xref: /netbsd-src/sys/dev/pci/if_sk.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*	$NetBSD: if_sk.c,v 1.45 2007/12/11 11:25:52 lukem Exp $	*/
2 
3 /*-
4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the NetBSD
18  *	Foundation, Inc. and its contributors.
19  * 4. Neither the name of The NetBSD Foundation nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 /*	$OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $	*/
37 
38 /*
39  * Copyright (c) 1997, 1998, 1999, 2000
40  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. All advertising materials mentioning features or use of this software
51  *    must display the following acknowledgement:
52  *	This product includes software developed by Bill Paul.
53  * 4. Neither the name of the author nor the names of any co-contributors
54  *    may be used to endorse or promote products derived from this software
55  *    without specific prior written permission.
56  *
57  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
61  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
67  * THE POSSIBILITY OF SUCH DAMAGE.
68  *
69  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
70  */
71 
72 /*
73  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
74  *
75  * Permission to use, copy, modify, and distribute this software for any
76  * purpose with or without fee is hereby granted, provided that the above
77  * copyright notice and this permission notice appear in all copies.
78  *
79  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
80  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
81  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
82  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
83  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
84  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
85  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
86  */
87 
88 /*
89  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
90  * the SK-984x series adapters, both single port and dual port.
91  * References:
92  * 	The XaQti XMAC II datasheet,
93  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
95  *
96  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
97  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
98  * convenience to others until Vitesse corrects this problem:
99  *
100  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
101  *
102  * Written by Bill Paul <wpaul@ee.columbia.edu>
103  * Department of Electrical Engineering
104  * Columbia University, New York City
105  */
106 
107 /*
108  * The SysKonnect gigabit ethernet adapters consist of two main
109  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
110  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
111  * components and a PHY while the GEnesis controller provides a PCI
112  * interface with DMA support. Each card may have between 512K and
113  * 2MB of SRAM on board depending on the configuration.
114  *
115  * The SysKonnect GEnesis controller can have either one or two XMAC
116  * chips connected to it, allowing single or dual port NIC configurations.
117  * SysKonnect has the distinction of being the only vendor on the market
118  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
119  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
120  * XMAC registers. This driver takes advantage of these features to allow
121  * both XMACs to operate as independent interfaces.
122  */
123 
124 #include <sys/cdefs.h>
125 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.45 2007/12/11 11:25:52 lukem Exp $");
126 
127 #include "bpfilter.h"
128 #include "rnd.h"
129 
130 #include <sys/param.h>
131 #include <sys/systm.h>
132 #include <sys/sockio.h>
133 #include <sys/mbuf.h>
134 #include <sys/malloc.h>
135 #include <sys/kernel.h>
136 #include <sys/socket.h>
137 #include <sys/device.h>
138 #include <sys/queue.h>
139 #include <sys/callout.h>
140 #include <sys/sysctl.h>
141 #include <sys/endian.h>
142 
143 #include <net/if.h>
144 #include <net/if_dl.h>
145 #include <net/if_types.h>
146 
147 #include <net/if_media.h>
148 
149 #if NBPFILTER > 0
150 #include <net/bpf.h>
151 #endif
152 #if NRND > 0
153 #include <sys/rnd.h>
154 #endif
155 
156 #include <dev/mii/mii.h>
157 #include <dev/mii/miivar.h>
158 #include <dev/mii/brgphyreg.h>
159 
160 #include <dev/pci/pcireg.h>
161 #include <dev/pci/pcivar.h>
162 #include <dev/pci/pcidevs.h>
163 
164 /* #define SK_USEIOSPACE */
165 
166 #include <dev/pci/if_skreg.h>
167 #include <dev/pci/if_skvar.h>
168 
169 int skc_probe(struct device *, struct cfdata *, void *);
170 void skc_attach(struct device *, struct device *self, void *aux);
171 int sk_probe(struct device *, struct cfdata *, void *);
172 void sk_attach(struct device *, struct device *self, void *aux);
173 int skcprint(void *, const char *);
174 int sk_intr(void *);
175 void sk_intr_bcom(struct sk_if_softc *);
176 void sk_intr_xmac(struct sk_if_softc *);
177 void sk_intr_yukon(struct sk_if_softc *);
178 void sk_rxeof(struct sk_if_softc *);
179 void sk_txeof(struct sk_if_softc *);
180 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
181 void sk_start(struct ifnet *);
182 int sk_ioctl(struct ifnet *, u_long, void *);
183 int sk_init(struct ifnet *);
184 void sk_init_xmac(struct sk_if_softc *);
185 void sk_init_yukon(struct sk_if_softc *);
186 void sk_stop(struct ifnet *, int);
187 void sk_watchdog(struct ifnet *);
188 void sk_shutdown(void *);
189 int sk_ifmedia_upd(struct ifnet *);
190 void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
191 void sk_reset(struct sk_softc *);
192 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
193 int sk_alloc_jumbo_mem(struct sk_if_softc *);
194 void sk_free_jumbo_mem(struct sk_if_softc *);
195 void *sk_jalloc(struct sk_if_softc *);
196 void sk_jfree(struct mbuf *, void *, size_t, void *);
197 int sk_init_rx_ring(struct sk_if_softc *);
198 int sk_init_tx_ring(struct sk_if_softc *);
199 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
200 void sk_vpd_read_res(struct sk_softc *,
201 					struct vpd_res *, int);
202 void sk_vpd_read(struct sk_softc *);
203 
204 void sk_update_int_mod(struct sk_softc *);
205 
206 int sk_xmac_miibus_readreg(struct device *, int, int);
207 void sk_xmac_miibus_writereg(struct device *, int, int, int);
208 void sk_xmac_miibus_statchg(struct device *);
209 
210 int sk_marv_miibus_readreg(struct device *, int, int);
211 void sk_marv_miibus_writereg(struct device *, int, int, int);
212 void sk_marv_miibus_statchg(struct device *);
213 
214 u_int32_t sk_xmac_hash(void *);
215 u_int32_t sk_yukon_hash(void *);
216 void sk_setfilt(struct sk_if_softc *, void *, int);
217 void sk_setmulti(struct sk_if_softc *);
218 void sk_tick(void *);
219 
220 /* #define SK_DEBUG 2 */
221 #ifdef SK_DEBUG
222 #define DPRINTF(x)	if (skdebug) printf x
223 #define DPRINTFN(n,x)	if (skdebug >= (n)) printf x
224 int	skdebug = SK_DEBUG;
225 
226 void sk_dump_txdesc(struct sk_tx_desc *, int);
227 void sk_dump_mbuf(struct mbuf *);
228 void sk_dump_bytes(const char *, int);
229 #else
230 #define DPRINTF(x)
231 #define DPRINTFN(n,x)
232 #endif
233 
234 static int sk_sysctl_handler(SYSCTLFN_PROTO);
235 static int sk_root_num;
236 
237 /* supported device vendors */
238 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
239 static const struct sk_product {
240 	pci_vendor_id_t		sk_vendor;
241 	pci_product_id_t	sk_product;
242 } sk_products[] = {
243 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
244 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
245 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
246 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
247 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
248 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
249 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
250 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
251 	{ 0, 0, }
252 };
253 
254 #define SK_LINKSYS_EG1032_SUBID	0x00151737
255 
256 static inline u_int32_t
257 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
258 {
259 #ifdef SK_USEIOSPACE
260 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
261 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
262 #else
263 	return CSR_READ_4(sc, reg);
264 #endif
265 }
266 
267 static inline u_int16_t
268 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
269 {
270 #ifdef SK_USEIOSPACE
271 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
272 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
273 #else
274 	return CSR_READ_2(sc, reg);
275 #endif
276 }
277 
278 static inline u_int8_t
279 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
280 {
281 #ifdef SK_USEIOSPACE
282 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
283 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
284 #else
285 	return CSR_READ_1(sc, reg);
286 #endif
287 }
288 
289 static inline void
290 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
291 {
292 #ifdef SK_USEIOSPACE
293 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
294 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
295 #else
296 	CSR_WRITE_4(sc, reg, x);
297 #endif
298 }
299 
300 static inline void
301 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
302 {
303 #ifdef SK_USEIOSPACE
304 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
305 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
306 #else
307 	CSR_WRITE_2(sc, reg, x);
308 #endif
309 }
310 
311 static inline void
312 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
313 {
314 #ifdef SK_USEIOSPACE
315 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
316 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
317 #else
318 	CSR_WRITE_1(sc, reg, x);
319 #endif
320 }
321 
322 /*
323  * The VPD EEPROM contains Vital Product Data, as suggested in
324  * the PCI 2.1 specification. The VPD data is separared into areas
325  * denoted by resource IDs. The SysKonnect VPD contains an ID string
326  * resource (the name of the adapter), a read-only area resource
327  * containing various key/data fields and a read/write area which
328  * can be used to store asset management information or log messages.
329  * We read the ID string and read-only into buffers attached to
330  * the controller softc structure for later use. At the moment,
331  * we only use the ID string during sk_attach().
332  */
333 u_int8_t
334 sk_vpd_readbyte(struct sk_softc *sc, int addr)
335 {
336 	int			i;
337 
338 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
339 	for (i = 0; i < SK_TIMEOUT; i++) {
340 		DELAY(1);
341 		if (sk_win_read_2(sc,
342 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
343 			break;
344 	}
345 
346 	if (i == SK_TIMEOUT)
347 		return 0;
348 
349 	return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
350 }
351 
352 void
353 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
354 {
355 	int			i;
356 	u_int8_t		*ptr;
357 
358 	ptr = (u_int8_t *)res;
359 	for (i = 0; i < sizeof(struct vpd_res); i++)
360 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
361 }
362 
363 void
364 sk_vpd_read(struct sk_softc *sc)
365 {
366 	int			pos = 0, i;
367 	struct vpd_res		res;
368 
369 	if (sc->sk_vpd_prodname != NULL)
370 		free(sc->sk_vpd_prodname, M_DEVBUF);
371 	if (sc->sk_vpd_readonly != NULL)
372 		free(sc->sk_vpd_readonly, M_DEVBUF);
373 	sc->sk_vpd_prodname = NULL;
374 	sc->sk_vpd_readonly = NULL;
375 
376 	sk_vpd_read_res(sc, &res, pos);
377 
378 	if (res.vr_id != VPD_RES_ID) {
379 		aprint_error("%s: bad VPD resource id: expected %x got %x\n",
380 		    sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
381 		return;
382 	}
383 
384 	pos += sizeof(res);
385 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
386 	if (sc->sk_vpd_prodname == NULL)
387 		panic("sk_vpd_read");
388 	for (i = 0; i < res.vr_len; i++)
389 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
390 	sc->sk_vpd_prodname[i] = '\0';
391 	pos += i;
392 
393 	sk_vpd_read_res(sc, &res, pos);
394 
395 	if (res.vr_id != VPD_RES_READ) {
396 		aprint_error("%s: bad VPD resource id: expected %x got %x\n",
397 		    sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
398 		return;
399 	}
400 
401 	pos += sizeof(res);
402 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
403 	if (sc->sk_vpd_readonly == NULL)
404 		panic("sk_vpd_read");
405 	for (i = 0; i < res.vr_len ; i++)
406 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
407 }
408 
409 int
410 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
411 {
412 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
413 	int i;
414 
415 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
416 
417 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
418 		return 0;
419 
420 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
421 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
422 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
423 		for (i = 0; i < SK_TIMEOUT; i++) {
424 			DELAY(1);
425 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
426 			    XM_MMUCMD_PHYDATARDY)
427 				break;
428 		}
429 
430 		if (i == SK_TIMEOUT) {
431 			aprint_error("%s: phy failed to come ready\n",
432 			    sc_if->sk_dev.dv_xname);
433 			return 0;
434 		}
435 	}
436 	DELAY(1);
437 	return SK_XM_READ_2(sc_if, XM_PHY_DATA);
438 }
439 
440 void
441 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
442 {
443 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
444 	int i;
445 
446 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
447 
448 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
449 	for (i = 0; i < SK_TIMEOUT; i++) {
450 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
451 			break;
452 	}
453 
454 	if (i == SK_TIMEOUT) {
455 		aprint_error("%s: phy failed to come ready\n",
456 		    sc_if->sk_dev.dv_xname);
457 		return;
458 	}
459 
460 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
461 	for (i = 0; i < SK_TIMEOUT; i++) {
462 		DELAY(1);
463 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
464 			break;
465 	}
466 
467 	if (i == SK_TIMEOUT)
468 		aprint_error("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
469 }
470 
471 void
472 sk_xmac_miibus_statchg(struct device *dev)
473 {
474 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
475 	struct mii_data *mii = &sc_if->sk_mii;
476 
477 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
478 
479 	/*
480 	 * If this is a GMII PHY, manually set the XMAC's
481 	 * duplex mode accordingly.
