 		printf("%08x  ", i);
2600 		c = len - i;
2601 		if (c > 16) c = 16;
2602 
2603 		for (j = 0; j < c; j++) {
2604 			printf("%02x ", data[i + j] & 0xff);
2605 			if ((j & 0xf) == 7 && j > 0)
2606 				printf(" ");
2607 		}
2608 
2609 		for (; j < 16; j++)
2610 			printf("   ");
2611 		printf("  ");
2612 
2613 		for (j = 0; j < c; j++) {
2614 			int ch = data[i + j] & 0xff;
2615 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2616 		}
2617 
2618 		printf("\n");
2619 
2620 		if (c < 16)
2621 			break;
2622 	}
2623 }
2624 
2625 void
2626 sk_dump_mbuf(struct mbuf *m)
2627 {
2628 	int count = m->m_pkthdr.len;
2629 
2630 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2631 
2632 	while (count > 0 && m) {
2633 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2634 		       m, m->m_data, m->m_len);
2635 		sk_dump_bytes(mtod(m, char *), m->m_len);
2636 
2637 		count -= m->m_len;
2638 		m = m->m_next;
2639 	}
2640 }
2641 #endif
2642