xref: /netbsd-src/sys/dev/pci/if_sk.c (revision 8ac07aec990b9d2e483062509d0a9fa5b4f57cf2)
1 /*	$NetBSD: if_sk.c,v 1.48 2008/04/10 19:13:37 cegger Exp $	*/
2 
3 /*-
4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the NetBSD
18  *	Foundation, Inc. and its contributors.
19  * 4. Neither the name of The NetBSD Foundation nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 /*	$OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $	*/
37 
38 /*
39  * Copyright (c) 1997, 1998, 1999, 2000
40  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. All advertising materials mentioning features or use of this software
51  *    must display the following acknowledgement:
52  *	This product includes software developed by Bill Paul.
53  * 4. Neither the name of the author nor the names of any co-contributors
54  *    may be used to endorse or promote products derived from this software
55  *    without specific prior written permission.
56  *
57  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
61  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
67  * THE POSSIBILITY OF SUCH DAMAGE.
68  *
69  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
70  */
71 
72 /*
73  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
74  *
75  * Permission to use, copy, modify, and distribute this software for any
76  * purpose with or without fee is hereby granted, provided that the above
77  * copyright notice and this permission notice appear in all copies.
78  *
79  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
80  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
81  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
82  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
83  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
84  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
85  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
86  */
87 
88 /*
89  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
90  * the SK-984x series adapters, both single port and dual port.
91  * References:
92  * 	The XaQti XMAC II datasheet,
93  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
95  *
96  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
97  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
98  * convenience to others until Vitesse corrects this problem:
99  *
100  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
101  *
102  * Written by Bill Paul <wpaul@ee.columbia.edu>
103  * Department of Electrical Engineering
104  * Columbia University, New York City
105  */
106 
107 /*
108  * The SysKonnect gigabit ethernet adapters consist of two main
109  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
110  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
111  * components and a PHY while the GEnesis controller provides a PCI
112  * interface with DMA support. Each card may have between 512K and
113  * 2MB of SRAM on board depending on the configuration.
114  *
115  * The SysKonnect GEnesis controller can have either one or two XMAC
116  * chips connected to it, allowing single or dual port NIC configurations.
117  * SysKonnect has the distinction of being the only vendor on the market
118  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
119  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
120  * XMAC registers. This driver takes advantage of these features to allow
121  * both XMACs to operate as independent interfaces.
122  */
123 
124 #include <sys/cdefs.h>
125 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.48 2008/04/10 19:13:37 cegger Exp $");
126 
127 #include "bpfilter.h"
128 #include "rnd.h"
129 
130 #include <sys/param.h>
131 #include <sys/systm.h>
132 #include <sys/sockio.h>
133 #include <sys/mbuf.h>
134 #include <sys/malloc.h>
135 #include <sys/kernel.h>
136 #include <sys/socket.h>
137 #include <sys/device.h>
138 #include <sys/queue.h>
139 #include <sys/callout.h>
140 #include <sys/sysctl.h>
141 #include <sys/endian.h>
142 
143 #include <net/if.h>
144 #include <net/if_dl.h>
145 #include <net/if_types.h>
146 
147 #include <net/if_media.h>
148 
149 #if NBPFILTER > 0
150 #include <net/bpf.h>
151 #endif
152 #if NRND > 0
153 #include <sys/rnd.h>
154 #endif
155 
156 #include <dev/mii/mii.h>
157 #include <dev/mii/miivar.h>
158 #include <dev/mii/brgphyreg.h>
159 
160 #include <dev/pci/pcireg.h>
161 #include <dev/pci/pcivar.h>
162 #include <dev/pci/pcidevs.h>
163 
164 /* #define SK_USEIOSPACE */
165 
166 #include <dev/pci/if_skreg.h>
167 #include <dev/pci/if_skvar.h>
168 
169 int skc_probe(struct device *, struct cfdata *, void *);
170 void skc_attach(struct device *, struct device *self, void *aux);
171 int sk_probe(struct device *, struct cfdata *, void *);
172 void sk_attach(struct device *, struct device *self, void *aux);
173 int skcprint(void *, const char *);
174 int sk_intr(void *);
175 void sk_intr_bcom(struct sk_if_softc *);
176 void sk_intr_xmac(struct sk_if_softc *);
177 void sk_intr_yukon(struct sk_if_softc *);
178 void sk_rxeof(struct sk_if_softc *);
179 void sk_txeof(struct sk_if_softc *);
180 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
181 void sk_start(struct ifnet *);
182 int sk_ioctl(struct ifnet *, u_long, void *);
183 int sk_init(struct ifnet *);
184 void sk_init_xmac(struct sk_if_softc *);
185 void sk_init_yukon(struct sk_if_softc *);
186 void sk_stop(struct ifnet *, int);
187 void sk_watchdog(struct ifnet *);
188 void sk_shutdown(void *);
189 int sk_ifmedia_upd(struct ifnet *);
190 void sk_reset(struct sk_softc *);
191 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
192 int sk_alloc_jumbo_mem(struct sk_if_softc *);
193 void sk_free_jumbo_mem(struct sk_if_softc *);
194 void *sk_jalloc(struct sk_if_softc *);
195 void sk_jfree(struct mbuf *, void *, size_t, void *);
196 int sk_init_rx_ring(struct sk_if_softc *);
197 int sk_init_tx_ring(struct sk_if_softc *);
198 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
199 void sk_vpd_read_res(struct sk_softc *,
200 					struct vpd_res *, int);
201 void sk_vpd_read(struct sk_softc *);
202 
203 void sk_update_int_mod(struct sk_softc *);
204 
205 int sk_xmac_miibus_readreg(struct device *, int, int);
206 void sk_xmac_miibus_writereg(struct device *, int, int, int);
207 void sk_xmac_miibus_statchg(struct device *);
208 
209 int sk_marv_miibus_readreg(struct device *, int, int);
210 void sk_marv_miibus_writereg(struct device *, int, int, int);
211 void sk_marv_miibus_statchg(struct device *);
212 
213 u_int32_t sk_xmac_hash(void *);
214 u_int32_t sk_yukon_hash(void *);
215 void sk_setfilt(struct sk_if_softc *, void *, int);
216 void sk_setmulti(struct sk_if_softc *);
217 void sk_tick(void *);
218 
219 /* #define SK_DEBUG 2 */
220 #ifdef SK_DEBUG
221 #define DPRINTF(x)	if (skdebug) printf x
222 #define DPRINTFN(n,x)	if (skdebug >= (n)) printf x
223 int	skdebug = SK_DEBUG;
224 
225 void sk_dump_txdesc(struct sk_tx_desc *, int);
226 void sk_dump_mbuf(struct mbuf *);
227 void sk_dump_bytes(const char *, int);
228 #else
229 #define DPRINTF(x)
230 #define DPRINTFN(n,x)
231 #endif
232 
233 static int sk_sysctl_handler(SYSCTLFN_PROTO);
234 static int sk_root_num;
235 
236 /* supported device vendors */
237 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
238 static const struct sk_product {
239 	pci_vendor_id_t		sk_vendor;
240 	pci_product_id_t	sk_product;
241 } sk_products[] = {
242 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
243 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
244 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
245 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
246 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
247 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
248 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
249 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
250 	{ 0, 0, }
251 };
252 
253 #define SK_LINKSYS_EG1032_SUBID	0x00151737
254 
255 static inline u_int32_t
256 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
257 {
258 #ifdef SK_USEIOSPACE
259 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
260 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
261 #else
262 	return CSR_READ_4(sc, reg);
263 #endif
264 }
265 
266 static inline u_int16_t
267 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
268 {
269 #ifdef SK_USEIOSPACE
270 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
271 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
272 #else
273 	return CSR_READ_2(sc, reg);
274 #endif
275 }
276 
277 static inline u_int8_t
278 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
279 {
280 #ifdef SK_USEIOSPACE
281 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
282 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
283 #else
284 	return CSR_READ_1(sc, reg);
285 #endif
286 }
287 
288 static inline void
289 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
290 {
291 #ifdef SK_USEIOSPACE
292 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
293 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
294 #else
295 	CSR_WRITE_4(sc, reg, x);
296 #endif
297 }
298 
299 static inline void
300 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
301 {
302 #ifdef SK_USEIOSPACE
303 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
304 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
305 #else
306 	CSR_WRITE_2(sc, reg, x);
307 #endif
308 }
309 
310 static inline void
311 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
312 {
313 #ifdef SK_USEIOSPACE
314 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
315 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
316 #else
317 	CSR_WRITE_1(sc, reg, x);
318 #endif
319 }
320 
321 /*
322  * The VPD EEPROM contains Vital Product Data, as suggested in
323  * the PCI 2.1 specification. The VPD data is separared into areas
324  * denoted by resource IDs. The SysKonnect VPD contains an ID string
325  * resource (the name of the adapter), a read-only area resource
326  * containing various key/data fields and a read/write area which
327  * can be used to store asset management information or log messages.
328  * We read the ID string and read-only into buffers attached to
329  * the controller softc structure for later use. At the moment,
330  * we only use the ID string during sk_attach().