482 	 */
483 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
484 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
485 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
486 		else
487 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
488 	}
489 }
490 
491 int
492 sk_marv_miibus_readreg(struct device *dev, int phy, int reg)
493 {
494 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
495 	u_int16_t val;
496 	int i;
497 
498 	if (phy != 0 ||
499 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
500 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
501 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
502 			     phy, reg));
503 		return 0;
504 	}
505 
506         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
507 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
508 
509 	for (i = 0; i < SK_TIMEOUT; i++) {
510 		DELAY(1);
511 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
512 		if (val & YU_SMICR_READ_VALID)
513 			break;
514 	}
515 
516 	if (i == SK_TIMEOUT) {
517 		aprint_error("%s: phy failed to come ready\n",
518 		       sc_if->sk_dev.dv_xname);
519 		return 0;
520 	}
521 
522  	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
523 		     SK_TIMEOUT));
524 
525         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
526 
527 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
528 		     phy, reg, val));
529 
530 	return val;
531 }
532 
533 void
534 sk_marv_miibus_writereg(struct device *dev, int phy, int reg, int val)
535 {
536 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
537 	int i;
538 
539 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
540 		     phy, reg, val));
541 
542 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
543 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
544 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
545 
546 	for (i = 0; i < SK_TIMEOUT; i++) {
547 		DELAY(1);
548 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
549 			break;
550 	}
551 
552 	if (i == SK_TIMEOUT)
553 		printf("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
554 }
555 
556 void
557 sk_marv_miibus_statchg(struct device *dev)
558 {
559 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
560 		     SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
561 }
562 
563 #define SK_HASH_BITS		6
564 
565 u_int32_t
566 sk_xmac_hash(void *addr)
567 {
568 	u_int32_t		crc;
569 
570 	crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
571 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
572 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
573 	return crc;
574 }
575 
576 u_int32_t
577 sk_yukon_hash(void *addr)
578 {
579 	u_int32_t		crc;
580 
581 	crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
582 	crc &= ((1 << SK_HASH_BITS) - 1);
583 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
584 	return crc;
585 }
586 
587 void
588 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
589 {
590 	char *addr = addrv;
591 	int base = XM_RXFILT_ENTRY(slot);
592 
593 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
594 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
595 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
596 }
597 
598 void
599 sk_setmulti(struct sk_if_softc *sc_if)
600 {
601 	struct sk_softc *sc = sc_if->sk_softc;
602 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
603 	u_int32_t hashes[2] = { 0, 0 };
604 	int h = 0, i;
605 	struct ethercom *ec = &sc_if->sk_ethercom;
606 	struct ether_multi *enm;
607 	struct ether_multistep step;
608 	u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
609 
610 	/* First, zot all the existing filters. */
611 	switch (sc->sk_type) {
612 	case SK_GENESIS:
613 		for (i = 1; i < XM_RXFILT_MAX; i++)
614 			sk_setfilt(sc_if, (void *)&dummy, i);
615 
616 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
617 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
618 		break;
619 	case SK_YUKON:
620 	case SK_YUKON_LITE:
621 	case SK_YUKON_LP:
622 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
623 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
624 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
625 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
626 		break;
627 	}
628 
629 	/* Now program new ones. */
630 allmulti:
631 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
632 		hashes[0] = 0xFFFFFFFF;
633 		hashes[1] = 0xFFFFFFFF;
634 	} else {
635 		i = 1;
636 		/* First find the tail of the list. */
637 		ETHER_FIRST_MULTI(step, ec, enm);
638 		while (enm != NULL) {
639 			if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
640 				 ETHER_ADDR_LEN)) {
641 				ifp->if_flags |= IFF_ALLMULTI;
642 				goto allmulti;
643 			}
644 			DPRINTFN(2,("multicast address %s\n",
645 	    			ether_sprintf(enm->enm_addrlo)));
646 			/*
647 			 * Program the first XM_RXFILT_MAX multicast groups
648 			 * into the perfect filter. For all others,
649 			 * use the hash table.
650 			 */
651 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
652 				sk_setfilt(sc_if, enm->enm_addrlo, i);
653 				i++;
654 			}
655 			else {
656 				switch (sc->sk_type) {
657 				case SK_GENESIS:
658 					h = sk_xmac_hash(enm->enm_addrlo);
659 					break;
660 				case SK_YUKON:
661 				case SK_YUKON_LITE:
662 				case SK_YUKON_LP:
663 					h = sk_yukon_hash(enm->enm_addrlo);
664 					break;
665 				}
666 				if (h < 32)
667 					hashes[0] |= (1 << h);
668 				else
669 					hashes[1] |= (1 << (h - 32));
670 			}
671 
672 			ETHER_NEXT_MULTI(step, enm);
673 		}
674 	}
675 
676 	switch (sc->sk_type) {
677 	case SK_GENESIS:
678 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
679 			       XM_MODE_RX_USE_PERFECT);
680 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
681 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
682 		break;
683 	case SK_YUKON:
684 	case SK_YUKON_LITE:
685 	case SK_YUKON_LP:
686 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
687 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
688 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
689 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
690 		break;
691 	}
692 }
693 
694 int
695 sk_init_rx_ring(struct sk_if_softc *sc_if)
696 {
697 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
698 	struct sk_ring_data	*rd = sc_if->sk_rdata;
699 	int			i;
700 
701 	bzero((char *)rd->sk_rx_ring,
702 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
703 
704 	for (i = 0; i < SK_RX_RING_CNT; i++) {
705 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
706 		if (i == (SK_RX_RING_CNT - 1)) {
707 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
708 			rd->sk_rx_ring[i].sk_next =
709 				htole32(SK_RX_RING_ADDR(sc_if, 0));
710 		} else {
711 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
712 			rd->sk_rx_ring[i].sk_next =
713 				htole32(SK_RX_RING_ADDR(sc_if,i+1));
714 		}
715 	}
716 
717 	for (i = 0; i < SK_RX_RING_CNT; i++) {
718 		if (sk_newbuf(sc_if, i, NULL,
719 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
720 			aprint_error("%s: failed alloc of %dth mbuf\n",
721 			    sc_if->sk_dev.dv_xname, i);
722 			return ENOBUFS;
723 		}
724 	}
725 	sc_if->sk_cdata.sk_rx_prod = 0;
726 	sc_if->sk_cdata.sk_rx_cons = 0;
727 
728 	return 0;
729 }
730 
731 int
732 sk_init_tx_ring(struct sk_if_softc *sc_if)
733 {
734 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
735 	struct sk_ring_data	*rd = sc_if->sk_rdata;
736 	int			i;
737 
738 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
739 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
740 
741 	for (i = 0; i < SK_TX_RING_CNT; i++) {
742 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
743 		if (i == (SK_TX_RING_CNT - 1)) {
744 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
745 			rd->sk_tx_ring[i].sk_next =
746 				htole32(SK_TX_RING_ADDR(sc_if, 0));
747 		} else {
748 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
749 			rd->sk_tx_ring[i].sk_next =
750 				htole32(SK_TX_RING_ADDR(sc_if,i+1));
751 		}
752 	}
753 
754 	sc_if->sk_cdata.sk_tx_prod = 0;
755 	sc_if->sk_cdata.sk_tx_cons = 0;
756 	sc_if->sk_cdata.sk_tx_cnt = 0;
757 
758 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
759 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
760 
761 	return 0;
762 }
763 
764 int
765 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
766 	  bus_dmamap_t dmamap)
767 {
768 	struct mbuf		*m_new = NULL;
769 	struct sk_chain		*c;
770 	struct sk_rx_desc	*r;
771 
772 	if (m == NULL) {
773 		void *buf = NULL;
774 
775 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
776 		if (m_new == NULL) {
777 			aprint_error("%s: no memory for rx list -- "
778 			    "packet dropped!\n", sc_if->sk_dev.dv_xname);
779 			return ENOBUFS;
780 		}
781 
782 		/* Allocate the jumbo buffer */
783 		buf = sk_jalloc(sc_if);
784 		if (buf == NULL) {
785 			m_freem(m_new);
786 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
787 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
788 			return ENOBUFS;
789 		}
790 
791 		/* Attach the buffer to the mbuf */
792 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
793 		MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
794 
795 	} else {
796 		/*
797 	 	 * We're re-using a previously allocated mbuf;
798 		 * be sure to re-init pointers and lengths to
799 		 * default values.
800 		 */
801 		m_new = m;
802 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
803 		m_new->m_data = m_new->m_ext.ext_buf;
804 	}
805 	m_adj(m_new, ETHER_ALIGN);
806 
807 	c = &sc_if->sk_cdata.sk_rx_chain[i];
808 	r = c->sk_desc;
809 	c->sk_mbuf = m_new;
810 	r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
811 	    (((vaddr_t)m_new->m_data
812 		- (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
813 	r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
814 
815 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
816 
817 	return 0;
818 }
819 
820 /*
821  * Memory management for jumbo frames.
