xref: /netbsd-src/sys/dev/pci/if_sk.c (revision 7fa608457b817eca6e0977b37f758ae064f3c99c)
1 /*	$NetBSD: if_sk.c,v 1.43 2007/11/07 00:23:19 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the NetBSD
18  *	Foundation, Inc. and its contributors.
19  * 4. Neither the name of The NetBSD Foundation nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 /*	$OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $	*/
37 
38 /*
39  * Copyright (c) 1997, 1998, 1999, 2000
40  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. All advertising materials mentioning features or use of this software
51  *    must display the following acknowledgement:
52  *	This product includes software developed by Bill Paul.
53  * 4. Neither the name of the author nor the names of any co-contributors
54  *    may be used to endorse or promote products derived from this software
55  *    without specific prior written permission.
56  *
57  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
61  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
67  * THE POSSIBILITY OF SUCH DAMAGE.
68  *
69  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
70  */
71 
72 /*
73  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
74  *
75  * Permission to use, copy, modify, and distribute this software for any
76  * purpose with or without fee is hereby granted, provided that the above
77  * copyright notice and this permission notice appear in all copies.
78  *
79  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
80  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
81  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
82  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
83  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
84  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
85  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
86  */
87 
88 /*
89  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
90  * the SK-984x series adapters, both single port and dual port.
91  * References:
92  * 	The XaQti XMAC II datasheet,
93  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
95  *
96  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
97  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
98  * convenience to others until Vitesse corrects this problem:
99  *
100  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
101  *
102  * Written by Bill Paul <wpaul@ee.columbia.edu>
103  * Department of Electrical Engineering
104  * Columbia University, New York City
105  */
106 
107 /*
108  * The SysKonnect gigabit ethernet adapters consist of two main
109  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
110  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
111  * components and a PHY while the GEnesis controller provides a PCI
112  * interface with DMA support. Each card may have between 512K and
113  * 2MB of SRAM on board depending on the configuration.
114  *
115  * The SysKonnect GEnesis controller can have either one or two XMAC
116  * chips connected to it, allowing single or dual port NIC configurations.
117  * SysKonnect has the distinction of being the only vendor on the market
118  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
119  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
120  * XMAC registers. This driver takes advantage of these features to allow
121  * both XMACs to operate as independent interfaces.
122  */
123 
124 #include <sys/cdefs.h>
125 
126 #include "bpfilter.h"
127 #include "rnd.h"
128 
129 #include <sys/param.h>
130 #include <sys/systm.h>
131 #include <sys/sockio.h>
132 #include <sys/mbuf.h>
133 #include <sys/malloc.h>
134 #include <sys/kernel.h>
135 #include <sys/socket.h>
136 #include <sys/device.h>
137 #include <sys/queue.h>
138 #include <sys/callout.h>
139 #include <sys/sysctl.h>
140 #include <sys/endian.h>
141 
142 #include <net/if.h>
143 #include <net/if_dl.h>
144 #include <net/if_types.h>
145 
146 #include <net/if_media.h>
147 
148 #if NBPFILTER > 0
149 #include <net/bpf.h>
150 #endif
151 #if NRND > 0
152 #include <sys/rnd.h>
153 #endif
154 
155 #include <dev/mii/mii.h>
156 #include <dev/mii/miivar.h>
157 #include <dev/mii/brgphyreg.h>
158 
159 #include <dev/pci/pcireg.h>
160 #include <dev/pci/pcivar.h>
161 #include <dev/pci/pcidevs.h>
162 
163 /* #define SK_USEIOSPACE */
164 
165 #include <dev/pci/if_skreg.h>
166 #include <dev/pci/if_skvar.h>
167 
168 int skc_probe(struct device *, struct cfdata *, void *);
169 void skc_attach(struct device *, struct device *self, void *aux);
170 int sk_probe(struct device *, struct cfdata *, void *);
171 void sk_attach(struct device *, struct device *self, void *aux);
172 int skcprint(void *, const char *);
173 int sk_intr(void *);
174 void sk_intr_bcom(struct sk_if_softc *);
175 void sk_intr_xmac(struct sk_if_softc *);
176 void sk_intr_yukon(struct sk_if_softc *);
177 void sk_rxeof(struct sk_if_softc *);
178 void sk_txeof(struct sk_if_softc *);
179 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
180 void sk_start(struct ifnet *);
181 int sk_ioctl(struct ifnet *, u_long, void *);
182 int sk_init(struct ifnet *);
183 void sk_init_xmac(struct sk_if_softc *);
184 void sk_init_yukon(struct sk_if_softc *);
185 void sk_stop(struct ifnet *, int);
186 void sk_watchdog(struct ifnet *);
187 void sk_shutdown(void *);
188 int sk_ifmedia_upd(struct ifnet *);
189 void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
190 void sk_reset(struct sk_softc *);
191 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
192 int sk_alloc_jumbo_mem(struct sk_if_softc *);
193 void sk_free_jumbo_mem(struct sk_if_softc *);
194 void *sk_jalloc(struct sk_if_softc *);
195 void sk_jfree(struct mbuf *, void *, size_t, void *);
196 int sk_init_rx_ring(struct sk_if_softc *);
197 int sk_init_tx_ring(struct sk_if_softc *);
198 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
199 void sk_vpd_read_res(struct sk_softc *,
200 					struct vpd_res *, int);
201 void sk_vpd_read(struct sk_softc *);
202 
203 void sk_update_int_mod(struct sk_softc *);
204 
205 int sk_xmac_miibus_readreg(struct device *, int, int);
206 void sk_xmac_miibus_writereg(struct device *, int, int, int);
207 void sk_xmac_miibus_statchg(struct device *);
208 
209 int sk_marv_miibus_readreg(struct device *, int, int);
210 void sk_marv_miibus_writereg(struct device *, int, int, int);
211 void sk_marv_miibus_statchg(struct device *);
212 
213 u_int32_t sk_xmac_hash(void *);
214 u_int32_t sk_yukon_hash(void *);
215 void sk_setfilt(struct sk_if_softc *, void *, int);
216 void sk_setmulti(struct sk_if_softc *);
217 void sk_tick(void *);
218 
219 /* #define SK_DEBUG 2 */
220 #ifdef SK_DEBUG
221 #define DPRINTF(x)	if (skdebug) printf x
222 #define DPRINTFN(n,x)	if (skdebug >= (n)) printf x
223 int	skdebug = SK_DEBUG;
224 
225 void sk_dump_txdesc(struct sk_tx_desc *, int);
226 void sk_dump_mbuf(struct mbuf *);
227 void sk_dump_bytes(const char *, int);
228 #else
229 #define DPRINTF(x)
230 #define DPRINTFN(n,x)
231 #endif
232 
233 static int sk_sysctl_handler(SYSCTLFN_PROTO);
234 static int sk_root_num;
235 
236 /* supported device vendors */
237 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
238 static const struct sk_product {
239 	pci_vendor_id_t		sk_vendor;
240 	pci_product_id_t	sk_product;
241 } sk_products[] = {
242 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
243 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
244 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
245 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
246 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
247 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
248 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
249 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
250 	{ 0, 0, }
251 };
252 
253 #define SK_LINKSYS_EG1032_SUBID	0x00151737
254 
255 static inline u_int32_t
256 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
257 {
258 #ifdef SK_USEIOSPACE
259 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
260 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
261 #else
262 	return CSR_READ_4(sc, reg);
263 #endif
264 }
265 
266 static inline u_int16_t
267 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
268 {
269 #ifdef SK_USEIOSPACE
270 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
271 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
272 #else
273 	return CSR_READ_2(sc, reg);
274 #endif
275 }
276 
277 static inline u_int8_t
278 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
279 {
280 #ifdef SK_USEIOSPACE
281 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
282 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
283 #else
284 	return CSR_READ_1(sc, reg);
285 #endif
286 }
287 
288 static inline void
289 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
290 {
291 #ifdef SK_USEIOSPACE
292 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
293 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
294 #else
295 	CSR_WRITE_4(sc, reg, x);
296 #endif
297 }
298 
299 static inline void
300 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
301 {
302 #ifdef SK_USEIOSPACE
303 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
304 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
305 #else
306 	CSR_WRITE_2(sc, reg, x);
307 #endif
308 }
309 
310 static inline void
311 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
312 {
313 #ifdef SK_USEIOSPACE
314 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
315 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
316 #else
317 	CSR_WRITE_1(sc, reg, x);
318 #endif
319 }
320 
321 /*
322  * The VPD EEPROM contains Vital Product Data, as suggested in
323  * the PCI 2.1 specification. The VPD data is separared into areas
324  * denoted by resource IDs. The SysKonnect VPD contains an ID string
325  * resource (the name of the adapter), a read-only area resource
326  * containing various key/data fields and a read/write area which
327  * can be used to store asset management information or log messages.
328  * We read the ID string and read-only into buffers attached to
329  * the controller softc structure for later use. At the moment,
330  * we only use the ID string during sk_attach().
