xref: /netbsd-src/sys/dev/pci/if_sk.c (revision aaf4ece63a859a04e37cf3a7229b5fab0157cc06)
1 /*	$NetBSD: if_sk.c,v 1.18 2005/11/23 18:56:22 riz Exp $	*/
2 
3 /*-
4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the NetBSD
18  *	Foundation, Inc. and its contributors.
19  * 4. Neither the name of The NetBSD Foundation nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 /*	$OpenBSD: if_sk.c,v 1.33 2003/08/12 05:23:06 nate Exp $	*/
37 
38 /*
39  * Copyright (c) 1997, 1998, 1999, 2000
40  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. All advertising materials mentioning features or use of this software
51  *    must display the following acknowledgement:
52  *	This product includes software developed by Bill Paul.
53  * 4. Neither the name of the author nor the names of any co-contributors
54  *    may be used to endorse or promote products derived from this software
55  *    without specific prior written permission.
56  *
57  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
61  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
67  * THE POSSIBILITY OF SUCH DAMAGE.
68  *
69  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
70  */
71 
72 /*
73  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
74  *
75  * Permission to use, copy, modify, and distribute this software for any
76  * purpose with or without fee is hereby granted, provided that the above
77  * copyright notice and this permission notice appear in all copies.
78  *
79  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
80  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
81  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
82  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
83  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
84  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
85  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
86  */
87 
88 /*
89  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
90  * the SK-984x series adapters, both single port and dual port.
91  * References:
92  * 	The XaQti XMAC II datasheet,
93  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
95  *
96  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
97  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
98  * convenience to others until Vitesse corrects this problem:
99  *
100  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
101  *
102  * Written by Bill Paul <wpaul@ee.columbia.edu>
103  * Department of Electrical Engineering
104  * Columbia University, New York City
105  */
106 
107 /*
108  * The SysKonnect gigabit ethernet adapters consist of two main
109  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
110  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
111  * components and a PHY while the GEnesis controller provides a PCI
112  * interface with DMA support. Each card may have between 512K and
113  * 2MB of SRAM on board depending on the configuration.
114  *
115  * The SysKonnect GEnesis controller can have either one or two XMAC
116  * chips connected to it, allowing single or dual port NIC configurations.
117  * SysKonnect has the distinction of being the only vendor on the market
118  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
119  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
120  * XMAC registers. This driver takes advantage of these features to allow
121  * both XMACs to operate as independent interfaces.
122  */
123 
124 #include "bpfilter.h"
125 
126 #include <sys/param.h>
127 #include <sys/systm.h>
128 #include <sys/sockio.h>
129 #include <sys/mbuf.h>
130 #include <sys/malloc.h>
131 #include <sys/kernel.h>
132 #include <sys/socket.h>
133 #include <sys/device.h>
134 #include <sys/queue.h>
135 #include <sys/callout.h>
136 
137 #include <net/if.h>
138 #include <net/if_dl.h>
139 #include <net/if_types.h>
140 
141 #ifdef INET
142 #include <netinet/in.h>
143 #include <netinet/in_systm.h>
144 #include <netinet/in_var.h>
145 #include <netinet/ip.h>
146 #include <netinet/if_ether.h>
147 #endif
148 
149 #include <net/if_media.h>
150 
151 #if NBPFILTER > 0
152 #include <net/bpf.h>
153 #endif
154 
155 #include <dev/mii/mii.h>
156 #include <dev/mii/miivar.h>
157 #include <dev/mii/brgphyreg.h>
158 
159 #include <dev/pci/pcireg.h>
160 #include <dev/pci/pcivar.h>
161 #include <dev/pci/pcidevs.h>
162 
163 #define	SK_VERBOSE
164 /* #define SK_USEIOSPACE */
165 
166 #include <dev/pci/if_skreg.h>
167 #include <dev/pci/if_skvar.h>
168 
169 int skc_probe(struct device *, struct cfdata *, void *);
170 void skc_attach(struct device *, struct device *self, void *aux);
171 int sk_probe(struct device *, struct cfdata *, void *);
172 void sk_attach(struct device *, struct device *self, void *aux);
173 int skcprint(void *, const char *);
174 int sk_intr(void *);
175 void sk_intr_bcom(struct sk_if_softc *);
176 void sk_intr_xmac(struct sk_if_softc *);
177 void sk_intr_yukon(struct sk_if_softc *);
178 void sk_rxeof(struct sk_if_softc *);
179 void sk_txeof(struct sk_if_softc *);
180 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
181 void sk_start(struct ifnet *);
182 int sk_ioctl(struct ifnet *, u_long, caddr_t);
183 int sk_init(struct ifnet *);
184 void sk_init_xmac(struct sk_if_softc *);
185 void sk_init_yukon(struct sk_if_softc *);
186 void sk_stop(struct ifnet *, int);
187 void sk_watchdog(struct ifnet *);
188 void sk_shutdown(void *);
189 int sk_ifmedia_upd(struct ifnet *);
190 void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
191 void sk_reset(struct sk_softc *);
192 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
193 int sk_init_rx_ring(struct sk_if_softc *);
194 int sk_init_tx_ring(struct sk_if_softc *);
195 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
196 void sk_vpd_read_res(struct sk_softc *,
197 					struct vpd_res *, int);
198 void sk_vpd_read(struct sk_softc *);
199 
200 int sk_xmac_miibus_readreg(struct device *, int, int);
201 void sk_xmac_miibus_writereg(struct device *, int, int, int);
202 void sk_xmac_miibus_statchg(struct device *);
203 
204 int sk_marv_miibus_readreg(struct device *, int, int);
205 void sk_marv_miibus_writereg(struct device *, int, int, int);
206 void sk_marv_miibus_statchg(struct device *);
207 
208 u_int32_t sk_xmac_hash(caddr_t);
209 u_int32_t sk_yukon_hash(caddr_t);
210 void sk_setfilt(struct sk_if_softc *, caddr_t, int);
211 void sk_setmulti(struct sk_if_softc *);
212 void sk_tick(void *);
213 
214 /* #define SK_DEBUG 2 */
215 #ifdef SK_DEBUG
216 #define DPRINTF(x)	if (skdebug) printf x
217 #define DPRINTFN(n,x)	if (skdebug >= (n)) printf x
218 int	skdebug = SK_DEBUG;
219 
220 void sk_dump_txdesc(struct sk_tx_desc *, int);
221 void sk_dump_mbuf(struct mbuf *);
222 void sk_dump_bytes(const char *, int);
223 #else
224 #define DPRINTF(x)
225 #define DPRINTFN(n,x)
226 #endif
227 
228 #define SK_SETBIT(sc, reg, x)		\
229 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
230 
231 #define SK_CLRBIT(sc, reg, x)		\
232 	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
233 
234 #define SK_WIN_SETBIT_4(sc, reg, x)	\
235 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
236 
237 #define SK_WIN_CLRBIT_4(sc, reg, x)	\
238 	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
239 
240 #define SK_WIN_SETBIT_2(sc, reg, x)	\
241 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
242 
243 #define SK_WIN_CLRBIT_2(sc, reg, x)	\
244 	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
245 
246 /* supported device vendors */
247 static const struct sk_product {
248 	pci_vendor_id_t		sk_vendor;
249 	pci_product_id_t	sk_product;
250 } sk_products[] = {
251 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
252 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
253 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
254 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
255 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
256 	{ PCI_VENDOR_GALILEO, PCI_PRODUCT_GALILEO_SKNET, },
257 	{ PCI_VENDOR_GALILEO, PCI_PRODUCT_GALILEO_BELKIN, },
258 	{ 0, 0, }
259 };
260 
261 #define SK_LINKSYS_EG1032_SUBID	0x00151737
262 
263 static inline u_int32_t
264 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
265 {
266 #ifdef SK_USEIOSPACE
267 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
268 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
269 #else
270 	return CSR_READ_4(sc, reg);
271 #endif
272 }
273 
274 static inline u_int16_t
275 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
276 {
277 #ifdef SK_USEIOSPACE
278 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
279 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
280 #else
281 	return CSR_READ_2(sc, reg);
282 #endif
283 }
284 
285 static inline u_int8_t
286 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
287 {
288 #ifdef SK_USEIOSPACE
289 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
290 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
291 #else
292 	return CSR_READ_1(sc, reg);
293 #endif
294 }
295 
296 static inline void
297 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
298 {
299 #ifdef SK_USEIOSPACE
300 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
301 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
302 #else
303 	CSR_WRITE_4(sc, reg, x);
304 #endif
305 }
306 
307 static inline void
308 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
309 {
310 #ifdef SK_USEIOSPACE
311 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
312 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
313 #else
314 	CSR_WRITE_2(sc, reg, x);
315 #endif
316 }
317 
318 static inline void
319 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
320 {
321 #ifdef SK_USEIOSPACE
322 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
323 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
324 #else
325 	CSR_WRITE_1(sc, reg, x);
326 #endif
327 }
328 
329 /*
330  * The VPD EEPROM contains Vital Product Data, as suggested in
331  * the PCI 2.1 specification. The VPD data is separared into areas
332  * denoted by resource IDs. The SysKonnect VPD contains an ID string
333  * resource (the name of the adapter), a read-only area resource
334  * containing various key/data fields and a read/write area which
335  * can be used to store asset management information or log messages.
336  * We read the ID string and read-only into buffers attached to
337  * the controller softc structure for later use. At the moment,
338  * we only use the ID string during sk_attach().