822  */
823 
824 int
825 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
826 {
827 	struct sk_softc		*sc = sc_if->sk_softc;
828 	char *ptr, *kva;
829 	bus_dma_segment_t	seg;
830 	int		i, rseg, state, error;
831 	struct sk_jpool_entry   *entry;
832 
833 	state = error = 0;
834 
835 	/* Grab a big chunk o' storage. */
836 	if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
837 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
838 		aprint_error("%s: can't alloc rx buffers\n", sc->sk_dev.dv_xname);
839 		return ENOBUFS;
840 	}
841 
842 	state = 1;
843 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
844 			   BUS_DMA_NOWAIT)) {
845 		aprint_error("%s: can't map dma buffers (%d bytes)\n",
846 		    sc->sk_dev.dv_xname, SK_JMEM);
847 		error = ENOBUFS;
848 		goto out;
849 	}
850 
851 	state = 2;
852 	if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
853 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
854 		aprint_error("%s: can't create dma map\n", sc->sk_dev.dv_xname);
855 		error = ENOBUFS;
856 		goto out;
857 	}
858 
859 	state = 3;
860 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
861 			    kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
862 		aprint_error("%s: can't load dma map\n", sc->sk_dev.dv_xname);
863 		error = ENOBUFS;
864 		goto out;
865 	}
866 
867 	state = 4;
868 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
869 	DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
870 
871 	LIST_INIT(&sc_if->sk_jfree_listhead);
872 	LIST_INIT(&sc_if->sk_jinuse_listhead);
873 
874 	/*
875 	 * Now divide it up into 9K pieces and save the addresses
876 	 * in an array.
877 	 */
878 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
879 	for (i = 0; i < SK_JSLOTS; i++) {
880 		sc_if->sk_cdata.sk_jslots[i] = ptr;
881 		ptr += SK_JLEN;
882 		entry = malloc(sizeof(struct sk_jpool_entry),
883 		    M_DEVBUF, M_NOWAIT);
884 		if (entry == NULL) {
885 			aprint_error("%s: no memory for jumbo buffer queue!\n",
886 			    sc->sk_dev.dv_xname);
887 			error = ENOBUFS;
888 			goto out;
889 		}
890 		entry->slot = i;
891 		if (i)
892 			LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
893 				 entry, jpool_entries);
894 		else
895 			LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
896 				 entry, jpool_entries);
897 	}
898 out:
899 	if (error != 0) {
900 		switch (state) {
901 		case 4:
902 			bus_dmamap_unload(sc->sc_dmatag,
903 			    sc_if->sk_cdata.sk_rx_jumbo_map);
904 		case 3:
905 			bus_dmamap_destroy(sc->sc_dmatag,
906 			    sc_if->sk_cdata.sk_rx_jumbo_map);
907 		case 2:
908 			bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
909 		case 1:
910 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
911 			break;
912 		default:
913 			break;
914 		}
915 	}
916 
917 	return error;
918 }
919 
920 /*
921  * Allocate a jumbo buffer.
922  */
923 void *
924 sk_jalloc(struct sk_if_softc *sc_if)
925 {
926 	struct sk_jpool_entry   *entry;
927 
928 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
929 
930 	if (entry == NULL)
931 		return NULL;
932 
933 	LIST_REMOVE(entry, jpool_entries);
934 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
935 	return sc_if->sk_cdata.sk_jslots[entry->slot];
936 }
937 
938 /*
939  * Release a jumbo buffer.
940  */
941 void
942 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
943 {
944 	struct sk_jpool_entry *entry;
945 	struct sk_if_softc *sc;
946 	int i, s;
947 
948 	/* Extract the softc struct pointer. */
949 	sc = (struct sk_if_softc *)arg;
950 
951 	if (sc == NULL)
952 		panic("sk_jfree: can't find softc pointer!");
953 
954 	/* calculate the slot this buffer belongs to */
955 
956 	i = ((vaddr_t)buf
957 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
958 
959 	if ((i < 0) || (i >= SK_JSLOTS))
960 		panic("sk_jfree: asked to free buffer that we don't manage!");
961 
962 	s = splvm();
963 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
964 	if (entry == NULL)
965 		panic("sk_jfree: buffer not in use!");
966 	entry->slot = i;
967 	LIST_REMOVE(entry, jpool_entries);
968 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
969 
970 	if (__predict_true(m != NULL))
971 		pool_cache_put(mb_cache, m);
972 	splx(s);
973 }
974 
975 /*
976  * Set media options.
977  */
978 int
979 sk_ifmedia_upd(struct ifnet *ifp)
980 {
981 	struct sk_if_softc *sc_if = ifp->if_softc;
982 
983 	(void) sk_init(ifp);
984 	mii_mediachg(&sc_if->sk_mii);
985 	return 0;
986 }
987 
988 /*
989  * Report current media status.
990  */
991 void
992 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
993 {
994 	struct sk_if_softc *sc_if = ifp->if_softc;
995 
996 	mii_pollstat(&sc_if->sk_mii);
997 	ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
998 	ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
999 }
1000 
1001 int
1002 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
1003 {
1004 	struct sk_if_softc *sc_if = ifp->if_softc;
1005 	struct sk_softc *sc = sc_if->sk_softc;
1006 	struct ifreq *ifr = (struct ifreq *) data;
1007 	struct mii_data *mii;
1008 	int s, error = 0;
1009 
1010 	/* DPRINTFN(2, ("sk_ioctl\n")); */
1011 
1012 	s = splnet();
1013 
1014 	switch (command) {
1015 
1016 	case SIOCSIFFLAGS:
1017 	        DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1018 		if (ifp->if_flags & IFF_UP) {
1019 			if (ifp->if_flags & IFF_RUNNING &&
1020 			    ifp->if_flags & IFF_PROMISC &&
1021 			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
1022 				switch (sc->sk_type) {
1023 				case SK_GENESIS:
1024 					SK_XM_SETBIT_4(sc_if, XM_MODE,
1025 					    XM_MODE_RX_PROMISC);
1026 					break;
1027 				case SK_YUKON:
1028 				case SK_YUKON_LITE:
1029 				case SK_YUKON_LP:
1030 					SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1031 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
1032 					break;
1033 				}
1034 				sk_setmulti(sc_if);
1035 			} else if (ifp->if_flags & IFF_RUNNING &&
1036 			    !(ifp->if_flags & IFF_PROMISC) &&
1037 			    sc_if->sk_if_flags & IFF_PROMISC) {
1038 				switch (sc->sk_type) {
1039 				case SK_GENESIS:
1040 					SK_XM_CLRBIT_4(sc_if, XM_MODE,
1041 					    XM_MODE_RX_PROMISC);
1042 					break;
1043 				case SK_YUKON:
1044 				case SK_YUKON_LITE:
1045 				case SK_YUKON_LP:
1046 					SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1047 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
1048 					break;
1049 				}
1050 
1051 				sk_setmulti(sc_if);
1052 			} else
1053 				(void) sk_init(ifp);
1054 		} else {
1055 			if (ifp->if_flags & IFF_RUNNING)
1056 				sk_stop(ifp,0);
1057 		}
1058 		sc_if->sk_if_flags = ifp->if_flags;
1059 		error = 0;
1060 		break;
1061 
1062 	case SIOCGIFMEDIA:
1063 	case SIOCSIFMEDIA:
1064 	        DPRINTFN(2, ("sk_ioctl MEDIA\n"));
1065 		mii = &sc_if->sk_mii;
1066 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1067 		break;
1068 	default:
1069 	        DPRINTFN(2, ("sk_ioctl ETHER\n"));
1070 		error = ether_ioctl(ifp, command, data);
1071 
1072 		if ( error == ENETRESET) {
1073 			if (ifp->if_flags & IFF_RUNNING) {
1074 				sk_setmulti(sc_if);
1075 				DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1076 			}
1077 			error = 0;
1078 		} else if ( error ) {
1079 			splx(s);
1080 			return error;
1081 		}
1082 		break;
1083 	}
1084 
1085 	splx(s);
1086 	return error;
1087 }
1088 
1089 void
1090 sk_update_int_mod(struct sk_softc *sc)
1091 {
1092 	u_int32_t imtimer_ticks;
1093 
1094 	/*
1095          * Configure interrupt moderation. The moderation timer
1096 	 * defers interrupts specified in the interrupt moderation
1097 	 * timer mask based on the timeout specified in the interrupt
1098 	 * moderation timer init register. Each bit in the timer
1099 	 * register represents one tick, so to specify a timeout in
1100 	 * microseconds, we have to multiply by the correct number of
1101 	 * ticks-per-microsecond.
1102 	 */
1103 	switch (sc->sk_type) {
1104 	case SK_GENESIS:
1105 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1106 		break;
1107 	case SK_YUKON_EC:
1108 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1109 		break;
1110 	default:
1111 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1112 	}
1113 	aprint_verbose("%s: interrupt moderation is %d us\n",
1114 	    sc->sk_dev.dv_xname, sc->sk_int_mod);
1115         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1116         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1117 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1118         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1119 	sc->sk_int_mod_pending = 0;
1120 }
1121 
1122 /*
1123  * Lookup: Check the PCI vendor and device, and return a pointer to
1124  * The structure if the IDs match against our list.
1125  */
1126 
1127 static const struct sk_product *
1128 sk_lookup(const struct pci_attach_args *pa)
1129 {
1130 	const struct sk_product *psk;
1131 
1132 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1133 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1134 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1135 			return psk;
1136 	}
1137 	return NULL;
1138 }
1139 
1140 /*
1141  * Probe for a SysKonnect GEnesis chip.
1142  */
1143 
1144 int
1145 skc_probe(struct device *parent, struct cfdata *match,
1146     void *aux)
1147 {
1148 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1149 	const struct sk_product *psk;
1150 	pcireg_t subid;
1151 
1152 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1153 
1154 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
1155 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1156 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1157 	    subid == SK_LINKSYS_EG1032_SUBID)
1158 		return 1;
1159 
1160 	if ((psk = sk_lookup(pa))) {
1161 		return 1;
1162 	}
1163 	return 0;
1164 }
1165 
1166 /*
1167  * Force the GEnesis into reset, then bring it out of reset.
1168  */
1169 void sk_reset(struct sk_softc *sc)
1170 {
1171 	DPRINTFN(2, ("sk_reset\n"));
1172 
1173 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1174 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1175 	if (SK_YUKON_FAMILY(sc->sk_type))
1176 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1177 
1178 	DELAY(1000);
1179 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1180 	DELAY(2);
1181 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1182 	if (SK_YUKON_FAMILY(sc->sk_type))
1183 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1184 
1185 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1186 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1187 		     CSR_READ_2(sc, SK_LINK_CTRL)));
1188 
1189 	if (sc->sk_type == SK_GENESIS) {
1190 		/* Configure packet arbiter */
1191 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1192 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1193 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1194 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1195 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1196 	}
1197 
1198 	/* Enable RAM interface */
1199 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1200 
1201 	sk_update_int_mod(sc);
1202 }
1203 
1204 int
1205 sk_probe(struct device *parent, struct cfdata *match,
1206     void *aux)
1207 {
1208 	struct skc_attach_args *sa = aux;
1209 
1210 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1211 		return 0;
1212 
1213 	return 1;
1214 }
1215 
1216 /*
1217  * Each XMAC chip is attached as a separate logical IP interface.
1218  * Single port cards will have only one logical interface of course.
