xref: /netbsd-src/sys/dev/pci/if_sk.c (revision b757af438b42b93f8c6571f026d8b8ef3eaf5fc9)
1 /*	$NetBSD: if_sk.c,v 1.70 2012/02/02 19:43:05 tls Exp $	*/
2 
3 /*-
4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*	$OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $	*/
30 
31 /*
32  * Copyright (c) 1997, 1998, 1999, 2000
33  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
34  *
35  * Redistribution and use in source and binary forms, with or without
36  * modification, are permitted provided that the following conditions
37  * are met:
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 3. All advertising materials mentioning features or use of this software
44  *    must display the following acknowledgement:
45  *	This product includes software developed by Bill Paul.
46  * 4. Neither the name of the author nor the names of any co-contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
54  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
60  * THE POSSIBILITY OF SUCH DAMAGE.
61  *
62  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
63  */
64 
65 /*
66  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
67  *
68  * Permission to use, copy, modify, and distribute this software for any
69  * purpose with or without fee is hereby granted, provided that the above
70  * copyright notice and this permission notice appear in all copies.
71  *
72  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
73  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
74  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
75  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
76  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
77  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
78  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
79  */
80 
81 /*
82  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
83  * the SK-984x series adapters, both single port and dual port.
84  * References:
85  * 	The XaQti XMAC II datasheet,
86  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
87  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
88  *
89  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
90  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
91  * convenience to others until Vitesse corrects this problem:
92  *
93  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94  *
95  * Written by Bill Paul <wpaul@ee.columbia.edu>
96  * Department of Electrical Engineering
97  * Columbia University, New York City
98  */
99 
100 /*
101  * The SysKonnect gigabit ethernet adapters consist of two main
102  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
103  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
104  * components and a PHY while the GEnesis controller provides a PCI
105  * interface with DMA support. Each card may have between 512K and
106  * 2MB of SRAM on board depending on the configuration.
107  *
108  * The SysKonnect GEnesis controller can have either one or two XMAC
109  * chips connected to it, allowing single or dual port NIC configurations.
110  * SysKonnect has the distinction of being the only vendor on the market
111  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
112  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
113  * XMAC registers. This driver takes advantage of these features to allow
114  * both XMACs to operate as independent interfaces.
115  */
116 
117 #include <sys/cdefs.h>
118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.70 2012/02/02 19:43:05 tls Exp $");
119 
120 #include <sys/param.h>
121 #include <sys/systm.h>
122 #include <sys/sockio.h>
123 #include <sys/mbuf.h>
124 #include <sys/malloc.h>
125 #include <sys/mutex.h>
126 #include <sys/kernel.h>
127 #include <sys/socket.h>
128 #include <sys/device.h>
129 #include <sys/queue.h>
130 #include <sys/callout.h>
131 #include <sys/sysctl.h>
132 #include <sys/endian.h>
133 
134 #include <net/if.h>
135 #include <net/if_dl.h>
136 #include <net/if_types.h>
137 
138 #include <net/if_media.h>
139 
140 #include <net/bpf.h>
141 #include <sys/rnd.h>
142 
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145 #include <dev/mii/brgphyreg.h>
146 
147 #include <dev/pci/pcireg.h>
148 #include <dev/pci/pcivar.h>
149 #include <dev/pci/pcidevs.h>
150 
151 /* #define SK_USEIOSPACE */
152 
153 #include <dev/pci/if_skreg.h>
154 #include <dev/pci/if_skvar.h>
155 
156 int skc_probe(device_t, cfdata_t, void *);
157 void skc_attach(device_t, device_t, void *aux);
158 int sk_probe(device_t, cfdata_t, void *);
159 void sk_attach(device_t, device_t, void *aux);
160 int skcprint(void *, const char *);
161 int sk_intr(void *);
162 void sk_intr_bcom(struct sk_if_softc *);
163 void sk_intr_xmac(struct sk_if_softc *);
164 void sk_intr_yukon(struct sk_if_softc *);
165 void sk_rxeof(struct sk_if_softc *);
166 void sk_txeof(struct sk_if_softc *);
167 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
168 void sk_start(struct ifnet *);
169 int sk_ioctl(struct ifnet *, u_long, void *);
170 int sk_init(struct ifnet *);
171 void sk_init_xmac(struct sk_if_softc *);
172 void sk_init_yukon(struct sk_if_softc *);
173 void sk_stop(struct ifnet *, int);
174 void sk_watchdog(struct ifnet *);
175 void sk_shutdown(void *);
176 int sk_ifmedia_upd(struct ifnet *);
177 void sk_reset(struct sk_softc *);
178 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
179 int sk_alloc_jumbo_mem(struct sk_if_softc *);
180 void sk_free_jumbo_mem(struct sk_if_softc *);
181 void *sk_jalloc(struct sk_if_softc *);
182 void sk_jfree(struct mbuf *, void *, size_t, void *);
183 int sk_init_rx_ring(struct sk_if_softc *);
184 int sk_init_tx_ring(struct sk_if_softc *);
185 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
186 void sk_vpd_read_res(struct sk_softc *,
187 					struct vpd_res *, int);
188 void sk_vpd_read(struct sk_softc *);
189 
190 void sk_update_int_mod(struct sk_softc *);
191 
192 int sk_xmac_miibus_readreg(device_t, int, int);
193 void sk_xmac_miibus_writereg(device_t, int, int, int);
194 void sk_xmac_miibus_statchg(device_t);
195 
196 int sk_marv_miibus_readreg(device_t, int, int);
197 void sk_marv_miibus_writereg(device_t, int, int, int);
198 void sk_marv_miibus_statchg(device_t);
199 
200 u_int32_t sk_xmac_hash(void *);
201 u_int32_t sk_yukon_hash(void *);
202 void sk_setfilt(struct sk_if_softc *, void *, int);
203 void sk_setmulti(struct sk_if_softc *);
204 void sk_tick(void *);
205 
206 static bool skc_suspend(device_t, const pmf_qual_t *);
207 static bool skc_resume(device_t, const pmf_qual_t *);
208 static bool sk_resume(device_t dv, const pmf_qual_t *);
209 
210 /* #define SK_DEBUG 2 */
211 #ifdef SK_DEBUG
212 #define DPRINTF(x)	if (skdebug) printf x
213 #define DPRINTFN(n,x)	if (skdebug >= (n)) printf x
214 int	skdebug = SK_DEBUG;
215 
216 void sk_dump_txdesc(struct sk_tx_desc *, int);
217 void sk_dump_mbuf(struct mbuf *);
218 void sk_dump_bytes(const char *, int);
219 #else
220 #define DPRINTF(x)
221 #define DPRINTFN(n,x)
222 #endif
223 
224 static int sk_sysctl_handler(SYSCTLFN_PROTO);
225 static int sk_root_num;
226 
227 /* supported device vendors */
228 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
229 static const struct sk_product {
230 	pci_vendor_id_t		sk_vendor;
231 	pci_product_id_t	sk_product;
232 } sk_products[] = {
233 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
234 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
235 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
236 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
237 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
238 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
239 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
240 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
241 	{ 0, 0, }
242 };
243 
244 #define SK_LINKSYS_EG1032_SUBID	0x00151737
245 
246 static inline u_int32_t
247 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
248 {
249 #ifdef SK_USEIOSPACE
250 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
251 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
252 #else
253 	return CSR_READ_4(sc, reg);
254 #endif
255 }
256 
257 static inline u_int16_t
258 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
259 {
260 #ifdef SK_USEIOSPACE
261 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
262 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
263 #else
264 	return CSR_READ_2(sc, reg);
265 #endif
266 }
267 
268 static inline u_int8_t
269 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
270 {
271 #ifdef SK_USEIOSPACE
272 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
273 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
274 #else
275 	return CSR_READ_1(sc, reg);
276 #endif
277 }
278 
279 static inline void
280 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
281 {
282 #ifdef SK_USEIOSPACE
283 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
284 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
285 #else
286 	CSR_WRITE_4(sc, reg, x);
287 #endif
288 }
289 
290 static inline void
291 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
292 {
293 #ifdef SK_USEIOSPACE
294 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
295 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
296 #else
297 	CSR_WRITE_2(sc, reg, x);
298 #endif
299 }
300 
301 static inline void
302 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
303 {
304 #ifdef SK_USEIOSPACE
305 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
306 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
307 #else
308 	CSR_WRITE_1(sc, reg, x);
309 #endif
310 }
311 
312 /*
313  * The VPD EEPROM contains Vital Product Data, as suggested in
314  * the PCI 2.1 specification. The VPD data is separared into areas
315  * denoted by resource IDs. The SysKonnect VPD contains an ID string
316  * resource (the name of the adapter), a read-only area resource
317  * containing various key/data fields and a read/write area which
318  * can be used to store asset management information or log messages.
319  * We read the ID string and read-only into buffers attached to
320  * the controller softc structure for later use. At the moment,
321  * we only use the ID string during sk_attach().
322  */
323 u_int8_t
324 sk_vpd_readbyte(struct sk_softc *sc, int addr)
325 {
326 	int			i;
327 
328 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
329 	for (i = 0; i < SK_TIMEOUT; i++) {
330 		DELAY(1);
331 		if (sk_win_read_2(sc,
332 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
333 			break;
334 	}
335 
336 	if (i == SK_TIMEOUT)
337 		return 0;
338 
339 	return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
340 }
341 
342 void
343 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
344 {
345 	int			i;
346 	u_int8_t		*ptr;
347 
348 	ptr = (u_int8_t *)res;
349 	for (i = 0; i < sizeof(struct vpd_res); i++)
350 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
351 }
352 
353 void
354 sk_vpd_read(struct sk_softc *sc)
355 {
356 	int			pos = 0, i;
357 	struct vpd_res		res;
358 
359 	if (sc->sk_vpd_prodname != NULL)
360 		free(sc->sk_vpd_prodname, M_DEVBUF);
361 	if (sc->sk_vpd_readonly != NULL)
362 		free(sc->sk_vpd_readonly, M_DEVBUF);
363 	sc->sk_vpd_prodname = NULL;
364 	sc->sk_vpd_readonly = NULL;
365 
366 	sk_vpd_read_res(sc, &res, pos);
367 
368 	if (res.vr_id != VPD_RES_ID) {
369 		aprint_error_dev(sc->sk_dev,
370 		    "bad VPD resource id: expected %x got %x\n",
371 		    VPD_RES_ID, res.vr_id);
372 		return;
373 	}
374 
375 	pos += sizeof(res);
376 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
377 	if (sc->sk_vpd_prodname == NULL)
378 		panic("sk_vpd_read");
379 	for (i = 0; i < res.vr_len; i++)
380 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
381 	sc->sk_vpd_prodname[i] = '\0';
382 	pos += i;
383 
384 	sk_vpd_read_res(sc, &res, pos);
385 
386 	if (res.vr_id != VPD_RES_READ) {
387 		aprint_error_dev(sc->sk_dev,
388 		    "bad VPD resource id: expected %x got %x\n",
389 		    VPD_RES_READ, res.vr_id);
390 		return;
391 	}
392 
393 	pos += sizeof(res);
394 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
395 	if (sc->sk_vpd_readonly == NULL)
396 		panic("sk_vpd_read");
397 	for (i = 0; i < res.vr_len ; i++)
398 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
399 }
400 
401 int
402 sk_xmac_miibus_readreg(device_t dev, int phy, int reg)
403 {
404 	struct sk_if_softc *sc_if = device_private(dev);
405 	int i;
406 
407 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
408 
409 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
410 		return 0;
411 
412 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
413 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
414 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
415 		for (i = 0; i < SK_TIMEOUT; i++) {
416 			DELAY(1);
417 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
418 			    XM_MMUCMD_PHYDATARDY)
419 				break;
420 		}
421 
422 		if (i == SK_TIMEOUT) {
423 			aprint_error_dev(sc_if->sk_dev,
424 			    "phy failed to come ready\n");
425 			return 0;
426 		}
427 	}
428 	DELAY(1);
429 	return SK_XM_READ_2(sc_if, XM_PHY_DATA);
430 }
431 
432 void
433 sk_xmac_miibus_writereg(device_t dev, int phy, int reg, int val)
434 {
435 	struct sk_if_softc *sc_if = device_private(dev);
436 	int i;
437 
438 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
439 
440 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
441 	for (i = 0; i < SK_TIMEOUT; i++) {
442 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
443 			break;
444 	}
445 
446 	if (i == SK_TIMEOUT) {
447 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
448 		return;
449 	}
450 
451 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
452 	for (i = 0; i < SK_TIMEOUT; i++) {
453 		DELAY(1);
454 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
455 			break;
456 	}
457 
458 	if (i == SK_TIMEOUT)
459 		aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
460 }
461 
462 void
463 sk_xmac_miibus_statchg(device_t dev)
464 {
465 	struct sk_if_softc *sc_if = device_private(dev);
466 	struct mii_data *mii = &sc_if->sk_mii;
467 
468 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
469 
470 	/*
471 	 * If this is a GMII PHY, manually set the XMAC's
472 	 * duplex mode accordingly.
