xref: /netbsd-src/sys/dev/pci/if_sk.c (revision ce2c90c7c172d95d2402a5b3d96d8f8e6d138a21)
1 /*	$NetBSD: if_sk.c,v 1.34 2006/10/12 01:31:30 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the NetBSD
18  *	Foundation, Inc. and its contributors.
19  * 4. Neither the name of The NetBSD Foundation nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 /*	$OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $	*/
37 
38 /*
39  * Copyright (c) 1997, 1998, 1999, 2000
40  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. All advertising materials mentioning features or use of this software
51  *    must display the following acknowledgement:
52  *	This product includes software developed by Bill Paul.
53  * 4. Neither the name of the author nor the names of any co-contributors
54  *    may be used to endorse or promote products derived from this software
55  *    without specific prior written permission.
56  *
57  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
61  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
67  * THE POSSIBILITY OF SUCH DAMAGE.
68  *
69  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
70  */
71 
72 /*
73  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
74  *
75  * Permission to use, copy, modify, and distribute this software for any
76  * purpose with or without fee is hereby granted, provided that the above
77  * copyright notice and this permission notice appear in all copies.
78  *
79  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
80  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
81  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
82  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
83  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
84  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
85  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
86  */
87 
88 /*
89  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
90  * the SK-984x series adapters, both single port and dual port.
91  * References:
92  * 	The XaQti XMAC II datasheet,
93  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
95  *
96  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
97  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
98  * convenience to others until Vitesse corrects this problem:
99  *
100  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
101  *
102  * Written by Bill Paul <wpaul@ee.columbia.edu>
103  * Department of Electrical Engineering
104  * Columbia University, New York City
105  */
106 
107 /*
108  * The SysKonnect gigabit ethernet adapters consist of two main
109  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
110  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
111  * components and a PHY while the GEnesis controller provides a PCI
112  * interface with DMA support. Each card may have between 512K and
113  * 2MB of SRAM on board depending on the configuration.
114  *
115  * The SysKonnect GEnesis controller can have either one or two XMAC
116  * chips connected to it, allowing single or dual port NIC configurations.
117  * SysKonnect has the distinction of being the only vendor on the market
118  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
119  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
120  * XMAC registers. This driver takes advantage of these features to allow
121  * both XMACs to operate as independent interfaces.
122  */
123 
124 #include "bpfilter.h"
125 #include "rnd.h"
126 
127 #include <sys/param.h>
128 #include <sys/systm.h>
129 #include <sys/sockio.h>
130 #include <sys/mbuf.h>
131 #include <sys/malloc.h>
132 #include <sys/kernel.h>
133 #include <sys/socket.h>
134 #include <sys/device.h>
135 #include <sys/queue.h>
136 #include <sys/callout.h>
137 #include <sys/sysctl.h>
138 #include <sys/endian.h>
139 
140 #include <net/if.h>
141 #include <net/if_dl.h>
142 #include <net/if_types.h>
143 
144 #include <net/if_media.h>
145 
146 #if NBPFILTER > 0
147 #include <net/bpf.h>
148 #endif
149 #if NRND > 0
150 #include <sys/rnd.h>
151 #endif
152 
153 #include <dev/mii/mii.h>
154 #include <dev/mii/miivar.h>
155 #include <dev/mii/brgphyreg.h>
156 
157 #include <dev/pci/pcireg.h>
158 #include <dev/pci/pcivar.h>
159 #include <dev/pci/pcidevs.h>
160 
161 /* #define SK_USEIOSPACE */
162 
163 #include <dev/pci/if_skreg.h>
164 #include <dev/pci/if_skvar.h>
165 
166 int skc_probe(struct device *, struct cfdata *, void *);
167 void skc_attach(struct device *, struct device *self, void *aux);
168 int sk_probe(struct device *, struct cfdata *, void *);
169 void sk_attach(struct device *, struct device *self, void *aux);
170 int skcprint(void *, const char *);
171 int sk_intr(void *);
172 void sk_intr_bcom(struct sk_if_softc *);
173 void sk_intr_xmac(struct sk_if_softc *);
174 void sk_intr_yukon(struct sk_if_softc *);
175 void sk_rxeof(struct sk_if_softc *);
176 void sk_txeof(struct sk_if_softc *);
177 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
178 void sk_start(struct ifnet *);
179 int sk_ioctl(struct ifnet *, u_long, caddr_t);
180 int sk_init(struct ifnet *);
181 void sk_init_xmac(struct sk_if_softc *);
182 void sk_init_yukon(struct sk_if_softc *);
183 void sk_stop(struct ifnet *, int);
184 void sk_watchdog(struct ifnet *);
185 void sk_shutdown(void *);
186 int sk_ifmedia_upd(struct ifnet *);
187 void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
188 void sk_reset(struct sk_softc *);
189 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
190 int sk_alloc_jumbo_mem(struct sk_if_softc *);
191 void sk_free_jumbo_mem(struct sk_if_softc *);
192 void *sk_jalloc(struct sk_if_softc *);
193 void sk_jfree(struct mbuf *, caddr_t, size_t, void *);
194 int sk_init_rx_ring(struct sk_if_softc *);
195 int sk_init_tx_ring(struct sk_if_softc *);
196 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
197 void sk_vpd_read_res(struct sk_softc *,
198 					struct vpd_res *, int);
199 void sk_vpd_read(struct sk_softc *);
200 
201 void sk_update_int_mod(struct sk_softc *);
202 
203 int sk_xmac_miibus_readreg(struct device *, int, int);
204 void sk_xmac_miibus_writereg(struct device *, int, int, int);
205 void sk_xmac_miibus_statchg(struct device *);
206 
207 int sk_marv_miibus_readreg(struct device *, int, int);
208 void sk_marv_miibus_writereg(struct device *, int, int, int);
209 void sk_marv_miibus_statchg(struct device *);
210 
211 u_int32_t sk_xmac_hash(caddr_t);
212 u_int32_t sk_yukon_hash(caddr_t);
213 void sk_setfilt(struct sk_if_softc *, caddr_t, int);
214 void sk_setmulti(struct sk_if_softc *);
215 void sk_tick(void *);
216 
217 /* #define SK_DEBUG 2 */
218 #ifdef SK_DEBUG
219 #define DPRINTF(x)	if (skdebug) printf x
220 #define DPRINTFN(n,x)	if (skdebug >= (n)) printf x
221 int	skdebug = SK_DEBUG;
222 
223 void sk_dump_txdesc(struct sk_tx_desc *, int);
224 void sk_dump_mbuf(struct mbuf *);
225 void sk_dump_bytes(const char *, int);
226 #else
227 #define DPRINTF(x)
228 #define DPRINTFN(n,x)
229 #endif
230 
231 static int sk_sysctl_handler(SYSCTLFN_PROTO);
232 static int sk_root_num;
233 
234 /* supported device vendors */
235 static const struct sk_product {
236 	pci_vendor_id_t		sk_vendor;
237 	pci_product_id_t	sk_product;
238 } sk_products[] = {
239 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
240 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
241 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T, },
242 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
243 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
244 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
245 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
246 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
247 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
248 	{ 0, 0, }
249 };
250 
251 #define SK_LINKSYS_EG1032_SUBID	0x00151737
252 
253 static inline u_int32_t
254 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
255 {
256 #ifdef SK_USEIOSPACE
257 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
258 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
259 #else
260 	return CSR_READ_4(sc, reg);
261 #endif
262 }
263 
264 static inline u_int16_t
265 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
266 {
267 #ifdef SK_USEIOSPACE
268 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
269 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
270 #else
271 	return CSR_READ_2(sc, reg);
272 #endif
273 }
274 
275 static inline u_int8_t
276 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
277 {
278 #ifdef SK_USEIOSPACE
279 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
280 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
281 #else
282 	return CSR_READ_1(sc, reg);
283 #endif
284 }
285 
286 static inline void
287 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
288 {
289 #ifdef SK_USEIOSPACE
290 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
291 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
292 #else
293 	CSR_WRITE_4(sc, reg, x);
294 #endif
295 }
296 
297 static inline void
298 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
299 {
300 #ifdef SK_USEIOSPACE
301 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
302 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
303 #else
304 	CSR_WRITE_2(sc, reg, x);
305 #endif
306 }
307 
308 static inline void
309 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
310 {
311 #ifdef SK_USEIOSPACE
312 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
313 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
314 #else
315 	CSR_WRITE_1(sc, reg, x);
316 #endif
317 }
318 
319 /*
320  * The VPD EEPROM contains Vital Product Data, as suggested in
321  * the PCI 2.1 specification. The VPD data is separared into areas
322  * denoted by resource IDs. The SysKonnect VPD contains an ID string
323  * resource (the name of the adapter), a read-only area resource
324  * containing various key/data fields and a read/write area which
325  * can be used to store asset management information or log messages.
326  * We read the ID string and read-only into buffers attached to
327  * the controller softc structure for later use. At the moment,
328  * we only use the ID string during sk_attach().
329  */
330 u_int8_t
331 sk_vpd_readbyte(struct sk_softc *sc, int addr)
332 {
333 	int			i;
334 
335 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
336 	for (i = 0; i < SK_TIMEOUT; i++) {
337 		DELAY(1);
338 		if (sk_win_read_2(sc,
339 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
340 			break;
341 	}
342 
343 	if (i == SK_TIMEOUT)
344 		return 0;
345 
346 	return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
347 }
348 
349 void
350 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
351 {
352 	int			i;
353 	u_int8_t		*ptr;
354 
355 	ptr = (u_int8_t *)res;
356 	for (i = 0; i < sizeof(struct vpd_res); i++)
357 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
358 }
359 
360 void
361 sk_vpd_read(struct sk_softc *sc)
362 {
363 	int			pos = 0, i;
364 	struct vpd_res		res;
365 
366 	if (sc->sk_vpd_prodname != NULL)
367 		free(sc->sk_vpd_prodname, M_DEVBUF);
368 	if (sc->sk_vpd_readonly != NULL)
369 		free(sc->sk_vpd_readonly, M_DEVBUF);
370 	sc->sk_vpd_prodname = NULL;
371 	sc->sk_vpd_readonly = NULL;
372 
373 	sk_vpd_read_res(sc, &res, pos);
374 
375 	if (res.vr_id != VPD_RES_ID) {
376 		aprint_error("%s: bad VPD resource id: expected %x got %x\n",
377 		    sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
378 		return;
379 	}
380 
381 	pos += sizeof(res);
382 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
383 	if (sc->sk_vpd_prodname == NULL)
384 		panic("sk_vpd_read");
385 	for (i = 0; i < res.vr_len; i++)
386 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
387 	sc->sk_vpd_prodname[i] = '\0';
388 	pos += i;
389 
390 	sk_vpd_read_res(sc, &res, pos);
391 
392 	if (res.vr_id != VPD_RES_READ) {
393 		aprint_error("%s: bad VPD resource id: expected %x got %x\n",
394 		    sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
395 		return;
396 	}
397 
398 	pos += sizeof(res);
399 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
400 	if (sc->sk_vpd_readonly == NULL)
401 		panic("sk_vpd_read");
402 	for (i = 0; i < res.vr_len ; i++)
403 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
404 }
405 
406 int
407 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
408 {
409 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
410 	int i;
411 
412 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
413 
414 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
415 		return 0;
416 
417 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
418 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
419 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
420 		for (i = 0; i < SK_TIMEOUT; i++) {
421 			DELAY(1);
422 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
423 			    XM_MMUCMD_PHYDATARDY)
424 				break;
425 		}
426 
427 		if (i == SK_TIMEOUT) {
428 			aprint_error("%s: phy failed to come ready\n",
429 			    sc_if->sk_dev.dv_xname);
430 			return 0;
431 		}
432 	}
433 	DELAY(1);
434 	return SK_XM_READ_2(sc_if, XM_PHY_DATA);
435 }
436 
437 void
438 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
439 {
440 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
441 	int i;
442 
443 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
444 
445 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
446 	for (i = 0; i < SK_TIMEOUT; i++) {
447 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
448 			break;
449 	}
450 
451 	if (i == SK_TIMEOUT) {
452 		aprint_error("%s: phy failed to come ready\n",
453 		    sc_if->sk_dev.dv_xname);
454 		return;
455 	}
456 
457 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
458 	for (i = 0; i < SK_TIMEOUT; i++) {
459 		DELAY(1);
460 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
461 			break;
462 	}
463 
464 	if (i == SK_TIMEOUT)
465 		aprint_error("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
466 }
467 
468 void
469 sk_xmac_miibus_statchg(struct device *dev)
470 {
471 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
472 	struct mii_data *mii = &sc_if->sk_mii;
473 
474 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
475 
476 	/*
477 	 * If this is a GMII PHY, manually set the XMAC's
478 	 * duplex mode accordingly.