331  */
332 u_int8_t
333 sk_vpd_readbyte(struct sk_softc *sc, int addr)
334 {
335 	int			i;
336 
337 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
338 	for (i = 0; i < SK_TIMEOUT; i++) {
339 		DELAY(1);
340 		if (sk_win_read_2(sc,
341 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
342 			break;
343 	}
344 
345 	if (i == SK_TIMEOUT)
346 		return 0;
347 
348 	return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
349 }
350 
351 void
352 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
353 {
354 	int			i;
355 	u_int8_t		*ptr;
356 
357 	ptr = (u_int8_t *)res;
358 	for (i = 0; i < sizeof(struct vpd_res); i++)
359 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
360 }
361 
362 void
363 sk_vpd_read(struct sk_softc *sc)
364 {
365 	int			pos = 0, i;
366 	struct vpd_res		res;
367 
368 	if (sc->sk_vpd_prodname != NULL)
369 		free(sc->sk_vpd_prodname, M_DEVBUF);
370 	if (sc->sk_vpd_readonly != NULL)
371 		free(sc->sk_vpd_readonly, M_DEVBUF);
372 	sc->sk_vpd_prodname = NULL;
373 	sc->sk_vpd_readonly = NULL;
374 
375 	sk_vpd_read_res(sc, &res, pos);
376 
377 	if (res.vr_id != VPD_RES_ID) {
378 		aprint_error("%s: bad VPD resource id: expected %x got %x\n",
379 		    sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
380 		return;
381 	}
382 
383 	pos += sizeof(res);
384 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
385 	if (sc->sk_vpd_prodname == NULL)
386 		panic("sk_vpd_read");
387 	for (i = 0; i < res.vr_len; i++)
388 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
389 	sc->sk_vpd_prodname[i] = '\0';
390 	pos += i;
391 
392 	sk_vpd_read_res(sc, &res, pos);
393 
394 	if (res.vr_id != VPD_RES_READ) {
395 		aprint_error("%s: bad VPD resource id: expected %x got %x\n",
396 		    sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
397 		return;
398 	}
399 
400 	pos += sizeof(res);
401 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
402 	if (sc->sk_vpd_readonly == NULL)
403 		panic("sk_vpd_read");
404 	for (i = 0; i < res.vr_len ; i++)
405 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
406 }
407 
408 int
409 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
410 {
411 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
412 	int i;
413 
414 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
415 
416 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
417 		return 0;
418 
419 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
420 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
421 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
422 		for (i = 0; i < SK_TIMEOUT; i++) {
423 			DELAY(1);
424 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
425 			    XM_MMUCMD_PHYDATARDY)
426 				break;
427 		}
428 
429 		if (i == SK_TIMEOUT) {
430 			aprint_error("%s: phy failed to come ready\n",
431 			    sc_if->sk_dev.dv_xname);
432 			return 0;
433 		}
434 	}
435 	DELAY(1);
436 	return SK_XM_READ_2(sc_if, XM_PHY_DATA);
437 }
438 
439 void
440 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
441 {
442 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
443 	int i;
444 
445 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
446 
447 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
448 	for (i = 0; i < SK_TIMEOUT; i++) {
449 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
450 			break;
451 	}
452 
453 	if (i == SK_TIMEOUT) {
454 		aprint_error("%s: phy failed to come ready\n",
455 		    sc_if->sk_dev.dv_xname);
456 		return;
457 	}
458 
459 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
460 	for (i = 0; i < SK_TIMEOUT; i++) {
461 		DELAY(1);
462 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
463 			break;
464 	}
465 
466 	if (i == SK_TIMEOUT)
467 		aprint_error("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
468 }
469 
470 void
471 sk_xmac_miibus_statchg(struct device *dev)
472 {
473 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
474 	struct mii_data *mii = &sc_if->sk_mii;
475 
476 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
477 
478 	/*
479 	 * If this is a GMII PHY, manually set the XMAC's
480 	 * duplex mode accordingly.
481 	 */
482 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
483 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
484 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
485 		else
486 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
487 	}
488 }
489 
490 int
491 sk_marv_miibus_readreg(struct device *dev, int phy, int reg)
492 {
493 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
494 	u_int16_t val;
495 	int i;
496 
497 	if (phy != 0 ||
498 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
499 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
500 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
501 			     phy, reg));
502 		return 0;
503 	}
504 
505         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
506 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
507 
508 	for (i = 0; i < SK_TIMEOUT; i++) {
509 		DELAY(1);
510 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
511 		if (val & YU_SMICR_READ_VALID)
512 			break;
513 	}
514 
515 	if (i == SK_TIMEOUT) {
516 		aprint_error("%s: phy failed to come ready\n",
517 		       sc_if->sk_dev.dv_xname);
518 		return 0;
519 	}
520 
521  	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
522 		     SK_TIMEOUT));
523 
524         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
525 
526 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
527 		     phy, reg, val));
528 
529 	return val;
530 }
531 
532 void
533 sk_marv_miibus_writereg(struct device *dev, int phy, int reg, int val)
534 {
535 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
536 	int i;
537 
538 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
539 		     phy, reg, val));
540 
541 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
542 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
543 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
544 
545 	for (i = 0; i < SK_TIMEOUT; i++) {
546 		DELAY(1);
547 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
548 			break;
549 	}
550 
551 	if (i == SK_TIMEOUT)
552 		printf("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
553 }
554 
555 void
556 sk_marv_miibus_statchg(struct device *dev)
557 {
558 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
559 		     SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
560 }
561 
562 #define SK_HASH_BITS		6
563 
564 u_int32_t
565 sk_xmac_hash(void *addr)
566 {
567 	u_int32_t		crc;
568 
569 	crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
570 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
571 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
572 	return crc;
573 }
574 
575 u_int32_t
576 sk_yukon_hash(void *addr)
577 {
578 	u_int32_t		crc;
579 
580 	crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
581 	crc &= ((1 << SK_HASH_BITS) - 1);
582 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
583 	return crc;
584 }
585 
586 void
587 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
588 {
589 	char *addr = addrv;
590 	int base = XM_RXFILT_ENTRY(slot);
591 
592 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
593 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
594 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
595 }
596 
597 void
598 sk_setmulti(struct sk_if_softc *sc_if)
599 {
600 	struct sk_softc *sc = sc_if->sk_softc;
601 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
602 	u_int32_t hashes[2] = { 0, 0 };
603 	int h = 0, i;
604 	struct ethercom *ec = &sc_if->sk_ethercom;
605 	struct ether_multi *enm;
606 	struct ether_multistep step;
607 	u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
608 
609 	/* First, zot all the existing filters. */
610 	switch (sc->sk_type) {
611 	case SK_GENESIS:
612 		for (i = 1; i < XM_RXFILT_MAX; i++)
613 			sk_setfilt(sc_if, (void *)&dummy, i);
614 
615 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
616 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
617 		break;
618 	case SK_YUKON:
619 	case SK_YUKON_LITE:
620 	case SK_YUKON_LP:
621 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
622 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
623 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
624 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
625 		break;
626 	}
627 
628 	/* Now program new ones. */
629 allmulti:
630 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
631 		hashes[0] = 0xFFFFFFFF;
632 		hashes[1] = 0xFFFFFFFF;
633 	} else {
634 		i = 1;
635 		/* First find the tail of the list. */
636 		ETHER_FIRST_MULTI(step, ec, enm);
637 		while (enm != NULL) {
638 			if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
639 				 ETHER_ADDR_LEN)) {
640 				ifp->if_flags |= IFF_ALLMULTI;
641 				goto allmulti;
642 			}
643 			DPRINTFN(2,("multicast address %s\n",
644 	    			ether_sprintf(enm->enm_addrlo)));
645 			/*
646 			 * Program the first XM_RXFILT_MAX multicast groups
647 			 * into the perfect filter. For all others,
648 			 * use the hash table.
649 			 */
650 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
651 				sk_setfilt(sc_if, enm->enm_addrlo, i);
652 				i++;
653 			}
654 			else {
655 				switch (sc->sk_type) {
656 				case SK_GENESIS:
657 					h = sk_xmac_hash(enm->enm_addrlo);
658 					break;
659 				case SK_YUKON:
660 				case SK_YUKON_LITE:
661 				case SK_YUKON_LP:
662 					h = sk_yukon_hash(enm->enm_addrlo);
663 					break;
664 				}
665 				if (h < 32)
666 					hashes[0] |= (1 << h);
667 				else
668 					hashes[1] |= (1 << (h - 32));
669 			}
670 
671 			ETHER_NEXT_MULTI(step, enm);
672 		}
673 	}
674 
675 	switch (sc->sk_type) {
676 	case SK_GENESIS:
677 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
678 			       XM_MODE_RX_USE_PERFECT);
679 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
680 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
681 		break;
682 	case SK_YUKON:
683 	case SK_YUKON_LITE:
684 	case SK_YUKON_LP:
685 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
686 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
687 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
688 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
689 		break;
690 	}
691 }
692 
693 int
694 sk_init_rx_ring(struct sk_if_softc *sc_if)
695 {
696 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
697 	struct sk_ring_data	*rd = sc_if->sk_rdata;
698 	int			i;
699 
700 	bzero((char *)rd->sk_rx_ring,
701 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
702 
703 	for (i = 0; i < SK_RX_RING_CNT; i++) {
704 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
705 		if (i == (SK_RX_RING_CNT - 1)) {
706 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
707 			rd->sk_rx_ring[i].sk_next =
708 				htole32(SK_RX_RING_ADDR(sc_if, 0));
709 		} else {
710 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
711 			rd->sk_rx_ring[i].sk_next =
712 				htole32(SK_RX_RING_ADDR(sc_if,i+1));
713 		}
714 	}
715 
716 	for (i = 0; i < SK_RX_RING_CNT; i++) {
717 		if (sk_newbuf(sc_if, i, NULL,
718 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
719 			aprint_error("%s: failed alloc of %dth mbuf\n",
720 			    sc_if->sk_dev.dv_xname, i);
721 			return ENOBUFS;
722 		}
723 	}
724 	sc_if->sk_cdata.sk_rx_prod = 0;
725 	sc_if->sk_cdata.sk_rx_cons = 0;
726 
727 	return 0;
728 }
729 
730 int
731 sk_init_tx_ring(struct sk_if_softc *sc_if)
732 {
733 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
734 	struct sk_ring_data	*rd = sc_if->sk_rdata;
735 	int			i;
736 
737 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
738 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
739 
740 	for (i = 0; i < SK_TX_RING_CNT; i++) {
741 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
742 		if (i == (SK_TX_RING_CNT - 1)) {
743 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
744 			rd->sk_tx_ring[i].sk_next =
745 				htole32(SK_TX_RING_ADDR(sc_if, 0));
746 		} else {
747 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
748 			rd->sk_tx_ring[i].sk_next =
749 				htole32(SK_TX_RING_ADDR(sc_if,i+1));
750 		}
751 	}
752 
753 	sc_if->sk_cdata.sk_tx_prod = 0;
754 	sc_if->sk_cdata.sk_tx_cons = 0;
755 	sc_if->sk_cdata.sk_tx_cnt = 0;
756 
757 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
758 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
759 
760 	return 0;
761 }
762 
763 int
764 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
765 	  bus_dmamap_t dmamap)
766 {
767 	struct mbuf		*m_new = NULL;
768 	struct sk_chain		*c;
769 	struct sk_rx_desc	*r;
770 
771 	if (m == NULL) {
772 		void *buf = NULL;
773 
774 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
775 		if (m_new == NULL) {
776 			aprint_error("%s: no memory for rx list -- "
777 			    "packet dropped!\n", sc_if->sk_dev.dv_xname);
778 			return ENOBUFS;
779 		}
780 
781 		/* Allocate the jumbo buffer */
782 		buf = sk_jalloc(sc_if);
783 		if (buf == NULL) {
784 			m_freem(m_new);
785 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
786 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
787 			return ENOBUFS;
788 		}
789 
790 		/* Attach the buffer to the mbuf */
791 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
792 		MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
793 
794 	} else {
795 		/*
796 	 	 * We're re-using a previously allocated mbuf;
797 		 * be sure to re-init pointers and lengths to
798 		 * default values.