473 	 */
474 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
475 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
476 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
477 		else
478 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
479 	}
480 }
481 
482 int
483 sk_marv_miibus_readreg(device_t dev, int phy, int reg)
484 {
485 	struct sk_if_softc *sc_if = device_private(dev);
486 	u_int16_t val;
487 	int i;
488 
489 	if (phy != 0 ||
490 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
491 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
492 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
493 			     phy, reg));
494 		return 0;
495 	}
496 
497         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
498 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
499 
500 	for (i = 0; i < SK_TIMEOUT; i++) {
501 		DELAY(1);
502 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
503 		if (val & YU_SMICR_READ_VALID)
504 			break;
505 	}
506 
507 	if (i == SK_TIMEOUT) {
508 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
509 		return 0;
510 	}
511 
512  	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
513 		     SK_TIMEOUT));
514 
515         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
516 
517 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
518 		     phy, reg, val));
519 
520 	return val;
521 }
522 
523 void
524 sk_marv_miibus_writereg(device_t dev, int phy, int reg, int val)
525 {
526 	struct sk_if_softc *sc_if = device_private(dev);
527 	int i;
528 
529 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
530 		     phy, reg, val));
531 
532 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
533 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
534 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
535 
536 	for (i = 0; i < SK_TIMEOUT; i++) {
537 		DELAY(1);
538 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
539 			break;
540 	}
541 
542 	if (i == SK_TIMEOUT)
543 		printf("%s: phy write timed out\n",
544 		    device_xname(sc_if->sk_dev));
545 }
546 
547 void
548 sk_marv_miibus_statchg(device_t dev)
549 {
550 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
551 		     SK_YU_READ_2(((struct sk_if_softc *)device_private(dev)),
552 		     YUKON_GPCR)));
553 }
554 
555 #define SK_HASH_BITS		6
556 
557 u_int32_t
558 sk_xmac_hash(void *addr)
559 {
560 	u_int32_t		crc;
561 
562 	crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
563 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
564 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
565 	return crc;
566 }
567 
568 u_int32_t
569 sk_yukon_hash(void *addr)
570 {
571 	u_int32_t		crc;
572 
573 	crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
574 	crc &= ((1 << SK_HASH_BITS) - 1);
575 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
576 	return crc;
577 }
578 
579 void
580 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
581 {
582 	char *addr = addrv;
583 	int base = XM_RXFILT_ENTRY(slot);
584 
585 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
586 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
587 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
588 }
589 
590 void
591 sk_setmulti(struct sk_if_softc *sc_if)
592 {
593 	struct sk_softc *sc = sc_if->sk_softc;
594 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
595 	u_int32_t hashes[2] = { 0, 0 };
596 	int h = 0, i;
597 	struct ethercom *ec = &sc_if->sk_ethercom;
598 	struct ether_multi *enm;
599 	struct ether_multistep step;
600 	u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
601 
602 	/* First, zot all the existing filters. */
603 	switch (sc->sk_type) {
604 	case SK_GENESIS:
605 		for (i = 1; i < XM_RXFILT_MAX; i++)
606 			sk_setfilt(sc_if, (void *)&dummy, i);
607 
608 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
609 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
610 		break;
611 	case SK_YUKON:
612 	case SK_YUKON_LITE:
613 	case SK_YUKON_LP:
614 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
615 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
616 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
617 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
618 		break;
619 	}
620 
621 	/* Now program new ones. */
622 allmulti:
623 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
624 		hashes[0] = 0xFFFFFFFF;
625 		hashes[1] = 0xFFFFFFFF;
626 	} else {
627 		i = 1;
628 		/* First find the tail of the list. */
629 		ETHER_FIRST_MULTI(step, ec, enm);
630 		while (enm != NULL) {
631 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
632 				 ETHER_ADDR_LEN)) {
633 				ifp->if_flags |= IFF_ALLMULTI;
634 				goto allmulti;
635 			}
636 			DPRINTFN(2,("multicast address %s\n",
637 	    			ether_sprintf(enm->enm_addrlo)));
638 			/*
639 			 * Program the first XM_RXFILT_MAX multicast groups
640 			 * into the perfect filter. For all others,
641 			 * use the hash table.
642 			 */
643 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
644 				sk_setfilt(sc_if, enm->enm_addrlo, i);
645 				i++;
646 			}
647 			else {
648 				switch (sc->sk_type) {
649 				case SK_GENESIS:
650 					h = sk_xmac_hash(enm->enm_addrlo);
651 					break;
652 				case SK_YUKON:
653 				case SK_YUKON_LITE:
654 				case SK_YUKON_LP:
655 					h = sk_yukon_hash(enm->enm_addrlo);
656 					break;
657 				}
658 				if (h < 32)
659 					hashes[0] |= (1 << h);
660 				else
661 					hashes[1] |= (1 << (h - 32));
662 			}
663 
664 			ETHER_NEXT_MULTI(step, enm);
665 		}
666 	}
667 
668 	switch (sc->sk_type) {
669 	case SK_GENESIS:
670 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
671 			       XM_MODE_RX_USE_PERFECT);
672 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
673 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
674 		break;
675 	case SK_YUKON:
676 	case SK_YUKON_LITE:
677 	case SK_YUKON_LP:
678 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
679 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
680 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
681 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
682 		break;
683 	}
684 }
685 
686 int
687 sk_init_rx_ring(struct sk_if_softc *sc_if)
688 {
689 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
690 	struct sk_ring_data	*rd = sc_if->sk_rdata;
691 	int			i;
692 
693 	memset((char *)rd->sk_rx_ring, 0,
694 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
695 
696 	for (i = 0; i < SK_RX_RING_CNT; i++) {
697 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
698 		if (i == (SK_RX_RING_CNT - 1)) {
699 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
700 			rd->sk_rx_ring[i].sk_next =
701 				htole32(SK_RX_RING_ADDR(sc_if, 0));
702 		} else {
703 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
704 			rd->sk_rx_ring[i].sk_next =
705 				htole32(SK_RX_RING_ADDR(sc_if,i+1));
706 		}
707 	}
708 
709 	for (i = 0; i < SK_RX_RING_CNT; i++) {
710 		if (sk_newbuf(sc_if, i, NULL,
711 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
712 			aprint_error_dev(sc_if->sk_dev,
713 			    "failed alloc of %dth mbuf\n", i);
714 			return ENOBUFS;
715 		}
716 	}
717 	sc_if->sk_cdata.sk_rx_prod = 0;
718 	sc_if->sk_cdata.sk_rx_cons = 0;
719 
720 	return 0;
721 }
722 
723 int
724 sk_init_tx_ring(struct sk_if_softc *sc_if)
725 {
726 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
727 	struct sk_ring_data	*rd = sc_if->sk_rdata;
728 	int			i;
729 
730 	memset(sc_if->sk_rdata->sk_tx_ring, 0,
731 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
732 
733 	for (i = 0; i < SK_TX_RING_CNT; i++) {
734 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
735 		if (i == (SK_TX_RING_CNT - 1)) {
736 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
737 			rd->sk_tx_ring[i].sk_next =
738 				htole32(SK_TX_RING_ADDR(sc_if, 0));
739 		} else {
740 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
741 			rd->sk_tx_ring[i].sk_next =
742 				htole32(SK_TX_RING_ADDR(sc_if,i+1));
743 		}
744 	}
745 
746 	sc_if->sk_cdata.sk_tx_prod = 0;
747 	sc_if->sk_cdata.sk_tx_cons = 0;
748 	sc_if->sk_cdata.sk_tx_cnt = 0;
749 
750 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
751 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
752 
753 	return 0;
754 }
755 
756 int
757 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
758 	  bus_dmamap_t dmamap)
759 {
760 	struct mbuf		*m_new = NULL;
761 	struct sk_chain		*c;
762 	struct sk_rx_desc	*r;
763 
764 	if (m == NULL) {
765 		void *buf = NULL;
766 
767 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
768 		if (m_new == NULL) {
769 			aprint_error_dev(sc_if->sk_dev,
770 			    "no memory for rx list -- packet dropped!\n");
771 			return ENOBUFS;
772 		}
773 
774 		/* Allocate the jumbo buffer */
775 		buf = sk_jalloc(sc_if);
776 		if (buf == NULL) {
777 			m_freem(m_new);
778 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
779 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
780 			return ENOBUFS;
781 		}
782 
783 		/* Attach the buffer to the mbuf */
784 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
785 		MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
786 
787 	} else {
788 		/*
789 	 	 * We're re-using a previously allocated mbuf;
790 		 * be sure to re-init pointers and lengths to
791 		 * default values.
792 		 */
793 		m_new = m;
794 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
795 		m_new->m_data = m_new->m_ext.ext_buf;
796 	}
797 	m_adj(m_new, ETHER_ALIGN);
798 
799 	c = &sc_if->sk_cdata.sk_rx_chain[i];
800 	r = c->sk_desc;
801 	c->sk_mbuf = m_new;
802 	r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
803 	    (((vaddr_t)m_new->m_data
804 		- (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
805 	r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
806 
807 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
808 
809 	return 0;
810 }
811 
812 /*
813  * Memory management for jumbo frames.