339  */
340 u_int8_t
341 sk_vpd_readbyte(struct sk_softc *sc, int addr)
342 {
343 	int			i;
344 
345 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
346 	for (i = 0; i < SK_TIMEOUT; i++) {
347 		DELAY(1);
348 		if (sk_win_read_2(sc,
349 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
350 			break;
351 	}
352 
353 	if (i == SK_TIMEOUT)
354 		return(0);
355 
356 	return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
357 }
358 
359 void
360 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
361 {
362 	int			i;
363 	u_int8_t		*ptr;
364 
365 	ptr = (u_int8_t *)res;
366 	for (i = 0; i < sizeof(struct vpd_res); i++)
367 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
368 }
369 
370 void
371 sk_vpd_read(struct sk_softc *sc)
372 {
373 	int			pos = 0, i;
374 	struct vpd_res		res;
375 
376 	if (sc->sk_vpd_prodname != NULL)
377 		free(sc->sk_vpd_prodname, M_DEVBUF);
378 	if (sc->sk_vpd_readonly != NULL)
379 		free(sc->sk_vpd_readonly, M_DEVBUF);
380 	sc->sk_vpd_prodname = NULL;
381 	sc->sk_vpd_readonly = NULL;
382 
383 	sk_vpd_read_res(sc, &res, pos);
384 
385 	if (res.vr_id != VPD_RES_ID) {
386 		printf("%s: bad VPD resource id: expected %x got %x\n",
387 		    sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
388 		return;
389 	}
390 
391 	pos += sizeof(res);
392 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
393 	if (sc->sk_vpd_prodname == NULL)
394 		panic("sk_vpd_read");
395 	for (i = 0; i < res.vr_len; i++)
396 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
397 	sc->sk_vpd_prodname[i] = '\0';
398 	pos += i;
399 
400 	sk_vpd_read_res(sc, &res, pos);
401 
402 	if (res.vr_id != VPD_RES_READ) {
403 		printf("%s: bad VPD resource id: expected %x got %x\n",
404 		    sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
405 		return;
406 	}
407 
408 	pos += sizeof(res);
409 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
410 	if (sc->sk_vpd_readonly == NULL)
411 		panic("sk_vpd_read");
412 	for (i = 0; i < res.vr_len ; i++)
413 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
414 }
415 
416 int
417 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
418 {
419 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
420 	int i;
421 
422 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
423 
424 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
425 		return(0);
426 
427 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
428 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
429 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
430 		for (i = 0; i < SK_TIMEOUT; i++) {
431 			DELAY(1);
432 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
433 			    XM_MMUCMD_PHYDATARDY)
434 				break;
435 		}
436 
437 		if (i == SK_TIMEOUT) {
438 			printf("%s: phy failed to come ready\n",
439 			    sc_if->sk_dev.dv_xname);
440 			return(0);
441 		}
442 	}
443 	DELAY(1);
444 	return(SK_XM_READ_2(sc_if, XM_PHY_DATA));
445 }
446 
447 void
448 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
449 {
450 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
451 	int i;
452 
453 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
454 
455 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
456 	for (i = 0; i < SK_TIMEOUT; i++) {
457 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
458 			break;
459 	}
460 
461 	if (i == SK_TIMEOUT) {
462 		printf("%s: phy failed to come ready\n",
463 		    sc_if->sk_dev.dv_xname);
464 		return;
465 	}
466 
467 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
468 	for (i = 0; i < SK_TIMEOUT; i++) {
469 		DELAY(1);
470 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
471 			break;
472 	}
473 
474 	if (i == SK_TIMEOUT)
475 		printf("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
476 }
477 
478 void
479 sk_xmac_miibus_statchg(struct device *dev)
480 {
481 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
482 	struct mii_data *mii = &sc_if->sk_mii;
483 
484 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
485 
486 	/*
487 	 * If this is a GMII PHY, manually set the XMAC's
488 	 * duplex mode accordingly.
489 	 */
490 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
491 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
492 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
493 		} else {
494 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
495 		}
496 	}
497 }
498 
499 int
500 sk_marv_miibus_readreg(dev, phy, reg)
501 	struct device *dev;
502 	int phy, reg;
503 {
504 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
505 	u_int16_t val;
506 	int i;
507 
508 	if (phy != 0 ||
509 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
510 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
511 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
512 			     phy, reg));
513 		return(0);
514 	}
515 
516         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
517 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
518 
519 	for (i = 0; i < SK_TIMEOUT; i++) {
520 		DELAY(1);
521 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
522 		if (val & YU_SMICR_READ_VALID)
523 			break;
524 	}
525 
526 	if (i == SK_TIMEOUT) {
527 		printf("%s: phy failed to come ready\n",
528 		       sc_if->sk_dev.dv_xname);
529 		return 0;
530 	}
531 
532  	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
533 		     SK_TIMEOUT));
534 
535         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
536 
537 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
538 		     phy, reg, val));
539 
540 	return val;
541 }
542 
543 void
544 sk_marv_miibus_writereg(dev, phy, reg, val)
545 	struct device *dev;
546 	int phy, reg, val;
547 {
548 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
549 	int i;
550 
551 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
552 		     phy, reg, val));
553 
554 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
555 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
556 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
557 
558 	for (i = 0; i < SK_TIMEOUT; i++) {
559 		DELAY(1);
560 		if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
561 			break;
562 	}
563 }
564 
565 void
566 sk_marv_miibus_statchg(dev)
567 	struct device *dev;
568 {
569 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
570 		     SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
571 }
572 
573 #define SK_HASH_BITS		6
574 
575 u_int32_t
576 sk_xmac_hash(caddr_t addr)
577 {
578 	u_int32_t		crc;
579 
580 	crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
581 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
582 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
583 	return (crc);
584 }
585 
586 u_int32_t
587 sk_yukon_hash(caddr_t addr)
588 {
589 	u_int32_t		crc;
590 
591 	crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
592 	crc &= ((1 << SK_HASH_BITS) - 1);
593 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
594 	return (crc);
595 }
596 
597 void
598 sk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot)
599 {
600 	int base = XM_RXFILT_ENTRY(slot);
601 
602 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
603 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
604 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
605 }
606 
607 void
608 sk_setmulti(struct sk_if_softc *sc_if)
609 {
610 	struct sk_softc *sc = sc_if->sk_softc;
611 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
612 	u_int32_t hashes[2] = { 0, 0 };
613 	int h = 0, i;
614 	struct ethercom *ec = &sc_if->sk_ethercom;
615 	struct ether_multi *enm;
616 	struct ether_multistep step;
617 	u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
618 
619 	/* First, zot all the existing filters. */
620 	switch(sc->sk_type) {
621 	case SK_GENESIS:
622 		for (i = 1; i < XM_RXFILT_MAX; i++)
623 			sk_setfilt(sc_if, (caddr_t)&dummy, i);
624 
625 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
626 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
627 		break;
628 	case SK_YUKON:
629 	case SK_YUKON_LITE:
630 	case SK_YUKON_LP:
631 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
632 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
633 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
634 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
635 		break;
636 	}
637 
638 	/* Now program new ones. */
639 allmulti:
640 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
641 		hashes[0] = 0xFFFFFFFF;
642 		hashes[1] = 0xFFFFFFFF;
643 	} else {
644 		i = 1;
645 		/* First find the tail of the list. */
646 		ETHER_FIRST_MULTI(step, ec, enm);
647 		while (enm != NULL) {
648 			if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
649 				 ETHER_ADDR_LEN)) {
650 				ifp->if_flags |= IFF_ALLMULTI;
651 				goto allmulti;
652 			}
653 			DPRINTFN(2,("multicast address %s\n",
654 	    			ether_sprintf(enm->enm_addrlo)));
655 			/*
656 			 * Program the first XM_RXFILT_MAX multicast groups
657 			 * into the perfect filter. For all others,
658 			 * use the hash table.
659 			 */
660 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
661 				sk_setfilt(sc_if, enm->enm_addrlo, i);
662 				i++;
663 			}
664 			else {
665 				switch (sc->sk_type) {
666 				case SK_GENESIS:
667 					h = sk_xmac_hash(enm->enm_addrlo);
668 					break;
669 				case SK_YUKON:
670 				case SK_YUKON_LITE:
671 				case SK_YUKON_LP:
672 					h = sk_yukon_hash(enm->enm_addrlo);
673 					break;
674 				}
675 				if (h < 32)
676 					hashes[0] |= (1 << h);
677 				else
678 					hashes[1] |= (1 << (h - 32));
679 			}
680 
681 			ETHER_NEXT_MULTI(step, enm);
682 		}
683 	}
684 
685 	switch(sc->sk_type) {
686 	case SK_GENESIS:
687 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
688 			       XM_MODE_RX_USE_PERFECT);
689 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
690 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
691 		break;
692 	case SK_YUKON:
693 	case SK_YUKON_LITE:
694 	case SK_YUKON_LP:
695 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
696 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
697 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
698 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
699 		break;
700 	}
701 }
702 
703 int
704 sk_init_rx_ring(struct sk_if_softc *sc_if)
705 {
706 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
707 	struct sk_ring_data	*rd = sc_if->sk_rdata;
708 	int			i;
709 
710 	bzero((char *)rd->sk_rx_ring,
711 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
712 
713 	for (i = 0; i < SK_RX_RING_CNT; i++) {
714 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
715 		if (i == (SK_RX_RING_CNT - 1)) {
716 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
717 			rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if, 0);
718 		} else {
719 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
720 			rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if,i+1);
721 		}
722 	}
723 
724 	for (i = 0; i < SK_RX_RING_CNT; i++) {
725 		if (sk_newbuf(sc_if, i, NULL, NULL) == ENOBUFS) {
726 			printf("%s: failed alloc of %dth mbuf\n",
727 			    sc_if->sk_dev.dv_xname, i);
728 			return(ENOBUFS);
729 		}
730 	}
731 	sc_if->sk_cdata.sk_rx_prod = 0;
732 	sc_if->sk_cdata.sk_rx_cons = 0;
733 
734 	return(0);
735 }
736 
737 int
738 sk_init_tx_ring(struct sk_if_softc *sc_if)
739 {
740 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
741 	struct sk_ring_data	*rd = sc_if->sk_rdata;
742 	int			i;
743 
744 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
745 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
746 
747 	for (i = 0; i < SK_TX_RING_CNT; i++) {
748 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
749 		if (i == (SK_TX_RING_CNT - 1)) {
750 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
751 			rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if, 0);
752 		} else {
753 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
754 			rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if,i+1);
755 		}
756 	}
757 
758 	sc_if->sk_cdata.sk_tx_prod = 0;
759 	sc_if->sk_cdata.sk_tx_cons = 0;
760 	sc_if->sk_cdata.sk_tx_cnt = 0;
761 
762 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
763 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
764 
765 	return (0);
766 }
767 
768 int
769 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
770 	  bus_dmamap_t dmamap)
771 {
772 	struct sk_softc		*sc = sc_if->sk_softc;
773 	struct mbuf		*m_new = NULL;
774 	struct sk_chain		*c;
775 	struct sk_rx_desc	*r;
776 
777 	if (dmamap == NULL) {
778 		/* if (m) panic() */
779 
780 		if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1, MCLBYTES,
781 				      0, BUS_DMA_NOWAIT, &dmamap)) {
782 			printf("%s: can't create recv map\n",
783 			       sc_if->sk_dev.dv_xname);
784 			return(ENOMEM);
785 		}
786 	} else if (m == NULL)
787 		bus_dmamap_unload(sc->sc_dmatag, dmamap);
788 
789 	sc_if->sk_cdata.sk_rx_map[i] = dmamap;
790 
791 	if (m == NULL) {
792 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
793 		if (m_new == NULL) {
794 			printf("%s: no memory for rx list -- "
795 			    "packet dropped!\n", sc_if->sk_dev.dv_xname);
796 			return(ENOBUFS);
797 		}
798 
799 		/* Allocate the jumbo buffer */
800 		MCLGET(m_new, M_DONTWAIT);
801 		if (!(m_new->m_flags & M_EXT)) {
802 			m_freem(m_new);
803 			return (ENOBUFS);
804 		}
805 
806 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
807 
808 		m_adj(m_new, ETHER_ALIGN);
809 
810 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m_new,
811 					 BUS_DMA_NOWAIT))
812 			return(ENOBUFS);
813 	} else {
814 		/*
815 	 	 * We're re-using a previously allocated mbuf;
816 		 * be sure to re-init pointers and lengths to
817 		 * default values.