479 	 */
480 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
481 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
482 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
483 		else
484 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
485 	}
486 }
487 
488 int
489 sk_marv_miibus_readreg(struct device *dev, int phy, int reg)
490 {
491 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
492 	u_int16_t val;
493 	int i;
494 
495 	if (phy != 0 ||
496 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
497 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
498 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
499 			     phy, reg));
500 		return 0;
501 	}
502 
503         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
504 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
505 
506 	for (i = 0; i < SK_TIMEOUT; i++) {
507 		DELAY(1);
508 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
509 		if (val & YU_SMICR_READ_VALID)
510 			break;
511 	}
512 
513 	if (i == SK_TIMEOUT) {
514 		aprint_error("%s: phy failed to come ready\n",
515 		       sc_if->sk_dev.dv_xname);
516 		return 0;
517 	}
518 
519  	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
520 		     SK_TIMEOUT));
521 
522         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
523 
524 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
525 		     phy, reg, val));
526 
527 	return val;
528 }
529 
530 void
531 sk_marv_miibus_writereg(struct device *dev, int phy, int reg, int val)
532 {
533 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
534 	int i;
535 
536 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
537 		     phy, reg, val));
538 
539 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
540 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
541 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
542 
543 	for (i = 0; i < SK_TIMEOUT; i++) {
544 		DELAY(1);
545 		if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
546 			break;
547 	}
548 }
549 
550 void
551 sk_marv_miibus_statchg(struct device *dev __unused)
552 {
553 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
554 		     SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
555 }
556 
557 #define SK_HASH_BITS		6
558 
559 u_int32_t
560 sk_xmac_hash(caddr_t addr)
561 {
562 	u_int32_t		crc;
563 
564 	crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
565 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
566 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
567 	return crc;
568 }
569 
570 u_int32_t
571 sk_yukon_hash(caddr_t addr)
572 {
573 	u_int32_t		crc;
574 
575 	crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
576 	crc &= ((1 << SK_HASH_BITS) - 1);
577 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
578 	return crc;
579 }
580 
581 void
582 sk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot)
583 {
584 	int base = XM_RXFILT_ENTRY(slot);
585 
586 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
587 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
588 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
589 }
590 
591 void
592 sk_setmulti(struct sk_if_softc *sc_if)
593 {
594 	struct sk_softc *sc = sc_if->sk_softc;
595 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
596 	u_int32_t hashes[2] = { 0, 0 };
597 	int h = 0, i;
598 	struct ethercom *ec = &sc_if->sk_ethercom;
599 	struct ether_multi *enm;
600 	struct ether_multistep step;
601 	u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
602 
603 	/* First, zot all the existing filters. */
604 	switch (sc->sk_type) {
605 	case SK_GENESIS:
606 		for (i = 1; i < XM_RXFILT_MAX; i++)
607 			sk_setfilt(sc_if, (caddr_t)&dummy, i);
608 
609 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
610 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
611 		break;
612 	case SK_YUKON:
613 	case SK_YUKON_LITE:
614 	case SK_YUKON_LP:
615 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
616 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
617 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
618 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
619 		break;
620 	}
621 
622 	/* Now program new ones. */
623 allmulti:
624 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
625 		hashes[0] = 0xFFFFFFFF;
626 		hashes[1] = 0xFFFFFFFF;
627 	} else {
628 		i = 1;
629 		/* First find the tail of the list. */
630 		ETHER_FIRST_MULTI(step, ec, enm);
631 		while (enm != NULL) {
632 			if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
633 				 ETHER_ADDR_LEN)) {
634 				ifp->if_flags |= IFF_ALLMULTI;
635 				goto allmulti;
636 			}
637 			DPRINTFN(2,("multicast address %s\n",
638 	    			ether_sprintf(enm->enm_addrlo)));
639 			/*
640 			 * Program the first XM_RXFILT_MAX multicast groups
641 			 * into the perfect filter. For all others,
642 			 * use the hash table.
643 			 */
644 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
645 				sk_setfilt(sc_if, enm->enm_addrlo, i);
646 				i++;
647 			}
648 			else {
649 				switch (sc->sk_type) {
650 				case SK_GENESIS:
651 					h = sk_xmac_hash(enm->enm_addrlo);
652 					break;
653 				case SK_YUKON:
654 				case SK_YUKON_LITE:
655 				case SK_YUKON_LP:
656 					h = sk_yukon_hash(enm->enm_addrlo);
657 					break;
658 				}
659 				if (h < 32)
660 					hashes[0] |= (1 << h);
661 				else
662 					hashes[1] |= (1 << (h - 32));
663 			}
664 
665 			ETHER_NEXT_MULTI(step, enm);
666 		}
667 	}
668 
669 	switch (sc->sk_type) {
670 	case SK_GENESIS:
671 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
672 			       XM_MODE_RX_USE_PERFECT);
673 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
674 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
675 		break;
676 	case SK_YUKON:
677 	case SK_YUKON_LITE:
678 	case SK_YUKON_LP:
679 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
680 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
681 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
682 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
683 		break;
684 	}
685 }
686 
687 int
688 sk_init_rx_ring(struct sk_if_softc *sc_if)
689 {
690 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
691 	struct sk_ring_data	*rd = sc_if->sk_rdata;
692 	int			i;
693 
694 	bzero((char *)rd->sk_rx_ring,
695 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
696 
697 	for (i = 0; i < SK_RX_RING_CNT; i++) {
698 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
699 		if (i == (SK_RX_RING_CNT - 1)) {
700 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
701 			rd->sk_rx_ring[i].sk_next =
702 				htole32(SK_RX_RING_ADDR(sc_if, 0));
703 		} else {
704 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
705 			rd->sk_rx_ring[i].sk_next =
706 				htole32(SK_RX_RING_ADDR(sc_if,i+1));
707 		}
708 	}
709 
710 	for (i = 0; i < SK_RX_RING_CNT; i++) {
711 		if (sk_newbuf(sc_if, i, NULL,
712 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
713 			aprint_error("%s: failed alloc of %dth mbuf\n",
714 			    sc_if->sk_dev.dv_xname, i);
715 			return ENOBUFS;
716 		}
717 	}
718 	sc_if->sk_cdata.sk_rx_prod = 0;
719 	sc_if->sk_cdata.sk_rx_cons = 0;
720 
721 	return 0;
722 }
723 
724 int
725 sk_init_tx_ring(struct sk_if_softc *sc_if)
726 {
727 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
728 	struct sk_ring_data	*rd = sc_if->sk_rdata;
729 	int			i;
730 
731 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
732 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
733 
734 	for (i = 0; i < SK_TX_RING_CNT; i++) {
735 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
736 		if (i == (SK_TX_RING_CNT - 1)) {
737 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
738 			rd->sk_tx_ring[i].sk_next =
739 				htole32(SK_TX_RING_ADDR(sc_if, 0));
740 		} else {
741 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
742 			rd->sk_tx_ring[i].sk_next =
743 				htole32(SK_TX_RING_ADDR(sc_if,i+1));
744 		}
745 	}
746 
747 	sc_if->sk_cdata.sk_tx_prod = 0;
748 	sc_if->sk_cdata.sk_tx_cons = 0;
749 	sc_if->sk_cdata.sk_tx_cnt = 0;
750 
751 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
752 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
753 
754 	return 0;
755 }
756 
757 int
758 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
759 	  bus_dmamap_t dmamap)
760 {
761 	struct mbuf		*m_new = NULL;
762 	struct sk_chain		*c;
763 	struct sk_rx_desc	*r;
764 
765 	if (m == NULL) {
766 		caddr_t buf = NULL;
767 
768 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
769 		if (m_new == NULL) {
770 			aprint_error("%s: no memory for rx list -- "
771 			    "packet dropped!\n", sc_if->sk_dev.dv_xname);
772 			return ENOBUFS;
773 		}
774 
775 		/* Allocate the jumbo buffer */
776 		buf = sk_jalloc(sc_if);
777 		if (buf == NULL) {
778 			m_freem(m_new);
779 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
780 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
781 			return ENOBUFS;
782 		}
783 
784 		/* Attach the buffer to the mbuf */
785 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
786 		MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
787 
788 	} else {
789 		/*
790 	 	 * We're re-using a previously allocated mbuf;
791 		 * be sure to re-init pointers and lengths to
792 		 * default values.
793 		 */
794 		m_new = m;
795 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
796 		m_new->m_data = m_new->m_ext.ext_buf;
797 	}
798 	m_adj(m_new, ETHER_ALIGN);
799 
800 	c = &sc_if->sk_cdata.sk_rx_chain[i];
801 	r = c->sk_desc;
802 	c->sk_mbuf = m_new;
803 	r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
804 	    (((vaddr_t)m_new->m_data
805 		- (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
806 	r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
807 
808 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
809 
810 	return 0;
811 }
812 
813 /*
814  * Memory management for jumbo frames.