814  */
815 
816 int
817 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
818 {
819 	struct sk_softc		*sc = sc_if->sk_softc;
820 	char *ptr, *kva;
821 	bus_dma_segment_t	seg;
822 	int		i, rseg, state, error;
823 	struct sk_jpool_entry   *entry;
824 
825 	state = error = 0;
826 
827 	/* Grab a big chunk o' storage. */
828 	if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
829 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
830 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
831 		return ENOBUFS;
832 	}
833 
834 	state = 1;
835 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
836 			   BUS_DMA_NOWAIT)) {
837 		aprint_error_dev(sc->sk_dev,
838 		    "can't map dma buffers (%d bytes)\n",
839 		    SK_JMEM);
840 		error = ENOBUFS;
841 		goto out;
842 	}
843 
844 	state = 2;
845 	if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
846 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
847 		aprint_error_dev(sc->sk_dev, "can't create dma map\n");
848 		error = ENOBUFS;
849 		goto out;
850 	}
851 
852 	state = 3;
853 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
854 			    kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
855 		aprint_error_dev(sc->sk_dev, "can't load dma map\n");
856 		error = ENOBUFS;
857 		goto out;
858 	}
859 
860 	state = 4;
861 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
862 	DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
863 
864 	LIST_INIT(&sc_if->sk_jfree_listhead);
865 	LIST_INIT(&sc_if->sk_jinuse_listhead);
866 	mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
867 
868 	/*
869 	 * Now divide it up into 9K pieces and save the addresses
870 	 * in an array.
871 	 */
872 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
873 	for (i = 0; i < SK_JSLOTS; i++) {
874 		sc_if->sk_cdata.sk_jslots[i] = ptr;
875 		ptr += SK_JLEN;
876 		entry = malloc(sizeof(struct sk_jpool_entry),
877 		    M_DEVBUF, M_NOWAIT);
878 		if (entry == NULL) {
879 			aprint_error_dev(sc->sk_dev,
880 			    "no memory for jumbo buffer queue!\n");
881 			error = ENOBUFS;
882 			goto out;
883 		}
884 		entry->slot = i;
885 		if (i)
886 			LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
887 				 entry, jpool_entries);
888 		else
889 			LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
890 				 entry, jpool_entries);
891 	}
892 out:
893 	if (error != 0) {
894 		switch (state) {
895 		case 4:
896 			bus_dmamap_unload(sc->sc_dmatag,
897 			    sc_if->sk_cdata.sk_rx_jumbo_map);
898 		case 3:
899 			bus_dmamap_destroy(sc->sc_dmatag,
900 			    sc_if->sk_cdata.sk_rx_jumbo_map);
901 		case 2:
902 			bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
903 		case 1:
904 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
905 			break;
906 		default:
907 			break;
908 		}
909 	}
910 
911 	return error;
912 }
913 
914 /*
915  * Allocate a jumbo buffer.
916  */
917 void *
918 sk_jalloc(struct sk_if_softc *sc_if)
919 {
920 	struct sk_jpool_entry   *entry;
921 
922 	mutex_enter(&sc_if->sk_jpool_mtx);
923 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
924 
925 	if (entry == NULL) {
926 		mutex_exit(&sc_if->sk_jpool_mtx);
927 		return NULL;
928 	}
929 
930 	LIST_REMOVE(entry, jpool_entries);
931 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
932 	mutex_exit(&sc_if->sk_jpool_mtx);
933 	return sc_if->sk_cdata.sk_jslots[entry->slot];
934 }
935 
936 /*
937  * Release a jumbo buffer.
938  */
939 void
940 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
941 {
942 	struct sk_jpool_entry *entry;
943 	struct sk_if_softc *sc;
944 	int i;
945 
946 	/* Extract the softc struct pointer. */
947 	sc = (struct sk_if_softc *)arg;
948 
949 	if (sc == NULL)
950 		panic("sk_jfree: can't find softc pointer!");
951 
952 	/* calculate the slot this buffer belongs to */
953 
954 	i = ((vaddr_t)buf
955 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
956 
957 	if ((i < 0) || (i >= SK_JSLOTS))
958 		panic("sk_jfree: asked to free buffer that we don't manage!");
959 
960 	mutex_enter(&sc->sk_jpool_mtx);
961 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
962 	if (entry == NULL)
963 		panic("sk_jfree: buffer not in use!");
964 	entry->slot = i;
965 	LIST_REMOVE(entry, jpool_entries);
966 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
967 	mutex_exit(&sc->sk_jpool_mtx);
968 
969 	if (__predict_true(m != NULL))
970 		pool_cache_put(mb_cache, m);
971 }
972 
973 /*
974  * Set media options.
975  */
976 int
977 sk_ifmedia_upd(struct ifnet *ifp)
978 {
979 	struct sk_if_softc *sc_if = ifp->if_softc;
980 	int rc;
981 
982 	(void) sk_init(ifp);
983 	if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
984 		return 0;
985 	return rc;
986 }
987 
988 int
989 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
990 {
991 	struct sk_if_softc *sc_if = ifp->if_softc;
992 	struct sk_softc *sc = sc_if->sk_softc;
993 	int s, error = 0;
994 
995 	/* DPRINTFN(2, ("sk_ioctl\n")); */
996 
997 	s = splnet();
998 
999 	switch (command) {
1000 
1001 	case SIOCSIFFLAGS:
1002 	        DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1003 		if ((error = ifioctl_common(ifp, command, data)) != 0)
1004 			break;
1005 		if (ifp->if_flags & IFF_UP) {
1006 			if (ifp->if_flags & IFF_RUNNING &&
1007 			    ifp->if_flags & IFF_PROMISC &&
1008 			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
1009 				switch (sc->sk_type) {
1010 				case SK_GENESIS:
1011 					SK_XM_SETBIT_4(sc_if, XM_MODE,
1012 					    XM_MODE_RX_PROMISC);
1013 					break;
1014 				case SK_YUKON:
1015 				case SK_YUKON_LITE:
1016 				case SK_YUKON_LP:
1017 					SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1018 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
1019 					break;
1020 				}
1021 				sk_setmulti(sc_if);
1022 			} else if (ifp->if_flags & IFF_RUNNING &&
1023 			    !(ifp->if_flags & IFF_PROMISC) &&
1024 			    sc_if->sk_if_flags & IFF_PROMISC) {
1025 				switch (sc->sk_type) {
1026 				case SK_GENESIS:
1027 					SK_XM_CLRBIT_4(sc_if, XM_MODE,
1028 					    XM_MODE_RX_PROMISC);
1029 					break;
1030 				case SK_YUKON:
1031 				case SK_YUKON_LITE:
1032 				case SK_YUKON_LP:
1033 					SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1034 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
1035 					break;
1036 				}
1037 
1038 				sk_setmulti(sc_if);
1039 			} else
1040 				(void) sk_init(ifp);
1041 		} else {
1042 			if (ifp->if_flags & IFF_RUNNING)
1043 				sk_stop(ifp,0);
1044 		}
1045 		sc_if->sk_if_flags = ifp->if_flags;
1046 		error = 0;
1047 		break;
1048 
1049 	default:
1050 	        DPRINTFN(2, ("sk_ioctl ETHER\n"));
1051 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1052 			break;
1053 
1054 		error = 0;
1055 
1056 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1057 			;
1058 		else if (ifp->if_flags & IFF_RUNNING) {
1059 			sk_setmulti(sc_if);
1060 			DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1061 		}
1062 		break;
1063 	}
1064 
1065 	splx(s);
1066 	return error;
1067 }
1068 
1069 void
1070 sk_update_int_mod(struct sk_softc *sc)
1071 {
1072 	u_int32_t imtimer_ticks;
1073 
1074 	/*
1075          * Configure interrupt moderation. The moderation timer
1076 	 * defers interrupts specified in the interrupt moderation
1077 	 * timer mask based on the timeout specified in the interrupt
1078 	 * moderation timer init register. Each bit in the timer
1079 	 * register represents one tick, so to specify a timeout in
1080 	 * microseconds, we have to multiply by the correct number of
1081 	 * ticks-per-microsecond.
1082 	 */
1083 	switch (sc->sk_type) {
1084 	case SK_GENESIS:
1085 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1086 		break;
1087 	case SK_YUKON_EC:
1088 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1089 		break;
1090 	default:
1091 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1092 	}
1093 	aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n",
1094 	    sc->sk_int_mod);
1095         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1096         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1097 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1098         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1099 	sc->sk_int_mod_pending = 0;
1100 }
1101 
1102 /*
1103  * Lookup: Check the PCI vendor and device, and return a pointer to
1104  * The structure if the IDs match against our list.
1105  */
1106 
1107 static const struct sk_product *
1108 sk_lookup(const struct pci_attach_args *pa)
1109 {
1110 	const struct sk_product *psk;
1111 
1112 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1113 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1114 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1115 			return psk;
1116 	}
1117 	return NULL;
1118 }
1119 
1120 /*
1121  * Probe for a SysKonnect GEnesis chip.
1122  */
1123 
1124 int
1125 skc_probe(device_t parent, cfdata_t match, void *aux)
1126 {
1127 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1128 	const struct sk_product *psk;
1129 	pcireg_t subid;
1130 
1131 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1132 
1133 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
1134 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1135 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1136 	    subid == SK_LINKSYS_EG1032_SUBID)
1137 		return 1;
1138 
1139 	if ((psk = sk_lookup(pa))) {
1140 		return 1;
1141 	}
1142 	return 0;
1143 }
1144 
1145 /*
1146  * Force the GEnesis into reset, then bring it out of reset.
1147  */
1148 void sk_reset(struct sk_softc *sc)
1149 {
1150 	DPRINTFN(2, ("sk_reset\n"));
1151 
1152 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1153 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1154 	if (SK_YUKON_FAMILY(sc->sk_type))
1155 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1156 
1157 	DELAY(1000);
1158 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1159 	DELAY(2);
1160 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1161 	if (SK_YUKON_FAMILY(sc->sk_type))
1162 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1163 
1164 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1165 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1166 		     CSR_READ_2(sc, SK_LINK_CTRL)));
1167 
1168 	if (sc->sk_type == SK_GENESIS) {
1169 		/* Configure packet arbiter */
1170 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1171 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1172 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1173 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1174 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1175 	}
1176 
1177 	/* Enable RAM interface */
1178 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1179 
1180 	sk_update_int_mod(sc);
1181 }
1182 
1183 int
1184 sk_probe(device_t parent, cfdata_t match, void *aux)
1185 {
1186 	struct skc_attach_args *sa = aux;
1187 
1188 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1189 		return 0;
1190 
1191 	return 1;
1192 }
1193 
1194 /*
1195  * Each XMAC chip is attached as a separate logical IP interface.
1196  * Single port cards will have only one logical interface of course.
1197  */
1198 void
1199 sk_attach(device_t parent, device_t self, void *aux)
1200 {
1201 	struct sk_if_softc *sc_if = device_private(self);
1202 	struct sk_softc *sc = device_private(parent);
1203 	struct skc_attach_args *sa = aux;
1204 	struct sk_txmap_entry	*entry;
1205 	struct ifnet *ifp;
1206 	bus_dma_segment_t seg;
1207 	bus_dmamap_t dmamap;
1208 	prop_data_t data;
1209 	void *kva;
1210 	int i, rseg;
1211 	int mii_flags = 0;
1212 
1213 	aprint_naive("\n");
1214 
1215 	sc_if->sk_dev = self;
1216 	sc_if->sk_port = sa->skc_port;
1217 	sc_if->sk_softc = sc;
1218 	sc->sk_if[sa->skc_port] = sc_if;
1219 
1220 	if (sa->skc_port == SK_PORT_A)
1221 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1222 	if (sa->skc_port == SK_PORT_B)
1223 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1224 
1225 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1226 
1227 	/*
1228 	 * Get station address for this interface. Note that
1229 	 * dual port cards actually come with three station
1230 	 * addresses: one for each port, plus an extra. The
1231 	 * extra one is used by the SysKonnect driver software
1232 	 * as a 'virtual' station address for when both ports
1233 	 * are operating in failover mode. Currently we don't
1234 	 * use this extra address.