799 		 */
800 		m_new = m;
801 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
802 		m_new->m_data = m_new->m_ext.ext_buf;
803 	}
804 	m_adj(m_new, ETHER_ALIGN);
805 
806 	c = &sc_if->sk_cdata.sk_rx_chain[i];
807 	r = c->sk_desc;
808 	c->sk_mbuf = m_new;
809 	r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
810 	    (((vaddr_t)m_new->m_data
811 		- (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
812 	r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
813 
814 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
815 
816 	return 0;
817 }
818 
819 /*
820  * Memory management for jumbo frames.
821  */
822 
823 int
824 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
825 {
826 	struct sk_softc		*sc = sc_if->sk_softc;
827 	char *ptr, *kva;
828 	bus_dma_segment_t	seg;
829 	int		i, rseg, state, error;
830 	struct sk_jpool_entry   *entry;
831 
832 	state = error = 0;
833 
834 	/* Grab a big chunk o' storage. */
835 	if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
836 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
837 		aprint_error("%s: can't alloc rx buffers\n", sc->sk_dev.dv_xname);
838 		return ENOBUFS;
839 	}
840 
841 	state = 1;
842 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
843 			   BUS_DMA_NOWAIT)) {
844 		aprint_error("%s: can't map dma buffers (%d bytes)\n",
845 		    sc->sk_dev.dv_xname, SK_JMEM);
846 		error = ENOBUFS;
847 		goto out;
848 	}
849 
850 	state = 2;
851 	if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
852 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
853 		aprint_error("%s: can't create dma map\n", sc->sk_dev.dv_xname);
854 		error = ENOBUFS;
855 		goto out;
856 	}
857 
858 	state = 3;
859 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
860 			    kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
861 		aprint_error("%s: can't load dma map\n", sc->sk_dev.dv_xname);
862 		error = ENOBUFS;
863 		goto out;
864 	}
865 
866 	state = 4;
867 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
868 	DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
869 
870 	LIST_INIT(&sc_if->sk_jfree_listhead);
871 	LIST_INIT(&sc_if->sk_jinuse_listhead);
872 
873 	/*
874 	 * Now divide it up into 9K pieces and save the addresses
875 	 * in an array.
876 	 */
877 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
878 	for (i = 0; i < SK_JSLOTS; i++) {
879 		sc_if->sk_cdata.sk_jslots[i] = ptr;
880 		ptr += SK_JLEN;
881 		entry = malloc(sizeof(struct sk_jpool_entry),
882 		    M_DEVBUF, M_NOWAIT);
883 		if (entry == NULL) {
884 			aprint_error("%s: no memory for jumbo buffer queue!\n",
885 			    sc->sk_dev.dv_xname);
886 			error = ENOBUFS;
887 			goto out;
888 		}
889 		entry->slot = i;
890 		if (i)
891 			LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
892 				 entry, jpool_entries);
893 		else
894 			LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
895 				 entry, jpool_entries);
896 	}
897 out:
898 	if (error != 0) {
899 		switch (state) {
900 		case 4:
901 			bus_dmamap_unload(sc->sc_dmatag,
902 			    sc_if->sk_cdata.sk_rx_jumbo_map);
903 		case 3:
904 			bus_dmamap_destroy(sc->sc_dmatag,
905 			    sc_if->sk_cdata.sk_rx_jumbo_map);
906 		case 2:
907 			bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
908 		case 1:
909 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
910 			break;
911 		default:
912 			break;
913 		}
914 	}
915 
916 	return error;
917 }
918 
919 /*
920  * Allocate a jumbo buffer.
921  */
922 void *
923 sk_jalloc(struct sk_if_softc *sc_if)
924 {
925 	struct sk_jpool_entry   *entry;
926 
927 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
928 
929 	if (entry == NULL)
930 		return NULL;
931 
932 	LIST_REMOVE(entry, jpool_entries);
933 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
934 	return sc_if->sk_cdata.sk_jslots[entry->slot];
935 }
936 
937 /*
938  * Release a jumbo buffer.
939  */
940 void
941 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
942 {
943 	struct sk_jpool_entry *entry;
944 	struct sk_if_softc *sc;
945 	int i, s;
946 
947 	/* Extract the softc struct pointer. */
948 	sc = (struct sk_if_softc *)arg;
949 
950 	if (sc == NULL)
951 		panic("sk_jfree: can't find softc pointer!");
952 
953 	/* calculate the slot this buffer belongs to */
954 
955 	i = ((vaddr_t)buf
956 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
957 
958 	if ((i < 0) || (i >= SK_JSLOTS))
959 		panic("sk_jfree: asked to free buffer that we don't manage!");
960 
961 	s = splvm();
962 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
963 	if (entry == NULL)
964 		panic("sk_jfree: buffer not in use!");
965 	entry->slot = i;
966 	LIST_REMOVE(entry, jpool_entries);
967 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
968 
969 	if (__predict_true(m != NULL))
970 		pool_cache_put(mb_cache, m);
971 	splx(s);
972 }
973 
974 /*
975  * Set media options.
976  */
977 int
978 sk_ifmedia_upd(struct ifnet *ifp)
979 {
980 	struct sk_if_softc *sc_if = ifp->if_softc;
981 
982 	(void) sk_init(ifp);
983 	mii_mediachg(&sc_if->sk_mii);
984 	return 0;
985 }
986 
987 /*
988  * Report current media status.
989  */
990 void
991 sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
992 {
993 	struct sk_if_softc *sc_if = ifp->if_softc;
994 
995 	mii_pollstat(&sc_if->sk_mii);
996 	ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
997 	ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
998 }
999 
1000 int
1001 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
1002 {
1003 	struct sk_if_softc *sc_if = ifp->if_softc;
1004 	struct sk_softc *sc = sc_if->sk_softc;
1005 	struct ifreq *ifr = (struct ifreq *) data;
1006 	struct mii_data *mii;
1007 	int s, error = 0;
1008 
1009 	/* DPRINTFN(2, ("sk_ioctl\n")); */
1010 
1011 	s = splnet();
1012 
1013 	switch (command) {
1014 
1015 	case SIOCSIFFLAGS:
1016 	        DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1017 		if (ifp->if_flags & IFF_UP) {
1018 			if (ifp->if_flags & IFF_RUNNING &&
1019 			    ifp->if_flags & IFF_PROMISC &&
1020 			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
1021 				switch (sc->sk_type) {
1022 				case SK_GENESIS:
1023 					SK_XM_SETBIT_4(sc_if, XM_MODE,
1024 					    XM_MODE_RX_PROMISC);
1025 					break;
1026 				case SK_YUKON:
1027 				case SK_YUKON_LITE:
1028 				case SK_YUKON_LP:
1029 					SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1030 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
1031 					break;
1032 				}
1033 				sk_setmulti(sc_if);
1034 			} else if (ifp->if_flags & IFF_RUNNING &&
1035 			    !(ifp->if_flags & IFF_PROMISC) &&
1036 			    sc_if->sk_if_flags & IFF_PROMISC) {
1037 				switch (sc->sk_type) {
1038 				case SK_GENESIS:
1039 					SK_XM_CLRBIT_4(sc_if, XM_MODE,
1040 					    XM_MODE_RX_PROMISC);
1041 					break;
1042 				case SK_YUKON:
1043 				case SK_YUKON_LITE:
1044 				case SK_YUKON_LP:
1045 					SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1046 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
1047 					break;
1048 				}
1049 
1050 				sk_setmulti(sc_if);
1051 			} else
1052 				(void) sk_init(ifp);
1053 		} else {
1054 			if (ifp->if_flags & IFF_RUNNING)
1055 				sk_stop(ifp,0);
1056 		}
1057 		sc_if->sk_if_flags = ifp->if_flags;
1058 		error = 0;
1059 		break;
1060 
1061 	case SIOCGIFMEDIA:
1062 	case SIOCSIFMEDIA:
1063 	        DPRINTFN(2, ("sk_ioctl MEDIA\n"));
1064 		mii = &sc_if->sk_mii;
1065 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1066 		break;
1067 	default:
1068 	        DPRINTFN(2, ("sk_ioctl ETHER\n"));
1069 		error = ether_ioctl(ifp, command, data);
1070 
1071 		if ( error == ENETRESET) {
1072 			if (ifp->if_flags & IFF_RUNNING) {
1073 				sk_setmulti(sc_if);
1074 				DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1075 			}
1076 			error = 0;
1077 		} else if ( error ) {
1078 			splx(s);
1079 			return error;
1080 		}
1081 		break;
1082 	}
1083 
1084 	splx(s);
1085 	return error;
1086 }
1087 
1088 void
1089 sk_update_int_mod(struct sk_softc *sc)
1090 {
1091 	u_int32_t imtimer_ticks;
1092 
1093 	/*
1094          * Configure interrupt moderation. The moderation timer
1095 	 * defers interrupts specified in the interrupt moderation
1096 	 * timer mask based on the timeout specified in the interrupt
1097 	 * moderation timer init register. Each bit in the timer
1098 	 * register represents one tick, so to specify a timeout in
1099 	 * microseconds, we have to multiply by the correct number of
1100 	 * ticks-per-microsecond.
1101 	 */
1102 	switch (sc->sk_type) {
1103 	case SK_GENESIS:
1104 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1105 		break;
1106 	case SK_YUKON_EC:
1107 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1108 		break;
1109 	default:
1110 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1111 	}
1112 	aprint_verbose("%s: interrupt moderation is %d us\n",
1113 	    sc->sk_dev.dv_xname, sc->sk_int_mod);
1114         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1115         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1116 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1117         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1118 	sc->sk_int_mod_pending = 0;
1119 }
1120 
1121 /*
1122  * Lookup: Check the PCI vendor and device, and return a pointer to
1123  * The structure if the IDs match against our list.
1124  */
1125 
1126 static const struct sk_product *
1127 sk_lookup(const struct pci_attach_args *pa)
1128 {
1129 	const struct sk_product *psk;
1130 
1131 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1132 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1133 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1134 			return psk;
1135 	}
1136 	return NULL;
1137 }
1138 
1139 /*
1140  * Probe for a SysKonnect GEnesis chip.
