xref: /netbsd-src/sys/dev/pci/if_sk.c (revision b1c86f5f087524e68db12794ee9c3e3da1ab17a0)
1 /*	$NetBSD: if_sk.c,v 1.68 2010/07/26 22:33:24 jym Exp $	*/
2 
3 /*-
4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*	$OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $	*/
30 
31 /*
32  * Copyright (c) 1997, 1998, 1999, 2000
33  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
34  *
35  * Redistribution and use in source and binary forms, with or without
36  * modification, are permitted provided that the following conditions
37  * are met:
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 3. All advertising materials mentioning features or use of this software
44  *    must display the following acknowledgement:
45  *	This product includes software developed by Bill Paul.
46  * 4. Neither the name of the author nor the names of any co-contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
54  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
60  * THE POSSIBILITY OF SUCH DAMAGE.
61  *
62  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
63  */
64 
65 /*
66  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
67  *
68  * Permission to use, copy, modify, and distribute this software for any
69  * purpose with or without fee is hereby granted, provided that the above
70  * copyright notice and this permission notice appear in all copies.
71  *
72  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
73  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
74  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
75  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
76  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
77  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
78  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
79  */
80 
81 /*
82  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
83  * the SK-984x series adapters, both single port and dual port.
84  * References:
85  * 	The XaQti XMAC II datasheet,
86  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
87  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
88  *
89  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
90  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
91  * convenience to others until Vitesse corrects this problem:
92  *
93  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94  *
95  * Written by Bill Paul <wpaul@ee.columbia.edu>
96  * Department of Electrical Engineering
97  * Columbia University, New York City
98  */
99 
100 /*
101  * The SysKonnect gigabit ethernet adapters consist of two main
102  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
103  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
104  * components and a PHY while the GEnesis controller provides a PCI
105  * interface with DMA support. Each card may have between 512K and
106  * 2MB of SRAM on board depending on the configuration.
107  *
108  * The SysKonnect GEnesis controller can have either one or two XMAC
109  * chips connected to it, allowing single or dual port NIC configurations.
110  * SysKonnect has the distinction of being the only vendor on the market
111  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
112  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
113  * XMAC registers. This driver takes advantage of these features to allow
114  * both XMACs to operate as independent interfaces.
115  */
116 
117 #include <sys/cdefs.h>
118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.68 2010/07/26 22:33:24 jym Exp $");
119 
120 #include "rnd.h"
121 
122 #include <sys/param.h>
123 #include <sys/systm.h>
124 #include <sys/sockio.h>
125 #include <sys/mbuf.h>
126 #include <sys/malloc.h>
127 #include <sys/mutex.h>
128 #include <sys/kernel.h>
129 #include <sys/socket.h>
130 #include <sys/device.h>
131 #include <sys/queue.h>
132 #include <sys/callout.h>
133 #include <sys/sysctl.h>
134 #include <sys/endian.h>
135 
136 #include <net/if.h>
137 #include <net/if_dl.h>
138 #include <net/if_types.h>
139 
140 #include <net/if_media.h>
141 
142 #include <net/bpf.h>
143 #if NRND > 0
144 #include <sys/rnd.h>
145 #endif
146 
147 #include <dev/mii/mii.h>
148 #include <dev/mii/miivar.h>
149 #include <dev/mii/brgphyreg.h>
150 
151 #include <dev/pci/pcireg.h>
152 #include <dev/pci/pcivar.h>
153 #include <dev/pci/pcidevs.h>
154 
155 /* #define SK_USEIOSPACE */
156 
157 #include <dev/pci/if_skreg.h>
158 #include <dev/pci/if_skvar.h>
159 
160 int skc_probe(device_t, cfdata_t, void *);
161 void skc_attach(device_t, device_t, void *aux);
162 int sk_probe(device_t, cfdata_t, void *);
163 void sk_attach(device_t, device_t, void *aux);
164 int skcprint(void *, const char *);
165 int sk_intr(void *);
166 void sk_intr_bcom(struct sk_if_softc *);
167 void sk_intr_xmac(struct sk_if_softc *);
168 void sk_intr_yukon(struct sk_if_softc *);
169 void sk_rxeof(struct sk_if_softc *);
170 void sk_txeof(struct sk_if_softc *);
171 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
172 void sk_start(struct ifnet *);
173 int sk_ioctl(struct ifnet *, u_long, void *);
174 int sk_init(struct ifnet *);
175 void sk_init_xmac(struct sk_if_softc *);
176 void sk_init_yukon(struct sk_if_softc *);
177 void sk_stop(struct ifnet *, int);
178 void sk_watchdog(struct ifnet *);
179 void sk_shutdown(void *);
180 int sk_ifmedia_upd(struct ifnet *);
181 void sk_reset(struct sk_softc *);
182 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
183 int sk_alloc_jumbo_mem(struct sk_if_softc *);
184 void sk_free_jumbo_mem(struct sk_if_softc *);
185 void *sk_jalloc(struct sk_if_softc *);
186 void sk_jfree(struct mbuf *, void *, size_t, void *);
187 int sk_init_rx_ring(struct sk_if_softc *);
188 int sk_init_tx_ring(struct sk_if_softc *);
189 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
190 void sk_vpd_read_res(struct sk_softc *,
191 					struct vpd_res *, int);
192 void sk_vpd_read(struct sk_softc *);
193 
194 void sk_update_int_mod(struct sk_softc *);
195 
196 int sk_xmac_miibus_readreg(device_t, int, int);
197 void sk_xmac_miibus_writereg(device_t, int, int, int);
198 void sk_xmac_miibus_statchg(device_t);
199 
200 int sk_marv_miibus_readreg(device_t, int, int);
201 void sk_marv_miibus_writereg(device_t, int, int, int);
202 void sk_marv_miibus_statchg(device_t);
203 
204 u_int32_t sk_xmac_hash(void *);
205 u_int32_t sk_yukon_hash(void *);
206 void sk_setfilt(struct sk_if_softc *, void *, int);
207 void sk_setmulti(struct sk_if_softc *);
208 void sk_tick(void *);
209 
210 static bool skc_suspend(device_t, const pmf_qual_t *);
211 static bool skc_resume(device_t, const pmf_qual_t *);
212 static bool sk_resume(device_t dv, const pmf_qual_t *);
213 
214 /* #define SK_DEBUG 2 */
215 #ifdef SK_DEBUG
216 #define DPRINTF(x)	if (skdebug) printf x
217 #define DPRINTFN(n,x)	if (skdebug >= (n)) printf x
218 int	skdebug = SK_DEBUG;
219 
220 void sk_dump_txdesc(struct sk_tx_desc *, int);
221 void sk_dump_mbuf(struct mbuf *);
222 void sk_dump_bytes(const char *, int);
223 #else
224 #define DPRINTF(x)
225 #define DPRINTFN(n,x)
226 #endif
227 
228 static int sk_sysctl_handler(SYSCTLFN_PROTO);
229 static int sk_root_num;
230 
231 /* supported device vendors */
232 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
233 static const struct sk_product {
234 	pci_vendor_id_t		sk_vendor;
235 	pci_product_id_t	sk_product;
236 } sk_products[] = {
237 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
238 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
239 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
240 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
241 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
242 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
243 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
244 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
245 	{ 0, 0, }
246 };
247 
248 #define SK_LINKSYS_EG1032_SUBID	0x00151737
249 
250 static inline u_int32_t
251 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
252 {
253 #ifdef SK_USEIOSPACE
254 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
255 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
256 #else
257 	return CSR_READ_4(sc, reg);
258 #endif
259 }
260 
261 static inline u_int16_t
262 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
263 {
264 #ifdef SK_USEIOSPACE
265 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
266 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
267 #else
268 	return CSR_READ_2(sc, reg);
269 #endif
270 }
271 
272 static inline u_int8_t
273 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
274 {
275 #ifdef SK_USEIOSPACE
276 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
277 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
278 #else
279 	return CSR_READ_1(sc, reg);
280 #endif
281 }
282 
283 static inline void
284 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
285 {
286 #ifdef SK_USEIOSPACE
287 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
288 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
289 #else
290 	CSR_WRITE_4(sc, reg, x);
291 #endif
292 }
293 
294 static inline void
295 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
296 {
297 #ifdef SK_USEIOSPACE
298 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
299 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
300 #else
301 	CSR_WRITE_2(sc, reg, x);
302 #endif
303 }
304 
305 static inline void
306 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
307 {
308 #ifdef SK_USEIOSPACE
309 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
310 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
311 #else
312 	CSR_WRITE_1(sc, reg, x);
313 #endif
314 }
315 
316 /*
317  * The VPD EEPROM contains Vital Product Data, as suggested in
318  * the PCI 2.1 specification. The VPD data is separared into areas
319  * denoted by resource IDs. The SysKonnect VPD contains an ID string
320  * resource (the name of the adapter), a read-only area resource
321  * containing various key/data fields and a read/write area which
322  * can be used to store asset management information or log messages.
323  * We read the ID string and read-only into buffers attached to
324  * the controller softc structure for later use. At the moment,
325  * we only use the ID string during sk_attach().
326  */
327 u_int8_t
328 sk_vpd_readbyte(struct sk_softc *sc, int addr)
329 {
330 	int			i;
331 
332 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
333 	for (i = 0; i < SK_TIMEOUT; i++) {
334 		DELAY(1);
335 		if (sk_win_read_2(sc,
336 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
337 			break;
338 	}
339 
340 	if (i == SK_TIMEOUT)
341 		return 0;
342 
343 	return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
344 }
345 
346 void
347 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
348 {
349 	int			i;
350 	u_int8_t		*ptr;
351 
352 	ptr = (u_int8_t *)res;
353 	for (i = 0; i < sizeof(struct vpd_res); i++)
354 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
355 }
356 
357 void
358 sk_vpd_read(struct sk_softc *sc)
359 {
360 	int			pos = 0, i;
361 	struct vpd_res		res;
362 
363 	if (sc->sk_vpd_prodname != NULL)
364 		free(sc->sk_vpd_prodname, M_DEVBUF);
365 	if (sc->sk_vpd_readonly != NULL)
366 		free(sc->sk_vpd_readonly, M_DEVBUF);
367 	sc->sk_vpd_prodname = NULL;
368 	sc->sk_vpd_readonly = NULL;
369 
370 	sk_vpd_read_res(sc, &res, pos);
371 
372 	if (res.vr_id != VPD_RES_ID) {
373 		aprint_error_dev(sc->sk_dev,
374 		    "bad VPD resource id: expected %x got %x\n",
375 		    VPD_RES_ID, res.vr_id);
376 		return;
377 	}
378 
379 	pos += sizeof(res);
380 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
381 	if (sc->sk_vpd_prodname == NULL)
382 		panic("sk_vpd_read");
383 	for (i = 0; i < res.vr_len; i++)
384 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
385 	sc->sk_vpd_prodname[i] = '\0';
386 	pos += i;
387 
388 	sk_vpd_read_res(sc, &res, pos);
389 
390 	if (res.vr_id != VPD_RES_READ) {
391 		aprint_error_dev(sc->sk_dev,
392 		    "bad VPD resource id: expected %x got %x\n",
393 		    VPD_RES_READ, res.vr_id);
394 		return;
395 	}
396 
397 	pos += sizeof(res);
398 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
399 	if (sc->sk_vpd_readonly == NULL)
400 		panic("sk_vpd_read");
401 	for (i = 0; i < res.vr_len ; i++)
402 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
403 }
404 
405 int
406 sk_xmac_miibus_readreg(device_t dev, int phy, int reg)
407 {
408 	struct sk_if_softc *sc_if = device_private(dev);
409 	int i;
410 
411 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
412 
413 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
414 		return 0;
415 
416 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
417 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
418 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
419 		for (i = 0; i < SK_TIMEOUT; i++) {
420 			DELAY(1);
421 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
422 			    XM_MMUCMD_PHYDATARDY)
423 				break;
424 		}
425 
426 		if (i == SK_TIMEOUT) {
427 			aprint_error_dev(sc_if->sk_dev,
428 			    "phy failed to come ready\n");
429 			return 0;
430 		}
431 	}
432 	DELAY(1);
433 	return SK_XM_READ_2(sc_if, XM_PHY_DATA);
434 }
435 
436 void
437 sk_xmac_miibus_writereg(device_t dev, int phy, int reg, int val)
438 {
439 	struct sk_if_softc *sc_if = device_private(dev);
440 	int i;
441 
442 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
443 
444 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
445 	for (i = 0; i < SK_TIMEOUT; i++) {
446 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
447 			break;
448 	}
449 
450 	if (i == SK_TIMEOUT) {
451 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
452 		return;
453 	}
454 
455 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
456 	for (i = 0; i < SK_TIMEOUT; i++) {
457 		DELAY(1);
458 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
459 			break;
460 	}
461 
462 	if (i == SK_TIMEOUT)
463 		aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
464 }
465 
466 void
467 sk_xmac_miibus_statchg(device_t dev)
468 {
469 	struct sk_if_softc *sc_if = device_private(dev);
470 	struct mii_data *mii = &sc_if->sk_mii;
471 
472 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
473 
474 	/*
475 	 * If this is a GMII PHY, manually set the XMAC's
476 	 * duplex mode accordingly.