815  */
816 
817 int
818 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
819 {
820 	struct sk_softc		*sc = sc_if->sk_softc;
821 	caddr_t			ptr, kva;
822 	bus_dma_segment_t	seg;
823 	int		i, rseg, state, error;
824 	struct sk_jpool_entry   *entry;
825 
826 	state = error = 0;
827 
828 	/* Grab a big chunk o' storage. */
829 	if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
830 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
831 		aprint_error("%s: can't alloc rx buffers\n", sc->sk_dev.dv_xname);
832 		return ENOBUFS;
833 	}
834 
835 	state = 1;
836 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, &kva,
837 			   BUS_DMA_NOWAIT)) {
838 		aprint_error("%s: can't map dma buffers (%d bytes)\n",
839 		    sc->sk_dev.dv_xname, SK_JMEM);
840 		error = ENOBUFS;
841 		goto out;
842 	}
843 
844 	state = 2;
845 	if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
846 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
847 		aprint_error("%s: can't create dma map\n", sc->sk_dev.dv_xname);
848 		error = ENOBUFS;
849 		goto out;
850 	}
851 
852 	state = 3;
853 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
854 			    kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
855 		aprint_error("%s: can't load dma map\n", sc->sk_dev.dv_xname);
856 		error = ENOBUFS;
857 		goto out;
858 	}
859 
860 	state = 4;
861 	sc_if->sk_cdata.sk_jumbo_buf = (caddr_t)kva;
862 	DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
863 
864 	LIST_INIT(&sc_if->sk_jfree_listhead);
865 	LIST_INIT(&sc_if->sk_jinuse_listhead);
866 
867 	/*
868 	 * Now divide it up into 9K pieces and save the addresses
869 	 * in an array.
870 	 */
871 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
872 	for (i = 0; i < SK_JSLOTS; i++) {
873 		sc_if->sk_cdata.sk_jslots[i] = ptr;
874 		ptr += SK_JLEN;
875 		entry = malloc(sizeof(struct sk_jpool_entry),
876 		    M_DEVBUF, M_NOWAIT);
877 		if (entry == NULL) {
878 			aprint_error("%s: no memory for jumbo buffer queue!\n",
879 			    sc->sk_dev.dv_xname);
880 			error = ENOBUFS;
881 			goto out;
882 		}
883 		entry->slot = i;
884 		if (i)
885 			LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
886 				 entry, jpool_entries);
887 		else
888 			LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
889 				 entry, jpool_entries);
890 	}
891 out:
892 	if (error != 0) {
893 		switch (state) {
894 		case 4:
895 			bus_dmamap_unload(sc->sc_dmatag,
896 			    sc_if->sk_cdata.sk_rx_jumbo_map);
897 		case 3:
898 			bus_dmamap_destroy(sc->sc_dmatag,
899 			    sc_if->sk_cdata.sk_rx_jumbo_map);
900 		case 2:
901 			bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
902 		case 1:
903 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
904 			break;
905 		default:
906 			break;
907 		}
908 	}
909 
910 	return error;
911 }
912 
913 /*
914  * Allocate a jumbo buffer.
915  */
916 void *
917 sk_jalloc(struct sk_if_softc *sc_if)
918 {
919 	struct sk_jpool_entry   *entry;
920 
921 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
922 
923 	if (entry == NULL)
924 		return NULL;
925 
926 	LIST_REMOVE(entry, jpool_entries);
927 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
928 	return sc_if->sk_cdata.sk_jslots[entry->slot];
929 }
930 
931 /*
932  * Release a jumbo buffer.
933  */
934 void
935 sk_jfree(struct mbuf *m, caddr_t buf, size_t size __unused, void *arg)
936 {
937 	struct sk_jpool_entry *entry;
938 	struct sk_if_softc *sc;
939 	int i, s;
940 
941 	/* Extract the softc struct pointer. */
942 	sc = (struct sk_if_softc *)arg;
943 
944 	if (sc == NULL)
945 		panic("sk_jfree: can't find softc pointer!");
946 
947 	/* calculate the slot this buffer belongs to */
948 
949 	i = ((vaddr_t)buf
950 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
951 
952 	if ((i < 0) || (i >= SK_JSLOTS))
953 		panic("sk_jfree: asked to free buffer that we don't manage!");
954 
955 	s = splvm();
956 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
957 	if (entry == NULL)
958 		panic("sk_jfree: buffer not in use!");
959 	entry->slot = i;
960 	LIST_REMOVE(entry, jpool_entries);
961 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
962 
963 	if (__predict_true(m != NULL))
964 		pool_cache_put(&mbpool_cache, m);
965 	splx(s);
966 }
967 
968 /*
969  * Set media options.
970  */
971 int
972 sk_ifmedia_upd(struct ifnet *ifp)
973 {
974 	struct sk_if_softc *sc_if = ifp->if_softc;
975 
976 	(void) sk_init(ifp);
977 	mii_mediachg(&sc_if->sk_mii);
978 	return 0;
979 }
980 
981 /*
982  * Report current media status.
983  */
984 void
985 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
986 {
987 	struct sk_if_softc *sc_if = ifp->if_softc;
988 
989 	mii_pollstat(&sc_if->sk_mii);
990 	ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
991 	ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
992 }
993 
994 int
995 sk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
996 {
997 	struct sk_if_softc *sc_if = ifp->if_softc;
998 	struct sk_softc *sc = sc_if->sk_softc;
999 	struct ifreq *ifr = (struct ifreq *) data;
1000 	struct mii_data *mii;
1001 	int s, error = 0;
1002 
1003 	/* DPRINTFN(2, ("sk_ioctl\n")); */
1004 
1005 	s = splnet();
1006 
1007 	switch (command) {
1008 
1009 	case SIOCSIFFLAGS:
1010 	        DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1011 		if (ifp->if_flags & IFF_UP) {
1012 			if (ifp->if_flags & IFF_RUNNING &&
1013 			    ifp->if_flags & IFF_PROMISC &&
1014 			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
1015 				switch (sc->sk_type) {
1016 				case SK_GENESIS:
1017 					SK_XM_SETBIT_4(sc_if, XM_MODE,
1018 					    XM_MODE_RX_PROMISC);
1019 					break;
1020 				case SK_YUKON:
1021 				case SK_YUKON_LITE:
1022 				case SK_YUKON_LP:
1023 					SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1024 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
1025 					break;
1026 				}
1027 				sk_setmulti(sc_if);
1028 			} else if (ifp->if_flags & IFF_RUNNING &&
1029 			    !(ifp->if_flags & IFF_PROMISC) &&
1030 			    sc_if->sk_if_flags & IFF_PROMISC) {
1031 				switch (sc->sk_type) {
1032 				case SK_GENESIS:
1033 					SK_XM_CLRBIT_4(sc_if, XM_MODE,
1034 					    XM_MODE_RX_PROMISC);
1035 					break;
1036 				case SK_YUKON:
1037 				case SK_YUKON_LITE:
1038 				case SK_YUKON_LP:
1039 					SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1040 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
1041 					break;
1042 				}
1043 
1044 				sk_setmulti(sc_if);
1045 			} else
1046 				(void) sk_init(ifp);
1047 		} else {
1048 			if (ifp->if_flags & IFF_RUNNING)
1049 				sk_stop(ifp,0);
1050 		}
1051 		sc_if->sk_if_flags = ifp->if_flags;
1052 		error = 0;
1053 		break;
1054 
1055 	case SIOCGIFMEDIA:
1056 	case SIOCSIFMEDIA:
1057 	        DPRINTFN(2, ("sk_ioctl MEDIA\n"));
1058 		mii = &sc_if->sk_mii;
1059 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1060 		break;
1061 	default:
1062 	        DPRINTFN(2, ("sk_ioctl ETHER\n"));
1063 		error = ether_ioctl(ifp, command, data);
1064 
1065 		if ( error == ENETRESET) {
1066 			if (ifp->if_flags & IFF_RUNNING) {
1067 				sk_setmulti(sc_if);
1068 				DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1069 			}
1070 			error = 0;
1071 		} else if ( error ) {
1072 			splx(s);
1073 			return error;
1074 		}
1075 		break;
1076 	}
1077 
1078 	splx(s);
1079 	return error;
1080 }
1081 
1082 void
1083 sk_update_int_mod(struct sk_softc *sc)
1084 {
1085 	u_int32_t sk_imtimer_ticks;
1086 
1087 	/*
1088          * Configure interrupt moderation. The moderation timer
1089 	 * defers interrupts specified in the interrupt moderation
1090 	 * timer mask based on the timeout specified in the interrupt
1091 	 * moderation timer init register. Each bit in the timer
1092 	 * register represents one tick, so to specify a timeout in
1093 	 * microseconds, we have to multiply by the correct number of
1094 	 * ticks-per-microsecond.
1095 	 */
1096 	switch (sc->sk_type) {
1097 	case SK_GENESIS:
1098 		sk_imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1099 		break;
1100 	case SK_YUKON_EC:
1101 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1102 		break;
1103 	default:
1104 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1105 	}
1106 	aprint_verbose("%s: interrupt moderation is %d us\n",
1107 	    sc->sk_dev.dv_xname, sc->sk_int_mod);
1108         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1109         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1110 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1111         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1112 	sc->sk_int_mod_pending = 0;
1113 }
1114 
1115 /*
1116  * Lookup: Check the PCI vendor and device, and return a pointer to
1117  * The structure if the IDs match against our list.
1118  */
1119 
1120 static const struct sk_product *
1121 sk_lookup(const struct pci_attach_args *pa)
1122 {
1123 	const struct sk_product *psk;
1124 
1125 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1126 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1127 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1128 			return psk;
1129 	}
1130 	return NULL;
1131 }
1132 
1133 /*
1134  * Probe for a SysKonnect GEnesis chip.
1135  */
1136 
1137 int
1138 skc_probe(struct device *parent __unused, struct cfdata *match __unused,
1139     void *aux)
1140 {
1141 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1142 	const struct sk_product *psk;
1143 	pcireg_t subid;
1144 
1145 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1146 
1147 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
1148 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1149 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1150 	    subid == SK_LINKSYS_EG1032_SUBID)
1151 		return 1;
1152 
1153 	if ((psk = sk_lookup(pa))) {
1154 		return 1;
1155 	}
1156 	return 0;
1157 }
1158 
1159 /*
1160  * Force the GEnesis into reset, then bring it out of reset.
1161  */
1162 void sk_reset(struct sk_softc *sc)
1163 {
1164 	DPRINTFN(2, ("sk_reset\n"));
1165 
1166 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1167 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1168 	if (SK_YUKON_FAMILY(sc->sk_type))
1169 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1170 
1171 	DELAY(1000);
1172 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1173 	DELAY(2);
1174 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1175 	if (SK_YUKON_FAMILY(sc->sk_type))
1176 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1177 
1178 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1179 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1180 		     CSR_READ_2(sc, SK_LINK_CTRL)));
1181 
1182 	if (sc->sk_type == SK_GENESIS) {
1183 		/* Configure packet arbiter */
1184 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1185 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1186 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1187 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1188 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1189 	}
1190 
1191 	/* Enable RAM interface */
1192 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1193 
1194 	sk_update_int_mod(sc);
1195 }
1196 
1197 int
1198 sk_probe(struct device *parent __unused, struct cfdata *match __unused,
1199     void *aux)
1200 {
1201 	struct skc_attach_args *sa = aux;
1202 
1203 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1204 		return 0;
1205 
1206 	return 1;
1207 }
1208 
1209 /*
1210  * Each XMAC chip is attached as a separate logical IP interface.
