xref: /netbsd-src/sys/dev/pci/if_sk.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: if_sk.c,v 1.89 2018/07/04 19:26:09 jdolecek Exp $	*/
2 
3 /*-
4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*	$OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $	*/
30 
31 /*
32  * Copyright (c) 1997, 1998, 1999, 2000
33  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
34  *
35  * Redistribution and use in source and binary forms, with or without
36  * modification, are permitted provided that the following conditions
37  * are met:
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 3. All advertising materials mentioning features or use of this software
44  *    must display the following acknowledgement:
45  *	This product includes software developed by Bill Paul.
46  * 4. Neither the name of the author nor the names of any co-contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
54  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
60  * THE POSSIBILITY OF SUCH DAMAGE.
61  *
62  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
63  */
64 
65 /*
66  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
67  *
68  * Permission to use, copy, modify, and distribute this software for any
69  * purpose with or without fee is hereby granted, provided that the above
70  * copyright notice and this permission notice appear in all copies.
71  *
72  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
73  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
74  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
75  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
76  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
77  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
78  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
79  */
80 
81 /*
82  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
83  * the SK-984x series adapters, both single port and dual port.
84  * References:
85  * 	The XaQti XMAC II datasheet,
86  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
87  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
88  *
89  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
90  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
91  * convenience to others until Vitesse corrects this problem:
92  *
93  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94  *
95  * Written by Bill Paul <wpaul@ee.columbia.edu>
96  * Department of Electrical Engineering
97  * Columbia University, New York City
98  */
99 
100 /*
101  * The SysKonnect gigabit ethernet adapters consist of two main
102  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
103  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
104  * components and a PHY while the GEnesis controller provides a PCI
105  * interface with DMA support. Each card may have between 512K and
106  * 2MB of SRAM on board depending on the configuration.
107  *
108  * The SysKonnect GEnesis controller can have either one or two XMAC
109  * chips connected to it, allowing single or dual port NIC configurations.
110  * SysKonnect has the distinction of being the only vendor on the market
111  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
112  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
113  * XMAC registers. This driver takes advantage of these features to allow
114  * both XMACs to operate as independent interfaces.
115  */
116 
117 #include <sys/cdefs.h>
118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.89 2018/07/04 19:26:09 jdolecek Exp $");
119 
120 #include <sys/param.h>
121 #include <sys/systm.h>
122 #include <sys/sockio.h>
123 #include <sys/mbuf.h>
124 #include <sys/malloc.h>
125 #include <sys/mutex.h>
126 #include <sys/kernel.h>
127 #include <sys/socket.h>
128 #include <sys/device.h>
129 #include <sys/queue.h>
130 #include <sys/callout.h>
131 #include <sys/sysctl.h>
132 #include <sys/endian.h>
133 
134 #include <net/if.h>
135 #include <net/if_dl.h>
136 #include <net/if_types.h>
137 
138 #include <net/if_media.h>
139 
140 #include <net/bpf.h>
141 #include <sys/rndsource.h>
142 
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145 #include <dev/mii/brgphyreg.h>
146 
147 #include <dev/pci/pcireg.h>
148 #include <dev/pci/pcivar.h>
149 #include <dev/pci/pcidevs.h>
150 
151 /* #define SK_USEIOSPACE */
152 
153 #include <dev/pci/if_skreg.h>
154 #include <dev/pci/if_skvar.h>
155 
156 int skc_probe(device_t, cfdata_t, void *);
157 void skc_attach(device_t, device_t, void *aux);
158 int sk_probe(device_t, cfdata_t, void *);
159 void sk_attach(device_t, device_t, void *aux);
160 int skcprint(void *, const char *);
161 int sk_intr(void *);
162 void sk_intr_bcom(struct sk_if_softc *);
163 void sk_intr_xmac(struct sk_if_softc *);
164 void sk_intr_yukon(struct sk_if_softc *);
165 void sk_rxeof(struct sk_if_softc *);
166 void sk_txeof(struct sk_if_softc *);
167 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
168 void sk_start(struct ifnet *);
169 int sk_ioctl(struct ifnet *, u_long, void *);
170 int sk_init(struct ifnet *);
171 void sk_init_xmac(struct sk_if_softc *);
172 void sk_init_yukon(struct sk_if_softc *);
173 void sk_stop(struct ifnet *, int);
174 void sk_watchdog(struct ifnet *);
175 void sk_shutdown(void *);
176 int sk_ifmedia_upd(struct ifnet *);
177 void sk_reset(struct sk_softc *);
178 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
179 int sk_alloc_jumbo_mem(struct sk_if_softc *);
180 void sk_free_jumbo_mem(struct sk_if_softc *);
181 void *sk_jalloc(struct sk_if_softc *);
182 void sk_jfree(struct mbuf *, void *, size_t, void *);
183 int sk_init_rx_ring(struct sk_if_softc *);
184 int sk_init_tx_ring(struct sk_if_softc *);
185 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
186 void sk_vpd_read_res(struct sk_softc *,
187 					struct vpd_res *, int);
188 void sk_vpd_read(struct sk_softc *);
189 
190 void sk_update_int_mod(struct sk_softc *);
191 
192 int sk_xmac_miibus_readreg(device_t, int, int);
193 void sk_xmac_miibus_writereg(device_t, int, int, int);
194 void sk_xmac_miibus_statchg(struct ifnet *);
195 
196 int sk_marv_miibus_readreg(device_t, int, int);
197 void sk_marv_miibus_writereg(device_t, int, int, int);
198 void sk_marv_miibus_statchg(struct ifnet *);
199 
200 u_int32_t sk_xmac_hash(void *);
201 u_int32_t sk_yukon_hash(void *);
202 void sk_setfilt(struct sk_if_softc *, void *, int);
203 void sk_setmulti(struct sk_if_softc *);
204 void sk_tick(void *);
205 
206 static bool skc_suspend(device_t, const pmf_qual_t *);
207 static bool skc_resume(device_t, const pmf_qual_t *);
208 static bool sk_resume(device_t dv, const pmf_qual_t *);
209 
210 /* #define SK_DEBUG 2 */
211 #ifdef SK_DEBUG
212 #define DPRINTF(x)	if (skdebug) printf x
213 #define DPRINTFN(n,x)	if (skdebug >= (n)) printf x
214 int	skdebug = SK_DEBUG;
215 
216 void sk_dump_txdesc(struct sk_tx_desc *, int);
217 void sk_dump_mbuf(struct mbuf *);
218 void sk_dump_bytes(const char *, int);
219 #else
220 #define DPRINTF(x)
221 #define DPRINTFN(n,x)
222 #endif
223 
224 static int sk_sysctl_handler(SYSCTLFN_PROTO);
225 static int sk_root_num;
226 
227 /* supported device vendors */
228 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
229 static const struct sk_product {
230 	pci_vendor_id_t		sk_vendor;
231 	pci_product_id_t	sk_product;
232 } sk_products[] = {
233 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
234 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
235 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
236 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
237 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
238 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
239 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
240 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
241 	{ 0, 0, }
242 };
243 
244 #define SK_LINKSYS_EG1032_SUBID	0x00151737
245 
246 static inline u_int32_t
247 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
248 {
249 #ifdef SK_USEIOSPACE
250 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
251 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
252 #else
253 	return CSR_READ_4(sc, reg);
254 #endif
255 }
256 
257 static inline u_int16_t
258 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
259 {
260 #ifdef SK_USEIOSPACE
261 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
262 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
263 #else
264 	return CSR_READ_2(sc, reg);
265 #endif
266 }
267 
268 static inline u_int8_t
269 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
270 {
271 #ifdef SK_USEIOSPACE
272 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
273 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
274 #else
275 	return CSR_READ_1(sc, reg);
276 #endif
277 }
278 
279 static inline void
280 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
281 {
282 #ifdef SK_USEIOSPACE
283 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
284 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
285 #else
286 	CSR_WRITE_4(sc, reg, x);
287 #endif
288 }
289 
290 static inline void
291 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
292 {
293 #ifdef SK_USEIOSPACE
294 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
295 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
296 #else
297 	CSR_WRITE_2(sc, reg, x);
298 #endif
299 }
300 
301 static inline void
302 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
303 {
304 #ifdef SK_USEIOSPACE
305 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
306 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
307 #else
308 	CSR_WRITE_1(sc, reg, x);
309 #endif
310 }
311 
312 /*
313  * The VPD EEPROM contains Vital Product Data, as suggested in
314  * the PCI 2.1 specification. The VPD data is separared into areas
315  * denoted by resource IDs. The SysKonnect VPD contains an ID string
316  * resource (the name of the adapter), a read-only area resource
317  * containing various key/data fields and a read/write area which
318  * can be used to store asset management information or log messages.
319  * We read the ID string and read-only into buffers attached to
320  * the controller softc structure for later use. At the moment,
321  * we only use the ID string during sk_attach().
322  */
323 u_int8_t
324 sk_vpd_readbyte(struct sk_softc *sc, int addr)
325 {
326 	int			i;
327 
328 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
329 	for (i = 0; i < SK_TIMEOUT; i++) {
330 		DELAY(1);
331 		if (sk_win_read_2(sc,
332 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
333 			break;
334 	}
335 
336 	if (i == SK_TIMEOUT)
337 		return 0;
338 
339 	return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
340 }
341 
342 void
343 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
344 {
345 	int			i;
346 	u_int8_t		*ptr;
347 
348 	ptr = (u_int8_t *)res;
349 	for (i = 0; i < sizeof(struct vpd_res); i++)
350 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
351 }
352 
353 void
354 sk_vpd_read(struct sk_softc *sc)
355 {
356 	int			pos = 0, i;
357 	struct vpd_res		res;
358 
359 	if (sc->sk_vpd_prodname != NULL)
360 		free(sc->sk_vpd_prodname, M_DEVBUF);
361 	if (sc->sk_vpd_readonly != NULL)
362 		free(sc->sk_vpd_readonly, M_DEVBUF);
363 	sc->sk_vpd_prodname = NULL;
364 	sc->sk_vpd_readonly = NULL;
365 
366 	sk_vpd_read_res(sc, &res, pos);
367 
368 	if (res.vr_id != VPD_RES_ID) {
369 		aprint_error_dev(sc->sk_dev,
370 		    "bad VPD resource id: expected %x got %x\n",
371 		    VPD_RES_ID, res.vr_id);
372 		return;
373 	}
374 
375 	pos += sizeof(res);
376 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
377 	if (sc->sk_vpd_prodname == NULL)
378 		panic("sk_vpd_read");
379 	for (i = 0; i < res.vr_len; i++)
380 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
381 	sc->sk_vpd_prodname[i] = '\0';
382 	pos += i;
383 
384 	sk_vpd_read_res(sc, &res, pos);
385 
386 	if (res.vr_id != VPD_RES_READ) {
387 		aprint_error_dev(sc->sk_dev,
388 		    "bad VPD resource id: expected %x got %x\n",
389 		    VPD_RES_READ, res.vr_id);
390 		return;
391 	}
392 
393 	pos += sizeof(res);
394 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
395 	if (sc->sk_vpd_readonly == NULL)
396 		panic("sk_vpd_read");
397 	for (i = 0; i < res.vr_len ; i++)
398 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
399 }
400 
401 int
402 sk_xmac_miibus_readreg(device_t dev, int phy, int reg)
403 {
404 	struct sk_if_softc *sc_if = device_private(dev);
405 	int i;
406 
407 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
408 
409 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
410 		return 0;
411 
412 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
413 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
414 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
415 		for (i = 0; i < SK_TIMEOUT; i++) {
416 			DELAY(1);
417 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
418 			    XM_MMUCMD_PHYDATARDY)
419 				break;
420 		}
421 
422 		if (i == SK_TIMEOUT) {
423 			aprint_error_dev(sc_if->sk_dev,
424 			    "phy failed to come ready\n");
425 			return 0;
426 		}
427 	}
428 	DELAY(1);
429 	return SK_XM_READ_2(sc_if, XM_PHY_DATA);
430 }
431 
432 void
433 sk_xmac_miibus_writereg(device_t dev, int phy, int reg, int val)
434 {
435 	struct sk_if_softc *sc_if = device_private(dev);
436 	int i;
437 
438 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
439 
440 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
441 	for (i = 0; i < SK_TIMEOUT; i++) {
442 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
443 			break;
444 	}
445 
446 	if (i == SK_TIMEOUT) {
447 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
448 		return;
449 	}
450 
451 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
452 	for (i = 0; i < SK_TIMEOUT; i++) {
453 		DELAY(1);
454 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
455 			break;
456 	}
457 
458 	if (i == SK_TIMEOUT)
459 		aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
460 }
461 
462 void
463 sk_xmac_miibus_statchg(struct ifnet *ifp)
464 {
465 	struct sk_if_softc *sc_if = ifp->if_softc;
466 	struct mii_data *mii = &sc_if->sk_mii;
467 
468 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
469 
470 	/*
471 	 * If this is a GMII PHY, manually set the XMAC's
472 	 * duplex mode accordingly.