1141  */
1142 
1143 int
1144 skc_probe(struct device *parent, struct cfdata *match,
1145     void *aux)
1146 {
1147 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1148 	const struct sk_product *psk;
1149 	pcireg_t subid;
1150 
1151 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1152 
1153 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
1154 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1155 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1156 	    subid == SK_LINKSYS_EG1032_SUBID)
1157 		return 1;
1158 
1159 	if ((psk = sk_lookup(pa))) {
1160 		return 1;
1161 	}
1162 	return 0;
1163 }
1164 
1165 /*
1166  * Force the GEnesis into reset, then bring it out of reset.
1167  */
1168 void sk_reset(struct sk_softc *sc)
1169 {
1170 	DPRINTFN(2, ("sk_reset\n"));
1171 
1172 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1173 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1174 	if (SK_YUKON_FAMILY(sc->sk_type))
1175 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1176 
1177 	DELAY(1000);
1178 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1179 	DELAY(2);
1180 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1181 	if (SK_YUKON_FAMILY(sc->sk_type))
1182 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1183 
1184 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1185 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1186 		     CSR_READ_2(sc, SK_LINK_CTRL)));
1187 
1188 	if (sc->sk_type == SK_GENESIS) {
1189 		/* Configure packet arbiter */
1190 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1191 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1192 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1193 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1194 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1195 	}
1196 
1197 	/* Enable RAM interface */
1198 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1199 
1200 	sk_update_int_mod(sc);
1201 }
1202 
1203 int
1204 sk_probe(struct device *parent, struct cfdata *match,
1205     void *aux)
1206 {
1207 	struct skc_attach_args *sa = aux;
1208 
1209 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1210 		return 0;
1211 
1212 	return 1;
1213 }
1214 
1215 /*
1216  * Each XMAC chip is attached as a separate logical IP interface.
1217  * Single port cards will have only one logical interface of course.
1218  */
1219 void
1220 sk_attach(struct device *parent, struct device *self, void *aux)
1221 {
1222 	struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
1223 	struct sk_softc *sc = (struct sk_softc *)parent;
1224 	struct skc_attach_args *sa = aux;
1225 	struct sk_txmap_entry	*entry;
1226 	struct ifnet *ifp;
1227 	bus_dma_segment_t seg;
1228 	bus_dmamap_t dmamap;
1229 	void *kva;
1230 	int i, rseg;
1231 
1232 	sc_if->sk_port = sa->skc_port;
1233 	sc_if->sk_softc = sc;
1234 	sc->sk_if[sa->skc_port] = sc_if;
1235 
1236 	if (sa->skc_port == SK_PORT_A)
1237 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1238 	if (sa->skc_port == SK_PORT_B)
1239 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1240 
1241 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1242 
1243 	/*
1244 	 * Get station address for this interface. Note that
1245 	 * dual port cards actually come with three station
1246 	 * addresses: one for each port, plus an extra. The
1247 	 * extra one is used by the SysKonnect driver software
1248 	 * as a 'virtual' station address for when both ports
1249 	 * are operating in failover mode. Currently we don't
1250 	 * use this extra address.
1251 	 */
1252 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1253 		sc_if->sk_enaddr[i] =
1254 			sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1255 
1256 
1257 	aprint_normal(": Ethernet address %s\n",
1258 	    ether_sprintf(sc_if->sk_enaddr));
1259 
1260 	/*
1261 	 * Set up RAM buffer addresses. The NIC will have a certain
1262 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1263 	 * need to divide this up a) between the transmitter and
1264  	 * receiver and b) between the two XMACs, if this is a
1265 	 * dual port NIC. Our algorithm is to divide up the memory
1266 	 * evenly so that everyone gets a fair share.
1267 	 */
1268 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1269 		u_int32_t		chunk, val;
1270 
1271 		chunk = sc->sk_ramsize / 2;
1272 		val = sc->sk_rboff / sizeof(u_int64_t);
1273 		sc_if->sk_rx_ramstart = val;
1274 		val += (chunk / sizeof(u_int64_t));
1275 		sc_if->sk_rx_ramend = val - 1;
1276 		sc_if->sk_tx_ramstart = val;
1277 		val += (chunk / sizeof(u_int64_t));
1278 		sc_if->sk_tx_ramend = val - 1;
1279 	} else {
1280 		u_int32_t		chunk, val;
1281 
1282 		chunk = sc->sk_ramsize / 4;
1283 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1284 		    sizeof(u_int64_t);
1285 		sc_if->sk_rx_ramstart = val;
1286 		val += (chunk / sizeof(u_int64_t));
1287 		sc_if->sk_rx_ramend = val - 1;
1288 		sc_if->sk_tx_ramstart = val;
1289 		val += (chunk / sizeof(u_int64_t));
1290 		sc_if->sk_tx_ramend = val - 1;
1291 	}
1292 
1293 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1294 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
1295 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1296 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1297 
1298 	/* Read and save PHY type and set PHY address */
1299 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1300 	switch (sc_if->sk_phytype) {
1301 	case SK_PHYTYPE_XMAC:
1302 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1303 		break;
1304 	case SK_PHYTYPE_BCOM:
1305 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1306 		break;
1307 	case SK_PHYTYPE_MARV_COPPER:
1308 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1309 		break;
1310 	default:
1311 		aprint_error("%s: unsupported PHY type: %d\n",
1312 		    sc->sk_dev.dv_xname, sc_if->sk_phytype);
1313 		return;
1314 	}
1315 
1316 	/* Allocate the descriptor queues. */
1317 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1318 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1319 		aprint_error("%s: can't alloc rx buffers\n",
1320 		    sc->sk_dev.dv_xname);
1321 		goto fail;
1322 	}
1323 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1324 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1325 		aprint_error("%s: can't map dma buffers (%lu bytes)\n",
1326 		       sc_if->sk_dev.dv_xname,
1327 		       (u_long) sizeof(struct sk_ring_data));
1328 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1329 		goto fail;
1330 	}
1331 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1332 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1333             &sc_if->sk_ring_map)) {
1334 		aprint_error("%s: can't create dma map\n",
1335 		    sc_if->sk_dev.dv_xname);
1336 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1337 		    sizeof(struct sk_ring_data));
1338 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1339 		goto fail;
1340 	}
1341 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1342 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1343 		aprint_error("%s: can't load dma map\n",
1344 		    sc_if->sk_dev.dv_xname);
1345 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1346 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1347 		    sizeof(struct sk_ring_data));
1348 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1349 		goto fail;
1350 	}
1351 
1352 	for (i = 0; i < SK_RX_RING_CNT; i++)
1353 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1354 
1355 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1356 	for (i = 0; i < SK_TX_RING_CNT; i++) {
1357 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1358 
1359 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1360 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1361 			aprint_error("%s: Can't create TX dmamap\n",
1362 				sc_if->sk_dev.dv_xname);
1363 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1364 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1365 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1366 			    sizeof(struct sk_ring_data));
1367 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1368 			goto fail;
1369 		}
1370 
1371 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1372 		if (!entry) {
1373 			aprint_error("%s: Can't alloc txmap entry\n",
1374 				sc_if->sk_dev.dv_xname);
1375 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1376 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1377 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1378 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1379 			    sizeof(struct sk_ring_data));
1380 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1381 			goto fail;
1382 		}
1383 		entry->dmamap = dmamap;
1384 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1385 	}
1386 
1387         sc_if->sk_rdata = (struct sk_ring_data *)kva;
1388 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1389 
1390 	ifp = &sc_if->sk_ethercom.ec_if;
1391 	/* Try to allocate memory for jumbo buffers. */
1392 	if (sk_alloc_jumbo_mem(sc_if)) {
1393 		aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1394 		goto fail;
1395 	}
1396 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1397 		| ETHERCAP_JUMBO_MTU;
1398 
1399 	ifp->if_softc = sc_if;
1400 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1401 	ifp->if_ioctl = sk_ioctl;
1402 	ifp->if_start = sk_start;
1403 	ifp->if_stop = sk_stop;
1404 	ifp->if_init = sk_init;
1405 	ifp->if_watchdog = sk_watchdog;
1406 	ifp->if_capabilities = 0;
1407 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1408 	IFQ_SET_READY(&ifp->if_snd);
1409 	strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
1410 
1411 	/*
1412 	 * Do miibus setup.
1413 	 */
1414 	switch (sc->sk_type) {
1415 	case SK_GENESIS:
1416 		sk_init_xmac(sc_if);
1417 		break;
1418 	case SK_YUKON:
1419 	case SK_YUKON_LITE:
1420 	case SK_YUKON_LP:
1421 		sk_init_yukon(sc_if);
1422 		break;
1423 	default:
1424 		aprint_error("%s: unknown device type %d\n",
1425 		    sc->sk_dev.dv_xname, sc->sk_type);
1426 		goto fail;
1427 	}
1428 
1429  	DPRINTFN(2, ("sk_attach: 1\n"));
1430 
1431 	sc_if->sk_mii.mii_ifp = ifp;
1432 	switch (sc->sk_type) {
1433 	case SK_GENESIS:
1434 		sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1435 		sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1436 		sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1437 		break;
1438 	case SK_YUKON:
1439 	case SK_YUKON_LITE:
1440 	case SK_YUKON_LP:
1441 		sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1442 		sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1443 		sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1444 		break;
1445 	}
1446 
1447 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1448 	    sk_ifmedia_upd, sk_ifmedia_sts);
1449 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1450 	    MII_OFFSET_ANY, 0);
1451 	if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1452 		aprint_error("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
1453 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1454 			    0, NULL);
1455 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1456 	} else
1457 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1458 
1459 	callout_init(&sc_if->sk_tick_ch, 0);
1460 	callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1461 
1462 	DPRINTFN(2, ("sk_attach: 1\n"));
1463 
1464 	/*
1465 	 * Call MI attach routines.