1235 	 */
1236 	data = prop_dictionary_get(device_properties(self), "mac-address");
1237 	if (data != NULL) {
1238 		/*
1239 		 * Try to get the station address from device properties
1240 		 * first, in case the ROM is missing.
1241 		 */
1242 		KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
1243 		KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
1244 		memcpy(sc_if->sk_enaddr, prop_data_data_nocopy(data),
1245 		    ETHER_ADDR_LEN);
1246 	} else
1247 		for (i = 0; i < ETHER_ADDR_LEN; i++)
1248 			sc_if->sk_enaddr[i] = sk_win_read_1(sc,
1249 			    SK_MAC0_0 + (sa->skc_port * 8) + i);
1250 
1251 	aprint_normal(": Ethernet address %s\n",
1252 	    ether_sprintf(sc_if->sk_enaddr));
1253 
1254 	/*
1255 	 * Set up RAM buffer addresses. The NIC will have a certain
1256 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1257 	 * need to divide this up a) between the transmitter and
1258  	 * receiver and b) between the two XMACs, if this is a
1259 	 * dual port NIC. Our algorithm is to divide up the memory
1260 	 * evenly so that everyone gets a fair share.
1261 	 */
1262 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1263 		u_int32_t		chunk, val;
1264 
1265 		chunk = sc->sk_ramsize / 2;
1266 		val = sc->sk_rboff / sizeof(u_int64_t);
1267 		sc_if->sk_rx_ramstart = val;
1268 		val += (chunk / sizeof(u_int64_t));
1269 		sc_if->sk_rx_ramend = val - 1;
1270 		sc_if->sk_tx_ramstart = val;
1271 		val += (chunk / sizeof(u_int64_t));
1272 		sc_if->sk_tx_ramend = val - 1;
1273 	} else {
1274 		u_int32_t		chunk, val;
1275 
1276 		chunk = sc->sk_ramsize / 4;
1277 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1278 		    sizeof(u_int64_t);
1279 		sc_if->sk_rx_ramstart = val;
1280 		val += (chunk / sizeof(u_int64_t));
1281 		sc_if->sk_rx_ramend = val - 1;
1282 		sc_if->sk_tx_ramstart = val;
1283 		val += (chunk / sizeof(u_int64_t));
1284 		sc_if->sk_tx_ramend = val - 1;
1285 	}
1286 
1287 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1288 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
1289 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1290 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1291 
1292 	/* Read and save PHY type and set PHY address */
1293 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1294 	switch (sc_if->sk_phytype) {
1295 	case SK_PHYTYPE_XMAC:
1296 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1297 		break;
1298 	case SK_PHYTYPE_BCOM:
1299 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1300 		break;
1301 	case SK_PHYTYPE_MARV_COPPER:
1302 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1303 		break;
1304 	default:
1305 		aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n",
1306 		    sc_if->sk_phytype);
1307 		return;
1308 	}
1309 
1310 	/* Allocate the descriptor queues. */
1311 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1312 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1313 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
1314 		goto fail;
1315 	}
1316 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1317 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1318 		aprint_error_dev(sc_if->sk_dev,
1319 		    "can't map dma buffers (%lu bytes)\n",
1320 		    (u_long) sizeof(struct sk_ring_data));
1321 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1322 		goto fail;
1323 	}
1324 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1325 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1326             &sc_if->sk_ring_map)) {
1327 		aprint_error_dev(sc_if->sk_dev, "can't create dma map\n");
1328 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1329 		    sizeof(struct sk_ring_data));
1330 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1331 		goto fail;
1332 	}
1333 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1334 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1335 		aprint_error_dev(sc_if->sk_dev, "can't load dma map\n");
1336 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1337 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1338 		    sizeof(struct sk_ring_data));
1339 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1340 		goto fail;
1341 	}
1342 
1343 	for (i = 0; i < SK_RX_RING_CNT; i++)
1344 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1345 
1346 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1347 	for (i = 0; i < SK_TX_RING_CNT; i++) {
1348 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1349 
1350 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1351 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1352 			aprint_error_dev(sc_if->sk_dev,
1353 			    "Can't create TX dmamap\n");
1354 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1355 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1356 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1357 			    sizeof(struct sk_ring_data));
1358 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1359 			goto fail;
1360 		}
1361 
1362 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1363 		if (!entry) {
1364 			aprint_error_dev(sc_if->sk_dev,
1365 			    "Can't alloc txmap entry\n");
1366 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1367 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1368 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1369 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1370 			    sizeof(struct sk_ring_data));
1371 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1372 			goto fail;
1373 		}
1374 		entry->dmamap = dmamap;
1375 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1376 	}
1377 
1378         sc_if->sk_rdata = (struct sk_ring_data *)kva;
1379 	memset(sc_if->sk_rdata, 0, sizeof(struct sk_ring_data));
1380 
1381 	ifp = &sc_if->sk_ethercom.ec_if;
1382 	/* Try to allocate memory for jumbo buffers. */
1383 	if (sk_alloc_jumbo_mem(sc_if)) {
1384 		aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1385 		goto fail;
1386 	}
1387 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1388 		| ETHERCAP_JUMBO_MTU;
1389 
1390 	ifp->if_softc = sc_if;
1391 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1392 	ifp->if_ioctl = sk_ioctl;
1393 	ifp->if_start = sk_start;
1394 	ifp->if_stop = sk_stop;
1395 	ifp->if_init = sk_init;
1396 	ifp->if_watchdog = sk_watchdog;
1397 	ifp->if_capabilities = 0;
1398 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1399 	IFQ_SET_READY(&ifp->if_snd);
1400 	strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1401 
1402 	/*
1403 	 * Do miibus setup.
1404 	 */
1405 	switch (sc->sk_type) {
1406 	case SK_GENESIS:
1407 		sk_init_xmac(sc_if);
1408 		break;
1409 	case SK_YUKON:
1410 	case SK_YUKON_LITE:
1411 	case SK_YUKON_LP:
1412 		sk_init_yukon(sc_if);
1413 		break;
1414 	default:
1415 		aprint_error_dev(sc->sk_dev, "unknown device type %d\n",
1416 			sc->sk_type);
1417 		goto fail;
1418 	}
1419 
1420  	DPRINTFN(2, ("sk_attach: 1\n"));
1421 
1422 	sc_if->sk_mii.mii_ifp = ifp;
1423 	switch (sc->sk_type) {
1424 	case SK_GENESIS:
1425 		sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1426 		sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1427 		sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1428 		break;
1429 	case SK_YUKON:
1430 	case SK_YUKON_LITE:
1431 	case SK_YUKON_LP:
1432 		sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1433 		sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1434 		sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1435 		mii_flags = MIIF_DOPAUSE;
1436 		break;
1437 	}
1438 
1439 	sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1440 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1441 	    sk_ifmedia_upd, ether_mediastatus);
1442 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1443 	    MII_OFFSET_ANY, mii_flags);
1444 	if (LIST_EMPTY(&sc_if->sk_mii.mii_phys)) {
1445 		aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1446 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1447 			    0, NULL);
1448 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1449 	} else
1450 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1451 
1452 	callout_init(&sc_if->sk_tick_ch, 0);
1453 	callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1454 
1455 	DPRINTFN(2, ("sk_attach: 1\n"));
1456 
1457 	/*
1458 	 * Call MI attach routines.
1459 	 */
1460 	if_attach(ifp);
1461 
1462 	ether_ifattach(ifp, sc_if->sk_enaddr);
1463 
1464         rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1465             RND_TYPE_NET, 0);
1466 
1467 	if (pmf_device_register(self, NULL, sk_resume))
1468 		pmf_class_network_register(self, ifp);
1469 	else
1470 		aprint_error_dev(self, "couldn't establish power handler\n");
1471 
1472 	DPRINTFN(2, ("sk_attach: end\n"));
1473 
1474 	return;
1475 
1476 fail:
1477 	sc->sk_if[sa->skc_port] = NULL;
1478 }
1479 
1480 int
1481 skcprint(void *aux, const char *pnp)
1482 {
1483 	struct skc_attach_args *sa = aux;
1484 
1485 	if (pnp)
1486 		aprint_normal("sk port %c at %s",
1487 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1488 	else
1489 		aprint_normal(" port %c",
1490 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1491 	return UNCONF;
1492 }
1493 
1494 /*
1495  * Attach the interface. Allocate softc structures, do ifmedia
1496  * setup and ethernet/BPF attach.
1497  */
1498 void
1499 skc_attach(device_t parent, device_t self, void *aux)
1500 {
1501 	struct sk_softc *sc = device_private(self);
1502 	struct pci_attach_args *pa = aux;
1503 	struct skc_attach_args skca;
1504 	pci_chipset_tag_t pc = pa->pa_pc;
1505 #ifndef SK_USEIOSPACE
1506 	pcireg_t memtype;
1507 #endif
1508 	pci_intr_handle_t ih;
1509 	const char *intrstr = NULL;
1510 	bus_addr_t iobase;
1511 	bus_size_t iosize;
1512 	int rc, sk_nodenum;
1513 	u_int32_t command;
1514 	const char *revstr;
1515 	const struct sysctlnode *node;
1516 
1517 	sc->sk_dev = self;
1518 	aprint_naive("\n");
1519 
1520 	DPRINTFN(2, ("begin skc_attach\n"));
1521 
1522 	/*
1523 	 * Handle power management nonsense.
1524 	 */
1525 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1526 
1527 	if (command == 0x01) {
1528 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1529 		if (command & SK_PSTATE_MASK) {
1530 			u_int32_t		xiobase, membase, irq;
1531 
1532 			/* Save important PCI config data. */
1533 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1534 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1535 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1536 
1537 			/* Reset the power state. */
1538 			aprint_normal_dev(sc->sk_dev,
1539 			    "chip is in D%d power mode -- setting to D0\n",
1540 			    command & SK_PSTATE_MASK);
1541 			command &= 0xFFFFFFFC;
1542 			pci_conf_write(pc, pa->pa_tag,
1543 			    SK_PCI_PWRMGMTCTRL, command);
1544 
1545 			/* Restore PCI config data. */
1546 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1547 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1548 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1549 		}
1550 	}
1551 
1552 	/*
1553 	 * The firmware might have configured the interface to revert the
1554 	 * byte order in all descriptors. Make that undone.
1555 	 */
1556 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_OURREG2);
1557 	if (command & SK_REG2_REV_DESC)
1558 		pci_conf_write(pc, pa->pa_tag, SK_PCI_OURREG2,
1559 		    command & ~SK_REG2_REV_DESC);
1560 
1561 	/*
1562 	 * Map control/status registers.