331  */
332 u_int8_t
333 sk_vpd_readbyte(struct sk_softc *sc, int addr)
334 {
335 	int			i;
336 
337 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
338 	for (i = 0; i < SK_TIMEOUT; i++) {
339 		DELAY(1);
340 		if (sk_win_read_2(sc,
341 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
342 			break;
343 	}
344 
345 	if (i == SK_TIMEOUT)
346 		return 0;
347 
348 	return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
349 }
350 
351 void
352 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
353 {
354 	int			i;
355 	u_int8_t		*ptr;
356 
357 	ptr = (u_int8_t *)res;
358 	for (i = 0; i < sizeof(struct vpd_res); i++)
359 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
360 }
361 
362 void
363 sk_vpd_read(struct sk_softc *sc)
364 {
365 	int			pos = 0, i;
366 	struct vpd_res		res;
367 
368 	if (sc->sk_vpd_prodname != NULL)
369 		free(sc->sk_vpd_prodname, M_DEVBUF);
370 	if (sc->sk_vpd_readonly != NULL)
371 		free(sc->sk_vpd_readonly, M_DEVBUF);
372 	sc->sk_vpd_prodname = NULL;
373 	sc->sk_vpd_readonly = NULL;
374 
375 	sk_vpd_read_res(sc, &res, pos);
376 
377 	if (res.vr_id != VPD_RES_ID) {
378 		aprint_error_dev(&sc->sk_dev, "bad VPD resource id: expected %x got %x\n",
379 		    VPD_RES_ID, res.vr_id);
380 		return;
381 	}
382 
383 	pos += sizeof(res);
384 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
385 	if (sc->sk_vpd_prodname == NULL)
386 		panic("sk_vpd_read");
387 	for (i = 0; i < res.vr_len; i++)
388 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
389 	sc->sk_vpd_prodname[i] = '\0';
390 	pos += i;
391 
392 	sk_vpd_read_res(sc, &res, pos);
393 
394 	if (res.vr_id != VPD_RES_READ) {
395 		aprint_error_dev(&sc->sk_dev, "bad VPD resource id: expected %x got %x\n",
396 		    VPD_RES_READ, res.vr_id);
397 		return;
398 	}
399 
400 	pos += sizeof(res);
401 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
402 	if (sc->sk_vpd_readonly == NULL)
403 		panic("sk_vpd_read");
404 	for (i = 0; i < res.vr_len ; i++)
405 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
406 }
407 
408 int
409 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
410 {
411 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
412 	int i;
413 
414 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
415 
416 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
417 		return 0;
418 
419 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
420 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
421 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
422 		for (i = 0; i < SK_TIMEOUT; i++) {
423 			DELAY(1);
424 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
425 			    XM_MMUCMD_PHYDATARDY)
426 				break;
427 		}
428 
429 		if (i == SK_TIMEOUT) {
430 			aprint_error_dev(&sc_if->sk_dev, "phy failed to come ready\n");
431 			return 0;
432 		}
433 	}
434 	DELAY(1);
435 	return SK_XM_READ_2(sc_if, XM_PHY_DATA);
436 }
437 
438 void
439 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
440 {
441 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
442 	int i;
443 
444 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
445 
446 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
447 	for (i = 0; i < SK_TIMEOUT; i++) {
448 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
449 			break;
450 	}
451 
452 	if (i == SK_TIMEOUT) {
453 		aprint_error_dev(&sc_if->sk_dev, "phy failed to come ready\n");
454 		return;
455 	}
456 
457 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
458 	for (i = 0; i < SK_TIMEOUT; i++) {
459 		DELAY(1);
460 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
461 			break;
462 	}
463 
464 	if (i == SK_TIMEOUT)
465 		aprint_error_dev(&sc_if->sk_dev, "phy write timed out\n");
466 }
467 
468 void
469 sk_xmac_miibus_statchg(struct device *dev)
470 {
471 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
472 	struct mii_data *mii = &sc_if->sk_mii;
473 
474 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
475 
476 	/*
477 	 * If this is a GMII PHY, manually set the XMAC's
478 	 * duplex mode accordingly.
479 	 */
480 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
481 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
482 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
483 		else
484 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
485 	}
486 }
487 
488 int
489 sk_marv_miibus_readreg(struct device *dev, int phy, int reg)
490 {
491 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
492 	u_int16_t val;
493 	int i;
494 
495 	if (phy != 0 ||
496 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
497 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
498 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
499 			     phy, reg));
500 		return 0;
501 	}
502 
503         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
504 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
505 
506 	for (i = 0; i < SK_TIMEOUT; i++) {
507 		DELAY(1);
508 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
509 		if (val & YU_SMICR_READ_VALID)
510 			break;
511 	}
512 
513 	if (i == SK_TIMEOUT) {
514 		aprint_error_dev(&sc_if->sk_dev, "phy failed to come ready\n");
515 		return 0;
516 	}
517 
518  	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
519 		     SK_TIMEOUT));
520 
521         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
522 
523 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
524 		     phy, reg, val));
525 
526 	return val;
527 }
528 
529 void
530 sk_marv_miibus_writereg(struct device *dev, int phy, int reg, int val)
531 {
532 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
533 	int i;
534 
535 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
536 		     phy, reg, val));
537 
538 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
539 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
540 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
541 
542 	for (i = 0; i < SK_TIMEOUT; i++) {
543 		DELAY(1);
544 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
545 			break;
546 	}
547 
548 	if (i == SK_TIMEOUT)
549 		printf("%s: phy write timed out\n", device_xname(&sc_if->sk_dev));
550 }
551 
552 void
553 sk_marv_miibus_statchg(struct device *dev)
554 {
555 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
556 		     SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
557 }
558 
559 #define SK_HASH_BITS		6
560 
561 u_int32_t
562 sk_xmac_hash(void *addr)
563 {
564 	u_int32_t		crc;
565 
566 	crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
567 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
568 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
569 	return crc;
570 }
571 
572 u_int32_t
573 sk_yukon_hash(void *addr)
574 {
575 	u_int32_t		crc;
576 
577 	crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
578 	crc &= ((1 << SK_HASH_BITS) - 1);
579 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
580 	return crc;
581 }
582 
583 void
584 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
585 {
586 	char *addr = addrv;
587 	int base = XM_RXFILT_ENTRY(slot);
588 
589 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
590 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
591 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
592 }
593 
594 void
595 sk_setmulti(struct sk_if_softc *sc_if)
596 {
597 	struct sk_softc *sc = sc_if->sk_softc;
598 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
599 	u_int32_t hashes[2] = { 0, 0 };
600 	int h = 0, i;
601 	struct ethercom *ec = &sc_if->sk_ethercom;
602 	struct ether_multi *enm;
603 	struct ether_multistep step;
604 	u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
605 
606 	/* First, zot all the existing filters. */
607 	switch (sc->sk_type) {
608 	case SK_GENESIS:
609 		for (i = 1; i < XM_RXFILT_MAX; i++)
610 			sk_setfilt(sc_if, (void *)&dummy, i);
611 
612 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
613 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
614 		break;
615 	case SK_YUKON:
616 	case SK_YUKON_LITE:
617 	case SK_YUKON_LP:
618 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
619 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
620 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
621 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
622 		break;
623 	}
624 
625 	/* Now program new ones. */
626 allmulti:
627 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
628 		hashes[0] = 0xFFFFFFFF;
629 		hashes[1] = 0xFFFFFFFF;
630 	} else {
631 		i = 1;
632 		/* First find the tail of the list. */
633 		ETHER_FIRST_MULTI(step, ec, enm);
634 		while (enm != NULL) {
635 			if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
636 				 ETHER_ADDR_LEN)) {
637 				ifp->if_flags |= IFF_ALLMULTI;
638 				goto allmulti;
639 			}
640 			DPRINTFN(2,("multicast address %s\n",
641 	    			ether_sprintf(enm->enm_addrlo)));
642 			/*
643 			 * Program the first XM_RXFILT_MAX multicast groups
644 			 * into the perfect filter. For all others,
645 			 * use the hash table.
646 			 */
647 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
648 				sk_setfilt(sc_if, enm->enm_addrlo, i);
649 				i++;
650 			}
651 			else {
652 				switch (sc->sk_type) {
653 				case SK_GENESIS:
654 					h = sk_xmac_hash(enm->enm_addrlo);
655 					break;
656 				case SK_YUKON:
657 				case SK_YUKON_LITE:
658 				case SK_YUKON_LP:
659 					h = sk_yukon_hash(enm->enm_addrlo);
660 					break;
661 				}
662 				if (h < 32)
663 					hashes[0] |= (1 << h);
664 				else
665 					hashes[1] |= (1 << (h - 32));
666 			}
667 
668 			ETHER_NEXT_MULTI(step, enm);
669 		}
670 	}
671 
672 	switch (sc->sk_type) {
673 	case SK_GENESIS:
674 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
675 			       XM_MODE_RX_USE_PERFECT);
676 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
677 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
678 		break;
679 	case SK_YUKON:
680 	case SK_YUKON_LITE:
681 	case SK_YUKON_LP:
682 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
683 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
684 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
685 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
686 		break;
687 	}
688 }
689 
690 int
691 sk_init_rx_ring(struct sk_if_softc *sc_if)
692 {
693 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
694 	struct sk_ring_data	*rd = sc_if->sk_rdata;
695 	int			i;
696 
697 	bzero((char *)rd->sk_rx_ring,
698 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
699 
700 	for (i = 0; i < SK_RX_RING_CNT; i++) {
701 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
702 		if (i == (SK_RX_RING_CNT - 1)) {
703 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
704 			rd->sk_rx_ring[i].sk_next =
705 				htole32(SK_RX_RING_ADDR(sc_if, 0));
706 		} else {
707 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
708 			rd->sk_rx_ring[i].sk_next =
709 				htole32(SK_RX_RING_ADDR(sc_if,i+1));
710 		}
711 	}
712 
713 	for (i = 0; i < SK_RX_RING_CNT; i++) {
714 		if (sk_newbuf(sc_if, i, NULL,
715 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
716 			aprint_error_dev(&sc_if->sk_dev, "failed alloc of %dth mbuf\n", i);
717 			return ENOBUFS;
718 		}
719 	}
720 	sc_if->sk_cdata.sk_rx_prod = 0;
721 	sc_if->sk_cdata.sk_rx_cons = 0;
722 
723 	return 0;
724 }
725 
726 int
727 sk_init_tx_ring(struct sk_if_softc *sc_if)
728 {
729 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
730 	struct sk_ring_data	*rd = sc_if->sk_rdata;
731 	int			i;
732 
733 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
734 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
735 
736 	for (i = 0; i < SK_TX_RING_CNT; i++) {
737 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
738 		if (i == (SK_TX_RING_CNT - 1)) {
739 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
740 			rd->sk_tx_ring[i].sk_next =
741 				htole32(SK_TX_RING_ADDR(sc_if, 0));
742 		} else {
743 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
744 			rd->sk_tx_ring[i].sk_next =
745 				htole32(SK_TX_RING_ADDR(sc_if,i+1));
746 		}
747 	}
748 
749 	sc_if->sk_cdata.sk_tx_prod = 0;
750 	sc_if->sk_cdata.sk_tx_cons = 0;
751 	sc_if->sk_cdata.sk_tx_cnt = 0;
752 
753 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
754 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
755 
756 	return 0;
757 }
758 
759 int
760 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
761 	  bus_dmamap_t dmamap)
762 {
763 	struct mbuf		*m_new = NULL;
764 	struct sk_chain		*c;
765 	struct sk_rx_desc	*r;
766 
767 	if (m == NULL) {
768 		void *buf = NULL;
769 
770 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
771 		if (m_new == NULL) {
772 			aprint_error_dev(&sc_if->sk_dev, "no memory for rx list -- "
773 			    "packet dropped!\n");
774 			return ENOBUFS;
775 		}
776 
777 		/* Allocate the jumbo buffer */
778 		buf = sk_jalloc(sc_if);
779 		if (buf == NULL) {
780 			m_freem(m_new);
781 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
782 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
783 			return ENOBUFS;
784 		}
785 
786 		/* Attach the buffer to the mbuf */
787 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
788 		MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
789 
790 	} else {
791 		/*
792 	 	 * We're re-using a previously allocated mbuf;
793 		 * be sure to re-init pointers and lengths to
794 		 * default values.
795 		 */
796 		m_new = m;
797 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
798 		m_new->m_data = m_new->m_ext.ext_buf;
799 	}
800 	m_adj(m_new, ETHER_ALIGN);
801 
802 	c = &sc_if->sk_cdata.sk_rx_chain[i];
803 	r = c->sk_desc;
804 	c->sk_mbuf = m_new;
805 	r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
806 	    (((vaddr_t)m_new->m_data
807 		- (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
808 	r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
809 
810 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
811 
812 	return 0;
813 }
814 
815 /*
816  * Memory management for jumbo frames.