1211  * Single port cards will have only one logical interface of course.
1212  */
1213 void
1214 sk_attach(struct device *parent, struct device *self, void *aux)
1215 {
1216 	struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
1217 	struct sk_softc *sc = (struct sk_softc *)parent;
1218 	struct skc_attach_args *sa = aux;
1219 	struct sk_txmap_entry	*entry;
1220 	struct ifnet *ifp;
1221 	bus_dma_segment_t seg;
1222 	bus_dmamap_t dmamap;
1223 	caddr_t kva;
1224 	int i, rseg;
1225 
1226 	sc_if->sk_port = sa->skc_port;
1227 	sc_if->sk_softc = sc;
1228 	sc->sk_if[sa->skc_port] = sc_if;
1229 
1230 	if (sa->skc_port == SK_PORT_A)
1231 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1232 	if (sa->skc_port == SK_PORT_B)
1233 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1234 
1235 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1236 
1237 	/*
1238 	 * Get station address for this interface. Note that
1239 	 * dual port cards actually come with three station
1240 	 * addresses: one for each port, plus an extra. The
1241 	 * extra one is used by the SysKonnect driver software
1242 	 * as a 'virtual' station address for when both ports
1243 	 * are operating in failover mode. Currently we don't
1244 	 * use this extra address.
1245 	 */
1246 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1247 		sc_if->sk_enaddr[i] =
1248 			sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1249 
1250 
1251 	aprint_normal(": Ethernet address %s\n",
1252 	    ether_sprintf(sc_if->sk_enaddr));
1253 
1254 	/*
1255 	 * Set up RAM buffer addresses. The NIC will have a certain
1256 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1257 	 * need to divide this up a) between the transmitter and
1258  	 * receiver and b) between the two XMACs, if this is a
1259 	 * dual port NIC. Our algorithm is to divide up the memory
1260 	 * evenly so that everyone gets a fair share.
1261 	 */
1262 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1263 		u_int32_t		chunk, val;
1264 
1265 		chunk = sc->sk_ramsize / 2;
1266 		val = sc->sk_rboff / sizeof(u_int64_t);
1267 		sc_if->sk_rx_ramstart = val;
1268 		val += (chunk / sizeof(u_int64_t));
1269 		sc_if->sk_rx_ramend = val - 1;
1270 		sc_if->sk_tx_ramstart = val;
1271 		val += (chunk / sizeof(u_int64_t));
1272 		sc_if->sk_tx_ramend = val - 1;
1273 	} else {
1274 		u_int32_t		chunk, val;
1275 
1276 		chunk = sc->sk_ramsize / 4;
1277 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1278 		    sizeof(u_int64_t);
1279 		sc_if->sk_rx_ramstart = val;
1280 		val += (chunk / sizeof(u_int64_t));
1281 		sc_if->sk_rx_ramend = val - 1;
1282 		sc_if->sk_tx_ramstart = val;
1283 		val += (chunk / sizeof(u_int64_t));
1284 		sc_if->sk_tx_ramend = val - 1;
1285 	}
1286 
1287 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1288 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
1289 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1290 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1291 
1292 	/* Read and save PHY type and set PHY address */
1293 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1294 	switch (sc_if->sk_phytype) {
1295 	case SK_PHYTYPE_XMAC:
1296 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1297 		break;
1298 	case SK_PHYTYPE_BCOM:
1299 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1300 		break;
1301 	case SK_PHYTYPE_MARV_COPPER:
1302 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1303 		break;
1304 	default:
1305 		aprint_error("%s: unsupported PHY type: %d\n",
1306 		    sc->sk_dev.dv_xname, sc_if->sk_phytype);
1307 		return;
1308 	}
1309 
1310 	/* Allocate the descriptor queues. */
1311 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1312 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1313 		aprint_error("%s: can't alloc rx buffers\n",
1314 		    sc->sk_dev.dv_xname);
1315 		goto fail;
1316 	}
1317 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1318 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1319 		aprint_error("%s: can't map dma buffers (%lu bytes)\n",
1320 		       sc_if->sk_dev.dv_xname,
1321 		       (u_long) sizeof(struct sk_ring_data));
1322 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1323 		goto fail;
1324 	}
1325 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1326 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1327             &sc_if->sk_ring_map)) {
1328 		aprint_error("%s: can't create dma map\n",
1329 		    sc_if->sk_dev.dv_xname);
1330 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1331 		    sizeof(struct sk_ring_data));
1332 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1333 		goto fail;
1334 	}
1335 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1336 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1337 		aprint_error("%s: can't load dma map\n",
1338 		    sc_if->sk_dev.dv_xname);
1339 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1340 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1341 		    sizeof(struct sk_ring_data));
1342 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1343 		goto fail;
1344 	}
1345 
1346 	for (i = 0; i < SK_RX_RING_CNT; i++)
1347 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1348 
1349 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1350 	for (i = 0; i < SK_TX_RING_CNT; i++) {
1351 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1352 
1353 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1354 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1355 			aprint_error("%s: Can't create TX dmamap\n",
1356 				sc_if->sk_dev.dv_xname);
1357 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1358 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1359 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1360 			    sizeof(struct sk_ring_data));
1361 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1362 			goto fail;
1363 		}
1364 
1365 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1366 		if (!entry) {
1367 			aprint_error("%s: Can't alloc txmap entry\n",
1368 				sc_if->sk_dev.dv_xname);
1369 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1370 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1371 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1372 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1373 			    sizeof(struct sk_ring_data));
1374 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1375 			goto fail;
1376 		}
1377 		entry->dmamap = dmamap;
1378 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1379 	}
1380 
1381         sc_if->sk_rdata = (struct sk_ring_data *)kva;
1382 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1383 
1384 	ifp = &sc_if->sk_ethercom.ec_if;
1385 	/* Try to allocate memory for jumbo buffers. */
1386 	if (sk_alloc_jumbo_mem(sc_if)) {
1387 		aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1388 		goto fail;
1389 	}
1390 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1391 		| ETHERCAP_JUMBO_MTU;
1392 
1393 	ifp->if_softc = sc_if;
1394 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1395 	ifp->if_ioctl = sk_ioctl;
1396 	ifp->if_start = sk_start;
1397 	ifp->if_stop = sk_stop;
1398 	ifp->if_init = sk_init;
1399 	ifp->if_watchdog = sk_watchdog;
1400 	ifp->if_capabilities = 0;
1401 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1402 	IFQ_SET_READY(&ifp->if_snd);
1403 	strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
1404 
1405 	/*
1406 	 * Do miibus setup.
1407 	 */
1408 	switch (sc->sk_type) {
1409 	case SK_GENESIS:
1410 		sk_init_xmac(sc_if);
1411 		break;
1412 	case SK_YUKON:
1413 	case SK_YUKON_LITE:
1414 	case SK_YUKON_LP:
1415 		sk_init_yukon(sc_if);
1416 		break;
1417 	default:
1418 		panic("%s: unknown device type %d", sc->sk_dev.dv_xname,
1419 		      sc->sk_type);
1420 	}
1421 
1422  	DPRINTFN(2, ("sk_attach: 1\n"));
1423 
1424 	sc_if->sk_mii.mii_ifp = ifp;
1425 	switch (sc->sk_type) {
1426 	case SK_GENESIS:
1427 		sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1428 		sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1429 		sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1430 		break;
1431 	case SK_YUKON:
1432 	case SK_YUKON_LITE:
1433 	case SK_YUKON_LP:
1434 		sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1435 		sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1436 		sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1437 		break;
1438 	}
1439 
1440 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1441 	    sk_ifmedia_upd, sk_ifmedia_sts);
1442 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1443 	    MII_OFFSET_ANY, 0);
1444 	if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1445 		aprint_error("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
1446 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1447 			    0, NULL);
1448 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1449 	} else
1450 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1451 
1452 	callout_init(&sc_if->sk_tick_ch);
1453 	callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1454 
1455 	DPRINTFN(2, ("sk_attach: 1\n"));
1456 
1457 	/*
1458 	 * Call MI attach routines.
1459 	 */
1460 	if_attach(ifp);
1461 
1462 	ether_ifattach(ifp, sc_if->sk_enaddr);
1463 
1464 #if NRND > 0
1465         rnd_attach_source(&sc->rnd_source, sc->sk_dev.dv_xname,
1466             RND_TYPE_NET, 0);
1467 #endif
1468 
1469 	DPRINTFN(2, ("sk_attach: end\n"));
1470 
1471 	return;
1472 
1473 fail:
1474 	sc->sk_if[sa->skc_port] = NULL;
1475 }
1476 
1477 int
1478 skcprint(void *aux, const char *pnp)
1479 {
1480 	struct skc_attach_args *sa = aux;
1481 
1482 	if (pnp)
1483 		aprint_normal("sk port %c at %s",
1484 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1485 	else
1486 		aprint_normal(" port %c",
1487 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1488 	return UNCONF;
1489 }
1490 
1491 /*
1492  * Attach the interface. Allocate softc structures, do ifmedia
1493  * setup and ethernet/BPF attach.
1494  */
1495 void
1496 skc_attach(struct device *parent __unused, struct device *self, void *aux)
1497 {
1498 	struct sk_softc *sc = (struct sk_softc *)self;
1499 	struct pci_attach_args *pa = aux;
1500 	struct skc_attach_args skca;
1501 	pci_chipset_tag_t pc = pa->pa_pc;
1502 #ifndef SK_USEIOSPACE
1503 	pcireg_t memtype;
1504 #endif
1505 	pci_intr_handle_t ih;
1506 	const char *intrstr = NULL;
1507 	bus_addr_t iobase;
1508 	bus_size_t iosize;
1509 	int rc, sk_nodenum;
1510 	u_int32_t command;
1511 	const char *revstr;
1512 	const struct sysctlnode *node;
1513 
1514 	DPRINTFN(2, ("begin skc_attach\n"));
1515 
1516 	/*
1517 	 * Handle power management nonsense.
1518 	 */
1519 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1520 
1521 	if (command == 0x01) {
1522 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1523 		if (command & SK_PSTATE_MASK) {
1524 			u_int32_t		xiobase, membase, irq;
1525 
1526 			/* Save important PCI config data. */
1527 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1528 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1529 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1530 
1531 			/* Reset the power state. */
1532 			aprint_normal("%s chip is in D%d power mode "
1533 			    "-- setting to D0\n", sc->sk_dev.dv_xname,
1534 			    command & SK_PSTATE_MASK);
1535 			command &= 0xFFFFFFFC;
1536 			pci_conf_write(pc, pa->pa_tag,
1537 			    SK_PCI_PWRMGMTCTRL, command);
1538 
1539 			/* Restore PCI config data. */
1540 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1541 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1542 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1543 		}
1544 	}
1545 
1546 	/*
1547 	 * Map control/status registers.