818 		 */
819 		m_new = m;
820 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
821 		m_adj(m_new, ETHER_ALIGN);
822 		m_new->m_data = m_new->m_ext.ext_buf;
823 	}
824 
825 	c = &sc_if->sk_cdata.sk_rx_chain[i];
826 	r = c->sk_desc;
827 	c->sk_mbuf = m_new;
828 	r->sk_data_lo = dmamap->dm_segs[0].ds_addr;
829 	r->sk_ctl = dmamap->dm_segs[0].ds_len | SK_RXSTAT;
830 
831 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
832 
833 	return(0);
834 }
835 
836 /*
837  * Set media options.
838  */
839 int
840 sk_ifmedia_upd(struct ifnet *ifp)
841 {
842 	struct sk_if_softc *sc_if = ifp->if_softc;
843 
844 	(void) sk_init(ifp);
845 	mii_mediachg(&sc_if->sk_mii);
846 	return(0);
847 }
848 
849 /*
850  * Report current media status.
851  */
852 void
853 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
854 {
855 	struct sk_if_softc *sc_if = ifp->if_softc;
856 
857 	mii_pollstat(&sc_if->sk_mii);
858 	ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
859 	ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
860 }
861 
862 int
863 sk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
864 {
865 	struct sk_if_softc *sc_if = ifp->if_softc;
866 	struct sk_softc *sc = sc_if->sk_softc;
867 	struct ifreq *ifr = (struct ifreq *) data;
868 	/* struct ifaddr *ifa = (struct ifaddr *) data; */
869 	struct mii_data *mii;
870 	int s, error = 0;
871 
872 	/* DPRINTFN(2, ("sk_ioctl\n")); */
873 
874 	s = splnet();
875 
876 	switch(command) {
877 
878 	case SIOCSIFFLAGS:
879 	        DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
880 		if (ifp->if_flags & IFF_UP) {
881 			if (ifp->if_flags & IFF_RUNNING &&
882 			    ifp->if_flags & IFF_PROMISC &&
883 			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
884 				switch(sc->sk_type) {
885 				case SK_GENESIS:
886 					SK_XM_SETBIT_4(sc_if, XM_MODE,
887 					    XM_MODE_RX_PROMISC);
888 					break;
889 				case SK_YUKON:
890 				case SK_YUKON_LITE:
891 				case SK_YUKON_LP:
892 					SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
893 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
894 					break;
895 				}
896 				sk_setmulti(sc_if);
897 			} else if (ifp->if_flags & IFF_RUNNING &&
898 			    !(ifp->if_flags & IFF_PROMISC) &&
899 			    sc_if->sk_if_flags & IFF_PROMISC) {
900 				switch(sc->sk_type) {
901 				case SK_GENESIS:
902 					SK_XM_CLRBIT_4(sc_if, XM_MODE,
903 					    XM_MODE_RX_PROMISC);
904 					break;
905 				case SK_YUKON:
906 				case SK_YUKON_LITE:
907 				case SK_YUKON_LP:
908 					SK_YU_SETBIT_2(sc_if, YUKON_RCR,
909 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
910 					break;
911 				}
912 
913 				sk_setmulti(sc_if);
914 			} else
915 				(void) sk_init(ifp);
916 		} else {
917 			if (ifp->if_flags & IFF_RUNNING)
918 				sk_stop(ifp,0);
919 		}
920 		sc_if->sk_if_flags = ifp->if_flags;
921 		error = 0;
922 		break;
923 
924 	case SIOCGIFMEDIA:
925 	case SIOCSIFMEDIA:
926 	        DPRINTFN(2, ("sk_ioctl MEDIA\n"));
927 		mii = &sc_if->sk_mii;
928 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
929 		break;
930 	default:
931 	        DPRINTFN(2, ("sk_ioctl ETHER\n"));
932 		error = ether_ioctl(ifp, command, data);
933 
934 		if ( error == ENETRESET) {
935 			if (ifp->if_flags & IFF_RUNNING) {
936 				sk_setmulti(sc_if);
937 				DPRINTFN(2, ("sk_ioctl setmulti called\n"));
938 			}
939 			error = 0;
940 		} else if ( error ) {
941 			splx(s);
942 			return error;
943 		}
944 		break;
945 	}
946 
947 	splx(s);
948 	return(error);
949 }
950 
951 /*
952  * Lookup: Check the PCI vendor and device, and return a pointer to
953  * The structure if the IDs match against our list.
954  */
955 
956 static const struct sk_product *
957 sk_lookup(const struct pci_attach_args *pa)
958 {
959 	const struct sk_product *psk;
960 
961 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
962 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
963 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
964 			return (psk);
965 	}
966 	return (NULL);
967 }
968 
969 /*
970  * Probe for a SysKonnect GEnesis chip.
971  */
972 
973 int
974 skc_probe(struct device *parent, struct cfdata *match, void *aux)
975 {
976 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
977 	const struct sk_product *psk;
978 	pcireg_t subid;
979 
980 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
981 
982 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
983 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
984 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
985 	    subid == SK_LINKSYS_EG1032_SUBID)
986 		return(1);
987 
988 	if ((psk = sk_lookup(pa))) {
989 		return(1);
990 	}
991 	return(0);
992 }
993 
994 /*
995  * Force the GEnesis into reset, then bring it out of reset.
996  */
997 void sk_reset(struct sk_softc *sc)
998 {
999 	DPRINTFN(2, ("sk_reset\n"));
1000 
1001 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1002 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1003 	if (SK_YUKON_FAMILY(sc->sk_type))
1004 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1005 
1006 	DELAY(1000);
1007 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1008 	DELAY(2);
1009 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1010 	if (SK_YUKON_FAMILY(sc->sk_type))
1011 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1012 
1013 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1014 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1015 		     CSR_READ_2(sc, SK_LINK_CTRL)));
1016 
1017 	if (sc->sk_type == SK_GENESIS) {
1018 		/* Configure packet arbiter */
1019 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1020 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1021 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1022 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1023 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1024 	}
1025 
1026 	/* Enable RAM interface */
1027 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1028 
1029 	/*
1030          * Configure interrupt moderation. The moderation timer
1031 	 * defers interrupts specified in the interrupt moderation
1032 	 * timer mask based on the timeout specified in the interrupt
1033 	 * moderation timer init register. Each bit in the timer
1034 	 * register represents 18.825ns, so to specify a timeout in
1035 	 * microseconds, we have to multiply by 54.
1036 	 */
1037         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(100));
1038         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1039 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1040         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1041 }
1042 
1043 int
1044 sk_probe(struct device *parent, struct cfdata *match, void *aux)
1045 {
1046 	struct skc_attach_args *sa = aux;
1047 
1048 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1049 		return(0);
1050 
1051 	return (1);
1052 }
1053 
1054 /*
1055  * Each XMAC chip is attached as a separate logical IP interface.
1056  * Single port cards will have only one logical interface of course.
1057  */
1058 void
1059 sk_attach(struct device *parent, struct device *self, void *aux)
1060 {
1061 	struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
1062 	struct sk_softc *sc = (struct sk_softc *)parent;
1063 	struct skc_attach_args *sa = aux;
1064 	struct sk_txmap_entry	*entry;
1065 	struct ifnet *ifp;
1066 	bus_dma_segment_t seg;
1067 	bus_dmamap_t dmamap;
1068 	caddr_t kva;
1069 	int i, rseg;
1070 
1071 	sc_if->sk_port = sa->skc_port;
1072 	sc_if->sk_softc = sc;
1073 	sc->sk_if[sa->skc_port] = sc_if;
1074 
1075 	if (sa->skc_port == SK_PORT_A)
1076 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1077 	if (sa->skc_port == SK_PORT_B)
1078 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1079 
1080 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1081 
1082 	/*
1083 	 * Get station address for this interface. Note that
1084 	 * dual port cards actually come with three station
1085 	 * addresses: one for each port, plus an extra. The
1086 	 * extra one is used by the SysKonnect driver software
1087 	 * as a 'virtual' station address for when both ports
1088 	 * are operating in failover mode. Currently we don't
1089 	 * use this extra address.