817  */
818 
819 int
820 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
821 {
822 	struct sk_softc		*sc = sc_if->sk_softc;
823 	char *ptr, *kva;
824 	bus_dma_segment_t	seg;
825 	int		i, rseg, state, error;
826 	struct sk_jpool_entry   *entry;
827 
828 	state = error = 0;
829 
830 	/* Grab a big chunk o' storage. */
831 	if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
832 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
833 		aprint_error_dev(&sc->sk_dev, "can't alloc rx buffers\n");
834 		return ENOBUFS;
835 	}
836 
837 	state = 1;
838 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
839 			   BUS_DMA_NOWAIT)) {
840 		aprint_error_dev(&sc->sk_dev, "can't map dma buffers (%d bytes)\n",
841 		    SK_JMEM);
842 		error = ENOBUFS;
843 		goto out;
844 	}
845 
846 	state = 2;
847 	if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
848 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
849 		aprint_error_dev(&sc->sk_dev, "can't create dma map\n");
850 		error = ENOBUFS;
851 		goto out;
852 	}
853 
854 	state = 3;
855 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
856 			    kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
857 		aprint_error_dev(&sc->sk_dev, "can't load dma map\n");
858 		error = ENOBUFS;
859 		goto out;
860 	}
861 
862 	state = 4;
863 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
864 	DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
865 
866 	LIST_INIT(&sc_if->sk_jfree_listhead);
867 	LIST_INIT(&sc_if->sk_jinuse_listhead);
868 
869 	/*
870 	 * Now divide it up into 9K pieces and save the addresses
871 	 * in an array.
872 	 */
873 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
874 	for (i = 0; i < SK_JSLOTS; i++) {
875 		sc_if->sk_cdata.sk_jslots[i] = ptr;
876 		ptr += SK_JLEN;
877 		entry = malloc(sizeof(struct sk_jpool_entry),
878 		    M_DEVBUF, M_NOWAIT);
879 		if (entry == NULL) {
880 			aprint_error_dev(&sc->sk_dev, "no memory for jumbo buffer queue!\n");
881 			error = ENOBUFS;
882 			goto out;
883 		}
884 		entry->slot = i;
885 		if (i)
886 			LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
887 				 entry, jpool_entries);
888 		else
889 			LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
890 				 entry, jpool_entries);
891 	}
892 out:
893 	if (error != 0) {
894 		switch (state) {
895 		case 4:
896 			bus_dmamap_unload(sc->sc_dmatag,
897 			    sc_if->sk_cdata.sk_rx_jumbo_map);
898 		case 3:
899 			bus_dmamap_destroy(sc->sc_dmatag,
900 			    sc_if->sk_cdata.sk_rx_jumbo_map);
901 		case 2:
902 			bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
903 		case 1:
904 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
905 			break;
906 		default:
907 			break;
908 		}
909 	}
910 
911 	return error;
912 }
913 
914 /*
915  * Allocate a jumbo buffer.
916  */
917 void *
918 sk_jalloc(struct sk_if_softc *sc_if)
919 {
920 	struct sk_jpool_entry   *entry;
921 
922 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
923 
924 	if (entry == NULL)
925 		return NULL;
926 
927 	LIST_REMOVE(entry, jpool_entries);
928 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
929 	return sc_if->sk_cdata.sk_jslots[entry->slot];
930 }
931 
932 /*
933  * Release a jumbo buffer.
934  */
935 void
936 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
937 {
938 	struct sk_jpool_entry *entry;
939 	struct sk_if_softc *sc;
940 	int i, s;
941 
942 	/* Extract the softc struct pointer. */
943 	sc = (struct sk_if_softc *)arg;
944 
945 	if (sc == NULL)
946 		panic("sk_jfree: can't find softc pointer!");
947 
948 	/* calculate the slot this buffer belongs to */
949 
950 	i = ((vaddr_t)buf
951 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
952 
953 	if ((i < 0) || (i >= SK_JSLOTS))
954 		panic("sk_jfree: asked to free buffer that we don't manage!");
955 
956 	s = splvm();
957 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
958 	if (entry == NULL)
959 		panic("sk_jfree: buffer not in use!");
960 	entry->slot = i;
961 	LIST_REMOVE(entry, jpool_entries);
962 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
963 
964 	if (__predict_true(m != NULL))
965 		pool_cache_put(mb_cache, m);
966 	splx(s);
967 }
968 
969 /*
970  * Set media options.
971  */
972 int
973 sk_ifmedia_upd(struct ifnet *ifp)
974 {
975 	struct sk_if_softc *sc_if = ifp->if_softc;
976 	int rc;
977 
978 	(void) sk_init(ifp);
979 	if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
980 		return 0;
981 	return rc;
982 }
983 
984 int
985 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
986 {
987 	struct sk_if_softc *sc_if = ifp->if_softc;
988 	struct sk_softc *sc = sc_if->sk_softc;
989 	int s, error = 0;
990 
991 	/* DPRINTFN(2, ("sk_ioctl\n")); */
992 
993 	s = splnet();
994 
995 	switch (command) {
996 
997 	case SIOCSIFFLAGS:
998 	        DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
999 		if (ifp->if_flags & IFF_UP) {
1000 			if (ifp->if_flags & IFF_RUNNING &&
1001 			    ifp->if_flags & IFF_PROMISC &&
1002 			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
1003 				switch (sc->sk_type) {
1004 				case SK_GENESIS:
1005 					SK_XM_SETBIT_4(sc_if, XM_MODE,
1006 					    XM_MODE_RX_PROMISC);
1007 					break;
1008 				case SK_YUKON:
1009 				case SK_YUKON_LITE:
1010 				case SK_YUKON_LP:
1011 					SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1012 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
1013 					break;
1014 				}
1015 				sk_setmulti(sc_if);
1016 			} else if (ifp->if_flags & IFF_RUNNING &&
1017 			    !(ifp->if_flags & IFF_PROMISC) &&
1018 			    sc_if->sk_if_flags & IFF_PROMISC) {
1019 				switch (sc->sk_type) {
1020 				case SK_GENESIS:
1021 					SK_XM_CLRBIT_4(sc_if, XM_MODE,
1022 					    XM_MODE_RX_PROMISC);
1023 					break;
1024 				case SK_YUKON:
1025 				case SK_YUKON_LITE:
1026 				case SK_YUKON_LP:
1027 					SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1028 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
1029 					break;
1030 				}
1031 
1032 				sk_setmulti(sc_if);
1033 			} else
1034 				(void) sk_init(ifp);
1035 		} else {
1036 			if (ifp->if_flags & IFF_RUNNING)
1037 				sk_stop(ifp,0);
1038 		}
1039 		sc_if->sk_if_flags = ifp->if_flags;
1040 		error = 0;
1041 		break;
1042 
1043 	default:
1044 	        DPRINTFN(2, ("sk_ioctl ETHER\n"));
1045 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1046 			break;
1047 
1048 		error = 0;
1049 
1050 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1051 			;
1052 		else if (ifp->if_flags & IFF_RUNNING) {
1053 			sk_setmulti(sc_if);
1054 			DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1055 		}
1056 		break;
1057 	}
1058 
1059 	splx(s);
1060 	return error;
1061 }
1062 
1063 void
1064 sk_update_int_mod(struct sk_softc *sc)
1065 {
1066 	u_int32_t imtimer_ticks;
1067 
1068 	/*
1069          * Configure interrupt moderation. The moderation timer
1070 	 * defers interrupts specified in the interrupt moderation
1071 	 * timer mask based on the timeout specified in the interrupt
1072 	 * moderation timer init register. Each bit in the timer
1073 	 * register represents one tick, so to specify a timeout in
1074 	 * microseconds, we have to multiply by the correct number of
1075 	 * ticks-per-microsecond.
1076 	 */
1077 	switch (sc->sk_type) {
1078 	case SK_GENESIS:
1079 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1080 		break;
1081 	case SK_YUKON_EC:
1082 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1083 		break;
1084 	default:
1085 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1086 	}
1087 	aprint_verbose_dev(&sc->sk_dev, "interrupt moderation is %d us\n",
1088 	    sc->sk_int_mod);
1089         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1090         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1091 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1092         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1093 	sc->sk_int_mod_pending = 0;
1094 }
1095 
1096 /*
1097  * Lookup: Check the PCI vendor and device, and return a pointer to
1098  * The structure if the IDs match against our list.
1099  */
1100 
1101 static const struct sk_product *
1102 sk_lookup(const struct pci_attach_args *pa)
1103 {
1104 	const struct sk_product *psk;
1105 
1106 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1107 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1108 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1109 			return psk;
1110 	}
1111 	return NULL;
1112 }
1113 
1114 /*
1115  * Probe for a SysKonnect GEnesis chip.
1116  */
1117 
1118 int
1119 skc_probe(struct device *parent, struct cfdata *match,
1120     void *aux)
1121 {
1122 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1123 	const struct sk_product *psk;
1124 	pcireg_t subid;
1125 
1126 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1127 
1128 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
1129 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1130 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1131 	    subid == SK_LINKSYS_EG1032_SUBID)
1132 		return 1;
1133 
1134 	if ((psk = sk_lookup(pa))) {
1135 		return 1;
1136 	}
1137 	return 0;
1138 }
1139 
1140 /*
1141  * Force the GEnesis into reset, then bring it out of reset.
1142  */
1143 void sk_reset(struct sk_softc *sc)
1144 {
1145 	DPRINTFN(2, ("sk_reset\n"));
1146 
1147 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1148 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1149 	if (SK_YUKON_FAMILY(sc->sk_type))
1150 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1151 
1152 	DELAY(1000);
1153 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1154 	DELAY(2);
1155 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1156 	if (SK_YUKON_FAMILY(sc->sk_type))
1157 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1158 
1159 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1160 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1161 		     CSR_READ_2(sc, SK_LINK_CTRL)));
1162 
1163 	if (sc->sk_type == SK_GENESIS) {
1164 		/* Configure packet arbiter */
1165 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1166 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1167 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1168 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1169 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1170 	}
1171 
1172 	/* Enable RAM interface */
1173 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1174 
1175 	sk_update_int_mod(sc);
1176 }
1177 
1178 int
1179 sk_probe(struct device *parent, struct cfdata *match,
1180     void *aux)
1181 {
1182 	struct skc_attach_args *sa = aux;
1183 
1184 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1185 		return 0;
1186 
1187 	return 1;
1188 }
1189 
1190 /*
1191  * Each XMAC chip is attached as a separate logical IP interface.
1192  * Single port cards will have only one logical interface of course.