473 	 */
474 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
475 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
476 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
477 		else
478 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
479 	}
480 }
481 
482 int
483 sk_marv_miibus_readreg(device_t dev, int phy, int reg)
484 {
485 	struct sk_if_softc *sc_if = device_private(dev);
486 	u_int16_t val;
487 	int i;
488 
489 	if (phy != 0 ||
490 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
491 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
492 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
493 			     phy, reg));
494 		return 0;
495 	}
496 
497         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
498 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
499 
500 	for (i = 0; i < SK_TIMEOUT; i++) {
501 		DELAY(1);
502 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
503 		if (val & YU_SMICR_READ_VALID)
504 			break;
505 	}
506 
507 	if (i == SK_TIMEOUT) {
508 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
509 		return 0;
510 	}
511 
512  	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
513 		     SK_TIMEOUT));
514 
515         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
516 
517 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
518 		     phy, reg, val));
519 
520 	return val;
521 }
522 
523 void
524 sk_marv_miibus_writereg(device_t dev, int phy, int reg, int val)
525 {
526 	struct sk_if_softc *sc_if = device_private(dev);
527 	int i;
528 
529 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
530 		     phy, reg, val));
531 
532 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
533 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
534 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
535 
536 	for (i = 0; i < SK_TIMEOUT; i++) {
537 		DELAY(1);
538 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
539 			break;
540 	}
541 
542 	if (i == SK_TIMEOUT)
543 		printf("%s: phy write timed out\n",
544 		    device_xname(sc_if->sk_dev));
545 }
546 
547 void
548 sk_marv_miibus_statchg(struct ifnet *ifp)
549 {
550 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
551 		     SK_YU_READ_2(((struct sk_if_softc *)ifp->if_softc),
552 		     YUKON_GPCR)));
553 }
554 
555 u_int32_t
556 sk_xmac_hash(void *addr)
557 {
558 	u_int32_t		crc;
559 
560 	crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
561 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
562 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
563 	return crc;
564 }
565 
566 u_int32_t
567 sk_yukon_hash(void *addr)
568 {
569 	u_int32_t		crc;
570 
571 	crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
572 	crc &= ((1 << SK_HASH_BITS) - 1);
573 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
574 	return crc;
575 }
576 
577 void
578 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
579 {
580 	char *addr = addrv;
581 	int base = XM_RXFILT_ENTRY(slot);
582 
583 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
584 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
585 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
586 }
587 
588 void
589 sk_setmulti(struct sk_if_softc *sc_if)
590 {
591 	struct sk_softc *sc = sc_if->sk_softc;
592 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
593 	u_int32_t hashes[2] = { 0, 0 };
594 	int h = 0, i;
595 	struct ethercom *ec = &sc_if->sk_ethercom;
596 	struct ether_multi *enm;
597 	struct ether_multistep step;
598 	u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
599 
600 	/* First, zot all the existing filters. */
601 	switch (sc->sk_type) {
602 	case SK_GENESIS:
603 		for (i = 1; i < XM_RXFILT_MAX; i++)
604 			sk_setfilt(sc_if, (void *)&dummy, i);
605 
606 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
607 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
608 		break;
609 	case SK_YUKON:
610 	case SK_YUKON_LITE:
611 	case SK_YUKON_LP:
612 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
613 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
614 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
615 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
616 		break;
617 	}
618 
619 	/* Now program new ones. */
620 allmulti:
621 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
622 		hashes[0] = 0xFFFFFFFF;
623 		hashes[1] = 0xFFFFFFFF;
624 	} else {
625 		i = 1;
626 		/* First find the tail of the list. */
627 		ETHER_FIRST_MULTI(step, ec, enm);
628 		while (enm != NULL) {
629 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
630 				 ETHER_ADDR_LEN)) {
631 				ifp->if_flags |= IFF_ALLMULTI;
632 				goto allmulti;
633 			}
634 			DPRINTFN(2,("multicast address %s\n",
635 	    			ether_sprintf(enm->enm_addrlo)));
636 			/*
637 			 * Program the first XM_RXFILT_MAX multicast groups
638 			 * into the perfect filter. For all others,
639 			 * use the hash table.
640 			 */
641 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
642 				sk_setfilt(sc_if, enm->enm_addrlo, i);
643 				i++;
644 			}
645 			else {
646 				switch (sc->sk_type) {
647 				case SK_GENESIS:
648 					h = sk_xmac_hash(enm->enm_addrlo);
649 					break;
650 				case SK_YUKON:
651 				case SK_YUKON_LITE:
652 				case SK_YUKON_LP:
653 					h = sk_yukon_hash(enm->enm_addrlo);
654 					break;
655 				}
656 				if (h < 32)
657 					hashes[0] |= (1 << h);
658 				else
659 					hashes[1] |= (1 << (h - 32));
660 			}
661 
662 			ETHER_NEXT_MULTI(step, enm);
663 		}
664 	}
665 
666 	switch (sc->sk_type) {
667 	case SK_GENESIS:
668 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
669 			       XM_MODE_RX_USE_PERFECT);
670 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
671 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
672 		break;
673 	case SK_YUKON:
674 	case SK_YUKON_LITE:
675 	case SK_YUKON_LP:
676 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
677 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
678 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
679 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
680 		break;
681 	}
682 }
683 
684 int
685 sk_init_rx_ring(struct sk_if_softc *sc_if)
686 {
687 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
688 	struct sk_ring_data	*rd = sc_if->sk_rdata;
689 	int			i;
690 
691 	memset((char *)rd->sk_rx_ring, 0,
692 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
693 
694 	for (i = 0; i < SK_RX_RING_CNT; i++) {
695 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
696 		if (i == (SK_RX_RING_CNT - 1)) {
697 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
698 			rd->sk_rx_ring[i].sk_next =
699 				htole32(SK_RX_RING_ADDR(sc_if, 0));
700 		} else {
701 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
702 			rd->sk_rx_ring[i].sk_next =
703 				htole32(SK_RX_RING_ADDR(sc_if,i+1));
704 		}
705 	}
706 
707 	for (i = 0; i < SK_RX_RING_CNT; i++) {
708 		if (sk_newbuf(sc_if, i, NULL,
709 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
710 			aprint_error_dev(sc_if->sk_dev,
711 			    "failed alloc of %dth mbuf\n", i);
712 			return ENOBUFS;
713 		}
714 	}
715 	sc_if->sk_cdata.sk_rx_prod = 0;
716 	sc_if->sk_cdata.sk_rx_cons = 0;
717 
718 	return 0;
719 }
720 
721 int
722 sk_init_tx_ring(struct sk_if_softc *sc_if)
723 {
724 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
725 	struct sk_ring_data	*rd = sc_if->sk_rdata;
726 	int			i;
727 
728 	memset(sc_if->sk_rdata->sk_tx_ring, 0,
729 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
730 
731 	for (i = 0; i < SK_TX_RING_CNT; i++) {
732 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
733 		if (i == (SK_TX_RING_CNT - 1)) {
734 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
735 			rd->sk_tx_ring[i].sk_next =
736 				htole32(SK_TX_RING_ADDR(sc_if, 0));
737 		} else {
738 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
739 			rd->sk_tx_ring[i].sk_next =
740 				htole32(SK_TX_RING_ADDR(sc_if,i+1));
741 		}
742 	}
743 
744 	sc_if->sk_cdata.sk_tx_prod = 0;
745 	sc_if->sk_cdata.sk_tx_cons = 0;
746 	sc_if->sk_cdata.sk_tx_cnt = 0;
747 
748 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
749 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
750 
751 	return 0;
752 }
753 
754 int
755 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
756 	  bus_dmamap_t dmamap)
757 {
758 	struct mbuf		*m_new = NULL;
759 	struct sk_chain		*c;
760 	struct sk_rx_desc	*r;
761 
762 	if (m == NULL) {
763 		void *buf = NULL;
764 
765 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
766 		if (m_new == NULL) {
767 			aprint_error_dev(sc_if->sk_dev,
768 			    "no memory for rx list -- packet dropped!\n");
769 			return ENOBUFS;
770 		}
771 
772 		/* Allocate the jumbo buffer */
773 		buf = sk_jalloc(sc_if);
774 		if (buf == NULL) {
775 			m_freem(m_new);
776 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
777 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
778 			return ENOBUFS;
779 		}
780 
781 		/* Attach the buffer to the mbuf */
782 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
783 		MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
784 
785 	} else {
786 		/*
787 	 	 * We're re-using a previously allocated mbuf;
788 		 * be sure to re-init pointers and lengths to
789 		 * default values.
790 		 */
791 		m_new = m;
792 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
793 		m_new->m_data = m_new->m_ext.ext_buf;
794 	}
795 	m_adj(m_new, ETHER_ALIGN);
796 
797 	c = &sc_if->sk_cdata.sk_rx_chain[i];
798 	r = c->sk_desc;
799 	c->sk_mbuf = m_new;
800 	r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
801 	    (((vaddr_t)m_new->m_data
802 		- (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
803 	r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
804 
805 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
806 
807 	return 0;
808 }
809 
810 /*
811  * Memory management for jumbo frames.
