xref: /netbsd-src/sys/dev/pci/if_sk.c (revision bbde328be4e75ea9ad02e9715ea13ca54b797ada)
1 /*	$NetBSD: if_sk.c,v 1.66 2010/04/05 07:20:27 joerg Exp $	*/
2 
3 /*-
4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*	$OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $	*/
30 
31 /*
32  * Copyright (c) 1997, 1998, 1999, 2000
33  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
34  *
35  * Redistribution and use in source and binary forms, with or without
36  * modification, are permitted provided that the following conditions
37  * are met:
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 3. All advertising materials mentioning features or use of this software
44  *    must display the following acknowledgement:
45  *	This product includes software developed by Bill Paul.
46  * 4. Neither the name of the author nor the names of any co-contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
54  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
60  * THE POSSIBILITY OF SUCH DAMAGE.
61  *
62  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
63  */
64 
65 /*
66  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
67  *
68  * Permission to use, copy, modify, and distribute this software for any
69  * purpose with or without fee is hereby granted, provided that the above
70  * copyright notice and this permission notice appear in all copies.
71  *
72  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
73  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
74  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
75  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
76  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
77  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
78  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
79  */
80 
81 /*
82  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
83  * the SK-984x series adapters, both single port and dual port.
84  * References:
85  * 	The XaQti XMAC II datasheet,
86  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
87  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
88  *
89  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
90  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
91  * convenience to others until Vitesse corrects this problem:
92  *
93  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94  *
95  * Written by Bill Paul <wpaul@ee.columbia.edu>
96  * Department of Electrical Engineering
97  * Columbia University, New York City
98  */
99 
100 /*
101  * The SysKonnect gigabit ethernet adapters consist of two main
102  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
103  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
104  * components and a PHY while the GEnesis controller provides a PCI
105  * interface with DMA support. Each card may have between 512K and
106  * 2MB of SRAM on board depending on the configuration.
107  *
108  * The SysKonnect GEnesis controller can have either one or two XMAC
109  * chips connected to it, allowing single or dual port NIC configurations.
110  * SysKonnect has the distinction of being the only vendor on the market
111  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
112  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
113  * XMAC registers. This driver takes advantage of these features to allow
114  * both XMACs to operate as independent interfaces.
115  */
116 
117 #include <sys/cdefs.h>
118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.66 2010/04/05 07:20:27 joerg Exp $");
119 
120 #include "rnd.h"
121 
122 #include <sys/param.h>
123 #include <sys/systm.h>
124 #include <sys/sockio.h>
125 #include <sys/mbuf.h>
126 #include <sys/malloc.h>
127 #include <sys/mutex.h>
128 #include <sys/kernel.h>
129 #include <sys/socket.h>
130 #include <sys/device.h>
131 #include <sys/queue.h>
132 #include <sys/callout.h>
133 #include <sys/sysctl.h>
134 #include <sys/endian.h>
135 
136 #include <net/if.h>
137 #include <net/if_dl.h>
138 #include <net/if_types.h>
139 
140 #include <net/if_media.h>
141 
142 #include <net/bpf.h>
143 #if NRND > 0
144 #include <sys/rnd.h>
145 #endif
146 
147 #include <dev/mii/mii.h>
148 #include <dev/mii/miivar.h>
149 #include <dev/mii/brgphyreg.h>
150 
151 #include <dev/pci/pcireg.h>
152 #include <dev/pci/pcivar.h>
153 #include <dev/pci/pcidevs.h>
154 
155 /* #define SK_USEIOSPACE */
156 
157 #include <dev/pci/if_skreg.h>
158 #include <dev/pci/if_skvar.h>
159 
160 int skc_probe(device_t, cfdata_t, void *);
161 void skc_attach(device_t, device_t, void *aux);
162 int sk_probe(device_t, cfdata_t, void *);
163 void sk_attach(device_t, device_t, void *aux);
164 int skcprint(void *, const char *);
165 int sk_intr(void *);
166 void sk_intr_bcom(struct sk_if_softc *);
167 void sk_intr_xmac(struct sk_if_softc *);
168 void sk_intr_yukon(struct sk_if_softc *);
169 void sk_rxeof(struct sk_if_softc *);
170 void sk_txeof(struct sk_if_softc *);
171 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
172 void sk_start(struct ifnet *);
173 int sk_ioctl(struct ifnet *, u_long, void *);
174 int sk_init(struct ifnet *);
175 void sk_init_xmac(struct sk_if_softc *);
176 void sk_init_yukon(struct sk_if_softc *);
177 void sk_stop(struct ifnet *, int);
178 void sk_watchdog(struct ifnet *);
179 void sk_shutdown(void *);
180 int sk_ifmedia_upd(struct ifnet *);
181 void sk_reset(struct sk_softc *);
182 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
183 int sk_alloc_jumbo_mem(struct sk_if_softc *);
184 void sk_free_jumbo_mem(struct sk_if_softc *);
185 void *sk_jalloc(struct sk_if_softc *);
186 void sk_jfree(struct mbuf *, void *, size_t, void *);
187 int sk_init_rx_ring(struct sk_if_softc *);
188 int sk_init_tx_ring(struct sk_if_softc *);
189 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
190 void sk_vpd_read_res(struct sk_softc *,
191 					struct vpd_res *, int);
192 void sk_vpd_read(struct sk_softc *);
193 
194 void sk_update_int_mod(struct sk_softc *);
195 
196 int sk_xmac_miibus_readreg(device_t, int, int);
197 void sk_xmac_miibus_writereg(device_t, int, int, int);
198 void sk_xmac_miibus_statchg(device_t);
199 
200 int sk_marv_miibus_readreg(device_t, int, int);
201 void sk_marv_miibus_writereg(device_t, int, int, int);
202 void sk_marv_miibus_statchg(device_t);
203 
204 u_int32_t sk_xmac_hash(void *);
205 u_int32_t sk_yukon_hash(void *);
206 void sk_setfilt(struct sk_if_softc *, void *, int);
207 void sk_setmulti(struct sk_if_softc *);
208 void sk_tick(void *);
209 
210 static bool skc_suspend(device_t, const pmf_qual_t *);
211 static bool skc_resume(device_t, const pmf_qual_t *);
212 static bool sk_resume(device_t dv, const pmf_qual_t *);
213 
214 /* #define SK_DEBUG 2 */
215 #ifdef SK_DEBUG
216 #define DPRINTF(x)	if (skdebug) printf x
217 #define DPRINTFN(n,x)	if (skdebug >= (n)) printf x
218 int	skdebug = SK_DEBUG;
219 
220 void sk_dump_txdesc(struct sk_tx_desc *, int);
221 void sk_dump_mbuf(struct mbuf *);
222 void sk_dump_bytes(const char *, int);
223 #else
224 #define DPRINTF(x)
225 #define DPRINTFN(n,x)
226 #endif
227 
228 static int sk_sysctl_handler(SYSCTLFN_PROTO);
229 static int sk_root_num;
230 
231 /* supported device vendors */
232 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
233 static const struct sk_product {
234 	pci_vendor_id_t		sk_vendor;
235 	pci_product_id_t	sk_product;
236 } sk_products[] = {
237 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
238 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
239 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
240 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
241 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
242 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
243 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
244 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
245 	{ 0, 0, }
246 };
247 
248 #define SK_LINKSYS_EG1032_SUBID	0x00151737
249 
250 static inline u_int32_t
251 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
252 {
253 #ifdef SK_USEIOSPACE
254 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
255 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
256 #else
257 	return CSR_READ_4(sc, reg);
258 #endif
259 }
260 
261 static inline u_int16_t
262 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
263 {
264 #ifdef SK_USEIOSPACE
265 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
266 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
267 #else
268 	return CSR_READ_2(sc, reg);
269 #endif
270 }
271 
272 static inline u_int8_t
273 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
274 {
275 #ifdef SK_USEIOSPACE
276 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
277 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
278 #else
279 	return CSR_READ_1(sc, reg);
280 #endif
281 }
282 
283 static inline void
284 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
285 {
286 #ifdef SK_USEIOSPACE
287 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
288 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
289 #else
290 	CSR_WRITE_4(sc, reg, x);
291 #endif
292 }
293 
294 static inline void
295 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
296 {
297 #ifdef SK_USEIOSPACE
298 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
299 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
300 #else
301 	CSR_WRITE_2(sc, reg, x);
302 #endif
303 }
304 
305 static inline void
306 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
307 {
308 #ifdef SK_USEIOSPACE
309 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
310 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
311 #else
312 	CSR_WRITE_1(sc, reg, x);
313 #endif
314 }
315 
316 /*
317  * The VPD EEPROM contains Vital Product Data, as suggested in
318  * the PCI 2.1 specification. The VPD data is separared into areas
319  * denoted by resource IDs. The SysKonnect VPD contains an ID string
320  * resource (the name of the adapter), a read-only area resource
321  * containing various key/data fields and a read/write area which
322  * can be used to store asset management information or log messages.
323  * We read the ID string and read-only into buffers attached to
324  * the controller softc structure for later use. At the moment,
325  * we only use the ID string during sk_attach().
326  */
327 u_int8_t
328 sk_vpd_readbyte(struct sk_softc *sc, int addr)
329 {
330 	int			i;
331 
332 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
333 	for (i = 0; i < SK_TIMEOUT; i++) {
334 		DELAY(1);
335 		if (sk_win_read_2(sc,
336 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
337 			break;
338 	}
339 
340 	if (i == SK_TIMEOUT)
341 		return 0;
342 
343 	return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
344 }
345 
346 void
347 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
348 {
349 	int			i;
350 	u_int8_t		*ptr;
351 
352 	ptr = (u_int8_t *)res;
353 	for (i = 0; i < sizeof(struct vpd_res); i++)
354 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
355 }
356 
357 void
358 sk_vpd_read(struct sk_softc *sc)
359 {
360 	int			pos = 0, i;
361 	struct vpd_res		res;
362 
363 	if (sc->sk_vpd_prodname != NULL)
364 		free(sc->sk_vpd_prodname, M_DEVBUF);
365 	if (sc->sk_vpd_readonly != NULL)
366 		free(sc->sk_vpd_readonly, M_DEVBUF);
367 	sc->sk_vpd_prodname = NULL;
368 	sc->sk_vpd_readonly = NULL;
369 
370 	sk_vpd_read_res(sc, &res, pos);
371 
372 	if (res.vr_id != VPD_RES_ID) {
373 		aprint_error_dev(sc->sk_dev,
374 		    "bad VPD resource id: expected %x got %x\n",
375 		    VPD_RES_ID, res.vr_id);
376 		return;
377 	}
378 
379 	pos += sizeof(res);
380 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
381 	if (sc->sk_vpd_prodname == NULL)
382 		panic("sk_vpd_read");
383 	for (i = 0; i < res.vr_len; i++)
384 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
385 	sc->sk_vpd_prodname[i] = '\0';
386 	pos += i;
387 
388 	sk_vpd_read_res(sc, &res, pos);
389 
390 	if (res.vr_id != VPD_RES_READ) {
391 		aprint_error_dev(sc->sk_dev,
392 		    "bad VPD resource id: expected %x got %x\n",
393 		    VPD_RES_READ, res.vr_id);
394 		return;
395 	}
396 
397 	pos += sizeof(res);
398 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
399 	if (sc->sk_vpd_readonly == NULL)
400 		panic("sk_vpd_read");
401 	for (i = 0; i < res.vr_len ; i++)
402 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
403 }
404 
405 int
406 sk_xmac_miibus_readreg(device_t dev, int phy, int reg)
407 {
408 	struct sk_if_softc *sc_if = device_private(dev);
409 	int i;
410 
411 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
412 
413 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
414 		return 0;
415 
416 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
417 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
418 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
419 		for (i = 0; i < SK_TIMEOUT; i++) {
420 			DELAY(1);
421 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
422 			    XM_MMUCMD_PHYDATARDY)
423 				break;
424 		}
425 
426 		if (i == SK_TIMEOUT) {
427 			aprint_error_dev(sc_if->sk_dev,
428 			    "phy failed to come ready\n");
429 			return 0;
430 		}
431 	}
432 	DELAY(1);
433 	return SK_XM_READ_2(sc_if, XM_PHY_DATA);
434 }
435 
436 void
437 sk_xmac_miibus_writereg(device_t dev, int phy, int reg, int val)
438 {
439 	struct sk_if_softc *sc_if = device_private(dev);
440 	int i;
441 
442 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
443 
444 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
445 	for (i = 0; i < SK_TIMEOUT; i++) {
446 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
447 			break;
448 	}
449 
450 	if (i == SK_TIMEOUT) {
451 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
452 		return;
453 	}
454 
455 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
456 	for (i = 0; i < SK_TIMEOUT; i++) {
457 		DELAY(1);
458 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
459 			break;
460 	}
461 
462 	if (i == SK_TIMEOUT)
463 		aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
464 }
465 
466 void
467 sk_xmac_miibus_statchg(device_t dev)
468 {
469 	struct sk_if_softc *sc_if = device_private(dev);
470 	struct mii_data *mii = &sc_if->sk_mii;
471 
472 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
473 
474 	/*
475 	 * If this is a GMII PHY, manually set the XMAC's
476 	 * duplex mode accordingly.