1193  */
1194 void
1195 sk_attach(struct device *parent, struct device *self, void *aux)
1196 {
1197 	struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
1198 	struct sk_softc *sc = (struct sk_softc *)parent;
1199 	struct skc_attach_args *sa = aux;
1200 	struct sk_txmap_entry	*entry;
1201 	struct ifnet *ifp;
1202 	bus_dma_segment_t seg;
1203 	bus_dmamap_t dmamap;
1204 	void *kva;
1205 	int i, rseg;
1206 
1207 	aprint_naive("\n");
1208 
1209 	sc_if->sk_port = sa->skc_port;
1210 	sc_if->sk_softc = sc;
1211 	sc->sk_if[sa->skc_port] = sc_if;
1212 
1213 	if (sa->skc_port == SK_PORT_A)
1214 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1215 	if (sa->skc_port == SK_PORT_B)
1216 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1217 
1218 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1219 
1220 	/*
1221 	 * Get station address for this interface. Note that
1222 	 * dual port cards actually come with three station
1223 	 * addresses: one for each port, plus an extra. The
1224 	 * extra one is used by the SysKonnect driver software
1225 	 * as a 'virtual' station address for when both ports
1226 	 * are operating in failover mode. Currently we don't
1227 	 * use this extra address.
1228 	 */
1229 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1230 		sc_if->sk_enaddr[i] =
1231 			sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1232 
1233 
1234 	aprint_normal(": Ethernet address %s\n",
1235 	    ether_sprintf(sc_if->sk_enaddr));
1236 
1237 	/*
1238 	 * Set up RAM buffer addresses. The NIC will have a certain
1239 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1240 	 * need to divide this up a) between the transmitter and
1241  	 * receiver and b) between the two XMACs, if this is a
1242 	 * dual port NIC. Our algorithm is to divide up the memory
1243 	 * evenly so that everyone gets a fair share.
1244 	 */
1245 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1246 		u_int32_t		chunk, val;
1247 
1248 		chunk = sc->sk_ramsize / 2;
1249 		val = sc->sk_rboff / sizeof(u_int64_t);
1250 		sc_if->sk_rx_ramstart = val;
1251 		val += (chunk / sizeof(u_int64_t));
1252 		sc_if->sk_rx_ramend = val - 1;
1253 		sc_if->sk_tx_ramstart = val;
1254 		val += (chunk / sizeof(u_int64_t));
1255 		sc_if->sk_tx_ramend = val - 1;
1256 	} else {
1257 		u_int32_t		chunk, val;
1258 
1259 		chunk = sc->sk_ramsize / 4;
1260 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1261 		    sizeof(u_int64_t);
1262 		sc_if->sk_rx_ramstart = val;
1263 		val += (chunk / sizeof(u_int64_t));
1264 		sc_if->sk_rx_ramend = val - 1;
1265 		sc_if->sk_tx_ramstart = val;
1266 		val += (chunk / sizeof(u_int64_t));
1267 		sc_if->sk_tx_ramend = val - 1;
1268 	}
1269 
1270 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1271 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
1272 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1273 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1274 
1275 	/* Read and save PHY type and set PHY address */
1276 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1277 	switch (sc_if->sk_phytype) {
1278 	case SK_PHYTYPE_XMAC:
1279 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1280 		break;
1281 	case SK_PHYTYPE_BCOM:
1282 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1283 		break;
1284 	case SK_PHYTYPE_MARV_COPPER:
1285 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1286 		break;
1287 	default:
1288 		aprint_error_dev(&sc->sk_dev, "unsupported PHY type: %d\n",
1289 		    sc_if->sk_phytype);
1290 		return;
1291 	}
1292 
1293 	/* Allocate the descriptor queues. */
1294 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1295 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1296 		aprint_error_dev(&sc->sk_dev, "can't alloc rx buffers\n");
1297 		goto fail;
1298 	}
1299 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1300 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1301 		aprint_error_dev(&sc_if->sk_dev, "can't map dma buffers (%lu bytes)\n",
1302 		       (u_long) sizeof(struct sk_ring_data));
1303 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1304 		goto fail;
1305 	}
1306 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1307 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1308             &sc_if->sk_ring_map)) {
1309 		aprint_error_dev(&sc_if->sk_dev, "can't create dma map\n");
1310 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1311 		    sizeof(struct sk_ring_data));
1312 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1313 		goto fail;
1314 	}
1315 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1316 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1317 		aprint_error_dev(&sc_if->sk_dev, "can't load dma map\n");
1318 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1319 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1320 		    sizeof(struct sk_ring_data));
1321 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1322 		goto fail;
1323 	}
1324 
1325 	for (i = 0; i < SK_RX_RING_CNT; i++)
1326 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1327 
1328 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1329 	for (i = 0; i < SK_TX_RING_CNT; i++) {
1330 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1331 
1332 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1333 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1334 			aprint_error_dev(&sc_if->sk_dev, "Can't create TX dmamap\n");
1335 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1336 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1337 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1338 			    sizeof(struct sk_ring_data));
1339 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1340 			goto fail;
1341 		}
1342 
1343 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1344 		if (!entry) {
1345 			aprint_error_dev(&sc_if->sk_dev, "Can't alloc txmap entry\n");
1346 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1347 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1348 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1349 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1350 			    sizeof(struct sk_ring_data));
1351 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1352 			goto fail;
1353 		}
1354 		entry->dmamap = dmamap;
1355 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1356 	}
1357 
1358         sc_if->sk_rdata = (struct sk_ring_data *)kva;
1359 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1360 
1361 	ifp = &sc_if->sk_ethercom.ec_if;
1362 	/* Try to allocate memory for jumbo buffers. */
1363 	if (sk_alloc_jumbo_mem(sc_if)) {
1364 		aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1365 		goto fail;
1366 	}
1367 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1368 		| ETHERCAP_JUMBO_MTU;
1369 
1370 	ifp->if_softc = sc_if;
1371 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1372 	ifp->if_ioctl = sk_ioctl;
1373 	ifp->if_start = sk_start;
1374 	ifp->if_stop = sk_stop;
1375 	ifp->if_init = sk_init;
1376 	ifp->if_watchdog = sk_watchdog;
1377 	ifp->if_capabilities = 0;
1378 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1379 	IFQ_SET_READY(&ifp->if_snd);
1380 	strlcpy(ifp->if_xname, device_xname(&sc_if->sk_dev), IFNAMSIZ);
1381 
1382 	/*
1383 	 * Do miibus setup.
1384 	 */
1385 	switch (sc->sk_type) {
1386 	case SK_GENESIS:
1387 		sk_init_xmac(sc_if);
1388 		break;
1389 	case SK_YUKON:
1390 	case SK_YUKON_LITE:
1391 	case SK_YUKON_LP:
1392 		sk_init_yukon(sc_if);
1393 		break;
1394 	default:
1395 		aprint_error_dev(&sc->sk_dev, "unknown device type %d\n",
1396 			sc->sk_type);
1397 		goto fail;
1398 	}
1399 
1400  	DPRINTFN(2, ("sk_attach: 1\n"));
1401 
1402 	sc_if->sk_mii.mii_ifp = ifp;
1403 	switch (sc->sk_type) {
1404 	case SK_GENESIS:
1405 		sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1406 		sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1407 		sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1408 		break;
1409 	case SK_YUKON:
1410 	case SK_YUKON_LITE:
1411 	case SK_YUKON_LP:
1412 		sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1413 		sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1414 		sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1415 		break;
1416 	}
1417 
1418 	sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1419 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1420 	    sk_ifmedia_upd, ether_mediastatus);
1421 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1422 	    MII_OFFSET_ANY, 0);
1423 	if (LIST_EMPTY(&sc_if->sk_mii.mii_phys)) {
1424 		aprint_error_dev(&sc_if->sk_dev, "no PHY found!\n");
1425 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1426 			    0, NULL);
1427 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1428 	} else
1429 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1430 
1431 	callout_init(&sc_if->sk_tick_ch, 0);
1432 	callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1433 
1434 	DPRINTFN(2, ("sk_attach: 1\n"));
1435 
1436 	/*
1437 	 * Call MI attach routines.
1438 	 */
1439 	if_attach(ifp);
1440 
1441 	ether_ifattach(ifp, sc_if->sk_enaddr);
1442 
1443 #if NRND > 0
1444         rnd_attach_source(&sc->rnd_source, device_xname(&sc->sk_dev),
1445             RND_TYPE_NET, 0);
1446 #endif
1447 
1448 	DPRINTFN(2, ("sk_attach: end\n"));
1449 
1450 	return;
1451 
1452 fail:
1453 	sc->sk_if[sa->skc_port] = NULL;
1454 }
1455 
1456 int
1457 skcprint(void *aux, const char *pnp)
1458 {
1459 	struct skc_attach_args *sa = aux;
1460 
1461 	if (pnp)
1462 		aprint_normal("sk port %c at %s",
1463 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1464 	else
1465 		aprint_normal(" port %c",
1466 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1467 	return UNCONF;
1468 }
1469 
1470 /*
1471  * Attach the interface. Allocate softc structures, do ifmedia
1472  * setup and ethernet/BPF attach.
1473  */
1474 void
1475 skc_attach(struct device *parent, struct device *self, void *aux)
1476 {
1477 	struct sk_softc *sc = (struct sk_softc *)self;
1478 	struct pci_attach_args *pa = aux;
1479 	struct skc_attach_args skca;
1480 	pci_chipset_tag_t pc = pa->pa_pc;
1481 #ifndef SK_USEIOSPACE
1482 	pcireg_t memtype;
1483 #endif
1484 	pci_intr_handle_t ih;
1485 	const char *intrstr = NULL;
1486 	bus_addr_t iobase;
1487 	bus_size_t iosize;
1488 	int rc, sk_nodenum;
1489 	u_int32_t command;
1490 	const char *revstr;
1491 	const struct sysctlnode *node;
1492 
1493 	aprint_naive("\n");
1494 
1495 	DPRINTFN(2, ("begin skc_attach\n"));
1496 
1497 	/*
1498 	 * Handle power management nonsense.
1499 	 */
1500 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1501 
1502 	if (command == 0x01) {
1503 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1504 		if (command & SK_PSTATE_MASK) {
1505 			u_int32_t		xiobase, membase, irq;
1506 
1507 			/* Save important PCI config data. */
1508 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1509 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1510 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1511 
1512 			/* Reset the power state. */
1513 			aprint_normal_dev(&sc->sk_dev, "chip is in D%d power mode "
1514 			    "-- setting to D0\n",
1515 			    command & SK_PSTATE_MASK);
1516 			command &= 0xFFFFFFFC;
1517 			pci_conf_write(pc, pa->pa_tag,
1518 			    SK_PCI_PWRMGMTCTRL, command);
1519 
1520 			/* Restore PCI config data. */
1521 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1522 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1523 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1524 		}
1525 	}
1526 
1527 	/*
1528 	 * Map control/status registers.
1529 	 */
1530 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1531 	command |= PCI_COMMAND_IO_ENABLE |
1532 	    PCI_COMMAND_MEM_ENABLE |
1533 	    PCI_COMMAND_MASTER_ENABLE;
1534 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1535 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1536 
1537 #ifdef SK_USEIOSPACE
1538 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
1539 		aprint_error(": failed to enable I/O ports!\n");
1540 		return;
1541 	}
1542 	/*
1543 	 * Map control/status registers.