1548 	 */
1549 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1550 	command |= PCI_COMMAND_IO_ENABLE |
1551 	    PCI_COMMAND_MEM_ENABLE |
1552 	    PCI_COMMAND_MASTER_ENABLE;
1553 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1554 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1555 
1556 #ifdef SK_USEIOSPACE
1557 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
1558 		aprint_error(": failed to enable I/O ports!\n");
1559 		return;
1560 	}
1561 	/*
1562 	 * Map control/status registers.
1563 	 */
1564 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1565 			&sc->sk_btag, &sc->sk_bhandle,
1566 			&iobase, &iosize)) {
1567 		aprint_error(": can't find i/o space\n");
1568 		return;
1569 	}
1570 #else
1571 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1572 		aprint_error(": failed to enable memory mapping!\n");
1573 		return;
1574 	}
1575 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1576 	switch (memtype) {
1577         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1578         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1579                 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1580 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1581 				   &iobase, &iosize) == 0)
1582                         break;
1583         default:
1584                 aprint_error("%s: can't find mem space\n",
1585 		       sc->sk_dev.dv_xname);
1586                 return;
1587 	}
1588 
1589 	DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
1590 #endif
1591 	sc->sc_dmatag = pa->pa_dmat;
1592 
1593 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1594 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1595 
1596 	/* bail out here if chip is not recognized */
1597 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1598 		aprint_error("%s: unknown chip type\n",sc->sk_dev.dv_xname);
1599 		goto fail;
1600 	}
1601 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1602 
1603 	/* Allocate interrupt */
1604 	if (pci_intr_map(pa, &ih)) {
1605 		aprint_error(": couldn't map interrupt\n");
1606 		goto fail;
1607 	}
1608 
1609 	intrstr = pci_intr_string(pc, ih);
1610 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1611 	if (sc->sk_intrhand == NULL) {
1612 		aprint_error(": couldn't establish interrupt");
1613 		if (intrstr != NULL)
1614 			aprint_normal(" at %s", intrstr);
1615 		goto fail;
1616 	}
1617 	aprint_normal(": %s\n", intrstr);
1618 
1619 	/* Reset the adapter. */
1620 	sk_reset(sc);
1621 
1622 	/* Read and save vital product data from EEPROM. */
1623 	sk_vpd_read(sc);
1624 
1625 	if (sc->sk_type == SK_GENESIS) {
1626 		u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1627 		/* Read and save RAM size and RAMbuffer offset */
1628 		switch (val) {
1629 		case SK_RAMSIZE_512K_64:
1630 			sc->sk_ramsize = 0x80000;
1631 			sc->sk_rboff = SK_RBOFF_0;
1632 			break;
1633 		case SK_RAMSIZE_1024K_64:
1634 			sc->sk_ramsize = 0x100000;
1635 			sc->sk_rboff = SK_RBOFF_80000;
1636 			break;
1637 		case SK_RAMSIZE_1024K_128:
1638 			sc->sk_ramsize = 0x100000;
1639 			sc->sk_rboff = SK_RBOFF_0;
1640 			break;
1641 		case SK_RAMSIZE_2048K_128:
1642 			sc->sk_ramsize = 0x200000;
1643 			sc->sk_rboff = SK_RBOFF_0;
1644 			break;
1645 		default:
1646 			aprint_error("%s: unknown ram size: %d\n",
1647 			       sc->sk_dev.dv_xname, val);
1648 			goto fail_1;
1649 			break;
1650 		}
1651 
1652 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1653 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
1654 			     sc->sk_rboff));
1655 	} else {
1656 	  	u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1657 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
1658 		sc->sk_rboff = SK_RBOFF_0;
1659 
1660 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1661 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
1662 			     sc->sk_rboff));
1663 	}
1664 
1665 	/* Read and save physical media type */
1666 	switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1667 	case SK_PMD_1000BASESX:
1668 		sc->sk_pmd = IFM_1000_SX;
1669 		break;
1670 	case SK_PMD_1000BASELX:
1671 		sc->sk_pmd = IFM_1000_LX;
1672 		break;
1673 	case SK_PMD_1000BASECX:
1674 		sc->sk_pmd = IFM_1000_CX;
1675 		break;
1676 	case SK_PMD_1000BASETX:
1677 	case SK_PMD_1000BASETX_ALT:
1678 		sc->sk_pmd = IFM_1000_T;
1679 		break;
1680 	default:
1681 		aprint_error("%s: unknown media type: 0x%x\n",
1682 		    sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
1683 		goto fail_1;
1684 	}
1685 
1686 	/* determine whether to name it with vpd or just make it up */
1687 	/* Marvell Yukon VPD's can freqently be bogus */
1688 
1689 	switch (pa->pa_id) {
1690 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1691 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1692 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1693 	case PCI_PRODUCT_3COM_3C940:
1694 	case PCI_PRODUCT_DLINK_DGE530T:
1695 	case PCI_PRODUCT_DLINK_DGE560T:
1696 	case PCI_PRODUCT_DLINK_DGE560T_2:
1697 	case PCI_PRODUCT_LINKSYS_EG1032:
1698 	case PCI_PRODUCT_LINKSYS_EG1064:
1699 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1700 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1701 	case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1702 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1703 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
1704 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
1705 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1706 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1707  		sc->sk_name = sc->sk_vpd_prodname;
1708  		break;
1709 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
1710 	/* whoops yukon vpd prodname bears no resemblance to reality */
1711 		switch (sc->sk_type) {
1712 		case SK_GENESIS:
1713 			sc->sk_name = sc->sk_vpd_prodname;
1714 			break;
1715 		case SK_YUKON:
1716 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1717 			break;
1718 		case SK_YUKON_LITE:
1719 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1720 			break;
1721 		case SK_YUKON_LP:
1722 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1723 			break;
1724 		default:
1725 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1726 		}
1727 
1728 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1729 
1730 		if ( sc->sk_type == SK_YUKON ) {
1731 			uint32_t flashaddr;
1732 			uint8_t testbyte;
1733 
1734 			flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1735 
1736 			/* test Flash-Address Register */
1737 			sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1738 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1739 
1740 			if (testbyte != 0) {
1741 				/* this is yukon lite Rev. A0 */
1742 				sc->sk_type = SK_YUKON_LITE;
1743 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
1744 				/* restore Flash-Address Register */
1745 				sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1746 			}
1747 		}
1748 		break;
1749 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
1750 		sc->sk_name = sc->sk_vpd_prodname;
1751 		break;
1752  	default:
1753 		sc->sk_name = "Unknown Marvell";
1754 	}
1755 
1756 
1757 	if ( sc->sk_type == SK_YUKON_LITE ) {
1758 		switch (sc->sk_rev) {
1759 		case SK_YUKON_LITE_REV_A0:
1760 			revstr = "A0";
1761 			break;
1762 		case SK_YUKON_LITE_REV_A1:
1763 			revstr = "A1";
1764 			break;
1765 		case SK_YUKON_LITE_REV_A3:
1766 			revstr = "A3";
1767 			break;
1768 		default:
1769 			revstr = "";
1770 		}
1771 	} else {
1772 		revstr = "";
1773 	}
1774 
1775 	/* Announce the product name. */
1776 	aprint_normal("%s: %s rev. %s(0x%x)\n", sc->sk_dev.dv_xname,
1777 			      sc->sk_name, revstr, sc->sk_rev);
1778 
1779 	skca.skc_port = SK_PORT_A;
1780 	(void)config_found(&sc->sk_dev, &skca, skcprint);
1781 
1782 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1783 		skca.skc_port = SK_PORT_B;
1784 		(void)config_found(&sc->sk_dev, &skca, skcprint);
1785 	}
1786 
1787 	/* Turn on the 'driver is loaded' LED. */
1788 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1789 
1790 	/* skc sysctl setup */
1791 
1792 	sc->sk_int_mod = SK_IM_DEFAULT;
1793 	sc->sk_int_mod_pending = 0;
1794 
1795 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1796 	    0, CTLTYPE_NODE, sc->sk_dev.dv_xname,
1797 	    SYSCTL_DESCR("skc per-controller controls"),
1798 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1799 	    CTL_EOL)) != 0) {
1800 		aprint_normal("%s: couldn't create sysctl node\n",
1801 		    sc->sk_dev.dv_xname);
1802 		goto fail_1;
1803 	}
1804 
1805 	sk_nodenum = node->sysctl_num;
1806 
1807 	/* interrupt moderation time in usecs */
1808 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1809 	    CTLFLAG_READWRITE,
1810 	    CTLTYPE_INT, "int_mod",
1811 	    SYSCTL_DESCR("sk interrupt moderation timer"),
1812 	    sk_sysctl_handler, 0, sc,
1813 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1814 	    CTL_EOL)) != 0) {
1815 		aprint_normal("%s: couldn't create int_mod sysctl node\n",
1816 		    sc->sk_dev.dv_xname);
1817 		goto fail_1;
1818 	}
1819 
1820 	return;
1821 
1822 fail_1:
1823 	pci_intr_disestablish(pc, sc->sk_intrhand);
1824 fail:
1825 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1826 }
1827 
1828 int
1829 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1830 {
1831 	struct sk_softc		*sc = sc_if->sk_softc;
1832 	struct sk_tx_desc	*f = NULL;
1833 	u_int32_t		frag, cur, cnt = 0, sk_ctl;
1834 	int			i;
1835 	struct sk_txmap_entry	*entry;
1836 	bus_dmamap_t		txmap;
1837 
1838 	DPRINTFN(3, ("sk_encap\n"));
1839 
1840 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1841 	if (entry == NULL) {
1842 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
1843 		return ENOBUFS;
1844 	}
1845 	txmap = entry->dmamap;
1846 
1847 	cur = frag = *txidx;
1848 
1849 #ifdef SK_DEBUG
1850 	if (skdebug >= 3)
1851 		sk_dump_mbuf(m_head);
1852 #endif
1853 
1854 	/*
1855 	 * Start packing the mbufs in this chain into
1856 	 * the fragment pointers. Stop when we run out
1857 	 * of fragments or hit the end of the mbuf chain.
