xref: /netbsd-src/sys/dev/pci/if_sk.c (revision cac8e449158efc7261bebc8657cbb0125a2cfdde)
1 /*	$NetBSD: if_sk.c,v 1.50 2008/06/20 16:28:36 cube Exp $	*/
2 
3 /*-
4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*	$OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $	*/
30 
31 /*
32  * Copyright (c) 1997, 1998, 1999, 2000
33  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
34  *
35  * Redistribution and use in source and binary forms, with or without
36  * modification, are permitted provided that the following conditions
37  * are met:
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 3. All advertising materials mentioning features or use of this software
44  *    must display the following acknowledgement:
45  *	This product includes software developed by Bill Paul.
46  * 4. Neither the name of the author nor the names of any co-contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
54  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
60  * THE POSSIBILITY OF SUCH DAMAGE.
61  *
62  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
63  */
64 
65 /*
66  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
67  *
68  * Permission to use, copy, modify, and distribute this software for any
69  * purpose with or without fee is hereby granted, provided that the above
70  * copyright notice and this permission notice appear in all copies.
71  *
72  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
73  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
74  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
75  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
76  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
77  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
78  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
79  */
80 
81 /*
82  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
83  * the SK-984x series adapters, both single port and dual port.
84  * References:
85  * 	The XaQti XMAC II datasheet,
86  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
87  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
88  *
89  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
90  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
91  * convenience to others until Vitesse corrects this problem:
92  *
93  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94  *
95  * Written by Bill Paul <wpaul@ee.columbia.edu>
96  * Department of Electrical Engineering
97  * Columbia University, New York City
98  */
99 
100 /*
101  * The SysKonnect gigabit ethernet adapters consist of two main
102  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
103  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
104  * components and a PHY while the GEnesis controller provides a PCI
105  * interface with DMA support. Each card may have between 512K and
106  * 2MB of SRAM on board depending on the configuration.
107  *
108  * The SysKonnect GEnesis controller can have either one or two XMAC
109  * chips connected to it, allowing single or dual port NIC configurations.
110  * SysKonnect has the distinction of being the only vendor on the market
111  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
112  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
113  * XMAC registers. This driver takes advantage of these features to allow
114  * both XMACs to operate as independent interfaces.
115  */
116 
117 #include <sys/cdefs.h>
118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.50 2008/06/20 16:28:36 cube Exp $");
119 
120 #include "bpfilter.h"
121 #include "rnd.h"
122 
123 #include <sys/param.h>
124 #include <sys/systm.h>
125 #include <sys/sockio.h>
126 #include <sys/mbuf.h>
127 #include <sys/malloc.h>
128 #include <sys/mutex.h>
129 #include <sys/kernel.h>
130 #include <sys/socket.h>
131 #include <sys/device.h>
132 #include <sys/queue.h>
133 #include <sys/callout.h>
134 #include <sys/sysctl.h>
135 #include <sys/endian.h>
136 
137 #include <net/if.h>
138 #include <net/if_dl.h>
139 #include <net/if_types.h>
140 
141 #include <net/if_media.h>
142 
143 #if NBPFILTER > 0
144 #include <net/bpf.h>
145 #endif
146 #if NRND > 0
147 #include <sys/rnd.h>
148 #endif
149 
150 #include <dev/mii/mii.h>
151 #include <dev/mii/miivar.h>
152 #include <dev/mii/brgphyreg.h>
153 
154 #include <dev/pci/pcireg.h>
155 #include <dev/pci/pcivar.h>
156 #include <dev/pci/pcidevs.h>
157 
158 /* #define SK_USEIOSPACE */
159 
160 #include <dev/pci/if_skreg.h>
161 #include <dev/pci/if_skvar.h>
162 
163 int skc_probe(struct device *, struct cfdata *, void *);
164 void skc_attach(struct device *, struct device *self, void *aux);
165 int sk_probe(struct device *, struct cfdata *, void *);
166 void sk_attach(struct device *, struct device *self, void *aux);
167 int skcprint(void *, const char *);
168 int sk_intr(void *);
169 void sk_intr_bcom(struct sk_if_softc *);
170 void sk_intr_xmac(struct sk_if_softc *);
171 void sk_intr_yukon(struct sk_if_softc *);
172 void sk_rxeof(struct sk_if_softc *);
173 void sk_txeof(struct sk_if_softc *);
174 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
175 void sk_start(struct ifnet *);
176 int sk_ioctl(struct ifnet *, u_long, void *);
177 int sk_init(struct ifnet *);
178 void sk_init_xmac(struct sk_if_softc *);
179 void sk_init_yukon(struct sk_if_softc *);
180 void sk_stop(struct ifnet *, int);
181 void sk_watchdog(struct ifnet *);
182 void sk_shutdown(void *);
183 int sk_ifmedia_upd(struct ifnet *);
184 void sk_reset(struct sk_softc *);
185 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
186 int sk_alloc_jumbo_mem(struct sk_if_softc *);
187 void sk_free_jumbo_mem(struct sk_if_softc *);
188 void *sk_jalloc(struct sk_if_softc *);
189 void sk_jfree(struct mbuf *, void *, size_t, void *);
190 int sk_init_rx_ring(struct sk_if_softc *);
191 int sk_init_tx_ring(struct sk_if_softc *);
192 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
193 void sk_vpd_read_res(struct sk_softc *,
194 					struct vpd_res *, int);
195 void sk_vpd_read(struct sk_softc *);
196 
197 void sk_update_int_mod(struct sk_softc *);
198 
199 int sk_xmac_miibus_readreg(struct device *, int, int);
200 void sk_xmac_miibus_writereg(struct device *, int, int, int);
201 void sk_xmac_miibus_statchg(struct device *);
202 
203 int sk_marv_miibus_readreg(struct device *, int, int);
204 void sk_marv_miibus_writereg(struct device *, int, int, int);
205 void sk_marv_miibus_statchg(struct device *);
206 
207 u_int32_t sk_xmac_hash(void *);
208 u_int32_t sk_yukon_hash(void *);
209 void sk_setfilt(struct sk_if_softc *, void *, int);
210 void sk_setmulti(struct sk_if_softc *);
211 void sk_tick(void *);
212 
213 /* #define SK_DEBUG 2 */
214 #ifdef SK_DEBUG
215 #define DPRINTF(x)	if (skdebug) printf x
216 #define DPRINTFN(n,x)	if (skdebug >= (n)) printf x
217 int	skdebug = SK_DEBUG;
218 
219 void sk_dump_txdesc(struct sk_tx_desc *, int);
220 void sk_dump_mbuf(struct mbuf *);
221 void sk_dump_bytes(const char *, int);
222 #else
223 #define DPRINTF(x)
224 #define DPRINTFN(n,x)
225 #endif
226 
227 static int sk_sysctl_handler(SYSCTLFN_PROTO);
228 static int sk_root_num;
229 
230 /* supported device vendors */
231 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
232 static const struct sk_product {
233 	pci_vendor_id_t		sk_vendor;
234 	pci_product_id_t	sk_product;
235 } sk_products[] = {
236 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
237 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
238 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
239 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
240 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
241 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
242 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
243 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
244 	{ 0, 0, }
245 };
246 
247 #define SK_LINKSYS_EG1032_SUBID	0x00151737
248 
249 static inline u_int32_t
250 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
251 {
252 #ifdef SK_USEIOSPACE
253 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
254 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
255 #else
256 	return CSR_READ_4(sc, reg);
257 #endif
258 }
259 
260 static inline u_int16_t
261 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
262 {
263 #ifdef SK_USEIOSPACE
264 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
265 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
266 #else
267 	return CSR_READ_2(sc, reg);
268 #endif
269 }
270 
271 static inline u_int8_t
272 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
273 {
274 #ifdef SK_USEIOSPACE
275 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
276 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
277 #else
278 	return CSR_READ_1(sc, reg);
279 #endif
280 }
281 
282 static inline void
283 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
284 {
285 #ifdef SK_USEIOSPACE
286 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
287 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
288 #else
289 	CSR_WRITE_4(sc, reg, x);
290 #endif
291 }
292 
293 static inline void
294 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
295 {
296 #ifdef SK_USEIOSPACE
297 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
298 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
299 #else
300 	CSR_WRITE_2(sc, reg, x);
301 #endif
302 }
303 
304 static inline void
305 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
306 {
307 #ifdef SK_USEIOSPACE
308 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
309 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
310 #else
311 	CSR_WRITE_1(sc, reg, x);
312 #endif
313 }
314 
315 /*
316  * The VPD EEPROM contains Vital Product Data, as suggested in
317  * the PCI 2.1 specification. The VPD data is separared into areas
318  * denoted by resource IDs. The SysKonnect VPD contains an ID string
319  * resource (the name of the adapter), a read-only area resource
320  * containing various key/data fields and a read/write area which
321  * can be used to store asset management information or log messages.
322  * We read the ID string and read-only into buffers attached to
323  * the controller softc structure for later use. At the moment,
324  * we only use the ID string during sk_attach().
325  */
326 u_int8_t
327 sk_vpd_readbyte(struct sk_softc *sc, int addr)
328 {
329 	int			i;
330 
331 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
332 	for (i = 0; i < SK_TIMEOUT; i++) {
333 		DELAY(1);
334 		if (sk_win_read_2(sc,
335 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
336 			break;
337 	}
338 
339 	if (i == SK_TIMEOUT)
340 		return 0;
341 
342 	return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
343 }
344 
345 void
346 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
347 {
348 	int			i;
349 	u_int8_t		*ptr;
350 
351 	ptr = (u_int8_t *)res;
352 	for (i = 0; i < sizeof(struct vpd_res); i++)
353 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
354 }
355 
356 void
357 sk_vpd_read(struct sk_softc *sc)
358 {
359 	int			pos = 0, i;
360 	struct vpd_res		res;
361 
362 	if (sc->sk_vpd_prodname != NULL)
363 		free(sc->sk_vpd_prodname, M_DEVBUF);
364 	if (sc->sk_vpd_readonly != NULL)
365 		free(sc->sk_vpd_readonly, M_DEVBUF);
366 	sc->sk_vpd_prodname = NULL;
367 	sc->sk_vpd_readonly = NULL;
368 
369 	sk_vpd_read_res(sc, &res, pos);
370 
371 	if (res.vr_id != VPD_RES_ID) {
372 		aprint_error_dev(&sc->sk_dev, "bad VPD resource id: expected %x got %x\n",
373 		    VPD_RES_ID, res.vr_id);
374 		return;
375 	}
376 
377 	pos += sizeof(res);
378 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
379 	if (sc->sk_vpd_prodname == NULL)
380 		panic("sk_vpd_read");
381 	for (i = 0; i < res.vr_len; i++)
382 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
383 	sc->sk_vpd_prodname[i] = '\0';
384 	pos += i;
385 
386 	sk_vpd_read_res(sc, &res, pos);
387 
388 	if (res.vr_id != VPD_RES_READ) {
389 		aprint_error_dev(&sc->sk_dev, "bad VPD resource id: expected %x got %x\n",
390 		    VPD_RES_READ, res.vr_id);
391 		return;
392 	}
393 
394 	pos += sizeof(res);
395 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
396 	if (sc->sk_vpd_readonly == NULL)
397 		panic("sk_vpd_read");
398 	for (i = 0; i < res.vr_len ; i++)
399 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
400 }
401 
402 int
403 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
404 {
405 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
406 	int i;
407 
408 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
409 
410 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
411 		return 0;
412 
413 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
414 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
415 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
416 		for (i = 0; i < SK_TIMEOUT; i++) {
417 			DELAY(1);
418 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
419 			    XM_MMUCMD_PHYDATARDY)
420 				break;
421 		}
422 
423 		if (i == SK_TIMEOUT) {
424 			aprint_error_dev(&sc_if->sk_dev, "phy failed to come ready\n");
425 			return 0;
426 		}
427 	}
428 	DELAY(1);
429 	return SK_XM_READ_2(sc_if, XM_PHY_DATA);
430 }
431 
432 void
433 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
434 {
435 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
436 	int i;
437 
438 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
439 
440 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
441 	for (i = 0; i < SK_TIMEOUT; i++) {
442 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
443 			break;
444 	}
445 
446 	if (i == SK_TIMEOUT) {
447 		aprint_error_dev(&sc_if->sk_dev, "phy failed to come ready\n");
448 		return;
449 	}
450 
451 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
452 	for (i = 0; i < SK_TIMEOUT; i++) {
453 		DELAY(1);
454 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
455 			break;
456 	}
457 
458 	if (i == SK_TIMEOUT)
459 		aprint_error_dev(&sc_if->sk_dev, "phy write timed out\n");
460 }
461 
462 void
463 sk_xmac_miibus_statchg(struct device *dev)
464 {
465 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
466 	struct mii_data *mii = &sc_if->sk_mii;
467 
468 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
469 
470 	/*
471 	 * If this is a GMII PHY, manually set the XMAC's
472 	 * duplex mode accordingly.