1219  */
1220 void
1221 sk_attach(struct device *parent, struct device *self, void *aux)
1222 {
1223 	struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
1224 	struct sk_softc *sc = (struct sk_softc *)parent;
1225 	struct skc_attach_args *sa = aux;
1226 	struct sk_txmap_entry	*entry;
1227 	struct ifnet *ifp;
1228 	bus_dma_segment_t seg;
1229 	bus_dmamap_t dmamap;
1230 	void *kva;
1231 	int i, rseg;
1232 
1233 	aprint_naive("\n");
1234 
1235 	sc_if->sk_port = sa->skc_port;
1236 	sc_if->sk_softc = sc;
1237 	sc->sk_if[sa->skc_port] = sc_if;
1238 
1239 	if (sa->skc_port == SK_PORT_A)
1240 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1241 	if (sa->skc_port == SK_PORT_B)
1242 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1243 
1244 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1245 
1246 	/*
1247 	 * Get station address for this interface. Note that
1248 	 * dual port cards actually come with three station
1249 	 * addresses: one for each port, plus an extra. The
1250 	 * extra one is used by the SysKonnect driver software
1251 	 * as a 'virtual' station address for when both ports
1252 	 * are operating in failover mode. Currently we don't
1253 	 * use this extra address.
1254 	 */
1255 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1256 		sc_if->sk_enaddr[i] =
1257 			sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1258 
1259 
1260 	aprint_normal(": Ethernet address %s\n",
1261 	    ether_sprintf(sc_if->sk_enaddr));
1262 
1263 	/*
1264 	 * Set up RAM buffer addresses. The NIC will have a certain
1265 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1266 	 * need to divide this up a) between the transmitter and
1267  	 * receiver and b) between the two XMACs, if this is a
1268 	 * dual port NIC. Our algorithm is to divide up the memory
1269 	 * evenly so that everyone gets a fair share.
1270 	 */
1271 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1272 		u_int32_t		chunk, val;
1273 
1274 		chunk = sc->sk_ramsize / 2;
1275 		val = sc->sk_rboff / sizeof(u_int64_t);
1276 		sc_if->sk_rx_ramstart = val;
1277 		val += (chunk / sizeof(u_int64_t));
1278 		sc_if->sk_rx_ramend = val - 1;
1279 		sc_if->sk_tx_ramstart = val;
1280 		val += (chunk / sizeof(u_int64_t));
1281 		sc_if->sk_tx_ramend = val - 1;
1282 	} else {
1283 		u_int32_t		chunk, val;
1284 
1285 		chunk = sc->sk_ramsize / 4;
1286 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1287 		    sizeof(u_int64_t);
1288 		sc_if->sk_rx_ramstart = val;
1289 		val += (chunk / sizeof(u_int64_t));
1290 		sc_if->sk_rx_ramend = val - 1;
1291 		sc_if->sk_tx_ramstart = val;
1292 		val += (chunk / sizeof(u_int64_t));
1293 		sc_if->sk_tx_ramend = val - 1;
1294 	}
1295 
1296 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1297 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
1298 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1299 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1300 
1301 	/* Read and save PHY type and set PHY address */
1302 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1303 	switch (sc_if->sk_phytype) {
1304 	case SK_PHYTYPE_XMAC:
1305 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1306 		break;
1307 	case SK_PHYTYPE_BCOM:
1308 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1309 		break;
1310 	case SK_PHYTYPE_MARV_COPPER:
1311 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1312 		break;
1313 	default:
1314 		aprint_error("%s: unsupported PHY type: %d\n",
1315 		    sc->sk_dev.dv_xname, sc_if->sk_phytype);
1316 		return;
1317 	}
1318 
1319 	/* Allocate the descriptor queues. */
1320 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1321 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1322 		aprint_error("%s: can't alloc rx buffers\n",
1323 		    sc->sk_dev.dv_xname);
1324 		goto fail;
1325 	}
1326 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1327 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1328 		aprint_error("%s: can't map dma buffers (%lu bytes)\n",
1329 		       sc_if->sk_dev.dv_xname,
1330 		       (u_long) sizeof(struct sk_ring_data));
1331 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1332 		goto fail;
1333 	}
1334 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1335 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1336             &sc_if->sk_ring_map)) {
1337 		aprint_error("%s: can't create dma map\n",
1338 		    sc_if->sk_dev.dv_xname);
1339 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1340 		    sizeof(struct sk_ring_data));
1341 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1342 		goto fail;
1343 	}
1344 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1345 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1346 		aprint_error("%s: can't load dma map\n",
1347 		    sc_if->sk_dev.dv_xname);
1348 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1349 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1350 		    sizeof(struct sk_ring_data));
1351 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1352 		goto fail;
1353 	}
1354 
1355 	for (i = 0; i < SK_RX_RING_CNT; i++)
1356 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1357 
1358 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1359 	for (i = 0; i < SK_TX_RING_CNT; i++) {
1360 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1361 
1362 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1363 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1364 			aprint_error("%s: Can't create TX dmamap\n",
1365 				sc_if->sk_dev.dv_xname);
1366 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1367 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1368 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1369 			    sizeof(struct sk_ring_data));
1370 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1371 			goto fail;
1372 		}
1373 
1374 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1375 		if (!entry) {
1376 			aprint_error("%s: Can't alloc txmap entry\n",
1377 				sc_if->sk_dev.dv_xname);
1378 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1379 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1380 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1381 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1382 			    sizeof(struct sk_ring_data));
1383 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1384 			goto fail;
1385 		}
1386 		entry->dmamap = dmamap;
1387 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1388 	}
1389 
1390         sc_if->sk_rdata = (struct sk_ring_data *)kva;
1391 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1392 
1393 	ifp = &sc_if->sk_ethercom.ec_if;
1394 	/* Try to allocate memory for jumbo buffers. */
1395 	if (sk_alloc_jumbo_mem(sc_if)) {
1396 		aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1397 		goto fail;
1398 	}
1399 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1400 		| ETHERCAP_JUMBO_MTU;
1401 
1402 	ifp->if_softc = sc_if;
1403 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1404 	ifp->if_ioctl = sk_ioctl;
1405 	ifp->if_start = sk_start;
1406 	ifp->if_stop = sk_stop;
1407 	ifp->if_init = sk_init;
1408 	ifp->if_watchdog = sk_watchdog;
1409 	ifp->if_capabilities = 0;
1410 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1411 	IFQ_SET_READY(&ifp->if_snd);
1412 	strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
1413 
1414 	/*
1415 	 * Do miibus setup.
1416 	 */
1417 	switch (sc->sk_type) {
1418 	case SK_GENESIS:
1419 		sk_init_xmac(sc_if);
1420 		break;
1421 	case SK_YUKON:
1422 	case SK_YUKON_LITE:
1423 	case SK_YUKON_LP:
1424 		sk_init_yukon(sc_if);
1425 		break;
1426 	default:
1427 		aprint_error("%s: unknown device type %d\n",
1428 		    sc->sk_dev.dv_xname, sc->sk_type);
1429 		goto fail;
1430 	}
1431 
1432  	DPRINTFN(2, ("sk_attach: 1\n"));
1433 
1434 	sc_if->sk_mii.mii_ifp = ifp;
1435 	switch (sc->sk_type) {
1436 	case SK_GENESIS:
1437 		sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1438 		sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1439 		sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1440 		break;
1441 	case SK_YUKON:
1442 	case SK_YUKON_LITE:
1443 	case SK_YUKON_LP:
1444 		sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1445 		sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1446 		sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1447 		break;
1448 	}
1449 
1450 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1451 	    sk_ifmedia_upd, sk_ifmedia_sts);
1452 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1453 	    MII_OFFSET_ANY, 0);
1454 	if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1455 		aprint_error("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
1456 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1457 			    0, NULL);
1458 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1459 	} else
1460 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1461 
1462 	callout_init(&sc_if->sk_tick_ch, 0);
1463 	callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1464 
1465 	DPRINTFN(2, ("sk_attach: 1\n"));
1466 
1467 	/*
1468 	 * Call MI attach routines.
1469 	 */
1470 	if_attach(ifp);
1471 
1472 	ether_ifattach(ifp, sc_if->sk_enaddr);
1473 
1474 #if NRND > 0
1475         rnd_attach_source(&sc->rnd_source, sc->sk_dev.dv_xname,
1476             RND_TYPE_NET, 0);
1477 #endif
1478 
1479 	DPRINTFN(2, ("sk_attach: end\n"));
1480 
1481 	return;
1482 
1483 fail:
1484 	sc->sk_if[sa->skc_port] = NULL;
1485 }
1486 
1487 int
1488 skcprint(void *aux, const char *pnp)
1489 {
1490 	struct skc_attach_args *sa = aux;
1491 
1492 	if (pnp)
1493 		aprint_normal("sk port %c at %s",
1494 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1495 	else
1496 		aprint_normal(" port %c",
1497 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1498 	return UNCONF;
1499 }
1500 
1501 /*
1502  * Attach the interface. Allocate softc structures, do ifmedia
1503  * setup and ethernet/BPF attach.
1504  */
1505 void
1506 skc_attach(struct device *parent, struct device *self, void *aux)
1507 {
1508 	struct sk_softc *sc = (struct sk_softc *)self;
1509 	struct pci_attach_args *pa = aux;
1510 	struct skc_attach_args skca;
1511 	pci_chipset_tag_t pc = pa->pa_pc;
1512 #ifndef SK_USEIOSPACE
1513 	pcireg_t memtype;
1514 #endif
1515 	pci_intr_handle_t ih;
1516 	const char *intrstr = NULL;
1517 	bus_addr_t iobase;
1518 	bus_size_t iosize;
1519 	int rc, sk_nodenum;
1520 	u_int32_t command;
1521 	const char *revstr;
1522 	const struct sysctlnode *node;
1523 
1524 	aprint_naive("\n");
1525 
1526 	DPRINTFN(2, ("begin skc_attach\n"));
1527 
1528 	/*
1529 	 * Handle power management nonsense.
1530 	 */
1531 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1532 
1533 	if (command == 0x01) {
1534 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1535 		if (command & SK_PSTATE_MASK) {
1536 			u_int32_t		xiobase, membase, irq;
1537 
1538 			/* Save important PCI config data. */
1539 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1540 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1541 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1542 
1543 			/* Reset the power state. */
1544 			aprint_normal("%s chip is in D%d power mode "
1545 			    "-- setting to D0\n", sc->sk_dev.dv_xname,
1546 			    command & SK_PSTATE_MASK);
1547 			command &= 0xFFFFFFFC;
1548 			pci_conf_write(pc, pa->pa_tag,
1549 			    SK_PCI_PWRMGMTCTRL, command);
1550 
1551 			/* Restore PCI config data. */
1552 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1553 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1554 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1555 		}
1556 	}
1557 
1558 	/*
1559 	 * Map control/status registers.
1560 	 */
1561 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1562 	command |= PCI_COMMAND_IO_ENABLE |
1563 	    PCI_COMMAND_MEM_ENABLE |
1564 	    PCI_COMMAND_MASTER_ENABLE;
1565 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1566 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1567 
1568 #ifdef SK_USEIOSPACE
1569 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
1570 		aprint_error(": failed to enable I/O ports!\n");
1571 		return;
1572 	}
1573 	/*
1574 	 * Map control/status registers.