477 	 */
478 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
479 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
480 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
481 		else
482 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
483 	}
484 }
485 
486 int
487 sk_marv_miibus_readreg(device_t dev, int phy, int reg)
488 {
489 	struct sk_if_softc *sc_if = device_private(dev);
490 	u_int16_t val;
491 	int i;
492 
493 	if (phy != 0 ||
494 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
495 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
496 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
497 			     phy, reg));
498 		return 0;
499 	}
500 
501         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
502 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
503 
504 	for (i = 0; i < SK_TIMEOUT; i++) {
505 		DELAY(1);
506 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
507 		if (val & YU_SMICR_READ_VALID)
508 			break;
509 	}
510 
511 	if (i == SK_TIMEOUT) {
512 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
513 		return 0;
514 	}
515 
516  	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
517 		     SK_TIMEOUT));
518 
519         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
520 
521 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
522 		     phy, reg, val));
523 
524 	return val;
525 }
526 
527 void
528 sk_marv_miibus_writereg(device_t dev, int phy, int reg, int val)
529 {
530 	struct sk_if_softc *sc_if = device_private(dev);
531 	int i;
532 
533 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
534 		     phy, reg, val));
535 
536 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
537 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
538 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
539 
540 	for (i = 0; i < SK_TIMEOUT; i++) {
541 		DELAY(1);
542 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
543 			break;
544 	}
545 
546 	if (i == SK_TIMEOUT)
547 		printf("%s: phy write timed out\n",
548 		    device_xname(sc_if->sk_dev));
549 }
550 
551 void
552 sk_marv_miibus_statchg(device_t dev)
553 {
554 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
555 		     SK_YU_READ_2(((struct sk_if_softc *)device_private(dev)),
556 		     YUKON_GPCR)));
557 }
558 
559 #define SK_HASH_BITS		6
560 
561 u_int32_t
562 sk_xmac_hash(void *addr)
563 {
564 	u_int32_t		crc;
565 
566 	crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
567 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
568 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
569 	return crc;
570 }
571 
572 u_int32_t
573 sk_yukon_hash(void *addr)
574 {
575 	u_int32_t		crc;
576 
577 	crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
578 	crc &= ((1 << SK_HASH_BITS) - 1);
579 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
580 	return crc;
581 }
582 
583 void
584 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
585 {
586 	char *addr = addrv;
587 	int base = XM_RXFILT_ENTRY(slot);
588 
589 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
590 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
591 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
592 }
593 
594 void
595 sk_setmulti(struct sk_if_softc *sc_if)
596 {
597 	struct sk_softc *sc = sc_if->sk_softc;
598 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
599 	u_int32_t hashes[2] = { 0, 0 };
600 	int h = 0, i;
601 	struct ethercom *ec = &sc_if->sk_ethercom;
602 	struct ether_multi *enm;
603 	struct ether_multistep step;
604 	u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
605 
606 	/* First, zot all the existing filters. */
607 	switch (sc->sk_type) {
608 	case SK_GENESIS:
609 		for (i = 1; i < XM_RXFILT_MAX; i++)
610 			sk_setfilt(sc_if, (void *)&dummy, i);
611 
612 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
613 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
614 		break;
615 	case SK_YUKON:
616 	case SK_YUKON_LITE:
617 	case SK_YUKON_LP:
618 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
619 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
620 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
621 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
622 		break;
623 	}
624 
625 	/* Now program new ones. */
626 allmulti:
627 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
628 		hashes[0] = 0xFFFFFFFF;
629 		hashes[1] = 0xFFFFFFFF;
630 	} else {
631 		i = 1;
632 		/* First find the tail of the list. */
633 		ETHER_FIRST_MULTI(step, ec, enm);
634 		while (enm != NULL) {
635 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
636 				 ETHER_ADDR_LEN)) {
637 				ifp->if_flags |= IFF_ALLMULTI;
638 				goto allmulti;
639 			}
640 			DPRINTFN(2,("multicast address %s\n",
641 	    			ether_sprintf(enm->enm_addrlo)));
642 			/*
643 			 * Program the first XM_RXFILT_MAX multicast groups
644 			 * into the perfect filter. For all others,
645 			 * use the hash table.
646 			 */
647 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
648 				sk_setfilt(sc_if, enm->enm_addrlo, i);
649 				i++;
650 			}
651 			else {
652 				switch (sc->sk_type) {
653 				case SK_GENESIS:
654 					h = sk_xmac_hash(enm->enm_addrlo);
655 					break;
656 				case SK_YUKON:
657 				case SK_YUKON_LITE:
658 				case SK_YUKON_LP:
659 					h = sk_yukon_hash(enm->enm_addrlo);
660 					break;
661 				}
662 				if (h < 32)
663 					hashes[0] |= (1 << h);
664 				else
665 					hashes[1] |= (1 << (h - 32));
666 			}
667 
668 			ETHER_NEXT_MULTI(step, enm);
669 		}
670 	}
671 
672 	switch (sc->sk_type) {
673 	case SK_GENESIS:
674 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
675 			       XM_MODE_RX_USE_PERFECT);
676 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
677 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
678 		break;
679 	case SK_YUKON:
680 	case SK_YUKON_LITE:
681 	case SK_YUKON_LP:
682 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
683 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
684 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
685 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
686 		break;
687 	}
688 }
689 
690 int
691 sk_init_rx_ring(struct sk_if_softc *sc_if)
692 {
693 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
694 	struct sk_ring_data	*rd = sc_if->sk_rdata;
695 	int			i;
696 
697 	memset((char *)rd->sk_rx_ring, 0,
698 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
699 
700 	for (i = 0; i < SK_RX_RING_CNT; i++) {
701 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
702 		if (i == (SK_RX_RING_CNT - 1)) {
703 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
704 			rd->sk_rx_ring[i].sk_next =
705 				htole32(SK_RX_RING_ADDR(sc_if, 0));
706 		} else {
707 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
708 			rd->sk_rx_ring[i].sk_next =
709 				htole32(SK_RX_RING_ADDR(sc_if,i+1));
710 		}
711 	}
712 
713 	for (i = 0; i < SK_RX_RING_CNT; i++) {
714 		if (sk_newbuf(sc_if, i, NULL,
715 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
716 			aprint_error_dev(sc_if->sk_dev,
717 			    "failed alloc of %dth mbuf\n", i);
718 			return ENOBUFS;
719 		}
720 	}
721 	sc_if->sk_cdata.sk_rx_prod = 0;
722 	sc_if->sk_cdata.sk_rx_cons = 0;
723 
724 	return 0;
725 }
726 
727 int
728 sk_init_tx_ring(struct sk_if_softc *sc_if)
729 {
730 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
731 	struct sk_ring_data	*rd = sc_if->sk_rdata;
732 	int			i;
733 
734 	memset(sc_if->sk_rdata->sk_tx_ring, 0,
735 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
736 
737 	for (i = 0; i < SK_TX_RING_CNT; i++) {
738 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
739 		if (i == (SK_TX_RING_CNT - 1)) {
740 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
741 			rd->sk_tx_ring[i].sk_next =
742 				htole32(SK_TX_RING_ADDR(sc_if, 0));
743 		} else {
744 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
745 			rd->sk_tx_ring[i].sk_next =
746 				htole32(SK_TX_RING_ADDR(sc_if,i+1));
747 		}
748 	}
749 
750 	sc_if->sk_cdata.sk_tx_prod = 0;
751 	sc_if->sk_cdata.sk_tx_cons = 0;
752 	sc_if->sk_cdata.sk_tx_cnt = 0;
753 
754 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
755 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
756 
757 	return 0;
758 }
759 
760 int
761 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
762 	  bus_dmamap_t dmamap)
763 {
764 	struct mbuf		*m_new = NULL;
765 	struct sk_chain		*c;
766 	struct sk_rx_desc	*r;
767 
768 	if (m == NULL) {
769 		void *buf = NULL;
770 
771 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
772 		if (m_new == NULL) {
773 			aprint_error_dev(sc_if->sk_dev,
774 			    "no memory for rx list -- packet dropped!\n");
775 			return ENOBUFS;
776 		}
777 
778 		/* Allocate the jumbo buffer */
779 		buf = sk_jalloc(sc_if);
780 		if (buf == NULL) {
781 			m_freem(m_new);
782 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
783 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
784 			return ENOBUFS;
785 		}
786 
787 		/* Attach the buffer to the mbuf */
788 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
789 		MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
790 
791 	} else {
792 		/*
793 	 	 * We're re-using a previously allocated mbuf;
794 		 * be sure to re-init pointers and lengths to
795 		 * default values.
796 		 */
797 		m_new = m;
798 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
799 		m_new->m_data = m_new->m_ext.ext_buf;
800 	}
801 	m_adj(m_new, ETHER_ALIGN);
802 
803 	c = &sc_if->sk_cdata.sk_rx_chain[i];
804 	r = c->sk_desc;
805 	c->sk_mbuf = m_new;
806 	r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
807 	    (((vaddr_t)m_new->m_data
808 		- (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
809 	r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
810 
811 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
812 
813 	return 0;
814 }
815 
816 /*
817  * Memory management for jumbo frames.