1544 	 */
1545 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1546 			&sc->sk_btag, &sc->sk_bhandle,
1547 			&iobase, &iosize)) {
1548 		aprint_error(": can't find i/o space\n");
1549 		return;
1550 	}
1551 #else
1552 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1553 		aprint_error(": failed to enable memory mapping!\n");
1554 		return;
1555 	}
1556 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1557 	switch (memtype) {
1558         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1559         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1560                 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1561 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1562 				   &iobase, &iosize) == 0)
1563                         break;
1564         default:
1565                 aprint_error_dev(&sc->sk_dev, "can't find mem space\n");
1566                 return;
1567 	}
1568 
1569 	DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
1570 #endif
1571 	sc->sc_dmatag = pa->pa_dmat;
1572 
1573 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1574 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1575 
1576 	/* bail out here if chip is not recognized */
1577 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1578 		aprint_error_dev(&sc->sk_dev, "unknown chip type\n");
1579 		goto fail;
1580 	}
1581 	if (SK_IS_YUKON2(sc)) {
1582 		aprint_error_dev(&sc->sk_dev, "Does not support Yukon2--try msk(4).\n");
1583 		goto fail;
1584 	}
1585 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1586 
1587 	/* Allocate interrupt */
1588 	if (pci_intr_map(pa, &ih)) {
1589 		aprint_error(": couldn't map interrupt\n");
1590 		goto fail;
1591 	}
1592 
1593 	intrstr = pci_intr_string(pc, ih);
1594 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1595 	if (sc->sk_intrhand == NULL) {
1596 		aprint_error(": couldn't establish interrupt");
1597 		if (intrstr != NULL)
1598 			aprint_normal(" at %s", intrstr);
1599 		goto fail;
1600 	}
1601 	aprint_normal(": %s\n", intrstr);
1602 
1603 	/* Reset the adapter. */
1604 	sk_reset(sc);
1605 
1606 	/* Read and save vital product data from EEPROM. */
1607 	sk_vpd_read(sc);
1608 
1609 	if (sc->sk_type == SK_GENESIS) {
1610 		u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1611 		/* Read and save RAM size and RAMbuffer offset */
1612 		switch (val) {
1613 		case SK_RAMSIZE_512K_64:
1614 			sc->sk_ramsize = 0x80000;
1615 			sc->sk_rboff = SK_RBOFF_0;
1616 			break;
1617 		case SK_RAMSIZE_1024K_64:
1618 			sc->sk_ramsize = 0x100000;
1619 			sc->sk_rboff = SK_RBOFF_80000;
1620 			break;
1621 		case SK_RAMSIZE_1024K_128:
1622 			sc->sk_ramsize = 0x100000;
1623 			sc->sk_rboff = SK_RBOFF_0;
1624 			break;
1625 		case SK_RAMSIZE_2048K_128:
1626 			sc->sk_ramsize = 0x200000;
1627 			sc->sk_rboff = SK_RBOFF_0;
1628 			break;
1629 		default:
1630 			aprint_error_dev(&sc->sk_dev, "unknown ram size: %d\n",
1631 			       val);
1632 			goto fail_1;
1633 			break;
1634 		}
1635 
1636 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1637 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
1638 			     sc->sk_rboff));
1639 	} else {
1640 	  	u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1641 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
1642 		sc->sk_rboff = SK_RBOFF_0;
1643 
1644 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1645 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
1646 			     sc->sk_rboff));
1647 	}
1648 
1649 	/* Read and save physical media type */
1650 	switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1651 	case SK_PMD_1000BASESX:
1652 		sc->sk_pmd = IFM_1000_SX;
1653 		break;
1654 	case SK_PMD_1000BASELX:
1655 		sc->sk_pmd = IFM_1000_LX;
1656 		break;
1657 	case SK_PMD_1000BASECX:
1658 		sc->sk_pmd = IFM_1000_CX;
1659 		break;
1660 	case SK_PMD_1000BASETX:
1661 	case SK_PMD_1000BASETX_ALT:
1662 		sc->sk_pmd = IFM_1000_T;
1663 		break;
1664 	default:
1665 		aprint_error_dev(&sc->sk_dev, "unknown media type: 0x%x\n",
1666 		    sk_win_read_1(sc, SK_PMDTYPE));
1667 		goto fail_1;
1668 	}
1669 
1670 	/* determine whether to name it with vpd or just make it up */
1671 	/* Marvell Yukon VPD's can freqently be bogus */
1672 
1673 	switch (pa->pa_id) {
1674 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1675 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1676 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1677 	case PCI_PRODUCT_3COM_3C940:
1678 	case PCI_PRODUCT_DLINK_DGE530T:
1679 	case PCI_PRODUCT_DLINK_DGE560T:
1680 	case PCI_PRODUCT_DLINK_DGE560T_2:
1681 	case PCI_PRODUCT_LINKSYS_EG1032:
1682 	case PCI_PRODUCT_LINKSYS_EG1064:
1683 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1684 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1685 	case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1686 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1687 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
1688 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
1689 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1690 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1691  		sc->sk_name = sc->sk_vpd_prodname;
1692  		break;
1693 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
1694 	/* whoops yukon vpd prodname bears no resemblance to reality */
1695 		switch (sc->sk_type) {
1696 		case SK_GENESIS:
1697 			sc->sk_name = sc->sk_vpd_prodname;
1698 			break;
1699 		case SK_YUKON:
1700 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1701 			break;
1702 		case SK_YUKON_LITE:
1703 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1704 			break;
1705 		case SK_YUKON_LP:
1706 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1707 			break;
1708 		default:
1709 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1710 		}
1711 
1712 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1713 
1714 		if ( sc->sk_type == SK_YUKON ) {
1715 			uint32_t flashaddr;
1716 			uint8_t testbyte;
1717 
1718 			flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1719 
1720 			/* test Flash-Address Register */
1721 			sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1722 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1723 
1724 			if (testbyte != 0) {
1725 				/* this is yukon lite Rev. A0 */
1726 				sc->sk_type = SK_YUKON_LITE;
1727 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
1728 				/* restore Flash-Address Register */
1729 				sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1730 			}
1731 		}
1732 		break;
1733 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
1734 		sc->sk_name = sc->sk_vpd_prodname;
1735 		break;
1736  	default:
1737 		sc->sk_name = "Unknown Marvell";
1738 	}
1739 
1740 
1741 	if ( sc->sk_type == SK_YUKON_LITE ) {
1742 		switch (sc->sk_rev) {
1743 		case SK_YUKON_LITE_REV_A0:
1744 			revstr = "A0";
1745 			break;
1746 		case SK_YUKON_LITE_REV_A1:
1747 			revstr = "A1";
1748 			break;
1749 		case SK_YUKON_LITE_REV_A3:
1750 			revstr = "A3";
1751 			break;
1752 		default:
1753 			revstr = "";
1754 		}
1755 	} else {
1756 		revstr = "";
1757 	}
1758 
1759 	/* Announce the product name. */
1760 	aprint_normal_dev(&sc->sk_dev, "%s rev. %s(0x%x)\n",
1761 			      sc->sk_name, revstr, sc->sk_rev);
1762 
1763 	skca.skc_port = SK_PORT_A;
1764 	(void)config_found(&sc->sk_dev, &skca, skcprint);
1765 
1766 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1767 		skca.skc_port = SK_PORT_B;
1768 		(void)config_found(&sc->sk_dev, &skca, skcprint);
1769 	}
1770 
1771 	/* Turn on the 'driver is loaded' LED. */
1772 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1773 
1774 	/* skc sysctl setup */
1775 
1776 	sc->sk_int_mod = SK_IM_DEFAULT;
1777 	sc->sk_int_mod_pending = 0;
1778 
1779 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1780 	    0, CTLTYPE_NODE, device_xname(&sc->sk_dev),
1781 	    SYSCTL_DESCR("skc per-controller controls"),
1782 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1783 	    CTL_EOL)) != 0) {
1784 		aprint_normal_dev(&sc->sk_dev, "couldn't create sysctl node\n");
1785 		goto fail_1;
1786 	}
1787 
1788 	sk_nodenum = node->sysctl_num;
1789 
1790 	/* interrupt moderation time in usecs */
1791 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1792 	    CTLFLAG_READWRITE,
1793 	    CTLTYPE_INT, "int_mod",
1794 	    SYSCTL_DESCR("sk interrupt moderation timer"),
1795 	    sk_sysctl_handler, 0, sc,
1796 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1797 	    CTL_EOL)) != 0) {
1798 		aprint_normal_dev(&sc->sk_dev, "couldn't create int_mod sysctl node\n");
1799 		goto fail_1;
1800 	}
1801 
1802 	return;
1803 
1804 fail_1:
1805 	pci_intr_disestablish(pc, sc->sk_intrhand);
1806 fail:
1807 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1808 }
1809 
1810 int
1811 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1812 {
1813 	struct sk_softc		*sc = sc_if->sk_softc;
1814 	struct sk_tx_desc	*f = NULL;
1815 	u_int32_t		frag, cur, cnt = 0, sk_ctl;
1816 	int			i;
1817 	struct sk_txmap_entry	*entry;
1818 	bus_dmamap_t		txmap;
1819 
1820 	DPRINTFN(3, ("sk_encap\n"));
1821 
1822 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1823 	if (entry == NULL) {
1824 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
1825 		return ENOBUFS;
1826 	}
1827 	txmap = entry->dmamap;
1828 
1829 	cur = frag = *txidx;
1830 
1831 #ifdef SK_DEBUG
1832 	if (skdebug >= 3)
1833 		sk_dump_mbuf(m_head);
1834 #endif
1835 
1836 	/*
1837 	 * Start packing the mbufs in this chain into
1838 	 * the fragment pointers. Stop when we run out
1839 	 * of fragments or hit the end of the mbuf chain.
1840 	 */
1841 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1842 	    BUS_DMA_NOWAIT)) {
1843 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1844 		return ENOBUFS;
1845 	}
1846 
1847 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1848 
1849 	/* Sync the DMA map. */
1850 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1851 	    BUS_DMASYNC_PREWRITE);
1852 
1853 	for (i = 0; i < txmap->dm_nsegs; i++) {
1854 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1855 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1856 			return ENOBUFS;
1857 		}
1858 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
1859 		f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1860 		sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1861 		if (cnt == 0)
1862 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
1863 		else
1864 			sk_ctl |= SK_TXCTL_OWN;
1865 		f->sk_ctl = htole32(sk_ctl);
1866 		cur = frag;
1867 		SK_INC(frag, SK_TX_RING_CNT);
1868 		cnt++;
1869 	}
1870 
1871 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1872 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1873 
1874 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
1875 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1876 		htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1877 
1878 	/* Sync descriptors before handing to chip */
1879 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1880 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1881 
1882 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1883 		htole32(SK_TXCTL_OWN);
1884 
1885 	/* Sync first descriptor to hand it off */
1886 	SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1887 
1888 	sc_if->sk_cdata.sk_tx_cnt += cnt;
1889 
1890 #ifdef SK_DEBUG
1891 	if (skdebug >= 3) {
1892 		struct sk_tx_desc *desc;
1893 		u_int32_t idx;
1894 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1895 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1896 			sk_dump_txdesc(desc, idx);
1897 		}
1898 	}
1899 #endif
1900 
1901 	*txidx = frag;
1902 
1903 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
1904 
1905 	return 0;
1906 }
1907 
1908 void
1909 sk_start(struct ifnet *ifp)
1910 {
1911         struct sk_if_softc	*sc_if = ifp->if_softc;
1912         struct sk_softc		*sc = sc_if->sk_softc;
1913         struct mbuf		*m_head = NULL;
1914         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
1915 	int			pkts = 0;
1916 
1917 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1918 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1919 
1920 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1921 		IFQ_POLL(&ifp->if_snd, m_head);
1922 		if (m_head == NULL)
1923 			break;
1924 
1925 		/*
1926 		 * Pack the data into the transmit ring. If we
1927 		 * don't have room, set the OACTIVE flag and wait
1928 		 * for the NIC to drain the ring.