1575 	 */
1576 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1577 			&sc->sk_btag, &sc->sk_bhandle,
1578 			&iobase, &iosize)) {
1579 		aprint_error(": can't find i/o space\n");
1580 		return;
1581 	}
1582 #else
1583 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1584 		aprint_error(": failed to enable memory mapping!\n");
1585 		return;
1586 	}
1587 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1588 	switch (memtype) {
1589         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1590         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1591                 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1592 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1593 				   &iobase, &iosize) == 0)
1594                         break;
1595         default:
1596                 aprint_error("%s: can't find mem space\n",
1597 		       sc->sk_dev.dv_xname);
1598                 return;
1599 	}
1600 
1601 	DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
1602 #endif
1603 	sc->sc_dmatag = pa->pa_dmat;
1604 
1605 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1606 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1607 
1608 	/* bail out here if chip is not recognized */
1609 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1610 		aprint_error("%s: unknown chip type\n",sc->sk_dev.dv_xname);
1611 		goto fail;
1612 	}
1613 	if (SK_IS_YUKON2(sc)) {
1614 		aprint_error("%s: Does not support Yukon2--try msk(4).\n",
1615 		    sc->sk_dev.dv_xname);
1616 		goto fail;
1617 	}
1618 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1619 
1620 	/* Allocate interrupt */
1621 	if (pci_intr_map(pa, &ih)) {
1622 		aprint_error(": couldn't map interrupt\n");
1623 		goto fail;
1624 	}
1625 
1626 	intrstr = pci_intr_string(pc, ih);
1627 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1628 	if (sc->sk_intrhand == NULL) {
1629 		aprint_error(": couldn't establish interrupt");
1630 		if (intrstr != NULL)
1631 			aprint_normal(" at %s", intrstr);
1632 		goto fail;
1633 	}
1634 	aprint_normal(": %s\n", intrstr);
1635 
1636 	/* Reset the adapter. */
1637 	sk_reset(sc);
1638 
1639 	/* Read and save vital product data from EEPROM. */
1640 	sk_vpd_read(sc);
1641 
1642 	if (sc->sk_type == SK_GENESIS) {
1643 		u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1644 		/* Read and save RAM size and RAMbuffer offset */
1645 		switch (val) {
1646 		case SK_RAMSIZE_512K_64:
1647 			sc->sk_ramsize = 0x80000;
1648 			sc->sk_rboff = SK_RBOFF_0;
1649 			break;
1650 		case SK_RAMSIZE_1024K_64:
1651 			sc->sk_ramsize = 0x100000;
1652 			sc->sk_rboff = SK_RBOFF_80000;
1653 			break;
1654 		case SK_RAMSIZE_1024K_128:
1655 			sc->sk_ramsize = 0x100000;
1656 			sc->sk_rboff = SK_RBOFF_0;
1657 			break;
1658 		case SK_RAMSIZE_2048K_128:
1659 			sc->sk_ramsize = 0x200000;
1660 			sc->sk_rboff = SK_RBOFF_0;
1661 			break;
1662 		default:
1663 			aprint_error("%s: unknown ram size: %d\n",
1664 			       sc->sk_dev.dv_xname, val);
1665 			goto fail_1;
1666 			break;
1667 		}
1668 
1669 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1670 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
1671 			     sc->sk_rboff));
1672 	} else {
1673 	  	u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1674 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
1675 		sc->sk_rboff = SK_RBOFF_0;
1676 
1677 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1678 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
1679 			     sc->sk_rboff));
1680 	}
1681 
1682 	/* Read and save physical media type */
1683 	switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1684 	case SK_PMD_1000BASESX:
1685 		sc->sk_pmd = IFM_1000_SX;
1686 		break;
1687 	case SK_PMD_1000BASELX:
1688 		sc->sk_pmd = IFM_1000_LX;
1689 		break;
1690 	case SK_PMD_1000BASECX:
1691 		sc->sk_pmd = IFM_1000_CX;
1692 		break;
1693 	case SK_PMD_1000BASETX:
1694 	case SK_PMD_1000BASETX_ALT:
1695 		sc->sk_pmd = IFM_1000_T;
1696 		break;
1697 	default:
1698 		aprint_error("%s: unknown media type: 0x%x\n",
1699 		    sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
1700 		goto fail_1;
1701 	}
1702 
1703 	/* determine whether to name it with vpd or just make it up */
1704 	/* Marvell Yukon VPD's can freqently be bogus */
1705 
1706 	switch (pa->pa_id) {
1707 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1708 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1709 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1710 	case PCI_PRODUCT_3COM_3C940:
1711 	case PCI_PRODUCT_DLINK_DGE530T:
1712 	case PCI_PRODUCT_DLINK_DGE560T:
1713 	case PCI_PRODUCT_DLINK_DGE560T_2:
1714 	case PCI_PRODUCT_LINKSYS_EG1032:
1715 	case PCI_PRODUCT_LINKSYS_EG1064:
1716 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1717 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1718 	case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1719 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1720 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
1721 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
1722 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1723 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1724  		sc->sk_name = sc->sk_vpd_prodname;
1725  		break;
1726 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
1727 	/* whoops yukon vpd prodname bears no resemblance to reality */
1728 		switch (sc->sk_type) {
1729 		case SK_GENESIS:
1730 			sc->sk_name = sc->sk_vpd_prodname;
1731 			break;
1732 		case SK_YUKON:
1733 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1734 			break;
1735 		case SK_YUKON_LITE:
1736 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1737 			break;
1738 		case SK_YUKON_LP:
1739 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1740 			break;
1741 		default:
1742 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1743 		}
1744 
1745 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1746 
1747 		if ( sc->sk_type == SK_YUKON ) {
1748 			uint32_t flashaddr;
1749 			uint8_t testbyte;
1750 
1751 			flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1752 
1753 			/* test Flash-Address Register */
1754 			sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1755 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1756 
1757 			if (testbyte != 0) {
1758 				/* this is yukon lite Rev. A0 */
1759 				sc->sk_type = SK_YUKON_LITE;
1760 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
1761 				/* restore Flash-Address Register */
1762 				sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1763 			}
1764 		}
1765 		break;
1766 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
1767 		sc->sk_name = sc->sk_vpd_prodname;
1768 		break;
1769  	default:
1770 		sc->sk_name = "Unknown Marvell";
1771 	}
1772 
1773 
1774 	if ( sc->sk_type == SK_YUKON_LITE ) {
1775 		switch (sc->sk_rev) {
1776 		case SK_YUKON_LITE_REV_A0:
1777 			revstr = "A0";
1778 			break;
1779 		case SK_YUKON_LITE_REV_A1:
1780 			revstr = "A1";
1781 			break;
1782 		case SK_YUKON_LITE_REV_A3:
1783 			revstr = "A3";
1784 			break;
1785 		default:
1786 			revstr = "";
1787 		}
1788 	} else {
1789 		revstr = "";
1790 	}
1791 
1792 	/* Announce the product name. */
1793 	aprint_normal("%s: %s rev. %s(0x%x)\n", sc->sk_dev.dv_xname,
1794 			      sc->sk_name, revstr, sc->sk_rev);
1795 
1796 	skca.skc_port = SK_PORT_A;
1797 	(void)config_found(&sc->sk_dev, &skca, skcprint);
1798 
1799 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1800 		skca.skc_port = SK_PORT_B;
1801 		(void)config_found(&sc->sk_dev, &skca, skcprint);
1802 	}
1803 
1804 	/* Turn on the 'driver is loaded' LED. */
1805 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1806 
1807 	/* skc sysctl setup */
1808 
1809 	sc->sk_int_mod = SK_IM_DEFAULT;
1810 	sc->sk_int_mod_pending = 0;
1811 
1812 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1813 	    0, CTLTYPE_NODE, sc->sk_dev.dv_xname,
1814 	    SYSCTL_DESCR("skc per-controller controls"),
1815 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1816 	    CTL_EOL)) != 0) {
1817 		aprint_normal("%s: couldn't create sysctl node\n",
1818 		    sc->sk_dev.dv_xname);
1819 		goto fail_1;
1820 	}
1821 
1822 	sk_nodenum = node->sysctl_num;
1823 
1824 	/* interrupt moderation time in usecs */
1825 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1826 	    CTLFLAG_READWRITE,
1827 	    CTLTYPE_INT, "int_mod",
1828 	    SYSCTL_DESCR("sk interrupt moderation timer"),
1829 	    sk_sysctl_handler, 0, sc,
1830 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1831 	    CTL_EOL)) != 0) {
1832 		aprint_normal("%s: couldn't create int_mod sysctl node\n",
1833 		    sc->sk_dev.dv_xname);
1834 		goto fail_1;
1835 	}
1836 
1837 	return;
1838 
1839 fail_1:
1840 	pci_intr_disestablish(pc, sc->sk_intrhand);
1841 fail:
1842 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1843 }
1844 
1845 int
1846 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1847 {
1848 	struct sk_softc		*sc = sc_if->sk_softc;
1849 	struct sk_tx_desc	*f = NULL;
1850 	u_int32_t		frag, cur, cnt = 0, sk_ctl;
1851 	int			i;
1852 	struct sk_txmap_entry	*entry;
1853 	bus_dmamap_t		txmap;
1854 
1855 	DPRINTFN(3, ("sk_encap\n"));
1856 
1857 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1858 	if (entry == NULL) {
1859 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
1860 		return ENOBUFS;
1861 	}
1862 	txmap = entry->dmamap;
1863 
1864 	cur = frag = *txidx;
1865 
1866 #ifdef SK_DEBUG
1867 	if (skdebug >= 3)
1868 		sk_dump_mbuf(m_head);
1869 #endif
1870 
1871 	/*
1872 	 * Start packing the mbufs in this chain into
1873 	 * the fragment pointers. Stop when we run out
1874 	 * of fragments or hit the end of the mbuf chain.