818  */
819 
820 int
821 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
822 {
823 	struct sk_softc		*sc = sc_if->sk_softc;
824 	char *ptr, *kva;
825 	bus_dma_segment_t	seg;
826 	int		i, rseg, state, error;
827 	struct sk_jpool_entry   *entry;
828 
829 	state = error = 0;
830 
831 	/* Grab a big chunk o' storage. */
832 	if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
833 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
834 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
835 		return ENOBUFS;
836 	}
837 
838 	state = 1;
839 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
840 			   BUS_DMA_NOWAIT)) {
841 		aprint_error_dev(sc->sk_dev,
842 		    "can't map dma buffers (%d bytes)\n",
843 		    SK_JMEM);
844 		error = ENOBUFS;
845 		goto out;
846 	}
847 
848 	state = 2;
849 	if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
850 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
851 		aprint_error_dev(sc->sk_dev, "can't create dma map\n");
852 		error = ENOBUFS;
853 		goto out;
854 	}
855 
856 	state = 3;
857 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
858 			    kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
859 		aprint_error_dev(sc->sk_dev, "can't load dma map\n");
860 		error = ENOBUFS;
861 		goto out;
862 	}
863 
864 	state = 4;
865 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
866 	DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
867 
868 	LIST_INIT(&sc_if->sk_jfree_listhead);
869 	LIST_INIT(&sc_if->sk_jinuse_listhead);
870 	mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
871 
872 	/*
873 	 * Now divide it up into 9K pieces and save the addresses
874 	 * in an array.
875 	 */
876 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
877 	for (i = 0; i < SK_JSLOTS; i++) {
878 		sc_if->sk_cdata.sk_jslots[i] = ptr;
879 		ptr += SK_JLEN;
880 		entry = malloc(sizeof(struct sk_jpool_entry),
881 		    M_DEVBUF, M_NOWAIT);
882 		if (entry == NULL) {
883 			aprint_error_dev(sc->sk_dev,
884 			    "no memory for jumbo buffer queue!\n");
885 			error = ENOBUFS;
886 			goto out;
887 		}
888 		entry->slot = i;
889 		if (i)
890 			LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
891 				 entry, jpool_entries);
892 		else
893 			LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
894 				 entry, jpool_entries);
895 	}
896 out:
897 	if (error != 0) {
898 		switch (state) {
899 		case 4:
900 			bus_dmamap_unload(sc->sc_dmatag,
901 			    sc_if->sk_cdata.sk_rx_jumbo_map);
902 		case 3:
903 			bus_dmamap_destroy(sc->sc_dmatag,
904 			    sc_if->sk_cdata.sk_rx_jumbo_map);
905 		case 2:
906 			bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
907 		case 1:
908 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
909 			break;
910 		default:
911 			break;
912 		}
913 	}
914 
915 	return error;
916 }
917 
918 /*
919  * Allocate a jumbo buffer.
920  */
921 void *
922 sk_jalloc(struct sk_if_softc *sc_if)
923 {
924 	struct sk_jpool_entry   *entry;
925 
926 	mutex_enter(&sc_if->sk_jpool_mtx);
927 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
928 
929 	if (entry == NULL) {
930 		mutex_exit(&sc_if->sk_jpool_mtx);
931 		return NULL;
932 	}
933 
934 	LIST_REMOVE(entry, jpool_entries);
935 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
936 	mutex_exit(&sc_if->sk_jpool_mtx);
937 	return sc_if->sk_cdata.sk_jslots[entry->slot];
938 }
939 
940 /*
941  * Release a jumbo buffer.
942  */
943 void
944 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
945 {
946 	struct sk_jpool_entry *entry;
947 	struct sk_if_softc *sc;
948 	int i;
949 
950 	/* Extract the softc struct pointer. */
951 	sc = (struct sk_if_softc *)arg;
952 
953 	if (sc == NULL)
954 		panic("sk_jfree: can't find softc pointer!");
955 
956 	/* calculate the slot this buffer belongs to */
957 
958 	i = ((vaddr_t)buf
959 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
960 
961 	if ((i < 0) || (i >= SK_JSLOTS))
962 		panic("sk_jfree: asked to free buffer that we don't manage!");
963 
964 	mutex_enter(&sc->sk_jpool_mtx);
965 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
966 	if (entry == NULL)
967 		panic("sk_jfree: buffer not in use!");
968 	entry->slot = i;
969 	LIST_REMOVE(entry, jpool_entries);
970 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
971 	mutex_exit(&sc->sk_jpool_mtx);
972 
973 	if (__predict_true(m != NULL))
974 		pool_cache_put(mb_cache, m);
975 }
976 
977 /*
978  * Set media options.
979  */
980 int
981 sk_ifmedia_upd(struct ifnet *ifp)
982 {
983 	struct sk_if_softc *sc_if = ifp->if_softc;
984 	int rc;
985 
986 	(void) sk_init(ifp);
987 	if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
988 		return 0;
989 	return rc;
990 }
991 
992 int
993 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
994 {
995 	struct sk_if_softc *sc_if = ifp->if_softc;
996 	struct sk_softc *sc = sc_if->sk_softc;
997 	int s, error = 0;
998 
999 	/* DPRINTFN(2, ("sk_ioctl\n")); */
1000 
1001 	s = splnet();
1002 
1003 	switch (command) {
1004 
1005 	case SIOCSIFFLAGS:
1006 	        DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1007 		if ((error = ifioctl_common(ifp, command, data)) != 0)
1008 			break;
1009 		if (ifp->if_flags & IFF_UP) {
1010 			if (ifp->if_flags & IFF_RUNNING &&
1011 			    ifp->if_flags & IFF_PROMISC &&
1012 			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
1013 				switch (sc->sk_type) {
1014 				case SK_GENESIS:
1015 					SK_XM_SETBIT_4(sc_if, XM_MODE,
1016 					    XM_MODE_RX_PROMISC);
1017 					break;
1018 				case SK_YUKON:
1019 				case SK_YUKON_LITE:
1020 				case SK_YUKON_LP:
1021 					SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1022 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
1023 					break;
1024 				}
1025 				sk_setmulti(sc_if);
1026 			} else if (ifp->if_flags & IFF_RUNNING &&
1027 			    !(ifp->if_flags & IFF_PROMISC) &&
1028 			    sc_if->sk_if_flags & IFF_PROMISC) {
1029 				switch (sc->sk_type) {
1030 				case SK_GENESIS:
1031 					SK_XM_CLRBIT_4(sc_if, XM_MODE,
1032 					    XM_MODE_RX_PROMISC);
1033 					break;
1034 				case SK_YUKON:
1035 				case SK_YUKON_LITE:
1036 				case SK_YUKON_LP:
1037 					SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1038 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
1039 					break;
1040 				}
1041 
1042 				sk_setmulti(sc_if);
1043 			} else
1044 				(void) sk_init(ifp);
1045 		} else {
1046 			if (ifp->if_flags & IFF_RUNNING)
1047 				sk_stop(ifp,0);
1048 		}
1049 		sc_if->sk_if_flags = ifp->if_flags;
1050 		error = 0;
1051 		break;
1052 
1053 	default:
1054 	        DPRINTFN(2, ("sk_ioctl ETHER\n"));
1055 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1056 			break;
1057 
1058 		error = 0;
1059 
1060 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1061 			;
1062 		else if (ifp->if_flags & IFF_RUNNING) {
1063 			sk_setmulti(sc_if);
1064 			DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1065 		}
1066 		break;
1067 	}
1068 
1069 	splx(s);
1070 	return error;
1071 }
1072 
1073 void
1074 sk_update_int_mod(struct sk_softc *sc)
1075 {
1076 	u_int32_t imtimer_ticks;
1077 
1078 	/*
1079          * Configure interrupt moderation. The moderation timer
1080 	 * defers interrupts specified in the interrupt moderation
1081 	 * timer mask based on the timeout specified in the interrupt
1082 	 * moderation timer init register. Each bit in the timer
1083 	 * register represents one tick, so to specify a timeout in
1084 	 * microseconds, we have to multiply by the correct number of
1085 	 * ticks-per-microsecond.
1086 	 */
1087 	switch (sc->sk_type) {
1088 	case SK_GENESIS:
1089 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1090 		break;
1091 	case SK_YUKON_EC:
1092 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1093 		break;
1094 	default:
1095 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1096 	}
1097 	aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n",
1098 	    sc->sk_int_mod);
1099         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1100         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1101 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1102         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1103 	sc->sk_int_mod_pending = 0;
1104 }
1105 
1106 /*
1107  * Lookup: Check the PCI vendor and device, and return a pointer to
1108  * The structure if the IDs match against our list.
1109  */
1110 
1111 static const struct sk_product *
1112 sk_lookup(const struct pci_attach_args *pa)
1113 {
1114 	const struct sk_product *psk;
1115 
1116 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1117 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1118 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1119 			return psk;
1120 	}
1121 	return NULL;
1122 }
1123 
1124 /*
1125  * Probe for a SysKonnect GEnesis chip.
1126  */
1127 
1128 int
1129 skc_probe(device_t parent, cfdata_t match, void *aux)
1130 {
1131 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1132 	const struct sk_product *psk;
1133 	pcireg_t subid;
1134 
1135 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1136 
1137 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
1138 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1139 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1140 	    subid == SK_LINKSYS_EG1032_SUBID)
1141 		return 1;
1142 
1143 	if ((psk = sk_lookup(pa))) {
1144 		return 1;
1145 	}
1146 	return 0;
1147 }
1148 
1149 /*
1150  * Force the GEnesis into reset, then bring it out of reset.
1151  */
1152 void sk_reset(struct sk_softc *sc)
1153 {
1154 	DPRINTFN(2, ("sk_reset\n"));
1155 
1156 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1157 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1158 	if (SK_YUKON_FAMILY(sc->sk_type))
1159 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1160 
1161 	DELAY(1000);
1162 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1163 	DELAY(2);
1164 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1165 	if (SK_YUKON_FAMILY(sc->sk_type))
1166 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1167 
1168 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1169 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1170 		     CSR_READ_2(sc, SK_LINK_CTRL)));
1171 
1172 	if (sc->sk_type == SK_GENESIS) {
1173 		/* Configure packet arbiter */
1174 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1175 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1176 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1177 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1178 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1179 	}
1180 
1181 	/* Enable RAM interface */
1182 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1183 
1184 	sk_update_int_mod(sc);
1185 }
1186 
1187 int
1188 sk_probe(device_t parent, cfdata_t match, void *aux)
1189 {
1190 	struct skc_attach_args *sa = aux;
1191 
1192 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1193 		return 0;
1194 
1195 	return 1;
1196 }
1197 
1198 /*
1199  * Each XMAC chip is attached as a separate logical IP interface.
1200  * Single port cards will have only one logical interface of course.