812  */
813 
814 int
815 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
816 {
817 	struct sk_softc		*sc = sc_if->sk_softc;
818 	char *ptr, *kva;
819 	bus_dma_segment_t	seg;
820 	int		i, rseg, state, error;
821 	struct sk_jpool_entry   *entry;
822 
823 	state = error = 0;
824 
825 	/* Grab a big chunk o' storage. */
826 	if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
827 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
828 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
829 		return ENOBUFS;
830 	}
831 
832 	state = 1;
833 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
834 			   BUS_DMA_NOWAIT)) {
835 		aprint_error_dev(sc->sk_dev,
836 		    "can't map dma buffers (%d bytes)\n",
837 		    SK_JMEM);
838 		error = ENOBUFS;
839 		goto out;
840 	}
841 
842 	state = 2;
843 	if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
844 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
845 		aprint_error_dev(sc->sk_dev, "can't create dma map\n");
846 		error = ENOBUFS;
847 		goto out;
848 	}
849 
850 	state = 3;
851 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
852 			    kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
853 		aprint_error_dev(sc->sk_dev, "can't load dma map\n");
854 		error = ENOBUFS;
855 		goto out;
856 	}
857 
858 	state = 4;
859 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
860 	DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
861 
862 	LIST_INIT(&sc_if->sk_jfree_listhead);
863 	LIST_INIT(&sc_if->sk_jinuse_listhead);
864 	mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
865 
866 	/*
867 	 * Now divide it up into 9K pieces and save the addresses
868 	 * in an array.
869 	 */
870 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
871 	for (i = 0; i < SK_JSLOTS; i++) {
872 		sc_if->sk_cdata.sk_jslots[i] = ptr;
873 		ptr += SK_JLEN;
874 		entry = malloc(sizeof(struct sk_jpool_entry),
875 		    M_DEVBUF, M_NOWAIT);
876 		if (entry == NULL) {
877 			aprint_error_dev(sc->sk_dev,
878 			    "no memory for jumbo buffer queue!\n");
879 			error = ENOBUFS;
880 			goto out;
881 		}
882 		entry->slot = i;
883 		if (i)
884 			LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
885 				 entry, jpool_entries);
886 		else
887 			LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
888 				 entry, jpool_entries);
889 	}
890 out:
891 	if (error != 0) {
892 		switch (state) {
893 		case 4:
894 			bus_dmamap_unload(sc->sc_dmatag,
895 			    sc_if->sk_cdata.sk_rx_jumbo_map);
896 		case 3:
897 			bus_dmamap_destroy(sc->sc_dmatag,
898 			    sc_if->sk_cdata.sk_rx_jumbo_map);
899 		case 2:
900 			bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
901 		case 1:
902 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
903 			break;
904 		default:
905 			break;
906 		}
907 	}
908 
909 	return error;
910 }
911 
912 /*
913  * Allocate a jumbo buffer.
914  */
915 void *
916 sk_jalloc(struct sk_if_softc *sc_if)
917 {
918 	struct sk_jpool_entry   *entry;
919 
920 	mutex_enter(&sc_if->sk_jpool_mtx);
921 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
922 
923 	if (entry == NULL) {
924 		mutex_exit(&sc_if->sk_jpool_mtx);
925 		return NULL;
926 	}
927 
928 	LIST_REMOVE(entry, jpool_entries);
929 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
930 	mutex_exit(&sc_if->sk_jpool_mtx);
931 	return sc_if->sk_cdata.sk_jslots[entry->slot];
932 }
933 
934 /*
935  * Release a jumbo buffer.
936  */
937 void
938 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
939 {
940 	struct sk_jpool_entry *entry;
941 	struct sk_if_softc *sc;
942 	int i;
943 
944 	/* Extract the softc struct pointer. */
945 	sc = (struct sk_if_softc *)arg;
946 
947 	if (sc == NULL)
948 		panic("sk_jfree: can't find softc pointer!");
949 
950 	/* calculate the slot this buffer belongs to */
951 
952 	i = ((vaddr_t)buf
953 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
954 
955 	if ((i < 0) || (i >= SK_JSLOTS))
956 		panic("sk_jfree: asked to free buffer that we don't manage!");
957 
958 	mutex_enter(&sc->sk_jpool_mtx);
959 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
960 	if (entry == NULL)
961 		panic("sk_jfree: buffer not in use!");
962 	entry->slot = i;
963 	LIST_REMOVE(entry, jpool_entries);
964 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
965 	mutex_exit(&sc->sk_jpool_mtx);
966 
967 	if (__predict_true(m != NULL))
968 		pool_cache_put(mb_cache, m);
969 }
970 
971 /*
972  * Set media options.
973  */
974 int
975 sk_ifmedia_upd(struct ifnet *ifp)
976 {
977 	struct sk_if_softc *sc_if = ifp->if_softc;
978 	int rc;
979 
980 	(void) sk_init(ifp);
981 	if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
982 		return 0;
983 	return rc;
984 }
985 
986 static void
987 sk_promisc(struct sk_if_softc *sc_if, int on)
988 {
989 	struct sk_softc *sc = sc_if->sk_softc;
990 	switch (sc->sk_type) {
991 	case SK_GENESIS:
992 		if (on)
993 			SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
994 		else
995 			SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
996 		break;
997 	case SK_YUKON:
998 	case SK_YUKON_LITE:
999 	case SK_YUKON_LP:
1000 		if (on)
1001 			SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1002 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
1003 		else
1004 			SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1005 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
1006 		break;
1007 	default:
1008 		aprint_error_dev(sc_if->sk_dev, "Can't set promisc for %d\n",
1009 			sc->sk_type);
1010 		break;
1011 	}
1012 }
1013 
1014 int
1015 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
1016 {
1017 	struct sk_if_softc *sc_if = ifp->if_softc;
1018 	int s, error = 0;
1019 
1020 	/* DPRINTFN(2, ("sk_ioctl\n")); */
1021 
1022 	s = splnet();
1023 
1024 	switch (command) {
1025 
1026 	case SIOCSIFFLAGS:
1027 	        DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1028 		if ((error = ifioctl_common(ifp, command, data)) != 0)
1029 			break;
1030 		switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1031 		case IFF_RUNNING:
1032 			sk_stop(ifp, 1);
1033 			break;
1034 		case IFF_UP:
1035 			sk_init(ifp);
1036 			break;
1037 		case IFF_UP | IFF_RUNNING:
1038 			if ((ifp->if_flags ^ sc_if->sk_if_flags) == IFF_PROMISC)			{
1039 				sk_promisc(sc_if, ifp->if_flags & IFF_PROMISC);
1040 				sk_setmulti(sc_if);
1041 			} else
1042 				sk_init(ifp);
1043 			break;
1044 		}
1045 		sc_if->sk_if_flags = ifp->if_flags;
1046 		error = 0;
1047 		break;
1048 
1049 	default:
1050 	        DPRINTFN(2, ("sk_ioctl ETHER\n"));
1051 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1052 			break;
1053 
1054 		error = 0;
1055 
1056 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1057 			;
1058 		else if (ifp->if_flags & IFF_RUNNING) {
1059 			sk_setmulti(sc_if);
1060 			DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1061 		}
1062 		break;
1063 	}
1064 
1065 	splx(s);
1066 	return error;
1067 }
1068 
1069 void
1070 sk_update_int_mod(struct sk_softc *sc)
1071 {
1072 	u_int32_t imtimer_ticks;
1073 
1074 	/*
1075          * Configure interrupt moderation. The moderation timer
1076 	 * defers interrupts specified in the interrupt moderation
1077 	 * timer mask based on the timeout specified in the interrupt
1078 	 * moderation timer init register. Each bit in the timer
1079 	 * register represents one tick, so to specify a timeout in
1080 	 * microseconds, we have to multiply by the correct number of
1081 	 * ticks-per-microsecond.
1082 	 */
1083 	switch (sc->sk_type) {
1084 	case SK_GENESIS:
1085 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1086 		break;
1087 	case SK_YUKON_EC:
1088 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1089 		break;
1090 	default:
1091 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1092 	}
1093 	aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n",
1094 	    sc->sk_int_mod);
1095         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1096         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1097 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1098         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1099 	sc->sk_int_mod_pending = 0;
1100 }
1101 
1102 /*
1103  * Lookup: Check the PCI vendor and device, and return a pointer to
1104  * The structure if the IDs match against our list.
1105  */
1106 
1107 static const struct sk_product *
1108 sk_lookup(const struct pci_attach_args *pa)
1109 {
1110 	const struct sk_product *psk;
1111 
1112 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1113 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1114 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1115 			return psk;
1116 	}
1117 	return NULL;
1118 }
1119 
1120 /*
1121  * Probe for a SysKonnect GEnesis chip.
1122  */
1123 
1124 int
1125 skc_probe(device_t parent, cfdata_t match, void *aux)
1126 {
1127 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1128 	const struct sk_product *psk;
1129 	pcireg_t subid;
1130 
1131 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1132 
1133 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
1134 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1135 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1136 	    subid == SK_LINKSYS_EG1032_SUBID)
1137 		return 1;
1138 
1139 	if ((psk = sk_lookup(pa))) {
1140 		return 1;
1141 	}
1142 	return 0;
1143 }
1144 
1145 /*
1146  * Force the GEnesis into reset, then bring it out of reset.
1147  */
1148 void sk_reset(struct sk_softc *sc)
1149 {
1150 	DPRINTFN(2, ("sk_reset\n"));
1151 
1152 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1153 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1154 	if (SK_YUKON_FAMILY(sc->sk_type))
1155 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1156 
1157 	DELAY(1000);
1158 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1159 	DELAY(2);
1160 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1161 	if (SK_YUKON_FAMILY(sc->sk_type))
1162 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1163 
1164 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1165 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1166 		     CSR_READ_2(sc, SK_LINK_CTRL)));
1167 
1168 	if (sc->sk_type == SK_GENESIS) {
1169 		/* Configure packet arbiter */
1170 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1171 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1172 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1173 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1174 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1175 	}
1176 
1177 	/* Enable RAM interface */
1178 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1179 
1180 	sk_update_int_mod(sc);
1181 }
1182 
1183 int
1184 sk_probe(device_t parent, cfdata_t match, void *aux)
1185 {
1186 	struct skc_attach_args *sa = aux;
1187 
1188 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1189 		return 0;
1190 
1191 	return 1;
1192 }
1193 
1194 /*
1195  * Each XMAC chip is attached as a separate logical IP interface.
1196  * Single port cards will have only one logical interface of course.
1197  */
1198 void
1199 sk_attach(device_t parent, device_t self, void *aux)
1200 {
1201 	struct sk_if_softc *sc_if = device_private(self);
1202 	struct sk_softc *sc = device_private(parent);
1203 	struct skc_attach_args *sa = aux;
1204 	struct sk_txmap_entry	*entry;
1205 	struct ifnet *ifp;
1206 	bus_dma_segment_t seg;
1207 	bus_dmamap_t dmamap;
1208 	prop_data_t data;
1209 	void *kva;
1210 	int i, rseg;
1211 	int mii_flags = 0;
1212 
1213 	aprint_naive("\n");
1214 
1215 	sc_if->sk_dev = self;
1216 	sc_if->sk_port = sa->skc_port;
1217 	sc_if->sk_softc = sc;
1218 	sc->sk_if[sa->skc_port] = sc_if;
1219 
1220 	if (sa->skc_port == SK_PORT_A)
1221 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1222 	if (sa->skc_port == SK_PORT_B)
1223 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1224 
1225 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1226 
1227 	/*
1228 	 * Get station address for this interface. Note that
1229 	 * dual port cards actually come with three station
1230 	 * addresses: one for each port, plus an extra. The
1231 	 * extra one is used by the SysKonnect driver software
1232 	 * as a 'virtual' station address for when both ports
1233 	 * are operating in failover mode. Currently we don't
1234 	 * use this extra address.