1875 	 */
1876 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1877 	    BUS_DMA_NOWAIT)) {
1878 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1879 		return ENOBUFS;
1880 	}
1881 
1882 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1883 
1884 	/* Sync the DMA map. */
1885 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1886 	    BUS_DMASYNC_PREWRITE);
1887 
1888 	for (i = 0; i < txmap->dm_nsegs; i++) {
1889 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1890 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1891 			return ENOBUFS;
1892 		}
1893 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
1894 		f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1895 		sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1896 		if (cnt == 0)
1897 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
1898 		else
1899 			sk_ctl |= SK_TXCTL_OWN;
1900 		f->sk_ctl = htole32(sk_ctl);
1901 		cur = frag;
1902 		SK_INC(frag, SK_TX_RING_CNT);
1903 		cnt++;
1904 	}
1905 
1906 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1907 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1908 
1909 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
1910 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1911 		htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1912 
1913 	/* Sync descriptors before handing to chip */
1914 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1915 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1916 
1917 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1918 		htole32(SK_TXCTL_OWN);
1919 
1920 	/* Sync first descriptor to hand it off */
1921 	SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1922 
1923 	sc_if->sk_cdata.sk_tx_cnt += cnt;
1924 
1925 #ifdef SK_DEBUG
1926 	if (skdebug >= 3) {
1927 		struct sk_tx_desc *desc;
1928 		u_int32_t idx;
1929 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1930 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1931 			sk_dump_txdesc(desc, idx);
1932 		}
1933 	}
1934 #endif
1935 
1936 	*txidx = frag;
1937 
1938 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
1939 
1940 	return 0;
1941 }
1942 
1943 void
1944 sk_start(struct ifnet *ifp)
1945 {
1946         struct sk_if_softc	*sc_if = ifp->if_softc;
1947         struct sk_softc		*sc = sc_if->sk_softc;
1948         struct mbuf		*m_head = NULL;
1949         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
1950 	int			pkts = 0;
1951 
1952 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1953 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1954 
1955 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1956 		IFQ_POLL(&ifp->if_snd, m_head);
1957 		if (m_head == NULL)
1958 			break;
1959 
1960 		/*
1961 		 * Pack the data into the transmit ring. If we
1962 		 * don't have room, set the OACTIVE flag and wait
1963 		 * for the NIC to drain the ring.
1964 		 */
1965 		if (sk_encap(sc_if, m_head, &idx)) {
1966 			ifp->if_flags |= IFF_OACTIVE;
1967 			break;
1968 		}
1969 
1970 		/* now we are committed to transmit the packet */
1971 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1972 		pkts++;
1973 
1974 		/*
1975 		 * If there's a BPF listener, bounce a copy of this frame
1976 		 * to him.
1977 		 */
1978 #if NBPFILTER > 0
1979 		if (ifp->if_bpf)
1980 			bpf_mtap(ifp->if_bpf, m_head);
1981 #endif
1982 	}
1983 	if (pkts == 0)
1984 		return;
1985 
1986 	/* Transmit */
1987 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
1988 		sc_if->sk_cdata.sk_tx_prod = idx;
1989 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1990 
1991 		/* Set a timeout in case the chip goes out to lunch. */
1992 		ifp->if_timer = 5;
1993 	}
1994 }
1995 
1996 
1997 void
1998 sk_watchdog(struct ifnet *ifp)
1999 {
2000 	struct sk_if_softc *sc_if = ifp->if_softc;
2001 
2002 	/*
2003 	 * Reclaim first as there is a possibility of losing Tx completion
2004 	 * interrupts.
2005 	 */
2006 	sk_txeof(sc_if);
2007 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2008 		aprint_error("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
2009 
2010 		ifp->if_oerrors++;
2011 
2012 		sk_init(ifp);
2013 	}
2014 }
2015 
2016 void
2017 sk_shutdown(void *v)
2018 {
2019 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
2020 	struct sk_softc		*sc = sc_if->sk_softc;
2021 	struct ifnet 		*ifp = &sc_if->sk_ethercom.ec_if;
2022 
2023 	DPRINTFN(2, ("sk_shutdown\n"));
2024 	sk_stop(ifp,1);
2025 
2026 	/* Turn off the 'driver is loaded' LED. */
2027 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2028 
2029 	/*
2030 	 * Reset the GEnesis controller. Doing this should also
2031 	 * assert the resets on the attached XMAC(s).
2032 	 */
2033 	sk_reset(sc);
2034 }
2035 
2036 void
2037 sk_rxeof(struct sk_if_softc *sc_if)
2038 {
2039 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2040 	struct mbuf		*m;
2041 	struct sk_chain		*cur_rx;
2042 	struct sk_rx_desc	*cur_desc;
2043 	int			i, cur, total_len = 0;
2044 	u_int32_t		rxstat, sk_ctl;
2045 	bus_dmamap_t		dmamap;
2046 
2047 	i = sc_if->sk_cdata.sk_rx_prod;
2048 
2049 	DPRINTFN(3, ("sk_rxeof %d\n", i));
2050 
2051 	for (;;) {
2052 		cur = i;
2053 
2054 		/* Sync the descriptor */
2055 		SK_CDRXSYNC(sc_if, cur,
2056 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2057 
2058 		sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2059 		if (sk_ctl & SK_RXCTL_OWN) {
2060 			/* Invalidate the descriptor -- it's not ready yet */
2061 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2062 			sc_if->sk_cdata.sk_rx_prod = i;
2063 			break;
2064 		}
2065 
2066 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2067 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2068 		dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2069 
2070 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2071 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2072 
2073 		rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2074 		m = cur_rx->sk_mbuf;
2075 		cur_rx->sk_mbuf = NULL;
2076 		total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2077 
2078 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
2079 
2080 		SK_INC(i, SK_RX_RING_CNT);
2081 
2082 		if (rxstat & XM_RXSTAT_ERRFRAME) {
2083 			ifp->if_ierrors++;
2084 			sk_newbuf(sc_if, cur, m, dmamap);
2085 			continue;
2086 		}
2087 
2088 		/*
2089 		 * Try to allocate a new jumbo buffer. If that
2090 		 * fails, copy the packet to mbufs and put the
2091 		 * jumbo buffer back in the ring so it can be
2092 		 * re-used. If allocating mbufs fails, then we
2093 		 * have to drop the packet.
2094 		 */
2095 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2096 			struct mbuf		*m0;
2097 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2098 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
2099 			sk_newbuf(sc_if, cur, m, dmamap);
2100 			if (m0 == NULL) {
2101 				aprint_error("%s: no receive buffers "
2102 				    "available -- packet dropped!\n",
2103 				    sc_if->sk_dev.dv_xname);
2104 				ifp->if_ierrors++;
2105 				continue;
2106 			}
2107 			m_adj(m0, ETHER_ALIGN);
2108 			m = m0;
2109 		} else {
2110 			m->m_pkthdr.rcvif = ifp;
2111 			m->m_pkthdr.len = m->m_len = total_len;
2112 		}
2113 
2114 		ifp->if_ipackets++;
2115 
2116 #if NBPFILTER > 0
2117 		if (ifp->if_bpf)
2118 			bpf_mtap(ifp->if_bpf, m);
2119 #endif
2120 		/* pass it on. */
2121 		(*ifp->if_input)(ifp, m);
2122 	}
2123 }
2124 
2125 void
2126 sk_txeof(struct sk_if_softc *sc_if)
2127 {
2128 	struct sk_softc		*sc = sc_if->sk_softc;
2129 	struct sk_tx_desc	*cur_tx;
2130 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2131 	u_int32_t		idx, sk_ctl;
2132 	struct sk_txmap_entry	*entry;
2133 
2134 	DPRINTFN(3, ("sk_txeof\n"));
2135 
2136 	/*
2137 	 * Go through our tx ring and free mbufs for those
2138 	 * frames that have been sent.
2139 	 */
2140 	idx = sc_if->sk_cdata.sk_tx_cons;
2141 	while (idx != sc_if->sk_cdata.sk_tx_prod) {
2142 		SK_CDTXSYNC(sc_if, idx, 1,
2143 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2144 
2145 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2146 		sk_ctl = le32toh(cur_tx->sk_ctl);
2147 #ifdef SK_DEBUG
2148 		if (skdebug >= 3)
2149 			sk_dump_txdesc(cur_tx, idx);
2150 #endif
2151 		if (sk_ctl & SK_TXCTL_OWN) {
2152 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2153 			break;
2154 		}
2155 		if (sk_ctl & SK_TXCTL_LASTFRAG)
2156 			ifp->if_opackets++;
2157 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2158 			entry = sc_if->sk_cdata.sk_tx_map[idx];
2159 
2160 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2161 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2162 
2163 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2164 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2165 
2166 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2167 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2168 					  link);
2169 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2170 		}
2171 		sc_if->sk_cdata.sk_tx_cnt--;
2172 		SK_INC(idx, SK_TX_RING_CNT);
2173 	}
2174 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
2175 		ifp->if_timer = 0;
2176 	else /* nudge chip to keep tx ring moving */
2177 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2178 
2179 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2180 		ifp->if_flags &= ~IFF_OACTIVE;
2181 
2182 	sc_if->sk_cdata.sk_tx_cons = idx;
2183 }
2184 
2185 void
2186 sk_tick(void *xsc_if)
2187 {
2188 	struct sk_if_softc *sc_if = xsc_if;
2189 	struct mii_data *mii = &sc_if->sk_mii;
2190 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2191 	int i;
2192 
2193 	DPRINTFN(3, ("sk_tick\n"));
2194 
2195 	if (!(ifp->if_flags & IFF_UP))
2196 		return;
2197 
2198 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2199 		sk_intr_bcom(sc_if);
2200 		return;
2201 	}
2202 
2203 	/*
2204 	 * According to SysKonnect, the correct way to verify that
2205 	 * the link has come back up is to poll bit 0 of the GPIO
2206 	 * register three times. This pin has the signal from the
2207 	 * link sync pin connected to it; if we read the same link
2208 	 * state 3 times in a row, we know the link is up.
2209 	 */
2210 	for (i = 0; i < 3; i++) {
2211 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2212 			break;
2213 	}
2214 
2215 	if (i != 3) {
2216 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2217 		return;
2218 	}
2219 
2220 	/* Turn the GP0 interrupt back on. */
2221 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2222 	SK_XM_READ_2(sc_if, XM_ISR);
2223 	mii_tick(mii);
2224 	mii_pollstat(mii);
2225 	callout_stop(&sc_if->sk_tick_ch);
2226 }
2227 
2228 void
2229 sk_intr_bcom(struct sk_if_softc *sc_if)
2230 {
2231 	struct mii_data *mii = &sc_if->sk_mii;
2232 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2233 	int status;
2234 
2235 
2236 	DPRINTFN(3, ("sk_intr_bcom\n"));
2237 
2238 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2239 
2240 	/*
2241 	 * Read the PHY interrupt register to make sure
2242 	 * we clear any pending interrupts.