1090 	 */
1091 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1092 		sc_if->sk_enaddr[i] =
1093 			sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1094 
1095 
1096 	aprint_normal(": Ethernet address %s\n",
1097 	    ether_sprintf(sc_if->sk_enaddr));
1098 
1099 	/*
1100 	 * Set up RAM buffer addresses. The NIC will have a certain
1101 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1102 	 * need to divide this up a) between the transmitter and
1103  	 * receiver and b) between the two XMACs, if this is a
1104 	 * dual port NIC. Our algotithm is to divide up the memory
1105 	 * evenly so that everyone gets a fair share.
1106 	 */
1107 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1108 		u_int32_t		chunk, val;
1109 
1110 		chunk = sc->sk_ramsize / 2;
1111 		val = sc->sk_rboff / sizeof(u_int64_t);
1112 		sc_if->sk_rx_ramstart = val;
1113 		val += (chunk / sizeof(u_int64_t));
1114 		sc_if->sk_rx_ramend = val - 1;
1115 		sc_if->sk_tx_ramstart = val;
1116 		val += (chunk / sizeof(u_int64_t));
1117 		sc_if->sk_tx_ramend = val - 1;
1118 	} else {
1119 		u_int32_t		chunk, val;
1120 
1121 		chunk = sc->sk_ramsize / 4;
1122 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1123 		    sizeof(u_int64_t);
1124 		sc_if->sk_rx_ramstart = val;
1125 		val += (chunk / sizeof(u_int64_t));
1126 		sc_if->sk_rx_ramend = val - 1;
1127 		sc_if->sk_tx_ramstart = val;
1128 		val += (chunk / sizeof(u_int64_t));
1129 		sc_if->sk_tx_ramend = val - 1;
1130 	}
1131 
1132 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1133 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
1134 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1135 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1136 
1137 	/* Read and save PHY type and set PHY address */
1138 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1139 	switch (sc_if->sk_phytype) {
1140 	case SK_PHYTYPE_XMAC:
1141 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1142 		break;
1143 	case SK_PHYTYPE_BCOM:
1144 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1145 		break;
1146 	case SK_PHYTYPE_MARV_COPPER:
1147 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1148 		break;
1149 	default:
1150 		aprint_error("%s: unsupported PHY type: %d\n",
1151 		    sc->sk_dev.dv_xname, sc_if->sk_phytype);
1152 		return;
1153 	}
1154 
1155 	/* Allocate the descriptor queues. */
1156 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1157 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1158 		aprint_error("%s: can't alloc rx buffers\n",
1159 		    sc->sk_dev.dv_xname);
1160 		goto fail;
1161 	}
1162 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1163 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1164 		aprint_error("%s: can't map dma buffers (%lu bytes)\n",
1165 		       sc_if->sk_dev.dv_xname,
1166 		       (u_long) sizeof(struct sk_ring_data));
1167 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1168 		goto fail;
1169 	}
1170 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1171 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1172             &sc_if->sk_ring_map)) {
1173 		aprint_error("%s: can't create dma map\n",
1174 		    sc_if->sk_dev.dv_xname);
1175 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1176 		    sizeof(struct sk_ring_data));
1177 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1178 		goto fail;
1179 	}
1180 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1181 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1182 		aprint_error("%s: can't load dma map\n",
1183 		    sc_if->sk_dev.dv_xname);
1184 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1185 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1186 		    sizeof(struct sk_ring_data));
1187 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1188 		goto fail;
1189 	}
1190 
1191 	for (i = 0; i < SK_RX_RING_CNT; i++)
1192 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1193 
1194 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1195 	for (i = 0; i < SK_TX_RING_CNT; i++) {
1196 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1197 
1198 		if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, SK_NTXSEG,
1199 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap)) {
1200 			aprint_error("%s: Can't create TX dmamap\n",
1201 				sc_if->sk_dev.dv_xname);
1202 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1203 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1204 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1205 			    sizeof(struct sk_ring_data));
1206 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1207 			goto fail;
1208 		}
1209 
1210 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1211 		if (!entry) {
1212 			aprint_error("%s: Can't alloc txmap entry\n",
1213 				sc_if->sk_dev.dv_xname);
1214 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1215 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1216 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1217 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1218 			    sizeof(struct sk_ring_data));
1219 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1220 			goto fail;
1221 		}
1222 		entry->dmamap = dmamap;
1223 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1224 	}
1225 
1226         sc_if->sk_rdata = (struct sk_ring_data *)kva;
1227 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1228 
1229 	/* XXX TLS It's not clear what's wrong with the Jumbo MTU
1230 	   XXX TLS support in this driver, so we don't enable it. */
1231 
1232 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1233 
1234 	ifp = &sc_if->sk_ethercom.ec_if;
1235 	ifp->if_softc = sc_if;
1236 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1237 	ifp->if_ioctl = sk_ioctl;
1238 	ifp->if_start = sk_start;
1239 	ifp->if_stop = sk_stop;
1240 	ifp->if_init = sk_init;
1241 	ifp->if_watchdog = sk_watchdog;
1242 	ifp->if_capabilities = 0;
1243 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1244 	IFQ_SET_READY(&ifp->if_snd);
1245 	strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
1246 
1247 	/*
1248 	 * Do miibus setup.
1249 	 */
1250 	switch (sc->sk_type) {
1251 	case SK_GENESIS:
1252 		sk_init_xmac(sc_if);
1253 		break;
1254 	case SK_YUKON:
1255 	case SK_YUKON_LITE:
1256 	case SK_YUKON_LP:
1257 		sk_init_yukon(sc_if);
1258 		break;
1259 	default:
1260 		panic("%s: unknown device type %d", sc->sk_dev.dv_xname,
1261 		      sc->sk_type);
1262 	}
1263 
1264  	DPRINTFN(2, ("sk_attach: 1\n"));
1265 
1266 	sc_if->sk_mii.mii_ifp = ifp;
1267 	switch (sc->sk_type) {
1268 	case SK_GENESIS:
1269 		sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1270 		sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1271 		sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1272 		break;
1273 	case SK_YUKON:
1274 	case SK_YUKON_LITE:
1275 	case SK_YUKON_LP:
1276 		sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1277 		sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1278 		sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1279 		break;
1280 	}
1281 
1282 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1283 	    sk_ifmedia_upd, sk_ifmedia_sts);
1284 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1285 	    MII_OFFSET_ANY, 0);
1286 	if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1287 		printf("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
1288 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1289 			    0, NULL);
1290 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1291 	}
1292 	else
1293 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1294 
1295 	callout_init(&sc_if->sk_tick_ch);
1296 	callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1297 
1298 	DPRINTFN(2, ("sk_attach: 1\n"));
1299 
1300 	/*
1301 	 * Call MI attach routines.
1302 	 */
1303 	if_attach(ifp);
1304 
1305 	ether_ifattach(ifp, sc_if->sk_enaddr);
1306 
1307 #if NRND > 0
1308         rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1309             RND_TYPE_NET, 0);
1310 #endif
1311 
1312 	DPRINTFN(2, ("sk_attach: end\n"));
1313 
1314 	return;
1315 
1316 fail:
1317 	sc->sk_if[sa->skc_port] = NULL;
1318 }
1319 
1320 int
1321 skcprint(void *aux, const char *pnp)
1322 {
1323 	struct skc_attach_args *sa = aux;
1324 
1325 	if (pnp)
1326 		aprint_normal("sk port %c at %s",
1327 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1328 	else
1329 		aprint_normal(" port %c",
1330 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1331 	return (UNCONF);
1332 }
1333 
1334 /*
1335  * Attach the interface. Allocate softc structures, do ifmedia
1336  * setup and ethernet/BPF attach.
1337  */
1338 void
1339 skc_attach(struct device *parent, struct device *self, void *aux)
1340 {
1341 	struct sk_softc *sc = (struct sk_softc *)self;
1342 	struct pci_attach_args *pa = aux;
1343 	struct skc_attach_args skca;
1344 	pci_chipset_tag_t pc = pa->pa_pc;
1345 	pcireg_t memtype;
1346 	pci_intr_handle_t ih;
1347 	const char *intrstr = NULL;
1348 	bus_addr_t iobase;
1349 	bus_size_t iosize;
1350 	int s;
1351 	u_int32_t command;
1352 	const char *revstr;
1353 
1354 	DPRINTFN(2, ("begin skc_attach\n"));
1355 
1356 	s = splnet();
1357 
1358 	/*
1359 	 * Handle power management nonsense.
1360 	 */
1361 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1362 
1363 	if (command == 0x01) {
1364 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1365 		if (command & SK_PSTATE_MASK) {
1366 			u_int32_t		xiobase, membase, irq;
1367 
1368 			/* Save important PCI config data. */
1369 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1370 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1371 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1372 
1373 			/* Reset the power state. */
1374 			aprint_normal("%s chip is in D%d power mode "
1375 			    "-- setting to D0\n", sc->sk_dev.dv_xname,
1376 			    command & SK_PSTATE_MASK);
1377 			command &= 0xFFFFFFFC;
1378 			pci_conf_write(pc, pa->pa_tag,
1379 			    SK_PCI_PWRMGMTCTRL, command);
1380 
1381 			/* Restore PCI config data. */
1382 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1383 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1384 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1385 		}
1386 	}
1387 
1388 	/*
1389 	 * Map control/status registers.
1390 	 */
1391 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1392 	command |= PCI_COMMAND_IO_ENABLE |
1393 	    PCI_COMMAND_MEM_ENABLE |
1394 	    PCI_COMMAND_MASTER_ENABLE;
1395 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1396 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1397 
1398 #ifdef SK_USEIOSPACE
1399 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
1400 		aprint_error(": failed to enable I/O ports!\n");
1401 		goto fail;
1402 	}
1403 	/*
1404 	 * Map control/status registers.