1563 	 */
1564 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1565 	command |= PCI_COMMAND_IO_ENABLE |
1566 	    PCI_COMMAND_MEM_ENABLE |
1567 	    PCI_COMMAND_MASTER_ENABLE;
1568 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1569 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1570 
1571 #ifdef SK_USEIOSPACE
1572 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
1573 		aprint_error(": failed to enable I/O ports!\n");
1574 		return;
1575 	}
1576 	/*
1577 	 * Map control/status registers.
1578 	 */
1579 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1580 			&sc->sk_btag, &sc->sk_bhandle,
1581 			&iobase, &iosize)) {
1582 		aprint_error(": can't find i/o space\n");
1583 		return;
1584 	}
1585 #else
1586 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1587 		aprint_error(": failed to enable memory mapping!\n");
1588 		return;
1589 	}
1590 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1591 	switch (memtype) {
1592         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1593         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1594                 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1595 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1596 				   &iobase, &iosize) == 0)
1597                         break;
1598         default:
1599                 aprint_error_dev(sc->sk_dev, "can't find mem space\n");
1600                 return;
1601 	}
1602 
1603 	DPRINTFN(2, ("skc_attach: iobase=%#" PRIxPADDR ", iosize=%zx\n",
1604 	    iobase, iosize));
1605 #endif
1606 	sc->sc_dmatag = pa->pa_dmat;
1607 
1608 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1609 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1610 
1611 	/* bail out here if chip is not recognized */
1612 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1613 		aprint_error_dev(sc->sk_dev, "unknown chip type\n");
1614 		goto fail;
1615 	}
1616 	if (SK_IS_YUKON2(sc)) {
1617 		aprint_error_dev(sc->sk_dev,
1618 		    "Does not support Yukon2--try msk(4).\n");
1619 		goto fail;
1620 	}
1621 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1622 
1623 	/* Allocate interrupt */
1624 	if (pci_intr_map(pa, &ih)) {
1625 		aprint_error(": couldn't map interrupt\n");
1626 		goto fail;
1627 	}
1628 
1629 	intrstr = pci_intr_string(pc, ih);
1630 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1631 	if (sc->sk_intrhand == NULL) {
1632 		aprint_error(": couldn't establish interrupt");
1633 		if (intrstr != NULL)
1634 			aprint_error(" at %s", intrstr);
1635 		aprint_error("\n");
1636 		goto fail;
1637 	}
1638 	aprint_normal(": %s\n", intrstr);
1639 
1640 	/* Reset the adapter. */
1641 	sk_reset(sc);
1642 
1643 	/* Read and save vital product data from EEPROM. */
1644 	sk_vpd_read(sc);
1645 
1646 	if (sc->sk_type == SK_GENESIS) {
1647 		u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1648 		/* Read and save RAM size and RAMbuffer offset */
1649 		switch (val) {
1650 		case SK_RAMSIZE_512K_64:
1651 			sc->sk_ramsize = 0x80000;
1652 			sc->sk_rboff = SK_RBOFF_0;
1653 			break;
1654 		case SK_RAMSIZE_1024K_64:
1655 			sc->sk_ramsize = 0x100000;
1656 			sc->sk_rboff = SK_RBOFF_80000;
1657 			break;
1658 		case SK_RAMSIZE_1024K_128:
1659 			sc->sk_ramsize = 0x100000;
1660 			sc->sk_rboff = SK_RBOFF_0;
1661 			break;
1662 		case SK_RAMSIZE_2048K_128:
1663 			sc->sk_ramsize = 0x200000;
1664 			sc->sk_rboff = SK_RBOFF_0;
1665 			break;
1666 		default:
1667 			aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n",
1668 			       val);
1669 			goto fail_1;
1670 			break;
1671 		}
1672 
1673 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1674 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
1675 			     sc->sk_rboff));
1676 	} else {
1677 	  	u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1678 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
1679 		sc->sk_rboff = SK_RBOFF_0;
1680 
1681 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1682 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
1683 			     sc->sk_rboff));
1684 	}
1685 
1686 	/* Read and save physical media type */
1687 	switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1688 	case SK_PMD_1000BASESX:
1689 		sc->sk_pmd = IFM_1000_SX;
1690 		break;
1691 	case SK_PMD_1000BASELX:
1692 		sc->sk_pmd = IFM_1000_LX;
1693 		break;
1694 	case SK_PMD_1000BASECX:
1695 		sc->sk_pmd = IFM_1000_CX;
1696 		break;
1697 	case SK_PMD_1000BASETX:
1698 	case SK_PMD_1000BASETX_ALT:
1699 		sc->sk_pmd = IFM_1000_T;
1700 		break;
1701 	default:
1702 		aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n",
1703 		    sk_win_read_1(sc, SK_PMDTYPE));
1704 		goto fail_1;
1705 	}
1706 
1707 	/* determine whether to name it with vpd or just make it up */
1708 	/* Marvell Yukon VPD's can freqently be bogus */
1709 
1710 	switch (pa->pa_id) {
1711 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1712 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1713 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1714 	case PCI_PRODUCT_3COM_3C940:
1715 	case PCI_PRODUCT_DLINK_DGE530T:
1716 	case PCI_PRODUCT_DLINK_DGE560T:
1717 	case PCI_PRODUCT_DLINK_DGE560T_2:
1718 	case PCI_PRODUCT_LINKSYS_EG1032:
1719 	case PCI_PRODUCT_LINKSYS_EG1064:
1720 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1721 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1722 	case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1723 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1724 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
1725 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
1726 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1727 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1728  		sc->sk_name = sc->sk_vpd_prodname;
1729  		break;
1730 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
1731 	/* whoops yukon vpd prodname bears no resemblance to reality */
1732 		switch (sc->sk_type) {
1733 		case SK_GENESIS:
1734 			sc->sk_name = sc->sk_vpd_prodname;
1735 			break;
1736 		case SK_YUKON:
1737 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1738 			break;
1739 		case SK_YUKON_LITE:
1740 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1741 			break;
1742 		case SK_YUKON_LP:
1743 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1744 			break;
1745 		default:
1746 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1747 		}
1748 
1749 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1750 
1751 		if ( sc->sk_type == SK_YUKON ) {
1752 			uint32_t flashaddr;
1753 			uint8_t testbyte;
1754 
1755 			flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1756 
1757 			/* test Flash-Address Register */
1758 			sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1759 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1760 
1761 			if (testbyte != 0) {
1762 				/* this is yukon lite Rev. A0 */
1763 				sc->sk_type = SK_YUKON_LITE;
1764 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
1765 				/* restore Flash-Address Register */
1766 				sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1767 			}
1768 		}
1769 		break;
1770 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
1771 		sc->sk_name = sc->sk_vpd_prodname;
1772 		break;
1773  	default:
1774 		sc->sk_name = "Unknown Marvell";
1775 	}
1776 
1777 
1778 	if ( sc->sk_type == SK_YUKON_LITE ) {
1779 		switch (sc->sk_rev) {
1780 		case SK_YUKON_LITE_REV_A0:
1781 			revstr = "A0";
1782 			break;
1783 		case SK_YUKON_LITE_REV_A1:
1784 			revstr = "A1";
1785 			break;
1786 		case SK_YUKON_LITE_REV_A3:
1787 			revstr = "A3";
1788 			break;
1789 		default:
1790 			revstr = "";
1791 		}
1792 	} else {
1793 		revstr = "";
1794 	}
1795 
1796 	/* Announce the product name. */
1797 	aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n",
1798 			      sc->sk_name, revstr, sc->sk_rev);
1799 
1800 	skca.skc_port = SK_PORT_A;
1801 	(void)config_found(sc->sk_dev, &skca, skcprint);
1802 
1803 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1804 		skca.skc_port = SK_PORT_B;
1805 		(void)config_found(sc->sk_dev, &skca, skcprint);
1806 	}
1807 
1808 	/* Turn on the 'driver is loaded' LED. */
1809 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1810 
1811 	/* skc sysctl setup */
1812 
1813 	sc->sk_int_mod = SK_IM_DEFAULT;
1814 	sc->sk_int_mod_pending = 0;
1815 
1816 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1817 	    0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1818 	    SYSCTL_DESCR("skc per-controller controls"),
1819 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1820 	    CTL_EOL)) != 0) {
1821 		aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1822 		goto fail_1;
1823 	}
1824 
1825 	sk_nodenum = node->sysctl_num;
1826 
1827 	/* interrupt moderation time in usecs */
1828 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1829 	    CTLFLAG_READWRITE,
1830 	    CTLTYPE_INT, "int_mod",
1831 	    SYSCTL_DESCR("sk interrupt moderation timer"),
1832 	    sk_sysctl_handler, 0, sc,
1833 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1834 	    CTL_EOL)) != 0) {
1835 		aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
1836 		goto fail_1;
1837 	}
1838 
1839 	if (!pmf_device_register(self, skc_suspend, skc_resume))
1840 		aprint_error_dev(self, "couldn't establish power handler\n");
1841 
1842 	return;
1843 
1844 fail_1:
1845 	pci_intr_disestablish(pc, sc->sk_intrhand);
1846 fail:
1847 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1848 }
1849 
1850 int
1851 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1852 {
1853 	struct sk_softc		*sc = sc_if->sk_softc;
1854 	struct sk_tx_desc	*f = NULL;
1855 	u_int32_t		frag, cur, cnt = 0, sk_ctl;
1856 	int			i;
1857 	struct sk_txmap_entry	*entry;
1858 	bus_dmamap_t		txmap;
1859 
1860 	DPRINTFN(3, ("sk_encap\n"));
1861 
1862 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1863 	if (entry == NULL) {
1864 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
1865 		return ENOBUFS;
1866 	}
1867 	txmap = entry->dmamap;
1868 
1869 	cur = frag = *txidx;
1870 
1871 #ifdef SK_DEBUG
1872 	if (skdebug >= 3)
1873 		sk_dump_mbuf(m_head);
1874 #endif
1875 
1876 	/*
1877 	 * Start packing the mbufs in this chain into
1878 	 * the fragment pointers. Stop when we run out
1879 	 * of fragments or hit the end of the mbuf chain.
1880 	 */
1881 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1882 	    BUS_DMA_NOWAIT)) {
1883 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1884 		return ENOBUFS;
1885 	}
1886 
1887 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1888 
1889 	/* Sync the DMA map. */
1890 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1891 	    BUS_DMASYNC_PREWRITE);
1892 
1893 	for (i = 0; i < txmap->dm_nsegs; i++) {
1894 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1895 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1896 			return ENOBUFS;
1897 		}
1898 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
1899 		f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1900 		sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1901 		if (cnt == 0)
1902 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
1903 		else
1904 			sk_ctl |= SK_TXCTL_OWN;
1905 		f->sk_ctl = htole32(sk_ctl);
1906 		cur = frag;
1907 		SK_INC(frag, SK_TX_RING_CNT);
1908 		cnt++;
1909 	}
1910 
1911 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1912 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1913 
1914 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
1915 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1916 		htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1917 
1918 	/* Sync descriptors before handing to chip */
1919 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1920 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1921 
1922 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1923 		htole32(SK_TXCTL_OWN);
1924 
1925 	/* Sync first descriptor to hand it off */
1926 	SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1927 
1928 	sc_if->sk_cdata.sk_tx_cnt += cnt;
1929 
1930 #ifdef SK_DEBUG
1931 	if (skdebug >= 3) {
1932 		struct sk_tx_desc *desc;
1933 		u_int32_t idx;
1934 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1935 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1936 			sk_dump_txdesc(desc, idx);
1937 		}
1938 	}
1939 #endif
1940 
1941 	*txidx = frag;
1942 
1943 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
1944 
1945 	return 0;
1946 }
1947 
1948 void
1949 sk_start(struct ifnet *ifp)
1950 {
1951         struct sk_if_softc	*sc_if = ifp->if_softc;
1952         struct sk_softc		*sc = sc_if->sk_softc;
1953         struct mbuf		*m_head = NULL;
1954         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
1955 	int			pkts = 0;
1956 
1957 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1958 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1959 
1960 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1961 		IFQ_POLL(&ifp->if_snd, m_head);
1962 		if (m_head == NULL)
1963 			break;
1964 
1965 		/*
1966 		 * Pack the data into the transmit ring. If we
1967 		 * don't have room, set the OACTIVE flag and wait
1968 		 * for the NIC to drain the ring.