1466 	 */
1467 	if_attach(ifp);
1468 
1469 	ether_ifattach(ifp, sc_if->sk_enaddr);
1470 
1471 #if NRND > 0
1472         rnd_attach_source(&sc->rnd_source, sc->sk_dev.dv_xname,
1473             RND_TYPE_NET, 0);
1474 #endif
1475 
1476 	DPRINTFN(2, ("sk_attach: end\n"));
1477 
1478 	return;
1479 
1480 fail:
1481 	sc->sk_if[sa->skc_port] = NULL;
1482 }
1483 
1484 int
1485 skcprint(void *aux, const char *pnp)
1486 {
1487 	struct skc_attach_args *sa = aux;
1488 
1489 	if (pnp)
1490 		aprint_normal("sk port %c at %s",
1491 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1492 	else
1493 		aprint_normal(" port %c",
1494 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1495 	return UNCONF;
1496 }
1497 
1498 /*
1499  * Attach the interface. Allocate softc structures, do ifmedia
1500  * setup and ethernet/BPF attach.
1501  */
1502 void
1503 skc_attach(struct device *parent, struct device *self, void *aux)
1504 {
1505 	struct sk_softc *sc = (struct sk_softc *)self;
1506 	struct pci_attach_args *pa = aux;
1507 	struct skc_attach_args skca;
1508 	pci_chipset_tag_t pc = pa->pa_pc;
1509 #ifndef SK_USEIOSPACE
1510 	pcireg_t memtype;
1511 #endif
1512 	pci_intr_handle_t ih;
1513 	const char *intrstr = NULL;
1514 	bus_addr_t iobase;
1515 	bus_size_t iosize;
1516 	int rc, sk_nodenum;
1517 	u_int32_t command;
1518 	const char *revstr;
1519 	const struct sysctlnode *node;
1520 
1521 	DPRINTFN(2, ("begin skc_attach\n"));
1522 
1523 	/*
1524 	 * Handle power management nonsense.
1525 	 */
1526 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1527 
1528 	if (command == 0x01) {
1529 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1530 		if (command & SK_PSTATE_MASK) {
1531 			u_int32_t		xiobase, membase, irq;
1532 
1533 			/* Save important PCI config data. */
1534 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1535 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1536 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1537 
1538 			/* Reset the power state. */
1539 			aprint_normal("%s chip is in D%d power mode "
1540 			    "-- setting to D0\n", sc->sk_dev.dv_xname,
1541 			    command & SK_PSTATE_MASK);
1542 			command &= 0xFFFFFFFC;
1543 			pci_conf_write(pc, pa->pa_tag,
1544 			    SK_PCI_PWRMGMTCTRL, command);
1545 
1546 			/* Restore PCI config data. */
1547 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1548 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1549 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1550 		}
1551 	}
1552 
1553 	/*
1554 	 * Map control/status registers.
1555 	 */
1556 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1557 	command |= PCI_COMMAND_IO_ENABLE |
1558 	    PCI_COMMAND_MEM_ENABLE |
1559 	    PCI_COMMAND_MASTER_ENABLE;
1560 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1561 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1562 
1563 #ifdef SK_USEIOSPACE
1564 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
1565 		aprint_error(": failed to enable I/O ports!\n");
1566 		return;
1567 	}
1568 	/*
1569 	 * Map control/status registers.
1570 	 */
1571 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1572 			&sc->sk_btag, &sc->sk_bhandle,
1573 			&iobase, &iosize)) {
1574 		aprint_error(": can't find i/o space\n");
1575 		return;
1576 	}
1577 #else
1578 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1579 		aprint_error(": failed to enable memory mapping!\n");
1580 		return;
1581 	}
1582 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1583 	switch (memtype) {
1584         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1585         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1586                 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1587 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1588 				   &iobase, &iosize) == 0)
1589                         break;
1590         default:
1591                 aprint_error("%s: can't find mem space\n",
1592 		       sc->sk_dev.dv_xname);
1593                 return;
1594 	}
1595 
1596 	DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
1597 #endif
1598 	sc->sc_dmatag = pa->pa_dmat;
1599 
1600 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1601 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1602 
1603 	/* bail out here if chip is not recognized */
1604 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1605 		aprint_error("%s: unknown chip type\n",sc->sk_dev.dv_xname);
1606 		goto fail;
1607 	}
1608 	if (SK_IS_YUKON2(sc)) {
1609 		aprint_error("%s: Does not support Yukon2--try msk(4).\n",
1610 		    sc->sk_dev.dv_xname);
1611 		goto fail;
1612 	}
1613 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1614 
1615 	/* Allocate interrupt */
1616 	if (pci_intr_map(pa, &ih)) {
1617 		aprint_error(": couldn't map interrupt\n");
1618 		goto fail;
1619 	}
1620 
1621 	intrstr = pci_intr_string(pc, ih);
1622 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1623 	if (sc->sk_intrhand == NULL) {
1624 		aprint_error(": couldn't establish interrupt");
1625 		if (intrstr != NULL)
1626 			aprint_normal(" at %s", intrstr);
1627 		goto fail;
1628 	}
1629 	aprint_normal(": %s\n", intrstr);
1630 
1631 	/* Reset the adapter. */
1632 	sk_reset(sc);
1633 
1634 	/* Read and save vital product data from EEPROM. */
1635 	sk_vpd_read(sc);
1636 
1637 	if (sc->sk_type == SK_GENESIS) {
1638 		u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1639 		/* Read and save RAM size and RAMbuffer offset */
1640 		switch (val) {
1641 		case SK_RAMSIZE_512K_64:
1642 			sc->sk_ramsize = 0x80000;
1643 			sc->sk_rboff = SK_RBOFF_0;
1644 			break;
1645 		case SK_RAMSIZE_1024K_64:
1646 			sc->sk_ramsize = 0x100000;
1647 			sc->sk_rboff = SK_RBOFF_80000;
1648 			break;
1649 		case SK_RAMSIZE_1024K_128:
1650 			sc->sk_ramsize = 0x100000;
1651 			sc->sk_rboff = SK_RBOFF_0;
1652 			break;
1653 		case SK_RAMSIZE_2048K_128:
1654 			sc->sk_ramsize = 0x200000;
1655 			sc->sk_rboff = SK_RBOFF_0;
1656 			break;
1657 		default:
1658 			aprint_error("%s: unknown ram size: %d\n",
1659 			       sc->sk_dev.dv_xname, val);
1660 			goto fail_1;
1661 			break;
1662 		}
1663 
1664 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1665 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
1666 			     sc->sk_rboff));
1667 	} else {
1668 	  	u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1669 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
1670 		sc->sk_rboff = SK_RBOFF_0;
1671 
1672 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1673 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
1674 			     sc->sk_rboff));
1675 	}
1676 
1677 	/* Read and save physical media type */
1678 	switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1679 	case SK_PMD_1000BASESX:
1680 		sc->sk_pmd = IFM_1000_SX;
1681 		break;
1682 	case SK_PMD_1000BASELX:
1683 		sc->sk_pmd = IFM_1000_LX;
1684 		break;
1685 	case SK_PMD_1000BASECX:
1686 		sc->sk_pmd = IFM_1000_CX;
1687 		break;
1688 	case SK_PMD_1000BASETX:
1689 	case SK_PMD_1000BASETX_ALT:
1690 		sc->sk_pmd = IFM_1000_T;
1691 		break;
1692 	default:
1693 		aprint_error("%s: unknown media type: 0x%x\n",
1694 		    sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
1695 		goto fail_1;
1696 	}
1697 
1698 	/* determine whether to name it with vpd or just make it up */
1699 	/* Marvell Yukon VPD's can freqently be bogus */
1700 
1701 	switch (pa->pa_id) {
1702 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1703 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1704 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1705 	case PCI_PRODUCT_3COM_3C940:
1706 	case PCI_PRODUCT_DLINK_DGE530T:
1707 	case PCI_PRODUCT_DLINK_DGE560T:
1708 	case PCI_PRODUCT_DLINK_DGE560T_2:
1709 	case PCI_PRODUCT_LINKSYS_EG1032:
1710 	case PCI_PRODUCT_LINKSYS_EG1064:
1711 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1712 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1713 	case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1714 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1715 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
1716 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
1717 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1718 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1719  		sc->sk_name = sc->sk_vpd_prodname;
1720  		break;
1721 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
1722 	/* whoops yukon vpd prodname bears no resemblance to reality */
1723 		switch (sc->sk_type) {
1724 		case SK_GENESIS:
1725 			sc->sk_name = sc->sk_vpd_prodname;
1726 			break;
1727 		case SK_YUKON:
1728 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1729 			break;
1730 		case SK_YUKON_LITE:
1731 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1732 			break;
1733 		case SK_YUKON_LP:
1734 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1735 			break;
1736 		default:
1737 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1738 		}
1739 
1740 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1741 
1742 		if ( sc->sk_type == SK_YUKON ) {
1743 			uint32_t flashaddr;
1744 			uint8_t testbyte;
1745 
1746 			flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1747 
1748 			/* test Flash-Address Register */
1749 			sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1750 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1751 
1752 			if (testbyte != 0) {
1753 				/* this is yukon lite Rev. A0 */
1754 				sc->sk_type = SK_YUKON_LITE;
1755 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
1756 				/* restore Flash-Address Register */
1757 				sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1758 			}
1759 		}
1760 		break;
1761 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
1762 		sc->sk_name = sc->sk_vpd_prodname;
1763 		break;
1764  	default:
1765 		sc->sk_name = "Unknown Marvell";
1766 	}
1767 
1768 
1769 	if ( sc->sk_type == SK_YUKON_LITE ) {
1770 		switch (sc->sk_rev) {
1771 		case SK_YUKON_LITE_REV_A0:
1772 			revstr = "A0";
1773 			break;
1774 		case SK_YUKON_LITE_REV_A1:
1775 			revstr = "A1";
1776 			break;
1777 		case SK_YUKON_LITE_REV_A3:
1778 			revstr = "A3";
1779 			break;
1780 		default:
1781 			revstr = "";
1782 		}
1783 	} else {
1784 		revstr = "";
1785 	}
1786 
1787 	/* Announce the product name. */
1788 	aprint_normal("%s: %s rev. %s(0x%x)\n", sc->sk_dev.dv_xname,
1789 			      sc->sk_name, revstr, sc->sk_rev);
1790 
1791 	skca.skc_port = SK_PORT_A;
1792 	(void)config_found(&sc->sk_dev, &skca, skcprint);
1793 
1794 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1795 		skca.skc_port = SK_PORT_B;
1796 		(void)config_found(&sc->sk_dev, &skca, skcprint);
1797 	}
1798 
1799 	/* Turn on the 'driver is loaded' LED. */
1800 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1801 
1802 	/* skc sysctl setup */
1803 
1804 	sc->sk_int_mod = SK_IM_DEFAULT;
1805 	sc->sk_int_mod_pending = 0;
1806 
1807 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1808 	    0, CTLTYPE_NODE, sc->sk_dev.dv_xname,
1809 	    SYSCTL_DESCR("skc per-controller controls"),
1810 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1811 	    CTL_EOL)) != 0) {
1812 		aprint_normal("%s: couldn't create sysctl node\n",
1813 		    sc->sk_dev.dv_xname);
1814 		goto fail_1;
1815 	}
1816 
1817 	sk_nodenum = node->sysctl_num;
1818 
1819 	/* interrupt moderation time in usecs */
1820 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1821 	    CTLFLAG_READWRITE,
1822 	    CTLTYPE_INT, "int_mod",
1823 	    SYSCTL_DESCR("sk interrupt moderation timer"),
1824 	    sk_sysctl_handler, 0, sc,
1825 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1826 	    CTL_EOL)) != 0) {
1827 		aprint_normal("%s: couldn't create int_mod sysctl node\n",
1828 		    sc->sk_dev.dv_xname);
1829 		goto fail_1;
1830 	}
1831 
1832 	return;
1833 
1834 fail_1:
1835 	pci_intr_disestablish(pc, sc->sk_intrhand);
1836 fail:
1837 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1838 }
1839 
1840 int
1841 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1842 {
1843 	struct sk_softc		*sc = sc_if->sk_softc;
1844 	struct sk_tx_desc	*f = NULL;
1845 	u_int32_t		frag, cur, cnt = 0, sk_ctl;
1846 	int			i;
1847 	struct sk_txmap_entry	*entry;
1848 	bus_dmamap_t		txmap;
1849 
1850 	DPRINTFN(3, ("sk_encap\n"));
1851 
1852 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1853 	if (entry == NULL) {
1854 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
1855 		return ENOBUFS;
1856 	}
1857 	txmap = entry->dmamap;
1858 
1859 	cur = frag = *txidx;
1860 
1861 #ifdef SK_DEBUG
1862 	if (skdebug >= 3)
1863 		sk_dump_mbuf(m_head);
1864 #endif
1865 
1866 	/*
1867 	 * Start packing the mbufs in this chain into
1868 	 * the fragment pointers. Stop when we run out
1869 	 * of fragments or hit the end of the mbuf chain.