1405 	 */
1406 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1407 			   &iobase, &iosize)) {
1408 		aprint_error(": can't find i/o space\n");
1409 		goto fail;
1410 	}
1411 #else
1412 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1413 		aprint_error(": failed to enable memory mapping!\n");
1414 		goto fail;
1415 	}
1416 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1417 	switch (memtype) {
1418         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1419         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1420                 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1421 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1422 				   &iobase, &iosize) == 0)
1423                         break;
1424         default:
1425                 aprint_error("%s: can't find mem space\n",
1426 		       sc->sk_dev.dv_xname);
1427                 return;
1428 	}
1429 
1430 	DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
1431 #endif
1432 	sc->sc_dmatag = pa->pa_dmat;
1433 
1434 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1435 	sc->sk_rev  = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1436 
1437 	/* bail out here if chip is not recognized */
1438 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1439 		aprint_error("%s: unknown chip type\n",sc->sk_dev.dv_xname);
1440 		goto fail;
1441 	}
1442 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1443 
1444 	/* Allocate interrupt */
1445 	if (pci_intr_map(pa, &ih)) {
1446 		aprint_error(": couldn't map interrupt\n");
1447 		goto fail;
1448 	}
1449 
1450 	intrstr = pci_intr_string(pc, ih);
1451 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1452 	if (sc->sk_intrhand == NULL) {
1453 		aprint_error(": couldn't establish interrupt");
1454 		if (intrstr != NULL)
1455 			aprint_normal(" at %s", intrstr);
1456 		goto fail;
1457 	}
1458 	aprint_normal(": %s\n", intrstr);
1459 
1460 	/* Reset the adapter. */
1461 	sk_reset(sc);
1462 
1463 	/* Read and save vital product data from EEPROM. */
1464 	sk_vpd_read(sc);
1465 
1466 	if (sc->sk_type == SK_GENESIS) {
1467 		u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1468 		/* Read and save RAM size and RAMbuffer offset */
1469 		switch(val) {
1470 		case SK_RAMSIZE_512K_64:
1471 			sc->sk_ramsize = 0x80000;
1472 			sc->sk_rboff = SK_RBOFF_0;
1473 			break;
1474 		case SK_RAMSIZE_1024K_64:
1475 			sc->sk_ramsize = 0x100000;
1476 			sc->sk_rboff = SK_RBOFF_80000;
1477 			break;
1478 		case SK_RAMSIZE_1024K_128:
1479 			sc->sk_ramsize = 0x100000;
1480 			sc->sk_rboff = SK_RBOFF_0;
1481 			break;
1482 		case SK_RAMSIZE_2048K_128:
1483 			sc->sk_ramsize = 0x200000;
1484 			sc->sk_rboff = SK_RBOFF_0;
1485 			break;
1486 		default:
1487 			aprint_error("%s: unknown ram size: %d\n",
1488 			       sc->sk_dev.dv_xname, val);
1489 			goto fail;
1490 			break;
1491 		}
1492 
1493 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1494 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
1495 			     sc->sk_rboff));
1496 	} else {
1497 	  	u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1498 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
1499 		sc->sk_rboff = SK_RBOFF_0;
1500 
1501 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1502 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
1503 			     sc->sk_rboff));
1504 	}
1505 
1506 	/* Read and save physical media type */
1507 	switch(sk_win_read_1(sc, SK_PMDTYPE)) {
1508 	case SK_PMD_1000BASESX:
1509 		sc->sk_pmd = IFM_1000_SX;
1510 		break;
1511 	case SK_PMD_1000BASELX:
1512 		sc->sk_pmd = IFM_1000_LX;
1513 		break;
1514 	case SK_PMD_1000BASECX:
1515 		sc->sk_pmd = IFM_1000_CX;
1516 		break;
1517 	case SK_PMD_1000BASETX:
1518 		sc->sk_pmd = IFM_1000_T;
1519 		break;
1520 	default:
1521 		aprint_error("%s: unknown media type: 0x%x\n",
1522 		    sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
1523 		goto fail;
1524 	}
1525 
1526 	/* determine whether to name it with vpd or just make it up */
1527 	/* Marvell Yukon VPD's can freqently be bogus */
1528 
1529 	switch (pa->pa_id) {
1530 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1531 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1532 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1533 	case PCI_PRODUCT_3COM_3C940:
1534 	case PCI_PRODUCT_DLINK_DGE530T:
1535 	case PCI_PRODUCT_LINKSYS_EG1032:
1536 	case PCI_PRODUCT_LINKSYS_EG1064:
1537 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1538 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1539 	case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1540 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1541 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1542 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1543  		sc->sk_name = sc->sk_vpd_prodname;
1544  		break;
1545 	case PCI_ID_CODE(PCI_VENDOR_GALILEO,PCI_PRODUCT_GALILEO_SKNET):
1546 	/* whoops yukon vpd prodname bears no resemblance to reality */
1547 		switch (sc->sk_type) {
1548 		case SK_GENESIS:
1549 			sc->sk_name = sc->sk_vpd_prodname;
1550 			break;
1551 		case SK_YUKON:
1552 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1553 			break;
1554 		case SK_YUKON_LITE:
1555 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1556 			break;
1557 		case SK_YUKON_LP:
1558 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1559 			break;
1560 		default:
1561 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1562 		}
1563 
1564 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1565 
1566 		if ( sc->sk_type == SK_YUKON ) {
1567 			uint32_t flashaddr;
1568 			uint8_t testbyte;
1569 
1570 			flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1571 
1572 			/* test Flash-Address Register */
1573 			sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1574 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1575 
1576 			if (testbyte != 0) {
1577 				/* this is yukon lite Rev. A0 */
1578 				sc->sk_type = SK_YUKON_LITE;
1579 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
1580 				/* restore Flash-Address Register */
1581 				sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1582 			}
1583 		}
1584 		break;
1585 	case PCI_ID_CODE(PCI_VENDOR_GALILEO,PCI_PRODUCT_GALILEO_BELKIN):
1586 		sc->sk_name = sc->sk_vpd_prodname;
1587 		break;
1588  	default:
1589 		sc->sk_name = "Unkown Marvell";
1590 	}
1591 
1592 
1593 	if ( sc->sk_type == SK_YUKON_LITE ) {
1594 		switch (sc->sk_rev) {
1595 		case SK_YUKON_LITE_REV_A0:
1596 			revstr = "A0";
1597 			break;
1598 		case SK_YUKON_LITE_REV_A1:
1599 			revstr = "A1";
1600 			break;
1601 		case SK_YUKON_LITE_REV_A3:
1602 			revstr = "A3";
1603 			break;
1604 		default:
1605 			revstr = "";
1606 		}
1607 	} else {
1608 		revstr = "";
1609 	}
1610 
1611 	/* Announce the product name. */
1612 	aprint_normal("%s: %s rev. %s(0x%x)\n", sc->sk_dev.dv_xname,
1613 			      sc->sk_name, revstr, sc->sk_rev);
1614 
1615 	skca.skc_port = SK_PORT_A;
1616 	(void)config_found(&sc->sk_dev, &skca, skcprint);
1617 
1618 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1619 		skca.skc_port = SK_PORT_B;
1620 		(void)config_found(&sc->sk_dev, &skca, skcprint);
1621 	}
1622 
1623 	/* Turn on the 'driver is loaded' LED. */
1624 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1625 
1626 fail:
1627 	splx(s);
1628 }
1629 
1630 int
1631 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1632 {
1633 	struct sk_softc		*sc = sc_if->sk_softc;
1634 	struct sk_tx_desc	*f = NULL;
1635 	u_int32_t		frag, cur, cnt = 0;
1636 	int			i;
1637 	struct sk_txmap_entry	*entry;
1638 	bus_dmamap_t		txmap;
1639 
1640 	DPRINTFN(3, ("sk_encap\n"));
1641 
1642 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1643 	if (entry == NULL) {
1644 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
1645 		return ENOBUFS;
1646 	}
1647 	txmap = entry->dmamap;
1648 
1649 	cur = frag = *txidx;
1650 
1651 #ifdef SK_DEBUG
1652 	if (skdebug >= 3)
1653 		sk_dump_mbuf(m_head);
1654 #endif
1655 
1656 	/*
1657 	 * Start packing the mbufs in this chain into
1658 	 * the fragment pointers. Stop when we run out
1659 	 * of fragments or hit the end of the mbuf chain.
1660 	 */
1661 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1662 	    BUS_DMA_NOWAIT)) {
1663 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1664 		return(ENOBUFS);
1665 	}
1666 
1667 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1668 
1669 	/* Sync the DMA map. */
1670 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1671 	    BUS_DMASYNC_PREWRITE);
1672 
1673 	for (i = 0; i < txmap->dm_nsegs; i++) {
1674 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1675 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1676 			return(ENOBUFS);
1677 		}
1678 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
1679 		f->sk_data_lo = txmap->dm_segs[i].ds_addr;
1680 		f->sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1681 		if (cnt == 0)
1682 			f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
1683 		else
1684 			f->sk_ctl |= SK_TXCTL_OWN;
1685 
1686 		cur = frag;
1687 		SK_INC(frag, SK_TX_RING_CNT);
1688 		cnt++;
1689 	}
1690 
1691 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1692 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1693 
1694 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
1695 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1696 		SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
1697 
1698 	/* Sync descriptors before handing to chip */
1699 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1700 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1701 
1702 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
1703 
1704 	/* Sync first descriptor to hand it off */
1705 	SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1706 
1707 	sc_if->sk_cdata.sk_tx_cnt += cnt;
1708 
1709 #ifdef SK_DEBUG
1710 	if (skdebug >= 3) {
1711 		struct sk_tx_desc *desc;
1712 		u_int32_t idx;
1713 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1714 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1715 			sk_dump_txdesc(desc, idx);
1716 		}
1717 	}
1718 #endif
1719 
1720 	*txidx = frag;
1721 
1722 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
1723 
1724 	return(0);
1725 }
1726 
1727 void
1728 sk_start(struct ifnet *ifp)
1729 {
1730         struct sk_if_softc	*sc_if = ifp->if_softc;
1731         struct sk_softc		*sc = sc_if->sk_softc;
1732         struct mbuf		*m_head = NULL;
1733         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
1734 	int			pkts = 0;
1735 
1736 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1737 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1738 
1739 	while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1740 
1741 		IFQ_POLL(&ifp->if_snd, m_head);
1742 		if (m_head == NULL)
1743 			break;
1744 
1745 		/*
1746 		 * Pack the data into the transmit ring. If we
1747 		 * don't have room, set the OACTIVE flag and wait
1748 		 * for the NIC to drain the ring.