477 	 */
478 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
479 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
480 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
481 		else
482 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
483 	}
484 }
485 
486 int
487 sk_marv_miibus_readreg(device_t dev, int phy, int reg)
488 {
489 	struct sk_if_softc *sc_if = device_private(dev);
490 	u_int16_t val;
491 	int i;
492 
493 	if (phy != 0 ||
494 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
495 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
496 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
497 			     phy, reg));
498 		return 0;
499 	}
500 
501         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
502 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
503 
504 	for (i = 0; i < SK_TIMEOUT; i++) {
505 		DELAY(1);
506 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
507 		if (val & YU_SMICR_READ_VALID)
508 			break;
509 	}
510 
511 	if (i == SK_TIMEOUT) {
512 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
513 		return 0;
514 	}
515 
516  	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
517 		     SK_TIMEOUT));
518 
519         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
520 
521 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
522 		     phy, reg, val));
523 
524 	return val;
525 }
526 
527 void
528 sk_marv_miibus_writereg(device_t dev, int phy, int reg, int val)
529 {
530 	struct sk_if_softc *sc_if = device_private(dev);
531 	int i;
532 
533 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
534 		     phy, reg, val));
535 
536 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
537 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
538 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
539 
540 	for (i = 0; i < SK_TIMEOUT; i++) {
541 		DELAY(1);
542 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
543 			break;
544 	}
545 
546 	if (i == SK_TIMEOUT)
547 		printf("%s: phy write timed out\n",
548 		    device_xname(sc_if->sk_dev));
549 }
550 
551 void
552 sk_marv_miibus_statchg(device_t dev)
553 {
554 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
555 		     SK_YU_READ_2(((struct sk_if_softc *)device_private(dev)),
556 		     YUKON_GPCR)));
557 }
558 
559 #define SK_HASH_BITS		6
560 
561 u_int32_t
562 sk_xmac_hash(void *addr)
563 {
564 	u_int32_t		crc;
565 
566 	crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
567 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
568 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
569 	return crc;
570 }
571 
572 u_int32_t
573 sk_yukon_hash(void *addr)
574 {
575 	u_int32_t		crc;
576 
577 	crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
578 	crc &= ((1 << SK_HASH_BITS) - 1);
579 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
580 	return crc;
581 }
582 
583 void
584 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
585 {
586 	char *addr = addrv;
587 	int base = XM_RXFILT_ENTRY(slot);
588 
589 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
590 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
591 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
592 }
593 
594 void
595 sk_setmulti(struct sk_if_softc *sc_if)
596 {
597 	struct sk_softc *sc = sc_if->sk_softc;
598 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
599 	u_int32_t hashes[2] = { 0, 0 };
600 	int h = 0, i;
601 	struct ethercom *ec = &sc_if->sk_ethercom;
602 	struct ether_multi *enm;
603 	struct ether_multistep step;
604 	u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
605 
606 	/* First, zot all the existing filters. */
607 	switch (sc->sk_type) {
608 	case SK_GENESIS:
609 		for (i = 1; i < XM_RXFILT_MAX; i++)
610 			sk_setfilt(sc_if, (void *)&dummy, i);
611 
612 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
613 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
614 		break;
615 	case SK_YUKON:
616 	case SK_YUKON_LITE:
617 	case SK_YUKON_LP:
618 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
619 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
620 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
621 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
622 		break;
623 	}
624 
625 	/* Now program new ones. */
626 allmulti:
627 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
628 		hashes[0] = 0xFFFFFFFF;
629 		hashes[1] = 0xFFFFFFFF;
630 	} else {
631 		i = 1;
632 		/* First find the tail of the list. */
633 		ETHER_FIRST_MULTI(step, ec, enm);
634 		while (enm != NULL) {
635 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
636 				 ETHER_ADDR_LEN)) {
637 				ifp->if_flags |= IFF_ALLMULTI;
638 				goto allmulti;
639 			}
640 			DPRINTFN(2,("multicast address %s\n",
641 	    			ether_sprintf(enm->enm_addrlo)));
642 			/*
643 			 * Program the first XM_RXFILT_MAX multicast groups
644 			 * into the perfect filter. For all others,
645 			 * use the hash table.
646 			 */
647 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
648 				sk_setfilt(sc_if, enm->enm_addrlo, i);
649 				i++;
650 			}
651 			else {
652 				switch (sc->sk_type) {
653 				case SK_GENESIS:
654 					h = sk_xmac_hash(enm->enm_addrlo);
655 					break;
656 				case SK_YUKON:
657 				case SK_YUKON_LITE:
658 				case SK_YUKON_LP:
659 					h = sk_yukon_hash(enm->enm_addrlo);
660 					break;
661 				}
662 				if (h < 32)
663 					hashes[0] |= (1 << h);
664 				else
665 					hashes[1] |= (1 << (h - 32));
666 			}
667 
668 			ETHER_NEXT_MULTI(step, enm);
669 		}
670 	}
671 
672 	switch (sc->sk_type) {
673 	case SK_GENESIS:
674 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
675 			       XM_MODE_RX_USE_PERFECT);
676 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
677 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
678 		break;
679 	case SK_YUKON:
680 	case SK_YUKON_LITE:
681 	case SK_YUKON_LP:
682 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
683 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
684 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
685 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
686 		break;
687 	}
688 }
689 
690 int
691 sk_init_rx_ring(struct sk_if_softc *sc_if)
692 {
693 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
694 	struct sk_ring_data	*rd = sc_if->sk_rdata;
695 	int			i;
696 
697 	memset((char *)rd->sk_rx_ring, 0,
698 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
699 
700 	for (i = 0; i < SK_RX_RING_CNT; i++) {
701 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
702 		if (i == (SK_RX_RING_CNT - 1)) {
703 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
704 			rd->sk_rx_ring[i].sk_next =
705 				htole32(SK_RX_RING_ADDR(sc_if, 0));
706 		} else {
707 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
708 			rd->sk_rx_ring[i].sk_next =
709 				htole32(SK_RX_RING_ADDR(sc_if,i+1));
710 		}
711 	}
712 
713 	for (i = 0; i < SK_RX_RING_CNT; i++) {
714 		if (sk_newbuf(sc_if, i, NULL,
715 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
716 			aprint_error_dev(sc_if->sk_dev,
717 			    "failed alloc of %dth mbuf\n", i);
718 			return ENOBUFS;
719 		}
720 	}
721 	sc_if->sk_cdata.sk_rx_prod = 0;
722 	sc_if->sk_cdata.sk_rx_cons = 0;
723 
724 	return 0;
725 }
726 
727 int
728 sk_init_tx_ring(struct sk_if_softc *sc_if)
729 {
730 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
731 	struct sk_ring_data	*rd = sc_if->sk_rdata;
732 	int			i;
733 
734 	memset(sc_if->sk_rdata->sk_tx_ring, 0,
735 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
736 
737 	for (i = 0; i < SK_TX_RING_CNT; i++) {
738 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
739 		if (i == (SK_TX_RING_CNT - 1)) {
740 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
741 			rd->sk_tx_ring[i].sk_next =
742 				htole32(SK_TX_RING_ADDR(sc_if, 0));
743 		} else {
744 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
745 			rd->sk_tx_ring[i].sk_next =
746 				htole32(SK_TX_RING_ADDR(sc_if,i+1));
747 		}
748 	}
749 
750 	sc_if->sk_cdata.sk_tx_prod = 0;
751 	sc_if->sk_cdata.sk_tx_cons = 0;
752 	sc_if->sk_cdata.sk_tx_cnt = 0;
753 
754 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
755 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
756 
757 	return 0;
758 }
759 
760 int
761 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
762 	  bus_dmamap_t dmamap)
763 {
764 	struct mbuf		*m_new = NULL;
765 	struct sk_chain		*c;
766 	struct sk_rx_desc	*r;
767 
768 	if (m == NULL) {
769 		void *buf = NULL;
770 
771 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
772 		if (m_new == NULL) {
773 			aprint_error_dev(sc_if->sk_dev,
774 			    "no memory for rx list -- packet dropped!\n");
775 			return ENOBUFS;
776 		}
777 
778 		/* Allocate the jumbo buffer */
779 		buf = sk_jalloc(sc_if);
780 		if (buf == NULL) {
781 			m_freem(m_new);
782 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
783 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
784 			return ENOBUFS;
785 		}
786 
787 		/* Attach the buffer to the mbuf */
788 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
789 		MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
790 
791 	} else {
792 		/*
793 	 	 * We're re-using a previously allocated mbuf;
794 		 * be sure to re-init pointers and lengths to
795 		 * default values.
796 		 */
797 		m_new = m;
798 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
799 		m_new->m_data = m_new->m_ext.ext_buf;
800 	}
801 	m_adj(m_new, ETHER_ALIGN);
802 
803 	c = &sc_if->sk_cdata.sk_rx_chain[i];
804 	r = c->sk_desc;
805 	c->sk_mbuf = m_new;
806 	r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
807 	    (((vaddr_t)m_new->m_data
808 		- (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
809 	r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
810 
811 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
812 
813 	return 0;
814 }
815 
816 /*
817  * Memory management for jumbo frames.