1870 	 */
1871 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1872 	    BUS_DMA_NOWAIT)) {
1873 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1874 		return ENOBUFS;
1875 	}
1876 
1877 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1878 
1879 	/* Sync the DMA map. */
1880 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1881 	    BUS_DMASYNC_PREWRITE);
1882 
1883 	for (i = 0; i < txmap->dm_nsegs; i++) {
1884 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1885 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1886 			return ENOBUFS;
1887 		}
1888 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
1889 		f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1890 		sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1891 		if (cnt == 0)
1892 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
1893 		else
1894 			sk_ctl |= SK_TXCTL_OWN;
1895 		f->sk_ctl = htole32(sk_ctl);
1896 		cur = frag;
1897 		SK_INC(frag, SK_TX_RING_CNT);
1898 		cnt++;
1899 	}
1900 
1901 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1902 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1903 
1904 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
1905 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1906 		htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1907 
1908 	/* Sync descriptors before handing to chip */
1909 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1910 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1911 
1912 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1913 		htole32(SK_TXCTL_OWN);
1914 
1915 	/* Sync first descriptor to hand it off */
1916 	SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1917 
1918 	sc_if->sk_cdata.sk_tx_cnt += cnt;
1919 
1920 #ifdef SK_DEBUG
1921 	if (skdebug >= 3) {
1922 		struct sk_tx_desc *desc;
1923 		u_int32_t idx;
1924 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1925 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1926 			sk_dump_txdesc(desc, idx);
1927 		}
1928 	}
1929 #endif
1930 
1931 	*txidx = frag;
1932 
1933 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
1934 
1935 	return 0;
1936 }
1937 
1938 void
1939 sk_start(struct ifnet *ifp)
1940 {
1941         struct sk_if_softc	*sc_if = ifp->if_softc;
1942         struct sk_softc		*sc = sc_if->sk_softc;
1943         struct mbuf		*m_head = NULL;
1944         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
1945 	int			pkts = 0;
1946 
1947 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1948 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1949 
1950 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1951 		IFQ_POLL(&ifp->if_snd, m_head);
1952 		if (m_head == NULL)
1953 			break;
1954 
1955 		/*
1956 		 * Pack the data into the transmit ring. If we
1957 		 * don't have room, set the OACTIVE flag and wait
1958 		 * for the NIC to drain the ring.
1959 		 */
1960 		if (sk_encap(sc_if, m_head, &idx)) {
1961 			ifp->if_flags |= IFF_OACTIVE;
1962 			break;
1963 		}
1964 
1965 		/* now we are committed to transmit the packet */
1966 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1967 		pkts++;
1968 
1969 		/*
1970 		 * If there's a BPF listener, bounce a copy of this frame
1971 		 * to him.
1972 		 */
1973 #if NBPFILTER > 0
1974 		if (ifp->if_bpf)
1975 			bpf_mtap(ifp->if_bpf, m_head);
1976 #endif
1977 	}
1978 	if (pkts == 0)
1979 		return;
1980 
1981 	/* Transmit */
1982 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
1983 		sc_if->sk_cdata.sk_tx_prod = idx;
1984 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1985 
1986 		/* Set a timeout in case the chip goes out to lunch. */
1987 		ifp->if_timer = 5;
1988 	}
1989 }
1990 
1991 
1992 void
1993 sk_watchdog(struct ifnet *ifp)
1994 {
1995 	struct sk_if_softc *sc_if = ifp->if_softc;
1996 
1997 	/*
1998 	 * Reclaim first as there is a possibility of losing Tx completion
1999 	 * interrupts.
2000 	 */
2001 	sk_txeof(sc_if);
2002 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2003 		aprint_error("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
2004 
2005 		ifp->if_oerrors++;
2006 
2007 		sk_init(ifp);
2008 	}
2009 }
2010 
2011 void
2012 sk_shutdown(void *v)
2013 {
2014 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
2015 	struct sk_softc		*sc = sc_if->sk_softc;
2016 	struct ifnet 		*ifp = &sc_if->sk_ethercom.ec_if;
2017 
2018 	DPRINTFN(2, ("sk_shutdown\n"));
2019 	sk_stop(ifp,1);
2020 
2021 	/* Turn off the 'driver is loaded' LED. */
2022 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2023 
2024 	/*
2025 	 * Reset the GEnesis controller. Doing this should also
2026 	 * assert the resets on the attached XMAC(s).
2027 	 */
2028 	sk_reset(sc);
2029 }
2030 
2031 void
2032 sk_rxeof(struct sk_if_softc *sc_if)
2033 {
2034 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2035 	struct mbuf		*m;
2036 	struct sk_chain		*cur_rx;
2037 	struct sk_rx_desc	*cur_desc;
2038 	int			i, cur, total_len = 0;
2039 	u_int32_t		rxstat, sk_ctl;
2040 	bus_dmamap_t		dmamap;
2041 
2042 	i = sc_if->sk_cdata.sk_rx_prod;
2043 
2044 	DPRINTFN(3, ("sk_rxeof %d\n", i));
2045 
2046 	for (;;) {
2047 		cur = i;
2048 
2049 		/* Sync the descriptor */
2050 		SK_CDRXSYNC(sc_if, cur,
2051 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2052 
2053 		sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2054 		if (sk_ctl & SK_RXCTL_OWN) {
2055 			/* Invalidate the descriptor -- it's not ready yet */
2056 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2057 			sc_if->sk_cdata.sk_rx_prod = i;
2058 			break;
2059 		}
2060 
2061 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2062 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2063 		dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2064 
2065 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2066 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2067 
2068 		rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2069 		m = cur_rx->sk_mbuf;
2070 		cur_rx->sk_mbuf = NULL;
2071 		total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2072 
2073 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
2074 
2075 		SK_INC(i, SK_RX_RING_CNT);
2076 
2077 		if (rxstat & XM_RXSTAT_ERRFRAME) {
2078 			ifp->if_ierrors++;
2079 			sk_newbuf(sc_if, cur, m, dmamap);
2080 			continue;
2081 		}
2082 
2083 		/*
2084 		 * Try to allocate a new jumbo buffer. If that
2085 		 * fails, copy the packet to mbufs and put the
2086 		 * jumbo buffer back in the ring so it can be
2087 		 * re-used. If allocating mbufs fails, then we
2088 		 * have to drop the packet.
2089 		 */
2090 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2091 			struct mbuf		*m0;
2092 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2093 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
2094 			sk_newbuf(sc_if, cur, m, dmamap);
2095 			if (m0 == NULL) {
2096 				aprint_error("%s: no receive buffers "
2097 				    "available -- packet dropped!\n",
2098 				    sc_if->sk_dev.dv_xname);
2099 				ifp->if_ierrors++;
2100 				continue;
2101 			}
2102 			m_adj(m0, ETHER_ALIGN);
2103 			m = m0;
2104 		} else {
2105 			m->m_pkthdr.rcvif = ifp;
2106 			m->m_pkthdr.len = m->m_len = total_len;
2107 		}
2108 
2109 		ifp->if_ipackets++;
2110 
2111 #if NBPFILTER > 0
2112 		if (ifp->if_bpf)
2113 			bpf_mtap(ifp->if_bpf, m);
2114 #endif
2115 		/* pass it on. */
2116 		(*ifp->if_input)(ifp, m);
2117 	}
2118 }
2119 
2120 void
2121 sk_txeof(struct sk_if_softc *sc_if)
2122 {
2123 	struct sk_softc		*sc = sc_if->sk_softc;
2124 	struct sk_tx_desc	*cur_tx;
2125 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2126 	u_int32_t		idx, sk_ctl;
2127 	struct sk_txmap_entry	*entry;
2128 
2129 	DPRINTFN(3, ("sk_txeof\n"));
2130 
2131 	/*
2132 	 * Go through our tx ring and free mbufs for those
2133 	 * frames that have been sent.