1235 	 */
1236 	data = prop_dictionary_get(device_properties(self), "mac-address");
1237 	if (data != NULL) {
1238 		/*
1239 		 * Try to get the station address from device properties
1240 		 * first, in case the ROM is missing.
1241 		 */
1242 		KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
1243 		KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
1244 		memcpy(sc_if->sk_enaddr, prop_data_data_nocopy(data),
1245 		    ETHER_ADDR_LEN);
1246 	} else
1247 		for (i = 0; i < ETHER_ADDR_LEN; i++)
1248 			sc_if->sk_enaddr[i] = sk_win_read_1(sc,
1249 			    SK_MAC0_0 + (sa->skc_port * 8) + i);
1250 
1251 	aprint_normal(": Ethernet address %s\n",
1252 	    ether_sprintf(sc_if->sk_enaddr));
1253 
1254 	/*
1255 	 * Set up RAM buffer addresses. The NIC will have a certain
1256 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1257 	 * need to divide this up a) between the transmitter and
1258  	 * receiver and b) between the two XMACs, if this is a
1259 	 * dual port NIC. Our algorithm is to divide up the memory
1260 	 * evenly so that everyone gets a fair share.
1261 	 */
1262 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1263 		u_int32_t		chunk, val;
1264 
1265 		chunk = sc->sk_ramsize / 2;
1266 		val = sc->sk_rboff / sizeof(u_int64_t);
1267 		sc_if->sk_rx_ramstart = val;
1268 		val += (chunk / sizeof(u_int64_t));
1269 		sc_if->sk_rx_ramend = val - 1;
1270 		sc_if->sk_tx_ramstart = val;
1271 		val += (chunk / sizeof(u_int64_t));
1272 		sc_if->sk_tx_ramend = val - 1;
1273 	} else {
1274 		u_int32_t		chunk, val;
1275 
1276 		chunk = sc->sk_ramsize / 4;
1277 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1278 		    sizeof(u_int64_t);
1279 		sc_if->sk_rx_ramstart = val;
1280 		val += (chunk / sizeof(u_int64_t));
1281 		sc_if->sk_rx_ramend = val - 1;
1282 		sc_if->sk_tx_ramstart = val;
1283 		val += (chunk / sizeof(u_int64_t));
1284 		sc_if->sk_tx_ramend = val - 1;
1285 	}
1286 
1287 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1288 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
1289 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1290 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1291 
1292 	/* Read and save PHY type and set PHY address */
1293 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1294 	switch (sc_if->sk_phytype) {
1295 	case SK_PHYTYPE_XMAC:
1296 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1297 		break;
1298 	case SK_PHYTYPE_BCOM:
1299 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1300 		break;
1301 	case SK_PHYTYPE_MARV_COPPER:
1302 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1303 		break;
1304 	default:
1305 		aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n",
1306 		    sc_if->sk_phytype);
1307 		return;
1308 	}
1309 
1310 	/* Allocate the descriptor queues. */
1311 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1312 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1313 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
1314 		goto fail;
1315 	}
1316 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1317 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1318 		aprint_error_dev(sc_if->sk_dev,
1319 		    "can't map dma buffers (%lu bytes)\n",
1320 		    (u_long) sizeof(struct sk_ring_data));
1321 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1322 		goto fail;
1323 	}
1324 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1325 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1326             &sc_if->sk_ring_map)) {
1327 		aprint_error_dev(sc_if->sk_dev, "can't create dma map\n");
1328 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1329 		    sizeof(struct sk_ring_data));
1330 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1331 		goto fail;
1332 	}
1333 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1334 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1335 		aprint_error_dev(sc_if->sk_dev, "can't load dma map\n");
1336 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1337 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1338 		    sizeof(struct sk_ring_data));
1339 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1340 		goto fail;
1341 	}
1342 
1343 	for (i = 0; i < SK_RX_RING_CNT; i++)
1344 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1345 
1346 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1347 	for (i = 0; i < SK_TX_RING_CNT; i++) {
1348 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1349 
1350 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1351 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1352 			aprint_error_dev(sc_if->sk_dev,
1353 			    "Can't create TX dmamap\n");
1354 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1355 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1356 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1357 			    sizeof(struct sk_ring_data));
1358 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1359 			goto fail;
1360 		}
1361 
1362 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1363 		if (!entry) {
1364 			aprint_error_dev(sc_if->sk_dev,
1365 			    "Can't alloc txmap entry\n");
1366 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1367 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1368 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1369 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1370 			    sizeof(struct sk_ring_data));
1371 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1372 			goto fail;
1373 		}
1374 		entry->dmamap = dmamap;
1375 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1376 	}
1377 
1378         sc_if->sk_rdata = (struct sk_ring_data *)kva;
1379 	memset(sc_if->sk_rdata, 0, sizeof(struct sk_ring_data));
1380 
1381 	ifp = &sc_if->sk_ethercom.ec_if;
1382 	/* Try to allocate memory for jumbo buffers. */
1383 	if (sk_alloc_jumbo_mem(sc_if)) {
1384 		aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1385 		goto fail;
1386 	}
1387 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1388 		| ETHERCAP_JUMBO_MTU;
1389 
1390 	ifp->if_softc = sc_if;
1391 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1392 	ifp->if_ioctl = sk_ioctl;
1393 	ifp->if_start = sk_start;
1394 	ifp->if_stop = sk_stop;
1395 	ifp->if_init = sk_init;
1396 	ifp->if_watchdog = sk_watchdog;
1397 	ifp->if_capabilities = 0;
1398 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1399 	IFQ_SET_READY(&ifp->if_snd);
1400 	strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1401 
1402 	/*
1403 	 * Do miibus setup.
1404 	 */
1405 	switch (sc->sk_type) {
1406 	case SK_GENESIS:
1407 		sk_init_xmac(sc_if);
1408 		break;
1409 	case SK_YUKON:
1410 	case SK_YUKON_LITE:
1411 	case SK_YUKON_LP:
1412 		sk_init_yukon(sc_if);
1413 		break;
1414 	default:
1415 		aprint_error_dev(sc->sk_dev, "unknown device type %d\n",
1416 			sc->sk_type);
1417 		goto fail;
1418 	}
1419 
1420  	DPRINTFN(2, ("sk_attach: 1\n"));
1421 
1422 	sc_if->sk_mii.mii_ifp = ifp;
1423 	switch (sc->sk_type) {
1424 	case SK_GENESIS:
1425 		sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1426 		sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1427 		sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1428 		break;
1429 	case SK_YUKON:
1430 	case SK_YUKON_LITE:
1431 	case SK_YUKON_LP:
1432 		sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1433 		sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1434 		sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1435 		mii_flags = MIIF_DOPAUSE;
1436 		break;
1437 	}
1438 
1439 	sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1440 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1441 	    sk_ifmedia_upd, ether_mediastatus);
1442 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1443 	    MII_OFFSET_ANY, mii_flags);
1444 	if (LIST_EMPTY(&sc_if->sk_mii.mii_phys)) {
1445 		aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1446 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1447 			    0, NULL);
1448 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1449 	} else
1450 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1451 
1452 	callout_init(&sc_if->sk_tick_ch, 0);
1453 	callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1454 
1455 	DPRINTFN(2, ("sk_attach: 1\n"));
1456 
1457 	/*
1458 	 * Call MI attach routines.
1459 	 */
1460 	if_attach(ifp);
1461 	if_deferred_start_init(ifp, NULL);
1462 
1463 	ether_ifattach(ifp, sc_if->sk_enaddr);
1464 
1465 	if (sc->rnd_attached++ == 0) {
1466 	        rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1467 		    RND_TYPE_NET, RND_FLAG_DEFAULT);
1468 	}
1469 
1470 	if (pmf_device_register(self, NULL, sk_resume))
1471 		pmf_class_network_register(self, ifp);
1472 	else
1473 		aprint_error_dev(self, "couldn't establish power handler\n");
1474 
1475 	DPRINTFN(2, ("sk_attach: end\n"));
1476 
1477 	return;
1478 
1479 fail:
1480 	sc->sk_if[sa->skc_port] = NULL;
1481 }
1482 
1483 int
1484 skcprint(void *aux, const char *pnp)
1485 {
1486 	struct skc_attach_args *sa = aux;
1487 
1488 	if (pnp)
1489 		aprint_normal("sk port %c at %s",
1490 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1491 	else
1492 		aprint_normal(" port %c",
1493 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1494 	return UNCONF;
1495 }
1496 
1497 /*
1498  * Attach the interface. Allocate softc structures, do ifmedia
1499  * setup and ethernet/BPF attach.
1500  */
1501 void
1502 skc_attach(device_t parent, device_t self, void *aux)
1503 {
1504 	struct sk_softc *sc = device_private(self);
1505 	struct pci_attach_args *pa = aux;
1506 	struct skc_attach_args skca;
1507 	pci_chipset_tag_t pc = pa->pa_pc;
1508 #ifndef SK_USEIOSPACE
1509 	pcireg_t memtype;
1510 #endif
1511 	pci_intr_handle_t ih;
1512 	const char *intrstr = NULL;
1513 	bus_addr_t iobase;
1514 	bus_size_t iosize;
1515 	int rc, sk_nodenum;
1516 	u_int32_t command;
1517 	const char *revstr;
1518 	const struct sysctlnode *node;
1519 	char intrbuf[PCI_INTRSTR_LEN];
1520 
1521 	sc->sk_dev = self;
1522 	aprint_naive("\n");
1523 
1524 	DPRINTFN(2, ("begin skc_attach\n"));
1525 
1526 	/*
1527 	 * Handle power management nonsense.
1528 	 */
1529 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1530 
1531 	if (command == 0x01) {
1532 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1533 		if (command & SK_PSTATE_MASK) {
1534 			u_int32_t		xiobase, membase, irq;
1535 
1536 			/* Save important PCI config data. */
1537 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1538 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1539 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1540 
1541 			/* Reset the power state. */
1542 			aprint_normal_dev(sc->sk_dev,
1543 			    "chip is in D%d power mode -- setting to D0\n",
1544 			    command & SK_PSTATE_MASK);
1545 			command &= 0xFFFFFFFC;
1546 			pci_conf_write(pc, pa->pa_tag,
1547 			    SK_PCI_PWRMGMTCTRL, command);
1548 
1549 			/* Restore PCI config data. */
1550 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1551 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1552 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1553 		}
1554 	}
1555 
1556 	/*
1557 	 * The firmware might have configured the interface to revert the
1558 	 * byte order in all descriptors. Make that undone.
1559 	 */
1560 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_OURREG2);
1561 	if (command & SK_REG2_REV_DESC)
1562 		pci_conf_write(pc, pa->pa_tag, SK_PCI_OURREG2,
1563 		    command & ~SK_REG2_REV_DESC);
1564 
1565 	/*
1566 	 * Map control/status registers.
1567 	 */
1568 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1569 	command |= PCI_COMMAND_IO_ENABLE |
1570 	    PCI_COMMAND_MEM_ENABLE |
1571 	    PCI_COMMAND_MASTER_ENABLE;
1572 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1573 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1574 
1575 #ifdef SK_USEIOSPACE
1576 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
1577 		aprint_error(": failed to enable I/O ports!\n");
1578 		return;
1579 	}
1580 	/*
1581 	 * Map control/status registers.