818  */
819 
820 int
821 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
822 {
823 	struct sk_softc		*sc = sc_if->sk_softc;
824 	char *ptr, *kva;
825 	bus_dma_segment_t	seg;
826 	int		i, rseg, state, error;
827 	struct sk_jpool_entry   *entry;
828 
829 	state = error = 0;
830 
831 	/* Grab a big chunk o' storage. */
832 	if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
833 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
834 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
835 		return ENOBUFS;
836 	}
837 
838 	state = 1;
839 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
840 			   BUS_DMA_NOWAIT)) {
841 		aprint_error_dev(sc->sk_dev,
842 		    "can't map dma buffers (%d bytes)\n",
843 		    SK_JMEM);
844 		error = ENOBUFS;
845 		goto out;
846 	}
847 
848 	state = 2;
849 	if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
850 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
851 		aprint_error_dev(sc->sk_dev, "can't create dma map\n");
852 		error = ENOBUFS;
853 		goto out;
854 	}
855 
856 	state = 3;
857 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
858 			    kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
859 		aprint_error_dev(sc->sk_dev, "can't load dma map\n");
860 		error = ENOBUFS;
861 		goto out;
862 	}
863 
864 	state = 4;
865 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
866 	DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
867 
868 	LIST_INIT(&sc_if->sk_jfree_listhead);
869 	LIST_INIT(&sc_if->sk_jinuse_listhead);
870 	mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
871 
872 	/*
873 	 * Now divide it up into 9K pieces and save the addresses
874 	 * in an array.
875 	 */
876 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
877 	for (i = 0; i < SK_JSLOTS; i++) {
878 		sc_if->sk_cdata.sk_jslots[i] = ptr;
879 		ptr += SK_JLEN;
880 		entry = malloc(sizeof(struct sk_jpool_entry),
881 		    M_DEVBUF, M_NOWAIT);
882 		if (entry == NULL) {
883 			aprint_error_dev(sc->sk_dev,
884 			    "no memory for jumbo buffer queue!\n");
885 			error = ENOBUFS;
886 			goto out;
887 		}
888 		entry->slot = i;
889 		if (i)
890 			LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
891 				 entry, jpool_entries);
892 		else
893 			LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
894 				 entry, jpool_entries);
895 	}
896 out:
897 	if (error != 0) {
898 		switch (state) {
899 		case 4:
900 			bus_dmamap_unload(sc->sc_dmatag,
901 			    sc_if->sk_cdata.sk_rx_jumbo_map);
902 		case 3:
903 			bus_dmamap_destroy(sc->sc_dmatag,
904 			    sc_if->sk_cdata.sk_rx_jumbo_map);
905 		case 2:
906 			bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
907 		case 1:
908 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
909 			break;
910 		default:
911 			break;
912 		}
913 	}
914 
915 	return error;
916 }
917 
918 /*
919  * Allocate a jumbo buffer.
920  */
921 void *
922 sk_jalloc(struct sk_if_softc *sc_if)
923 {
924 	struct sk_jpool_entry   *entry;
925 
926 	mutex_enter(&sc_if->sk_jpool_mtx);
927 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
928 
929 	if (entry == NULL) {
930 		mutex_exit(&sc_if->sk_jpool_mtx);
931 		return NULL;
932 	}
933 
934 	LIST_REMOVE(entry, jpool_entries);
935 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
936 	mutex_exit(&sc_if->sk_jpool_mtx);
937 	return sc_if->sk_cdata.sk_jslots[entry->slot];
938 }
939 
940 /*
941  * Release a jumbo buffer.
942  */
943 void
944 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
945 {
946 	struct sk_jpool_entry *entry;
947 	struct sk_if_softc *sc;
948 	int i;
949 
950 	/* Extract the softc struct pointer. */
951 	sc = (struct sk_if_softc *)arg;
952 
953 	if (sc == NULL)
954 		panic("sk_jfree: can't find softc pointer!");
955 
956 	/* calculate the slot this buffer belongs to */
957 
958 	i = ((vaddr_t)buf
959 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
960 
961 	if ((i < 0) || (i >= SK_JSLOTS))
962 		panic("sk_jfree: asked to free buffer that we don't manage!");
963 
964 	mutex_enter(&sc->sk_jpool_mtx);
965 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
966 	if (entry == NULL)
967 		panic("sk_jfree: buffer not in use!");
968 	entry->slot = i;
969 	LIST_REMOVE(entry, jpool_entries);
970 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
971 	mutex_exit(&sc->sk_jpool_mtx);
972 
973 	if (__predict_true(m != NULL))
974 		pool_cache_put(mb_cache, m);
975 }
976 
977 /*
978  * Set media options.
979  */
980 int
981 sk_ifmedia_upd(struct ifnet *ifp)
982 {
983 	struct sk_if_softc *sc_if = ifp->if_softc;
984 	int rc;
985 
986 	(void) sk_init(ifp);
987 	if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
988 		return 0;
989 	return rc;
990 }
991 
992 int
993 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
994 {
995 	struct sk_if_softc *sc_if = ifp->if_softc;
996 	struct sk_softc *sc = sc_if->sk_softc;
997 	int s, error = 0;
998 
999 	/* DPRINTFN(2, ("sk_ioctl\n")); */
1000 
1001 	s = splnet();
1002 
1003 	switch (command) {
1004 
1005 	case SIOCSIFFLAGS:
1006 	        DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1007 		if ((error = ifioctl_common(ifp, command, data)) != 0)
1008 			break;
1009 		if (ifp->if_flags & IFF_UP) {
1010 			if (ifp->if_flags & IFF_RUNNING &&
1011 			    ifp->if_flags & IFF_PROMISC &&
1012 			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
1013 				switch (sc->sk_type) {
1014 				case SK_GENESIS:
1015 					SK_XM_SETBIT_4(sc_if, XM_MODE,
1016 					    XM_MODE_RX_PROMISC);
1017 					break;
1018 				case SK_YUKON:
1019 				case SK_YUKON_LITE:
1020 				case SK_YUKON_LP:
1021 					SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1022 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
1023 					break;
1024 				}
1025 				sk_setmulti(sc_if);
1026 			} else if (ifp->if_flags & IFF_RUNNING &&
1027 			    !(ifp->if_flags & IFF_PROMISC) &&
1028 			    sc_if->sk_if_flags & IFF_PROMISC) {
1029 				switch (sc->sk_type) {
1030 				case SK_GENESIS:
1031 					SK_XM_CLRBIT_4(sc_if, XM_MODE,
1032 					    XM_MODE_RX_PROMISC);
1033 					break;
1034 				case SK_YUKON:
1035 				case SK_YUKON_LITE:
1036 				case SK_YUKON_LP:
1037 					SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1038 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
1039 					break;
1040 				}
1041 
1042 				sk_setmulti(sc_if);
1043 			} else
1044 				(void) sk_init(ifp);
1045 		} else {
1046 			if (ifp->if_flags & IFF_RUNNING)
1047 				sk_stop(ifp,0);
1048 		}
1049 		sc_if->sk_if_flags = ifp->if_flags;
1050 		error = 0;
1051 		break;
1052 
1053 	default:
1054 	        DPRINTFN(2, ("sk_ioctl ETHER\n"));
1055 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1056 			break;
1057 
1058 		error = 0;
1059 
1060 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1061 			;
1062 		else if (ifp->if_flags & IFF_RUNNING) {
1063 			sk_setmulti(sc_if);
1064 			DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1065 		}
1066 		break;
1067 	}
1068 
1069 	splx(s);
1070 	return error;
1071 }
1072 
1073 void
1074 sk_update_int_mod(struct sk_softc *sc)
1075 {
1076 	u_int32_t imtimer_ticks;
1077 
1078 	/*
1079          * Configure interrupt moderation. The moderation timer
1080 	 * defers interrupts specified in the interrupt moderation
1081 	 * timer mask based on the timeout specified in the interrupt
1082 	 * moderation timer init register. Each bit in the timer
1083 	 * register represents one tick, so to specify a timeout in
1084 	 * microseconds, we have to multiply by the correct number of
1085 	 * ticks-per-microsecond.
1086 	 */
1087 	switch (sc->sk_type) {
1088 	case SK_GENESIS:
1089 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1090 		break;
1091 	case SK_YUKON_EC:
1092 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1093 		break;
1094 	default:
1095 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1096 	}
1097 	aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n",
1098 	    sc->sk_int_mod);
1099         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1100         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1101 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1102         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1103 	sc->sk_int_mod_pending = 0;
1104 }
1105 
1106 /*
1107  * Lookup: Check the PCI vendor and device, and return a pointer to
1108  * The structure if the IDs match against our list.
1109  */
1110 
1111 static const struct sk_product *
1112 sk_lookup(const struct pci_attach_args *pa)
1113 {
1114 	const struct sk_product *psk;
1115 
1116 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1117 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1118 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1119 			return psk;
1120 	}
1121 	return NULL;
1122 }
1123 
1124 /*
1125  * Probe for a SysKonnect GEnesis chip.
1126  */
1127 
1128 int
1129 skc_probe(device_t parent, cfdata_t match, void *aux)
1130 {
1131 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1132 	const struct sk_product *psk;
1133 	pcireg_t subid;
1134 
1135 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1136 
1137 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
1138 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1139 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1140 	    subid == SK_LINKSYS_EG1032_SUBID)
1141 		return 1;
1142 
1143 	if ((psk = sk_lookup(pa))) {
1144 		return 1;
1145 	}
1146 	return 0;
1147 }
1148 
1149 /*
1150  * Force the GEnesis into reset, then bring it out of reset.
1151  */
1152 void sk_reset(struct sk_softc *sc)
1153 {
1154 	DPRINTFN(2, ("sk_reset\n"));
1155 
1156 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1157 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1158 	if (SK_YUKON_FAMILY(sc->sk_type))
1159 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1160 
1161 	DELAY(1000);
1162 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1163 	DELAY(2);
1164 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1165 	if (SK_YUKON_FAMILY(sc->sk_type))
1166 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1167 
1168 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1169 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1170 		     CSR_READ_2(sc, SK_LINK_CTRL)));
1171 
1172 	if (sc->sk_type == SK_GENESIS) {
1173 		/* Configure packet arbiter */
1174 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1175 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1176 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1177 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1178 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1179 	}
1180 
1181 	/* Enable RAM interface */
1182 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1183 
1184 	sk_update_int_mod(sc);
1185 }
1186 
1187 int
1188 sk_probe(device_t parent, cfdata_t match, void *aux)
1189 {
1190 	struct skc_attach_args *sa = aux;
1191 
1192 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1193 		return 0;
1194 
1195 	return 1;
1196 }
1197 
1198 /*
1199  * Each XMAC chip is attached as a separate logical IP interface.
1200  * Single port cards will have only one logical interface of course.