1749 		 */
1750 		if (sk_encap(sc_if, m_head, &idx)) {
1751 			ifp->if_flags |= IFF_OACTIVE;
1752 			break;
1753 		}
1754 
1755 		/* now we are committed to transmit the packet */
1756 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1757 		pkts++;
1758 
1759 		/*
1760 		 * If there's a BPF listener, bounce a copy of this frame
1761 		 * to him.
1762 		 */
1763 #if NBPFILTER > 0
1764 		if (ifp->if_bpf)
1765 			bpf_mtap(ifp->if_bpf, m_head);
1766 #endif
1767 	}
1768 	if (pkts == 0)
1769 		return;
1770 
1771 	/* Transmit */
1772 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
1773 		sc_if->sk_cdata.sk_tx_prod = idx;
1774 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1775 
1776 		/* Set a timeout in case the chip goes out to lunch. */
1777 		ifp->if_timer = 5;
1778 	}
1779 }
1780 
1781 
1782 void
1783 sk_watchdog(struct ifnet *ifp)
1784 {
1785 	struct sk_if_softc *sc_if = ifp->if_softc;
1786 
1787 	printf("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
1788 	(void) sk_init(ifp);
1789 }
1790 
1791 void
1792 sk_shutdown(void * v)
1793 {
1794 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
1795 	struct sk_softc		*sc = sc_if->sk_softc;
1796 	struct ifnet 		*ifp = &sc_if->sk_ethercom.ec_if;
1797 
1798 	DPRINTFN(2, ("sk_shutdown\n"));
1799 	sk_stop(ifp,1);
1800 
1801 	/* Turn off the 'driver is loaded' LED. */
1802 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1803 
1804 	/*
1805 	 * Reset the GEnesis controller. Doing this should also
1806 	 * assert the resets on the attached XMAC(s).
1807 	 */
1808 	sk_reset(sc);
1809 }
1810 
1811 void
1812 sk_rxeof(struct sk_if_softc *sc_if)
1813 {
1814 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
1815 	struct mbuf		*m;
1816 	struct sk_chain		*cur_rx;
1817 	struct sk_rx_desc	*cur_desc;
1818 	int			i, cur, total_len = 0;
1819 	u_int32_t		rxstat;
1820 	bus_dmamap_t		dmamap;
1821 
1822 	i = sc_if->sk_cdata.sk_rx_prod;
1823 
1824 	DPRINTFN(3, ("sk_rxeof %d\n", i));
1825 
1826 	for (;;) {
1827 		cur = i;
1828 
1829 		/* Sync the descriptor */
1830 		SK_CDRXSYNC(sc_if, cur,
1831 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1832 
1833 		if (sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl & SK_RXCTL_OWN) {
1834 			/* Invalidate the descriptor -- it's not ready yet */
1835 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
1836 			sc_if->sk_cdata.sk_rx_prod = i;
1837 			break;
1838 		}
1839 
1840 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
1841 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
1842 		dmamap = sc_if->sk_cdata.sk_rx_map[cur];
1843 
1844 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
1845 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1846 
1847 		rxstat = cur_desc->sk_xmac_rxstat;
1848 		m = cur_rx->sk_mbuf;
1849 		cur_rx->sk_mbuf = NULL;
1850 		total_len = SK_RXBYTES(cur_desc->sk_ctl);
1851 
1852 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
1853 
1854 		SK_INC(i, SK_RX_RING_CNT);
1855 
1856 		if (rxstat & XM_RXSTAT_ERRFRAME) {
1857 			ifp->if_ierrors++;
1858 			sk_newbuf(sc_if, cur, m, dmamap);
1859 			continue;
1860 		}
1861 
1862 		/*
1863 		 * Try to allocate a new jumbo buffer. If that
1864 		 * fails, copy the packet to mbufs and put the
1865 		 * jumbo buffer back in the ring so it can be
1866 		 * re-used. If allocating mbufs fails, then we
1867 		 * have to drop the packet.
1868 		 */
1869 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
1870 			struct mbuf		*m0;
1871 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1872 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
1873 			sk_newbuf(sc_if, cur, m, dmamap);
1874 			if (m0 == NULL) {
1875 				printf("%s: no receive buffers "
1876 				    "available -- packet dropped!\n",
1877 				    sc_if->sk_dev.dv_xname);
1878 				ifp->if_ierrors++;
1879 				continue;
1880 			}
1881 			m_adj(m0, ETHER_ALIGN);
1882 			m = m0;
1883 		} else {
1884 			m->m_pkthdr.rcvif = ifp;
1885 			m->m_pkthdr.len = m->m_len = total_len;
1886 		}
1887 
1888 		ifp->if_ipackets++;
1889 
1890 #if NBPFILTER > 0
1891 		if (ifp->if_bpf)
1892 			bpf_mtap(ifp->if_bpf, m);
1893 #endif
1894 		/* pass it on. */
1895 		(*ifp->if_input)(ifp, m);
1896 	}
1897 }
1898 
1899 void
1900 sk_txeof(struct sk_if_softc *sc_if)
1901 {
1902 	struct sk_softc		*sc = sc_if->sk_softc;
1903 	struct sk_tx_desc	*cur_tx;
1904 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
1905 	u_int32_t		idx;
1906 	struct sk_txmap_entry	*entry;
1907 
1908 	DPRINTFN(3, ("sk_txeof\n"));
1909 
1910 	/*
1911 	 * Go through our tx ring and free mbufs for those
1912 	 * frames that have been sent.
1913 	 */
1914 	idx = sc_if->sk_cdata.sk_tx_cons;
1915 	while(idx != sc_if->sk_cdata.sk_tx_prod) {
1916 		SK_CDTXSYNC(sc_if, idx, 1,
1917 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1918 
1919 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
1920 #ifdef SK_DEBUG
1921 		if (skdebug >= 3)
1922 			sk_dump_txdesc(cur_tx, idx);
1923 #endif
1924 		if (cur_tx->sk_ctl & SK_TXCTL_OWN) {
1925 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
1926 			break;
1927 		}
1928 		if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
1929 			ifp->if_opackets++;
1930 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
1931 			entry = sc_if->sk_cdata.sk_tx_map[idx];
1932 
1933 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
1934 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
1935 
1936 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
1937 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1938 
1939 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
1940 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
1941 					  link);
1942 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
1943 		}
1944 		sc_if->sk_cdata.sk_tx_cnt--;
1945 		SK_INC(idx, SK_TX_RING_CNT);
1946 	}
1947 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
1948 		ifp->if_timer = 0;
1949 	else /* nudge chip to keep tx ring moving */
1950 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1951 
1952 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
1953 		ifp->if_flags &= ~IFF_OACTIVE;
1954 
1955 	sc_if->sk_cdata.sk_tx_cons = idx;
1956 }
1957 
1958 void
1959 sk_tick(void *xsc_if)
1960 {
1961 	struct sk_if_softc *sc_if = xsc_if;
1962 	struct mii_data *mii = &sc_if->sk_mii;
1963 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1964 	int i;
1965 
1966 	DPRINTFN(3, ("sk_tick\n"));
1967 
1968 	if (!(ifp->if_flags & IFF_UP))
1969 		return;
1970 
1971 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
1972 		sk_intr_bcom(sc_if);
1973 		return;
1974 	}
1975 
1976 	/*
1977 	 * According to SysKonnect, the correct way to verify that
1978 	 * the link has come back up is to poll bit 0 of the GPIO
1979 	 * register three times. This pin has the signal from the
1980 	 * link sync pin connected to it; if we read the same link
1981 	 * state 3 times in a row, we know the link is up.
1982 	 */
1983 	for (i = 0; i < 3; i++) {
1984 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
1985 			break;
1986 	}
1987 
1988 	if (i != 3) {
1989 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
1990 		return;
1991 	}
1992 
1993 	/* Turn the GP0 interrupt back on. */
1994 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
1995 	SK_XM_READ_2(sc_if, XM_ISR);
1996 	mii_tick(mii);
1997 	mii_pollstat(mii);
1998 	callout_stop(&sc_if->sk_tick_ch);
1999 }
2000 
2001 void
2002 sk_intr_bcom(struct sk_if_softc *sc_if)
2003 {
2004 	struct mii_data *mii = &sc_if->sk_mii;
2005 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2006 	int status;
2007 
2008 
2009 	DPRINTFN(3, ("sk_intr_bcom\n"));
2010 
2011 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2012 
2013 	/*
2014 	 * Read the PHY interrupt register to make sure
2015 	 * we clear any pending interrupts.