1969 		 */
1970 		if (sk_encap(sc_if, m_head, &idx)) {
1971 			ifp->if_flags |= IFF_OACTIVE;
1972 			break;
1973 		}
1974 
1975 		/* now we are committed to transmit the packet */
1976 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1977 		pkts++;
1978 
1979 		/*
1980 		 * If there's a BPF listener, bounce a copy of this frame
1981 		 * to him.
1982 		 */
1983 		bpf_mtap(ifp, m_head);
1984 	}
1985 	if (pkts == 0)
1986 		return;
1987 
1988 	/* Transmit */
1989 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
1990 		sc_if->sk_cdata.sk_tx_prod = idx;
1991 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1992 
1993 		/* Set a timeout in case the chip goes out to lunch. */
1994 		ifp->if_timer = 5;
1995 	}
1996 }
1997 
1998 
1999 void
2000 sk_watchdog(struct ifnet *ifp)
2001 {
2002 	struct sk_if_softc *sc_if = ifp->if_softc;
2003 
2004 	/*
2005 	 * Reclaim first as there is a possibility of losing Tx completion
2006 	 * interrupts.
2007 	 */
2008 	sk_txeof(sc_if);
2009 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2010 		aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
2011 
2012 		ifp->if_oerrors++;
2013 
2014 		sk_init(ifp);
2015 	}
2016 }
2017 
2018 void
2019 sk_shutdown(void *v)
2020 {
2021 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
2022 	struct sk_softc		*sc = sc_if->sk_softc;
2023 	struct ifnet 		*ifp = &sc_if->sk_ethercom.ec_if;
2024 
2025 	DPRINTFN(2, ("sk_shutdown\n"));
2026 	sk_stop(ifp,1);
2027 
2028 	/* Turn off the 'driver is loaded' LED. */
2029 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2030 
2031 	/*
2032 	 * Reset the GEnesis controller. Doing this should also
2033 	 * assert the resets on the attached XMAC(s).
2034 	 */
2035 	sk_reset(sc);
2036 }
2037 
2038 void
2039 sk_rxeof(struct sk_if_softc *sc_if)
2040 {
2041 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2042 	struct mbuf		*m;
2043 	struct sk_chain		*cur_rx;
2044 	struct sk_rx_desc	*cur_desc;
2045 	int			i, cur, total_len = 0;
2046 	u_int32_t		rxstat, sk_ctl;
2047 	bus_dmamap_t		dmamap;
2048 
2049 	i = sc_if->sk_cdata.sk_rx_prod;
2050 
2051 	DPRINTFN(3, ("sk_rxeof %d\n", i));
2052 
2053 	for (;;) {
2054 		cur = i;
2055 
2056 		/* Sync the descriptor */
2057 		SK_CDRXSYNC(sc_if, cur,
2058 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2059 
2060 		sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2061 		if (sk_ctl & SK_RXCTL_OWN) {
2062 			/* Invalidate the descriptor -- it's not ready yet */
2063 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2064 			sc_if->sk_cdata.sk_rx_prod = i;
2065 			break;
2066 		}
2067 
2068 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2069 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2070 		dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2071 
2072 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2073 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2074 
2075 		rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2076 		m = cur_rx->sk_mbuf;
2077 		cur_rx->sk_mbuf = NULL;
2078 		total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2079 
2080 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
2081 
2082 		SK_INC(i, SK_RX_RING_CNT);
2083 
2084 		if (rxstat & XM_RXSTAT_ERRFRAME) {
2085 			ifp->if_ierrors++;
2086 			sk_newbuf(sc_if, cur, m, dmamap);
2087 			continue;
2088 		}
2089 
2090 		/*
2091 		 * Try to allocate a new jumbo buffer. If that
2092 		 * fails, copy the packet to mbufs and put the
2093 		 * jumbo buffer back in the ring so it can be
2094 		 * re-used. If allocating mbufs fails, then we
2095 		 * have to drop the packet.
2096 		 */
2097 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2098 			struct mbuf		*m0;
2099 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2100 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
2101 			sk_newbuf(sc_if, cur, m, dmamap);
2102 			if (m0 == NULL) {
2103 				aprint_error_dev(sc_if->sk_dev, "no receive "
2104 				    "buffers available -- packet dropped!\n");
2105 				ifp->if_ierrors++;
2106 				continue;
2107 			}
2108 			m_adj(m0, ETHER_ALIGN);
2109 			m = m0;
2110 		} else {
2111 			m->m_pkthdr.rcvif = ifp;
2112 			m->m_pkthdr.len = m->m_len = total_len;
2113 		}
2114 
2115 		ifp->if_ipackets++;
2116 
2117 		bpf_mtap(ifp, m);
2118 		/* pass it on. */
2119 		(*ifp->if_input)(ifp, m);
2120 	}
2121 }
2122 
2123 void
2124 sk_txeof(struct sk_if_softc *sc_if)
2125 {
2126 	struct sk_softc		*sc = sc_if->sk_softc;
2127 	struct sk_tx_desc	*cur_tx;
2128 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2129 	u_int32_t		idx, sk_ctl;
2130 	struct sk_txmap_entry	*entry;
2131 
2132 	DPRINTFN(3, ("sk_txeof\n"));
2133 
2134 	/*
2135 	 * Go through our tx ring and free mbufs for those
2136 	 * frames that have been sent.
2137 	 */
2138 	idx = sc_if->sk_cdata.sk_tx_cons;
2139 	while (idx != sc_if->sk_cdata.sk_tx_prod) {
2140 		SK_CDTXSYNC(sc_if, idx, 1,
2141 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2142 
2143 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2144 		sk_ctl = le32toh(cur_tx->sk_ctl);
2145 #ifdef SK_DEBUG
2146 		if (skdebug >= 3)
2147 			sk_dump_txdesc(cur_tx, idx);
2148 #endif
2149 		if (sk_ctl & SK_TXCTL_OWN) {
2150 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2151 			break;
2152 		}
2153 		if (sk_ctl & SK_TXCTL_LASTFRAG)
2154 			ifp->if_opackets++;
2155 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2156 			entry = sc_if->sk_cdata.sk_tx_map[idx];
2157 
2158 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2159 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2160 
2161 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2162 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2163 
2164 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2165 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2166 					  link);
2167 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2168 		}
2169 		sc_if->sk_cdata.sk_tx_cnt--;
2170 		SK_INC(idx, SK_TX_RING_CNT);
2171 	}
2172 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
2173 		ifp->if_timer = 0;
2174 	else /* nudge chip to keep tx ring moving */
2175 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2176 
2177 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2178 		ifp->if_flags &= ~IFF_OACTIVE;
2179 
2180 	sc_if->sk_cdata.sk_tx_cons = idx;
2181 }
2182 
2183 void
2184 sk_tick(void *xsc_if)
2185 {
2186 	struct sk_if_softc *sc_if = xsc_if;
2187 	struct mii_data *mii = &sc_if->sk_mii;
2188 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2189 	int i;
2190 
2191 	DPRINTFN(3, ("sk_tick\n"));
2192 
2193 	if (!(ifp->if_flags & IFF_UP))
2194 		return;
2195 
2196 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2197 		sk_intr_bcom(sc_if);
2198 		return;
2199 	}
2200 
2201 	/*
2202 	 * According to SysKonnect, the correct way to verify that
2203 	 * the link has come back up is to poll bit 0 of the GPIO
2204 	 * register three times. This pin has the signal from the
2205 	 * link sync pin connected to it; if we read the same link
2206 	 * state 3 times in a row, we know the link is up.
2207 	 */
2208 	for (i = 0; i < 3; i++) {
2209 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2210 			break;
2211 	}
2212 
2213 	if (i != 3) {
2214 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2215 		return;
2216 	}
2217 
2218 	/* Turn the GP0 interrupt back on. */
2219 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2220 	SK_XM_READ_2(sc_if, XM_ISR);
2221 	mii_tick(mii);
2222 	mii_pollstat(mii);
2223 	callout_stop(&sc_if->sk_tick_ch);
2224 }
2225 
2226 void
2227 sk_intr_bcom(struct sk_if_softc *sc_if)
2228 {
2229 	struct mii_data *mii = &sc_if->sk_mii;
2230 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2231 	int status;
2232 
2233 
2234 	DPRINTFN(3, ("sk_intr_bcom\n"));
2235 
2236 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2237 
2238 	/*
2239 	 * Read the PHY interrupt register to make sure
2240 	 * we clear any pending interrupts.