473 	 */
474 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
475 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
476 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
477 		else
478 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
479 	}
480 }
481 
482 int
483 sk_marv_miibus_readreg(struct device *dev, int phy, int reg)
484 {
485 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
486 	u_int16_t val;
487 	int i;
488 
489 	if (phy != 0 ||
490 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
491 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
492 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
493 			     phy, reg));
494 		return 0;
495 	}
496 
497         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
498 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
499 
500 	for (i = 0; i < SK_TIMEOUT; i++) {
501 		DELAY(1);
502 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
503 		if (val & YU_SMICR_READ_VALID)
504 			break;
505 	}
506 
507 	if (i == SK_TIMEOUT) {
508 		aprint_error_dev(&sc_if->sk_dev, "phy failed to come ready\n");
509 		return 0;
510 	}
511 
512  	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
513 		     SK_TIMEOUT));
514 
515         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
516 
517 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
518 		     phy, reg, val));
519 
520 	return val;
521 }
522 
523 void
524 sk_marv_miibus_writereg(struct device *dev, int phy, int reg, int val)
525 {
526 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
527 	int i;
528 
529 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
530 		     phy, reg, val));
531 
532 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
533 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
534 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
535 
536 	for (i = 0; i < SK_TIMEOUT; i++) {
537 		DELAY(1);
538 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
539 			break;
540 	}
541 
542 	if (i == SK_TIMEOUT)
543 		printf("%s: phy write timed out\n", device_xname(&sc_if->sk_dev));
544 }
545 
546 void
547 sk_marv_miibus_statchg(struct device *dev)
548 {
549 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
550 		     SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
551 }
552 
553 #define SK_HASH_BITS		6
554 
555 u_int32_t
556 sk_xmac_hash(void *addr)
557 {
558 	u_int32_t		crc;
559 
560 	crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
561 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
562 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
563 	return crc;
564 }
565 
566 u_int32_t
567 sk_yukon_hash(void *addr)
568 {
569 	u_int32_t		crc;
570 
571 	crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
572 	crc &= ((1 << SK_HASH_BITS) - 1);
573 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
574 	return crc;
575 }
576 
577 void
578 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
579 {
580 	char *addr = addrv;
581 	int base = XM_RXFILT_ENTRY(slot);
582 
583 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
584 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
585 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
586 }
587 
588 void
589 sk_setmulti(struct sk_if_softc *sc_if)
590 {
591 	struct sk_softc *sc = sc_if->sk_softc;
592 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
593 	u_int32_t hashes[2] = { 0, 0 };
594 	int h = 0, i;
595 	struct ethercom *ec = &sc_if->sk_ethercom;
596 	struct ether_multi *enm;
597 	struct ether_multistep step;
598 	u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
599 
600 	/* First, zot all the existing filters. */
601 	switch (sc->sk_type) {
602 	case SK_GENESIS:
603 		for (i = 1; i < XM_RXFILT_MAX; i++)
604 			sk_setfilt(sc_if, (void *)&dummy, i);
605 
606 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
607 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
608 		break;
609 	case SK_YUKON:
610 	case SK_YUKON_LITE:
611 	case SK_YUKON_LP:
612 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
613 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
614 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
615 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
616 		break;
617 	}
618 
619 	/* Now program new ones. */
620 allmulti:
621 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
622 		hashes[0] = 0xFFFFFFFF;
623 		hashes[1] = 0xFFFFFFFF;
624 	} else {
625 		i = 1;
626 		/* First find the tail of the list. */
627 		ETHER_FIRST_MULTI(step, ec, enm);
628 		while (enm != NULL) {
629 			if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
630 				 ETHER_ADDR_LEN)) {
631 				ifp->if_flags |= IFF_ALLMULTI;
632 				goto allmulti;
633 			}
634 			DPRINTFN(2,("multicast address %s\n",
635 	    			ether_sprintf(enm->enm_addrlo)));
636 			/*
637 			 * Program the first XM_RXFILT_MAX multicast groups
638 			 * into the perfect filter. For all others,
639 			 * use the hash table.
640 			 */
641 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
642 				sk_setfilt(sc_if, enm->enm_addrlo, i);
643 				i++;
644 			}
645 			else {
646 				switch (sc->sk_type) {
647 				case SK_GENESIS:
648 					h = sk_xmac_hash(enm->enm_addrlo);
649 					break;
650 				case SK_YUKON:
651 				case SK_YUKON_LITE:
652 				case SK_YUKON_LP:
653 					h = sk_yukon_hash(enm->enm_addrlo);
654 					break;
655 				}
656 				if (h < 32)
657 					hashes[0] |= (1 << h);
658 				else
659 					hashes[1] |= (1 << (h - 32));
660 			}
661 
662 			ETHER_NEXT_MULTI(step, enm);
663 		}
664 	}
665 
666 	switch (sc->sk_type) {
667 	case SK_GENESIS:
668 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
669 			       XM_MODE_RX_USE_PERFECT);
670 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
671 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
672 		break;
673 	case SK_YUKON:
674 	case SK_YUKON_LITE:
675 	case SK_YUKON_LP:
676 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
677 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
678 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
679 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
680 		break;
681 	}
682 }
683 
684 int
685 sk_init_rx_ring(struct sk_if_softc *sc_if)
686 {
687 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
688 	struct sk_ring_data	*rd = sc_if->sk_rdata;
689 	int			i;
690 
691 	bzero((char *)rd->sk_rx_ring,
692 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
693 
694 	for (i = 0; i < SK_RX_RING_CNT; i++) {
695 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
696 		if (i == (SK_RX_RING_CNT - 1)) {
697 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
698 			rd->sk_rx_ring[i].sk_next =
699 				htole32(SK_RX_RING_ADDR(sc_if, 0));
700 		} else {
701 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
702 			rd->sk_rx_ring[i].sk_next =
703 				htole32(SK_RX_RING_ADDR(sc_if,i+1));
704 		}
705 	}
706 
707 	for (i = 0; i < SK_RX_RING_CNT; i++) {
708 		if (sk_newbuf(sc_if, i, NULL,
709 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
710 			aprint_error_dev(&sc_if->sk_dev, "failed alloc of %dth mbuf\n", i);
711 			return ENOBUFS;
712 		}
713 	}
714 	sc_if->sk_cdata.sk_rx_prod = 0;
715 	sc_if->sk_cdata.sk_rx_cons = 0;
716 
717 	return 0;
718 }
719 
720 int
721 sk_init_tx_ring(struct sk_if_softc *sc_if)
722 {
723 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
724 	struct sk_ring_data	*rd = sc_if->sk_rdata;
725 	int			i;
726 
727 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
728 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
729 
730 	for (i = 0; i < SK_TX_RING_CNT; i++) {
731 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
732 		if (i == (SK_TX_RING_CNT - 1)) {
733 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
734 			rd->sk_tx_ring[i].sk_next =
735 				htole32(SK_TX_RING_ADDR(sc_if, 0));
736 		} else {
737 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
738 			rd->sk_tx_ring[i].sk_next =
739 				htole32(SK_TX_RING_ADDR(sc_if,i+1));
740 		}
741 	}
742 
743 	sc_if->sk_cdata.sk_tx_prod = 0;
744 	sc_if->sk_cdata.sk_tx_cons = 0;
745 	sc_if->sk_cdata.sk_tx_cnt = 0;
746 
747 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
748 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
749 
750 	return 0;
751 }
752 
753 int
754 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
755 	  bus_dmamap_t dmamap)
756 {
757 	struct mbuf		*m_new = NULL;
758 	struct sk_chain		*c;
759 	struct sk_rx_desc	*r;
760 
761 	if (m == NULL) {
762 		void *buf = NULL;
763 
764 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
765 		if (m_new == NULL) {
766 			aprint_error_dev(&sc_if->sk_dev, "no memory for rx list -- "
767 			    "packet dropped!\n");
768 			return ENOBUFS;
769 		}
770 
771 		/* Allocate the jumbo buffer */
772 		buf = sk_jalloc(sc_if);
773 		if (buf == NULL) {
774 			m_freem(m_new);
775 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
776 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
777 			return ENOBUFS;
778 		}
779 
780 		/* Attach the buffer to the mbuf */
781 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
782 		MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
783 
784 	} else {
785 		/*
786 	 	 * We're re-using a previously allocated mbuf;
787 		 * be sure to re-init pointers and lengths to
788 		 * default values.
789 		 */
790 		m_new = m;
791 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
792 		m_new->m_data = m_new->m_ext.ext_buf;
793 	}
794 	m_adj(m_new, ETHER_ALIGN);
795 
796 	c = &sc_if->sk_cdata.sk_rx_chain[i];
797 	r = c->sk_desc;
798 	c->sk_mbuf = m_new;
799 	r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
800 	    (((vaddr_t)m_new->m_data
801 		- (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
802 	r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
803 
804 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
805 
806 	return 0;
807 }
808 
809 /*
810  * Memory management for jumbo frames.