1201  */
1202 void
1203 sk_attach(device_t parent, device_t self, void *aux)
1204 {
1205 	struct sk_if_softc *sc_if = device_private(self);
1206 	struct sk_softc *sc = device_private(parent);
1207 	struct skc_attach_args *sa = aux;
1208 	struct sk_txmap_entry	*entry;
1209 	struct ifnet *ifp;
1210 	bus_dma_segment_t seg;
1211 	bus_dmamap_t dmamap;
1212 	void *kva;
1213 	int i, rseg;
1214 	int mii_flags = 0;
1215 
1216 	aprint_naive("\n");
1217 
1218 	sc_if->sk_dev = self;
1219 	sc_if->sk_port = sa->skc_port;
1220 	sc_if->sk_softc = sc;
1221 	sc->sk_if[sa->skc_port] = sc_if;
1222 
1223 	if (sa->skc_port == SK_PORT_A)
1224 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1225 	if (sa->skc_port == SK_PORT_B)
1226 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1227 
1228 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1229 
1230 	/*
1231 	 * Get station address for this interface. Note that
1232 	 * dual port cards actually come with three station
1233 	 * addresses: one for each port, plus an extra. The
1234 	 * extra one is used by the SysKonnect driver software
1235 	 * as a 'virtual' station address for when both ports
1236 	 * are operating in failover mode. Currently we don't
1237 	 * use this extra address.
1238 	 */
1239 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1240 		sc_if->sk_enaddr[i] =
1241 			sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1242 
1243 
1244 	aprint_normal(": Ethernet address %s\n",
1245 	    ether_sprintf(sc_if->sk_enaddr));
1246 
1247 	/*
1248 	 * Set up RAM buffer addresses. The NIC will have a certain
1249 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1250 	 * need to divide this up a) between the transmitter and
1251  	 * receiver and b) between the two XMACs, if this is a
1252 	 * dual port NIC. Our algorithm is to divide up the memory
1253 	 * evenly so that everyone gets a fair share.
1254 	 */
1255 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1256 		u_int32_t		chunk, val;
1257 
1258 		chunk = sc->sk_ramsize / 2;
1259 		val = sc->sk_rboff / sizeof(u_int64_t);
1260 		sc_if->sk_rx_ramstart = val;
1261 		val += (chunk / sizeof(u_int64_t));
1262 		sc_if->sk_rx_ramend = val - 1;
1263 		sc_if->sk_tx_ramstart = val;
1264 		val += (chunk / sizeof(u_int64_t));
1265 		sc_if->sk_tx_ramend = val - 1;
1266 	} else {
1267 		u_int32_t		chunk, val;
1268 
1269 		chunk = sc->sk_ramsize / 4;
1270 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1271 		    sizeof(u_int64_t);
1272 		sc_if->sk_rx_ramstart = val;
1273 		val += (chunk / sizeof(u_int64_t));
1274 		sc_if->sk_rx_ramend = val - 1;
1275 		sc_if->sk_tx_ramstart = val;
1276 		val += (chunk / sizeof(u_int64_t));
1277 		sc_if->sk_tx_ramend = val - 1;
1278 	}
1279 
1280 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1281 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
1282 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1283 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1284 
1285 	/* Read and save PHY type and set PHY address */
1286 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1287 	switch (sc_if->sk_phytype) {
1288 	case SK_PHYTYPE_XMAC:
1289 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1290 		break;
1291 	case SK_PHYTYPE_BCOM:
1292 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1293 		break;
1294 	case SK_PHYTYPE_MARV_COPPER:
1295 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1296 		break;
1297 	default:
1298 		aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n",
1299 		    sc_if->sk_phytype);
1300 		return;
1301 	}
1302 
1303 	/* Allocate the descriptor queues. */
1304 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1305 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1306 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
1307 		goto fail;
1308 	}
1309 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1310 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1311 		aprint_error_dev(sc_if->sk_dev,
1312 		    "can't map dma buffers (%lu bytes)\n",
1313 		    (u_long) sizeof(struct sk_ring_data));
1314 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1315 		goto fail;
1316 	}
1317 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1318 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1319             &sc_if->sk_ring_map)) {
1320 		aprint_error_dev(sc_if->sk_dev, "can't create dma map\n");
1321 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1322 		    sizeof(struct sk_ring_data));
1323 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1324 		goto fail;
1325 	}
1326 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1327 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1328 		aprint_error_dev(sc_if->sk_dev, "can't load dma map\n");
1329 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1330 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1331 		    sizeof(struct sk_ring_data));
1332 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1333 		goto fail;
1334 	}
1335 
1336 	for (i = 0; i < SK_RX_RING_CNT; i++)
1337 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1338 
1339 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1340 	for (i = 0; i < SK_TX_RING_CNT; i++) {
1341 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1342 
1343 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1344 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1345 			aprint_error_dev(sc_if->sk_dev,
1346 			    "Can't create TX dmamap\n");
1347 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1348 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1349 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1350 			    sizeof(struct sk_ring_data));
1351 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1352 			goto fail;
1353 		}
1354 
1355 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1356 		if (!entry) {
1357 			aprint_error_dev(sc_if->sk_dev,
1358 			    "Can't alloc txmap entry\n");
1359 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1360 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1361 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1362 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1363 			    sizeof(struct sk_ring_data));
1364 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1365 			goto fail;
1366 		}
1367 		entry->dmamap = dmamap;
1368 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1369 	}
1370 
1371         sc_if->sk_rdata = (struct sk_ring_data *)kva;
1372 	memset(sc_if->sk_rdata, 0, sizeof(struct sk_ring_data));
1373 
1374 	ifp = &sc_if->sk_ethercom.ec_if;
1375 	/* Try to allocate memory for jumbo buffers. */
1376 	if (sk_alloc_jumbo_mem(sc_if)) {
1377 		aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1378 		goto fail;
1379 	}
1380 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1381 		| ETHERCAP_JUMBO_MTU;
1382 
1383 	ifp->if_softc = sc_if;
1384 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1385 	ifp->if_ioctl = sk_ioctl;
1386 	ifp->if_start = sk_start;
1387 	ifp->if_stop = sk_stop;
1388 	ifp->if_init = sk_init;
1389 	ifp->if_watchdog = sk_watchdog;
1390 	ifp->if_capabilities = 0;
1391 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1392 	IFQ_SET_READY(&ifp->if_snd);
1393 	strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1394 
1395 	/*
1396 	 * Do miibus setup.
1397 	 */
1398 	switch (sc->sk_type) {
1399 	case SK_GENESIS:
1400 		sk_init_xmac(sc_if);
1401 		break;
1402 	case SK_YUKON:
1403 	case SK_YUKON_LITE:
1404 	case SK_YUKON_LP:
1405 		sk_init_yukon(sc_if);
1406 		break;
1407 	default:
1408 		aprint_error_dev(sc->sk_dev, "unknown device type %d\n",
1409 			sc->sk_type);
1410 		goto fail;
1411 	}
1412 
1413  	DPRINTFN(2, ("sk_attach: 1\n"));
1414 
1415 	sc_if->sk_mii.mii_ifp = ifp;
1416 	switch (sc->sk_type) {
1417 	case SK_GENESIS:
1418 		sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1419 		sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1420 		sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1421 		break;
1422 	case SK_YUKON:
1423 	case SK_YUKON_LITE:
1424 	case SK_YUKON_LP:
1425 		sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1426 		sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1427 		sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1428 		mii_flags = MIIF_DOPAUSE;
1429 		break;
1430 	}
1431 
1432 	sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1433 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1434 	    sk_ifmedia_upd, ether_mediastatus);
1435 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1436 	    MII_OFFSET_ANY, mii_flags);
1437 	if (LIST_EMPTY(&sc_if->sk_mii.mii_phys)) {
1438 		aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1439 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1440 			    0, NULL);
1441 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1442 	} else
1443 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1444 
1445 	callout_init(&sc_if->sk_tick_ch, 0);
1446 	callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1447 
1448 	DPRINTFN(2, ("sk_attach: 1\n"));
1449 
1450 	/*
1451 	 * Call MI attach routines.
1452 	 */
1453 	if_attach(ifp);
1454 
1455 	ether_ifattach(ifp, sc_if->sk_enaddr);
1456 
1457 #if NRND > 0
1458         rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1459             RND_TYPE_NET, 0);
1460 #endif
1461 
1462 	if (pmf_device_register(self, NULL, sk_resume))
1463 		pmf_class_network_register(self, ifp);
1464 	else
1465 		aprint_error_dev(self, "couldn't establish power handler\n");
1466 
1467 	DPRINTFN(2, ("sk_attach: end\n"));
1468 
1469 	return;
1470 
1471 fail:
1472 	sc->sk_if[sa->skc_port] = NULL;
1473 }
1474 
1475 int
1476 skcprint(void *aux, const char *pnp)
1477 {
1478 	struct skc_attach_args *sa = aux;
1479 
1480 	if (pnp)
1481 		aprint_normal("sk port %c at %s",
1482 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1483 	else
1484 		aprint_normal(" port %c",
1485 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1486 	return UNCONF;
1487 }
1488 
1489 /*
1490  * Attach the interface. Allocate softc structures, do ifmedia
1491  * setup and ethernet/BPF attach.
1492  */
1493 void
1494 skc_attach(device_t parent, device_t self, void *aux)
1495 {
1496 	struct sk_softc *sc = device_private(self);
1497 	struct pci_attach_args *pa = aux;
1498 	struct skc_attach_args skca;
1499 	pci_chipset_tag_t pc = pa->pa_pc;
1500 #ifndef SK_USEIOSPACE
1501 	pcireg_t memtype;
1502 #endif
1503 	pci_intr_handle_t ih;
1504 	const char *intrstr = NULL;
1505 	bus_addr_t iobase;
1506 	bus_size_t iosize;
1507 	int rc, sk_nodenum;
1508 	u_int32_t command;
1509 	const char *revstr;
1510 	const struct sysctlnode *node;
1511 
1512 	sc->sk_dev = self;
1513 	aprint_naive("\n");
1514 
1515 	DPRINTFN(2, ("begin skc_attach\n"));
1516 
1517 	/*
1518 	 * Handle power management nonsense.
1519 	 */
1520 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1521 
1522 	if (command == 0x01) {
1523 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1524 		if (command & SK_PSTATE_MASK) {
1525 			u_int32_t		xiobase, membase, irq;
1526 
1527 			/* Save important PCI config data. */
1528 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1529 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1530 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1531 
1532 			/* Reset the power state. */
1533 			aprint_normal_dev(sc->sk_dev,
1534 			    "chip is in D%d power mode -- setting to D0\n",
1535 			    command & SK_PSTATE_MASK);
1536 			command &= 0xFFFFFFFC;
1537 			pci_conf_write(pc, pa->pa_tag,
1538 			    SK_PCI_PWRMGMTCTRL, command);
1539 
1540 			/* Restore PCI config data. */
1541 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1542 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1543 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1544 		}
1545 	}
1546 
1547 	/*
1548 	 * Map control/status registers.
1549 	 */
1550 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1551 	command |= PCI_COMMAND_IO_ENABLE |
1552 	    PCI_COMMAND_MEM_ENABLE |
1553 	    PCI_COMMAND_MASTER_ENABLE;
1554 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1555 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1556 
1557 #ifdef SK_USEIOSPACE
1558 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
1559 		aprint_error(": failed to enable I/O ports!\n");
1560 		return;
1561 	}
1562 	/*
1563 	 * Map control/status registers.