2241 	 */
2242 	status = sk_xmac_miibus_readreg(sc_if->sk_dev,
2243 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2244 
2245 	if (!(ifp->if_flags & IFF_RUNNING)) {
2246 		sk_init_xmac(sc_if);
2247 		return;
2248 	}
2249 
2250 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2251 		int lstat;
2252 		lstat = sk_xmac_miibus_readreg(sc_if->sk_dev,
2253 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2254 
2255 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2256 			(void)mii_mediachg(mii);
2257 			/* Turn off the link LED. */
2258 			SK_IF_WRITE_1(sc_if, 0,
2259 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
2260 			sc_if->sk_link = 0;
2261 		} else if (status & BRGPHY_ISR_LNK_CHG) {
2262 			sk_xmac_miibus_writereg(sc_if->sk_dev,
2263 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2264 			mii_tick(mii);
2265 			sc_if->sk_link = 1;
2266 			/* Turn on the link LED. */
2267 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2268 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2269 			    SK_LINKLED_BLINK_OFF);
2270 			mii_pollstat(mii);
2271 		} else {
2272 			mii_tick(mii);
2273 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2274 		}
2275 	}
2276 
2277 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2278 }
2279 
2280 void
2281 sk_intr_xmac(struct sk_if_softc	*sc_if)
2282 {
2283 	u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2284 
2285 	DPRINTFN(3, ("sk_intr_xmac\n"));
2286 
2287 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2288 		if (status & XM_ISR_GP0_SET) {
2289 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2290 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2291 		}
2292 
2293 		if (status & XM_ISR_AUTONEG_DONE) {
2294 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2295 		}
2296 	}
2297 
2298 	if (status & XM_IMR_TX_UNDERRUN)
2299 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2300 
2301 	if (status & XM_IMR_RX_OVERRUN)
2302 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2303 }
2304 
2305 void
2306 sk_intr_yukon(struct sk_if_softc *sc_if)
2307 {
2308 	int status;
2309 
2310 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2311 
2312 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2313 }
2314 
2315 int
2316 sk_intr(void *xsc)
2317 {
2318 	struct sk_softc		*sc = xsc;
2319 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
2320 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
2321 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2322 	u_int32_t		status;
2323 	int			claimed = 0;
2324 
2325 	if (sc_if0 != NULL)
2326 		ifp0 = &sc_if0->sk_ethercom.ec_if;
2327 	if (sc_if1 != NULL)
2328 		ifp1 = &sc_if1->sk_ethercom.ec_if;
2329 
2330 	for (;;) {
2331 		status = CSR_READ_4(sc, SK_ISSR);
2332 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2333 
2334 		if (!(status & sc->sk_intrmask))
2335 			break;
2336 
2337 		claimed = 1;
2338 
2339 		/* Handle receive interrupts first. */
2340 		if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2341 			sk_rxeof(sc_if0);
2342 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2343 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2344 		}
2345 		if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2346 			sk_rxeof(sc_if1);
2347 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2348 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2349 		}
2350 
2351 		/* Then transmit interrupts. */
2352 		if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2353 			sk_txeof(sc_if0);
2354 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2355 			    SK_TXBMU_CLR_IRQ_EOF);
2356 		}
2357 		if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2358 			sk_txeof(sc_if1);
2359 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2360 			    SK_TXBMU_CLR_IRQ_EOF);
2361 		}
2362 
2363 		/* Then MAC interrupts. */
2364 		if (sc_if0 && (status & SK_ISR_MAC1) &&
2365 		    (ifp0->if_flags & IFF_RUNNING)) {
2366 			if (sc->sk_type == SK_GENESIS)
2367 				sk_intr_xmac(sc_if0);
2368 			else
2369 				sk_intr_yukon(sc_if0);
2370 		}
2371 
2372 		if (sc_if1 && (status & SK_ISR_MAC2) &&
2373 		    (ifp1->if_flags & IFF_RUNNING)) {
2374 			if (sc->sk_type == SK_GENESIS)
2375 				sk_intr_xmac(sc_if1);
2376 			else
2377 				sk_intr_yukon(sc_if1);
2378 
2379 		}
2380 
2381 		if (status & SK_ISR_EXTERNAL_REG) {
2382 			if (sc_if0 != NULL &&
2383 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2384 				sk_intr_bcom(sc_if0);
2385 
2386 			if (sc_if1 != NULL &&
2387 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2388 				sk_intr_bcom(sc_if1);
2389 		}
2390 	}
2391 
2392 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2393 
2394 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2395 		sk_start(ifp0);
2396 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2397 		sk_start(ifp1);
2398 
2399 	rnd_add_uint32(&sc->rnd_source, status);
2400 
2401 	if (sc->sk_int_mod_pending)
2402 		sk_update_int_mod(sc);
2403 
2404 	return claimed;
2405 }
2406 
2407 void
2408 sk_init_xmac(struct sk_if_softc	*sc_if)
2409 {
2410 	struct sk_softc		*sc = sc_if->sk_softc;
2411 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2412 	static const struct sk_bcom_hack     bhack[] = {
2413 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2414 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2415 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2416 	{ 0, 0 } };
2417 
2418 	DPRINTFN(1, ("sk_init_xmac\n"));
2419 
2420 	/* Unreset the XMAC. */
2421 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2422 	DELAY(1000);
2423 
2424 	/* Reset the XMAC's internal state. */
2425 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2426 
2427 	/* Save the XMAC II revision */
2428 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2429 
2430 	/*
2431 	 * Perform additional initialization for external PHYs,
2432 	 * namely for the 1000baseTX cards that use the XMAC's
2433 	 * GMII mode.
2434 	 */
2435 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2436 		int			i = 0;
2437 		u_int32_t		val;
2438 
2439 		/* Take PHY out of reset. */
2440 		val = sk_win_read_4(sc, SK_GPIO);
2441 		if (sc_if->sk_port == SK_PORT_A)
2442 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2443 		else
2444 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2445 		sk_win_write_4(sc, SK_GPIO, val);
2446 
2447 		/* Enable GMII mode on the XMAC. */
2448 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2449 
2450 		sk_xmac_miibus_writereg(sc_if->sk_dev,
2451 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2452 		DELAY(10000);
2453 		sk_xmac_miibus_writereg(sc_if->sk_dev,
2454 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2455 
2456 		/*
2457 		 * Early versions of the BCM5400 apparently have
2458 		 * a bug that requires them to have their reserved
2459 		 * registers initialized to some magic values. I don't
2460 		 * know what the numbers do, I'm just the messenger.
2461 		 */
2462 		if (sk_xmac_miibus_readreg(sc_if->sk_dev,
2463 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2464 			while (bhack[i].reg) {
2465 				sk_xmac_miibus_writereg(sc_if->sk_dev,
2466 				    SK_PHYADDR_BCOM, bhack[i].reg,
2467 				    bhack[i].val);
2468 				i++;
2469 			}
2470 		}
2471 	}
2472 
2473 	/* Set station address */
2474 	SK_XM_WRITE_2(sc_if, XM_PAR0,
2475 		      *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2476 	SK_XM_WRITE_2(sc_if, XM_PAR1,
2477 		      *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2478 	SK_XM_WRITE_2(sc_if, XM_PAR2,
2479 		      *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2480 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2481 
2482 	if (ifp->if_flags & IFF_PROMISC)
2483 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2484 	else
2485 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2486 
2487 	if (ifp->if_flags & IFF_BROADCAST)
2488 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2489 	else
2490 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2491 
2492 	/* We don't need the FCS appended to the packet. */
2493 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2494 
2495 	/* We want short frames padded to 60 bytes. */
2496 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2497 
2498 	/*
2499 	 * Enable the reception of all error frames. This is is
2500 	 * a necessary evil due to the design of the XMAC. The
2501 	 * XMAC's receive FIFO is only 8K in size, however jumbo
2502 	 * frames can be up to 9000 bytes in length. When bad
2503 	 * frame filtering is enabled, the XMAC's RX FIFO operates
2504 	 * in 'store and forward' mode. For this to work, the
2505 	 * entire frame has to fit into the FIFO, but that means
2506 	 * that jumbo frames larger than 8192 bytes will be
2507 	 * truncated. Disabling all bad frame filtering causes
2508 	 * the RX FIFO to operate in streaming mode, in which
2509 	 * case the XMAC will start transfering frames out of the
2510 	 * RX FIFO as soon as the FIFO threshold is reached.
2511 	 */
2512 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2513 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2514 	    XM_MODE_RX_INRANGELEN);
2515 
2516 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2517 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2518 	else
2519 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2520 
2521 	/*
2522 	 * Bump up the transmit threshold. This helps hold off transmit
2523 	 * underruns when we're blasting traffic from both ports at once.
2524 	 */
2525 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2526 
2527 	/* Set multicast filter */
2528 	sk_setmulti(sc_if);
2529 
2530 	/* Clear and enable interrupts */
2531 	SK_XM_READ_2(sc_if, XM_ISR);
2532 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2533 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2534 	else
2535 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2536 
2537 	/* Configure MAC arbiter */
2538 	switch (sc_if->sk_xmac_rev) {
2539 	case XM_XMAC_REV_B2:
2540 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2541 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2542 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2543 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2544 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2545 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2546 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2547 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2548 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2549 		break;
2550 	case XM_XMAC_REV_C1:
2551 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2552 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2553 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2554 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2555 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2556 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2557 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2558 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2559 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2560 		break;
2561 	default:
2562 		break;
2563 	}
2564 	sk_win_write_2(sc, SK_MACARB_CTL,
2565 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2566 
2567 	sc_if->sk_link = 1;
2568 }
2569 
2570 void sk_init_yukon(struct sk_if_softc *sc_if)
2571 {
2572 	u_int32_t		/*mac, */phy;
2573 	u_int16_t		reg;
2574 	struct sk_softc		*sc;
2575 	int			i;
2576 
2577 	DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2578 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2579 
2580 	sc = sc_if->sk_softc;
2581 	if (sc->sk_type == SK_YUKON_LITE &&
2582 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2583 		/* Take PHY out of reset. */
2584 		sk_win_write_4(sc, SK_GPIO,
2585 			(sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2586 	}
2587 
2588 
2589 	/* GMAC and GPHY Reset */
2590 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2591 
2592 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
2593 
2594 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2595 	DELAY(1000);
2596 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2597 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2598 	DELAY(1000);
2599 
2600 
2601 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
2602 
2603 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2604 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2605 
2606 	switch (sc_if->sk_softc->sk_pmd) {
2607 	case IFM_1000_SX:
2608 	case IFM_1000_LX:
2609 		phy |= SK_GPHY_FIBER;
2610 		break;
2611 
2612 	case IFM_1000_CX:
2613 	case IFM_1000_T:
2614 		phy |= SK_GPHY_COPPER;
2615 		break;
2616 	}
2617 
2618 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2619 
2620 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2621 	DELAY(1000);
2622 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2623 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2624 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2625 
2626 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2627 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2628 
2629 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
2630 
2631 	/* unused read of the interrupt source register */
2632 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
2633 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2634 
2635 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2636 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2637 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2638 
2639 	/* MIB Counter Clear Mode set */
2640         reg |= YU_PAR_MIB_CLR;
2641 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2642 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2643 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2644 
2645 	/* MIB Counter Clear Mode clear */
2646 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
2647         reg &= ~YU_PAR_MIB_CLR;
2648 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2649 
2650 	/* receive control reg */
2651 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
2652 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2653 		      YU_RCR_CRCR);
2654 
2655 	/* transmit parameter register */
2656 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
2657 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2658 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2659 
2660 	/* serial mode register */
2661 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
2662 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2663 		      YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2664 		      YU_SMR_IPG_DATA(0x1e));
2665 
2666 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
2667 	/* Setup Yukon's address */
2668 	for (i = 0; i < 3; i++) {
2669 		/* Write Source Address 1 (unicast filter) */
2670 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2671 			      sc_if->sk_enaddr[i * 2] |
2672 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
2673 	}
2674 
2675 	for (i = 0; i < 3; i++) {
2676 		reg = sk_win_read_2(sc_if->sk_softc,
2677 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2678 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2679 	}
2680 
2681 	/* Set multicast filter */
2682 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
2683 	sk_setmulti(sc_if);
2684 
2685 	/* enable interrupt mask for counter overflows */
2686 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
2687 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2688 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2689 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2690 
2691 	/* Configure RX MAC FIFO */
2692 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2693 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2694 
2695 	/* Configure TX MAC FIFO */
2696 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2697 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2698 
2699 	DPRINTFN(6, ("sk_init_yukon: end\n"));
2700 }
2701 
2702 /*
2703  * Note that to properly initialize any part of the GEnesis chip,
2704  * you first have to take it out of reset mode.