2243 	 */
2244 	status = sk_xmac_miibus_readreg((struct device *)sc_if,
2245 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2246 
2247 	if (!(ifp->if_flags & IFF_RUNNING)) {
2248 		sk_init_xmac(sc_if);
2249 		return;
2250 	}
2251 
2252 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2253 		int lstat;
2254 		lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
2255 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2256 
2257 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2258 			mii_mediachg(mii);
2259 			/* Turn off the link LED. */
2260 			SK_IF_WRITE_1(sc_if, 0,
2261 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
2262 			sc_if->sk_link = 0;
2263 		} else if (status & BRGPHY_ISR_LNK_CHG) {
2264 			sk_xmac_miibus_writereg((struct device *)sc_if,
2265 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2266 			mii_tick(mii);
2267 			sc_if->sk_link = 1;
2268 			/* Turn on the link LED. */
2269 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2270 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2271 			    SK_LINKLED_BLINK_OFF);
2272 			mii_pollstat(mii);
2273 		} else {
2274 			mii_tick(mii);
2275 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2276 		}
2277 	}
2278 
2279 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2280 }
2281 
2282 void
2283 sk_intr_xmac(struct sk_if_softc	*sc_if)
2284 {
2285 	u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2286 
2287 	DPRINTFN(3, ("sk_intr_xmac\n"));
2288 
2289 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2290 		if (status & XM_ISR_GP0_SET) {
2291 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2292 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2293 		}
2294 
2295 		if (status & XM_ISR_AUTONEG_DONE) {
2296 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2297 		}
2298 	}
2299 
2300 	if (status & XM_IMR_TX_UNDERRUN)
2301 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2302 
2303 	if (status & XM_IMR_RX_OVERRUN)
2304 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2305 }
2306 
2307 void
2308 sk_intr_yukon(struct sk_if_softc *sc_if)
2309 {
2310 	int status;
2311 
2312 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2313 
2314 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2315 }
2316 
2317 int
2318 sk_intr(void *xsc)
2319 {
2320 	struct sk_softc		*sc = xsc;
2321 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
2322 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
2323 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2324 	u_int32_t		status;
2325 	int			claimed = 0;
2326 
2327 	if (sc_if0 != NULL)
2328 		ifp0 = &sc_if0->sk_ethercom.ec_if;
2329 	if (sc_if1 != NULL)
2330 		ifp1 = &sc_if1->sk_ethercom.ec_if;
2331 
2332 	for (;;) {
2333 		status = CSR_READ_4(sc, SK_ISSR);
2334 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2335 
2336 		if (!(status & sc->sk_intrmask))
2337 			break;
2338 
2339 		claimed = 1;
2340 
2341 		/* Handle receive interrupts first. */
2342 		if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2343 			sk_rxeof(sc_if0);
2344 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2345 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2346 		}
2347 		if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2348 			sk_rxeof(sc_if1);
2349 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2350 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2351 		}
2352 
2353 		/* Then transmit interrupts. */
2354 		if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2355 			sk_txeof(sc_if0);
2356 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2357 			    SK_TXBMU_CLR_IRQ_EOF);
2358 		}
2359 		if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2360 			sk_txeof(sc_if1);
2361 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2362 			    SK_TXBMU_CLR_IRQ_EOF);
2363 		}
2364 
2365 		/* Then MAC interrupts. */
2366 		if (sc_if0 && (status & SK_ISR_MAC1) &&
2367 		    (ifp0->if_flags & IFF_RUNNING)) {
2368 			if (sc->sk_type == SK_GENESIS)
2369 				sk_intr_xmac(sc_if0);
2370 			else
2371 				sk_intr_yukon(sc_if0);
2372 		}
2373 
2374 		if (sc_if1 && (status & SK_ISR_MAC2) &&
2375 		    (ifp1->if_flags & IFF_RUNNING)) {
2376 			if (sc->sk_type == SK_GENESIS)
2377 				sk_intr_xmac(sc_if1);
2378 			else
2379 				sk_intr_yukon(sc_if1);
2380 
2381 		}
2382 
2383 		if (status & SK_ISR_EXTERNAL_REG) {
2384 			if (sc_if0 != NULL &&
2385 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2386 				sk_intr_bcom(sc_if0);
2387 
2388 			if (sc_if1 != NULL &&
2389 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2390 				sk_intr_bcom(sc_if1);
2391 		}
2392 	}
2393 
2394 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2395 
2396 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2397 		sk_start(ifp0);
2398 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2399 		sk_start(ifp1);
2400 
2401 #if NRND > 0
2402 	if (RND_ENABLED(&sc->rnd_source))
2403 		rnd_add_uint32(&sc->rnd_source, status);
2404 #endif
2405 
2406 	if (sc->sk_int_mod_pending)
2407 		sk_update_int_mod(sc);
2408 
2409 	return claimed;
2410 }
2411 
2412 void
2413 sk_init_xmac(struct sk_if_softc	*sc_if)
2414 {
2415 	struct sk_softc		*sc = sc_if->sk_softc;
2416 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2417 	static const struct sk_bcom_hack     bhack[] = {
2418 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2419 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2420 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2421 	{ 0, 0 } };
2422 
2423 	DPRINTFN(1, ("sk_init_xmac\n"));
2424 
2425 	/* Unreset the XMAC. */
2426 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2427 	DELAY(1000);
2428 
2429 	/* Reset the XMAC's internal state. */
2430 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2431 
2432 	/* Save the XMAC II revision */
2433 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2434 
2435 	/*
2436 	 * Perform additional initialization for external PHYs,
2437 	 * namely for the 1000baseTX cards that use the XMAC's
2438 	 * GMII mode.
2439 	 */
2440 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2441 		int			i = 0;
2442 		u_int32_t		val;
2443 
2444 		/* Take PHY out of reset. */
2445 		val = sk_win_read_4(sc, SK_GPIO);
2446 		if (sc_if->sk_port == SK_PORT_A)
2447 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2448 		else
2449 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2450 		sk_win_write_4(sc, SK_GPIO, val);
2451 
2452 		/* Enable GMII mode on the XMAC. */
2453 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2454 
2455 		sk_xmac_miibus_writereg((struct device *)sc_if,
2456 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2457 		DELAY(10000);
2458 		sk_xmac_miibus_writereg((struct device *)sc_if,
2459 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2460 
2461 		/*
2462 		 * Early versions of the BCM5400 apparently have
2463 		 * a bug that requires them to have their reserved
2464 		 * registers initialized to some magic values. I don't
2465 		 * know what the numbers do, I'm just the messenger.
2466 		 */
2467 		if (sk_xmac_miibus_readreg((struct device *)sc_if,
2468 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2469 			while (bhack[i].reg) {
2470 				sk_xmac_miibus_writereg((struct device *)sc_if,
2471 				    SK_PHYADDR_BCOM, bhack[i].reg,
2472 				    bhack[i].val);
2473 				i++;
2474 			}
2475 		}
2476 	}
2477 
2478 	/* Set station address */
2479 	SK_XM_WRITE_2(sc_if, XM_PAR0,
2480 		      *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2481 	SK_XM_WRITE_2(sc_if, XM_PAR1,
2482 		      *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2483 	SK_XM_WRITE_2(sc_if, XM_PAR2,
2484 		      *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2485 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2486 
2487 	if (ifp->if_flags & IFF_PROMISC)
2488 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2489 	else
2490 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2491 
2492 	if (ifp->if_flags & IFF_BROADCAST)
2493 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2494 	else
2495 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2496 
2497 	/* We don't need the FCS appended to the packet. */
2498 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2499 
2500 	/* We want short frames padded to 60 bytes. */
2501 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2502 
2503 	/*
2504 	 * Enable the reception of all error frames. This is is
2505 	 * a necessary evil due to the design of the XMAC. The
2506 	 * XMAC's receive FIFO is only 8K in size, however jumbo
2507 	 * frames can be up to 9000 bytes in length. When bad
2508 	 * frame filtering is enabled, the XMAC's RX FIFO operates
2509 	 * in 'store and forward' mode. For this to work, the
2510 	 * entire frame has to fit into the FIFO, but that means
2511 	 * that jumbo frames larger than 8192 bytes will be
2512 	 * truncated. Disabling all bad frame filtering causes
2513 	 * the RX FIFO to operate in streaming mode, in which
2514 	 * case the XMAC will start transfering frames out of the
2515 	 * RX FIFO as soon as the FIFO threshold is reached.
2516 	 */
2517 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2518 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2519 	    XM_MODE_RX_INRANGELEN);
2520 
2521 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2522 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2523 	else
2524 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2525 
2526 	/*
2527 	 * Bump up the transmit threshold. This helps hold off transmit
2528 	 * underruns when we're blasting traffic from both ports at once.
2529 	 */
2530 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2531 
2532 	/* Set multicast filter */
2533 	sk_setmulti(sc_if);
2534 
2535 	/* Clear and enable interrupts */
2536 	SK_XM_READ_2(sc_if, XM_ISR);
2537 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2538 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2539 	else
2540 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2541 
2542 	/* Configure MAC arbiter */
2543 	switch (sc_if->sk_xmac_rev) {
2544 	case XM_XMAC_REV_B2:
2545 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2546 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2547 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2548 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2549 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2550 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2551 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2552 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2553 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2554 		break;
2555 	case XM_XMAC_REV_C1:
2556 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2557 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2558 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2559 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2560 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2561 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2562 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2563 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2564 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2565 		break;
2566 	default:
2567 		break;
2568 	}
2569 	sk_win_write_2(sc, SK_MACARB_CTL,
2570 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2571 
2572 	sc_if->sk_link = 1;
2573 }
2574 
2575 void sk_init_yukon(struct sk_if_softc *sc_if)
2576 {
2577 	u_int32_t		/*mac, */phy;
2578 	u_int16_t		reg;
2579 	struct sk_softc		*sc;
2580 	int			i;
2581 
2582 	DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2583 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2584 
2585 	sc = sc_if->sk_softc;
2586 	if (sc->sk_type == SK_YUKON_LITE &&
2587 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2588 		/* Take PHY out of reset. */
2589 		sk_win_write_4(sc, SK_GPIO,
2590 			(sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2591 	}
2592 
2593 
2594 	/* GMAC and GPHY Reset */
2595 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2596 
2597 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
2598 
2599 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2600 	DELAY(1000);
2601 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2602 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2603 	DELAY(1000);
2604 
2605 
2606 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
2607 
2608 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2609 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2610 
2611 	switch (sc_if->sk_softc->sk_pmd) {
2612 	case IFM_1000_SX:
2613 	case IFM_1000_LX:
2614 		phy |= SK_GPHY_FIBER;
2615 		break;
2616 
2617 	case IFM_1000_CX:
2618 	case IFM_1000_T:
2619 		phy |= SK_GPHY_COPPER;
2620 		break;
2621 	}
2622 
2623 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2624 
2625 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2626 	DELAY(1000);
2627 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2628 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2629 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2630 
2631 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2632 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2633 
2634 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
2635 
2636 	/* unused read of the interrupt source register */
2637 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
2638 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2639 
2640 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2641 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2642 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2643 
2644 	/* MIB Counter Clear Mode set */
2645         reg |= YU_PAR_MIB_CLR;
2646 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2647 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2648 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2649 
2650 	/* MIB Counter Clear Mode clear */
2651 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
2652         reg &= ~YU_PAR_MIB_CLR;
2653 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2654 
2655 	/* receive control reg */
2656 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
2657 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2658 		      YU_RCR_CRCR);
2659 
2660 	/* transmit parameter register */
2661 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
2662 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2663 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2664 
2665 	/* serial mode register */
2666 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
2667 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2668 		      YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2669 		      YU_SMR_IPG_DATA(0x1e));
2670 
2671 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
2672 	/* Setup Yukon's address */
2673 	for (i = 0; i < 3; i++) {
2674 		/* Write Source Address 1 (unicast filter) */
2675 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2676 			      sc_if->sk_enaddr[i * 2] |
2677 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
2678 	}
2679 
2680 	for (i = 0; i < 3; i++) {
2681 		reg = sk_win_read_2(sc_if->sk_softc,
2682 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2683 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2684 	}
2685 
2686 	/* Set multicast filter */
2687 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
2688 	sk_setmulti(sc_if);
2689 
2690 	/* enable interrupt mask for counter overflows */
2691 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
2692 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2693 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2694 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2695 
2696 	/* Configure RX MAC FIFO */
2697 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2698 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2699 
2700 	/* Configure TX MAC FIFO */
2701 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2702 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2703 
2704 	DPRINTFN(6, ("sk_init_yukon: end\n"));
2705 }
2706 
2707 /*
2708  * Note that to properly initialize any part of the GEnesis chip,
2709  * you first have to take it out of reset mode.