1929 		 */
1930 		if (sk_encap(sc_if, m_head, &idx)) {
1931 			ifp->if_flags |= IFF_OACTIVE;
1932 			break;
1933 		}
1934 
1935 		/* now we are committed to transmit the packet */
1936 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1937 		pkts++;
1938 
1939 		/*
1940 		 * If there's a BPF listener, bounce a copy of this frame
1941 		 * to him.
1942 		 */
1943 #if NBPFILTER > 0
1944 		if (ifp->if_bpf)
1945 			bpf_mtap(ifp->if_bpf, m_head);
1946 #endif
1947 	}
1948 	if (pkts == 0)
1949 		return;
1950 
1951 	/* Transmit */
1952 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
1953 		sc_if->sk_cdata.sk_tx_prod = idx;
1954 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1955 
1956 		/* Set a timeout in case the chip goes out to lunch. */
1957 		ifp->if_timer = 5;
1958 	}
1959 }
1960 
1961 
1962 void
1963 sk_watchdog(struct ifnet *ifp)
1964 {
1965 	struct sk_if_softc *sc_if = ifp->if_softc;
1966 
1967 	/*
1968 	 * Reclaim first as there is a possibility of losing Tx completion
1969 	 * interrupts.
1970 	 */
1971 	sk_txeof(sc_if);
1972 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1973 		aprint_error_dev(&sc_if->sk_dev, "watchdog timeout\n");
1974 
1975 		ifp->if_oerrors++;
1976 
1977 		sk_init(ifp);
1978 	}
1979 }
1980 
1981 void
1982 sk_shutdown(void *v)
1983 {
1984 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
1985 	struct sk_softc		*sc = sc_if->sk_softc;
1986 	struct ifnet 		*ifp = &sc_if->sk_ethercom.ec_if;
1987 
1988 	DPRINTFN(2, ("sk_shutdown\n"));
1989 	sk_stop(ifp,1);
1990 
1991 	/* Turn off the 'driver is loaded' LED. */
1992 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1993 
1994 	/*
1995 	 * Reset the GEnesis controller. Doing this should also
1996 	 * assert the resets on the attached XMAC(s).
1997 	 */
1998 	sk_reset(sc);
1999 }
2000 
2001 void
2002 sk_rxeof(struct sk_if_softc *sc_if)
2003 {
2004 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2005 	struct mbuf		*m;
2006 	struct sk_chain		*cur_rx;
2007 	struct sk_rx_desc	*cur_desc;
2008 	int			i, cur, total_len = 0;
2009 	u_int32_t		rxstat, sk_ctl;
2010 	bus_dmamap_t		dmamap;
2011 
2012 	i = sc_if->sk_cdata.sk_rx_prod;
2013 
2014 	DPRINTFN(3, ("sk_rxeof %d\n", i));
2015 
2016 	for (;;) {
2017 		cur = i;
2018 
2019 		/* Sync the descriptor */
2020 		SK_CDRXSYNC(sc_if, cur,
2021 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2022 
2023 		sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2024 		if (sk_ctl & SK_RXCTL_OWN) {
2025 			/* Invalidate the descriptor -- it's not ready yet */
2026 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2027 			sc_if->sk_cdata.sk_rx_prod = i;
2028 			break;
2029 		}
2030 
2031 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2032 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2033 		dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2034 
2035 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2036 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2037 
2038 		rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2039 		m = cur_rx->sk_mbuf;
2040 		cur_rx->sk_mbuf = NULL;
2041 		total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2042 
2043 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
2044 
2045 		SK_INC(i, SK_RX_RING_CNT);
2046 
2047 		if (rxstat & XM_RXSTAT_ERRFRAME) {
2048 			ifp->if_ierrors++;
2049 			sk_newbuf(sc_if, cur, m, dmamap);
2050 			continue;
2051 		}
2052 
2053 		/*
2054 		 * Try to allocate a new jumbo buffer. If that
2055 		 * fails, copy the packet to mbufs and put the
2056 		 * jumbo buffer back in the ring so it can be
2057 		 * re-used. If allocating mbufs fails, then we
2058 		 * have to drop the packet.
2059 		 */
2060 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2061 			struct mbuf		*m0;
2062 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2063 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
2064 			sk_newbuf(sc_if, cur, m, dmamap);
2065 			if (m0 == NULL) {
2066 				aprint_error_dev(&sc_if->sk_dev, "no receive buffers "
2067 				    "available -- packet dropped!\n");
2068 				ifp->if_ierrors++;
2069 				continue;
2070 			}
2071 			m_adj(m0, ETHER_ALIGN);
2072 			m = m0;
2073 		} else {
2074 			m->m_pkthdr.rcvif = ifp;
2075 			m->m_pkthdr.len = m->m_len = total_len;
2076 		}
2077 
2078 		ifp->if_ipackets++;
2079 
2080 #if NBPFILTER > 0
2081 		if (ifp->if_bpf)
2082 			bpf_mtap(ifp->if_bpf, m);
2083 #endif
2084 		/* pass it on. */
2085 		(*ifp->if_input)(ifp, m);
2086 	}
2087 }
2088 
2089 void
2090 sk_txeof(struct sk_if_softc *sc_if)
2091 {
2092 	struct sk_softc		*sc = sc_if->sk_softc;
2093 	struct sk_tx_desc	*cur_tx;
2094 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2095 	u_int32_t		idx, sk_ctl;
2096 	struct sk_txmap_entry	*entry;
2097 
2098 	DPRINTFN(3, ("sk_txeof\n"));
2099 
2100 	/*
2101 	 * Go through our tx ring and free mbufs for those
2102 	 * frames that have been sent.
2103 	 */
2104 	idx = sc_if->sk_cdata.sk_tx_cons;
2105 	while (idx != sc_if->sk_cdata.sk_tx_prod) {
2106 		SK_CDTXSYNC(sc_if, idx, 1,
2107 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2108 
2109 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2110 		sk_ctl = le32toh(cur_tx->sk_ctl);
2111 #ifdef SK_DEBUG
2112 		if (skdebug >= 3)
2113 			sk_dump_txdesc(cur_tx, idx);
2114 #endif
2115 		if (sk_ctl & SK_TXCTL_OWN) {
2116 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2117 			break;
2118 		}
2119 		if (sk_ctl & SK_TXCTL_LASTFRAG)
2120 			ifp->if_opackets++;
2121 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2122 			entry = sc_if->sk_cdata.sk_tx_map[idx];
2123 
2124 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2125 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2126 
2127 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2128 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2129 
2130 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2131 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2132 					  link);
2133 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2134 		}
2135 		sc_if->sk_cdata.sk_tx_cnt--;
2136 		SK_INC(idx, SK_TX_RING_CNT);
2137 	}
2138 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
2139 		ifp->if_timer = 0;
2140 	else /* nudge chip to keep tx ring moving */
2141 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2142 
2143 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2144 		ifp->if_flags &= ~IFF_OACTIVE;
2145 
2146 	sc_if->sk_cdata.sk_tx_cons = idx;
2147 }
2148 
2149 void
2150 sk_tick(void *xsc_if)
2151 {
2152 	struct sk_if_softc *sc_if = xsc_if;
2153 	struct mii_data *mii = &sc_if->sk_mii;
2154 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2155 	int i;
2156 
2157 	DPRINTFN(3, ("sk_tick\n"));
2158 
2159 	if (!(ifp->if_flags & IFF_UP))
2160 		return;
2161 
2162 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2163 		sk_intr_bcom(sc_if);
2164 		return;
2165 	}
2166 
2167 	/*
2168 	 * According to SysKonnect, the correct way to verify that
2169 	 * the link has come back up is to poll bit 0 of the GPIO
2170 	 * register three times. This pin has the signal from the
2171 	 * link sync pin connected to it; if we read the same link
2172 	 * state 3 times in a row, we know the link is up.
2173 	 */
2174 	for (i = 0; i < 3; i++) {
2175 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2176 			break;
2177 	}
2178 
2179 	if (i != 3) {
2180 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2181 		return;
2182 	}
2183 
2184 	/* Turn the GP0 interrupt back on. */
2185 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2186 	SK_XM_READ_2(sc_if, XM_ISR);
2187 	mii_tick(mii);
2188 	mii_pollstat(mii);
2189 	callout_stop(&sc_if->sk_tick_ch);
2190 }
2191 
2192 void
2193 sk_intr_bcom(struct sk_if_softc *sc_if)
2194 {
2195 	struct mii_data *mii = &sc_if->sk_mii;
2196 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2197 	int status;
2198 
2199 
2200 	DPRINTFN(3, ("sk_intr_bcom\n"));
2201 
2202 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2203 
2204 	/*
2205 	 * Read the PHY interrupt register to make sure
2206 	 * we clear any pending interrupts.