811  */
812 
813 int
814 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
815 {
816 	struct sk_softc		*sc = sc_if->sk_softc;
817 	char *ptr, *kva;
818 	bus_dma_segment_t	seg;
819 	int		i, rseg, state, error;
820 	struct sk_jpool_entry   *entry;
821 
822 	state = error = 0;
823 
824 	/* Grab a big chunk o' storage. */
825 	if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
826 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
827 		aprint_error_dev(&sc->sk_dev, "can't alloc rx buffers\n");
828 		return ENOBUFS;
829 	}
830 
831 	state = 1;
832 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
833 			   BUS_DMA_NOWAIT)) {
834 		aprint_error_dev(&sc->sk_dev, "can't map dma buffers (%d bytes)\n",
835 		    SK_JMEM);
836 		error = ENOBUFS;
837 		goto out;
838 	}
839 
840 	state = 2;
841 	if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
842 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
843 		aprint_error_dev(&sc->sk_dev, "can't create dma map\n");
844 		error = ENOBUFS;
845 		goto out;
846 	}
847 
848 	state = 3;
849 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
850 			    kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
851 		aprint_error_dev(&sc->sk_dev, "can't load dma map\n");
852 		error = ENOBUFS;
853 		goto out;
854 	}
855 
856 	state = 4;
857 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
858 	DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
859 
860 	LIST_INIT(&sc_if->sk_jfree_listhead);
861 	LIST_INIT(&sc_if->sk_jinuse_listhead);
862 	mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
863 
864 	/*
865 	 * Now divide it up into 9K pieces and save the addresses
866 	 * in an array.
867 	 */
868 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
869 	for (i = 0; i < SK_JSLOTS; i++) {
870 		sc_if->sk_cdata.sk_jslots[i] = ptr;
871 		ptr += SK_JLEN;
872 		entry = malloc(sizeof(struct sk_jpool_entry),
873 		    M_DEVBUF, M_NOWAIT);
874 		if (entry == NULL) {
875 			aprint_error_dev(&sc->sk_dev, "no memory for jumbo buffer queue!\n");
876 			error = ENOBUFS;
877 			goto out;
878 		}
879 		entry->slot = i;
880 		if (i)
881 			LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
882 				 entry, jpool_entries);
883 		else
884 			LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
885 				 entry, jpool_entries);
886 	}
887 out:
888 	if (error != 0) {
889 		switch (state) {
890 		case 4:
891 			bus_dmamap_unload(sc->sc_dmatag,
892 			    sc_if->sk_cdata.sk_rx_jumbo_map);
893 		case 3:
894 			bus_dmamap_destroy(sc->sc_dmatag,
895 			    sc_if->sk_cdata.sk_rx_jumbo_map);
896 		case 2:
897 			bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
898 		case 1:
899 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
900 			break;
901 		default:
902 			break;
903 		}
904 	}
905 
906 	return error;
907 }
908 
909 /*
910  * Allocate a jumbo buffer.
911  */
912 void *
913 sk_jalloc(struct sk_if_softc *sc_if)
914 {
915 	struct sk_jpool_entry   *entry;
916 
917 	mutex_enter(&sc_if->sk_jpool_mtx);
918 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
919 
920 	if (entry == NULL) {
921 		mutex_exit(&sc_if->sk_jpool_mtx);
922 		return NULL;
923 	}
924 
925 	LIST_REMOVE(entry, jpool_entries);
926 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
927 	mutex_exit(&sc_if->sk_jpool_mtx);
928 	return sc_if->sk_cdata.sk_jslots[entry->slot];
929 }
930 
931 /*
932  * Release a jumbo buffer.
933  */
934 void
935 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
936 {
937 	struct sk_jpool_entry *entry;
938 	struct sk_if_softc *sc;
939 	int i;
940 
941 	/* Extract the softc struct pointer. */
942 	sc = (struct sk_if_softc *)arg;
943 
944 	if (sc == NULL)
945 		panic("sk_jfree: can't find softc pointer!");
946 
947 	/* calculate the slot this buffer belongs to */
948 
949 	i = ((vaddr_t)buf
950 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
951 
952 	if ((i < 0) || (i >= SK_JSLOTS))
953 		panic("sk_jfree: asked to free buffer that we don't manage!");
954 
955 	mutex_enter(&sc->sk_jpool_mtx);
956 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
957 	if (entry == NULL)
958 		panic("sk_jfree: buffer not in use!");
959 	entry->slot = i;
960 	LIST_REMOVE(entry, jpool_entries);
961 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
962 	mutex_exit(&sc->sk_jpool_mtx);
963 
964 	if (__predict_true(m != NULL))
965 		pool_cache_put(mb_cache, m);
966 }
967 
968 /*
969  * Set media options.
970  */
971 int
972 sk_ifmedia_upd(struct ifnet *ifp)
973 {
974 	struct sk_if_softc *sc_if = ifp->if_softc;
975 	int rc;
976 
977 	(void) sk_init(ifp);
978 	if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
979 		return 0;
980 	return rc;
981 }
982 
983 int
984 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
985 {
986 	struct sk_if_softc *sc_if = ifp->if_softc;
987 	struct sk_softc *sc = sc_if->sk_softc;
988 	int s, error = 0;
989 
990 	/* DPRINTFN(2, ("sk_ioctl\n")); */
991 
992 	s = splnet();
993 
994 	switch (command) {
995 
996 	case SIOCSIFFLAGS:
997 	        DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
998 		if (ifp->if_flags & IFF_UP) {
999 			if (ifp->if_flags & IFF_RUNNING &&
1000 			    ifp->if_flags & IFF_PROMISC &&
1001 			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
1002 				switch (sc->sk_type) {
1003 				case SK_GENESIS:
1004 					SK_XM_SETBIT_4(sc_if, XM_MODE,
1005 					    XM_MODE_RX_PROMISC);
1006 					break;
1007 				case SK_YUKON:
1008 				case SK_YUKON_LITE:
1009 				case SK_YUKON_LP:
1010 					SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1011 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
1012 					break;
1013 				}
1014 				sk_setmulti(sc_if);
1015 			} else if (ifp->if_flags & IFF_RUNNING &&
1016 			    !(ifp->if_flags & IFF_PROMISC) &&
1017 			    sc_if->sk_if_flags & IFF_PROMISC) {
1018 				switch (sc->sk_type) {
1019 				case SK_GENESIS:
1020 					SK_XM_CLRBIT_4(sc_if, XM_MODE,
1021 					    XM_MODE_RX_PROMISC);
1022 					break;
1023 				case SK_YUKON:
1024 				case SK_YUKON_LITE:
1025 				case SK_YUKON_LP:
1026 					SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1027 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
1028 					break;
1029 				}
1030 
1031 				sk_setmulti(sc_if);
1032 			} else
1033 				(void) sk_init(ifp);
1034 		} else {
1035 			if (ifp->if_flags & IFF_RUNNING)
1036 				sk_stop(ifp,0);
1037 		}
1038 		sc_if->sk_if_flags = ifp->if_flags;
1039 		error = 0;
1040 		break;
1041 
1042 	default:
1043 	        DPRINTFN(2, ("sk_ioctl ETHER\n"));
1044 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1045 			break;
1046 
1047 		error = 0;
1048 
1049 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1050 			;
1051 		else if (ifp->if_flags & IFF_RUNNING) {
1052 			sk_setmulti(sc_if);
1053 			DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1054 		}
1055 		break;
1056 	}
1057 
1058 	splx(s);
1059 	return error;
1060 }
1061 
1062 void
1063 sk_update_int_mod(struct sk_softc *sc)
1064 {
1065 	u_int32_t imtimer_ticks;
1066 
1067 	/*
1068          * Configure interrupt moderation. The moderation timer
1069 	 * defers interrupts specified in the interrupt moderation
1070 	 * timer mask based on the timeout specified in the interrupt
1071 	 * moderation timer init register. Each bit in the timer
1072 	 * register represents one tick, so to specify a timeout in
1073 	 * microseconds, we have to multiply by the correct number of
1074 	 * ticks-per-microsecond.
1075 	 */
1076 	switch (sc->sk_type) {
1077 	case SK_GENESIS:
1078 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1079 		break;
1080 	case SK_YUKON_EC:
1081 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1082 		break;
1083 	default:
1084 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1085 	}
1086 	aprint_verbose_dev(&sc->sk_dev, "interrupt moderation is %d us\n",
1087 	    sc->sk_int_mod);
1088         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1089         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1090 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1091         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1092 	sc->sk_int_mod_pending = 0;
1093 }
1094 
1095 /*
1096  * Lookup: Check the PCI vendor and device, and return a pointer to
1097  * The structure if the IDs match against our list.
1098  */
1099 
1100 static const struct sk_product *
1101 sk_lookup(const struct pci_attach_args *pa)
1102 {
1103 	const struct sk_product *psk;
1104 
1105 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1106 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1107 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1108 			return psk;
1109 	}
1110 	return NULL;
1111 }
1112 
1113 /*
1114  * Probe for a SysKonnect GEnesis chip.
1115  */
1116 
1117 int
1118 skc_probe(struct device *parent, struct cfdata *match,
1119     void *aux)
1120 {
1121 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1122 	const struct sk_product *psk;
1123 	pcireg_t subid;
1124 
1125 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1126 
1127 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
1128 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1129 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1130 	    subid == SK_LINKSYS_EG1032_SUBID)
1131 		return 1;
1132 
1133 	if ((psk = sk_lookup(pa))) {
1134 		return 1;
1135 	}
1136 	return 0;
1137 }
1138 
1139 /*
1140  * Force the GEnesis into reset, then bring it out of reset.
1141  */
1142 void sk_reset(struct sk_softc *sc)
1143 {
1144 	DPRINTFN(2, ("sk_reset\n"));
1145 
1146 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1147 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1148 	if (SK_YUKON_FAMILY(sc->sk_type))
1149 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1150 
1151 	DELAY(1000);
1152 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1153 	DELAY(2);
1154 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1155 	if (SK_YUKON_FAMILY(sc->sk_type))
1156 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1157 
1158 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1159 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1160 		     CSR_READ_2(sc, SK_LINK_CTRL)));
1161 
1162 	if (sc->sk_type == SK_GENESIS) {
1163 		/* Configure packet arbiter */
1164 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1165 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1166 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1167 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1168 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1169 	}
1170 
1171 	/* Enable RAM interface */
1172 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1173 
1174 	sk_update_int_mod(sc);
1175 }
1176 
1177 int
1178 sk_probe(struct device *parent, struct cfdata *match,
1179     void *aux)
1180 {
1181 	struct skc_attach_args *sa = aux;
1182 
1183 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1184 		return 0;
1185 
1186 	return 1;
1187 }
1188 
1189 /*
1190  * Each XMAC chip is attached as a separate logical IP interface.
1191  * Single port cards will have only one logical interface of course.