2710  */
2711 int
2712 sk_init(struct ifnet *ifp)
2713 {
2714 	struct sk_if_softc	*sc_if = ifp->if_softc;
2715 	struct sk_softc		*sc = sc_if->sk_softc;
2716 	struct mii_data		*mii = &sc_if->sk_mii;
2717 	int			s;
2718 	u_int32_t		imr, imtimer_ticks;
2719 
2720 	DPRINTFN(1, ("sk_init\n"));
2721 
2722 	s = splnet();
2723 
2724 	if (ifp->if_flags & IFF_RUNNING) {
2725 		splx(s);
2726 		return 0;
2727 	}
2728 
2729 	/* Cancel pending I/O and free all RX/TX buffers. */
2730 	sk_stop(ifp,0);
2731 
2732 	if (sc->sk_type == SK_GENESIS) {
2733 		/* Configure LINK_SYNC LED */
2734 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2735 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2736 			      SK_LINKLED_LINKSYNC_ON);
2737 
2738 		/* Configure RX LED */
2739 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2740 			      SK_RXLEDCTL_COUNTER_START);
2741 
2742 		/* Configure TX LED */
2743 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2744 			      SK_TXLEDCTL_COUNTER_START);
2745 	}
2746 
2747 	/* Configure I2C registers */
2748 
2749 	/* Configure XMAC(s) */
2750 	switch (sc->sk_type) {
2751 	case SK_GENESIS:
2752 		sk_init_xmac(sc_if);
2753 		break;
2754 	case SK_YUKON:
2755 	case SK_YUKON_LITE:
2756 	case SK_YUKON_LP:
2757 		sk_init_yukon(sc_if);
2758 		break;
2759 	}
2760 	mii_mediachg(mii);
2761 
2762 	if (sc->sk_type == SK_GENESIS) {
2763 		/* Configure MAC FIFOs */
2764 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2765 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2766 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2767 
2768 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2769 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2770 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2771 	}
2772 
2773 	/* Configure transmit arbiter(s) */
2774 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2775 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2776 
2777 	/* Configure RAMbuffers */
2778 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2779 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2780 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2781 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2782 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2783 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2784 
2785 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2786 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2787 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2788 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2789 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2790 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2791 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2792 
2793 	/* Configure BMUs */
2794 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2795 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2796 	    SK_RX_RING_ADDR(sc_if, 0));
2797 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2798 
2799 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2800 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2801             SK_TX_RING_ADDR(sc_if, 0));
2802 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2803 
2804 	/* Init descriptors */
2805 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2806 		aprint_error("%s: initialization failed: no "
2807 		    "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
2808 		sk_stop(ifp,0);
2809 		splx(s);
2810 		return ENOBUFS;
2811 	}
2812 
2813 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2814 		aprint_error("%s: initialization failed: no "
2815 		    "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
2816 		sk_stop(ifp,0);
2817 		splx(s);
2818 		return ENOBUFS;
2819 	}
2820 
2821 	/* Set interrupt moderation if changed via sysctl. */
2822 	switch (sc->sk_type) {
2823 	case SK_GENESIS:
2824 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2825 		break;
2826 	case SK_YUKON_EC:
2827 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2828 		break;
2829 	default:
2830 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2831 	}
2832 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2833 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2834 		sk_win_write_4(sc, SK_IMTIMERINIT,
2835 		    SK_IM_USECS(sc->sk_int_mod));
2836 		aprint_verbose("%s: interrupt moderation is %d us\n",
2837 		    sc->sk_dev.dv_xname, sc->sk_int_mod);
2838 	}
2839 
2840 	/* Configure interrupt handling */
2841 	CSR_READ_4(sc, SK_ISSR);
2842 	if (sc_if->sk_port == SK_PORT_A)
2843 		sc->sk_intrmask |= SK_INTRS1;
2844 	else
2845 		sc->sk_intrmask |= SK_INTRS2;
2846 
2847 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2848 
2849 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2850 
2851 	/* Start BMUs. */
2852 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2853 
2854 	if (sc->sk_type == SK_GENESIS) {
2855 		/* Enable XMACs TX and RX state machines */
2856 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2857 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2858 			       XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2859 	}
2860 
2861 	if (SK_YUKON_FAMILY(sc->sk_type)) {
2862 		u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2863 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2864 #if 0
2865 		/* XXX disable 100Mbps and full duplex mode? */
2866 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2867 #endif
2868 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2869 	}
2870 
2871 
2872 	ifp->if_flags |= IFF_RUNNING;
2873 	ifp->if_flags &= ~IFF_OACTIVE;
2874 
2875 	splx(s);
2876 	return 0;
2877 }
2878 
2879 void
2880 sk_stop(struct ifnet *ifp, int disable)
2881 {
2882         struct sk_if_softc	*sc_if = ifp->if_softc;
2883 	struct sk_softc		*sc = sc_if->sk_softc;
2884 	int			i;
2885 
2886 	DPRINTFN(1, ("sk_stop\n"));
2887 
2888 	callout_stop(&sc_if->sk_tick_ch);
2889 
2890 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2891 		u_int32_t		val;
2892 
2893 		/* Put PHY back into reset. */
2894 		val = sk_win_read_4(sc, SK_GPIO);
2895 		if (sc_if->sk_port == SK_PORT_A) {
2896 			val |= SK_GPIO_DIR0;
2897 			val &= ~SK_GPIO_DAT0;
2898 		} else {
2899 			val |= SK_GPIO_DIR2;
2900 			val &= ~SK_GPIO_DAT2;
2901 		}
2902 		sk_win_write_4(sc, SK_GPIO, val);
2903 	}
2904 
2905 	/* Turn off various components of this interface. */
2906 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2907 	switch (sc->sk_type) {
2908 	case SK_GENESIS:
2909 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2910 			      SK_TXMACCTL_XMAC_RESET);
2911 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2912 		break;
2913 	case SK_YUKON:
2914 	case SK_YUKON_LITE:
2915 	case SK_YUKON_LP:
2916 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2917 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2918 		break;
2919 	}
2920 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2921 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2922 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2923 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2924 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2925 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2926 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2927 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2928 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2929 
2930 	/* Disable interrupts */
2931 	if (sc_if->sk_port == SK_PORT_A)
2932 		sc->sk_intrmask &= ~SK_INTRS1;
2933 	else
2934 		sc->sk_intrmask &= ~SK_INTRS2;
2935 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2936 
2937 	SK_XM_READ_2(sc_if, XM_ISR);
2938 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2939 
2940 	/* Free RX and TX mbufs still in the queues. */
2941 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2942 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2943 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2944 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2945 		}
2946 	}
2947 
2948 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2949 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2950 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2951 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2952 		}
2953 	}
2954 
2955 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2956 }
2957 
2958 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
2959 
2960 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
2961 
2962 #ifdef SK_DEBUG
2963 void
2964 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2965 {
2966 #define DESC_PRINT(X)					\
2967 	if (X)					\
2968 		printf("txdesc[%d]." #X "=%#x\n",	\
2969 		       idx, X);
2970 
2971 	DESC_PRINT(le32toh(desc->sk_ctl));
2972 	DESC_PRINT(le32toh(desc->sk_next));
2973 	DESC_PRINT(le32toh(desc->sk_data_lo));
2974 	DESC_PRINT(le32toh(desc->sk_data_hi));
2975 	DESC_PRINT(le32toh(desc->sk_xmac_txstat));
2976 	DESC_PRINT(le16toh(desc->sk_rsvd0));
2977 	DESC_PRINT(le16toh(desc->sk_csum_startval));
2978 	DESC_PRINT(le16toh(desc->sk_csum_startpos));
2979 	DESC_PRINT(le16toh(desc->sk_csum_writepos));
2980 	DESC_PRINT(le16toh(desc->sk_rsvd1));
2981 #undef PRINT
2982 }
2983 
2984 void
2985 sk_dump_bytes(const char *data, int len)
2986 {
2987 	int c, i, j;
2988 
2989 	for (i = 0; i < len; i += 16) {
2990 		printf("%08x  ", i);
2991 		c = len - i;
2992 		if (c > 16) c = 16;
2993 
2994 		for (j = 0; j < c; j++) {
2995 			printf("%02x ", data[i + j] & 0xff);
2996 			if ((j & 0xf) == 7 && j > 0)
2997 				printf(" ");
2998 		}
2999 
3000 		for (; j < 16; j++)
3001 			printf("   ");
3002 		printf("  ");
3003 
3004 		for (j = 0; j < c; j++) {
3005 			int ch = data[i + j] & 0xff;
3006 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
3007 		}
3008 
3009 		printf("\n");
3010 
3011 		if (c < 16)
3012 			break;
3013 	}
3014 }
3015 
3016 void
3017 sk_dump_mbuf(struct mbuf *m)
3018 {
3019 	int count = m->m_pkthdr.len;
3020 
3021 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3022 
3023 	while (count > 0 && m) {
3024 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3025 		       m, m->m_data, m->m_len);
3026 		sk_dump_bytes(mtod(m, char *), m->m_len);
3027 
3028 		count -= m->m_len;
3029 		m = m->m_next;
3030 	}
3031 }
3032 #endif
3033 
3034 static int
3035 sk_sysctl_handler(SYSCTLFN_ARGS)
3036 {
3037 	int error, t;
3038 	struct sysctlnode node;
3039 	struct sk_softc *sc;
3040 
3041 	node = *rnode;
3042 	sc = node.sysctl_data;
3043 	t = sc->sk_int_mod;
3044 	node.sysctl_data = &t;
3045 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3046 	if (error || newp == NULL)
3047 		return error;
3048 
3049 	if (t < SK_IM_MIN || t > SK_IM_MAX)
3050 		return EINVAL;
3051 
3052 	/* update the softc with sysctl-changed value, and mark
3053 	   for hardware update */
3054 	sc->sk_int_mod = t;
3055 	sc->sk_int_mod_pending = 1;
3056 	return 0;
3057 }
3058 
3059 /*
3060  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3061  * set up in skc_attach()
3062  */
3063 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3064 {
3065 	int rc;
3066 	const struct sysctlnode *node;
3067 
3068 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3069 	    0, CTLTYPE_NODE, "hw", NULL,
3070 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3071 		goto err;
3072 	}
3073 
3074 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
3075 	    0, CTLTYPE_NODE, "sk",
3076 	    SYSCTL_DESCR("sk interface controls"),
3077 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3078 		goto err;
3079 	}
3080 
3081 	sk_root_num = node->sysctl_num;
3082 	return;
3083 
3084 err:
3085 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3086 }
3087