2016 	 */
2017 	status = sk_xmac_miibus_readreg((struct device *)sc_if,
2018 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2019 
2020 	if (!(ifp->if_flags & IFF_RUNNING)) {
2021 		sk_init_xmac(sc_if);
2022 		return;
2023 	}
2024 
2025 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2026 		int lstat;
2027 		lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
2028 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2029 
2030 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2031 			mii_mediachg(mii);
2032 			/* Turn off the link LED. */
2033 			SK_IF_WRITE_1(sc_if, 0,
2034 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
2035 			sc_if->sk_link = 0;
2036 		} else if (status & BRGPHY_ISR_LNK_CHG) {
2037 			sk_xmac_miibus_writereg((struct device *)sc_if,
2038 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2039 			mii_tick(mii);
2040 			sc_if->sk_link = 1;
2041 			/* Turn on the link LED. */
2042 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2043 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2044 			    SK_LINKLED_BLINK_OFF);
2045 			mii_pollstat(mii);
2046 		} else {
2047 			mii_tick(mii);
2048 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2049 		}
2050 	}
2051 
2052 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2053 }
2054 
2055 void
2056 sk_intr_xmac(struct sk_if_softc	*sc_if)
2057 {
2058 	u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2059 
2060 	DPRINTFN(3, ("sk_intr_xmac\n"));
2061 
2062 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2063 		if (status & XM_ISR_GP0_SET) {
2064 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2065 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2066 		}
2067 
2068 		if (status & XM_ISR_AUTONEG_DONE) {
2069 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2070 		}
2071 	}
2072 
2073 	if (status & XM_IMR_TX_UNDERRUN)
2074 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2075 
2076 	if (status & XM_IMR_RX_OVERRUN)
2077 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2078 }
2079 
2080 void
2081 sk_intr_yukon(sc_if)
2082 	struct sk_if_softc *sc_if;
2083 {
2084 	int status;
2085 
2086 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2087 
2088 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2089 }
2090 
2091 int
2092 sk_intr(void *xsc)
2093 {
2094 	struct sk_softc		*sc = xsc;
2095 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
2096 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
2097 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2098 	u_int32_t		status;
2099 	int			claimed = 0;
2100 
2101 	if (sc_if0 != NULL)
2102 		ifp0 = &sc_if0->sk_ethercom.ec_if;
2103 	if (sc_if1 != NULL)
2104 		ifp1 = &sc_if1->sk_ethercom.ec_if;
2105 
2106 	for (;;) {
2107 		status = CSR_READ_4(sc, SK_ISSR);
2108 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2109 
2110 		if (!(status & sc->sk_intrmask))
2111 			break;
2112 
2113 		claimed = 1;
2114 
2115 		/* Handle receive interrupts first. */
2116 		if (status & SK_ISR_RX1_EOF) {
2117 			sk_rxeof(sc_if0);
2118 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2119 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2120 		}
2121 		if (status & SK_ISR_RX2_EOF) {
2122 			sk_rxeof(sc_if1);
2123 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2124 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2125 		}
2126 
2127 		/* Then transmit interrupts. */
2128 		if (status & SK_ISR_TX1_S_EOF) {
2129 			sk_txeof(sc_if0);
2130 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2131 			    SK_TXBMU_CLR_IRQ_EOF);
2132 		}
2133 		if (status & SK_ISR_TX2_S_EOF) {
2134 			sk_txeof(sc_if1);
2135 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2136 			    SK_TXBMU_CLR_IRQ_EOF);
2137 		}
2138 
2139 		/* Then MAC interrupts. */
2140 		if (status & SK_ISR_MAC1 && (ifp0->if_flags & IFF_RUNNING)) {
2141 			if (sc->sk_type == SK_GENESIS)
2142 				sk_intr_xmac(sc_if0);
2143 			else
2144 				sk_intr_yukon(sc_if0);
2145 		}
2146 
2147 		if (status & SK_ISR_MAC2 && (ifp1->if_flags & IFF_RUNNING)) {
2148 			if (sc->sk_type == SK_GENESIS)
2149 				sk_intr_xmac(sc_if1);
2150 			else
2151 				sk_intr_yukon(sc_if1);
2152 
2153 		}
2154 
2155 		if (status & SK_ISR_EXTERNAL_REG) {
2156 			if (ifp0 != NULL &&
2157 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2158 				sk_intr_bcom(sc_if0);
2159 
2160 			if (ifp1 != NULL &&
2161 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2162 				sk_intr_bcom(sc_if1);
2163 		}
2164 	}
2165 
2166 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2167 
2168 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2169 		sk_start(ifp0);
2170 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2171 		sk_start(ifp1);
2172 
2173 	return (claimed);
2174 }
2175 
2176 void
2177 sk_init_xmac(struct sk_if_softc	*sc_if)
2178 {
2179 	struct sk_softc		*sc = sc_if->sk_softc;
2180 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2181 	static const struct sk_bcom_hack     bhack[] = {
2182 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2183 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2184 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2185 	{ 0, 0 } };
2186 
2187 	DPRINTFN(1, ("sk_init_xmac\n"));
2188 
2189 	/* Unreset the XMAC. */
2190 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2191 	DELAY(1000);
2192 
2193 	/* Reset the XMAC's internal state. */
2194 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2195 
2196 	/* Save the XMAC II revision */
2197 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2198 
2199 	/*
2200 	 * Perform additional initialization for external PHYs,
2201 	 * namely for the 1000baseTX cards that use the XMAC's
2202 	 * GMII mode.
2203 	 */
2204 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2205 		int			i = 0;
2206 		u_int32_t		val;
2207 
2208 		/* Take PHY out of reset. */
2209 		val = sk_win_read_4(sc, SK_GPIO);
2210 		if (sc_if->sk_port == SK_PORT_A)
2211 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2212 		else
2213 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2214 		sk_win_write_4(sc, SK_GPIO, val);
2215 
2216 		/* Enable GMII mode on the XMAC. */
2217 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2218 
2219 		sk_xmac_miibus_writereg((struct device *)sc_if,
2220 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2221 		DELAY(10000);
2222 		sk_xmac_miibus_writereg((struct device *)sc_if,
2223 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2224 
2225 		/*
2226 		 * Early versions of the BCM5400 apparently have
2227 		 * a bug that requires them to have their reserved
2228 		 * registers initialized to some magic values. I don't
2229 		 * know what the numbers do, I'm just the messenger.
2230 		 */
2231 		if (sk_xmac_miibus_readreg((struct device *)sc_if,
2232 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2233 			while(bhack[i].reg) {
2234 				sk_xmac_miibus_writereg((struct device *)sc_if,
2235 				    SK_PHYADDR_BCOM, bhack[i].reg,
2236 				    bhack[i].val);
2237 				i++;
2238 			}
2239 		}
2240 	}
2241 
2242 	/* Set station address */
2243 	SK_XM_WRITE_2(sc_if, XM_PAR0,
2244 		      *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2245 	SK_XM_WRITE_2(sc_if, XM_PAR1,
2246 		      *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2247 	SK_XM_WRITE_2(sc_if, XM_PAR2,
2248 		      *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2249 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2250 
2251 	if (ifp->if_flags & IFF_PROMISC) {
2252 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2253 	} else {
2254 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2255 	}
2256 
2257 	if (ifp->if_flags & IFF_BROADCAST) {
2258 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2259 	} else {
2260 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2261 	}
2262 
2263 	/* We don't need the FCS appended to the packet. */
2264 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2265 
2266 	/* We want short frames padded to 60 bytes. */
2267 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2268 
2269 	/*
2270 	 * Enable the reception of all error frames. This is is
2271 	 * a necessary evil due to the design of the XMAC. The
2272 	 * XMAC's receive FIFO is only 8K in size, however jumbo
2273 	 * frames can be up to 9000 bytes in length. When bad
2274 	 * frame filtering is enabled, the XMAC's RX FIFO operates
2275 	 * in 'store and forward' mode. For this to work, the
2276 	 * entire frame has to fit into the FIFO, but that means
2277 	 * that jumbo frames larger than 8192 bytes will be
2278 	 * truncated. Disabling all bad frame filtering causes
2279 	 * the RX FIFO to operate in streaming mode, in which
2280 	 * case the XMAC will start transfering frames out of the
2281 	 * RX FIFO as soon as the FIFO threshold is reached.
2282 	 */
2283 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2284 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2285 	    XM_MODE_RX_INRANGELEN);
2286 
2287 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2288 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2289 	else
2290 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2291 
2292 	/*
2293 	 * Bump up the transmit threshold. This helps hold off transmit
2294 	 * underruns when we're blasting traffic from both ports at once.
2295 	 */
2296 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2297 
2298 	/* Set multicast filter */
2299 	sk_setmulti(sc_if);
2300 
2301 	/* Clear and enable interrupts */
2302 	SK_XM_READ_2(sc_if, XM_ISR);
2303 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2304 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2305 	else
2306 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2307 
2308 	/* Configure MAC arbiter */
2309 	switch(sc_if->sk_xmac_rev) {
2310 	case XM_XMAC_REV_B2:
2311 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2312 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2313 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2314 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2315 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2316 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2317 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2318 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2319 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2320 		break;
2321 	case XM_XMAC_REV_C1:
2322 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2323 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2324 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2325 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2326 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2327 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2328 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2329 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2330 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2331 		break;
2332 	default:
2333 		break;
2334 	}
2335 	sk_win_write_2(sc, SK_MACARB_CTL,
2336 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2337 
2338 	sc_if->sk_link = 1;
2339 }
2340 
2341 void sk_init_yukon(sc_if)
2342 	struct sk_if_softc	*sc_if;
2343 {
2344 	u_int32_t		/*mac, */phy;
2345 	u_int16_t		reg;
2346 	struct sk_softc		*sc;
2347 	int			i;
2348 
2349 	DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2350 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2351 
2352 	sc = sc_if->sk_softc;
2353 	if (sc->sk_type == SK_YUKON_LITE &&
2354 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2355 		/* Take PHY out of reset. */
2356 		sk_win_write_4(sc, SK_GPIO,
2357 			(sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2358 	}
2359 
2360 
2361 	/* GMAC and GPHY Reset */
2362 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2363 
2364 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
2365 
2366 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2367 	DELAY(1000);
2368 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2369 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2370 	DELAY(1000);
2371 
2372 
2373 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
2374 
2375 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2376 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2377 
2378 	switch(sc_if->sk_softc->sk_pmd) {
2379 	case IFM_1000_SX:
2380 	case IFM_1000_LX:
2381 		phy |= SK_GPHY_FIBER;
2382 		break;
2383 
2384 	case IFM_1000_CX:
2385 	case IFM_1000_T:
2386 		phy |= SK_GPHY_COPPER;
2387 		break;
2388 	}
2389 
2390 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2391 
2392 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2393 	DELAY(1000);
2394 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2395 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2396 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2397 
2398 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2399 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2400 
2401 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
2402 
2403 	/* unused read of the interrupt source register */
2404 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
2405 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2406 
2407 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2408 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2409 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2410 
2411 	/* MIB Counter Clear Mode set */
2412         reg |= YU_PAR_MIB_CLR;
2413 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2414 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2415 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2416 
2417 	/* MIB Counter Clear Mode clear */
2418 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
2419         reg &= ~YU_PAR_MIB_CLR;
2420 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2421 
2422 	/* receive control reg */
2423 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
2424 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2425 		      YU_RCR_CRCR);
2426 
2427 	/* transmit parameter register */
2428 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
2429 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2430 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2431 
2432 	/* serial mode register */
2433 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
2434 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2435 		      YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e));
2436 
2437 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
2438 	/* Setup Yukon's address */
2439 	for (i = 0; i < 3; i++) {
2440 		/* Write Source Address 1 (unicast filter) */
2441 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2442 			      sc_if->sk_enaddr[i * 2] |
2443 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
2444 	}
2445 
2446 	for (i = 0; i < 3; i++) {
2447 		reg = sk_win_read_2(sc_if->sk_softc,
2448 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2449 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2450 	}
2451 
2452 	/* Set multicast filter */
2453 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
2454 	sk_setmulti(sc_if);
2455 
2456 	/* enable interrupt mask for counter overflows */
2457 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
2458 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2459 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2460 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2461 
2462 	/* Configure RX MAC FIFO */
2463 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2464 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2465 
2466 	/* Configure TX MAC FIFO */
2467 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2468 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2469 
2470 	DPRINTFN(6, ("sk_init_yukon: end\n"));
2471 }
2472 
2473 /*
2474  * Note that to properly initialize any part of the GEnesis chip,
2475  * you first have to take it out of reset mode.