1564 	 */
1565 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1566 			&sc->sk_btag, &sc->sk_bhandle,
1567 			&iobase, &iosize)) {
1568 		aprint_error(": can't find i/o space\n");
1569 		return;
1570 	}
1571 #else
1572 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1573 		aprint_error(": failed to enable memory mapping!\n");
1574 		return;
1575 	}
1576 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1577 	switch (memtype) {
1578         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1579         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1580                 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1581 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1582 				   &iobase, &iosize) == 0)
1583                         break;
1584         default:
1585                 aprint_error_dev(sc->sk_dev, "can't find mem space\n");
1586                 return;
1587 	}
1588 
1589 	DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase,
1590 	    (u_long)iosize));
1591 #endif
1592 	sc->sc_dmatag = pa->pa_dmat;
1593 
1594 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1595 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1596 
1597 	/* bail out here if chip is not recognized */
1598 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1599 		aprint_error_dev(sc->sk_dev, "unknown chip type\n");
1600 		goto fail;
1601 	}
1602 	if (SK_IS_YUKON2(sc)) {
1603 		aprint_error_dev(sc->sk_dev,
1604 		    "Does not support Yukon2--try msk(4).\n");
1605 		goto fail;
1606 	}
1607 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1608 
1609 	/* Allocate interrupt */
1610 	if (pci_intr_map(pa, &ih)) {
1611 		aprint_error(": couldn't map interrupt\n");
1612 		goto fail;
1613 	}
1614 
1615 	intrstr = pci_intr_string(pc, ih);
1616 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1617 	if (sc->sk_intrhand == NULL) {
1618 		aprint_error(": couldn't establish interrupt");
1619 		if (intrstr != NULL)
1620 			aprint_error(" at %s", intrstr);
1621 		aprint_error("\n");
1622 		goto fail;
1623 	}
1624 	aprint_normal(": %s\n", intrstr);
1625 
1626 	/* Reset the adapter. */
1627 	sk_reset(sc);
1628 
1629 	/* Read and save vital product data from EEPROM. */
1630 	sk_vpd_read(sc);
1631 
1632 	if (sc->sk_type == SK_GENESIS) {
1633 		u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1634 		/* Read and save RAM size and RAMbuffer offset */
1635 		switch (val) {
1636 		case SK_RAMSIZE_512K_64:
1637 			sc->sk_ramsize = 0x80000;
1638 			sc->sk_rboff = SK_RBOFF_0;
1639 			break;
1640 		case SK_RAMSIZE_1024K_64:
1641 			sc->sk_ramsize = 0x100000;
1642 			sc->sk_rboff = SK_RBOFF_80000;
1643 			break;
1644 		case SK_RAMSIZE_1024K_128:
1645 			sc->sk_ramsize = 0x100000;
1646 			sc->sk_rboff = SK_RBOFF_0;
1647 			break;
1648 		case SK_RAMSIZE_2048K_128:
1649 			sc->sk_ramsize = 0x200000;
1650 			sc->sk_rboff = SK_RBOFF_0;
1651 			break;
1652 		default:
1653 			aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n",
1654 			       val);
1655 			goto fail_1;
1656 			break;
1657 		}
1658 
1659 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1660 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
1661 			     sc->sk_rboff));
1662 	} else {
1663 	  	u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1664 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
1665 		sc->sk_rboff = SK_RBOFF_0;
1666 
1667 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1668 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
1669 			     sc->sk_rboff));
1670 	}
1671 
1672 	/* Read and save physical media type */
1673 	switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1674 	case SK_PMD_1000BASESX:
1675 		sc->sk_pmd = IFM_1000_SX;
1676 		break;
1677 	case SK_PMD_1000BASELX:
1678 		sc->sk_pmd = IFM_1000_LX;
1679 		break;
1680 	case SK_PMD_1000BASECX:
1681 		sc->sk_pmd = IFM_1000_CX;
1682 		break;
1683 	case SK_PMD_1000BASETX:
1684 	case SK_PMD_1000BASETX_ALT:
1685 		sc->sk_pmd = IFM_1000_T;
1686 		break;
1687 	default:
1688 		aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n",
1689 		    sk_win_read_1(sc, SK_PMDTYPE));
1690 		goto fail_1;
1691 	}
1692 
1693 	/* determine whether to name it with vpd or just make it up */
1694 	/* Marvell Yukon VPD's can freqently be bogus */
1695 
1696 	switch (pa->pa_id) {
1697 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1698 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1699 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1700 	case PCI_PRODUCT_3COM_3C940:
1701 	case PCI_PRODUCT_DLINK_DGE530T:
1702 	case PCI_PRODUCT_DLINK_DGE560T:
1703 	case PCI_PRODUCT_DLINK_DGE560T_2:
1704 	case PCI_PRODUCT_LINKSYS_EG1032:
1705 	case PCI_PRODUCT_LINKSYS_EG1064:
1706 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1707 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1708 	case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1709 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1710 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
1711 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
1712 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1713 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1714  		sc->sk_name = sc->sk_vpd_prodname;
1715  		break;
1716 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
1717 	/* whoops yukon vpd prodname bears no resemblance to reality */
1718 		switch (sc->sk_type) {
1719 		case SK_GENESIS:
1720 			sc->sk_name = sc->sk_vpd_prodname;
1721 			break;
1722 		case SK_YUKON:
1723 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1724 			break;
1725 		case SK_YUKON_LITE:
1726 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1727 			break;
1728 		case SK_YUKON_LP:
1729 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1730 			break;
1731 		default:
1732 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1733 		}
1734 
1735 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1736 
1737 		if ( sc->sk_type == SK_YUKON ) {
1738 			uint32_t flashaddr;
1739 			uint8_t testbyte;
1740 
1741 			flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1742 
1743 			/* test Flash-Address Register */
1744 			sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1745 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1746 
1747 			if (testbyte != 0) {
1748 				/* this is yukon lite Rev. A0 */
1749 				sc->sk_type = SK_YUKON_LITE;
1750 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
1751 				/* restore Flash-Address Register */
1752 				sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1753 			}
1754 		}
1755 		break;
1756 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
1757 		sc->sk_name = sc->sk_vpd_prodname;
1758 		break;
1759  	default:
1760 		sc->sk_name = "Unknown Marvell";
1761 	}
1762 
1763 
1764 	if ( sc->sk_type == SK_YUKON_LITE ) {
1765 		switch (sc->sk_rev) {
1766 		case SK_YUKON_LITE_REV_A0:
1767 			revstr = "A0";
1768 			break;
1769 		case SK_YUKON_LITE_REV_A1:
1770 			revstr = "A1";
1771 			break;
1772 		case SK_YUKON_LITE_REV_A3:
1773 			revstr = "A3";
1774 			break;
1775 		default:
1776 			revstr = "";
1777 		}
1778 	} else {
1779 		revstr = "";
1780 	}
1781 
1782 	/* Announce the product name. */
1783 	aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n",
1784 			      sc->sk_name, revstr, sc->sk_rev);
1785 
1786 	skca.skc_port = SK_PORT_A;
1787 	(void)config_found(sc->sk_dev, &skca, skcprint);
1788 
1789 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1790 		skca.skc_port = SK_PORT_B;
1791 		(void)config_found(sc->sk_dev, &skca, skcprint);
1792 	}
1793 
1794 	/* Turn on the 'driver is loaded' LED. */
1795 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1796 
1797 	/* skc sysctl setup */
1798 
1799 	sc->sk_int_mod = SK_IM_DEFAULT;
1800 	sc->sk_int_mod_pending = 0;
1801 
1802 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1803 	    0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1804 	    SYSCTL_DESCR("skc per-controller controls"),
1805 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1806 	    CTL_EOL)) != 0) {
1807 		aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1808 		goto fail_1;
1809 	}
1810 
1811 	sk_nodenum = node->sysctl_num;
1812 
1813 	/* interrupt moderation time in usecs */
1814 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1815 	    CTLFLAG_READWRITE,
1816 	    CTLTYPE_INT, "int_mod",
1817 	    SYSCTL_DESCR("sk interrupt moderation timer"),
1818 	    sk_sysctl_handler, 0, sc,
1819 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1820 	    CTL_EOL)) != 0) {
1821 		aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
1822 		goto fail_1;
1823 	}
1824 
1825 	if (!pmf_device_register(self, skc_suspend, skc_resume))
1826 		aprint_error_dev(self, "couldn't establish power handler\n");
1827 
1828 	return;
1829 
1830 fail_1:
1831 	pci_intr_disestablish(pc, sc->sk_intrhand);
1832 fail:
1833 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1834 }
1835 
1836 int
1837 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1838 {
1839 	struct sk_softc		*sc = sc_if->sk_softc;
1840 	struct sk_tx_desc	*f = NULL;
1841 	u_int32_t		frag, cur, cnt = 0, sk_ctl;
1842 	int			i;
1843 	struct sk_txmap_entry	*entry;
1844 	bus_dmamap_t		txmap;
1845 
1846 	DPRINTFN(3, ("sk_encap\n"));
1847 
1848 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1849 	if (entry == NULL) {
1850 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
1851 		return ENOBUFS;
1852 	}
1853 	txmap = entry->dmamap;
1854 
1855 	cur = frag = *txidx;
1856 
1857 #ifdef SK_DEBUG
1858 	if (skdebug >= 3)
1859 		sk_dump_mbuf(m_head);
1860 #endif
1861 
1862 	/*
1863 	 * Start packing the mbufs in this chain into
1864 	 * the fragment pointers. Stop when we run out
1865 	 * of fragments or hit the end of the mbuf chain.
1866 	 */
1867 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1868 	    BUS_DMA_NOWAIT)) {
1869 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1870 		return ENOBUFS;
1871 	}
1872 
1873 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1874 
1875 	/* Sync the DMA map. */
1876 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1877 	    BUS_DMASYNC_PREWRITE);
1878 
1879 	for (i = 0; i < txmap->dm_nsegs; i++) {
1880 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1881 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1882 			return ENOBUFS;
1883 		}
1884 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
1885 		f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1886 		sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1887 		if (cnt == 0)
1888 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
1889 		else
1890 			sk_ctl |= SK_TXCTL_OWN;
1891 		f->sk_ctl = htole32(sk_ctl);
1892 		cur = frag;
1893 		SK_INC(frag, SK_TX_RING_CNT);
1894 		cnt++;
1895 	}
1896 
1897 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1898 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1899 
1900 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
1901 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1902 		htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1903 
1904 	/* Sync descriptors before handing to chip */
1905 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1906 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1907 
1908 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1909 		htole32(SK_TXCTL_OWN);
1910 
1911 	/* Sync first descriptor to hand it off */
1912 	SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1913 
1914 	sc_if->sk_cdata.sk_tx_cnt += cnt;
1915 
1916 #ifdef SK_DEBUG
1917 	if (skdebug >= 3) {
1918 		struct sk_tx_desc *desc;
1919 		u_int32_t idx;
1920 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1921 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1922 			sk_dump_txdesc(desc, idx);
1923 		}
1924 	}
1925 #endif
1926 
1927 	*txidx = frag;
1928 
1929 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
1930 
1931 	return 0;
1932 }
1933 
1934 void
1935 sk_start(struct ifnet *ifp)
1936 {
1937         struct sk_if_softc	*sc_if = ifp->if_softc;
1938         struct sk_softc		*sc = sc_if->sk_softc;
1939         struct mbuf		*m_head = NULL;
1940         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
1941 	int			pkts = 0;
1942 
1943 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1944 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1945 
1946 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1947 		IFQ_POLL(&ifp->if_snd, m_head);
1948 		if (m_head == NULL)
1949 			break;
1950 
1951 		/*
1952 		 * Pack the data into the transmit ring. If we
1953 		 * don't have room, set the OACTIVE flag and wait
1954 		 * for the NIC to drain the ring.