2705  */
2706 int
2707 sk_init(struct ifnet *ifp)
2708 {
2709 	struct sk_if_softc	*sc_if = ifp->if_softc;
2710 	struct sk_softc		*sc = sc_if->sk_softc;
2711 	struct mii_data		*mii = &sc_if->sk_mii;
2712 	int			rc = 0, s;
2713 	u_int32_t		imr, imtimer_ticks;
2714 
2715 	DPRINTFN(1, ("sk_init\n"));
2716 
2717 	s = splnet();
2718 
2719 	if (ifp->if_flags & IFF_RUNNING) {
2720 		splx(s);
2721 		return 0;
2722 	}
2723 
2724 	/* Cancel pending I/O and free all RX/TX buffers. */
2725 	sk_stop(ifp,0);
2726 
2727 	if (sc->sk_type == SK_GENESIS) {
2728 		/* Configure LINK_SYNC LED */
2729 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2730 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2731 			      SK_LINKLED_LINKSYNC_ON);
2732 
2733 		/* Configure RX LED */
2734 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2735 			      SK_RXLEDCTL_COUNTER_START);
2736 
2737 		/* Configure TX LED */
2738 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2739 			      SK_TXLEDCTL_COUNTER_START);
2740 	}
2741 
2742 	/* Configure I2C registers */
2743 
2744 	/* Configure XMAC(s) */
2745 	switch (sc->sk_type) {
2746 	case SK_GENESIS:
2747 		sk_init_xmac(sc_if);
2748 		break;
2749 	case SK_YUKON:
2750 	case SK_YUKON_LITE:
2751 	case SK_YUKON_LP:
2752 		sk_init_yukon(sc_if);
2753 		break;
2754 	}
2755 	if ((rc = mii_mediachg(mii)) == ENXIO)
2756 		rc = 0;
2757 	else if (rc != 0)
2758 		goto out;
2759 
2760 	if (sc->sk_type == SK_GENESIS) {
2761 		/* Configure MAC FIFOs */
2762 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2763 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2764 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2765 
2766 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2767 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2768 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2769 	}
2770 
2771 	/* Configure transmit arbiter(s) */
2772 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2773 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2774 
2775 	/* Configure RAMbuffers */
2776 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2777 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2778 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2779 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2780 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2781 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2782 
2783 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2784 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2785 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2786 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2787 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2788 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2789 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2790 
2791 	/* Configure BMUs */
2792 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2793 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2794 	    SK_RX_RING_ADDR(sc_if, 0));
2795 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2796 
2797 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2798 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2799             SK_TX_RING_ADDR(sc_if, 0));
2800 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2801 
2802 	/* Init descriptors */
2803 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2804 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2805 		    "memory for rx buffers\n");
2806 		sk_stop(ifp,0);
2807 		splx(s);
2808 		return ENOBUFS;
2809 	}
2810 
2811 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2812 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2813 		    "memory for tx buffers\n");
2814 		sk_stop(ifp,0);
2815 		splx(s);
2816 		return ENOBUFS;
2817 	}
2818 
2819 	/* Set interrupt moderation if changed via sysctl. */
2820 	switch (sc->sk_type) {
2821 	case SK_GENESIS:
2822 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2823 		break;
2824 	case SK_YUKON_EC:
2825 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2826 		break;
2827 	default:
2828 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2829 	}
2830 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2831 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2832 		sk_win_write_4(sc, SK_IMTIMERINIT,
2833 		    SK_IM_USECS(sc->sk_int_mod));
2834 		aprint_verbose_dev(sc->sk_dev,
2835 		    "interrupt moderation is %d us\n", sc->sk_int_mod);
2836 	}
2837 
2838 	/* Configure interrupt handling */
2839 	CSR_READ_4(sc, SK_ISSR);
2840 	if (sc_if->sk_port == SK_PORT_A)
2841 		sc->sk_intrmask |= SK_INTRS1;
2842 	else
2843 		sc->sk_intrmask |= SK_INTRS2;
2844 
2845 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2846 
2847 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2848 
2849 	/* Start BMUs. */
2850 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2851 
2852 	if (sc->sk_type == SK_GENESIS) {
2853 		/* Enable XMACs TX and RX state machines */
2854 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2855 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2856 			       XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2857 	}
2858 
2859 	if (SK_YUKON_FAMILY(sc->sk_type)) {
2860 		u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2861 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2862 #if 0
2863 		/* XXX disable 100Mbps and full duplex mode? */
2864 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2865 #endif
2866 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2867 	}
2868 
2869 
2870 	ifp->if_flags |= IFF_RUNNING;
2871 	ifp->if_flags &= ~IFF_OACTIVE;
2872 
2873 out:
2874 	splx(s);
2875 	return rc;
2876 }
2877 
2878 void
2879 sk_stop(struct ifnet *ifp, int disable)
2880 {
2881         struct sk_if_softc	*sc_if = ifp->if_softc;
2882 	struct sk_softc		*sc = sc_if->sk_softc;
2883 	int			i;
2884 
2885 	DPRINTFN(1, ("sk_stop\n"));
2886 
2887 	callout_stop(&sc_if->sk_tick_ch);
2888 
2889 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2890 		u_int32_t		val;
2891 
2892 		/* Put PHY back into reset. */
2893 		val = sk_win_read_4(sc, SK_GPIO);
2894 		if (sc_if->sk_port == SK_PORT_A) {
2895 			val |= SK_GPIO_DIR0;
2896 			val &= ~SK_GPIO_DAT0;
2897 		} else {
2898 			val |= SK_GPIO_DIR2;
2899 			val &= ~SK_GPIO_DAT2;
2900 		}
2901 		sk_win_write_4(sc, SK_GPIO, val);
2902 	}
2903 
2904 	/* Turn off various components of this interface. */
2905 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2906 	switch (sc->sk_type) {
2907 	case SK_GENESIS:
2908 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2909 			      SK_TXMACCTL_XMAC_RESET);
2910 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2911 		break;
2912 	case SK_YUKON:
2913 	case SK_YUKON_LITE:
2914 	case SK_YUKON_LP:
2915 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2916 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2917 		break;
2918 	}
2919 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2920 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2921 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2922 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2923 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2924 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2925 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2926 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2927 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2928 
2929 	/* Disable interrupts */
2930 	if (sc_if->sk_port == SK_PORT_A)
2931 		sc->sk_intrmask &= ~SK_INTRS1;
2932 	else
2933 		sc->sk_intrmask &= ~SK_INTRS2;
2934 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2935 
2936 	SK_XM_READ_2(sc_if, XM_ISR);
2937 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2938 
2939 	/* Free RX and TX mbufs still in the queues. */
2940 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2941 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2942 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2943 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2944 		}
2945 	}
2946 
2947 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2948 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2949 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2950 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2951 		}
2952 	}
2953 
2954 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2955 }
2956 
2957 /* Power Management Framework */
2958 
2959 static bool
2960 skc_suspend(device_t dv, const pmf_qual_t *qual)
2961 {
2962 	struct sk_softc *sc = device_private(dv);
2963 
2964 	DPRINTFN(2, ("skc_suspend\n"));
2965 
2966 	/* Turn off the driver is loaded LED */
2967 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2968 
2969 	return true;
2970 }
2971 
2972 static bool
2973 skc_resume(device_t dv, const pmf_qual_t *qual)
2974 {
2975 	struct sk_softc *sc = device_private(dv);
2976 
2977 	DPRINTFN(2, ("skc_resume\n"));
2978 
2979 	sk_reset(sc);
2980 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
2981 
2982 	return true;
2983 }
2984 
2985 static bool
2986 sk_resume(device_t dv, const pmf_qual_t *qual)
2987 {
2988 	struct sk_if_softc *sc_if = device_private(dv);
2989 
2990 	sk_init_yukon(sc_if);
2991 	return true;
2992 }
2993 
2994 CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc),
2995     skc_probe, skc_attach, NULL, NULL);
2996 
2997 CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc),
2998     sk_probe, sk_attach, NULL, NULL);
2999 
3000 #ifdef SK_DEBUG
3001 void
3002 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
3003 {
3004 #define DESC_PRINT(X)					\
3005 	if (X)					\
3006 		printf("txdesc[%d]." #X "=%#x\n",	\
3007 		       idx, X);
3008 
3009 	DESC_PRINT(le32toh(desc->sk_ctl));
3010 	DESC_PRINT(le32toh(desc->sk_next));
3011 	DESC_PRINT(le32toh(desc->sk_data_lo));
3012 	DESC_PRINT(le32toh(desc->sk_data_hi));
3013 	DESC_PRINT(le32toh(desc->sk_xmac_txstat));
3014 	DESC_PRINT(le16toh(desc->sk_rsvd0));
3015 	DESC_PRINT(le16toh(desc->sk_csum_startval));
3016 	DESC_PRINT(le16toh(desc->sk_csum_startpos));
3017 	DESC_PRINT(le16toh(desc->sk_csum_writepos));
3018 	DESC_PRINT(le16toh(desc->sk_rsvd1));
3019 #undef PRINT
3020 }
3021 
3022 void
3023 sk_dump_bytes(const char *data, int len)
3024 {
3025 	int c, i, j;
3026 
3027 	for (i = 0; i < len; i += 16) {
3028 		printf("%08x  ", i);
3029 		c = len - i;
3030 		if (c > 16) c = 16;
3031 
3032 		for (j = 0; j < c; j++) {
3033 			printf("%02x ", data[i + j] & 0xff);
3034 			if ((j & 0xf) == 7 && j > 0)
3035 				printf(" ");
3036 		}
3037 
3038 		for (; j < 16; j++)
3039 			printf("   ");
3040 		printf("  ");
3041 
3042 		for (j = 0; j < c; j++) {
3043 			int ch = data[i + j] & 0xff;
3044 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
3045 		}
3046 
3047 		printf("\n");
3048 
3049 		if (c < 16)
3050 			break;
3051 	}
3052 }
3053 
3054 void
3055 sk_dump_mbuf(struct mbuf *m)
3056 {
3057 	int count = m->m_pkthdr.len;
3058 
3059 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3060 
3061 	while (count > 0 && m) {
3062 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3063 		       m, m->m_data, m->m_len);
3064 		sk_dump_bytes(mtod(m, char *), m->m_len);
3065 
3066 		count -= m->m_len;
3067 		m = m->m_next;
3068 	}
3069 }
3070 #endif
3071 
3072 static int
3073 sk_sysctl_handler(SYSCTLFN_ARGS)
3074 {
3075 	int error, t;
3076 	struct sysctlnode node;
3077 	struct sk_softc *sc;
3078 
3079 	node = *rnode;
3080 	sc = node.sysctl_data;
3081 	t = sc->sk_int_mod;
3082 	node.sysctl_data = &t;
3083 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3084 	if (error || newp == NULL)
3085 		return error;
3086 
3087 	if (t < SK_IM_MIN || t > SK_IM_MAX)
3088 		return EINVAL;
3089 
3090 	/* update the softc with sysctl-changed value, and mark
3091 	   for hardware update */
3092 	sc->sk_int_mod = t;
3093 	sc->sk_int_mod_pending = 1;
3094 	return 0;
3095 }
3096 
3097 /*
3098  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3099  * set up in skc_attach()
3100  */
3101 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3102 {
3103 	int rc;
3104 	const struct sysctlnode *node;
3105 
3106 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3107 	    0, CTLTYPE_NODE, "hw", NULL,
3108 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3109 		goto err;
3110 	}
3111 
3112 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
3113 	    0, CTLTYPE_NODE, "sk",
3114 	    SYSCTL_DESCR("sk interface controls"),
3115 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3116 		goto err;
3117 	}
3118 
3119 	sk_root_num = node->sysctl_num;
3120 	return;
3121 
3122 err:
3123 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3124 }
3125