1858 	 */
1859 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1860 	    BUS_DMA_NOWAIT)) {
1861 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1862 		return ENOBUFS;
1863 	}
1864 
1865 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1866 
1867 	/* Sync the DMA map. */
1868 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1869 	    BUS_DMASYNC_PREWRITE);
1870 
1871 	for (i = 0; i < txmap->dm_nsegs; i++) {
1872 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1873 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1874 			return ENOBUFS;
1875 		}
1876 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
1877 		f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1878 		sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1879 		if (cnt == 0)
1880 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
1881 		else
1882 			sk_ctl |= SK_TXCTL_OWN;
1883 		f->sk_ctl = htole32(sk_ctl);
1884 		cur = frag;
1885 		SK_INC(frag, SK_TX_RING_CNT);
1886 		cnt++;
1887 	}
1888 
1889 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1890 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1891 
1892 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
1893 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1894 		htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1895 
1896 	/* Sync descriptors before handing to chip */
1897 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1898 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1899 
1900 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1901 		htole32(SK_TXCTL_OWN);
1902 
1903 	/* Sync first descriptor to hand it off */
1904 	SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1905 
1906 	sc_if->sk_cdata.sk_tx_cnt += cnt;
1907 
1908 #ifdef SK_DEBUG
1909 	if (skdebug >= 3) {
1910 		struct sk_tx_desc *desc;
1911 		u_int32_t idx;
1912 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1913 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1914 			sk_dump_txdesc(desc, idx);
1915 		}
1916 	}
1917 #endif
1918 
1919 	*txidx = frag;
1920 
1921 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
1922 
1923 	return 0;
1924 }
1925 
1926 void
1927 sk_start(struct ifnet *ifp)
1928 {
1929         struct sk_if_softc	*sc_if = ifp->if_softc;
1930         struct sk_softc		*sc = sc_if->sk_softc;
1931         struct mbuf		*m_head = NULL;
1932         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
1933 	int			pkts = 0;
1934 
1935 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1936 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1937 
1938 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1939 		IFQ_POLL(&ifp->if_snd, m_head);
1940 		if (m_head == NULL)
1941 			break;
1942 
1943 		/*
1944 		 * Pack the data into the transmit ring. If we
1945 		 * don't have room, set the OACTIVE flag and wait
1946 		 * for the NIC to drain the ring.
1947 		 */
1948 		if (sk_encap(sc_if, m_head, &idx)) {
1949 			ifp->if_flags |= IFF_OACTIVE;
1950 			break;
1951 		}
1952 
1953 		/* now we are committed to transmit the packet */
1954 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1955 		pkts++;
1956 
1957 		/*
1958 		 * If there's a BPF listener, bounce a copy of this frame
1959 		 * to him.
1960 		 */
1961 #if NBPFILTER > 0
1962 		if (ifp->if_bpf)
1963 			bpf_mtap(ifp->if_bpf, m_head);
1964 #endif
1965 	}
1966 	if (pkts == 0)
1967 		return;
1968 
1969 	/* Transmit */
1970 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
1971 		sc_if->sk_cdata.sk_tx_prod = idx;
1972 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1973 
1974 		/* Set a timeout in case the chip goes out to lunch. */
1975 		ifp->if_timer = 5;
1976 	}
1977 }
1978 
1979 
1980 void
1981 sk_watchdog(struct ifnet *ifp)
1982 {
1983 	struct sk_if_softc *sc_if = ifp->if_softc;
1984 
1985 	/*
1986 	 * Reclaim first as there is a possibility of losing Tx completion
1987 	 * interrupts.
1988 	 */
1989 	sk_txeof(sc_if);
1990 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1991 		aprint_error("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
1992 
1993 		ifp->if_oerrors++;
1994 
1995 		sk_init(ifp);
1996 	}
1997 }
1998 
1999 void
2000 sk_shutdown(void * v)
2001 {
2002 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
2003 	struct sk_softc		*sc = sc_if->sk_softc;
2004 	struct ifnet 		*ifp = &sc_if->sk_ethercom.ec_if;
2005 
2006 	DPRINTFN(2, ("sk_shutdown\n"));
2007 	sk_stop(ifp,1);
2008 
2009 	/* Turn off the 'driver is loaded' LED. */
2010 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2011 
2012 	/*
2013 	 * Reset the GEnesis controller. Doing this should also
2014 	 * assert the resets on the attached XMAC(s).
2015 	 */
2016 	sk_reset(sc);
2017 }
2018 
2019 void
2020 sk_rxeof(struct sk_if_softc *sc_if)
2021 {
2022 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2023 	struct mbuf		*m;
2024 	struct sk_chain		*cur_rx;
2025 	struct sk_rx_desc	*cur_desc;
2026 	int			i, cur, total_len = 0;
2027 	u_int32_t		rxstat, sk_ctl;
2028 	bus_dmamap_t		dmamap;
2029 
2030 	i = sc_if->sk_cdata.sk_rx_prod;
2031 
2032 	DPRINTFN(3, ("sk_rxeof %d\n", i));
2033 
2034 	for (;;) {
2035 		cur = i;
2036 
2037 		/* Sync the descriptor */
2038 		SK_CDRXSYNC(sc_if, cur,
2039 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2040 
2041 		sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2042 		if (sk_ctl & SK_RXCTL_OWN) {
2043 			/* Invalidate the descriptor -- it's not ready yet */
2044 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2045 			sc_if->sk_cdata.sk_rx_prod = i;
2046 			break;
2047 		}
2048 
2049 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2050 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2051 		dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2052 
2053 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2054 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2055 
2056 		rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2057 		m = cur_rx->sk_mbuf;
2058 		cur_rx->sk_mbuf = NULL;
2059 		total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2060 
2061 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
2062 
2063 		SK_INC(i, SK_RX_RING_CNT);
2064 
2065 		if (rxstat & XM_RXSTAT_ERRFRAME) {
2066 			ifp->if_ierrors++;
2067 			sk_newbuf(sc_if, cur, m, dmamap);
2068 			continue;
2069 		}
2070 
2071 		/*
2072 		 * Try to allocate a new jumbo buffer. If that
2073 		 * fails, copy the packet to mbufs and put the
2074 		 * jumbo buffer back in the ring so it can be
2075 		 * re-used. If allocating mbufs fails, then we
2076 		 * have to drop the packet.
2077 		 */
2078 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2079 			struct mbuf		*m0;
2080 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2081 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
2082 			sk_newbuf(sc_if, cur, m, dmamap);
2083 			if (m0 == NULL) {
2084 				aprint_error("%s: no receive buffers "
2085 				    "available -- packet dropped!\n",
2086 				    sc_if->sk_dev.dv_xname);
2087 				ifp->if_ierrors++;
2088 				continue;
2089 			}
2090 			m_adj(m0, ETHER_ALIGN);
2091 			m = m0;
2092 		} else {
2093 			m->m_pkthdr.rcvif = ifp;
2094 			m->m_pkthdr.len = m->m_len = total_len;
2095 		}
2096 
2097 		ifp->if_ipackets++;
2098 
2099 #if NBPFILTER > 0
2100 		if (ifp->if_bpf)
2101 			bpf_mtap(ifp->if_bpf, m);
2102 #endif
2103 		/* pass it on. */
2104 		(*ifp->if_input)(ifp, m);
2105 	}
2106 }
2107 
2108 void
2109 sk_txeof(struct sk_if_softc *sc_if)
2110 {
2111 	struct sk_softc		*sc = sc_if->sk_softc;
2112 	struct sk_tx_desc	*cur_tx;
2113 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2114 	u_int32_t		idx, sk_ctl;
2115 	struct sk_txmap_entry	*entry;
2116 
2117 	DPRINTFN(3, ("sk_txeof\n"));
2118 
2119 	/*
2120 	 * Go through our tx ring and free mbufs for those
2121 	 * frames that have been sent.
2122 	 */
2123 	idx = sc_if->sk_cdata.sk_tx_cons;
2124 	while (idx != sc_if->sk_cdata.sk_tx_prod) {
2125 		SK_CDTXSYNC(sc_if, idx, 1,
2126 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2127 
2128 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2129 		sk_ctl = le32toh(cur_tx->sk_ctl);
2130 #ifdef SK_DEBUG
2131 		if (skdebug >= 3)
2132 			sk_dump_txdesc(cur_tx, idx);
2133 #endif
2134 		if (sk_ctl & SK_TXCTL_OWN) {
2135 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2136 			break;
2137 		}
2138 		if (sk_ctl & SK_TXCTL_LASTFRAG)
2139 			ifp->if_opackets++;
2140 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2141 			entry = sc_if->sk_cdata.sk_tx_map[idx];
2142 
2143 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2144 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2145 
2146 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2147 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2148 
2149 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2150 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2151 					  link);
2152 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2153 		}
2154 		sc_if->sk_cdata.sk_tx_cnt--;
2155 		SK_INC(idx, SK_TX_RING_CNT);
2156 	}
2157 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
2158 		ifp->if_timer = 0;
2159 	else /* nudge chip to keep tx ring moving */
2160 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2161 
2162 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2163 		ifp->if_flags &= ~IFF_OACTIVE;
2164 
2165 	sc_if->sk_cdata.sk_tx_cons = idx;
2166 }
2167 
2168 void
2169 sk_tick(void *xsc_if)
2170 {
2171 	struct sk_if_softc *sc_if = xsc_if;
2172 	struct mii_data *mii = &sc_if->sk_mii;
2173 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2174 	int i;
2175 
2176 	DPRINTFN(3, ("sk_tick\n"));
2177 
2178 	if (!(ifp->if_flags & IFF_UP))
2179 		return;
2180 
2181 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2182 		sk_intr_bcom(sc_if);
2183 		return;
2184 	}
2185 
2186 	/*
2187 	 * According to SysKonnect, the correct way to verify that
2188 	 * the link has come back up is to poll bit 0 of the GPIO
2189 	 * register three times. This pin has the signal from the
2190 	 * link sync pin connected to it; if we read the same link
2191 	 * state 3 times in a row, we know the link is up.
2192 	 */
2193 	for (i = 0; i < 3; i++) {
2194 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2195 			break;
2196 	}
2197 
2198 	if (i != 3) {
2199 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2200 		return;
2201 	}
2202 
2203 	/* Turn the GP0 interrupt back on. */
2204 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2205 	SK_XM_READ_2(sc_if, XM_ISR);
2206 	mii_tick(mii);
2207 	mii_pollstat(mii);
2208 	callout_stop(&sc_if->sk_tick_ch);
2209 }
2210 
2211 void
2212 sk_intr_bcom(struct sk_if_softc *sc_if)
2213 {
2214 	struct mii_data *mii = &sc_if->sk_mii;
2215 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2216 	int status;
2217 
2218 
2219 	DPRINTFN(3, ("sk_intr_bcom\n"));
2220 
2221 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2222 
2223 	/*
2224 	 * Read the PHY interrupt register to make sure
2225 	 * we clear any pending interrupts.