1955 		 */
1956 		if (sk_encap(sc_if, m_head, &idx)) {
1957 			ifp->if_flags |= IFF_OACTIVE;
1958 			break;
1959 		}
1960 
1961 		/* now we are committed to transmit the packet */
1962 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1963 		pkts++;
1964 
1965 		/*
1966 		 * If there's a BPF listener, bounce a copy of this frame
1967 		 * to him.
1968 		 */
1969 		bpf_mtap(ifp, m_head);
1970 	}
1971 	if (pkts == 0)
1972 		return;
1973 
1974 	/* Transmit */
1975 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
1976 		sc_if->sk_cdata.sk_tx_prod = idx;
1977 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1978 
1979 		/* Set a timeout in case the chip goes out to lunch. */
1980 		ifp->if_timer = 5;
1981 	}
1982 }
1983 
1984 
1985 void
1986 sk_watchdog(struct ifnet *ifp)
1987 {
1988 	struct sk_if_softc *sc_if = ifp->if_softc;
1989 
1990 	/*
1991 	 * Reclaim first as there is a possibility of losing Tx completion
1992 	 * interrupts.
1993 	 */
1994 	sk_txeof(sc_if);
1995 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1996 		aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
1997 
1998 		ifp->if_oerrors++;
1999 
2000 		sk_init(ifp);
2001 	}
2002 }
2003 
2004 void
2005 sk_shutdown(void *v)
2006 {
2007 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
2008 	struct sk_softc		*sc = sc_if->sk_softc;
2009 	struct ifnet 		*ifp = &sc_if->sk_ethercom.ec_if;
2010 
2011 	DPRINTFN(2, ("sk_shutdown\n"));
2012 	sk_stop(ifp,1);
2013 
2014 	/* Turn off the 'driver is loaded' LED. */
2015 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2016 
2017 	/*
2018 	 * Reset the GEnesis controller. Doing this should also
2019 	 * assert the resets on the attached XMAC(s).
2020 	 */
2021 	sk_reset(sc);
2022 }
2023 
2024 void
2025 sk_rxeof(struct sk_if_softc *sc_if)
2026 {
2027 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2028 	struct mbuf		*m;
2029 	struct sk_chain		*cur_rx;
2030 	struct sk_rx_desc	*cur_desc;
2031 	int			i, cur, total_len = 0;
2032 	u_int32_t		rxstat, sk_ctl;
2033 	bus_dmamap_t		dmamap;
2034 
2035 	i = sc_if->sk_cdata.sk_rx_prod;
2036 
2037 	DPRINTFN(3, ("sk_rxeof %d\n", i));
2038 
2039 	for (;;) {
2040 		cur = i;
2041 
2042 		/* Sync the descriptor */
2043 		SK_CDRXSYNC(sc_if, cur,
2044 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2045 
2046 		sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2047 		if (sk_ctl & SK_RXCTL_OWN) {
2048 			/* Invalidate the descriptor -- it's not ready yet */
2049 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2050 			sc_if->sk_cdata.sk_rx_prod = i;
2051 			break;
2052 		}
2053 
2054 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2055 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2056 		dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2057 
2058 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2059 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2060 
2061 		rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2062 		m = cur_rx->sk_mbuf;
2063 		cur_rx->sk_mbuf = NULL;
2064 		total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2065 
2066 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
2067 
2068 		SK_INC(i, SK_RX_RING_CNT);
2069 
2070 		if (rxstat & XM_RXSTAT_ERRFRAME) {
2071 			ifp->if_ierrors++;
2072 			sk_newbuf(sc_if, cur, m, dmamap);
2073 			continue;
2074 		}
2075 
2076 		/*
2077 		 * Try to allocate a new jumbo buffer. If that
2078 		 * fails, copy the packet to mbufs and put the
2079 		 * jumbo buffer back in the ring so it can be
2080 		 * re-used. If allocating mbufs fails, then we
2081 		 * have to drop the packet.
2082 		 */
2083 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2084 			struct mbuf		*m0;
2085 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2086 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
2087 			sk_newbuf(sc_if, cur, m, dmamap);
2088 			if (m0 == NULL) {
2089 				aprint_error_dev(sc_if->sk_dev, "no receive "
2090 				    "buffers available -- packet dropped!\n");
2091 				ifp->if_ierrors++;
2092 				continue;
2093 			}
2094 			m_adj(m0, ETHER_ALIGN);
2095 			m = m0;
2096 		} else {
2097 			m->m_pkthdr.rcvif = ifp;
2098 			m->m_pkthdr.len = m->m_len = total_len;
2099 		}
2100 
2101 		ifp->if_ipackets++;
2102 
2103 		bpf_mtap(ifp, m);
2104 		/* pass it on. */
2105 		(*ifp->if_input)(ifp, m);
2106 	}
2107 }
2108 
2109 void
2110 sk_txeof(struct sk_if_softc *sc_if)
2111 {
2112 	struct sk_softc		*sc = sc_if->sk_softc;
2113 	struct sk_tx_desc	*cur_tx;
2114 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2115 	u_int32_t		idx, sk_ctl;
2116 	struct sk_txmap_entry	*entry;
2117 
2118 	DPRINTFN(3, ("sk_txeof\n"));
2119 
2120 	/*
2121 	 * Go through our tx ring and free mbufs for those
2122 	 * frames that have been sent.
2123 	 */
2124 	idx = sc_if->sk_cdata.sk_tx_cons;
2125 	while (idx != sc_if->sk_cdata.sk_tx_prod) {
2126 		SK_CDTXSYNC(sc_if, idx, 1,
2127 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2128 
2129 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2130 		sk_ctl = le32toh(cur_tx->sk_ctl);
2131 #ifdef SK_DEBUG
2132 		if (skdebug >= 3)
2133 			sk_dump_txdesc(cur_tx, idx);
2134 #endif
2135 		if (sk_ctl & SK_TXCTL_OWN) {
2136 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2137 			break;
2138 		}
2139 		if (sk_ctl & SK_TXCTL_LASTFRAG)
2140 			ifp->if_opackets++;
2141 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2142 			entry = sc_if->sk_cdata.sk_tx_map[idx];
2143 
2144 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2145 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2146 
2147 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2148 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2149 
2150 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2151 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2152 					  link);
2153 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2154 		}
2155 		sc_if->sk_cdata.sk_tx_cnt--;
2156 		SK_INC(idx, SK_TX_RING_CNT);
2157 	}
2158 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
2159 		ifp->if_timer = 0;
2160 	else /* nudge chip to keep tx ring moving */
2161 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2162 
2163 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2164 		ifp->if_flags &= ~IFF_OACTIVE;
2165 
2166 	sc_if->sk_cdata.sk_tx_cons = idx;
2167 }
2168 
2169 void
2170 sk_tick(void *xsc_if)
2171 {
2172 	struct sk_if_softc *sc_if = xsc_if;
2173 	struct mii_data *mii = &sc_if->sk_mii;
2174 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2175 	int i;
2176 
2177 	DPRINTFN(3, ("sk_tick\n"));
2178 
2179 	if (!(ifp->if_flags & IFF_UP))
2180 		return;
2181 
2182 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2183 		sk_intr_bcom(sc_if);
2184 		return;
2185 	}
2186 
2187 	/*
2188 	 * According to SysKonnect, the correct way to verify that
2189 	 * the link has come back up is to poll bit 0 of the GPIO
2190 	 * register three times. This pin has the signal from the
2191 	 * link sync pin connected to it; if we read the same link
2192 	 * state 3 times in a row, we know the link is up.
2193 	 */
2194 	for (i = 0; i < 3; i++) {
2195 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2196 			break;
2197 	}
2198 
2199 	if (i != 3) {
2200 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2201 		return;
2202 	}
2203 
2204 	/* Turn the GP0 interrupt back on. */
2205 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2206 	SK_XM_READ_2(sc_if, XM_ISR);
2207 	mii_tick(mii);
2208 	mii_pollstat(mii);
2209 	callout_stop(&sc_if->sk_tick_ch);
2210 }
2211 
2212 void
2213 sk_intr_bcom(struct sk_if_softc *sc_if)
2214 {
2215 	struct mii_data *mii = &sc_if->sk_mii;
2216 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2217 	int status;
2218 
2219 
2220 	DPRINTFN(3, ("sk_intr_bcom\n"));
2221 
2222 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2223 
2224 	/*
2225 	 * Read the PHY interrupt register to make sure
2226 	 * we clear any pending interrupts.