2207 	 */
2208 	status = sk_xmac_miibus_readreg((struct device *)sc_if,
2209 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2210 
2211 	if (!(ifp->if_flags & IFF_RUNNING)) {
2212 		sk_init_xmac(sc_if);
2213 		return;
2214 	}
2215 
2216 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2217 		int lstat;
2218 		lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
2219 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2220 
2221 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2222 			(void)mii_mediachg(mii);
2223 			/* Turn off the link LED. */
2224 			SK_IF_WRITE_1(sc_if, 0,
2225 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
2226 			sc_if->sk_link = 0;
2227 		} else if (status & BRGPHY_ISR_LNK_CHG) {
2228 			sk_xmac_miibus_writereg((struct device *)sc_if,
2229 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2230 			mii_tick(mii);
2231 			sc_if->sk_link = 1;
2232 			/* Turn on the link LED. */
2233 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2234 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2235 			    SK_LINKLED_BLINK_OFF);
2236 			mii_pollstat(mii);
2237 		} else {
2238 			mii_tick(mii);
2239 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2240 		}
2241 	}
2242 
2243 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2244 }
2245 
2246 void
2247 sk_intr_xmac(struct sk_if_softc	*sc_if)
2248 {
2249 	u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2250 
2251 	DPRINTFN(3, ("sk_intr_xmac\n"));
2252 
2253 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2254 		if (status & XM_ISR_GP0_SET) {
2255 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2256 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2257 		}
2258 
2259 		if (status & XM_ISR_AUTONEG_DONE) {
2260 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2261 		}
2262 	}
2263 
2264 	if (status & XM_IMR_TX_UNDERRUN)
2265 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2266 
2267 	if (status & XM_IMR_RX_OVERRUN)
2268 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2269 }
2270 
2271 void
2272 sk_intr_yukon(struct sk_if_softc *sc_if)
2273 {
2274 	int status;
2275 
2276 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2277 
2278 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2279 }
2280 
2281 int
2282 sk_intr(void *xsc)
2283 {
2284 	struct sk_softc		*sc = xsc;
2285 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
2286 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
2287 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2288 	u_int32_t		status;
2289 	int			claimed = 0;
2290 
2291 	if (sc_if0 != NULL)
2292 		ifp0 = &sc_if0->sk_ethercom.ec_if;
2293 	if (sc_if1 != NULL)
2294 		ifp1 = &sc_if1->sk_ethercom.ec_if;
2295 
2296 	for (;;) {
2297 		status = CSR_READ_4(sc, SK_ISSR);
2298 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2299 
2300 		if (!(status & sc->sk_intrmask))
2301 			break;
2302 
2303 		claimed = 1;
2304 
2305 		/* Handle receive interrupts first. */
2306 		if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2307 			sk_rxeof(sc_if0);
2308 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2309 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2310 		}
2311 		if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2312 			sk_rxeof(sc_if1);
2313 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2314 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2315 		}
2316 
2317 		/* Then transmit interrupts. */
2318 		if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2319 			sk_txeof(sc_if0);
2320 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2321 			    SK_TXBMU_CLR_IRQ_EOF);
2322 		}
2323 		if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2324 			sk_txeof(sc_if1);
2325 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2326 			    SK_TXBMU_CLR_IRQ_EOF);
2327 		}
2328 
2329 		/* Then MAC interrupts. */
2330 		if (sc_if0 && (status & SK_ISR_MAC1) &&
2331 		    (ifp0->if_flags & IFF_RUNNING)) {
2332 			if (sc->sk_type == SK_GENESIS)
2333 				sk_intr_xmac(sc_if0);
2334 			else
2335 				sk_intr_yukon(sc_if0);
2336 		}
2337 
2338 		if (sc_if1 && (status & SK_ISR_MAC2) &&
2339 		    (ifp1->if_flags & IFF_RUNNING)) {
2340 			if (sc->sk_type == SK_GENESIS)
2341 				sk_intr_xmac(sc_if1);
2342 			else
2343 				sk_intr_yukon(sc_if1);
2344 
2345 		}
2346 
2347 		if (status & SK_ISR_EXTERNAL_REG) {
2348 			if (sc_if0 != NULL &&
2349 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2350 				sk_intr_bcom(sc_if0);
2351 
2352 			if (sc_if1 != NULL &&
2353 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2354 				sk_intr_bcom(sc_if1);
2355 		}
2356 	}
2357 
2358 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2359 
2360 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2361 		sk_start(ifp0);
2362 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2363 		sk_start(ifp1);
2364 
2365 #if NRND > 0
2366 	if (RND_ENABLED(&sc->rnd_source))
2367 		rnd_add_uint32(&sc->rnd_source, status);
2368 #endif
2369 
2370 	if (sc->sk_int_mod_pending)
2371 		sk_update_int_mod(sc);
2372 
2373 	return claimed;
2374 }
2375 
2376 void
2377 sk_init_xmac(struct sk_if_softc	*sc_if)
2378 {
2379 	struct sk_softc		*sc = sc_if->sk_softc;
2380 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2381 	static const struct sk_bcom_hack     bhack[] = {
2382 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2383 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2384 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2385 	{ 0, 0 } };
2386 
2387 	DPRINTFN(1, ("sk_init_xmac\n"));
2388 
2389 	/* Unreset the XMAC. */
2390 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2391 	DELAY(1000);
2392 
2393 	/* Reset the XMAC's internal state. */
2394 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2395 
2396 	/* Save the XMAC II revision */
2397 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2398 
2399 	/*
2400 	 * Perform additional initialization for external PHYs,
2401 	 * namely for the 1000baseTX cards that use the XMAC's
2402 	 * GMII mode.
2403 	 */
2404 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2405 		int			i = 0;
2406 		u_int32_t		val;
2407 
2408 		/* Take PHY out of reset. */
2409 		val = sk_win_read_4(sc, SK_GPIO);
2410 		if (sc_if->sk_port == SK_PORT_A)
2411 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2412 		else
2413 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2414 		sk_win_write_4(sc, SK_GPIO, val);
2415 
2416 		/* Enable GMII mode on the XMAC. */
2417 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2418 
2419 		sk_xmac_miibus_writereg((struct device *)sc_if,
2420 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2421 		DELAY(10000);
2422 		sk_xmac_miibus_writereg((struct device *)sc_if,
2423 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2424 
2425 		/*
2426 		 * Early versions of the BCM5400 apparently have
2427 		 * a bug that requires them to have their reserved
2428 		 * registers initialized to some magic values. I don't
2429 		 * know what the numbers do, I'm just the messenger.
2430 		 */
2431 		if (sk_xmac_miibus_readreg((struct device *)sc_if,
2432 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2433 			while (bhack[i].reg) {
2434 				sk_xmac_miibus_writereg((struct device *)sc_if,
2435 				    SK_PHYADDR_BCOM, bhack[i].reg,
2436 				    bhack[i].val);
2437 				i++;
2438 			}
2439 		}
2440 	}
2441 
2442 	/* Set station address */
2443 	SK_XM_WRITE_2(sc_if, XM_PAR0,
2444 		      *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2445 	SK_XM_WRITE_2(sc_if, XM_PAR1,
2446 		      *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2447 	SK_XM_WRITE_2(sc_if, XM_PAR2,
2448 		      *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2449 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2450 
2451 	if (ifp->if_flags & IFF_PROMISC)
2452 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2453 	else
2454 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2455 
2456 	if (ifp->if_flags & IFF_BROADCAST)
2457 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2458 	else
2459 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2460 
2461 	/* We don't need the FCS appended to the packet. */
2462 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2463 
2464 	/* We want short frames padded to 60 bytes. */
2465 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2466 
2467 	/*
2468 	 * Enable the reception of all error frames. This is is
2469 	 * a necessary evil due to the design of the XMAC. The
2470 	 * XMAC's receive FIFO is only 8K in size, however jumbo
2471 	 * frames can be up to 9000 bytes in length. When bad
2472 	 * frame filtering is enabled, the XMAC's RX FIFO operates
2473 	 * in 'store and forward' mode. For this to work, the
2474 	 * entire frame has to fit into the FIFO, but that means
2475 	 * that jumbo frames larger than 8192 bytes will be
2476 	 * truncated. Disabling all bad frame filtering causes
2477 	 * the RX FIFO to operate in streaming mode, in which
2478 	 * case the XMAC will start transfering frames out of the
2479 	 * RX FIFO as soon as the FIFO threshold is reached.
2480 	 */
2481 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2482 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2483 	    XM_MODE_RX_INRANGELEN);
2484 
2485 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2486 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2487 	else
2488 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2489 
2490 	/*
2491 	 * Bump up the transmit threshold. This helps hold off transmit
2492 	 * underruns when we're blasting traffic from both ports at once.
2493 	 */
2494 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2495 
2496 	/* Set multicast filter */
2497 	sk_setmulti(sc_if);
2498 
2499 	/* Clear and enable interrupts */
2500 	SK_XM_READ_2(sc_if, XM_ISR);
2501 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2502 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2503 	else
2504 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2505 
2506 	/* Configure MAC arbiter */
2507 	switch (sc_if->sk_xmac_rev) {
2508 	case XM_XMAC_REV_B2:
2509 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2510 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2511 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2512 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2513 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2514 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2515 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2516 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2517 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2518 		break;
2519 	case XM_XMAC_REV_C1:
2520 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2521 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2522 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2523 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2524 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2525 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2526 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2527 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2528 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2529 		break;
2530 	default:
2531 		break;
2532 	}
2533 	sk_win_write_2(sc, SK_MACARB_CTL,
2534 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2535 
2536 	sc_if->sk_link = 1;
2537 }
2538 
2539 void sk_init_yukon(struct sk_if_softc *sc_if)
2540 {
2541 	u_int32_t		/*mac, */phy;
2542 	u_int16_t		reg;
2543 	struct sk_softc		*sc;
2544 	int			i;
2545 
2546 	DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2547 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2548 
2549 	sc = sc_if->sk_softc;
2550 	if (sc->sk_type == SK_YUKON_LITE &&
2551 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2552 		/* Take PHY out of reset. */
2553 		sk_win_write_4(sc, SK_GPIO,
2554 			(sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2555 	}
2556 
2557 
2558 	/* GMAC and GPHY Reset */
2559 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2560 
2561 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
2562 
2563 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2564 	DELAY(1000);
2565 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2566 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2567 	DELAY(1000);
2568 
2569 
2570 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
2571 
2572 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2573 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2574 
2575 	switch (sc_if->sk_softc->sk_pmd) {
2576 	case IFM_1000_SX:
2577 	case IFM_1000_LX:
2578 		phy |= SK_GPHY_FIBER;
2579 		break;
2580 
2581 	case IFM_1000_CX:
2582 	case IFM_1000_T:
2583 		phy |= SK_GPHY_COPPER;
2584 		break;
2585 	}
2586 
2587 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2588 
2589 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2590 	DELAY(1000);
2591 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2592 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2593 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2594 
2595 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2596 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2597 
2598 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
2599 
2600 	/* unused read of the interrupt source register */
2601 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
2602 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2603 
2604 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2605 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2606 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2607 
2608 	/* MIB Counter Clear Mode set */
2609         reg |= YU_PAR_MIB_CLR;
2610 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2611 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2612 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2613 
2614 	/* MIB Counter Clear Mode clear */
2615 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
2616         reg &= ~YU_PAR_MIB_CLR;
2617 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2618 
2619 	/* receive control reg */
2620 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
2621 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2622 		      YU_RCR_CRCR);
2623 
2624 	/* transmit parameter register */
2625 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
2626 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2627 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2628 
2629 	/* serial mode register */
2630 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
2631 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2632 		      YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2633 		      YU_SMR_IPG_DATA(0x1e));
2634 
2635 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
2636 	/* Setup Yukon's address */
2637 	for (i = 0; i < 3; i++) {
2638 		/* Write Source Address 1 (unicast filter) */
2639 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2640 			      sc_if->sk_enaddr[i * 2] |
2641 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
2642 	}
2643 
2644 	for (i = 0; i < 3; i++) {
2645 		reg = sk_win_read_2(sc_if->sk_softc,
2646 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2647 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2648 	}
2649 
2650 	/* Set multicast filter */
2651 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
2652 	sk_setmulti(sc_if);
2653 
2654 	/* enable interrupt mask for counter overflows */
2655 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
2656 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2657 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2658 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2659 
2660 	/* Configure RX MAC FIFO */
2661 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2662 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2663 
2664 	/* Configure TX MAC FIFO */
2665 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2666 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2667 
2668 	DPRINTFN(6, ("sk_init_yukon: end\n"));
2669 }
2670 
2671 /*
2672  * Note that to properly initialize any part of the GEnesis chip,
2673  * you first have to take it out of reset mode.