2134 	 */
2135 	idx = sc_if->sk_cdata.sk_tx_cons;
2136 	while (idx != sc_if->sk_cdata.sk_tx_prod) {
2137 		SK_CDTXSYNC(sc_if, idx, 1,
2138 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2139 
2140 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2141 		sk_ctl = le32toh(cur_tx->sk_ctl);
2142 #ifdef SK_DEBUG
2143 		if (skdebug >= 3)
2144 			sk_dump_txdesc(cur_tx, idx);
2145 #endif
2146 		if (sk_ctl & SK_TXCTL_OWN) {
2147 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2148 			break;
2149 		}
2150 		if (sk_ctl & SK_TXCTL_LASTFRAG)
2151 			ifp->if_opackets++;
2152 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2153 			entry = sc_if->sk_cdata.sk_tx_map[idx];
2154 
2155 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2156 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2157 
2158 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2159 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2160 
2161 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2162 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2163 					  link);
2164 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2165 		}
2166 		sc_if->sk_cdata.sk_tx_cnt--;
2167 		SK_INC(idx, SK_TX_RING_CNT);
2168 	}
2169 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
2170 		ifp->if_timer = 0;
2171 	else /* nudge chip to keep tx ring moving */
2172 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2173 
2174 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2175 		ifp->if_flags &= ~IFF_OACTIVE;
2176 
2177 	sc_if->sk_cdata.sk_tx_cons = idx;
2178 }
2179 
2180 void
2181 sk_tick(void *xsc_if)
2182 {
2183 	struct sk_if_softc *sc_if = xsc_if;
2184 	struct mii_data *mii = &sc_if->sk_mii;
2185 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2186 	int i;
2187 
2188 	DPRINTFN(3, ("sk_tick\n"));
2189 
2190 	if (!(ifp->if_flags & IFF_UP))
2191 		return;
2192 
2193 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2194 		sk_intr_bcom(sc_if);
2195 		return;
2196 	}
2197 
2198 	/*
2199 	 * According to SysKonnect, the correct way to verify that
2200 	 * the link has come back up is to poll bit 0 of the GPIO
2201 	 * register three times. This pin has the signal from the
2202 	 * link sync pin connected to it; if we read the same link
2203 	 * state 3 times in a row, we know the link is up.
2204 	 */
2205 	for (i = 0; i < 3; i++) {
2206 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2207 			break;
2208 	}
2209 
2210 	if (i != 3) {
2211 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2212 		return;
2213 	}
2214 
2215 	/* Turn the GP0 interrupt back on. */
2216 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2217 	SK_XM_READ_2(sc_if, XM_ISR);
2218 	mii_tick(mii);
2219 	mii_pollstat(mii);
2220 	callout_stop(&sc_if->sk_tick_ch);
2221 }
2222 
2223 void
2224 sk_intr_bcom(struct sk_if_softc *sc_if)
2225 {
2226 	struct mii_data *mii = &sc_if->sk_mii;
2227 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2228 	int status;
2229 
2230 
2231 	DPRINTFN(3, ("sk_intr_bcom\n"));
2232 
2233 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2234 
2235 	/*
2236 	 * Read the PHY interrupt register to make sure
2237 	 * we clear any pending interrupts.
2238 	 */
2239 	status = sk_xmac_miibus_readreg((struct device *)sc_if,
2240 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2241 
2242 	if (!(ifp->if_flags & IFF_RUNNING)) {
2243 		sk_init_xmac(sc_if);
2244 		return;
2245 	}
2246 
2247 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2248 		int lstat;
2249 		lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
2250 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2251 
2252 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2253 			mii_mediachg(mii);
2254 			/* Turn off the link LED. */
2255 			SK_IF_WRITE_1(sc_if, 0,
2256 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
2257 			sc_if->sk_link = 0;
2258 		} else if (status & BRGPHY_ISR_LNK_CHG) {
2259 			sk_xmac_miibus_writereg((struct device *)sc_if,
2260 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2261 			mii_tick(mii);
2262 			sc_if->sk_link = 1;
2263 			/* Turn on the link LED. */
2264 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2265 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2266 			    SK_LINKLED_BLINK_OFF);
2267 			mii_pollstat(mii);
2268 		} else {
2269 			mii_tick(mii);
2270 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2271 		}
2272 	}
2273 
2274 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2275 }
2276 
2277 void
2278 sk_intr_xmac(struct sk_if_softc	*sc_if)
2279 {
2280 	u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2281 
2282 	DPRINTFN(3, ("sk_intr_xmac\n"));
2283 
2284 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2285 		if (status & XM_ISR_GP0_SET) {
2286 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2287 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2288 		}
2289 
2290 		if (status & XM_ISR_AUTONEG_DONE) {
2291 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2292 		}
2293 	}
2294 
2295 	if (status & XM_IMR_TX_UNDERRUN)
2296 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2297 
2298 	if (status & XM_IMR_RX_OVERRUN)
2299 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2300 }
2301 
2302 void
2303 sk_intr_yukon(struct sk_if_softc *sc_if)
2304 {
2305 	int status;
2306 
2307 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2308 
2309 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2310 }
2311 
2312 int
2313 sk_intr(void *xsc)
2314 {
2315 	struct sk_softc		*sc = xsc;
2316 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
2317 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
2318 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2319 	u_int32_t		status;
2320 	int			claimed = 0;
2321 
2322 	if (sc_if0 != NULL)
2323 		ifp0 = &sc_if0->sk_ethercom.ec_if;
2324 	if (sc_if1 != NULL)
2325 		ifp1 = &sc_if1->sk_ethercom.ec_if;
2326 
2327 	for (;;) {
2328 		status = CSR_READ_4(sc, SK_ISSR);
2329 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2330 
2331 		if (!(status & sc->sk_intrmask))
2332 			break;
2333 
2334 		claimed = 1;
2335 
2336 		/* Handle receive interrupts first. */
2337 		if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2338 			sk_rxeof(sc_if0);
2339 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2340 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2341 		}
2342 		if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2343 			sk_rxeof(sc_if1);
2344 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2345 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2346 		}
2347 
2348 		/* Then transmit interrupts. */
2349 		if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2350 			sk_txeof(sc_if0);
2351 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2352 			    SK_TXBMU_CLR_IRQ_EOF);
2353 		}
2354 		if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2355 			sk_txeof(sc_if1);
2356 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2357 			    SK_TXBMU_CLR_IRQ_EOF);
2358 		}
2359 
2360 		/* Then MAC interrupts. */
2361 		if (sc_if0 && (status & SK_ISR_MAC1) &&
2362 		    (ifp0->if_flags & IFF_RUNNING)) {
2363 			if (sc->sk_type == SK_GENESIS)
2364 				sk_intr_xmac(sc_if0);
2365 			else
2366 				sk_intr_yukon(sc_if0);
2367 		}
2368 
2369 		if (sc_if1 && (status & SK_ISR_MAC2) &&
2370 		    (ifp1->if_flags & IFF_RUNNING)) {
2371 			if (sc->sk_type == SK_GENESIS)
2372 				sk_intr_xmac(sc_if1);
2373 			else
2374 				sk_intr_yukon(sc_if1);
2375 
2376 		}
2377 
2378 		if (status & SK_ISR_EXTERNAL_REG) {
2379 			if (sc_if0 != NULL &&
2380 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2381 				sk_intr_bcom(sc_if0);
2382 
2383 			if (sc_if1 != NULL &&
2384 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2385 				sk_intr_bcom(sc_if1);
2386 		}
2387 	}
2388 
2389 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2390 
2391 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2392 		sk_start(ifp0);
2393 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2394 		sk_start(ifp1);
2395 
2396 #if NRND > 0
2397 	if (RND_ENABLED(&sc->rnd_source))
2398 		rnd_add_uint32(&sc->rnd_source, status);
2399 #endif
2400 
2401 	if (sc->sk_int_mod_pending)
2402 		sk_update_int_mod(sc);
2403 
2404 	return claimed;
2405 }
2406 
2407 void
2408 sk_init_xmac(struct sk_if_softc	*sc_if)
2409 {
2410 	struct sk_softc		*sc = sc_if->sk_softc;
2411 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2412 	static const struct sk_bcom_hack     bhack[] = {
2413 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2414 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2415 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2416 	{ 0, 0 } };
2417 
2418 	DPRINTFN(1, ("sk_init_xmac\n"));
2419 
2420 	/* Unreset the XMAC. */
2421 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2422 	DELAY(1000);
2423 
2424 	/* Reset the XMAC's internal state. */
2425 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2426 
2427 	/* Save the XMAC II revision */
2428 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2429 
2430 	/*
2431 	 * Perform additional initialization for external PHYs,
2432 	 * namely for the 1000baseTX cards that use the XMAC's
2433 	 * GMII mode.
2434 	 */
2435 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2436 		int			i = 0;
2437 		u_int32_t		val;
2438 
2439 		/* Take PHY out of reset. */
2440 		val = sk_win_read_4(sc, SK_GPIO);
2441 		if (sc_if->sk_port == SK_PORT_A)
2442 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2443 		else
2444 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2445 		sk_win_write_4(sc, SK_GPIO, val);
2446 
2447 		/* Enable GMII mode on the XMAC. */
2448 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2449 
2450 		sk_xmac_miibus_writereg((struct device *)sc_if,
2451 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2452 		DELAY(10000);
2453 		sk_xmac_miibus_writereg((struct device *)sc_if,
2454 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2455 
2456 		/*
2457 		 * Early versions of the BCM5400 apparently have
2458 		 * a bug that requires them to have their reserved
2459 		 * registers initialized to some magic values. I don't
2460 		 * know what the numbers do, I'm just the messenger.
2461 		 */
2462 		if (sk_xmac_miibus_readreg((struct device *)sc_if,
2463 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2464 			while (bhack[i].reg) {
2465 				sk_xmac_miibus_writereg((struct device *)sc_if,
2466 				    SK_PHYADDR_BCOM, bhack[i].reg,
2467 				    bhack[i].val);
2468 				i++;
2469 			}
2470 		}
2471 	}
2472 
2473 	/* Set station address */
2474 	SK_XM_WRITE_2(sc_if, XM_PAR0,
2475 		      *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2476 	SK_XM_WRITE_2(sc_if, XM_PAR1,
2477 		      *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2478 	SK_XM_WRITE_2(sc_if, XM_PAR2,
2479 		      *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2480 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2481 
2482 	if (ifp->if_flags & IFF_PROMISC)
2483 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2484 	else
2485 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2486 
2487 	if (ifp->if_flags & IFF_BROADCAST)
2488 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2489 	else
2490 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2491 
2492 	/* We don't need the FCS appended to the packet. */
2493 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2494 
2495 	/* We want short frames padded to 60 bytes. */
2496 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2497 
2498 	/*
2499 	 * Enable the reception of all error frames. This is is
2500 	 * a necessary evil due to the design of the XMAC. The
2501 	 * XMAC's receive FIFO is only 8K in size, however jumbo
2502 	 * frames can be up to 9000 bytes in length. When bad
2503 	 * frame filtering is enabled, the XMAC's RX FIFO operates
2504 	 * in 'store and forward' mode. For this to work, the
2505 	 * entire frame has to fit into the FIFO, but that means
2506 	 * that jumbo frames larger than 8192 bytes will be
2507 	 * truncated. Disabling all bad frame filtering causes
2508 	 * the RX FIFO to operate in streaming mode, in which
2509 	 * case the XMAC will start transfering frames out of the
2510 	 * RX FIFO as soon as the FIFO threshold is reached.