1582 	 */
1583 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1584 			&sc->sk_btag, &sc->sk_bhandle,
1585 			&iobase, &iosize)) {
1586 		aprint_error(": can't find i/o space\n");
1587 		return;
1588 	}
1589 #else
1590 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1591 		aprint_error(": failed to enable memory mapping!\n");
1592 		return;
1593 	}
1594 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1595 	switch (memtype) {
1596         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1597         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1598                 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1599 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1600 				   &iobase, &iosize) == 0)
1601                         break;
1602         default:
1603                 aprint_error_dev(sc->sk_dev, "can't find mem space\n");
1604                 return;
1605 	}
1606 
1607 	DPRINTFN(2, ("skc_attach: iobase=%#" PRIxPADDR ", iosize=%zx\n",
1608 	    iobase, iosize));
1609 #endif
1610 	sc->sc_dmatag = pa->pa_dmat;
1611 
1612 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1613 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1614 
1615 	/* bail out here if chip is not recognized */
1616 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1617 		aprint_error_dev(sc->sk_dev, "unknown chip type\n");
1618 		goto fail;
1619 	}
1620 	if (SK_IS_YUKON2(sc)) {
1621 		aprint_error_dev(sc->sk_dev,
1622 		    "Does not support Yukon2--try msk(4).\n");
1623 		goto fail;
1624 	}
1625 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1626 
1627 	/* Allocate interrupt */
1628 	if (pci_intr_map(pa, &ih)) {
1629 		aprint_error(": couldn't map interrupt\n");
1630 		goto fail;
1631 	}
1632 
1633 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1634 	sc->sk_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, sk_intr, sc,
1635 	    device_xname(sc->sk_dev));
1636 	if (sc->sk_intrhand == NULL) {
1637 		aprint_error(": couldn't establish interrupt");
1638 		if (intrstr != NULL)
1639 			aprint_error(" at %s", intrstr);
1640 		aprint_error("\n");
1641 		goto fail;
1642 	}
1643 	aprint_normal(": %s\n", intrstr);
1644 
1645 	/* Reset the adapter. */
1646 	sk_reset(sc);
1647 
1648 	/* Read and save vital product data from EEPROM. */
1649 	sk_vpd_read(sc);
1650 
1651 	if (sc->sk_type == SK_GENESIS) {
1652 		u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1653 		/* Read and save RAM size and RAMbuffer offset */
1654 		switch (val) {
1655 		case SK_RAMSIZE_512K_64:
1656 			sc->sk_ramsize = 0x80000;
1657 			sc->sk_rboff = SK_RBOFF_0;
1658 			break;
1659 		case SK_RAMSIZE_1024K_64:
1660 			sc->sk_ramsize = 0x100000;
1661 			sc->sk_rboff = SK_RBOFF_80000;
1662 			break;
1663 		case SK_RAMSIZE_1024K_128:
1664 			sc->sk_ramsize = 0x100000;
1665 			sc->sk_rboff = SK_RBOFF_0;
1666 			break;
1667 		case SK_RAMSIZE_2048K_128:
1668 			sc->sk_ramsize = 0x200000;
1669 			sc->sk_rboff = SK_RBOFF_0;
1670 			break;
1671 		default:
1672 			aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n",
1673 			       val);
1674 			goto fail_1;
1675 			break;
1676 		}
1677 
1678 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1679 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
1680 			     sc->sk_rboff));
1681 	} else {
1682 	  	u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1683 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
1684 		sc->sk_rboff = SK_RBOFF_0;
1685 
1686 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1687 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
1688 			     sc->sk_rboff));
1689 	}
1690 
1691 	/* Read and save physical media type */
1692 	switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1693 	case SK_PMD_1000BASESX:
1694 		sc->sk_pmd = IFM_1000_SX;
1695 		break;
1696 	case SK_PMD_1000BASELX:
1697 		sc->sk_pmd = IFM_1000_LX;
1698 		break;
1699 	case SK_PMD_1000BASECX:
1700 		sc->sk_pmd = IFM_1000_CX;
1701 		break;
1702 	case SK_PMD_1000BASETX:
1703 	case SK_PMD_1000BASETX_ALT:
1704 		sc->sk_pmd = IFM_1000_T;
1705 		break;
1706 	default:
1707 		aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n",
1708 		    sk_win_read_1(sc, SK_PMDTYPE));
1709 		goto fail_1;
1710 	}
1711 
1712 	/* determine whether to name it with vpd or just make it up */
1713 	/* Marvell Yukon VPD's can freqently be bogus */
1714 
1715 	switch (pa->pa_id) {
1716 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1717 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1718 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1719 	case PCI_PRODUCT_3COM_3C940:
1720 	case PCI_PRODUCT_DLINK_DGE530T:
1721 	case PCI_PRODUCT_DLINK_DGE560T:
1722 	case PCI_PRODUCT_DLINK_DGE560T_2:
1723 	case PCI_PRODUCT_LINKSYS_EG1032:
1724 	case PCI_PRODUCT_LINKSYS_EG1064:
1725 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1726 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1727 	case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1728 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1729 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
1730 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
1731 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1732 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1733  		sc->sk_name = sc->sk_vpd_prodname;
1734  		break;
1735 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
1736 	/* whoops yukon vpd prodname bears no resemblance to reality */
1737 		switch (sc->sk_type) {
1738 		case SK_GENESIS:
1739 			sc->sk_name = sc->sk_vpd_prodname;
1740 			break;
1741 		case SK_YUKON:
1742 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1743 			break;
1744 		case SK_YUKON_LITE:
1745 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1746 			break;
1747 		case SK_YUKON_LP:
1748 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1749 			break;
1750 		default:
1751 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1752 		}
1753 
1754 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1755 
1756 		if ( sc->sk_type == SK_YUKON ) {
1757 			uint32_t flashaddr;
1758 			uint8_t testbyte;
1759 
1760 			flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1761 
1762 			/* test Flash-Address Register */
1763 			sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1764 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1765 
1766 			if (testbyte != 0) {
1767 				/* this is yukon lite Rev. A0 */
1768 				sc->sk_type = SK_YUKON_LITE;
1769 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
1770 				/* restore Flash-Address Register */
1771 				sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1772 			}
1773 		}
1774 		break;
1775 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
1776 		sc->sk_name = sc->sk_vpd_prodname;
1777 		break;
1778  	default:
1779 		sc->sk_name = "Unknown Marvell";
1780 	}
1781 
1782 
1783 	if ( sc->sk_type == SK_YUKON_LITE ) {
1784 		switch (sc->sk_rev) {
1785 		case SK_YUKON_LITE_REV_A0:
1786 			revstr = "A0";
1787 			break;
1788 		case SK_YUKON_LITE_REV_A1:
1789 			revstr = "A1";
1790 			break;
1791 		case SK_YUKON_LITE_REV_A3:
1792 			revstr = "A3";
1793 			break;
1794 		default:
1795 			revstr = "";
1796 		}
1797 	} else {
1798 		revstr = "";
1799 	}
1800 
1801 	/* Announce the product name. */
1802 	aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n",
1803 			      sc->sk_name, revstr, sc->sk_rev);
1804 
1805 	skca.skc_port = SK_PORT_A;
1806 	(void)config_found(sc->sk_dev, &skca, skcprint);
1807 
1808 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1809 		skca.skc_port = SK_PORT_B;
1810 		(void)config_found(sc->sk_dev, &skca, skcprint);
1811 	}
1812 
1813 	/* Turn on the 'driver is loaded' LED. */
1814 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1815 
1816 	/* skc sysctl setup */
1817 
1818 	sc->sk_int_mod = SK_IM_DEFAULT;
1819 	sc->sk_int_mod_pending = 0;
1820 
1821 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1822 	    0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1823 	    SYSCTL_DESCR("skc per-controller controls"),
1824 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1825 	    CTL_EOL)) != 0) {
1826 		aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1827 		goto fail_1;
1828 	}
1829 
1830 	sk_nodenum = node->sysctl_num;
1831 
1832 	/* interrupt moderation time in usecs */
1833 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1834 	    CTLFLAG_READWRITE,
1835 	    CTLTYPE_INT, "int_mod",
1836 	    SYSCTL_DESCR("sk interrupt moderation timer"),
1837 	    sk_sysctl_handler, 0, (void *)sc,
1838 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1839 	    CTL_EOL)) != 0) {
1840 		aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
1841 		goto fail_1;
1842 	}
1843 
1844 	if (!pmf_device_register(self, skc_suspend, skc_resume))
1845 		aprint_error_dev(self, "couldn't establish power handler\n");
1846 
1847 	return;
1848 
1849 fail_1:
1850 	pci_intr_disestablish(pc, sc->sk_intrhand);
1851 fail:
1852 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1853 }
1854 
1855 int
1856 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1857 {
1858 	struct sk_softc		*sc = sc_if->sk_softc;
1859 	struct sk_tx_desc	*f = NULL;
1860 	u_int32_t		frag, cur, cnt = 0, sk_ctl;
1861 	int			i;
1862 	struct sk_txmap_entry	*entry;
1863 	bus_dmamap_t		txmap;
1864 
1865 	DPRINTFN(3, ("sk_encap\n"));
1866 
1867 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1868 	if (entry == NULL) {
1869 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
1870 		return ENOBUFS;
1871 	}
1872 	txmap = entry->dmamap;
1873 
1874 	cur = frag = *txidx;
1875 
1876 #ifdef SK_DEBUG
1877 	if (skdebug >= 3)
1878 		sk_dump_mbuf(m_head);
1879 #endif
1880 
1881 	/*
1882 	 * Start packing the mbufs in this chain into
1883 	 * the fragment pointers. Stop when we run out
1884 	 * of fragments or hit the end of the mbuf chain.
1885 	 */
1886 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1887 	    BUS_DMA_NOWAIT)) {
1888 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1889 		return ENOBUFS;
1890 	}
1891 
1892 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1893 
1894 	/* Sync the DMA map. */
1895 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1896 	    BUS_DMASYNC_PREWRITE);
1897 
1898 	for (i = 0; i < txmap->dm_nsegs; i++) {
1899 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1900 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1901 			return ENOBUFS;
1902 		}
1903 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
1904 		f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1905 		sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1906 		if (cnt == 0)
1907 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
1908 		else
1909 			sk_ctl |= SK_TXCTL_OWN;
1910 		f->sk_ctl = htole32(sk_ctl);
1911 		cur = frag;
1912 		SK_INC(frag, SK_TX_RING_CNT);
1913 		cnt++;
1914 	}
1915 
1916 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1917 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1918 
1919 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
1920 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1921 		htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1922 
1923 	/* Sync descriptors before handing to chip */
1924 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1925 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1926 
1927 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1928 		htole32(SK_TXCTL_OWN);
1929 
1930 	/* Sync first descriptor to hand it off */
1931 	SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1932 
1933 	sc_if->sk_cdata.sk_tx_cnt += cnt;
1934 
1935 #ifdef SK_DEBUG
1936 	if (skdebug >= 3) {
1937 		struct sk_tx_desc *desc;
1938 		u_int32_t idx;
1939 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1940 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1941 			sk_dump_txdesc(desc, idx);
1942 		}
1943 	}
1944 #endif
1945 
1946 	*txidx = frag;
1947 
1948 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
1949 
1950 	return 0;
1951 }
1952 
1953 void
1954 sk_start(struct ifnet *ifp)
1955 {
1956         struct sk_if_softc	*sc_if = ifp->if_softc;
1957         struct sk_softc		*sc = sc_if->sk_softc;
1958         struct mbuf		*m_head = NULL;
1959         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
1960 	int			pkts = 0;
1961 
1962 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1963 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1964 
1965 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1966 		IFQ_POLL(&ifp->if_snd, m_head);
1967 		if (m_head == NULL)
1968 			break;
1969 
1970 		/*
1971 		 * Pack the data into the transmit ring. If we
1972 		 * don't have room, set the OACTIVE flag and wait
1973 		 * for the NIC to drain the ring.