2227 	 */
2228 	status = sk_xmac_miibus_readreg(sc_if->sk_dev,
2229 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2230 
2231 	if (!(ifp->if_flags & IFF_RUNNING)) {
2232 		sk_init_xmac(sc_if);
2233 		return;
2234 	}
2235 
2236 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2237 		int lstat;
2238 		lstat = sk_xmac_miibus_readreg(sc_if->sk_dev,
2239 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2240 
2241 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2242 			(void)mii_mediachg(mii);
2243 			/* Turn off the link LED. */
2244 			SK_IF_WRITE_1(sc_if, 0,
2245 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
2246 			sc_if->sk_link = 0;
2247 		} else if (status & BRGPHY_ISR_LNK_CHG) {
2248 			sk_xmac_miibus_writereg(sc_if->sk_dev,
2249 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2250 			mii_tick(mii);
2251 			sc_if->sk_link = 1;
2252 			/* Turn on the link LED. */
2253 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2254 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2255 			    SK_LINKLED_BLINK_OFF);
2256 			mii_pollstat(mii);
2257 		} else {
2258 			mii_tick(mii);
2259 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2260 		}
2261 	}
2262 
2263 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2264 }
2265 
2266 void
2267 sk_intr_xmac(struct sk_if_softc	*sc_if)
2268 {
2269 	u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2270 
2271 	DPRINTFN(3, ("sk_intr_xmac\n"));
2272 
2273 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2274 		if (status & XM_ISR_GP0_SET) {
2275 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2276 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2277 		}
2278 
2279 		if (status & XM_ISR_AUTONEG_DONE) {
2280 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2281 		}
2282 	}
2283 
2284 	if (status & XM_IMR_TX_UNDERRUN)
2285 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2286 
2287 	if (status & XM_IMR_RX_OVERRUN)
2288 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2289 }
2290 
2291 void
2292 sk_intr_yukon(struct sk_if_softc *sc_if)
2293 {
2294 	int status;
2295 
2296 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2297 
2298 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2299 }
2300 
2301 int
2302 sk_intr(void *xsc)
2303 {
2304 	struct sk_softc		*sc = xsc;
2305 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
2306 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
2307 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2308 	u_int32_t		status;
2309 	int			claimed = 0;
2310 
2311 	if (sc_if0 != NULL)
2312 		ifp0 = &sc_if0->sk_ethercom.ec_if;
2313 	if (sc_if1 != NULL)
2314 		ifp1 = &sc_if1->sk_ethercom.ec_if;
2315 
2316 	for (;;) {
2317 		status = CSR_READ_4(sc, SK_ISSR);
2318 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2319 
2320 		if (!(status & sc->sk_intrmask))
2321 			break;
2322 
2323 		claimed = 1;
2324 
2325 		/* Handle receive interrupts first. */
2326 		if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2327 			sk_rxeof(sc_if0);
2328 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2329 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2330 		}
2331 		if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2332 			sk_rxeof(sc_if1);
2333 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2334 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2335 		}
2336 
2337 		/* Then transmit interrupts. */
2338 		if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2339 			sk_txeof(sc_if0);
2340 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2341 			    SK_TXBMU_CLR_IRQ_EOF);
2342 		}
2343 		if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2344 			sk_txeof(sc_if1);
2345 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2346 			    SK_TXBMU_CLR_IRQ_EOF);
2347 		}
2348 
2349 		/* Then MAC interrupts. */
2350 		if (sc_if0 && (status & SK_ISR_MAC1) &&
2351 		    (ifp0->if_flags & IFF_RUNNING)) {
2352 			if (sc->sk_type == SK_GENESIS)
2353 				sk_intr_xmac(sc_if0);
2354 			else
2355 				sk_intr_yukon(sc_if0);
2356 		}
2357 
2358 		if (sc_if1 && (status & SK_ISR_MAC2) &&
2359 		    (ifp1->if_flags & IFF_RUNNING)) {
2360 			if (sc->sk_type == SK_GENESIS)
2361 				sk_intr_xmac(sc_if1);
2362 			else
2363 				sk_intr_yukon(sc_if1);
2364 
2365 		}
2366 
2367 		if (status & SK_ISR_EXTERNAL_REG) {
2368 			if (sc_if0 != NULL &&
2369 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2370 				sk_intr_bcom(sc_if0);
2371 
2372 			if (sc_if1 != NULL &&
2373 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2374 				sk_intr_bcom(sc_if1);
2375 		}
2376 	}
2377 
2378 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2379 
2380 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2381 		sk_start(ifp0);
2382 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2383 		sk_start(ifp1);
2384 
2385 #if NRND > 0
2386 	if (RND_ENABLED(&sc->rnd_source))
2387 		rnd_add_uint32(&sc->rnd_source, status);
2388 #endif
2389 
2390 	if (sc->sk_int_mod_pending)
2391 		sk_update_int_mod(sc);
2392 
2393 	return claimed;
2394 }
2395 
2396 void
2397 sk_init_xmac(struct sk_if_softc	*sc_if)
2398 {
2399 	struct sk_softc		*sc = sc_if->sk_softc;
2400 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2401 	static const struct sk_bcom_hack     bhack[] = {
2402 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2403 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2404 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2405 	{ 0, 0 } };
2406 
2407 	DPRINTFN(1, ("sk_init_xmac\n"));
2408 
2409 	/* Unreset the XMAC. */
2410 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2411 	DELAY(1000);
2412 
2413 	/* Reset the XMAC's internal state. */
2414 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2415 
2416 	/* Save the XMAC II revision */
2417 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2418 
2419 	/*
2420 	 * Perform additional initialization for external PHYs,
2421 	 * namely for the 1000baseTX cards that use the XMAC's
2422 	 * GMII mode.
2423 	 */
2424 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2425 		int			i = 0;
2426 		u_int32_t		val;
2427 
2428 		/* Take PHY out of reset. */
2429 		val = sk_win_read_4(sc, SK_GPIO);
2430 		if (sc_if->sk_port == SK_PORT_A)
2431 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2432 		else
2433 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2434 		sk_win_write_4(sc, SK_GPIO, val);
2435 
2436 		/* Enable GMII mode on the XMAC. */
2437 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2438 
2439 		sk_xmac_miibus_writereg(sc_if->sk_dev,
2440 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2441 		DELAY(10000);
2442 		sk_xmac_miibus_writereg(sc_if->sk_dev,
2443 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2444 
2445 		/*
2446 		 * Early versions of the BCM5400 apparently have
2447 		 * a bug that requires them to have their reserved
2448 		 * registers initialized to some magic values. I don't
2449 		 * know what the numbers do, I'm just the messenger.
2450 		 */
2451 		if (sk_xmac_miibus_readreg(sc_if->sk_dev,
2452 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2453 			while (bhack[i].reg) {
2454 				sk_xmac_miibus_writereg(sc_if->sk_dev,
2455 				    SK_PHYADDR_BCOM, bhack[i].reg,
2456 				    bhack[i].val);
2457 				i++;
2458 			}
2459 		}
2460 	}
2461 
2462 	/* Set station address */
2463 	SK_XM_WRITE_2(sc_if, XM_PAR0,
2464 		      *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2465 	SK_XM_WRITE_2(sc_if, XM_PAR1,
2466 		      *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2467 	SK_XM_WRITE_2(sc_if, XM_PAR2,
2468 		      *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2469 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2470 
2471 	if (ifp->if_flags & IFF_PROMISC)
2472 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2473 	else
2474 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2475 
2476 	if (ifp->if_flags & IFF_BROADCAST)
2477 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2478 	else
2479 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2480 
2481 	/* We don't need the FCS appended to the packet. */
2482 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2483 
2484 	/* We want short frames padded to 60 bytes. */
2485 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2486 
2487 	/*
2488 	 * Enable the reception of all error frames. This is is
2489 	 * a necessary evil due to the design of the XMAC. The
2490 	 * XMAC's receive FIFO is only 8K in size, however jumbo
2491 	 * frames can be up to 9000 bytes in length. When bad
2492 	 * frame filtering is enabled, the XMAC's RX FIFO operates
2493 	 * in 'store and forward' mode. For this to work, the
2494 	 * entire frame has to fit into the FIFO, but that means
2495 	 * that jumbo frames larger than 8192 bytes will be
2496 	 * truncated. Disabling all bad frame filtering causes
2497 	 * the RX FIFO to operate in streaming mode, in which
2498 	 * case the XMAC will start transfering frames out of the
2499 	 * RX FIFO as soon as the FIFO threshold is reached.
2500 	 */
2501 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2502 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2503 	    XM_MODE_RX_INRANGELEN);
2504 
2505 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2506 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2507 	else
2508 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2509 
2510 	/*
2511 	 * Bump up the transmit threshold. This helps hold off transmit
2512 	 * underruns when we're blasting traffic from both ports at once.
2513 	 */
2514 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2515 
2516 	/* Set multicast filter */
2517 	sk_setmulti(sc_if);
2518 
2519 	/* Clear and enable interrupts */
2520 	SK_XM_READ_2(sc_if, XM_ISR);
2521 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2522 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2523 	else
2524 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2525 
2526 	/* Configure MAC arbiter */
2527 	switch (sc_if->sk_xmac_rev) {
2528 	case XM_XMAC_REV_B2:
2529 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2530 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2531 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2532 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2533 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2534 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2535 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2536 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2537 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2538 		break;
2539 	case XM_XMAC_REV_C1:
2540 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2541 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2542 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2543 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2544 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2545 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2546 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2547 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2548 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2549 		break;
2550 	default:
2551 		break;
2552 	}
2553 	sk_win_write_2(sc, SK_MACARB_CTL,
2554 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2555 
2556 	sc_if->sk_link = 1;
2557 }
2558 
2559 void sk_init_yukon(struct sk_if_softc *sc_if)
2560 {
2561 	u_int32_t		/*mac, */phy;
2562 	u_int16_t		reg;
2563 	struct sk_softc		*sc;
2564 	int			i;
2565 
2566 	DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2567 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2568 
2569 	sc = sc_if->sk_softc;
2570 	if (sc->sk_type == SK_YUKON_LITE &&
2571 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2572 		/* Take PHY out of reset. */
2573 		sk_win_write_4(sc, SK_GPIO,
2574 			(sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2575 	}
2576 
2577 
2578 	/* GMAC and GPHY Reset */
2579 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2580 
2581 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
2582 
2583 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2584 	DELAY(1000);
2585 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2586 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2587 	DELAY(1000);
2588 
2589 
2590 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
2591 
2592 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2593 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2594 
2595 	switch (sc_if->sk_softc->sk_pmd) {
2596 	case IFM_1000_SX:
2597 	case IFM_1000_LX:
2598 		phy |= SK_GPHY_FIBER;
2599 		break;
2600 
2601 	case IFM_1000_CX:
2602 	case IFM_1000_T:
2603 		phy |= SK_GPHY_COPPER;
2604 		break;
2605 	}
2606 
2607 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2608 
2609 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2610 	DELAY(1000);
2611 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2612 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2613 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2614 
2615 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2616 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2617 
2618 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
2619 
2620 	/* unused read of the interrupt source register */
2621 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
2622 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2623 
2624 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2625 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2626 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2627 
2628 	/* MIB Counter Clear Mode set */
2629         reg |= YU_PAR_MIB_CLR;
2630 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2631 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2632 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2633 
2634 	/* MIB Counter Clear Mode clear */
2635 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
2636         reg &= ~YU_PAR_MIB_CLR;
2637 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2638 
2639 	/* receive control reg */
2640 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
2641 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2642 		      YU_RCR_CRCR);
2643 
2644 	/* transmit parameter register */
2645 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
2646 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2647 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2648 
2649 	/* serial mode register */
2650 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
2651 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2652 		      YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2653 		      YU_SMR_IPG_DATA(0x1e));
2654 
2655 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
2656 	/* Setup Yukon's address */
2657 	for (i = 0; i < 3; i++) {
2658 		/* Write Source Address 1 (unicast filter) */
2659 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2660 			      sc_if->sk_enaddr[i * 2] |
2661 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
2662 	}
2663 
2664 	for (i = 0; i < 3; i++) {
2665 		reg = sk_win_read_2(sc_if->sk_softc,
2666 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2667 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2668 	}
2669 
2670 	/* Set multicast filter */
2671 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
2672 	sk_setmulti(sc_if);
2673 
2674 	/* enable interrupt mask for counter overflows */
2675 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
2676 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2677 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2678 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2679 
2680 	/* Configure RX MAC FIFO */
2681 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2682 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2683 
2684 	/* Configure TX MAC FIFO */
2685 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2686 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2687 
2688 	DPRINTFN(6, ("sk_init_yukon: end\n"));
2689 }
2690 
2691 /*
2692  * Note that to properly initialize any part of the GEnesis chip,
2693  * you first have to take it out of reset mode.