1192  */
1193 void
1194 sk_attach(struct device *parent, struct device *self, void *aux)
1195 {
1196 	struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
1197 	struct sk_softc *sc = (struct sk_softc *)parent;
1198 	struct skc_attach_args *sa = aux;
1199 	struct sk_txmap_entry	*entry;
1200 	struct ifnet *ifp;
1201 	bus_dma_segment_t seg;
1202 	bus_dmamap_t dmamap;
1203 	void *kva;
1204 	int i, rseg;
1205 
1206 	aprint_naive("\n");
1207 
1208 	sc_if->sk_port = sa->skc_port;
1209 	sc_if->sk_softc = sc;
1210 	sc->sk_if[sa->skc_port] = sc_if;
1211 
1212 	if (sa->skc_port == SK_PORT_A)
1213 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1214 	if (sa->skc_port == SK_PORT_B)
1215 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1216 
1217 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1218 
1219 	/*
1220 	 * Get station address for this interface. Note that
1221 	 * dual port cards actually come with three station
1222 	 * addresses: one for each port, plus an extra. The
1223 	 * extra one is used by the SysKonnect driver software
1224 	 * as a 'virtual' station address for when both ports
1225 	 * are operating in failover mode. Currently we don't
1226 	 * use this extra address.
1227 	 */
1228 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1229 		sc_if->sk_enaddr[i] =
1230 			sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1231 
1232 
1233 	aprint_normal(": Ethernet address %s\n",
1234 	    ether_sprintf(sc_if->sk_enaddr));
1235 
1236 	/*
1237 	 * Set up RAM buffer addresses. The NIC will have a certain
1238 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1239 	 * need to divide this up a) between the transmitter and
1240  	 * receiver and b) between the two XMACs, if this is a
1241 	 * dual port NIC. Our algorithm is to divide up the memory
1242 	 * evenly so that everyone gets a fair share.
1243 	 */
1244 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1245 		u_int32_t		chunk, val;
1246 
1247 		chunk = sc->sk_ramsize / 2;
1248 		val = sc->sk_rboff / sizeof(u_int64_t);
1249 		sc_if->sk_rx_ramstart = val;
1250 		val += (chunk / sizeof(u_int64_t));
1251 		sc_if->sk_rx_ramend = val - 1;
1252 		sc_if->sk_tx_ramstart = val;
1253 		val += (chunk / sizeof(u_int64_t));
1254 		sc_if->sk_tx_ramend = val - 1;
1255 	} else {
1256 		u_int32_t		chunk, val;
1257 
1258 		chunk = sc->sk_ramsize / 4;
1259 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1260 		    sizeof(u_int64_t);
1261 		sc_if->sk_rx_ramstart = val;
1262 		val += (chunk / sizeof(u_int64_t));
1263 		sc_if->sk_rx_ramend = val - 1;
1264 		sc_if->sk_tx_ramstart = val;
1265 		val += (chunk / sizeof(u_int64_t));
1266 		sc_if->sk_tx_ramend = val - 1;
1267 	}
1268 
1269 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1270 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
1271 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1272 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1273 
1274 	/* Read and save PHY type and set PHY address */
1275 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1276 	switch (sc_if->sk_phytype) {
1277 	case SK_PHYTYPE_XMAC:
1278 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1279 		break;
1280 	case SK_PHYTYPE_BCOM:
1281 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1282 		break;
1283 	case SK_PHYTYPE_MARV_COPPER:
1284 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1285 		break;
1286 	default:
1287 		aprint_error_dev(&sc->sk_dev, "unsupported PHY type: %d\n",
1288 		    sc_if->sk_phytype);
1289 		return;
1290 	}
1291 
1292 	/* Allocate the descriptor queues. */
1293 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1294 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1295 		aprint_error_dev(&sc->sk_dev, "can't alloc rx buffers\n");
1296 		goto fail;
1297 	}
1298 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1299 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1300 		aprint_error_dev(&sc_if->sk_dev, "can't map dma buffers (%lu bytes)\n",
1301 		       (u_long) sizeof(struct sk_ring_data));
1302 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1303 		goto fail;
1304 	}
1305 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1306 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1307             &sc_if->sk_ring_map)) {
1308 		aprint_error_dev(&sc_if->sk_dev, "can't create dma map\n");
1309 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1310 		    sizeof(struct sk_ring_data));
1311 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1312 		goto fail;
1313 	}
1314 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1315 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1316 		aprint_error_dev(&sc_if->sk_dev, "can't load dma map\n");
1317 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1318 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1319 		    sizeof(struct sk_ring_data));
1320 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1321 		goto fail;
1322 	}
1323 
1324 	for (i = 0; i < SK_RX_RING_CNT; i++)
1325 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1326 
1327 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1328 	for (i = 0; i < SK_TX_RING_CNT; i++) {
1329 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1330 
1331 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1332 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1333 			aprint_error_dev(&sc_if->sk_dev, "Can't create TX dmamap\n");
1334 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1335 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1336 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1337 			    sizeof(struct sk_ring_data));
1338 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1339 			goto fail;
1340 		}
1341 
1342 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1343 		if (!entry) {
1344 			aprint_error_dev(&sc_if->sk_dev, "Can't alloc txmap entry\n");
1345 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1346 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1347 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1348 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1349 			    sizeof(struct sk_ring_data));
1350 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1351 			goto fail;
1352 		}
1353 		entry->dmamap = dmamap;
1354 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1355 	}
1356 
1357         sc_if->sk_rdata = (struct sk_ring_data *)kva;
1358 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1359 
1360 	ifp = &sc_if->sk_ethercom.ec_if;
1361 	/* Try to allocate memory for jumbo buffers. */
1362 	if (sk_alloc_jumbo_mem(sc_if)) {
1363 		aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1364 		goto fail;
1365 	}
1366 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1367 		| ETHERCAP_JUMBO_MTU;
1368 
1369 	ifp->if_softc = sc_if;
1370 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1371 	ifp->if_ioctl = sk_ioctl;
1372 	ifp->if_start = sk_start;
1373 	ifp->if_stop = sk_stop;
1374 	ifp->if_init = sk_init;
1375 	ifp->if_watchdog = sk_watchdog;
1376 	ifp->if_capabilities = 0;
1377 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1378 	IFQ_SET_READY(&ifp->if_snd);
1379 	strlcpy(ifp->if_xname, device_xname(&sc_if->sk_dev), IFNAMSIZ);
1380 
1381 	/*
1382 	 * Do miibus setup.
1383 	 */
1384 	switch (sc->sk_type) {
1385 	case SK_GENESIS:
1386 		sk_init_xmac(sc_if);
1387 		break;
1388 	case SK_YUKON:
1389 	case SK_YUKON_LITE:
1390 	case SK_YUKON_LP:
1391 		sk_init_yukon(sc_if);
1392 		break;
1393 	default:
1394 		aprint_error_dev(&sc->sk_dev, "unknown device type %d\n",
1395 			sc->sk_type);
1396 		goto fail;
1397 	}
1398 
1399  	DPRINTFN(2, ("sk_attach: 1\n"));
1400 
1401 	sc_if->sk_mii.mii_ifp = ifp;
1402 	switch (sc->sk_type) {
1403 	case SK_GENESIS:
1404 		sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1405 		sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1406 		sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1407 		break;
1408 	case SK_YUKON:
1409 	case SK_YUKON_LITE:
1410 	case SK_YUKON_LP:
1411 		sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1412 		sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1413 		sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1414 		break;
1415 	}
1416 
1417 	sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1418 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1419 	    sk_ifmedia_upd, ether_mediastatus);
1420 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1421 	    MII_OFFSET_ANY, 0);
1422 	if (LIST_EMPTY(&sc_if->sk_mii.mii_phys)) {
1423 		aprint_error_dev(&sc_if->sk_dev, "no PHY found!\n");
1424 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1425 			    0, NULL);
1426 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1427 	} else
1428 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1429 
1430 	callout_init(&sc_if->sk_tick_ch, 0);
1431 	callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1432 
1433 	DPRINTFN(2, ("sk_attach: 1\n"));
1434 
1435 	/*
1436 	 * Call MI attach routines.
1437 	 */
1438 	if_attach(ifp);
1439 
1440 	ether_ifattach(ifp, sc_if->sk_enaddr);
1441 
1442 #if NRND > 0
1443         rnd_attach_source(&sc->rnd_source, device_xname(&sc->sk_dev),
1444             RND_TYPE_NET, 0);
1445 #endif
1446 
1447 	DPRINTFN(2, ("sk_attach: end\n"));
1448 
1449 	return;
1450 
1451 fail:
1452 	sc->sk_if[sa->skc_port] = NULL;
1453 }
1454 
1455 int
1456 skcprint(void *aux, const char *pnp)
1457 {
1458 	struct skc_attach_args *sa = aux;
1459 
1460 	if (pnp)
1461 		aprint_normal("sk port %c at %s",
1462 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1463 	else
1464 		aprint_normal(" port %c",
1465 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1466 	return UNCONF;
1467 }
1468 
1469 /*
1470  * Attach the interface. Allocate softc structures, do ifmedia
1471  * setup and ethernet/BPF attach.
1472  */
1473 void
1474 skc_attach(struct device *parent, struct device *self, void *aux)
1475 {
1476 	struct sk_softc *sc = (struct sk_softc *)self;
1477 	struct pci_attach_args *pa = aux;
1478 	struct skc_attach_args skca;
1479 	pci_chipset_tag_t pc = pa->pa_pc;
1480 #ifndef SK_USEIOSPACE
1481 	pcireg_t memtype;
1482 #endif
1483 	pci_intr_handle_t ih;
1484 	const char *intrstr = NULL;
1485 	bus_addr_t iobase;
1486 	bus_size_t iosize;
1487 	int rc, sk_nodenum;
1488 	u_int32_t command;
1489 	const char *revstr;
1490 	const struct sysctlnode *node;
1491 
1492 	aprint_naive("\n");
1493 
1494 	DPRINTFN(2, ("begin skc_attach\n"));
1495 
1496 	/*
1497 	 * Handle power management nonsense.
1498 	 */
1499 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1500 
1501 	if (command == 0x01) {
1502 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1503 		if (command & SK_PSTATE_MASK) {
1504 			u_int32_t		xiobase, membase, irq;
1505 
1506 			/* Save important PCI config data. */
1507 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1508 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1509 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1510 
1511 			/* Reset the power state. */
1512 			aprint_normal_dev(&sc->sk_dev, "chip is in D%d power mode "
1513 			    "-- setting to D0\n",
1514 			    command & SK_PSTATE_MASK);
1515 			command &= 0xFFFFFFFC;
1516 			pci_conf_write(pc, pa->pa_tag,
1517 			    SK_PCI_PWRMGMTCTRL, command);
1518 
1519 			/* Restore PCI config data. */
1520 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1521 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1522 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1523 		}
1524 	}
1525 
1526 	/*
1527 	 * Map control/status registers.
1528 	 */
1529 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1530 	command |= PCI_COMMAND_IO_ENABLE |
1531 	    PCI_COMMAND_MEM_ENABLE |
1532 	    PCI_COMMAND_MASTER_ENABLE;
1533 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1534 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1535 
1536 #ifdef SK_USEIOSPACE
1537 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
1538 		aprint_error(": failed to enable I/O ports!\n");
1539 		return;
1540 	}
1541 	/*
1542 	 * Map control/status registers.