1201  */
1202 void
1203 sk_attach(device_t parent, device_t self, void *aux)
1204 {
1205 	struct sk_if_softc *sc_if = device_private(self);
1206 	struct sk_softc *sc = device_private(parent);
1207 	struct skc_attach_args *sa = aux;
1208 	struct sk_txmap_entry	*entry;
1209 	struct ifnet *ifp;
1210 	bus_dma_segment_t seg;
1211 	bus_dmamap_t dmamap;
1212 	prop_data_t data;
1213 	void *kva;
1214 	int i, rseg;
1215 	int mii_flags = 0;
1216 
1217 	aprint_naive("\n");
1218 
1219 	sc_if->sk_dev = self;
1220 	sc_if->sk_port = sa->skc_port;
1221 	sc_if->sk_softc = sc;
1222 	sc->sk_if[sa->skc_port] = sc_if;
1223 
1224 	if (sa->skc_port == SK_PORT_A)
1225 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1226 	if (sa->skc_port == SK_PORT_B)
1227 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1228 
1229 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1230 
1231 	/*
1232 	 * Get station address for this interface. Note that
1233 	 * dual port cards actually come with three station
1234 	 * addresses: one for each port, plus an extra. The
1235 	 * extra one is used by the SysKonnect driver software
1236 	 * as a 'virtual' station address for when both ports
1237 	 * are operating in failover mode. Currently we don't
1238 	 * use this extra address.
1239 	 */
1240 	data = prop_dictionary_get(device_properties(self), "mac-address");
1241 	if (data != NULL) {
1242 		/*
1243 		 * Try to get the station address from device properties
1244 		 * first, in case the ROM is missing.
1245 		 */
1246 		KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
1247 		KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
1248 		memcpy(sc_if->sk_enaddr, prop_data_data_nocopy(data),
1249 		    ETHER_ADDR_LEN);
1250 	} else
1251 		for (i = 0; i < ETHER_ADDR_LEN; i++)
1252 			sc_if->sk_enaddr[i] = sk_win_read_1(sc,
1253 			    SK_MAC0_0 + (sa->skc_port * 8) + i);
1254 
1255 	aprint_normal(": Ethernet address %s\n",
1256 	    ether_sprintf(sc_if->sk_enaddr));
1257 
1258 	/*
1259 	 * Set up RAM buffer addresses. The NIC will have a certain
1260 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1261 	 * need to divide this up a) between the transmitter and
1262  	 * receiver and b) between the two XMACs, if this is a
1263 	 * dual port NIC. Our algorithm is to divide up the memory
1264 	 * evenly so that everyone gets a fair share.
1265 	 */
1266 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1267 		u_int32_t		chunk, val;
1268 
1269 		chunk = sc->sk_ramsize / 2;
1270 		val = sc->sk_rboff / sizeof(u_int64_t);
1271 		sc_if->sk_rx_ramstart = val;
1272 		val += (chunk / sizeof(u_int64_t));
1273 		sc_if->sk_rx_ramend = val - 1;
1274 		sc_if->sk_tx_ramstart = val;
1275 		val += (chunk / sizeof(u_int64_t));
1276 		sc_if->sk_tx_ramend = val - 1;
1277 	} else {
1278 		u_int32_t		chunk, val;
1279 
1280 		chunk = sc->sk_ramsize / 4;
1281 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1282 		    sizeof(u_int64_t);
1283 		sc_if->sk_rx_ramstart = val;
1284 		val += (chunk / sizeof(u_int64_t));
1285 		sc_if->sk_rx_ramend = val - 1;
1286 		sc_if->sk_tx_ramstart = val;
1287 		val += (chunk / sizeof(u_int64_t));
1288 		sc_if->sk_tx_ramend = val - 1;
1289 	}
1290 
1291 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1292 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
1293 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1294 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1295 
1296 	/* Read and save PHY type and set PHY address */
1297 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1298 	switch (sc_if->sk_phytype) {
1299 	case SK_PHYTYPE_XMAC:
1300 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1301 		break;
1302 	case SK_PHYTYPE_BCOM:
1303 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1304 		break;
1305 	case SK_PHYTYPE_MARV_COPPER:
1306 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1307 		break;
1308 	default:
1309 		aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n",
1310 		    sc_if->sk_phytype);
1311 		return;
1312 	}
1313 
1314 	/* Allocate the descriptor queues. */
1315 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1316 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1317 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
1318 		goto fail;
1319 	}
1320 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1321 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1322 		aprint_error_dev(sc_if->sk_dev,
1323 		    "can't map dma buffers (%lu bytes)\n",
1324 		    (u_long) sizeof(struct sk_ring_data));
1325 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1326 		goto fail;
1327 	}
1328 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1329 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1330             &sc_if->sk_ring_map)) {
1331 		aprint_error_dev(sc_if->sk_dev, "can't create dma map\n");
1332 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1333 		    sizeof(struct sk_ring_data));
1334 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1335 		goto fail;
1336 	}
1337 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1338 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1339 		aprint_error_dev(sc_if->sk_dev, "can't load dma map\n");
1340 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1341 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1342 		    sizeof(struct sk_ring_data));
1343 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1344 		goto fail;
1345 	}
1346 
1347 	for (i = 0; i < SK_RX_RING_CNT; i++)
1348 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1349 
1350 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1351 	for (i = 0; i < SK_TX_RING_CNT; i++) {
1352 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1353 
1354 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1355 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1356 			aprint_error_dev(sc_if->sk_dev,
1357 			    "Can't create TX dmamap\n");
1358 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1359 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1360 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1361 			    sizeof(struct sk_ring_data));
1362 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1363 			goto fail;
1364 		}
1365 
1366 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1367 		if (!entry) {
1368 			aprint_error_dev(sc_if->sk_dev,
1369 			    "Can't alloc txmap entry\n");
1370 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1371 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1372 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1373 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1374 			    sizeof(struct sk_ring_data));
1375 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1376 			goto fail;
1377 		}
1378 		entry->dmamap = dmamap;
1379 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1380 	}
1381 
1382         sc_if->sk_rdata = (struct sk_ring_data *)kva;
1383 	memset(sc_if->sk_rdata, 0, sizeof(struct sk_ring_data));
1384 
1385 	ifp = &sc_if->sk_ethercom.ec_if;
1386 	/* Try to allocate memory for jumbo buffers. */
1387 	if (sk_alloc_jumbo_mem(sc_if)) {
1388 		aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1389 		goto fail;
1390 	}
1391 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1392 		| ETHERCAP_JUMBO_MTU;
1393 
1394 	ifp->if_softc = sc_if;
1395 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1396 	ifp->if_ioctl = sk_ioctl;
1397 	ifp->if_start = sk_start;
1398 	ifp->if_stop = sk_stop;
1399 	ifp->if_init = sk_init;
1400 	ifp->if_watchdog = sk_watchdog;
1401 	ifp->if_capabilities = 0;
1402 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1403 	IFQ_SET_READY(&ifp->if_snd);
1404 	strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1405 
1406 	/*
1407 	 * Do miibus setup.
1408 	 */
1409 	switch (sc->sk_type) {
1410 	case SK_GENESIS:
1411 		sk_init_xmac(sc_if);
1412 		break;
1413 	case SK_YUKON:
1414 	case SK_YUKON_LITE:
1415 	case SK_YUKON_LP:
1416 		sk_init_yukon(sc_if);
1417 		break;
1418 	default:
1419 		aprint_error_dev(sc->sk_dev, "unknown device type %d\n",
1420 			sc->sk_type);
1421 		goto fail;
1422 	}
1423 
1424  	DPRINTFN(2, ("sk_attach: 1\n"));
1425 
1426 	sc_if->sk_mii.mii_ifp = ifp;
1427 	switch (sc->sk_type) {
1428 	case SK_GENESIS:
1429 		sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1430 		sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1431 		sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1432 		break;
1433 	case SK_YUKON:
1434 	case SK_YUKON_LITE:
1435 	case SK_YUKON_LP:
1436 		sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1437 		sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1438 		sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1439 		mii_flags = MIIF_DOPAUSE;
1440 		break;
1441 	}
1442 
1443 	sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1444 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1445 	    sk_ifmedia_upd, ether_mediastatus);
1446 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1447 	    MII_OFFSET_ANY, mii_flags);
1448 	if (LIST_EMPTY(&sc_if->sk_mii.mii_phys)) {
1449 		aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1450 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1451 			    0, NULL);
1452 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1453 	} else
1454 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1455 
1456 	callout_init(&sc_if->sk_tick_ch, 0);
1457 	callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1458 
1459 	DPRINTFN(2, ("sk_attach: 1\n"));
1460 
1461 	/*
1462 	 * Call MI attach routines.
1463 	 */
1464 	if_attach(ifp);
1465 
1466 	ether_ifattach(ifp, sc_if->sk_enaddr);
1467 
1468 #if NRND > 0
1469         rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1470             RND_TYPE_NET, 0);
1471 #endif
1472 
1473 	if (pmf_device_register(self, NULL, sk_resume))
1474 		pmf_class_network_register(self, ifp);
1475 	else
1476 		aprint_error_dev(self, "couldn't establish power handler\n");
1477 
1478 	DPRINTFN(2, ("sk_attach: end\n"));
1479 
1480 	return;
1481 
1482 fail:
1483 	sc->sk_if[sa->skc_port] = NULL;
1484 }
1485 
1486 int
1487 skcprint(void *aux, const char *pnp)
1488 {
1489 	struct skc_attach_args *sa = aux;
1490 
1491 	if (pnp)
1492 		aprint_normal("sk port %c at %s",
1493 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1494 	else
1495 		aprint_normal(" port %c",
1496 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1497 	return UNCONF;
1498 }
1499 
1500 /*
1501  * Attach the interface. Allocate softc structures, do ifmedia
1502  * setup and ethernet/BPF attach.
1503  */
1504 void
1505 skc_attach(device_t parent, device_t self, void *aux)
1506 {
1507 	struct sk_softc *sc = device_private(self);
1508 	struct pci_attach_args *pa = aux;
1509 	struct skc_attach_args skca;
1510 	pci_chipset_tag_t pc = pa->pa_pc;
1511 #ifndef SK_USEIOSPACE
1512 	pcireg_t memtype;
1513 #endif
1514 	pci_intr_handle_t ih;
1515 	const char *intrstr = NULL;
1516 	bus_addr_t iobase;
1517 	bus_size_t iosize;
1518 	int rc, sk_nodenum;
1519 	u_int32_t command;
1520 	const char *revstr;
1521 	const struct sysctlnode *node;
1522 
1523 	sc->sk_dev = self;
1524 	aprint_naive("\n");
1525 
1526 	DPRINTFN(2, ("begin skc_attach\n"));
1527 
1528 	/*
1529 	 * Handle power management nonsense.
1530 	 */
1531 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1532 
1533 	if (command == 0x01) {
1534 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1535 		if (command & SK_PSTATE_MASK) {
1536 			u_int32_t		xiobase, membase, irq;
1537 
1538 			/* Save important PCI config data. */
1539 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1540 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1541 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1542 
1543 			/* Reset the power state. */
1544 			aprint_normal_dev(sc->sk_dev,
1545 			    "chip is in D%d power mode -- setting to D0\n",
1546 			    command & SK_PSTATE_MASK);
1547 			command &= 0xFFFFFFFC;
1548 			pci_conf_write(pc, pa->pa_tag,
1549 			    SK_PCI_PWRMGMTCTRL, command);
1550 
1551 			/* Restore PCI config data. */
1552 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1553 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1554 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1555 		}
1556 	}
1557 
1558 	/*
1559 	 * Map control/status registers.
1560 	 */
1561 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1562 	command |= PCI_COMMAND_IO_ENABLE |
1563 	    PCI_COMMAND_MEM_ENABLE |
1564 	    PCI_COMMAND_MASTER_ENABLE;
1565 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1566 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1567 
1568 #ifdef SK_USEIOSPACE
1569 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
1570 		aprint_error(": failed to enable I/O ports!\n");
1571 		return;
1572 	}
1573 	/*
1574 	 * Map control/status registers.