1974 		 */
1975 		if (sk_encap(sc_if, m_head, &idx)) {
1976 			ifp->if_flags |= IFF_OACTIVE;
1977 			break;
1978 		}
1979 
1980 		/* now we are committed to transmit the packet */
1981 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1982 		pkts++;
1983 
1984 		/*
1985 		 * If there's a BPF listener, bounce a copy of this frame
1986 		 * to him.
1987 		 */
1988 		bpf_mtap(ifp, m_head, BPF_D_OUT);
1989 	}
1990 	if (pkts == 0)
1991 		return;
1992 
1993 	/* Transmit */
1994 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
1995 		sc_if->sk_cdata.sk_tx_prod = idx;
1996 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1997 
1998 		/* Set a timeout in case the chip goes out to lunch. */
1999 		ifp->if_timer = 5;
2000 	}
2001 }
2002 
2003 
2004 void
2005 sk_watchdog(struct ifnet *ifp)
2006 {
2007 	struct sk_if_softc *sc_if = ifp->if_softc;
2008 
2009 	/*
2010 	 * Reclaim first as there is a possibility of losing Tx completion
2011 	 * interrupts.
2012 	 */
2013 	sk_txeof(sc_if);
2014 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2015 		aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
2016 
2017 		ifp->if_oerrors++;
2018 
2019 		sk_init(ifp);
2020 	}
2021 }
2022 
2023 void
2024 sk_shutdown(void *v)
2025 {
2026 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
2027 	struct sk_softc		*sc = sc_if->sk_softc;
2028 	struct ifnet 		*ifp = &sc_if->sk_ethercom.ec_if;
2029 
2030 	DPRINTFN(2, ("sk_shutdown\n"));
2031 	sk_stop(ifp,1);
2032 
2033 	/* Turn off the 'driver is loaded' LED. */
2034 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2035 
2036 	/*
2037 	 * Reset the GEnesis controller. Doing this should also
2038 	 * assert the resets on the attached XMAC(s).
2039 	 */
2040 	sk_reset(sc);
2041 }
2042 
2043 void
2044 sk_rxeof(struct sk_if_softc *sc_if)
2045 {
2046 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2047 	struct mbuf		*m;
2048 	struct sk_chain		*cur_rx;
2049 	struct sk_rx_desc	*cur_desc;
2050 	int			i, cur, total_len = 0;
2051 	u_int32_t		rxstat, sk_ctl;
2052 	bus_dmamap_t		dmamap;
2053 
2054 	i = sc_if->sk_cdata.sk_rx_prod;
2055 
2056 	DPRINTFN(3, ("sk_rxeof %d\n", i));
2057 
2058 	for (;;) {
2059 		cur = i;
2060 
2061 		/* Sync the descriptor */
2062 		SK_CDRXSYNC(sc_if, cur,
2063 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2064 
2065 		sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2066 		if (sk_ctl & SK_RXCTL_OWN) {
2067 			/* Invalidate the descriptor -- it's not ready yet */
2068 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2069 			sc_if->sk_cdata.sk_rx_prod = i;
2070 			break;
2071 		}
2072 
2073 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2074 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2075 		dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2076 
2077 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2078 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2079 
2080 		rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2081 		m = cur_rx->sk_mbuf;
2082 		cur_rx->sk_mbuf = NULL;
2083 		total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2084 
2085 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
2086 
2087 		SK_INC(i, SK_RX_RING_CNT);
2088 
2089 		if (rxstat & XM_RXSTAT_ERRFRAME) {
2090 			ifp->if_ierrors++;
2091 			sk_newbuf(sc_if, cur, m, dmamap);
2092 			continue;
2093 		}
2094 
2095 		/*
2096 		 * Try to allocate a new jumbo buffer. If that
2097 		 * fails, copy the packet to mbufs and put the
2098 		 * jumbo buffer back in the ring so it can be
2099 		 * re-used. If allocating mbufs fails, then we
2100 		 * have to drop the packet.
2101 		 */
2102 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2103 			struct mbuf		*m0;
2104 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2105 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
2106 			sk_newbuf(sc_if, cur, m, dmamap);
2107 			if (m0 == NULL) {
2108 				aprint_error_dev(sc_if->sk_dev, "no receive "
2109 				    "buffers available -- packet dropped!\n");
2110 				ifp->if_ierrors++;
2111 				continue;
2112 			}
2113 			m_adj(m0, ETHER_ALIGN);
2114 			m = m0;
2115 		} else {
2116 			m_set_rcvif(m, ifp);
2117 			m->m_pkthdr.len = m->m_len = total_len;
2118 		}
2119 
2120 		/* pass it on. */
2121 		if_percpuq_enqueue(ifp->if_percpuq, m);
2122 	}
2123 }
2124 
2125 void
2126 sk_txeof(struct sk_if_softc *sc_if)
2127 {
2128 	struct sk_softc		*sc = sc_if->sk_softc;
2129 	struct sk_tx_desc	*cur_tx;
2130 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2131 	u_int32_t		idx, sk_ctl;
2132 	struct sk_txmap_entry	*entry;
2133 
2134 	DPRINTFN(3, ("sk_txeof\n"));
2135 
2136 	/*
2137 	 * Go through our tx ring and free mbufs for those
2138 	 * frames that have been sent.
2139 	 */
2140 	idx = sc_if->sk_cdata.sk_tx_cons;
2141 	while (idx != sc_if->sk_cdata.sk_tx_prod) {
2142 		SK_CDTXSYNC(sc_if, idx, 1,
2143 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2144 
2145 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2146 		sk_ctl = le32toh(cur_tx->sk_ctl);
2147 #ifdef SK_DEBUG
2148 		if (skdebug >= 3)
2149 			sk_dump_txdesc(cur_tx, idx);
2150 #endif
2151 		if (sk_ctl & SK_TXCTL_OWN) {
2152 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2153 			break;
2154 		}
2155 		if (sk_ctl & SK_TXCTL_LASTFRAG)
2156 			ifp->if_opackets++;
2157 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2158 			entry = sc_if->sk_cdata.sk_tx_map[idx];
2159 
2160 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2161 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2162 
2163 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2164 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2165 
2166 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2167 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2168 					  link);
2169 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2170 		}
2171 		sc_if->sk_cdata.sk_tx_cnt--;
2172 		SK_INC(idx, SK_TX_RING_CNT);
2173 	}
2174 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
2175 		ifp->if_timer = 0;
2176 	else /* nudge chip to keep tx ring moving */
2177 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2178 
2179 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2180 		ifp->if_flags &= ~IFF_OACTIVE;
2181 
2182 	sc_if->sk_cdata.sk_tx_cons = idx;
2183 }
2184 
2185 void
2186 sk_tick(void *xsc_if)
2187 {
2188 	struct sk_if_softc *sc_if = xsc_if;
2189 	struct mii_data *mii = &sc_if->sk_mii;
2190 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2191 	int i;
2192 
2193 	DPRINTFN(3, ("sk_tick\n"));
2194 
2195 	if (!(ifp->if_flags & IFF_UP))
2196 		return;
2197 
2198 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2199 		sk_intr_bcom(sc_if);
2200 		return;
2201 	}
2202 
2203 	/*
2204 	 * According to SysKonnect, the correct way to verify that
2205 	 * the link has come back up is to poll bit 0 of the GPIO
2206 	 * register three times. This pin has the signal from the
2207 	 * link sync pin connected to it; if we read the same link
2208 	 * state 3 times in a row, we know the link is up.
2209 	 */
2210 	for (i = 0; i < 3; i++) {
2211 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2212 			break;
2213 	}
2214 
2215 	if (i != 3) {
2216 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2217 		return;
2218 	}
2219 
2220 	/* Turn the GP0 interrupt back on. */
2221 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2222 	SK_XM_READ_2(sc_if, XM_ISR);
2223 	mii_tick(mii);
2224 	if (ifp->if_link_state != LINK_STATE_UP)
2225 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2226 	else
2227 		callout_stop(&sc_if->sk_tick_ch);
2228 }
2229 
2230 void
2231 sk_intr_bcom(struct sk_if_softc *sc_if)
2232 {
2233 	struct mii_data *mii = &sc_if->sk_mii;
2234 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2235 	int status;
2236 
2237 
2238 	DPRINTFN(3, ("sk_intr_bcom\n"));
2239 
2240 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2241 
2242 	/*
2243 	 * Read the PHY interrupt register to make sure
2244 	 * we clear any pending interrupts.