2476  */
2477 int
2478 sk_init(struct ifnet *ifp)
2479 {
2480 	struct sk_if_softc	*sc_if = ifp->if_softc;
2481 	struct sk_softc		*sc = sc_if->sk_softc;
2482 	struct mii_data		*mii = &sc_if->sk_mii;
2483 	int			s;
2484 
2485 	DPRINTFN(1, ("sk_init\n"));
2486 
2487 	s = splnet();
2488 
2489 	if (ifp->if_flags & IFF_RUNNING) {
2490 		splx(s);
2491 		return 0;
2492 	}
2493 
2494 	/* Cancel pending I/O and free all RX/TX buffers. */
2495 	sk_stop(ifp,0);
2496 
2497 	if (sc->sk_type == SK_GENESIS) {
2498 		/* Configure LINK_SYNC LED */
2499 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2500 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2501 			      SK_LINKLED_LINKSYNC_ON);
2502 
2503 		/* Configure RX LED */
2504 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2505 			      SK_RXLEDCTL_COUNTER_START);
2506 
2507 		/* Configure TX LED */
2508 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2509 			      SK_TXLEDCTL_COUNTER_START);
2510 	}
2511 
2512 	/* Configure I2C registers */
2513 
2514 	/* Configure XMAC(s) */
2515 	switch (sc->sk_type) {
2516 	case SK_GENESIS:
2517 		sk_init_xmac(sc_if);
2518 		break;
2519 	case SK_YUKON:
2520 	case SK_YUKON_LITE:
2521 	case SK_YUKON_LP:
2522 		sk_init_yukon(sc_if);
2523 		break;
2524 	}
2525 	mii_mediachg(mii);
2526 
2527 	if (sc->sk_type == SK_GENESIS) {
2528 		/* Configure MAC FIFOs */
2529 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2530 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2531 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2532 
2533 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2534 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2535 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2536 	}
2537 
2538 	/* Configure transmit arbiter(s) */
2539 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2540 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2541 
2542 	/* Configure RAMbuffers */
2543 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2544 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2545 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2546 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2547 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2548 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2549 
2550 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2551 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2552 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2553 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2554 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2555 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2556 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2557 
2558 	/* Configure BMUs */
2559 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2560 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2561 	    SK_RX_RING_ADDR(sc_if, 0));
2562 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2563 
2564 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2565 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2566             SK_TX_RING_ADDR(sc_if, 0));
2567 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2568 
2569 	/* Init descriptors */
2570 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2571 		printf("%s: initialization failed: no "
2572 		    "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
2573 		sk_stop(ifp,0);
2574 		splx(s);
2575 		return(ENOBUFS);
2576 	}
2577 
2578 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2579 		printf("%s: initialization failed: no "
2580 		    "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
2581 		sk_stop(ifp,0);
2582 		splx(s);
2583 		return(ENOBUFS);
2584 	}
2585 
2586 	/* Configure interrupt handling */
2587 	CSR_READ_4(sc, SK_ISSR);
2588 	if (sc_if->sk_port == SK_PORT_A)
2589 		sc->sk_intrmask |= SK_INTRS1;
2590 	else
2591 		sc->sk_intrmask |= SK_INTRS2;
2592 
2593 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2594 
2595 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2596 
2597 	/* Start BMUs. */
2598 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2599 
2600 	if (sc->sk_type == SK_GENESIS) {
2601 		/* Enable XMACs TX and RX state machines */
2602 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2603 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2604 			       XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2605 	}
2606 
2607 	if (SK_YUKON_FAMILY(sc->sk_type)) {
2608 		u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2609 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2610 		reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
2611 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2612 	}
2613 
2614 
2615 	ifp->if_flags |= IFF_RUNNING;
2616 	ifp->if_flags &= ~IFF_OACTIVE;
2617 
2618 	splx(s);
2619 	return(0);
2620 }
2621 
2622 void
2623 sk_stop(struct ifnet *ifp, int disable)
2624 {
2625         struct sk_if_softc	*sc_if = ifp->if_softc;
2626 	struct sk_softc		*sc = sc_if->sk_softc;
2627 	int			i;
2628 
2629 	DPRINTFN(1, ("sk_stop\n"));
2630 
2631 	callout_stop(&sc_if->sk_tick_ch);
2632 
2633 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2634 		u_int32_t		val;
2635 
2636 		/* Put PHY back into reset. */
2637 		val = sk_win_read_4(sc, SK_GPIO);
2638 		if (sc_if->sk_port == SK_PORT_A) {
2639 			val |= SK_GPIO_DIR0;
2640 			val &= ~SK_GPIO_DAT0;
2641 		} else {
2642 			val |= SK_GPIO_DIR2;
2643 			val &= ~SK_GPIO_DAT2;
2644 		}
2645 		sk_win_write_4(sc, SK_GPIO, val);
2646 	}
2647 
2648 	/* Turn off various components of this interface. */
2649 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2650 	switch (sc->sk_type) {
2651 	case SK_GENESIS:
2652 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2653 			      SK_TXMACCTL_XMAC_RESET);
2654 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2655 		break;
2656 	case SK_YUKON:
2657 	case SK_YUKON_LITE:
2658 	case SK_YUKON_LP:
2659 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2660 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2661 		break;
2662 	}
2663 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2664 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2665 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2666 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2667 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2668 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2669 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2670 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2671 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2672 
2673 	/* Disable interrupts */
2674 	if (sc_if->sk_port == SK_PORT_A)
2675 		sc->sk_intrmask &= ~SK_INTRS1;
2676 	else
2677 		sc->sk_intrmask &= ~SK_INTRS2;
2678 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2679 
2680 	SK_XM_READ_2(sc_if, XM_ISR);
2681 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2682 
2683 	/* Free RX and TX mbufs still in the queues. */
2684 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2685 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2686 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2687 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2688 		}
2689 	}
2690 
2691 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2692 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2693 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2694 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2695 		}
2696 	}
2697 
2698 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2699 }
2700 
2701 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
2702 
2703 /*
2704 struct cfdriver skc_cd = {
2705 	0, "skc", DV_DULL
2706 };
2707 */
2708 
2709 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
2710 
2711 /*
2712 struct cfdriver sk_cd = {
2713 	0, "sk", DV_IFNET
2714 };
2715 */
2716 
2717 #ifdef SK_DEBUG
2718 void
2719 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2720 {
2721 #define DESC_PRINT(X)					\
2722 	if (desc->X)					\
2723 		printf("txdesc[%d]." #X "=%#x\n",	\
2724 		       idx, desc->X);
2725 
2726 	DESC_PRINT(sk_ctl);
2727 	DESC_PRINT(sk_next);
2728 	DESC_PRINT(sk_data_lo);
2729 	DESC_PRINT(sk_data_hi);
2730 	DESC_PRINT(sk_xmac_txstat);
2731 	DESC_PRINT(sk_rsvd0);
2732 	DESC_PRINT(sk_csum_startval);
2733 	DESC_PRINT(sk_csum_startpos);
2734 	DESC_PRINT(sk_csum_writepos);
2735 	DESC_PRINT(sk_rsvd1);
2736 #undef PRINT
2737 }
2738 
2739 void
2740 sk_dump_bytes(const char *data, int len)
2741 {
2742 	int c, i, j;
2743 
2744 	for (i = 0; i < len; i += 16) {
2745 		printf("%08x  ", i);
2746 		c = len - i;
2747 		if (c > 16) c = 16;
2748 
2749 		for (j = 0; j < c; j++) {
2750 			printf("%02x ", data[i + j] & 0xff);
2751 			if ((j & 0xf) == 7 && j > 0)
2752 				printf(" ");
2753 		}
2754 
2755 		for (; j < 16; j++)
2756 			printf("   ");
2757 		printf("  ");
2758 
2759 		for (j = 0; j < c; j++) {
2760 			int ch = data[i + j] & 0xff;
2761 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2762 		}
2763 
2764 		printf("\n");
2765 
2766 		if (c < 16)
2767 			break;
2768 	}
2769 }
2770 
2771 void
2772 sk_dump_mbuf(struct mbuf *m)
2773 {
2774 	int count = m->m_pkthdr.len;
2775 
2776 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2777 
2778 	while (count > 0 && m) {
2779 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2780 		       m, m->m_data, m->m_len);
2781 		sk_dump_bytes(mtod(m, char *), m->m_len);
2782 
2783 		count -= m->m_len;
2784 		m = m->m_next;
2785 	}
2786 }
2787 #endif
2788