1575 	 */
1576 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1577 			&sc->sk_btag, &sc->sk_bhandle,
1578 			&iobase, &iosize)) {
1579 		aprint_error(": can't find i/o space\n");
1580 		return;
1581 	}
1582 #else
1583 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1584 		aprint_error(": failed to enable memory mapping!\n");
1585 		return;
1586 	}
1587 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1588 	switch (memtype) {
1589         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1590         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1591                 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1592 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1593 				   &iobase, &iosize) == 0)
1594                         break;
1595         default:
1596                 aprint_error_dev(sc->sk_dev, "can't find mem space\n");
1597                 return;
1598 	}
1599 
1600 	DPRINTFN(2, ("skc_attach: iobase=%#" PRIxPADDR ", iosize=%zx\n",
1601 	    iobase, iosize));
1602 #endif
1603 	sc->sc_dmatag = pa->pa_dmat;
1604 
1605 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1606 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1607 
1608 	/* bail out here if chip is not recognized */
1609 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1610 		aprint_error_dev(sc->sk_dev, "unknown chip type\n");
1611 		goto fail;
1612 	}
1613 	if (SK_IS_YUKON2(sc)) {
1614 		aprint_error_dev(sc->sk_dev,
1615 		    "Does not support Yukon2--try msk(4).\n");
1616 		goto fail;
1617 	}
1618 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1619 
1620 	/* Allocate interrupt */
1621 	if (pci_intr_map(pa, &ih)) {
1622 		aprint_error(": couldn't map interrupt\n");
1623 		goto fail;
1624 	}
1625 
1626 	intrstr = pci_intr_string(pc, ih);
1627 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1628 	if (sc->sk_intrhand == NULL) {
1629 		aprint_error(": couldn't establish interrupt");
1630 		if (intrstr != NULL)
1631 			aprint_error(" at %s", intrstr);
1632 		aprint_error("\n");
1633 		goto fail;
1634 	}
1635 	aprint_normal(": %s\n", intrstr);
1636 
1637 	/* Reset the adapter. */
1638 	sk_reset(sc);
1639 
1640 	/* Read and save vital product data from EEPROM. */
1641 	sk_vpd_read(sc);
1642 
1643 	if (sc->sk_type == SK_GENESIS) {
1644 		u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1645 		/* Read and save RAM size and RAMbuffer offset */
1646 		switch (val) {
1647 		case SK_RAMSIZE_512K_64:
1648 			sc->sk_ramsize = 0x80000;
1649 			sc->sk_rboff = SK_RBOFF_0;
1650 			break;
1651 		case SK_RAMSIZE_1024K_64:
1652 			sc->sk_ramsize = 0x100000;
1653 			sc->sk_rboff = SK_RBOFF_80000;
1654 			break;
1655 		case SK_RAMSIZE_1024K_128:
1656 			sc->sk_ramsize = 0x100000;
1657 			sc->sk_rboff = SK_RBOFF_0;
1658 			break;
1659 		case SK_RAMSIZE_2048K_128:
1660 			sc->sk_ramsize = 0x200000;
1661 			sc->sk_rboff = SK_RBOFF_0;
1662 			break;
1663 		default:
1664 			aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n",
1665 			       val);
1666 			goto fail_1;
1667 			break;
1668 		}
1669 
1670 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1671 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
1672 			     sc->sk_rboff));
1673 	} else {
1674 	  	u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1675 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
1676 		sc->sk_rboff = SK_RBOFF_0;
1677 
1678 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1679 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
1680 			     sc->sk_rboff));
1681 	}
1682 
1683 	/* Read and save physical media type */
1684 	switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1685 	case SK_PMD_1000BASESX:
1686 		sc->sk_pmd = IFM_1000_SX;
1687 		break;
1688 	case SK_PMD_1000BASELX:
1689 		sc->sk_pmd = IFM_1000_LX;
1690 		break;
1691 	case SK_PMD_1000BASECX:
1692 		sc->sk_pmd = IFM_1000_CX;
1693 		break;
1694 	case SK_PMD_1000BASETX:
1695 	case SK_PMD_1000BASETX_ALT:
1696 		sc->sk_pmd = IFM_1000_T;
1697 		break;
1698 	default:
1699 		aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n",
1700 		    sk_win_read_1(sc, SK_PMDTYPE));
1701 		goto fail_1;
1702 	}
1703 
1704 	/* determine whether to name it with vpd or just make it up */
1705 	/* Marvell Yukon VPD's can freqently be bogus */
1706 
1707 	switch (pa->pa_id) {
1708 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1709 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1710 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1711 	case PCI_PRODUCT_3COM_3C940:
1712 	case PCI_PRODUCT_DLINK_DGE530T:
1713 	case PCI_PRODUCT_DLINK_DGE560T:
1714 	case PCI_PRODUCT_DLINK_DGE560T_2:
1715 	case PCI_PRODUCT_LINKSYS_EG1032:
1716 	case PCI_PRODUCT_LINKSYS_EG1064:
1717 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1718 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1719 	case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1720 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1721 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
1722 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
1723 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1724 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1725  		sc->sk_name = sc->sk_vpd_prodname;
1726  		break;
1727 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
1728 	/* whoops yukon vpd prodname bears no resemblance to reality */
1729 		switch (sc->sk_type) {
1730 		case SK_GENESIS:
1731 			sc->sk_name = sc->sk_vpd_prodname;
1732 			break;
1733 		case SK_YUKON:
1734 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1735 			break;
1736 		case SK_YUKON_LITE:
1737 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1738 			break;
1739 		case SK_YUKON_LP:
1740 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1741 			break;
1742 		default:
1743 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1744 		}
1745 
1746 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1747 
1748 		if ( sc->sk_type == SK_YUKON ) {
1749 			uint32_t flashaddr;
1750 			uint8_t testbyte;
1751 
1752 			flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1753 
1754 			/* test Flash-Address Register */
1755 			sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1756 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1757 
1758 			if (testbyte != 0) {
1759 				/* this is yukon lite Rev. A0 */
1760 				sc->sk_type = SK_YUKON_LITE;
1761 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
1762 				/* restore Flash-Address Register */
1763 				sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1764 			}
1765 		}
1766 		break;
1767 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
1768 		sc->sk_name = sc->sk_vpd_prodname;
1769 		break;
1770  	default:
1771 		sc->sk_name = "Unknown Marvell";
1772 	}
1773 
1774 
1775 	if ( sc->sk_type == SK_YUKON_LITE ) {
1776 		switch (sc->sk_rev) {
1777 		case SK_YUKON_LITE_REV_A0:
1778 			revstr = "A0";
1779 			break;
1780 		case SK_YUKON_LITE_REV_A1:
1781 			revstr = "A1";
1782 			break;
1783 		case SK_YUKON_LITE_REV_A3:
1784 			revstr = "A3";
1785 			break;
1786 		default:
1787 			revstr = "";
1788 		}
1789 	} else {
1790 		revstr = "";
1791 	}
1792 
1793 	/* Announce the product name. */
1794 	aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n",
1795 			      sc->sk_name, revstr, sc->sk_rev);
1796 
1797 	skca.skc_port = SK_PORT_A;
1798 	(void)config_found(sc->sk_dev, &skca, skcprint);
1799 
1800 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1801 		skca.skc_port = SK_PORT_B;
1802 		(void)config_found(sc->sk_dev, &skca, skcprint);
1803 	}
1804 
1805 	/* Turn on the 'driver is loaded' LED. */
1806 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1807 
1808 	/* skc sysctl setup */
1809 
1810 	sc->sk_int_mod = SK_IM_DEFAULT;
1811 	sc->sk_int_mod_pending = 0;
1812 
1813 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1814 	    0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1815 	    SYSCTL_DESCR("skc per-controller controls"),
1816 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1817 	    CTL_EOL)) != 0) {
1818 		aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1819 		goto fail_1;
1820 	}
1821 
1822 	sk_nodenum = node->sysctl_num;
1823 
1824 	/* interrupt moderation time in usecs */
1825 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1826 	    CTLFLAG_READWRITE,
1827 	    CTLTYPE_INT, "int_mod",
1828 	    SYSCTL_DESCR("sk interrupt moderation timer"),
1829 	    sk_sysctl_handler, 0, sc,
1830 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1831 	    CTL_EOL)) != 0) {
1832 		aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
1833 		goto fail_1;
1834 	}
1835 
1836 	if (!pmf_device_register(self, skc_suspend, skc_resume))
1837 		aprint_error_dev(self, "couldn't establish power handler\n");
1838 
1839 	return;
1840 
1841 fail_1:
1842 	pci_intr_disestablish(pc, sc->sk_intrhand);
1843 fail:
1844 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1845 }
1846 
1847 int
1848 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1849 {
1850 	struct sk_softc		*sc = sc_if->sk_softc;
1851 	struct sk_tx_desc	*f = NULL;
1852 	u_int32_t		frag, cur, cnt = 0, sk_ctl;
1853 	int			i;
1854 	struct sk_txmap_entry	*entry;
1855 	bus_dmamap_t		txmap;
1856 
1857 	DPRINTFN(3, ("sk_encap\n"));
1858 
1859 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1860 	if (entry == NULL) {
1861 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
1862 		return ENOBUFS;
1863 	}
1864 	txmap = entry->dmamap;
1865 
1866 	cur = frag = *txidx;
1867 
1868 #ifdef SK_DEBUG
1869 	if (skdebug >= 3)
1870 		sk_dump_mbuf(m_head);
1871 #endif
1872 
1873 	/*
1874 	 * Start packing the mbufs in this chain into
1875 	 * the fragment pointers. Stop when we run out
1876 	 * of fragments or hit the end of the mbuf chain.
1877 	 */
1878 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1879 	    BUS_DMA_NOWAIT)) {
1880 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1881 		return ENOBUFS;
1882 	}
1883 
1884 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1885 
1886 	/* Sync the DMA map. */
1887 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1888 	    BUS_DMASYNC_PREWRITE);
1889 
1890 	for (i = 0; i < txmap->dm_nsegs; i++) {
1891 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1892 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1893 			return ENOBUFS;
1894 		}
1895 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
1896 		f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1897 		sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1898 		if (cnt == 0)
1899 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
1900 		else
1901 			sk_ctl |= SK_TXCTL_OWN;
1902 		f->sk_ctl = htole32(sk_ctl);
1903 		cur = frag;
1904 		SK_INC(frag, SK_TX_RING_CNT);
1905 		cnt++;
1906 	}
1907 
1908 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1909 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1910 
1911 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
1912 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1913 		htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1914 
1915 	/* Sync descriptors before handing to chip */
1916 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1917 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1918 
1919 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1920 		htole32(SK_TXCTL_OWN);
1921 
1922 	/* Sync first descriptor to hand it off */
1923 	SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1924 
1925 	sc_if->sk_cdata.sk_tx_cnt += cnt;
1926 
1927 #ifdef SK_DEBUG
1928 	if (skdebug >= 3) {
1929 		struct sk_tx_desc *desc;
1930 		u_int32_t idx;
1931 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1932 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1933 			sk_dump_txdesc(desc, idx);
1934 		}
1935 	}
1936 #endif
1937 
1938 	*txidx = frag;
1939 
1940 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
1941 
1942 	return 0;
1943 }
1944 
1945 void
1946 sk_start(struct ifnet *ifp)
1947 {
1948         struct sk_if_softc	*sc_if = ifp->if_softc;
1949         struct sk_softc		*sc = sc_if->sk_softc;
1950         struct mbuf		*m_head = NULL;
1951         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
1952 	int			pkts = 0;
1953 
1954 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1955 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1956 
1957 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1958 		IFQ_POLL(&ifp->if_snd, m_head);
1959 		if (m_head == NULL)
1960 			break;
1961 
1962 		/*
1963 		 * Pack the data into the transmit ring. If we
1964 		 * don't have room, set the OACTIVE flag and wait
1965 		 * for the NIC to drain the ring.