1543 	 */
1544 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1545 			&sc->sk_btag, &sc->sk_bhandle,
1546 			&iobase, &iosize)) {
1547 		aprint_error(": can't find i/o space\n");
1548 		return;
1549 	}
1550 #else
1551 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1552 		aprint_error(": failed to enable memory mapping!\n");
1553 		return;
1554 	}
1555 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1556 	switch (memtype) {
1557         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1558         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1559                 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1560 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1561 				   &iobase, &iosize) == 0)
1562                         break;
1563         default:
1564                 aprint_error_dev(&sc->sk_dev, "can't find mem space\n");
1565                 return;
1566 	}
1567 
1568 	DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
1569 #endif
1570 	sc->sc_dmatag = pa->pa_dmat;
1571 
1572 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1573 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1574 
1575 	/* bail out here if chip is not recognized */
1576 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1577 		aprint_error_dev(&sc->sk_dev, "unknown chip type\n");
1578 		goto fail;
1579 	}
1580 	if (SK_IS_YUKON2(sc)) {
1581 		aprint_error_dev(&sc->sk_dev, "Does not support Yukon2--try msk(4).\n");
1582 		goto fail;
1583 	}
1584 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1585 
1586 	/* Allocate interrupt */
1587 	if (pci_intr_map(pa, &ih)) {
1588 		aprint_error(": couldn't map interrupt\n");
1589 		goto fail;
1590 	}
1591 
1592 	intrstr = pci_intr_string(pc, ih);
1593 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1594 	if (sc->sk_intrhand == NULL) {
1595 		aprint_error(": couldn't establish interrupt");
1596 		if (intrstr != NULL)
1597 			aprint_normal(" at %s", intrstr);
1598 		goto fail;
1599 	}
1600 	aprint_normal(": %s\n", intrstr);
1601 
1602 	/* Reset the adapter. */
1603 	sk_reset(sc);
1604 
1605 	/* Read and save vital product data from EEPROM. */
1606 	sk_vpd_read(sc);
1607 
1608 	if (sc->sk_type == SK_GENESIS) {
1609 		u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1610 		/* Read and save RAM size and RAMbuffer offset */
1611 		switch (val) {
1612 		case SK_RAMSIZE_512K_64:
1613 			sc->sk_ramsize = 0x80000;
1614 			sc->sk_rboff = SK_RBOFF_0;
1615 			break;
1616 		case SK_RAMSIZE_1024K_64:
1617 			sc->sk_ramsize = 0x100000;
1618 			sc->sk_rboff = SK_RBOFF_80000;
1619 			break;
1620 		case SK_RAMSIZE_1024K_128:
1621 			sc->sk_ramsize = 0x100000;
1622 			sc->sk_rboff = SK_RBOFF_0;
1623 			break;
1624 		case SK_RAMSIZE_2048K_128:
1625 			sc->sk_ramsize = 0x200000;
1626 			sc->sk_rboff = SK_RBOFF_0;
1627 			break;
1628 		default:
1629 			aprint_error_dev(&sc->sk_dev, "unknown ram size: %d\n",
1630 			       val);
1631 			goto fail_1;
1632 			break;
1633 		}
1634 
1635 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1636 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
1637 			     sc->sk_rboff));
1638 	} else {
1639 	  	u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1640 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
1641 		sc->sk_rboff = SK_RBOFF_0;
1642 
1643 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1644 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
1645 			     sc->sk_rboff));
1646 	}
1647 
1648 	/* Read and save physical media type */
1649 	switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1650 	case SK_PMD_1000BASESX:
1651 		sc->sk_pmd = IFM_1000_SX;
1652 		break;
1653 	case SK_PMD_1000BASELX:
1654 		sc->sk_pmd = IFM_1000_LX;
1655 		break;
1656 	case SK_PMD_1000BASECX:
1657 		sc->sk_pmd = IFM_1000_CX;
1658 		break;
1659 	case SK_PMD_1000BASETX:
1660 	case SK_PMD_1000BASETX_ALT:
1661 		sc->sk_pmd = IFM_1000_T;
1662 		break;
1663 	default:
1664 		aprint_error_dev(&sc->sk_dev, "unknown media type: 0x%x\n",
1665 		    sk_win_read_1(sc, SK_PMDTYPE));
1666 		goto fail_1;
1667 	}
1668 
1669 	/* determine whether to name it with vpd or just make it up */
1670 	/* Marvell Yukon VPD's can freqently be bogus */
1671 
1672 	switch (pa->pa_id) {
1673 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1674 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1675 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1676 	case PCI_PRODUCT_3COM_3C940:
1677 	case PCI_PRODUCT_DLINK_DGE530T:
1678 	case PCI_PRODUCT_DLINK_DGE560T:
1679 	case PCI_PRODUCT_DLINK_DGE560T_2:
1680 	case PCI_PRODUCT_LINKSYS_EG1032:
1681 	case PCI_PRODUCT_LINKSYS_EG1064:
1682 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1683 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1684 	case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1685 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1686 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
1687 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
1688 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1689 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1690  		sc->sk_name = sc->sk_vpd_prodname;
1691  		break;
1692 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
1693 	/* whoops yukon vpd prodname bears no resemblance to reality */
1694 		switch (sc->sk_type) {
1695 		case SK_GENESIS:
1696 			sc->sk_name = sc->sk_vpd_prodname;
1697 			break;
1698 		case SK_YUKON:
1699 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1700 			break;
1701 		case SK_YUKON_LITE:
1702 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1703 			break;
1704 		case SK_YUKON_LP:
1705 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1706 			break;
1707 		default:
1708 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1709 		}
1710 
1711 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1712 
1713 		if ( sc->sk_type == SK_YUKON ) {
1714 			uint32_t flashaddr;
1715 			uint8_t testbyte;
1716 
1717 			flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1718 
1719 			/* test Flash-Address Register */
1720 			sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1721 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1722 
1723 			if (testbyte != 0) {
1724 				/* this is yukon lite Rev. A0 */
1725 				sc->sk_type = SK_YUKON_LITE;
1726 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
1727 				/* restore Flash-Address Register */
1728 				sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1729 			}
1730 		}
1731 		break;
1732 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
1733 		sc->sk_name = sc->sk_vpd_prodname;
1734 		break;
1735  	default:
1736 		sc->sk_name = "Unknown Marvell";
1737 	}
1738 
1739 
1740 	if ( sc->sk_type == SK_YUKON_LITE ) {
1741 		switch (sc->sk_rev) {
1742 		case SK_YUKON_LITE_REV_A0:
1743 			revstr = "A0";
1744 			break;
1745 		case SK_YUKON_LITE_REV_A1:
1746 			revstr = "A1";
1747 			break;
1748 		case SK_YUKON_LITE_REV_A3:
1749 			revstr = "A3";
1750 			break;
1751 		default:
1752 			revstr = "";
1753 		}
1754 	} else {
1755 		revstr = "";
1756 	}
1757 
1758 	/* Announce the product name. */
1759 	aprint_normal_dev(&sc->sk_dev, "%s rev. %s(0x%x)\n",
1760 			      sc->sk_name, revstr, sc->sk_rev);
1761 
1762 	skca.skc_port = SK_PORT_A;
1763 	(void)config_found(&sc->sk_dev, &skca, skcprint);
1764 
1765 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1766 		skca.skc_port = SK_PORT_B;
1767 		(void)config_found(&sc->sk_dev, &skca, skcprint);
1768 	}
1769 
1770 	/* Turn on the 'driver is loaded' LED. */
1771 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1772 
1773 	/* skc sysctl setup */
1774 
1775 	sc->sk_int_mod = SK_IM_DEFAULT;
1776 	sc->sk_int_mod_pending = 0;
1777 
1778 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1779 	    0, CTLTYPE_NODE, device_xname(&sc->sk_dev),
1780 	    SYSCTL_DESCR("skc per-controller controls"),
1781 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1782 	    CTL_EOL)) != 0) {
1783 		aprint_normal_dev(&sc->sk_dev, "couldn't create sysctl node\n");
1784 		goto fail_1;
1785 	}
1786 
1787 	sk_nodenum = node->sysctl_num;
1788 
1789 	/* interrupt moderation time in usecs */
1790 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1791 	    CTLFLAG_READWRITE,
1792 	    CTLTYPE_INT, "int_mod",
1793 	    SYSCTL_DESCR("sk interrupt moderation timer"),
1794 	    sk_sysctl_handler, 0, sc,
1795 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1796 	    CTL_EOL)) != 0) {
1797 		aprint_normal_dev(&sc->sk_dev, "couldn't create int_mod sysctl node\n");
1798 		goto fail_1;
1799 	}
1800 
1801 	return;
1802 
1803 fail_1:
1804 	pci_intr_disestablish(pc, sc->sk_intrhand);
1805 fail:
1806 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1807 }
1808 
1809 int
1810 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1811 {
1812 	struct sk_softc		*sc = sc_if->sk_softc;
1813 	struct sk_tx_desc	*f = NULL;
1814 	u_int32_t		frag, cur, cnt = 0, sk_ctl;
1815 	int			i;
1816 	struct sk_txmap_entry	*entry;
1817 	bus_dmamap_t		txmap;
1818 
1819 	DPRINTFN(3, ("sk_encap\n"));
1820 
1821 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1822 	if (entry == NULL) {
1823 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
1824 		return ENOBUFS;
1825 	}
1826 	txmap = entry->dmamap;
1827 
1828 	cur = frag = *txidx;
1829 
1830 #ifdef SK_DEBUG
1831 	if (skdebug >= 3)
1832 		sk_dump_mbuf(m_head);
1833 #endif
1834 
1835 	/*
1836 	 * Start packing the mbufs in this chain into
1837 	 * the fragment pointers. Stop when we run out
1838 	 * of fragments or hit the end of the mbuf chain.
1839 	 */
1840 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1841 	    BUS_DMA_NOWAIT)) {
1842 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1843 		return ENOBUFS;
1844 	}
1845 
1846 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1847 
1848 	/* Sync the DMA map. */
1849 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1850 	    BUS_DMASYNC_PREWRITE);
1851 
1852 	for (i = 0; i < txmap->dm_nsegs; i++) {
1853 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1854 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1855 			return ENOBUFS;
1856 		}
1857 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
1858 		f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1859 		sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1860 		if (cnt == 0)
1861 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
1862 		else
1863 			sk_ctl |= SK_TXCTL_OWN;
1864 		f->sk_ctl = htole32(sk_ctl);
1865 		cur = frag;
1866 		SK_INC(frag, SK_TX_RING_CNT);
1867 		cnt++;
1868 	}
1869 
1870 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1871 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1872 
1873 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
1874 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1875 		htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1876 
1877 	/* Sync descriptors before handing to chip */
1878 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1879 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1880 
1881 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1882 		htole32(SK_TXCTL_OWN);
1883 
1884 	/* Sync first descriptor to hand it off */
1885 	SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1886 
1887 	sc_if->sk_cdata.sk_tx_cnt += cnt;
1888 
1889 #ifdef SK_DEBUG
1890 	if (skdebug >= 3) {
1891 		struct sk_tx_desc *desc;
1892 		u_int32_t idx;
1893 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1894 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1895 			sk_dump_txdesc(desc, idx);
1896 		}
1897 	}
1898 #endif
1899 
1900 	*txidx = frag;
1901 
1902 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
1903 
1904 	return 0;
1905 }
1906 
1907 void
1908 sk_start(struct ifnet *ifp)
1909 {
1910         struct sk_if_softc	*sc_if = ifp->if_softc;
1911         struct sk_softc		*sc = sc_if->sk_softc;
1912         struct mbuf		*m_head = NULL;
1913         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
1914 	int			pkts = 0;
1915 
1916 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1917 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1918 
1919 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1920 		IFQ_POLL(&ifp->if_snd, m_head);
1921 		if (m_head == NULL)
1922 			break;
1923 
1924 		/*
1925 		 * Pack the data into the transmit ring. If we
1926 		 * don't have room, set the OACTIVE flag and wait
1927 		 * for the NIC to drain the ring.