2674  */
2675 int
2676 sk_init(struct ifnet *ifp)
2677 {
2678 	struct sk_if_softc	*sc_if = ifp->if_softc;
2679 	struct sk_softc		*sc = sc_if->sk_softc;
2680 	struct mii_data		*mii = &sc_if->sk_mii;
2681 	int			rc = 0, s;
2682 	u_int32_t		imr, imtimer_ticks;
2683 
2684 	DPRINTFN(1, ("sk_init\n"));
2685 
2686 	s = splnet();
2687 
2688 	if (ifp->if_flags & IFF_RUNNING) {
2689 		splx(s);
2690 		return 0;
2691 	}
2692 
2693 	/* Cancel pending I/O and free all RX/TX buffers. */
2694 	sk_stop(ifp,0);
2695 
2696 	if (sc->sk_type == SK_GENESIS) {
2697 		/* Configure LINK_SYNC LED */
2698 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2699 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2700 			      SK_LINKLED_LINKSYNC_ON);
2701 
2702 		/* Configure RX LED */
2703 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2704 			      SK_RXLEDCTL_COUNTER_START);
2705 
2706 		/* Configure TX LED */
2707 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2708 			      SK_TXLEDCTL_COUNTER_START);
2709 	}
2710 
2711 	/* Configure I2C registers */
2712 
2713 	/* Configure XMAC(s) */
2714 	switch (sc->sk_type) {
2715 	case SK_GENESIS:
2716 		sk_init_xmac(sc_if);
2717 		break;
2718 	case SK_YUKON:
2719 	case SK_YUKON_LITE:
2720 	case SK_YUKON_LP:
2721 		sk_init_yukon(sc_if);
2722 		break;
2723 	}
2724 	if ((rc = mii_mediachg(mii)) == ENXIO)
2725 		rc = 0;
2726 	else if (rc != 0)
2727 		goto out;
2728 
2729 	if (sc->sk_type == SK_GENESIS) {
2730 		/* Configure MAC FIFOs */
2731 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2732 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2733 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2734 
2735 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2736 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2737 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2738 	}
2739 
2740 	/* Configure transmit arbiter(s) */
2741 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2742 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2743 
2744 	/* Configure RAMbuffers */
2745 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2746 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2747 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2748 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2749 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2750 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2751 
2752 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2753 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2754 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2755 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2756 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2757 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2758 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2759 
2760 	/* Configure BMUs */
2761 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2762 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2763 	    SK_RX_RING_ADDR(sc_if, 0));
2764 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2765 
2766 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2767 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2768             SK_TX_RING_ADDR(sc_if, 0));
2769 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2770 
2771 	/* Init descriptors */
2772 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2773 		aprint_error_dev(&sc_if->sk_dev, "initialization failed: no "
2774 		    "memory for rx buffers\n");
2775 		sk_stop(ifp,0);
2776 		splx(s);
2777 		return ENOBUFS;
2778 	}
2779 
2780 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2781 		aprint_error_dev(&sc_if->sk_dev, "initialization failed: no "
2782 		    "memory for tx buffers\n");
2783 		sk_stop(ifp,0);
2784 		splx(s);
2785 		return ENOBUFS;
2786 	}
2787 
2788 	/* Set interrupt moderation if changed via sysctl. */
2789 	switch (sc->sk_type) {
2790 	case SK_GENESIS:
2791 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2792 		break;
2793 	case SK_YUKON_EC:
2794 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2795 		break;
2796 	default:
2797 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2798 	}
2799 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2800 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2801 		sk_win_write_4(sc, SK_IMTIMERINIT,
2802 		    SK_IM_USECS(sc->sk_int_mod));
2803 		aprint_verbose_dev(&sc->sk_dev, "interrupt moderation is %d us\n",
2804 		    sc->sk_int_mod);
2805 	}
2806 
2807 	/* Configure interrupt handling */
2808 	CSR_READ_4(sc, SK_ISSR);
2809 	if (sc_if->sk_port == SK_PORT_A)
2810 		sc->sk_intrmask |= SK_INTRS1;
2811 	else
2812 		sc->sk_intrmask |= SK_INTRS2;
2813 
2814 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2815 
2816 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2817 
2818 	/* Start BMUs. */
2819 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2820 
2821 	if (sc->sk_type == SK_GENESIS) {
2822 		/* Enable XMACs TX and RX state machines */
2823 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2824 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2825 			       XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2826 	}
2827 
2828 	if (SK_YUKON_FAMILY(sc->sk_type)) {
2829 		u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2830 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2831 #if 0
2832 		/* XXX disable 100Mbps and full duplex mode? */
2833 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2834 #endif
2835 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2836 	}
2837 
2838 
2839 	ifp->if_flags |= IFF_RUNNING;
2840 	ifp->if_flags &= ~IFF_OACTIVE;
2841 
2842 out:
2843 	splx(s);
2844 	return rc;
2845 }
2846 
2847 void
2848 sk_stop(struct ifnet *ifp, int disable)
2849 {
2850         struct sk_if_softc	*sc_if = ifp->if_softc;
2851 	struct sk_softc		*sc = sc_if->sk_softc;
2852 	int			i;
2853 
2854 	DPRINTFN(1, ("sk_stop\n"));
2855 
2856 	callout_stop(&sc_if->sk_tick_ch);
2857 
2858 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2859 		u_int32_t		val;
2860 
2861 		/* Put PHY back into reset. */
2862 		val = sk_win_read_4(sc, SK_GPIO);
2863 		if (sc_if->sk_port == SK_PORT_A) {
2864 			val |= SK_GPIO_DIR0;
2865 			val &= ~SK_GPIO_DAT0;
2866 		} else {
2867 			val |= SK_GPIO_DIR2;
2868 			val &= ~SK_GPIO_DAT2;
2869 		}
2870 		sk_win_write_4(sc, SK_GPIO, val);
2871 	}
2872 
2873 	/* Turn off various components of this interface. */
2874 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2875 	switch (sc->sk_type) {
2876 	case SK_GENESIS:
2877 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2878 			      SK_TXMACCTL_XMAC_RESET);
2879 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2880 		break;
2881 	case SK_YUKON:
2882 	case SK_YUKON_LITE:
2883 	case SK_YUKON_LP:
2884 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2885 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2886 		break;
2887 	}
2888 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2889 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2890 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2891 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2892 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2893 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2894 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2895 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2896 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2897 
2898 	/* Disable interrupts */
2899 	if (sc_if->sk_port == SK_PORT_A)
2900 		sc->sk_intrmask &= ~SK_INTRS1;
2901 	else
2902 		sc->sk_intrmask &= ~SK_INTRS2;
2903 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2904 
2905 	SK_XM_READ_2(sc_if, XM_ISR);
2906 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2907 
2908 	/* Free RX and TX mbufs still in the queues. */
2909 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2910 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2911 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2912 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2913 		}
2914 	}
2915 
2916 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2917 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2918 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2919 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2920 		}
2921 	}
2922 
2923 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2924 }
2925 
2926 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
2927 
2928 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
2929 
2930 #ifdef SK_DEBUG
2931 void
2932 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2933 {
2934 #define DESC_PRINT(X)					\
2935 	if (X)					\
2936 		printf("txdesc[%d]." #X "=%#x\n",	\
2937 		       idx, X);
2938 
2939 	DESC_PRINT(le32toh(desc->sk_ctl));
2940 	DESC_PRINT(le32toh(desc->sk_next));
2941 	DESC_PRINT(le32toh(desc->sk_data_lo));
2942 	DESC_PRINT(le32toh(desc->sk_data_hi));
2943 	DESC_PRINT(le32toh(desc->sk_xmac_txstat));
2944 	DESC_PRINT(le16toh(desc->sk_rsvd0));
2945 	DESC_PRINT(le16toh(desc->sk_csum_startval));
2946 	DESC_PRINT(le16toh(desc->sk_csum_startpos));
2947 	DESC_PRINT(le16toh(desc->sk_csum_writepos));
2948 	DESC_PRINT(le16toh(desc->sk_rsvd1));
2949 #undef PRINT
2950 }
2951 
2952 void
2953 sk_dump_bytes(const char *data, int len)
2954 {
2955 	int c, i, j;
2956 
2957 	for (i = 0; i < len; i += 16) {
2958 		printf("%08x  ", i);
2959 		c = len - i;
2960 		if (c > 16) c = 16;
2961 
2962 		for (j = 0; j < c; j++) {
2963 			printf("%02x ", data[i + j] & 0xff);
2964 			if ((j & 0xf) == 7 && j > 0)
2965 				printf(" ");
2966 		}
2967 
2968 		for (; j < 16; j++)
2969 			printf("   ");
2970 		printf("  ");
2971 
2972 		for (j = 0; j < c; j++) {
2973 			int ch = data[i + j] & 0xff;
2974 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2975 		}
2976 
2977 		printf("\n");
2978 
2979 		if (c < 16)
2980 			break;
2981 	}
2982 }
2983 
2984 void
2985 sk_dump_mbuf(struct mbuf *m)
2986 {
2987 	int count = m->m_pkthdr.len;
2988 
2989 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2990 
2991 	while (count > 0 && m) {
2992 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2993 		       m, m->m_data, m->m_len);
2994 		sk_dump_bytes(mtod(m, char *), m->m_len);
2995 
2996 		count -= m->m_len;
2997 		m = m->m_next;
2998 	}
2999 }
3000 #endif
3001 
3002 static int
3003 sk_sysctl_handler(SYSCTLFN_ARGS)
3004 {
3005 	int error, t;
3006 	struct sysctlnode node;
3007 	struct sk_softc *sc;
3008 
3009 	node = *rnode;
3010 	sc = node.sysctl_data;
3011 	t = sc->sk_int_mod;
3012 	node.sysctl_data = &t;
3013 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3014 	if (error || newp == NULL)
3015 		return error;
3016 
3017 	if (t < SK_IM_MIN || t > SK_IM_MAX)
3018 		return EINVAL;
3019 
3020 	/* update the softc with sysctl-changed value, and mark
3021 	   for hardware update */
3022 	sc->sk_int_mod = t;
3023 	sc->sk_int_mod_pending = 1;
3024 	return 0;
3025 }
3026 
3027 /*
3028  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3029  * set up in skc_attach()
3030  */
3031 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3032 {
3033 	int rc;
3034 	const struct sysctlnode *node;
3035 
3036 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3037 	    0, CTLTYPE_NODE, "hw", NULL,
3038 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3039 		goto err;
3040 	}
3041 
3042 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
3043 	    0, CTLTYPE_NODE, "sk",
3044 	    SYSCTL_DESCR("sk interface controls"),
3045 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3046 		goto err;
3047 	}
3048 
3049 	sk_root_num = node->sysctl_num;
3050 	return;
3051 
3052 err:
3053 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3054 }
3055