1966 		 */
1967 		if (sk_encap(sc_if, m_head, &idx)) {
1968 			ifp->if_flags |= IFF_OACTIVE;
1969 			break;
1970 		}
1971 
1972 		/* now we are committed to transmit the packet */
1973 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1974 		pkts++;
1975 
1976 		/*
1977 		 * If there's a BPF listener, bounce a copy of this frame
1978 		 * to him.
1979 		 */
1980 		bpf_mtap(ifp, m_head);
1981 	}
1982 	if (pkts == 0)
1983 		return;
1984 
1985 	/* Transmit */
1986 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
1987 		sc_if->sk_cdata.sk_tx_prod = idx;
1988 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1989 
1990 		/* Set a timeout in case the chip goes out to lunch. */
1991 		ifp->if_timer = 5;
1992 	}
1993 }
1994 
1995 
1996 void
1997 sk_watchdog(struct ifnet *ifp)
1998 {
1999 	struct sk_if_softc *sc_if = ifp->if_softc;
2000 
2001 	/*
2002 	 * Reclaim first as there is a possibility of losing Tx completion
2003 	 * interrupts.
2004 	 */
2005 	sk_txeof(sc_if);
2006 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2007 		aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
2008 
2009 		ifp->if_oerrors++;
2010 
2011 		sk_init(ifp);
2012 	}
2013 }
2014 
2015 void
2016 sk_shutdown(void *v)
2017 {
2018 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
2019 	struct sk_softc		*sc = sc_if->sk_softc;
2020 	struct ifnet 		*ifp = &sc_if->sk_ethercom.ec_if;
2021 
2022 	DPRINTFN(2, ("sk_shutdown\n"));
2023 	sk_stop(ifp,1);
2024 
2025 	/* Turn off the 'driver is loaded' LED. */
2026 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2027 
2028 	/*
2029 	 * Reset the GEnesis controller. Doing this should also
2030 	 * assert the resets on the attached XMAC(s).
2031 	 */
2032 	sk_reset(sc);
2033 }
2034 
2035 void
2036 sk_rxeof(struct sk_if_softc *sc_if)
2037 {
2038 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2039 	struct mbuf		*m;
2040 	struct sk_chain		*cur_rx;
2041 	struct sk_rx_desc	*cur_desc;
2042 	int			i, cur, total_len = 0;
2043 	u_int32_t		rxstat, sk_ctl;
2044 	bus_dmamap_t		dmamap;
2045 
2046 	i = sc_if->sk_cdata.sk_rx_prod;
2047 
2048 	DPRINTFN(3, ("sk_rxeof %d\n", i));
2049 
2050 	for (;;) {
2051 		cur = i;
2052 
2053 		/* Sync the descriptor */
2054 		SK_CDRXSYNC(sc_if, cur,
2055 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2056 
2057 		sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2058 		if (sk_ctl & SK_RXCTL_OWN) {
2059 			/* Invalidate the descriptor -- it's not ready yet */
2060 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2061 			sc_if->sk_cdata.sk_rx_prod = i;
2062 			break;
2063 		}
2064 
2065 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2066 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2067 		dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2068 
2069 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2070 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2071 
2072 		rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2073 		m = cur_rx->sk_mbuf;
2074 		cur_rx->sk_mbuf = NULL;
2075 		total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2076 
2077 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
2078 
2079 		SK_INC(i, SK_RX_RING_CNT);
2080 
2081 		if (rxstat & XM_RXSTAT_ERRFRAME) {
2082 			ifp->if_ierrors++;
2083 			sk_newbuf(sc_if, cur, m, dmamap);
2084 			continue;
2085 		}
2086 
2087 		/*
2088 		 * Try to allocate a new jumbo buffer. If that
2089 		 * fails, copy the packet to mbufs and put the
2090 		 * jumbo buffer back in the ring so it can be
2091 		 * re-used. If allocating mbufs fails, then we
2092 		 * have to drop the packet.
2093 		 */
2094 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2095 			struct mbuf		*m0;
2096 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2097 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
2098 			sk_newbuf(sc_if, cur, m, dmamap);
2099 			if (m0 == NULL) {
2100 				aprint_error_dev(sc_if->sk_dev, "no receive "
2101 				    "buffers available -- packet dropped!\n");
2102 				ifp->if_ierrors++;
2103 				continue;
2104 			}
2105 			m_adj(m0, ETHER_ALIGN);
2106 			m = m0;
2107 		} else {
2108 			m->m_pkthdr.rcvif = ifp;
2109 			m->m_pkthdr.len = m->m_len = total_len;
2110 		}
2111 
2112 		ifp->if_ipackets++;
2113 
2114 		bpf_mtap(ifp, m);
2115 		/* pass it on. */
2116 		(*ifp->if_input)(ifp, m);
2117 	}
2118 }
2119 
2120 void
2121 sk_txeof(struct sk_if_softc *sc_if)
2122 {
2123 	struct sk_softc		*sc = sc_if->sk_softc;
2124 	struct sk_tx_desc	*cur_tx;
2125 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2126 	u_int32_t		idx, sk_ctl;
2127 	struct sk_txmap_entry	*entry;
2128 
2129 	DPRINTFN(3, ("sk_txeof\n"));
2130 
2131 	/*
2132 	 * Go through our tx ring and free mbufs for those
2133 	 * frames that have been sent.
2134 	 */
2135 	idx = sc_if->sk_cdata.sk_tx_cons;
2136 	while (idx != sc_if->sk_cdata.sk_tx_prod) {
2137 		SK_CDTXSYNC(sc_if, idx, 1,
2138 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2139 
2140 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2141 		sk_ctl = le32toh(cur_tx->sk_ctl);
2142 #ifdef SK_DEBUG
2143 		if (skdebug >= 3)
2144 			sk_dump_txdesc(cur_tx, idx);
2145 #endif
2146 		if (sk_ctl & SK_TXCTL_OWN) {
2147 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2148 			break;
2149 		}
2150 		if (sk_ctl & SK_TXCTL_LASTFRAG)
2151 			ifp->if_opackets++;
2152 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2153 			entry = sc_if->sk_cdata.sk_tx_map[idx];
2154 
2155 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2156 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2157 
2158 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2159 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2160 
2161 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2162 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2163 					  link);
2164 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2165 		}
2166 		sc_if->sk_cdata.sk_tx_cnt--;
2167 		SK_INC(idx, SK_TX_RING_CNT);
2168 	}
2169 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
2170 		ifp->if_timer = 0;
2171 	else /* nudge chip to keep tx ring moving */
2172 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2173 
2174 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2175 		ifp->if_flags &= ~IFF_OACTIVE;
2176 
2177 	sc_if->sk_cdata.sk_tx_cons = idx;
2178 }
2179 
2180 void
2181 sk_tick(void *xsc_if)
2182 {
2183 	struct sk_if_softc *sc_if = xsc_if;
2184 	struct mii_data *mii = &sc_if->sk_mii;
2185 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2186 	int i;
2187 
2188 	DPRINTFN(3, ("sk_tick\n"));
2189 
2190 	if (!(ifp->if_flags & IFF_UP))
2191 		return;
2192 
2193 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2194 		sk_intr_bcom(sc_if);
2195 		return;
2196 	}
2197 
2198 	/*
2199 	 * According to SysKonnect, the correct way to verify that
2200 	 * the link has come back up is to poll bit 0 of the GPIO
2201 	 * register three times. This pin has the signal from the
2202 	 * link sync pin connected to it; if we read the same link
2203 	 * state 3 times in a row, we know the link is up.
2204 	 */
2205 	for (i = 0; i < 3; i++) {
2206 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2207 			break;
2208 	}
2209 
2210 	if (i != 3) {
2211 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2212 		return;
2213 	}
2214 
2215 	/* Turn the GP0 interrupt back on. */
2216 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2217 	SK_XM_READ_2(sc_if, XM_ISR);
2218 	mii_tick(mii);
2219 	mii_pollstat(mii);
2220 	callout_stop(&sc_if->sk_tick_ch);
2221 }
2222 
2223 void
2224 sk_intr_bcom(struct sk_if_softc *sc_if)
2225 {
2226 	struct mii_data *mii = &sc_if->sk_mii;
2227 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2228 	int status;
2229 
2230 
2231 	DPRINTFN(3, ("sk_intr_bcom\n"));
2232 
2233 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2234 
2235 	/*
2236 	 * Read the PHY interrupt register to make sure
2237 	 * we clear any pending interrupts.