1928 		 */
1929 		if (sk_encap(sc_if, m_head, &idx)) {
1930 			ifp->if_flags |= IFF_OACTIVE;
1931 			break;
1932 		}
1933 
1934 		/* now we are committed to transmit the packet */
1935 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1936 		pkts++;
1937 
1938 		/*
1939 		 * If there's a BPF listener, bounce a copy of this frame
1940 		 * to him.
1941 		 */
1942 #if NBPFILTER > 0
1943 		if (ifp->if_bpf)
1944 			bpf_mtap(ifp->if_bpf, m_head);
1945 #endif
1946 	}
1947 	if (pkts == 0)
1948 		return;
1949 
1950 	/* Transmit */
1951 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
1952 		sc_if->sk_cdata.sk_tx_prod = idx;
1953 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1954 
1955 		/* Set a timeout in case the chip goes out to lunch. */
1956 		ifp->if_timer = 5;
1957 	}
1958 }
1959 
1960 
1961 void
1962 sk_watchdog(struct ifnet *ifp)
1963 {
1964 	struct sk_if_softc *sc_if = ifp->if_softc;
1965 
1966 	/*
1967 	 * Reclaim first as there is a possibility of losing Tx completion
1968 	 * interrupts.
1969 	 */
1970 	sk_txeof(sc_if);
1971 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1972 		aprint_error_dev(&sc_if->sk_dev, "watchdog timeout\n");
1973 
1974 		ifp->if_oerrors++;
1975 
1976 		sk_init(ifp);
1977 	}
1978 }
1979 
1980 void
1981 sk_shutdown(void *v)
1982 {
1983 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
1984 	struct sk_softc		*sc = sc_if->sk_softc;
1985 	struct ifnet 		*ifp = &sc_if->sk_ethercom.ec_if;
1986 
1987 	DPRINTFN(2, ("sk_shutdown\n"));
1988 	sk_stop(ifp,1);
1989 
1990 	/* Turn off the 'driver is loaded' LED. */
1991 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1992 
1993 	/*
1994 	 * Reset the GEnesis controller. Doing this should also
1995 	 * assert the resets on the attached XMAC(s).
1996 	 */
1997 	sk_reset(sc);
1998 }
1999 
2000 void
2001 sk_rxeof(struct sk_if_softc *sc_if)
2002 {
2003 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2004 	struct mbuf		*m;
2005 	struct sk_chain		*cur_rx;
2006 	struct sk_rx_desc	*cur_desc;
2007 	int			i, cur, total_len = 0;
2008 	u_int32_t		rxstat, sk_ctl;
2009 	bus_dmamap_t		dmamap;
2010 
2011 	i = sc_if->sk_cdata.sk_rx_prod;
2012 
2013 	DPRINTFN(3, ("sk_rxeof %d\n", i));
2014 
2015 	for (;;) {
2016 		cur = i;
2017 
2018 		/* Sync the descriptor */
2019 		SK_CDRXSYNC(sc_if, cur,
2020 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2021 
2022 		sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2023 		if (sk_ctl & SK_RXCTL_OWN) {
2024 			/* Invalidate the descriptor -- it's not ready yet */
2025 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2026 			sc_if->sk_cdata.sk_rx_prod = i;
2027 			break;
2028 		}
2029 
2030 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2031 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2032 		dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2033 
2034 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2035 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2036 
2037 		rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2038 		m = cur_rx->sk_mbuf;
2039 		cur_rx->sk_mbuf = NULL;
2040 		total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2041 
2042 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
2043 
2044 		SK_INC(i, SK_RX_RING_CNT);
2045 
2046 		if (rxstat & XM_RXSTAT_ERRFRAME) {
2047 			ifp->if_ierrors++;
2048 			sk_newbuf(sc_if, cur, m, dmamap);
2049 			continue;
2050 		}
2051 
2052 		/*
2053 		 * Try to allocate a new jumbo buffer. If that
2054 		 * fails, copy the packet to mbufs and put the
2055 		 * jumbo buffer back in the ring so it can be
2056 		 * re-used. If allocating mbufs fails, then we
2057 		 * have to drop the packet.
2058 		 */
2059 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2060 			struct mbuf		*m0;
2061 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2062 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
2063 			sk_newbuf(sc_if, cur, m, dmamap);
2064 			if (m0 == NULL) {
2065 				aprint_error_dev(&sc_if->sk_dev, "no receive buffers "
2066 				    "available -- packet dropped!\n");
2067 				ifp->if_ierrors++;
2068 				continue;
2069 			}
2070 			m_adj(m0, ETHER_ALIGN);
2071 			m = m0;
2072 		} else {
2073 			m->m_pkthdr.rcvif = ifp;
2074 			m->m_pkthdr.len = m->m_len = total_len;
2075 		}
2076 
2077 		ifp->if_ipackets++;
2078 
2079 #if NBPFILTER > 0
2080 		if (ifp->if_bpf)
2081 			bpf_mtap(ifp->if_bpf, m);
2082 #endif
2083 		/* pass it on. */
2084 		(*ifp->if_input)(ifp, m);
2085 	}
2086 }
2087 
2088 void
2089 sk_txeof(struct sk_if_softc *sc_if)
2090 {
2091 	struct sk_softc		*sc = sc_if->sk_softc;
2092 	struct sk_tx_desc	*cur_tx;
2093 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2094 	u_int32_t		idx, sk_ctl;
2095 	struct sk_txmap_entry	*entry;
2096 
2097 	DPRINTFN(3, ("sk_txeof\n"));
2098 
2099 	/*
2100 	 * Go through our tx ring and free mbufs for those
2101 	 * frames that have been sent.
2102 	 */
2103 	idx = sc_if->sk_cdata.sk_tx_cons;
2104 	while (idx != sc_if->sk_cdata.sk_tx_prod) {
2105 		SK_CDTXSYNC(sc_if, idx, 1,
2106 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2107 
2108 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2109 		sk_ctl = le32toh(cur_tx->sk_ctl);
2110 #ifdef SK_DEBUG
2111 		if (skdebug >= 3)
2112 			sk_dump_txdesc(cur_tx, idx);
2113 #endif
2114 		if (sk_ctl & SK_TXCTL_OWN) {
2115 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2116 			break;
2117 		}
2118 		if (sk_ctl & SK_TXCTL_LASTFRAG)
2119 			ifp->if_opackets++;
2120 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2121 			entry = sc_if->sk_cdata.sk_tx_map[idx];
2122 
2123 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2124 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2125 
2126 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2127 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2128 
2129 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2130 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2131 					  link);
2132 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2133 		}
2134 		sc_if->sk_cdata.sk_tx_cnt--;
2135 		SK_INC(idx, SK_TX_RING_CNT);
2136 	}
2137 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
2138 		ifp->if_timer = 0;
2139 	else /* nudge chip to keep tx ring moving */
2140 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2141 
2142 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2143 		ifp->if_flags &= ~IFF_OACTIVE;
2144 
2145 	sc_if->sk_cdata.sk_tx_cons = idx;
2146 }
2147 
2148 void
2149 sk_tick(void *xsc_if)
2150 {
2151 	struct sk_if_softc *sc_if = xsc_if;
2152 	struct mii_data *mii = &sc_if->sk_mii;
2153 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2154 	int i;
2155 
2156 	DPRINTFN(3, ("sk_tick\n"));
2157 
2158 	if (!(ifp->if_flags & IFF_UP))
2159 		return;
2160 
2161 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2162 		sk_intr_bcom(sc_if);
2163 		return;
2164 	}
2165 
2166 	/*
2167 	 * According to SysKonnect, the correct way to verify that
2168 	 * the link has come back up is to poll bit 0 of the GPIO
2169 	 * register three times. This pin has the signal from the
2170 	 * link sync pin connected to it; if we read the same link
2171 	 * state 3 times in a row, we know the link is up.
2172 	 */
2173 	for (i = 0; i < 3; i++) {
2174 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2175 			break;
2176 	}
2177 
2178 	if (i != 3) {
2179 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2180 		return;
2181 	}
2182 
2183 	/* Turn the GP0 interrupt back on. */
2184 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2185 	SK_XM_READ_2(sc_if, XM_ISR);
2186 	mii_tick(mii);
2187 	mii_pollstat(mii);
2188 	callout_stop(&sc_if->sk_tick_ch);
2189 }
2190 
2191 void
2192 sk_intr_bcom(struct sk_if_softc *sc_if)
2193 {
2194 	struct mii_data *mii = &sc_if->sk_mii;
2195 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2196 	int status;
2197 
2198 
2199 	DPRINTFN(3, ("sk_intr_bcom\n"));
2200 
2201 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2202 
2203 	/*
2204 	 * Read the PHY interrupt register to make sure
2205 	 * we clear any pending interrupts.