2245 	 */
2246 	status = sk_xmac_miibus_readreg(sc_if->sk_dev,
2247 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2248 
2249 	if (!(ifp->if_flags & IFF_RUNNING)) {
2250 		sk_init_xmac(sc_if);
2251 		return;
2252 	}
2253 
2254 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2255 		int lstat;
2256 		lstat = sk_xmac_miibus_readreg(sc_if->sk_dev,
2257 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2258 
2259 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2260 			(void)mii_mediachg(mii);
2261 			/* Turn off the link LED. */
2262 			SK_IF_WRITE_1(sc_if, 0,
2263 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
2264 			sc_if->sk_link = 0;
2265 		} else if (status & BRGPHY_ISR_LNK_CHG) {
2266 			sk_xmac_miibus_writereg(sc_if->sk_dev,
2267 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2268 			mii_tick(mii);
2269 			sc_if->sk_link = 1;
2270 			/* Turn on the link LED. */
2271 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2272 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2273 			    SK_LINKLED_BLINK_OFF);
2274 			mii_pollstat(mii);
2275 		} else {
2276 			mii_tick(mii);
2277 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2278 		}
2279 	}
2280 
2281 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2282 }
2283 
2284 void
2285 sk_intr_xmac(struct sk_if_softc	*sc_if)
2286 {
2287 	u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2288 
2289 	DPRINTFN(3, ("sk_intr_xmac\n"));
2290 
2291 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2292 		if (status & XM_ISR_GP0_SET) {
2293 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2294 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2295 		}
2296 
2297 		if (status & XM_ISR_AUTONEG_DONE) {
2298 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2299 		}
2300 	}
2301 
2302 	if (status & XM_IMR_TX_UNDERRUN)
2303 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2304 
2305 	if (status & XM_IMR_RX_OVERRUN)
2306 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2307 }
2308 
2309 void
2310 sk_intr_yukon(struct sk_if_softc *sc_if)
2311 {
2312 #ifdef SK_DEBUG
2313 	int status;
2314 
2315 	status =
2316 #endif
2317 		SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2318 
2319 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2320 }
2321 
2322 int
2323 sk_intr(void *xsc)
2324 {
2325 	struct sk_softc		*sc = xsc;
2326 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
2327 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
2328 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2329 	u_int32_t		status;
2330 	int			claimed = 0;
2331 
2332 	if (sc_if0 != NULL)
2333 		ifp0 = &sc_if0->sk_ethercom.ec_if;
2334 	if (sc_if1 != NULL)
2335 		ifp1 = &sc_if1->sk_ethercom.ec_if;
2336 
2337 	for (;;) {
2338 		status = CSR_READ_4(sc, SK_ISSR);
2339 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2340 
2341 		if (!(status & sc->sk_intrmask))
2342 			break;
2343 
2344 		claimed = 1;
2345 
2346 		/* Handle receive interrupts first. */
2347 		if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2348 			sk_rxeof(sc_if0);
2349 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2350 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2351 		}
2352 		if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2353 			sk_rxeof(sc_if1);
2354 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2355 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2356 		}
2357 
2358 		/* Then transmit interrupts. */
2359 		if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2360 			sk_txeof(sc_if0);
2361 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2362 			    SK_TXBMU_CLR_IRQ_EOF);
2363 		}
2364 		if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2365 			sk_txeof(sc_if1);
2366 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2367 			    SK_TXBMU_CLR_IRQ_EOF);
2368 		}
2369 
2370 		/* Then MAC interrupts. */
2371 		if (sc_if0 && (status & SK_ISR_MAC1) &&
2372 		    (ifp0->if_flags & IFF_RUNNING)) {
2373 			if (sc->sk_type == SK_GENESIS)
2374 				sk_intr_xmac(sc_if0);
2375 			else
2376 				sk_intr_yukon(sc_if0);
2377 		}
2378 
2379 		if (sc_if1 && (status & SK_ISR_MAC2) &&
2380 		    (ifp1->if_flags & IFF_RUNNING)) {
2381 			if (sc->sk_type == SK_GENESIS)
2382 				sk_intr_xmac(sc_if1);
2383 			else
2384 				sk_intr_yukon(sc_if1);
2385 
2386 		}
2387 
2388 		if (status & SK_ISR_EXTERNAL_REG) {
2389 			if (sc_if0 != NULL &&
2390 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2391 				sk_intr_bcom(sc_if0);
2392 
2393 			if (sc_if1 != NULL &&
2394 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2395 				sk_intr_bcom(sc_if1);
2396 		}
2397 	}
2398 
2399 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2400 
2401 	if (ifp0 != NULL)
2402 		if_schedule_deferred_start(ifp0);
2403 	if (ifp1 != NULL)
2404 		if_schedule_deferred_start(ifp1);
2405 
2406 	KASSERT(sc->rnd_attached > 0);
2407 	rnd_add_uint32(&sc->rnd_source, status);
2408 
2409 	if (sc->sk_int_mod_pending)
2410 		sk_update_int_mod(sc);
2411 
2412 	return claimed;
2413 }
2414 
2415 void
2416 sk_init_xmac(struct sk_if_softc	*sc_if)
2417 {
2418 	struct sk_softc		*sc = sc_if->sk_softc;
2419 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2420 	static const struct sk_bcom_hack     bhack[] = {
2421 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2422 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2423 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2424 	{ 0, 0 } };
2425 
2426 	DPRINTFN(1, ("sk_init_xmac\n"));
2427 
2428 	/* Unreset the XMAC. */
2429 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2430 	DELAY(1000);
2431 
2432 	/* Reset the XMAC's internal state. */
2433 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2434 
2435 	/* Save the XMAC II revision */
2436 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2437 
2438 	/*
2439 	 * Perform additional initialization for external PHYs,
2440 	 * namely for the 1000baseTX cards that use the XMAC's
2441 	 * GMII mode.
2442 	 */
2443 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2444 		int			i = 0;
2445 		u_int32_t		val;
2446 
2447 		/* Take PHY out of reset. */
2448 		val = sk_win_read_4(sc, SK_GPIO);
2449 		if (sc_if->sk_port == SK_PORT_A)
2450 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2451 		else
2452 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2453 		sk_win_write_4(sc, SK_GPIO, val);
2454 
2455 		/* Enable GMII mode on the XMAC. */
2456 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2457 
2458 		sk_xmac_miibus_writereg(sc_if->sk_dev,
2459 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2460 		DELAY(10000);
2461 		sk_xmac_miibus_writereg(sc_if->sk_dev,
2462 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2463 
2464 		/*
2465 		 * Early versions of the BCM5400 apparently have
2466 		 * a bug that requires them to have their reserved
2467 		 * registers initialized to some magic values. I don't
2468 		 * know what the numbers do, I'm just the messenger.
2469 		 */
2470 		if (sk_xmac_miibus_readreg(sc_if->sk_dev,
2471 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2472 			while (bhack[i].reg) {
2473 				sk_xmac_miibus_writereg(sc_if->sk_dev,
2474 				    SK_PHYADDR_BCOM, bhack[i].reg,
2475 				    bhack[i].val);
2476 				i++;
2477 			}
2478 		}
2479 	}
2480 
2481 	/* Set station address */
2482 	SK_XM_WRITE_2(sc_if, XM_PAR0,
2483 		      *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2484 	SK_XM_WRITE_2(sc_if, XM_PAR1,
2485 		      *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2486 	SK_XM_WRITE_2(sc_if, XM_PAR2,
2487 		      *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2488 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2489 
2490 	if (ifp->if_flags & IFF_PROMISC)
2491 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2492 	else
2493 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2494 
2495 	if (ifp->if_flags & IFF_BROADCAST)
2496 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2497 	else
2498 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2499 
2500 	/* We don't need the FCS appended to the packet. */
2501 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2502 
2503 	/* We want short frames padded to 60 bytes. */
2504 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2505 
2506 	/*
2507 	 * Enable the reception of all error frames. This is is
2508 	 * a necessary evil due to the design of the XMAC. The
2509 	 * XMAC's receive FIFO is only 8K in size, however jumbo
2510 	 * frames can be up to 9000 bytes in length. When bad
2511 	 * frame filtering is enabled, the XMAC's RX FIFO operates
2512 	 * in 'store and forward' mode. For this to work, the
2513 	 * entire frame has to fit into the FIFO, but that means
2514 	 * that jumbo frames larger than 8192 bytes will be
2515 	 * truncated. Disabling all bad frame filtering causes
2516 	 * the RX FIFO to operate in streaming mode, in which
2517 	 * case the XMAC will start transfering frames out of the
2518 	 * RX FIFO as soon as the FIFO threshold is reached.
2519 	 */
2520 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2521 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2522 	    XM_MODE_RX_INRANGELEN);
2523 
2524 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2525 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2526 	else
2527 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2528 
2529 	/*
2530 	 * Bump up the transmit threshold. This helps hold off transmit
2531 	 * underruns when we're blasting traffic from both ports at once.
2532 	 */
2533 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2534 
2535 	/* Set multicast filter */
2536 	sk_setmulti(sc_if);
2537 
2538 	/* Clear and enable interrupts */
2539 	SK_XM_READ_2(sc_if, XM_ISR);
2540 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2541 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2542 	else
2543 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2544 
2545 	/* Configure MAC arbiter */
2546 	switch (sc_if->sk_xmac_rev) {
2547 	case XM_XMAC_REV_B2:
2548 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2549 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2550 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2551 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2552 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2553 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2554 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2555 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2556 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2557 		break;
2558 	case XM_XMAC_REV_C1:
2559 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2560 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2561 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2562 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2563 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2564 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2565 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2566 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2567 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2568 		break;
2569 	default:
2570 		break;
2571 	}
2572 	sk_win_write_2(sc, SK_MACARB_CTL,
2573 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2574 
2575 	sc_if->sk_link = 1;
2576 }
2577 
2578 void sk_init_yukon(struct sk_if_softc *sc_if)
2579 {
2580 	u_int32_t		/*mac, */phy;
2581 	u_int16_t		reg;
2582 	struct sk_softc		*sc;
2583 	int			i;
2584 
2585 	DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2586 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2587 
2588 	sc = sc_if->sk_softc;
2589 	if (sc->sk_type == SK_YUKON_LITE &&
2590 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2591 		/* Take PHY out of reset. */
2592 		sk_win_write_4(sc, SK_GPIO,
2593 			(sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2594 	}
2595 
2596 
2597 	/* GMAC and GPHY Reset */
2598 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2599 
2600 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
2601 
2602 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2603 	DELAY(1000);
2604 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2605 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2606 	DELAY(1000);
2607 
2608 
2609 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
2610 
2611 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2612 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2613 
2614 	switch (sc_if->sk_softc->sk_pmd) {
2615 	case IFM_1000_SX:
2616 	case IFM_1000_LX:
2617 		phy |= SK_GPHY_FIBER;
2618 		break;
2619 
2620 	case IFM_1000_CX:
2621 	case IFM_1000_T:
2622 		phy |= SK_GPHY_COPPER;
2623 		break;
2624 	}
2625 
2626 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2627 
2628 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2629 	DELAY(1000);
2630 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2631 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2632 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2633 
2634 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2635 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2636 
2637 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
2638 
2639 	/* unused read of the interrupt source register */
2640 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
2641 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2642 
2643 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2644 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2645 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2646 
2647 	/* MIB Counter Clear Mode set */
2648         reg |= YU_PAR_MIB_CLR;
2649 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2650 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2651 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2652 
2653 	/* MIB Counter Clear Mode clear */
2654 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
2655         reg &= ~YU_PAR_MIB_CLR;
2656 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2657 
2658 	/* receive control reg */
2659 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
2660 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2661 		      YU_RCR_CRCR);
2662 
2663 	/* transmit parameter register */
2664 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
2665 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2666 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2667 
2668 	/* serial mode register */
2669 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
2670 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2671 		      YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2672 		      YU_SMR_IPG_DATA(0x1e));
2673 
2674 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
2675 	/* Setup Yukon's address */
2676 	for (i = 0; i < 3; i++) {
2677 		/* Write Source Address 1 (unicast filter) */
2678 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2679 			      sc_if->sk_enaddr[i * 2] |
2680 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
2681 	}
2682 
2683 	for (i = 0; i < 3; i++) {
2684 		reg = sk_win_read_2(sc_if->sk_softc,
2685 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2686 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2687 	}
2688 
2689 	/* Set multicast filter */
2690 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
2691 	sk_setmulti(sc_if);
2692 
2693 	/* enable interrupt mask for counter overflows */
2694 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
2695 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2696 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2697 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2698 
2699 	/* Configure RX MAC FIFO */
2700 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2701 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2702 
2703 	/* Configure TX MAC FIFO */
2704 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2705 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2706 
2707 	DPRINTFN(6, ("sk_init_yukon: end\n"));
2708 }
2709 
2710 /*
2711  * Note that to properly initialize any part of the GEnesis chip,
2712  * you first have to take it out of reset mode.