2238 	 */
2239 	status = sk_xmac_miibus_readreg(sc_if->sk_dev,
2240 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2241 
2242 	if (!(ifp->if_flags & IFF_RUNNING)) {
2243 		sk_init_xmac(sc_if);
2244 		return;
2245 	}
2246 
2247 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2248 		int lstat;
2249 		lstat = sk_xmac_miibus_readreg(sc_if->sk_dev,
2250 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2251 
2252 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2253 			(void)mii_mediachg(mii);
2254 			/* Turn off the link LED. */
2255 			SK_IF_WRITE_1(sc_if, 0,
2256 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
2257 			sc_if->sk_link = 0;
2258 		} else if (status & BRGPHY_ISR_LNK_CHG) {
2259 			sk_xmac_miibus_writereg(sc_if->sk_dev,
2260 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2261 			mii_tick(mii);
2262 			sc_if->sk_link = 1;
2263 			/* Turn on the link LED. */
2264 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2265 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2266 			    SK_LINKLED_BLINK_OFF);
2267 			mii_pollstat(mii);
2268 		} else {
2269 			mii_tick(mii);
2270 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2271 		}
2272 	}
2273 
2274 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2275 }
2276 
2277 void
2278 sk_intr_xmac(struct sk_if_softc	*sc_if)
2279 {
2280 	u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2281 
2282 	DPRINTFN(3, ("sk_intr_xmac\n"));
2283 
2284 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2285 		if (status & XM_ISR_GP0_SET) {
2286 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2287 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2288 		}
2289 
2290 		if (status & XM_ISR_AUTONEG_DONE) {
2291 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2292 		}
2293 	}
2294 
2295 	if (status & XM_IMR_TX_UNDERRUN)
2296 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2297 
2298 	if (status & XM_IMR_RX_OVERRUN)
2299 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2300 }
2301 
2302 void
2303 sk_intr_yukon(struct sk_if_softc *sc_if)
2304 {
2305 	int status;
2306 
2307 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2308 
2309 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2310 }
2311 
2312 int
2313 sk_intr(void *xsc)
2314 {
2315 	struct sk_softc		*sc = xsc;
2316 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
2317 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
2318 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2319 	u_int32_t		status;
2320 	int			claimed = 0;
2321 
2322 	if (sc_if0 != NULL)
2323 		ifp0 = &sc_if0->sk_ethercom.ec_if;
2324 	if (sc_if1 != NULL)
2325 		ifp1 = &sc_if1->sk_ethercom.ec_if;
2326 
2327 	for (;;) {
2328 		status = CSR_READ_4(sc, SK_ISSR);
2329 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2330 
2331 		if (!(status & sc->sk_intrmask))
2332 			break;
2333 
2334 		claimed = 1;
2335 
2336 		/* Handle receive interrupts first. */
2337 		if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2338 			sk_rxeof(sc_if0);
2339 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2340 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2341 		}
2342 		if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2343 			sk_rxeof(sc_if1);
2344 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2345 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2346 		}
2347 
2348 		/* Then transmit interrupts. */
2349 		if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2350 			sk_txeof(sc_if0);
2351 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2352 			    SK_TXBMU_CLR_IRQ_EOF);
2353 		}
2354 		if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2355 			sk_txeof(sc_if1);
2356 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2357 			    SK_TXBMU_CLR_IRQ_EOF);
2358 		}
2359 
2360 		/* Then MAC interrupts. */
2361 		if (sc_if0 && (status & SK_ISR_MAC1) &&
2362 		    (ifp0->if_flags & IFF_RUNNING)) {
2363 			if (sc->sk_type == SK_GENESIS)
2364 				sk_intr_xmac(sc_if0);
2365 			else
2366 				sk_intr_yukon(sc_if0);
2367 		}
2368 
2369 		if (sc_if1 && (status & SK_ISR_MAC2) &&
2370 		    (ifp1->if_flags & IFF_RUNNING)) {
2371 			if (sc->sk_type == SK_GENESIS)
2372 				sk_intr_xmac(sc_if1);
2373 			else
2374 				sk_intr_yukon(sc_if1);
2375 
2376 		}
2377 
2378 		if (status & SK_ISR_EXTERNAL_REG) {
2379 			if (sc_if0 != NULL &&
2380 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2381 				sk_intr_bcom(sc_if0);
2382 
2383 			if (sc_if1 != NULL &&
2384 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2385 				sk_intr_bcom(sc_if1);
2386 		}
2387 	}
2388 
2389 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2390 
2391 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2392 		sk_start(ifp0);
2393 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2394 		sk_start(ifp1);
2395 
2396 #if NRND > 0
2397 	if (RND_ENABLED(&sc->rnd_source))
2398 		rnd_add_uint32(&sc->rnd_source, status);
2399 #endif
2400 
2401 	if (sc->sk_int_mod_pending)
2402 		sk_update_int_mod(sc);
2403 
2404 	return claimed;
2405 }
2406 
2407 void
2408 sk_init_xmac(struct sk_if_softc	*sc_if)
2409 {
2410 	struct sk_softc		*sc = sc_if->sk_softc;
2411 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2412 	static const struct sk_bcom_hack     bhack[] = {
2413 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2414 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2415 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2416 	{ 0, 0 } };
2417 
2418 	DPRINTFN(1, ("sk_init_xmac\n"));
2419 
2420 	/* Unreset the XMAC. */
2421 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2422 	DELAY(1000);
2423 
2424 	/* Reset the XMAC's internal state. */
2425 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2426 
2427 	/* Save the XMAC II revision */
2428 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2429 
2430 	/*
2431 	 * Perform additional initialization for external PHYs,
2432 	 * namely for the 1000baseTX cards that use the XMAC's
2433 	 * GMII mode.
2434 	 */
2435 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2436 		int			i = 0;
2437 		u_int32_t		val;
2438 
2439 		/* Take PHY out of reset. */
2440 		val = sk_win_read_4(sc, SK_GPIO);
2441 		if (sc_if->sk_port == SK_PORT_A)
2442 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2443 		else
2444 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2445 		sk_win_write_4(sc, SK_GPIO, val);
2446 
2447 		/* Enable GMII mode on the XMAC. */
2448 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2449 
2450 		sk_xmac_miibus_writereg(sc_if->sk_dev,
2451 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2452 		DELAY(10000);
2453 		sk_xmac_miibus_writereg(sc_if->sk_dev,
2454 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2455 
2456 		/*
2457 		 * Early versions of the BCM5400 apparently have
2458 		 * a bug that requires them to have their reserved
2459 		 * registers initialized to some magic values. I don't
2460 		 * know what the numbers do, I'm just the messenger.
2461 		 */
2462 		if (sk_xmac_miibus_readreg(sc_if->sk_dev,
2463 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2464 			while (bhack[i].reg) {
2465 				sk_xmac_miibus_writereg(sc_if->sk_dev,
2466 				    SK_PHYADDR_BCOM, bhack[i].reg,
2467 				    bhack[i].val);
2468 				i++;
2469 			}
2470 		}
2471 	}
2472 
2473 	/* Set station address */
2474 	SK_XM_WRITE_2(sc_if, XM_PAR0,
2475 		      *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2476 	SK_XM_WRITE_2(sc_if, XM_PAR1,
2477 		      *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2478 	SK_XM_WRITE_2(sc_if, XM_PAR2,
2479 		      *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2480 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2481 
2482 	if (ifp->if_flags & IFF_PROMISC)
2483 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2484 	else
2485 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2486 
2487 	if (ifp->if_flags & IFF_BROADCAST)
2488 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2489 	else
2490 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2491 
2492 	/* We don't need the FCS appended to the packet. */
2493 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2494 
2495 	/* We want short frames padded to 60 bytes. */
2496 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2497 
2498 	/*
2499 	 * Enable the reception of all error frames. This is is
2500 	 * a necessary evil due to the design of the XMAC. The
2501 	 * XMAC's receive FIFO is only 8K in size, however jumbo
2502 	 * frames can be up to 9000 bytes in length. When bad
2503 	 * frame filtering is enabled, the XMAC's RX FIFO operates
2504 	 * in 'store and forward' mode. For this to work, the
2505 	 * entire frame has to fit into the FIFO, but that means
2506 	 * that jumbo frames larger than 8192 bytes will be
2507 	 * truncated. Disabling all bad frame filtering causes
2508 	 * the RX FIFO to operate in streaming mode, in which
2509 	 * case the XMAC will start transfering frames out of the
2510 	 * RX FIFO as soon as the FIFO threshold is reached.
2511 	 */
2512 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2513 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2514 	    XM_MODE_RX_INRANGELEN);
2515 
2516 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2517 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2518 	else
2519 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2520 
2521 	/*
2522 	 * Bump up the transmit threshold. This helps hold off transmit
2523 	 * underruns when we're blasting traffic from both ports at once.
2524 	 */
2525 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2526 
2527 	/* Set multicast filter */
2528 	sk_setmulti(sc_if);
2529 
2530 	/* Clear and enable interrupts */
2531 	SK_XM_READ_2(sc_if, XM_ISR);
2532 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2533 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2534 	else
2535 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2536 
2537 	/* Configure MAC arbiter */
2538 	switch (sc_if->sk_xmac_rev) {
2539 	case XM_XMAC_REV_B2:
2540 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2541 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2542 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2543 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2544 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2545 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2546 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2547 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2548 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2549 		break;
2550 	case XM_XMAC_REV_C1:
2551 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2552 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2553 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2554 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2555 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2556 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2557 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2558 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2559 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2560 		break;
2561 	default:
2562 		break;
2563 	}
2564 	sk_win_write_2(sc, SK_MACARB_CTL,
2565 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2566 
2567 	sc_if->sk_link = 1;
2568 }
2569 
2570 void sk_init_yukon(struct sk_if_softc *sc_if)
2571 {
2572 	u_int32_t		/*mac, */phy;
2573 	u_int16_t		reg;
2574 	struct sk_softc		*sc;
2575 	int			i;
2576 
2577 	DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2578 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2579 
2580 	sc = sc_if->sk_softc;
2581 	if (sc->sk_type == SK_YUKON_LITE &&
2582 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2583 		/* Take PHY out of reset. */
2584 		sk_win_write_4(sc, SK_GPIO,
2585 			(sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2586 	}
2587 
2588 
2589 	/* GMAC and GPHY Reset */
2590 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2591 
2592 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
2593 
2594 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2595 	DELAY(1000);
2596 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2597 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2598 	DELAY(1000);
2599 
2600 
2601 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
2602 
2603 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2604 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2605 
2606 	switch (sc_if->sk_softc->sk_pmd) {
2607 	case IFM_1000_SX:
2608 	case IFM_1000_LX:
2609 		phy |= SK_GPHY_FIBER;
2610 		break;
2611 
2612 	case IFM_1000_CX:
2613 	case IFM_1000_T:
2614 		phy |= SK_GPHY_COPPER;
2615 		break;
2616 	}
2617 
2618 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2619 
2620 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2621 	DELAY(1000);
2622 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2623 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2624 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2625 
2626 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2627 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2628 
2629 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
2630 
2631 	/* unused read of the interrupt source register */
2632 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
2633 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2634 
2635 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2636 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2637 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2638 
2639 	/* MIB Counter Clear Mode set */
2640         reg |= YU_PAR_MIB_CLR;
2641 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2642 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2643 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2644 
2645 	/* MIB Counter Clear Mode clear */
2646 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
2647         reg &= ~YU_PAR_MIB_CLR;
2648 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2649 
2650 	/* receive control reg */
2651 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
2652 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2653 		      YU_RCR_CRCR);
2654 
2655 	/* transmit parameter register */
2656 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
2657 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2658 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2659 
2660 	/* serial mode register */
2661 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
2662 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2663 		      YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2664 		      YU_SMR_IPG_DATA(0x1e));
2665 
2666 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
2667 	/* Setup Yukon's address */
2668 	for (i = 0; i < 3; i++) {
2669 		/* Write Source Address 1 (unicast filter) */
2670 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2671 			      sc_if->sk_enaddr[i * 2] |
2672 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
2673 	}
2674 
2675 	for (i = 0; i < 3; i++) {
2676 		reg = sk_win_read_2(sc_if->sk_softc,
2677 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2678 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2679 	}
2680 
2681 	/* Set multicast filter */
2682 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
2683 	sk_setmulti(sc_if);
2684 
2685 	/* enable interrupt mask for counter overflows */
2686 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
2687 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2688 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2689 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2690 
2691 	/* Configure RX MAC FIFO */
2692 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2693 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2694 
2695 	/* Configure TX MAC FIFO */
2696 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2697 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2698 
2699 	DPRINTFN(6, ("sk_init_yukon: end\n"));
2700 }
2701 
2702 /*
2703  * Note that to properly initialize any part of the GEnesis chip,
2704  * you first have to take it out of reset mode.