2206 	 */
2207 	status = sk_xmac_miibus_readreg((struct device *)sc_if,
2208 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2209 
2210 	if (!(ifp->if_flags & IFF_RUNNING)) {
2211 		sk_init_xmac(sc_if);
2212 		return;
2213 	}
2214 
2215 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2216 		int lstat;
2217 		lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
2218 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2219 
2220 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2221 			(void)mii_mediachg(mii);
2222 			/* Turn off the link LED. */
2223 			SK_IF_WRITE_1(sc_if, 0,
2224 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
2225 			sc_if->sk_link = 0;
2226 		} else if (status & BRGPHY_ISR_LNK_CHG) {
2227 			sk_xmac_miibus_writereg((struct device *)sc_if,
2228 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2229 			mii_tick(mii);
2230 			sc_if->sk_link = 1;
2231 			/* Turn on the link LED. */
2232 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2233 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2234 			    SK_LINKLED_BLINK_OFF);
2235 			mii_pollstat(mii);
2236 		} else {
2237 			mii_tick(mii);
2238 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2239 		}
2240 	}
2241 
2242 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2243 }
2244 
2245 void
2246 sk_intr_xmac(struct sk_if_softc	*sc_if)
2247 {
2248 	u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2249 
2250 	DPRINTFN(3, ("sk_intr_xmac\n"));
2251 
2252 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2253 		if (status & XM_ISR_GP0_SET) {
2254 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2255 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2256 		}
2257 
2258 		if (status & XM_ISR_AUTONEG_DONE) {
2259 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2260 		}
2261 	}
2262 
2263 	if (status & XM_IMR_TX_UNDERRUN)
2264 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2265 
2266 	if (status & XM_IMR_RX_OVERRUN)
2267 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2268 }
2269 
2270 void
2271 sk_intr_yukon(struct sk_if_softc *sc_if)
2272 {
2273 	int status;
2274 
2275 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2276 
2277 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2278 }
2279 
2280 int
2281 sk_intr(void *xsc)
2282 {
2283 	struct sk_softc		*sc = xsc;
2284 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
2285 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
2286 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2287 	u_int32_t		status;
2288 	int			claimed = 0;
2289 
2290 	if (sc_if0 != NULL)
2291 		ifp0 = &sc_if0->sk_ethercom.ec_if;
2292 	if (sc_if1 != NULL)
2293 		ifp1 = &sc_if1->sk_ethercom.ec_if;
2294 
2295 	for (;;) {
2296 		status = CSR_READ_4(sc, SK_ISSR);
2297 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2298 
2299 		if (!(status & sc->sk_intrmask))
2300 			break;
2301 
2302 		claimed = 1;
2303 
2304 		/* Handle receive interrupts first. */
2305 		if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2306 			sk_rxeof(sc_if0);
2307 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2308 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2309 		}
2310 		if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2311 			sk_rxeof(sc_if1);
2312 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2313 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2314 		}
2315 
2316 		/* Then transmit interrupts. */
2317 		if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2318 			sk_txeof(sc_if0);
2319 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2320 			    SK_TXBMU_CLR_IRQ_EOF);
2321 		}
2322 		if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2323 			sk_txeof(sc_if1);
2324 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2325 			    SK_TXBMU_CLR_IRQ_EOF);
2326 		}
2327 
2328 		/* Then MAC interrupts. */
2329 		if (sc_if0 && (status & SK_ISR_MAC1) &&
2330 		    (ifp0->if_flags & IFF_RUNNING)) {
2331 			if (sc->sk_type == SK_GENESIS)
2332 				sk_intr_xmac(sc_if0);
2333 			else
2334 				sk_intr_yukon(sc_if0);
2335 		}
2336 
2337 		if (sc_if1 && (status & SK_ISR_MAC2) &&
2338 		    (ifp1->if_flags & IFF_RUNNING)) {
2339 			if (sc->sk_type == SK_GENESIS)
2340 				sk_intr_xmac(sc_if1);
2341 			else
2342 				sk_intr_yukon(sc_if1);
2343 
2344 		}
2345 
2346 		if (status & SK_ISR_EXTERNAL_REG) {
2347 			if (sc_if0 != NULL &&
2348 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2349 				sk_intr_bcom(sc_if0);
2350 
2351 			if (sc_if1 != NULL &&
2352 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2353 				sk_intr_bcom(sc_if1);
2354 		}
2355 	}
2356 
2357 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2358 
2359 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2360 		sk_start(ifp0);
2361 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2362 		sk_start(ifp1);
2363 
2364 #if NRND > 0
2365 	if (RND_ENABLED(&sc->rnd_source))
2366 		rnd_add_uint32(&sc->rnd_source, status);
2367 #endif
2368 
2369 	if (sc->sk_int_mod_pending)
2370 		sk_update_int_mod(sc);
2371 
2372 	return claimed;
2373 }
2374 
2375 void
2376 sk_init_xmac(struct sk_if_softc	*sc_if)
2377 {
2378 	struct sk_softc		*sc = sc_if->sk_softc;
2379 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2380 	static const struct sk_bcom_hack     bhack[] = {
2381 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2382 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2383 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2384 	{ 0, 0 } };
2385 
2386 	DPRINTFN(1, ("sk_init_xmac\n"));
2387 
2388 	/* Unreset the XMAC. */
2389 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2390 	DELAY(1000);
2391 
2392 	/* Reset the XMAC's internal state. */
2393 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2394 
2395 	/* Save the XMAC II revision */
2396 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2397 
2398 	/*
2399 	 * Perform additional initialization for external PHYs,
2400 	 * namely for the 1000baseTX cards that use the XMAC's
2401 	 * GMII mode.
2402 	 */
2403 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2404 		int			i = 0;
2405 		u_int32_t		val;
2406 
2407 		/* Take PHY out of reset. */
2408 		val = sk_win_read_4(sc, SK_GPIO);
2409 		if (sc_if->sk_port == SK_PORT_A)
2410 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2411 		else
2412 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2413 		sk_win_write_4(sc, SK_GPIO, val);
2414 
2415 		/* Enable GMII mode on the XMAC. */
2416 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2417 
2418 		sk_xmac_miibus_writereg((struct device *)sc_if,
2419 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2420 		DELAY(10000);
2421 		sk_xmac_miibus_writereg((struct device *)sc_if,
2422 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2423 
2424 		/*
2425 		 * Early versions of the BCM5400 apparently have
2426 		 * a bug that requires them to have their reserved
2427 		 * registers initialized to some magic values. I don't
2428 		 * know what the numbers do, I'm just the messenger.
2429 		 */
2430 		if (sk_xmac_miibus_readreg((struct device *)sc_if,
2431 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2432 			while (bhack[i].reg) {
2433 				sk_xmac_miibus_writereg((struct device *)sc_if,
2434 				    SK_PHYADDR_BCOM, bhack[i].reg,
2435 				    bhack[i].val);
2436 				i++;
2437 			}
2438 		}
2439 	}
2440 
2441 	/* Set station address */
2442 	SK_XM_WRITE_2(sc_if, XM_PAR0,
2443 		      *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2444 	SK_XM_WRITE_2(sc_if, XM_PAR1,
2445 		      *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2446 	SK_XM_WRITE_2(sc_if, XM_PAR2,
2447 		      *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2448 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2449 
2450 	if (ifp->if_flags & IFF_PROMISC)
2451 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2452 	else
2453 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2454 
2455 	if (ifp->if_flags & IFF_BROADCAST)
2456 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2457 	else
2458 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2459 
2460 	/* We don't need the FCS appended to the packet. */
2461 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2462 
2463 	/* We want short frames padded to 60 bytes. */
2464 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2465 
2466 	/*
2467 	 * Enable the reception of all error frames. This is is
2468 	 * a necessary evil due to the design of the XMAC. The
2469 	 * XMAC's receive FIFO is only 8K in size, however jumbo
2470 	 * frames can be up to 9000 bytes in length. When bad
2471 	 * frame filtering is enabled, the XMAC's RX FIFO operates
2472 	 * in 'store and forward' mode. For this to work, the
2473 	 * entire frame has to fit into the FIFO, but that means
2474 	 * that jumbo frames larger than 8192 bytes will be
2475 	 * truncated. Disabling all bad frame filtering causes
2476 	 * the RX FIFO to operate in streaming mode, in which
2477 	 * case the XMAC will start transfering frames out of the
2478 	 * RX FIFO as soon as the FIFO threshold is reached.
2479 	 */
2480 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2481 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2482 	    XM_MODE_RX_INRANGELEN);
2483 
2484 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2485 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2486 	else
2487 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2488 
2489 	/*
2490 	 * Bump up the transmit threshold. This helps hold off transmit
2491 	 * underruns when we're blasting traffic from both ports at once.
2492 	 */
2493 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2494 
2495 	/* Set multicast filter */
2496 	sk_setmulti(sc_if);
2497 
2498 	/* Clear and enable interrupts */
2499 	SK_XM_READ_2(sc_if, XM_ISR);
2500 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2501 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2502 	else
2503 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2504 
2505 	/* Configure MAC arbiter */
2506 	switch (sc_if->sk_xmac_rev) {
2507 	case XM_XMAC_REV_B2:
2508 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2509 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2510 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2511 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2512 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2513 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2514 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2515 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2516 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2517 		break;
2518 	case XM_XMAC_REV_C1:
2519 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2520 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2521 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2522 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2523 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2524 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2525 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2526 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2527 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2528 		break;
2529 	default:
2530 		break;
2531 	}
2532 	sk_win_write_2(sc, SK_MACARB_CTL,
2533 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2534 
2535 	sc_if->sk_link = 1;
2536 }
2537 
2538 void sk_init_yukon(struct sk_if_softc *sc_if)
2539 {
2540 	u_int32_t		/*mac, */phy;
2541 	u_int16_t		reg;
2542 	struct sk_softc		*sc;
2543 	int			i;
2544 
2545 	DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2546 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2547 
2548 	sc = sc_if->sk_softc;
2549 	if (sc->sk_type == SK_YUKON_LITE &&
2550 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2551 		/* Take PHY out of reset. */
2552 		sk_win_write_4(sc, SK_GPIO,
2553 			(sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2554 	}
2555 
2556 
2557 	/* GMAC and GPHY Reset */
2558 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2559 
2560 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
2561 
2562 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2563 	DELAY(1000);
2564 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2565 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2566 	DELAY(1000);
2567 
2568 
2569 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
2570 
2571 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2572 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2573 
2574 	switch (sc_if->sk_softc->sk_pmd) {
2575 	case IFM_1000_SX:
2576 	case IFM_1000_LX:
2577 		phy |= SK_GPHY_FIBER;
2578 		break;
2579 
2580 	case IFM_1000_CX:
2581 	case IFM_1000_T:
2582 		phy |= SK_GPHY_COPPER;
2583 		break;
2584 	}
2585 
2586 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2587 
2588 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2589 	DELAY(1000);
2590 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2591 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2592 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2593 
2594 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2595 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2596 
2597 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
2598 
2599 	/* unused read of the interrupt source register */
2600 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
2601 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2602 
2603 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2604 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2605 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2606 
2607 	/* MIB Counter Clear Mode set */
2608         reg |= YU_PAR_MIB_CLR;
2609 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2610 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2611 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2612 
2613 	/* MIB Counter Clear Mode clear */
2614 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
2615         reg &= ~YU_PAR_MIB_CLR;
2616 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2617 
2618 	/* receive control reg */
2619 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
2620 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2621 		      YU_RCR_CRCR);
2622 
2623 	/* transmit parameter register */
2624 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
2625 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2626 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2627 
2628 	/* serial mode register */
2629 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
2630 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2631 		      YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2632 		      YU_SMR_IPG_DATA(0x1e));
2633 
2634 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
2635 	/* Setup Yukon's address */
2636 	for (i = 0; i < 3; i++) {
2637 		/* Write Source Address 1 (unicast filter) */
2638 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2639 			      sc_if->sk_enaddr[i * 2] |
2640 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
2641 	}
2642 
2643 	for (i = 0; i < 3; i++) {
2644 		reg = sk_win_read_2(sc_if->sk_softc,
2645 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2646 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2647 	}
2648 
2649 	/* Set multicast filter */
2650 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
2651 	sk_setmulti(sc_if);
2652 
2653 	/* enable interrupt mask for counter overflows */
2654 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
2655 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2656 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2657 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2658 
2659 	/* Configure RX MAC FIFO */
2660 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2661 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2662 
2663 	/* Configure TX MAC FIFO */
2664 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2665 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2666 
2667 	DPRINTFN(6, ("sk_init_yukon: end\n"));
2668 }
2669 
2670 /*
2671  * Note that to properly initialize any part of the GEnesis chip,
2672  * you first have to take it out of reset mode.