2226 	 */
2227 	status = sk_xmac_miibus_readreg((struct device *)sc_if,
2228 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2229 
2230 	if (!(ifp->if_flags & IFF_RUNNING)) {
2231 		sk_init_xmac(sc_if);
2232 		return;
2233 	}
2234 
2235 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2236 		int lstat;
2237 		lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
2238 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2239 
2240 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2241 			mii_mediachg(mii);
2242 			/* Turn off the link LED. */
2243 			SK_IF_WRITE_1(sc_if, 0,
2244 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
2245 			sc_if->sk_link = 0;
2246 		} else if (status & BRGPHY_ISR_LNK_CHG) {
2247 			sk_xmac_miibus_writereg((struct device *)sc_if,
2248 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2249 			mii_tick(mii);
2250 			sc_if->sk_link = 1;
2251 			/* Turn on the link LED. */
2252 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2253 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2254 			    SK_LINKLED_BLINK_OFF);
2255 			mii_pollstat(mii);
2256 		} else {
2257 			mii_tick(mii);
2258 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2259 		}
2260 	}
2261 
2262 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2263 }
2264 
2265 void
2266 sk_intr_xmac(struct sk_if_softc	*sc_if)
2267 {
2268 	u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2269 
2270 	DPRINTFN(3, ("sk_intr_xmac\n"));
2271 
2272 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2273 		if (status & XM_ISR_GP0_SET) {
2274 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2275 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2276 		}
2277 
2278 		if (status & XM_ISR_AUTONEG_DONE) {
2279 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2280 		}
2281 	}
2282 
2283 	if (status & XM_IMR_TX_UNDERRUN)
2284 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2285 
2286 	if (status & XM_IMR_RX_OVERRUN)
2287 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2288 }
2289 
2290 void
2291 sk_intr_yukon(struct sk_if_softc *sc_if)
2292 {
2293 	int status;
2294 
2295 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2296 
2297 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2298 }
2299 
2300 int
2301 sk_intr(void *xsc)
2302 {
2303 	struct sk_softc		*sc = xsc;
2304 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
2305 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
2306 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2307 	u_int32_t		status;
2308 	int			claimed = 0;
2309 
2310 	if (sc_if0 != NULL)
2311 		ifp0 = &sc_if0->sk_ethercom.ec_if;
2312 	if (sc_if1 != NULL)
2313 		ifp1 = &sc_if1->sk_ethercom.ec_if;
2314 
2315 	for (;;) {
2316 		status = CSR_READ_4(sc, SK_ISSR);
2317 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2318 
2319 		if (!(status & sc->sk_intrmask))
2320 			break;
2321 
2322 		claimed = 1;
2323 
2324 		/* Handle receive interrupts first. */
2325 		if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2326 			sk_rxeof(sc_if0);
2327 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2328 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2329 		}
2330 		if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2331 			sk_rxeof(sc_if1);
2332 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2333 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2334 		}
2335 
2336 		/* Then transmit interrupts. */
2337 		if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2338 			sk_txeof(sc_if0);
2339 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2340 			    SK_TXBMU_CLR_IRQ_EOF);
2341 		}
2342 		if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2343 			sk_txeof(sc_if1);
2344 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2345 			    SK_TXBMU_CLR_IRQ_EOF);
2346 		}
2347 
2348 		/* Then MAC interrupts. */
2349 		if (sc_if0 && (status & SK_ISR_MAC1) &&
2350 		    (ifp0->if_flags & IFF_RUNNING)) {
2351 			if (sc->sk_type == SK_GENESIS)
2352 				sk_intr_xmac(sc_if0);
2353 			else
2354 				sk_intr_yukon(sc_if0);
2355 		}
2356 
2357 		if (sc_if1 && (status & SK_ISR_MAC2) &&
2358 		    (ifp1->if_flags & IFF_RUNNING)) {
2359 			if (sc->sk_type == SK_GENESIS)
2360 				sk_intr_xmac(sc_if1);
2361 			else
2362 				sk_intr_yukon(sc_if1);
2363 
2364 		}
2365 
2366 		if (status & SK_ISR_EXTERNAL_REG) {
2367 			if (sc_if0 != NULL &&
2368 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2369 				sk_intr_bcom(sc_if0);
2370 
2371 			if (sc_if1 != NULL &&
2372 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2373 				sk_intr_bcom(sc_if1);
2374 		}
2375 	}
2376 
2377 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2378 
2379 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2380 		sk_start(ifp0);
2381 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2382 		sk_start(ifp1);
2383 
2384 #if NRND > 0
2385 	if (RND_ENABLED(&sc->rnd_source))
2386 		rnd_add_uint32(&sc->rnd_source, status);
2387 #endif
2388 
2389 	if (sc->sk_int_mod_pending)
2390 		sk_update_int_mod(sc);
2391 
2392 	return claimed;
2393 }
2394 
2395 void
2396 sk_init_xmac(struct sk_if_softc	*sc_if)
2397 {
2398 	struct sk_softc		*sc = sc_if->sk_softc;
2399 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2400 	static const struct sk_bcom_hack     bhack[] = {
2401 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2402 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2403 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2404 	{ 0, 0 } };
2405 
2406 	DPRINTFN(1, ("sk_init_xmac\n"));
2407 
2408 	/* Unreset the XMAC. */
2409 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2410 	DELAY(1000);
2411 
2412 	/* Reset the XMAC's internal state. */
2413 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2414 
2415 	/* Save the XMAC II revision */
2416 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2417 
2418 	/*
2419 	 * Perform additional initialization for external PHYs,
2420 	 * namely for the 1000baseTX cards that use the XMAC's
2421 	 * GMII mode.
2422 	 */
2423 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2424 		int			i = 0;
2425 		u_int32_t		val;
2426 
2427 		/* Take PHY out of reset. */
2428 		val = sk_win_read_4(sc, SK_GPIO);
2429 		if (sc_if->sk_port == SK_PORT_A)
2430 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2431 		else
2432 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2433 		sk_win_write_4(sc, SK_GPIO, val);
2434 
2435 		/* Enable GMII mode on the XMAC. */
2436 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2437 
2438 		sk_xmac_miibus_writereg((struct device *)sc_if,
2439 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2440 		DELAY(10000);
2441 		sk_xmac_miibus_writereg((struct device *)sc_if,
2442 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2443 
2444 		/*
2445 		 * Early versions of the BCM5400 apparently have
2446 		 * a bug that requires them to have their reserved
2447 		 * registers initialized to some magic values. I don't
2448 		 * know what the numbers do, I'm just the messenger.
2449 		 */
2450 		if (sk_xmac_miibus_readreg((struct device *)sc_if,
2451 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2452 			while (bhack[i].reg) {
2453 				sk_xmac_miibus_writereg((struct device *)sc_if,
2454 				    SK_PHYADDR_BCOM, bhack[i].reg,
2455 				    bhack[i].val);
2456 				i++;
2457 			}
2458 		}
2459 	}
2460 
2461 	/* Set station address */
2462 	SK_XM_WRITE_2(sc_if, XM_PAR0,
2463 		      *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2464 	SK_XM_WRITE_2(sc_if, XM_PAR1,
2465 		      *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2466 	SK_XM_WRITE_2(sc_if, XM_PAR2,
2467 		      *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2468 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2469 
2470 	if (ifp->if_flags & IFF_PROMISC)
2471 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2472 	else
2473 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2474 
2475 	if (ifp->if_flags & IFF_BROADCAST)
2476 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2477 	else
2478 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2479 
2480 	/* We don't need the FCS appended to the packet. */
2481 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2482 
2483 	/* We want short frames padded to 60 bytes. */
2484 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2485 
2486 	/*
2487 	 * Enable the reception of all error frames. This is is
2488 	 * a necessary evil due to the design of the XMAC. The
2489 	 * XMAC's receive FIFO is only 8K in size, however jumbo
2490 	 * frames can be up to 9000 bytes in length. When bad
2491 	 * frame filtering is enabled, the XMAC's RX FIFO operates
2492 	 * in 'store and forward' mode. For this to work, the
2493 	 * entire frame has to fit into the FIFO, but that means
2494 	 * that jumbo frames larger than 8192 bytes will be
2495 	 * truncated. Disabling all bad frame filtering causes
2496 	 * the RX FIFO to operate in streaming mode, in which
2497 	 * case the XMAC will start transfering frames out of the
2498 	 * RX FIFO as soon as the FIFO threshold is reached.
2499 	 */
2500 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2501 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2502 	    XM_MODE_RX_INRANGELEN);
2503 
2504 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2505 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2506 	else
2507 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2508 
2509 	/*
2510 	 * Bump up the transmit threshold. This helps hold off transmit
2511 	 * underruns when we're blasting traffic from both ports at once.
2512 	 */
2513 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2514 
2515 	/* Set multicast filter */
2516 	sk_setmulti(sc_if);
2517 
2518 	/* Clear and enable interrupts */
2519 	SK_XM_READ_2(sc_if, XM_ISR);
2520 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2521 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2522 	else
2523 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2524 
2525 	/* Configure MAC arbiter */
2526 	switch (sc_if->sk_xmac_rev) {
2527 	case XM_XMAC_REV_B2:
2528 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2529 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2530 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2531 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2532 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2533 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2534 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2535 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2536 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2537 		break;
2538 	case XM_XMAC_REV_C1:
2539 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2540 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2541 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2542 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2543 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2544 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2545 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2546 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2547 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2548 		break;
2549 	default:
2550 		break;
2551 	}
2552 	sk_win_write_2(sc, SK_MACARB_CTL,
2553 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2554 
2555 	sc_if->sk_link = 1;
2556 }
2557 
2558 void sk_init_yukon(struct sk_if_softc *sc_if)
2559 {
2560 	u_int32_t		/*mac, */phy;
2561 	u_int16_t		reg;
2562 	struct sk_softc		*sc;
2563 	int			i;
2564 
2565 	DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2566 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2567 
2568 	sc = sc_if->sk_softc;
2569 	if (sc->sk_type == SK_YUKON_LITE &&
2570 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2571 		/* Take PHY out of reset. */
2572 		sk_win_write_4(sc, SK_GPIO,
2573 			(sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2574 	}
2575 
2576 
2577 	/* GMAC and GPHY Reset */
2578 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2579 
2580 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
2581 
2582 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2583 	DELAY(1000);
2584 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2585 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2586 	DELAY(1000);
2587 
2588 
2589 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
2590 
2591 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2592 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2593 
2594 	switch (sc_if->sk_softc->sk_pmd) {
2595 	case IFM_1000_SX:
2596 	case IFM_1000_LX:
2597 		phy |= SK_GPHY_FIBER;
2598 		break;
2599 
2600 	case IFM_1000_CX:
2601 	case IFM_1000_T:
2602 		phy |= SK_GPHY_COPPER;
2603 		break;
2604 	}
2605 
2606 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2607 
2608 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2609 	DELAY(1000);
2610 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2611 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2612 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2613 
2614 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2615 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2616 
2617 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
2618 
2619 	/* unused read of the interrupt source register */
2620 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
2621 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2622 
2623 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2624 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2625 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2626 
2627 	/* MIB Counter Clear Mode set */
2628         reg |= YU_PAR_MIB_CLR;
2629 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2630 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2631 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2632 
2633 	/* MIB Counter Clear Mode clear */
2634 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
2635         reg &= ~YU_PAR_MIB_CLR;
2636 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2637 
2638 	/* receive control reg */
2639 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
2640 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2641 		      YU_RCR_CRCR);
2642 
2643 	/* transmit parameter register */
2644 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
2645 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2646 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2647 
2648 	/* serial mode register */
2649 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
2650 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2651 		      YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2652 		      YU_SMR_IPG_DATA(0x1e));
2653 
2654 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
2655 	/* Setup Yukon's address */
2656 	for (i = 0; i < 3; i++) {
2657 		/* Write Source Address 1 (unicast filter) */
2658 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2659 			      sc_if->sk_enaddr[i * 2] |
2660 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
2661 	}
2662 
2663 	for (i = 0; i < 3; i++) {
2664 		reg = sk_win_read_2(sc_if->sk_softc,
2665 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2666 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2667 	}
2668 
2669 	/* Set multicast filter */
2670 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
2671 	sk_setmulti(sc_if);
2672 
2673 	/* enable interrupt mask for counter overflows */
2674 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
2675 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2676 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2677 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2678 
2679 	/* Configure RX MAC FIFO */
2680 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2681 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2682 
2683 	/* Configure TX MAC FIFO */
2684 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2685 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2686 
2687 	DPRINTFN(6, ("sk_init_yukon: end\n"));
2688 }
2689 
2690 /*
2691  * Note that to properly initialize any part of the GEnesis chip,
2692  * you first have to take it out of reset mode.