2694  */
2695 int
2696 sk_init(struct ifnet *ifp)
2697 {
2698 	struct sk_if_softc	*sc_if = ifp->if_softc;
2699 	struct sk_softc		*sc = sc_if->sk_softc;
2700 	struct mii_data		*mii = &sc_if->sk_mii;
2701 	int			rc = 0, s;
2702 	u_int32_t		imr, imtimer_ticks;
2703 
2704 	DPRINTFN(1, ("sk_init\n"));
2705 
2706 	s = splnet();
2707 
2708 	if (ifp->if_flags & IFF_RUNNING) {
2709 		splx(s);
2710 		return 0;
2711 	}
2712 
2713 	/* Cancel pending I/O and free all RX/TX buffers. */
2714 	sk_stop(ifp,0);
2715 
2716 	if (sc->sk_type == SK_GENESIS) {
2717 		/* Configure LINK_SYNC LED */
2718 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2719 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2720 			      SK_LINKLED_LINKSYNC_ON);
2721 
2722 		/* Configure RX LED */
2723 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2724 			      SK_RXLEDCTL_COUNTER_START);
2725 
2726 		/* Configure TX LED */
2727 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2728 			      SK_TXLEDCTL_COUNTER_START);
2729 	}
2730 
2731 	/* Configure I2C registers */
2732 
2733 	/* Configure XMAC(s) */
2734 	switch (sc->sk_type) {
2735 	case SK_GENESIS:
2736 		sk_init_xmac(sc_if);
2737 		break;
2738 	case SK_YUKON:
2739 	case SK_YUKON_LITE:
2740 	case SK_YUKON_LP:
2741 		sk_init_yukon(sc_if);
2742 		break;
2743 	}
2744 	if ((rc = mii_mediachg(mii)) == ENXIO)
2745 		rc = 0;
2746 	else if (rc != 0)
2747 		goto out;
2748 
2749 	if (sc->sk_type == SK_GENESIS) {
2750 		/* Configure MAC FIFOs */
2751 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2752 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2753 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2754 
2755 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2756 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2757 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2758 	}
2759 
2760 	/* Configure transmit arbiter(s) */
2761 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2762 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2763 
2764 	/* Configure RAMbuffers */
2765 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2766 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2767 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2768 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2769 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2770 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2771 
2772 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2773 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2774 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2775 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2776 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2777 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2778 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2779 
2780 	/* Configure BMUs */
2781 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2782 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2783 	    SK_RX_RING_ADDR(sc_if, 0));
2784 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2785 
2786 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2787 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2788             SK_TX_RING_ADDR(sc_if, 0));
2789 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2790 
2791 	/* Init descriptors */
2792 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2793 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2794 		    "memory for rx buffers\n");
2795 		sk_stop(ifp,0);
2796 		splx(s);
2797 		return ENOBUFS;
2798 	}
2799 
2800 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2801 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2802 		    "memory for tx buffers\n");
2803 		sk_stop(ifp,0);
2804 		splx(s);
2805 		return ENOBUFS;
2806 	}
2807 
2808 	/* Set interrupt moderation if changed via sysctl. */
2809 	switch (sc->sk_type) {
2810 	case SK_GENESIS:
2811 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2812 		break;
2813 	case SK_YUKON_EC:
2814 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2815 		break;
2816 	default:
2817 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2818 	}
2819 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2820 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2821 		sk_win_write_4(sc, SK_IMTIMERINIT,
2822 		    SK_IM_USECS(sc->sk_int_mod));
2823 		aprint_verbose_dev(sc->sk_dev,
2824 		    "interrupt moderation is %d us\n", sc->sk_int_mod);
2825 	}
2826 
2827 	/* Configure interrupt handling */
2828 	CSR_READ_4(sc, SK_ISSR);
2829 	if (sc_if->sk_port == SK_PORT_A)
2830 		sc->sk_intrmask |= SK_INTRS1;
2831 	else
2832 		sc->sk_intrmask |= SK_INTRS2;
2833 
2834 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2835 
2836 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2837 
2838 	/* Start BMUs. */
2839 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2840 
2841 	if (sc->sk_type == SK_GENESIS) {
2842 		/* Enable XMACs TX and RX state machines */
2843 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2844 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2845 			       XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2846 	}
2847 
2848 	if (SK_YUKON_FAMILY(sc->sk_type)) {
2849 		u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2850 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2851 #if 0
2852 		/* XXX disable 100Mbps and full duplex mode? */
2853 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2854 #endif
2855 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2856 	}
2857 
2858 
2859 	ifp->if_flags |= IFF_RUNNING;
2860 	ifp->if_flags &= ~IFF_OACTIVE;
2861 
2862 out:
2863 	splx(s);
2864 	return rc;
2865 }
2866 
2867 void
2868 sk_stop(struct ifnet *ifp, int disable)
2869 {
2870         struct sk_if_softc	*sc_if = ifp->if_softc;
2871 	struct sk_softc		*sc = sc_if->sk_softc;
2872 	int			i;
2873 
2874 	DPRINTFN(1, ("sk_stop\n"));
2875 
2876 	callout_stop(&sc_if->sk_tick_ch);
2877 
2878 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2879 		u_int32_t		val;
2880 
2881 		/* Put PHY back into reset. */
2882 		val = sk_win_read_4(sc, SK_GPIO);
2883 		if (sc_if->sk_port == SK_PORT_A) {
2884 			val |= SK_GPIO_DIR0;
2885 			val &= ~SK_GPIO_DAT0;
2886 		} else {
2887 			val |= SK_GPIO_DIR2;
2888 			val &= ~SK_GPIO_DAT2;
2889 		}
2890 		sk_win_write_4(sc, SK_GPIO, val);
2891 	}
2892 
2893 	/* Turn off various components of this interface. */
2894 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2895 	switch (sc->sk_type) {
2896 	case SK_GENESIS:
2897 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2898 			      SK_TXMACCTL_XMAC_RESET);
2899 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2900 		break;
2901 	case SK_YUKON:
2902 	case SK_YUKON_LITE:
2903 	case SK_YUKON_LP:
2904 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2905 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2906 		break;
2907 	}
2908 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2909 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2910 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2911 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2912 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2913 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2914 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2915 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2916 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2917 
2918 	/* Disable interrupts */
2919 	if (sc_if->sk_port == SK_PORT_A)
2920 		sc->sk_intrmask &= ~SK_INTRS1;
2921 	else
2922 		sc->sk_intrmask &= ~SK_INTRS2;
2923 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2924 
2925 	SK_XM_READ_2(sc_if, XM_ISR);
2926 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2927 
2928 	/* Free RX and TX mbufs still in the queues. */
2929 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2930 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2931 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2932 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2933 		}
2934 	}
2935 
2936 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2937 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2938 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2939 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2940 		}
2941 	}
2942 
2943 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2944 }
2945 
2946 /* Power Management Framework */
2947 
2948 static bool
2949 skc_suspend(device_t dv, const pmf_qual_t *qual)
2950 {
2951 	struct sk_softc *sc = device_private(dv);
2952 
2953 	DPRINTFN(2, ("skc_suspend\n"));
2954 
2955 	/* Turn off the driver is loaded LED */
2956 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2957 
2958 	return true;
2959 }
2960 
2961 static bool
2962 skc_resume(device_t dv, const pmf_qual_t *qual)
2963 {
2964 	struct sk_softc *sc = device_private(dv);
2965 
2966 	DPRINTFN(2, ("skc_resume\n"));
2967 
2968 	sk_reset(sc);
2969 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
2970 
2971 	return true;
2972 }
2973 
2974 static bool
2975 sk_resume(device_t dv, const pmf_qual_t *qual)
2976 {
2977 	struct sk_if_softc *sc_if = device_private(dv);
2978 
2979 	sk_init_yukon(sc_if);
2980 	return true;
2981 }
2982 
2983 CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc),
2984     skc_probe, skc_attach, NULL, NULL);
2985 
2986 CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc),
2987     sk_probe, sk_attach, NULL, NULL);
2988 
2989 #ifdef SK_DEBUG
2990 void
2991 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2992 {
2993 #define DESC_PRINT(X)					\
2994 	if (X)					\
2995 		printf("txdesc[%d]." #X "=%#x\n",	\
2996 		       idx, X);
2997 
2998 	DESC_PRINT(le32toh(desc->sk_ctl));
2999 	DESC_PRINT(le32toh(desc->sk_next));
3000 	DESC_PRINT(le32toh(desc->sk_data_lo));
3001 	DESC_PRINT(le32toh(desc->sk_data_hi));
3002 	DESC_PRINT(le32toh(desc->sk_xmac_txstat));
3003 	DESC_PRINT(le16toh(desc->sk_rsvd0));
3004 	DESC_PRINT(le16toh(desc->sk_csum_startval));
3005 	DESC_PRINT(le16toh(desc->sk_csum_startpos));
3006 	DESC_PRINT(le16toh(desc->sk_csum_writepos));
3007 	DESC_PRINT(le16toh(desc->sk_rsvd1));
3008 #undef PRINT
3009 }
3010 
3011 void
3012 sk_dump_bytes(const char *data, int len)
3013 {
3014 	int c, i, j;
3015 
3016 	for (i = 0; i < len; i += 16) {
3017 		printf("%08x  ", i);
3018 		c = len - i;
3019 		if (c > 16) c = 16;
3020 
3021 		for (j = 0; j < c; j++) {
3022 			printf("%02x ", data[i + j] & 0xff);
3023 			if ((j & 0xf) == 7 && j > 0)
3024 				printf(" ");
3025 		}
3026 
3027 		for (; j < 16; j++)
3028 			printf("   ");
3029 		printf("  ");
3030 
3031 		for (j = 0; j < c; j++) {
3032 			int ch = data[i + j] & 0xff;
3033 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
3034 		}
3035 
3036 		printf("\n");
3037 
3038 		if (c < 16)
3039 			break;
3040 	}
3041 }
3042 
3043 void
3044 sk_dump_mbuf(struct mbuf *m)
3045 {
3046 	int count = m->m_pkthdr.len;
3047 
3048 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3049 
3050 	while (count > 0 && m) {
3051 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3052 		       m, m->m_data, m->m_len);
3053 		sk_dump_bytes(mtod(m, char *), m->m_len);
3054 
3055 		count -= m->m_len;
3056 		m = m->m_next;
3057 	}
3058 }
3059 #endif
3060 
3061 static int
3062 sk_sysctl_handler(SYSCTLFN_ARGS)
3063 {
3064 	int error, t;
3065 	struct sysctlnode node;
3066 	struct sk_softc *sc;
3067 
3068 	node = *rnode;
3069 	sc = node.sysctl_data;
3070 	t = sc->sk_int_mod;
3071 	node.sysctl_data = &t;
3072 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3073 	if (error || newp == NULL)
3074 		return error;
3075 
3076 	if (t < SK_IM_MIN || t > SK_IM_MAX)
3077 		return EINVAL;
3078 
3079 	/* update the softc with sysctl-changed value, and mark
3080 	   for hardware update */
3081 	sc->sk_int_mod = t;
3082 	sc->sk_int_mod_pending = 1;
3083 	return 0;
3084 }
3085 
3086 /*
3087  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3088  * set up in skc_attach()
3089  */
3090 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3091 {
3092 	int rc;
3093 	const struct sysctlnode *node;
3094 
3095 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3096 	    0, CTLTYPE_NODE, "hw", NULL,
3097 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3098 		goto err;
3099 	}
3100 
3101 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
3102 	    0, CTLTYPE_NODE, "sk",
3103 	    SYSCTL_DESCR("sk interface controls"),
3104 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3105 		goto err;
3106 	}
3107 
3108 	sk_root_num = node->sysctl_num;
3109 	return;
3110 
3111 err:
3112 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3113 }
3114