2713  */
2714 int
2715 sk_init(struct ifnet *ifp)
2716 {
2717 	struct sk_if_softc	*sc_if = ifp->if_softc;
2718 	struct sk_softc		*sc = sc_if->sk_softc;
2719 	struct mii_data		*mii = &sc_if->sk_mii;
2720 	int			rc = 0, s;
2721 	u_int32_t		imr, imtimer_ticks;
2722 
2723 	DPRINTFN(1, ("sk_init\n"));
2724 
2725 	s = splnet();
2726 
2727 	if (ifp->if_flags & IFF_RUNNING) {
2728 		splx(s);
2729 		return 0;
2730 	}
2731 
2732 	/* Cancel pending I/O and free all RX/TX buffers. */
2733 	sk_stop(ifp,0);
2734 
2735 	if (sc->sk_type == SK_GENESIS) {
2736 		/* Configure LINK_SYNC LED */
2737 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2738 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2739 			      SK_LINKLED_LINKSYNC_ON);
2740 
2741 		/* Configure RX LED */
2742 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2743 			      SK_RXLEDCTL_COUNTER_START);
2744 
2745 		/* Configure TX LED */
2746 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2747 			      SK_TXLEDCTL_COUNTER_START);
2748 	}
2749 
2750 	/* Configure I2C registers */
2751 
2752 	/* Configure XMAC(s) */
2753 	switch (sc->sk_type) {
2754 	case SK_GENESIS:
2755 		sk_init_xmac(sc_if);
2756 		break;
2757 	case SK_YUKON:
2758 	case SK_YUKON_LITE:
2759 	case SK_YUKON_LP:
2760 		sk_init_yukon(sc_if);
2761 		break;
2762 	}
2763 	if ((rc = mii_mediachg(mii)) == ENXIO)
2764 		rc = 0;
2765 	else if (rc != 0)
2766 		goto out;
2767 
2768 	if (sc->sk_type == SK_GENESIS) {
2769 		/* Configure MAC FIFOs */
2770 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2771 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2772 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2773 
2774 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2775 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2776 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2777 	}
2778 
2779 	/* Configure transmit arbiter(s) */
2780 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2781 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2782 
2783 	/* Configure RAMbuffers */
2784 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2785 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2786 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2787 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2788 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2789 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2790 
2791 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2792 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2793 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2794 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2795 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2796 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2797 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2798 
2799 	/* Configure BMUs */
2800 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2801 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2802 	    SK_RX_RING_ADDR(sc_if, 0));
2803 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2804 
2805 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2806 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2807             SK_TX_RING_ADDR(sc_if, 0));
2808 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2809 
2810 	/* Init descriptors */
2811 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2812 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2813 		    "memory for rx buffers\n");
2814 		sk_stop(ifp,0);
2815 		splx(s);
2816 		return ENOBUFS;
2817 	}
2818 
2819 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2820 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2821 		    "memory for tx buffers\n");
2822 		sk_stop(ifp,0);
2823 		splx(s);
2824 		return ENOBUFS;
2825 	}
2826 
2827 	/* Set interrupt moderation if changed via sysctl. */
2828 	switch (sc->sk_type) {
2829 	case SK_GENESIS:
2830 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2831 		break;
2832 	case SK_YUKON_EC:
2833 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2834 		break;
2835 	default:
2836 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2837 	}
2838 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2839 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2840 		sk_win_write_4(sc, SK_IMTIMERINIT,
2841 		    SK_IM_USECS(sc->sk_int_mod));
2842 		aprint_verbose_dev(sc->sk_dev,
2843 		    "interrupt moderation is %d us\n", sc->sk_int_mod);
2844 	}
2845 
2846 	/* Configure interrupt handling */
2847 	CSR_READ_4(sc, SK_ISSR);
2848 	if (sc_if->sk_port == SK_PORT_A)
2849 		sc->sk_intrmask |= SK_INTRS1;
2850 	else
2851 		sc->sk_intrmask |= SK_INTRS2;
2852 
2853 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2854 
2855 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2856 
2857 	/* Start BMUs. */
2858 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2859 
2860 	if (sc->sk_type == SK_GENESIS) {
2861 		/* Enable XMACs TX and RX state machines */
2862 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2863 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2864 			       XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2865 	}
2866 
2867 	if (SK_YUKON_FAMILY(sc->sk_type)) {
2868 		u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2869 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2870 #if 0
2871 		/* XXX disable 100Mbps and full duplex mode? */
2872 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2873 #endif
2874 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2875 	}
2876 
2877 
2878 	ifp->if_flags |= IFF_RUNNING;
2879 	ifp->if_flags &= ~IFF_OACTIVE;
2880 	callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2881 
2882 out:
2883 	splx(s);
2884 	return rc;
2885 }
2886 
2887 void
2888 sk_stop(struct ifnet *ifp, int disable)
2889 {
2890         struct sk_if_softc	*sc_if = ifp->if_softc;
2891 	struct sk_softc		*sc = sc_if->sk_softc;
2892 	int			i;
2893 
2894 	DPRINTFN(1, ("sk_stop\n"));
2895 
2896 	callout_stop(&sc_if->sk_tick_ch);
2897 
2898 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2899 		u_int32_t		val;
2900 
2901 		/* Put PHY back into reset. */
2902 		val = sk_win_read_4(sc, SK_GPIO);
2903 		if (sc_if->sk_port == SK_PORT_A) {
2904 			val |= SK_GPIO_DIR0;
2905 			val &= ~SK_GPIO_DAT0;
2906 		} else {
2907 			val |= SK_GPIO_DIR2;
2908 			val &= ~SK_GPIO_DAT2;
2909 		}
2910 		sk_win_write_4(sc, SK_GPIO, val);
2911 	}
2912 
2913 	/* Turn off various components of this interface. */
2914 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2915 	switch (sc->sk_type) {
2916 	case SK_GENESIS:
2917 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2918 			      SK_TXMACCTL_XMAC_RESET);
2919 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2920 		break;
2921 	case SK_YUKON:
2922 	case SK_YUKON_LITE:
2923 	case SK_YUKON_LP:
2924 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2925 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2926 		break;
2927 	}
2928 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2929 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2930 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2931 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2932 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2933 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2934 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2935 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2936 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2937 
2938 	/* Disable interrupts */
2939 	if (sc_if->sk_port == SK_PORT_A)
2940 		sc->sk_intrmask &= ~SK_INTRS1;
2941 	else
2942 		sc->sk_intrmask &= ~SK_INTRS2;
2943 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2944 
2945 	SK_XM_READ_2(sc_if, XM_ISR);
2946 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2947 
2948 	/* Free RX and TX mbufs still in the queues. */
2949 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2950 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2951 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2952 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2953 		}
2954 	}
2955 
2956 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2957 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2958 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2959 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2960 		}
2961 	}
2962 
2963 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2964 }
2965 
2966 /* Power Management Framework */
2967 
2968 static bool
2969 skc_suspend(device_t dv, const pmf_qual_t *qual)
2970 {
2971 	struct sk_softc *sc = device_private(dv);
2972 
2973 	DPRINTFN(2, ("skc_suspend\n"));
2974 
2975 	/* Turn off the driver is loaded LED */
2976 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2977 
2978 	return true;
2979 }
2980 
2981 static bool
2982 skc_resume(device_t dv, const pmf_qual_t *qual)
2983 {
2984 	struct sk_softc *sc = device_private(dv);
2985 
2986 	DPRINTFN(2, ("skc_resume\n"));
2987 
2988 	sk_reset(sc);
2989 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
2990 
2991 	return true;
2992 }
2993 
2994 static bool
2995 sk_resume(device_t dv, const pmf_qual_t *qual)
2996 {
2997 	struct sk_if_softc *sc_if = device_private(dv);
2998 
2999 	sk_init_yukon(sc_if);
3000 	return true;
3001 }
3002 
3003 CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc),
3004     skc_probe, skc_attach, NULL, NULL);
3005 
3006 CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc),
3007     sk_probe, sk_attach, NULL, NULL);
3008 
3009 #ifdef SK_DEBUG
3010 void
3011 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
3012 {
3013 #define DESC_PRINT(X)					\
3014 	if (X)					\
3015 		printf("txdesc[%d]." #X "=%#x\n",	\
3016 		       idx, X);
3017 
3018 	DESC_PRINT(le32toh(desc->sk_ctl));
3019 	DESC_PRINT(le32toh(desc->sk_next));
3020 	DESC_PRINT(le32toh(desc->sk_data_lo));
3021 	DESC_PRINT(le32toh(desc->sk_data_hi));
3022 	DESC_PRINT(le32toh(desc->sk_xmac_txstat));
3023 	DESC_PRINT(le16toh(desc->sk_rsvd0));
3024 	DESC_PRINT(le16toh(desc->sk_csum_startval));
3025 	DESC_PRINT(le16toh(desc->sk_csum_startpos));
3026 	DESC_PRINT(le16toh(desc->sk_csum_writepos));
3027 	DESC_PRINT(le16toh(desc->sk_rsvd1));
3028 #undef PRINT
3029 }
3030 
3031 void
3032 sk_dump_bytes(const char *data, int len)
3033 {
3034 	int c, i, j;
3035 
3036 	for (i = 0; i < len; i += 16) {
3037 		printf("%08x  ", i);
3038 		c = len - i;
3039 		if (c > 16) c = 16;
3040 
3041 		for (j = 0; j < c; j++) {
3042 			printf("%02x ", data[i + j] & 0xff);
3043 			if ((j & 0xf) == 7 && j > 0)
3044 				printf(" ");
3045 		}
3046 
3047 		for (; j < 16; j++)
3048 			printf("   ");
3049 		printf("  ");
3050 
3051 		for (j = 0; j < c; j++) {
3052 			int ch = data[i + j] & 0xff;
3053 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
3054 		}
3055 
3056 		printf("\n");
3057 
3058 		if (c < 16)
3059 			break;
3060 	}
3061 }
3062 
3063 void
3064 sk_dump_mbuf(struct mbuf *m)
3065 {
3066 	int count = m->m_pkthdr.len;
3067 
3068 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3069 
3070 	while (count > 0 && m) {
3071 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3072 		       m, m->m_data, m->m_len);
3073 		sk_dump_bytes(mtod(m, char *), m->m_len);
3074 
3075 		count -= m->m_len;
3076 		m = m->m_next;
3077 	}
3078 }
3079 #endif
3080 
3081 static int
3082 sk_sysctl_handler(SYSCTLFN_ARGS)
3083 {
3084 	int error, t;
3085 	struct sysctlnode node;
3086 	struct sk_softc *sc;
3087 
3088 	node = *rnode;
3089 	sc = node.sysctl_data;
3090 	t = sc->sk_int_mod;
3091 	node.sysctl_data = &t;
3092 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3093 	if (error || newp == NULL)
3094 		return error;
3095 
3096 	if (t < SK_IM_MIN || t > SK_IM_MAX)
3097 		return EINVAL;
3098 
3099 	/* update the softc with sysctl-changed value, and mark
3100 	   for hardware update */
3101 	sc->sk_int_mod = t;
3102 	sc->sk_int_mod_pending = 1;
3103 	return 0;
3104 }
3105 
3106 /*
3107  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3108  * set up in skc_attach()
3109  */
3110 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3111 {
3112 	int rc;
3113 	const struct sysctlnode *node;
3114 
3115 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
3116 	    0, CTLTYPE_NODE, "sk",
3117 	    SYSCTL_DESCR("sk interface controls"),
3118 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3119 		goto err;
3120 	}
3121 
3122 	sk_root_num = node->sysctl_num;
3123 	return;
3124 
3125 err:
3126 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3127 }
3128