2705  */
2706 int
2707 sk_init(struct ifnet *ifp)
2708 {
2709 	struct sk_if_softc	*sc_if = ifp->if_softc;
2710 	struct sk_softc		*sc = sc_if->sk_softc;
2711 	struct mii_data		*mii = &sc_if->sk_mii;
2712 	int			rc = 0, s;
2713 	u_int32_t		imr, imtimer_ticks;
2714 
2715 	DPRINTFN(1, ("sk_init\n"));
2716 
2717 	s = splnet();
2718 
2719 	if (ifp->if_flags & IFF_RUNNING) {
2720 		splx(s);
2721 		return 0;
2722 	}
2723 
2724 	/* Cancel pending I/O and free all RX/TX buffers. */
2725 	sk_stop(ifp,0);
2726 
2727 	if (sc->sk_type == SK_GENESIS) {
2728 		/* Configure LINK_SYNC LED */
2729 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2730 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2731 			      SK_LINKLED_LINKSYNC_ON);
2732 
2733 		/* Configure RX LED */
2734 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2735 			      SK_RXLEDCTL_COUNTER_START);
2736 
2737 		/* Configure TX LED */
2738 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2739 			      SK_TXLEDCTL_COUNTER_START);
2740 	}
2741 
2742 	/* Configure I2C registers */
2743 
2744 	/* Configure XMAC(s) */
2745 	switch (sc->sk_type) {
2746 	case SK_GENESIS:
2747 		sk_init_xmac(sc_if);
2748 		break;
2749 	case SK_YUKON:
2750 	case SK_YUKON_LITE:
2751 	case SK_YUKON_LP:
2752 		sk_init_yukon(sc_if);
2753 		break;
2754 	}
2755 	if ((rc = mii_mediachg(mii)) == ENXIO)
2756 		rc = 0;
2757 	else if (rc != 0)
2758 		goto out;
2759 
2760 	if (sc->sk_type == SK_GENESIS) {
2761 		/* Configure MAC FIFOs */
2762 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2763 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2764 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2765 
2766 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2767 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2768 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2769 	}
2770 
2771 	/* Configure transmit arbiter(s) */
2772 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2773 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2774 
2775 	/* Configure RAMbuffers */
2776 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2777 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2778 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2779 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2780 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2781 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2782 
2783 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2784 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2785 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2786 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2787 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2788 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2789 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2790 
2791 	/* Configure BMUs */
2792 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2793 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2794 	    SK_RX_RING_ADDR(sc_if, 0));
2795 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2796 
2797 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2798 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2799             SK_TX_RING_ADDR(sc_if, 0));
2800 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2801 
2802 	/* Init descriptors */
2803 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2804 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2805 		    "memory for rx buffers\n");
2806 		sk_stop(ifp,0);
2807 		splx(s);
2808 		return ENOBUFS;
2809 	}
2810 
2811 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2812 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2813 		    "memory for tx buffers\n");
2814 		sk_stop(ifp,0);
2815 		splx(s);
2816 		return ENOBUFS;
2817 	}
2818 
2819 	/* Set interrupt moderation if changed via sysctl. */
2820 	switch (sc->sk_type) {
2821 	case SK_GENESIS:
2822 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2823 		break;
2824 	case SK_YUKON_EC:
2825 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2826 		break;
2827 	default:
2828 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2829 	}
2830 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2831 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2832 		sk_win_write_4(sc, SK_IMTIMERINIT,
2833 		    SK_IM_USECS(sc->sk_int_mod));
2834 		aprint_verbose_dev(sc->sk_dev,
2835 		    "interrupt moderation is %d us\n", sc->sk_int_mod);
2836 	}
2837 
2838 	/* Configure interrupt handling */
2839 	CSR_READ_4(sc, SK_ISSR);
2840 	if (sc_if->sk_port == SK_PORT_A)
2841 		sc->sk_intrmask |= SK_INTRS1;
2842 	else
2843 		sc->sk_intrmask |= SK_INTRS2;
2844 
2845 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2846 
2847 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2848 
2849 	/* Start BMUs. */
2850 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2851 
2852 	if (sc->sk_type == SK_GENESIS) {
2853 		/* Enable XMACs TX and RX state machines */
2854 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2855 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2856 			       XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2857 	}
2858 
2859 	if (SK_YUKON_FAMILY(sc->sk_type)) {
2860 		u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2861 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2862 #if 0
2863 		/* XXX disable 100Mbps and full duplex mode? */
2864 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2865 #endif
2866 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2867 	}
2868 
2869 
2870 	ifp->if_flags |= IFF_RUNNING;
2871 	ifp->if_flags &= ~IFF_OACTIVE;
2872 
2873 out:
2874 	splx(s);
2875 	return rc;
2876 }
2877 
2878 void
2879 sk_stop(struct ifnet *ifp, int disable)
2880 {
2881         struct sk_if_softc	*sc_if = ifp->if_softc;
2882 	struct sk_softc		*sc = sc_if->sk_softc;
2883 	int			i;
2884 
2885 	DPRINTFN(1, ("sk_stop\n"));
2886 
2887 	callout_stop(&sc_if->sk_tick_ch);
2888 
2889 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2890 		u_int32_t		val;
2891 
2892 		/* Put PHY back into reset. */
2893 		val = sk_win_read_4(sc, SK_GPIO);
2894 		if (sc_if->sk_port == SK_PORT_A) {
2895 			val |= SK_GPIO_DIR0;
2896 			val &= ~SK_GPIO_DAT0;
2897 		} else {
2898 			val |= SK_GPIO_DIR2;
2899 			val &= ~SK_GPIO_DAT2;
2900 		}
2901 		sk_win_write_4(sc, SK_GPIO, val);
2902 	}
2903 
2904 	/* Turn off various components of this interface. */
2905 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2906 	switch (sc->sk_type) {
2907 	case SK_GENESIS:
2908 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2909 			      SK_TXMACCTL_XMAC_RESET);
2910 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2911 		break;
2912 	case SK_YUKON:
2913 	case SK_YUKON_LITE:
2914 	case SK_YUKON_LP:
2915 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2916 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2917 		break;
2918 	}
2919 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2920 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2921 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2922 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2923 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2924 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2925 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2926 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2927 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2928 
2929 	/* Disable interrupts */
2930 	if (sc_if->sk_port == SK_PORT_A)
2931 		sc->sk_intrmask &= ~SK_INTRS1;
2932 	else
2933 		sc->sk_intrmask &= ~SK_INTRS2;
2934 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2935 
2936 	SK_XM_READ_2(sc_if, XM_ISR);
2937 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2938 
2939 	/* Free RX and TX mbufs still in the queues. */
2940 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2941 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2942 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2943 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2944 		}
2945 	}
2946 
2947 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2948 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2949 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2950 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2951 		}
2952 	}
2953 
2954 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2955 }
2956 
2957 /* Power Management Framework */
2958 
2959 static bool
2960 skc_suspend(device_t dv, const pmf_qual_t *qual)
2961 {
2962 	struct sk_softc *sc = device_private(dv);
2963 
2964 	DPRINTFN(2, ("skc_suspend\n"));
2965 
2966 	/* Turn off the driver is loaded LED */
2967 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2968 
2969 	return true;
2970 }
2971 
2972 static bool
2973 skc_resume(device_t dv, const pmf_qual_t *qual)
2974 {
2975 	struct sk_softc *sc = device_private(dv);
2976 
2977 	DPRINTFN(2, ("skc_resume\n"));
2978 
2979 	sk_reset(sc);
2980 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
2981 
2982 	return true;
2983 }
2984 
2985 static bool
2986 sk_resume(device_t dv, const pmf_qual_t *qual)
2987 {
2988 	struct sk_if_softc *sc_if = device_private(dv);
2989 
2990 	sk_init_yukon(sc_if);
2991 	return true;
2992 }
2993 
2994 CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc),
2995     skc_probe, skc_attach, NULL, NULL);
2996 
2997 CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc),
2998     sk_probe, sk_attach, NULL, NULL);
2999 
3000 #ifdef SK_DEBUG
3001 void
3002 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
3003 {
3004 #define DESC_PRINT(X)					\
3005 	if (X)					\
3006 		printf("txdesc[%d]." #X "=%#x\n",	\
3007 		       idx, X);
3008 
3009 	DESC_PRINT(le32toh(desc->sk_ctl));
3010 	DESC_PRINT(le32toh(desc->sk_next));
3011 	DESC_PRINT(le32toh(desc->sk_data_lo));
3012 	DESC_PRINT(le32toh(desc->sk_data_hi));
3013 	DESC_PRINT(le32toh(desc->sk_xmac_txstat));
3014 	DESC_PRINT(le16toh(desc->sk_rsvd0));
3015 	DESC_PRINT(le16toh(desc->sk_csum_startval));
3016 	DESC_PRINT(le16toh(desc->sk_csum_startpos));
3017 	DESC_PRINT(le16toh(desc->sk_csum_writepos));
3018 	DESC_PRINT(le16toh(desc->sk_rsvd1));
3019 #undef PRINT
3020 }
3021 
3022 void
3023 sk_dump_bytes(const char *data, int len)
3024 {
3025 	int c, i, j;
3026 
3027 	for (i = 0; i < len; i += 16) {
3028 		printf("%08x  ", i);
3029 		c = len - i;
3030 		if (c > 16) c = 16;
3031 
3032 		for (j = 0; j < c; j++) {
3033 			printf("%02x ", data[i + j] & 0xff);
3034 			if ((j & 0xf) == 7 && j > 0)
3035 				printf(" ");
3036 		}
3037 
3038 		for (; j < 16; j++)
3039 			printf("   ");
3040 		printf("  ");
3041 
3042 		for (j = 0; j < c; j++) {
3043 			int ch = data[i + j] & 0xff;
3044 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
3045 		}
3046 
3047 		printf("\n");
3048 
3049 		if (c < 16)
3050 			break;
3051 	}
3052 }
3053 
3054 void
3055 sk_dump_mbuf(struct mbuf *m)
3056 {
3057 	int count = m->m_pkthdr.len;
3058 
3059 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3060 
3061 	while (count > 0 && m) {
3062 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3063 		       m, m->m_data, m->m_len);
3064 		sk_dump_bytes(mtod(m, char *), m->m_len);
3065 
3066 		count -= m->m_len;
3067 		m = m->m_next;
3068 	}
3069 }
3070 #endif
3071 
3072 static int
3073 sk_sysctl_handler(SYSCTLFN_ARGS)
3074 {
3075 	int error, t;
3076 	struct sysctlnode node;
3077 	struct sk_softc *sc;
3078 
3079 	node = *rnode;
3080 	sc = node.sysctl_data;
3081 	t = sc->sk_int_mod;
3082 	node.sysctl_data = &t;
3083 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3084 	if (error || newp == NULL)
3085 		return error;
3086 
3087 	if (t < SK_IM_MIN || t > SK_IM_MAX)
3088 		return EINVAL;
3089 
3090 	/* update the softc with sysctl-changed value, and mark
3091 	   for hardware update */
3092 	sc->sk_int_mod = t;
3093 	sc->sk_int_mod_pending = 1;
3094 	return 0;
3095 }
3096 
3097 /*
3098  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3099  * set up in skc_attach()
3100  */
3101 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3102 {
3103 	int rc;
3104 	const struct sysctlnode *node;
3105 
3106 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3107 	    0, CTLTYPE_NODE, "hw", NULL,
3108 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3109 		goto err;
3110 	}
3111 
3112 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
3113 	    0, CTLTYPE_NODE, "sk",
3114 	    SYSCTL_DESCR("sk interface controls"),
3115 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3116 		goto err;
3117 	}
3118 
3119 	sk_root_num = node->sysctl_num;
3120 	return;
3121 
3122 err:
3123 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3124 }
3125