2673  */
2674 int
2675 sk_init(struct ifnet *ifp)
2676 {
2677 	struct sk_if_softc	*sc_if = ifp->if_softc;
2678 	struct sk_softc		*sc = sc_if->sk_softc;
2679 	struct mii_data		*mii = &sc_if->sk_mii;
2680 	int			rc = 0, s;
2681 	u_int32_t		imr, imtimer_ticks;
2682 
2683 	DPRINTFN(1, ("sk_init\n"));
2684 
2685 	s = splnet();
2686 
2687 	if (ifp->if_flags & IFF_RUNNING) {
2688 		splx(s);
2689 		return 0;
2690 	}
2691 
2692 	/* Cancel pending I/O and free all RX/TX buffers. */
2693 	sk_stop(ifp,0);
2694 
2695 	if (sc->sk_type == SK_GENESIS) {
2696 		/* Configure LINK_SYNC LED */
2697 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2698 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2699 			      SK_LINKLED_LINKSYNC_ON);
2700 
2701 		/* Configure RX LED */
2702 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2703 			      SK_RXLEDCTL_COUNTER_START);
2704 
2705 		/* Configure TX LED */
2706 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2707 			      SK_TXLEDCTL_COUNTER_START);
2708 	}
2709 
2710 	/* Configure I2C registers */
2711 
2712 	/* Configure XMAC(s) */
2713 	switch (sc->sk_type) {
2714 	case SK_GENESIS:
2715 		sk_init_xmac(sc_if);
2716 		break;
2717 	case SK_YUKON:
2718 	case SK_YUKON_LITE:
2719 	case SK_YUKON_LP:
2720 		sk_init_yukon(sc_if);
2721 		break;
2722 	}
2723 	if ((rc = mii_mediachg(mii)) == ENXIO)
2724 		rc = 0;
2725 	else if (rc != 0)
2726 		goto out;
2727 
2728 	if (sc->sk_type == SK_GENESIS) {
2729 		/* Configure MAC FIFOs */
2730 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2731 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2732 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2733 
2734 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2735 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2736 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2737 	}
2738 
2739 	/* Configure transmit arbiter(s) */
2740 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2741 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2742 
2743 	/* Configure RAMbuffers */
2744 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2745 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2746 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2747 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2748 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2749 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2750 
2751 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2752 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2753 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2754 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2755 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2756 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2757 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2758 
2759 	/* Configure BMUs */
2760 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2761 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2762 	    SK_RX_RING_ADDR(sc_if, 0));
2763 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2764 
2765 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2766 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2767             SK_TX_RING_ADDR(sc_if, 0));
2768 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2769 
2770 	/* Init descriptors */
2771 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2772 		aprint_error_dev(&sc_if->sk_dev, "initialization failed: no "
2773 		    "memory for rx buffers\n");
2774 		sk_stop(ifp,0);
2775 		splx(s);
2776 		return ENOBUFS;
2777 	}
2778 
2779 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2780 		aprint_error_dev(&sc_if->sk_dev, "initialization failed: no "
2781 		    "memory for tx buffers\n");
2782 		sk_stop(ifp,0);
2783 		splx(s);
2784 		return ENOBUFS;
2785 	}
2786 
2787 	/* Set interrupt moderation if changed via sysctl. */
2788 	switch (sc->sk_type) {
2789 	case SK_GENESIS:
2790 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2791 		break;
2792 	case SK_YUKON_EC:
2793 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2794 		break;
2795 	default:
2796 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2797 	}
2798 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2799 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2800 		sk_win_write_4(sc, SK_IMTIMERINIT,
2801 		    SK_IM_USECS(sc->sk_int_mod));
2802 		aprint_verbose_dev(&sc->sk_dev, "interrupt moderation is %d us\n",
2803 		    sc->sk_int_mod);
2804 	}
2805 
2806 	/* Configure interrupt handling */
2807 	CSR_READ_4(sc, SK_ISSR);
2808 	if (sc_if->sk_port == SK_PORT_A)
2809 		sc->sk_intrmask |= SK_INTRS1;
2810 	else
2811 		sc->sk_intrmask |= SK_INTRS2;
2812 
2813 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2814 
2815 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2816 
2817 	/* Start BMUs. */
2818 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2819 
2820 	if (sc->sk_type == SK_GENESIS) {
2821 		/* Enable XMACs TX and RX state machines */
2822 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2823 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2824 			       XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2825 	}
2826 
2827 	if (SK_YUKON_FAMILY(sc->sk_type)) {
2828 		u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2829 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2830 #if 0
2831 		/* XXX disable 100Mbps and full duplex mode? */
2832 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2833 #endif
2834 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2835 	}
2836 
2837 
2838 	ifp->if_flags |= IFF_RUNNING;
2839 	ifp->if_flags &= ~IFF_OACTIVE;
2840 
2841 out:
2842 	splx(s);
2843 	return rc;
2844 }
2845 
2846 void
2847 sk_stop(struct ifnet *ifp, int disable)
2848 {
2849         struct sk_if_softc	*sc_if = ifp->if_softc;
2850 	struct sk_softc		*sc = sc_if->sk_softc;
2851 	int			i;
2852 
2853 	DPRINTFN(1, ("sk_stop\n"));
2854 
2855 	callout_stop(&sc_if->sk_tick_ch);
2856 
2857 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2858 		u_int32_t		val;
2859 
2860 		/* Put PHY back into reset. */
2861 		val = sk_win_read_4(sc, SK_GPIO);
2862 		if (sc_if->sk_port == SK_PORT_A) {
2863 			val |= SK_GPIO_DIR0;
2864 			val &= ~SK_GPIO_DAT0;
2865 		} else {
2866 			val |= SK_GPIO_DIR2;
2867 			val &= ~SK_GPIO_DAT2;
2868 		}
2869 		sk_win_write_4(sc, SK_GPIO, val);
2870 	}
2871 
2872 	/* Turn off various components of this interface. */
2873 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2874 	switch (sc->sk_type) {
2875 	case SK_GENESIS:
2876 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2877 			      SK_TXMACCTL_XMAC_RESET);
2878 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2879 		break;
2880 	case SK_YUKON:
2881 	case SK_YUKON_LITE:
2882 	case SK_YUKON_LP:
2883 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2884 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2885 		break;
2886 	}
2887 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2888 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2889 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2890 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2891 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2892 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2893 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2894 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2895 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2896 
2897 	/* Disable interrupts */
2898 	if (sc_if->sk_port == SK_PORT_A)
2899 		sc->sk_intrmask &= ~SK_INTRS1;
2900 	else
2901 		sc->sk_intrmask &= ~SK_INTRS2;
2902 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2903 
2904 	SK_XM_READ_2(sc_if, XM_ISR);
2905 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2906 
2907 	/* Free RX and TX mbufs still in the queues. */
2908 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2909 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2910 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2911 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2912 		}
2913 	}
2914 
2915 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2916 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2917 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2918 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2919 		}
2920 	}
2921 
2922 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2923 }
2924 
2925 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
2926 
2927 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
2928 
2929 #ifdef SK_DEBUG
2930 void
2931 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2932 {
2933 #define DESC_PRINT(X)					\
2934 	if (X)					\
2935 		printf("txdesc[%d]." #X "=%#x\n",	\
2936 		       idx, X);
2937 
2938 	DESC_PRINT(le32toh(desc->sk_ctl));
2939 	DESC_PRINT(le32toh(desc->sk_next));
2940 	DESC_PRINT(le32toh(desc->sk_data_lo));
2941 	DESC_PRINT(le32toh(desc->sk_data_hi));
2942 	DESC_PRINT(le32toh(desc->sk_xmac_txstat));
2943 	DESC_PRINT(le16toh(desc->sk_rsvd0));
2944 	DESC_PRINT(le16toh(desc->sk_csum_startval));
2945 	DESC_PRINT(le16toh(desc->sk_csum_startpos));
2946 	DESC_PRINT(le16toh(desc->sk_csum_writepos));
2947 	DESC_PRINT(le16toh(desc->sk_rsvd1));
2948 #undef PRINT
2949 }
2950 
2951 void
2952 sk_dump_bytes(const char *data, int len)
2953 {
2954 	int c, i, j;
2955 
2956 	for (i = 0; i < len; i += 16) {
2957 		printf("%08x  ", i);
2958 		c = len - i;
2959 		if (c > 16) c = 16;
2960 
2961 		for (j = 0; j < c; j++) {
2962 			printf("%02x ", data[i + j] & 0xff);
2963 			if ((j & 0xf) == 7 && j > 0)
2964 				printf(" ");
2965 		}
2966 
2967 		for (; j < 16; j++)
2968 			printf("   ");
2969 		printf("  ");
2970 
2971 		for (j = 0; j < c; j++) {
2972 			int ch = data[i + j] & 0xff;
2973 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2974 		}
2975 
2976 		printf("\n");
2977 
2978 		if (c < 16)
2979 			break;
2980 	}
2981 }
2982 
2983 void
2984 sk_dump_mbuf(struct mbuf *m)
2985 {
2986 	int count = m->m_pkthdr.len;
2987 
2988 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2989 
2990 	while (count > 0 && m) {
2991 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2992 		       m, m->m_data, m->m_len);
2993 		sk_dump_bytes(mtod(m, char *), m->m_len);
2994 
2995 		count -= m->m_len;
2996 		m = m->m_next;
2997 	}
2998 }
2999 #endif
3000 
3001 static int
3002 sk_sysctl_handler(SYSCTLFN_ARGS)
3003 {
3004 	int error, t;
3005 	struct sysctlnode node;
3006 	struct sk_softc *sc;
3007 
3008 	node = *rnode;
3009 	sc = node.sysctl_data;
3010 	t = sc->sk_int_mod;
3011 	node.sysctl_data = &t;
3012 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3013 	if (error || newp == NULL)
3014 		return error;
3015 
3016 	if (t < SK_IM_MIN || t > SK_IM_MAX)
3017 		return EINVAL;
3018 
3019 	/* update the softc with sysctl-changed value, and mark
3020 	   for hardware update */
3021 	sc->sk_int_mod = t;
3022 	sc->sk_int_mod_pending = 1;
3023 	return 0;
3024 }
3025 
3026 /*
3027  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3028  * set up in skc_attach()
3029  */
3030 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3031 {
3032 	int rc;
3033 	const struct sysctlnode *node;
3034 
3035 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3036 	    0, CTLTYPE_NODE, "hw", NULL,
3037 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3038 		goto err;
3039 	}
3040 
3041 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
3042 	    0, CTLTYPE_NODE, "sk",
3043 	    SYSCTL_DESCR("sk interface controls"),
3044 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3045 		goto err;
3046 	}
3047 
3048 	sk_root_num = node->sysctl_num;
3049 	return;
3050 
3051 err:
3052 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3053 }
3054