2693  */
2694 int
2695 sk_init(struct ifnet *ifp)
2696 {
2697 	struct sk_if_softc	*sc_if = ifp->if_softc;
2698 	struct sk_softc		*sc = sc_if->sk_softc;
2699 	struct mii_data		*mii = &sc_if->sk_mii;
2700 	int			s;
2701 	u_int32_t		imr, sk_imtimer_ticks;
2702 
2703 	DPRINTFN(1, ("sk_init\n"));
2704 
2705 	s = splnet();
2706 
2707 	if (ifp->if_flags & IFF_RUNNING) {
2708 		splx(s);
2709 		return 0;
2710 	}
2711 
2712 	/* Cancel pending I/O and free all RX/TX buffers. */
2713 	sk_stop(ifp,0);
2714 
2715 	if (sc->sk_type == SK_GENESIS) {
2716 		/* Configure LINK_SYNC LED */
2717 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2718 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2719 			      SK_LINKLED_LINKSYNC_ON);
2720 
2721 		/* Configure RX LED */
2722 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2723 			      SK_RXLEDCTL_COUNTER_START);
2724 
2725 		/* Configure TX LED */
2726 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2727 			      SK_TXLEDCTL_COUNTER_START);
2728 	}
2729 
2730 	/* Configure I2C registers */
2731 
2732 	/* Configure XMAC(s) */
2733 	switch (sc->sk_type) {
2734 	case SK_GENESIS:
2735 		sk_init_xmac(sc_if);
2736 		break;
2737 	case SK_YUKON:
2738 	case SK_YUKON_LITE:
2739 	case SK_YUKON_LP:
2740 		sk_init_yukon(sc_if);
2741 		break;
2742 	}
2743 	mii_mediachg(mii);
2744 
2745 	if (sc->sk_type == SK_GENESIS) {
2746 		/* Configure MAC FIFOs */
2747 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2748 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2749 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2750 
2751 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2752 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2753 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2754 	}
2755 
2756 	/* Configure transmit arbiter(s) */
2757 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2758 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2759 
2760 	/* Configure RAMbuffers */
2761 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2762 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2763 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2764 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2765 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2766 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2767 
2768 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2769 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2770 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2771 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2772 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2773 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2774 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2775 
2776 	/* Configure BMUs */
2777 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2778 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2779 	    SK_RX_RING_ADDR(sc_if, 0));
2780 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2781 
2782 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2783 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2784             SK_TX_RING_ADDR(sc_if, 0));
2785 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2786 
2787 	/* Init descriptors */
2788 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2789 		aprint_error("%s: initialization failed: no "
2790 		    "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
2791 		sk_stop(ifp,0);
2792 		splx(s);
2793 		return ENOBUFS;
2794 	}
2795 
2796 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2797 		aprint_error("%s: initialization failed: no "
2798 		    "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
2799 		sk_stop(ifp,0);
2800 		splx(s);
2801 		return ENOBUFS;
2802 	}
2803 
2804 	/* Set interrupt moderation if changed via sysctl. */
2805 	switch (sc->sk_type) {
2806 	case SK_GENESIS:
2807 		sk_imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2808 		break;
2809 	case SK_YUKON_EC:
2810 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2811 		break;
2812 	default:
2813 		sk_imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2814 	}
2815 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2816 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2817 		sk_win_write_4(sc, SK_IMTIMERINIT,
2818 		    SK_IM_USECS(sc->sk_int_mod));
2819 		aprint_verbose("%s: interrupt moderation is %d us\n",
2820 		    sc->sk_dev.dv_xname, sc->sk_int_mod);
2821 	}
2822 
2823 	/* Configure interrupt handling */
2824 	CSR_READ_4(sc, SK_ISSR);
2825 	if (sc_if->sk_port == SK_PORT_A)
2826 		sc->sk_intrmask |= SK_INTRS1;
2827 	else
2828 		sc->sk_intrmask |= SK_INTRS2;
2829 
2830 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2831 
2832 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2833 
2834 	/* Start BMUs. */
2835 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2836 
2837 	if (sc->sk_type == SK_GENESIS) {
2838 		/* Enable XMACs TX and RX state machines */
2839 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2840 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2841 			       XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2842 	}
2843 
2844 	if (SK_YUKON_FAMILY(sc->sk_type)) {
2845 		u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2846 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2847 		reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
2848 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2849 	}
2850 
2851 
2852 	ifp->if_flags |= IFF_RUNNING;
2853 	ifp->if_flags &= ~IFF_OACTIVE;
2854 
2855 	splx(s);
2856 	return 0;
2857 }
2858 
2859 void
2860 sk_stop(struct ifnet *ifp, int disable __unused)
2861 {
2862         struct sk_if_softc	*sc_if = ifp->if_softc;
2863 	struct sk_softc		*sc = sc_if->sk_softc;
2864 	int			i;
2865 
2866 	DPRINTFN(1, ("sk_stop\n"));
2867 
2868 	callout_stop(&sc_if->sk_tick_ch);
2869 
2870 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2871 		u_int32_t		val;
2872 
2873 		/* Put PHY back into reset. */
2874 		val = sk_win_read_4(sc, SK_GPIO);
2875 		if (sc_if->sk_port == SK_PORT_A) {
2876 			val |= SK_GPIO_DIR0;
2877 			val &= ~SK_GPIO_DAT0;
2878 		} else {
2879 			val |= SK_GPIO_DIR2;
2880 			val &= ~SK_GPIO_DAT2;
2881 		}
2882 		sk_win_write_4(sc, SK_GPIO, val);
2883 	}
2884 
2885 	/* Turn off various components of this interface. */
2886 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2887 	switch (sc->sk_type) {
2888 	case SK_GENESIS:
2889 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2890 			      SK_TXMACCTL_XMAC_RESET);
2891 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2892 		break;
2893 	case SK_YUKON:
2894 	case SK_YUKON_LITE:
2895 	case SK_YUKON_LP:
2896 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2897 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2898 		break;
2899 	}
2900 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2901 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2902 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2903 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2904 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2905 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2906 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2907 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2908 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2909 
2910 	/* Disable interrupts */
2911 	if (sc_if->sk_port == SK_PORT_A)
2912 		sc->sk_intrmask &= ~SK_INTRS1;
2913 	else
2914 		sc->sk_intrmask &= ~SK_INTRS2;
2915 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2916 
2917 	SK_XM_READ_2(sc_if, XM_ISR);
2918 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2919 
2920 	/* Free RX and TX mbufs still in the queues. */
2921 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2922 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2923 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2924 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2925 		}
2926 	}
2927 
2928 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2929 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2930 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2931 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2932 		}
2933 	}
2934 
2935 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2936 }
2937 
2938 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
2939 
2940 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
2941 
2942 #ifdef SK_DEBUG
2943 void
2944 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2945 {
2946 #define DESC_PRINT(X)					\
2947 	if (X)					\
2948 		printf("txdesc[%d]." #X "=%#x\n",	\
2949 		       idx, X);
2950 
2951 	DESC_PRINT(le32toh(desc->sk_ctl));
2952 	DESC_PRINT(le32toh(desc->sk_next));
2953 	DESC_PRINT(le32toh(desc->sk_data_lo));
2954 	DESC_PRINT(le32toh(desc->sk_data_hi));
2955 	DESC_PRINT(le32toh(desc->sk_xmac_txstat));
2956 	DESC_PRINT(le16toh(desc->sk_rsvd0));
2957 	DESC_PRINT(le16toh(desc->sk_csum_startval));
2958 	DESC_PRINT(le16toh(desc->sk_csum_startpos));
2959 	DESC_PRINT(le16toh(desc->sk_csum_writepos));
2960 	DESC_PRINT(le16toh(desc->sk_rsvd1));
2961 #undef PRINT
2962 }
2963 
2964 void
2965 sk_dump_bytes(const char *data, int len)
2966 {
2967 	int c, i, j;
2968 
2969 	for (i = 0; i < len; i += 16) {
2970 		printf("%08x  ", i);
2971 		c = len - i;
2972 		if (c > 16) c = 16;
2973 
2974 		for (j = 0; j < c; j++) {
2975 			printf("%02x ", data[i + j] & 0xff);
2976 			if ((j & 0xf) == 7 && j > 0)
2977 				printf(" ");
2978 		}
2979 
2980 		for (; j < 16; j++)
2981 			printf("   ");
2982 		printf("  ");
2983 
2984 		for (j = 0; j < c; j++) {
2985 			int ch = data[i + j] & 0xff;
2986 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2987 		}
2988 
2989 		printf("\n");
2990 
2991 		if (c < 16)
2992 			break;
2993 	}
2994 }
2995 
2996 void
2997 sk_dump_mbuf(struct mbuf *m)
2998 {
2999 	int count = m->m_pkthdr.len;
3000 
3001 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3002 
3003 	while (count > 0 && m) {
3004 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3005 		       m, m->m_data, m->m_len);
3006 		sk_dump_bytes(mtod(m, char *), m->m_len);
3007 
3008 		count -= m->m_len;
3009 		m = m->m_next;
3010 	}
3011 }
3012 #endif
3013 
3014 static int
3015 sk_sysctl_handler(SYSCTLFN_ARGS)
3016 {
3017 	int error, t;
3018 	struct sysctlnode node;
3019 	struct sk_softc *sc;
3020 
3021 	node = *rnode;
3022 	sc = node.sysctl_data;
3023 	t = sc->sk_int_mod;
3024 	node.sysctl_data = &t;
3025 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3026 	if (error || newp == NULL)
3027 		return error;
3028 
3029 	if (t < SK_IM_MIN || t > SK_IM_MAX)
3030 		return EINVAL;
3031 
3032 	/* update the softc with sysctl-changed value, and mark
3033 	   for hardware update */
3034 	sc->sk_int_mod = t;
3035 	sc->sk_int_mod_pending = 1;
3036 	return 0;
3037 }
3038 
3039 /*
3040  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3041  * set up in skc_attach()
3042  */
3043 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3044 {
3045 	int rc;
3046 	const struct sysctlnode *node;
3047 
3048 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3049 	    0, CTLTYPE_NODE, "hw", NULL,
3050 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3051 		goto err;
3052 	}
3053 
3054 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
3055 	    0, CTLTYPE_NODE, "sk",
3056 	    SYSCTL_DESCR("sk interface controls"),
3057 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3058 		goto err;
3059 	}
3060 
3061 	sk_root_num = node->sysctl_num;
3062 	return;
3063 
3064 err:
3065 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3066 }
3067