2511 	 */
2512 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2513 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2514 	    XM_MODE_RX_INRANGELEN);
2515 
2516 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2517 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2518 	else
2519 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2520 
2521 	/*
2522 	 * Bump up the transmit threshold. This helps hold off transmit
2523 	 * underruns when we're blasting traffic from both ports at once.
2524 	 */
2525 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2526 
2527 	/* Set multicast filter */
2528 	sk_setmulti(sc_if);
2529 
2530 	/* Clear and enable interrupts */
2531 	SK_XM_READ_2(sc_if, XM_ISR);
2532 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2533 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2534 	else
2535 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2536 
2537 	/* Configure MAC arbiter */
2538 	switch (sc_if->sk_xmac_rev) {
2539 	case XM_XMAC_REV_B2:
2540 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2541 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2542 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2543 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2544 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2545 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2546 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2547 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2548 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2549 		break;
2550 	case XM_XMAC_REV_C1:
2551 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2552 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2553 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2554 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2555 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2556 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2557 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2558 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2559 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2560 		break;
2561 	default:
2562 		break;
2563 	}
2564 	sk_win_write_2(sc, SK_MACARB_CTL,
2565 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2566 
2567 	sc_if->sk_link = 1;
2568 }
2569 
2570 void sk_init_yukon(struct sk_if_softc *sc_if)
2571 {
2572 	u_int32_t		/*mac, */phy;
2573 	u_int16_t		reg;
2574 	struct sk_softc		*sc;
2575 	int			i;
2576 
2577 	DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2578 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2579 
2580 	sc = sc_if->sk_softc;
2581 	if (sc->sk_type == SK_YUKON_LITE &&
2582 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2583 		/* Take PHY out of reset. */
2584 		sk_win_write_4(sc, SK_GPIO,
2585 			(sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2586 	}
2587 
2588 
2589 	/* GMAC and GPHY Reset */
2590 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2591 
2592 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
2593 
2594 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2595 	DELAY(1000);
2596 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2597 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2598 	DELAY(1000);
2599 
2600 
2601 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
2602 
2603 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2604 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2605 
2606 	switch (sc_if->sk_softc->sk_pmd) {
2607 	case IFM_1000_SX:
2608 	case IFM_1000_LX:
2609 		phy |= SK_GPHY_FIBER;
2610 		break;
2611 
2612 	case IFM_1000_CX:
2613 	case IFM_1000_T:
2614 		phy |= SK_GPHY_COPPER;
2615 		break;
2616 	}
2617 
2618 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2619 
2620 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2621 	DELAY(1000);
2622 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2623 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2624 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2625 
2626 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2627 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2628 
2629 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
2630 
2631 	/* unused read of the interrupt source register */
2632 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
2633 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2634 
2635 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2636 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2637 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2638 
2639 	/* MIB Counter Clear Mode set */
2640         reg |= YU_PAR_MIB_CLR;
2641 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2642 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2643 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2644 
2645 	/* MIB Counter Clear Mode clear */
2646 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
2647         reg &= ~YU_PAR_MIB_CLR;
2648 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2649 
2650 	/* receive control reg */
2651 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
2652 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2653 		      YU_RCR_CRCR);
2654 
2655 	/* transmit parameter register */
2656 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
2657 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2658 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2659 
2660 	/* serial mode register */
2661 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
2662 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2663 		      YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2664 		      YU_SMR_IPG_DATA(0x1e));
2665 
2666 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
2667 	/* Setup Yukon's address */
2668 	for (i = 0; i < 3; i++) {
2669 		/* Write Source Address 1 (unicast filter) */
2670 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2671 			      sc_if->sk_enaddr[i * 2] |
2672 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
2673 	}
2674 
2675 	for (i = 0; i < 3; i++) {
2676 		reg = sk_win_read_2(sc_if->sk_softc,
2677 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2678 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2679 	}
2680 
2681 	/* Set multicast filter */
2682 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
2683 	sk_setmulti(sc_if);
2684 
2685 	/* enable interrupt mask for counter overflows */
2686 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
2687 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2688 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2689 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2690 
2691 	/* Configure RX MAC FIFO */
2692 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2693 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2694 
2695 	/* Configure TX MAC FIFO */
2696 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2697 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2698 
2699 	DPRINTFN(6, ("sk_init_yukon: end\n"));
2700 }
2701 
2702 /*
2703  * Note that to properly initialize any part of the GEnesis chip,
2704  * you first have to take it out of reset mode.
2705  */
2706 int
2707 sk_init(struct ifnet *ifp)
2708 {
2709 	struct sk_if_softc	*sc_if = ifp->if_softc;
2710 	struct sk_softc		*sc = sc_if->sk_softc;
2711 	struct mii_data		*mii = &sc_if->sk_mii;
2712 	int			s;
2713 	u_int32_t		imr, imtimer_ticks;
2714 
2715 	DPRINTFN(1, ("sk_init\n"));
2716 
2717 	s = splnet();
2718 
2719 	if (ifp->if_flags & IFF_RUNNING) {
2720 		splx(s);
2721 		return 0;
2722 	}
2723 
2724 	/* Cancel pending I/O and free all RX/TX buffers. */
2725 	sk_stop(ifp,0);
2726 
2727 	if (sc->sk_type == SK_GENESIS) {
2728 		/* Configure LINK_SYNC LED */
2729 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2730 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2731 			      SK_LINKLED_LINKSYNC_ON);
2732 
2733 		/* Configure RX LED */
2734 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2735 			      SK_RXLEDCTL_COUNTER_START);
2736 
2737 		/* Configure TX LED */
2738 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2739 			      SK_TXLEDCTL_COUNTER_START);
2740 	}
2741 
2742 	/* Configure I2C registers */
2743 
2744 	/* Configure XMAC(s) */
2745 	switch (sc->sk_type) {
2746 	case SK_GENESIS:
2747 		sk_init_xmac(sc_if);
2748 		break;
2749 	case SK_YUKON:
2750 	case SK_YUKON_LITE:
2751 	case SK_YUKON_LP:
2752 		sk_init_yukon(sc_if);
2753 		break;
2754 	}
2755 	mii_mediachg(mii);
2756 
2757 	if (sc->sk_type == SK_GENESIS) {
2758 		/* Configure MAC FIFOs */
2759 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2760 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2761 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2762 
2763 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2764 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2765 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2766 	}
2767 
2768 	/* Configure transmit arbiter(s) */
2769 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2770 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2771 
2772 	/* Configure RAMbuffers */
2773 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2774 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2775 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2776 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2777 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2778 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2779 
2780 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2781 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2782 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2783 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2784 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2785 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2786 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2787 
2788 	/* Configure BMUs */
2789 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2790 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2791 	    SK_RX_RING_ADDR(sc_if, 0));
2792 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2793 
2794 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2795 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2796             SK_TX_RING_ADDR(sc_if, 0));
2797 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2798 
2799 	/* Init descriptors */
2800 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2801 		aprint_error("%s: initialization failed: no "
2802 		    "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
2803 		sk_stop(ifp,0);
2804 		splx(s);
2805 		return ENOBUFS;
2806 	}
2807 
2808 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2809 		aprint_error("%s: initialization failed: no "
2810 		    "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
2811 		sk_stop(ifp,0);
2812 		splx(s);
2813 		return ENOBUFS;
2814 	}
2815 
2816 	/* Set interrupt moderation if changed via sysctl. */
2817 	switch (sc->sk_type) {
2818 	case SK_GENESIS:
2819 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2820 		break;
2821 	case SK_YUKON_EC:
2822 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2823 		break;
2824 	default:
2825 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2826 	}
2827 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2828 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2829 		sk_win_write_4(sc, SK_IMTIMERINIT,
2830 		    SK_IM_USECS(sc->sk_int_mod));
2831 		aprint_verbose("%s: interrupt moderation is %d us\n",
2832 		    sc->sk_dev.dv_xname, sc->sk_int_mod);
2833 	}
2834 
2835 	/* Configure interrupt handling */
2836 	CSR_READ_4(sc, SK_ISSR);
2837 	if (sc_if->sk_port == SK_PORT_A)
2838 		sc->sk_intrmask |= SK_INTRS1;
2839 	else
2840 		sc->sk_intrmask |= SK_INTRS2;
2841 
2842 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2843 
2844 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2845 
2846 	/* Start BMUs. */
2847 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2848 
2849 	if (sc->sk_type == SK_GENESIS) {
2850 		/* Enable XMACs TX and RX state machines */
2851 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2852 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2853 			       XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2854 	}
2855 
2856 	if (SK_YUKON_FAMILY(sc->sk_type)) {
2857 		u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2858 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2859 #if 0
2860 		/* XXX disable 100Mbps and full duplex mode? */
2861 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2862 #endif
2863 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2864 	}
2865 
2866 
2867 	ifp->if_flags |= IFF_RUNNING;
2868 	ifp->if_flags &= ~IFF_OACTIVE;
2869 
2870 	splx(s);
2871 	return 0;
2872 }
2873 
2874 void
2875 sk_stop(struct ifnet *ifp, int disable)
2876 {
2877         struct sk_if_softc	*sc_if = ifp->if_softc;
2878 	struct sk_softc		*sc = sc_if->sk_softc;
2879 	int			i;
2880 
2881 	DPRINTFN(1, ("sk_stop\n"));
2882 
2883 	callout_stop(&sc_if->sk_tick_ch);
2884 
2885 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2886 		u_int32_t		val;
2887 
2888 		/* Put PHY back into reset. */
2889 		val = sk_win_read_4(sc, SK_GPIO);
2890 		if (sc_if->sk_port == SK_PORT_A) {
2891 			val |= SK_GPIO_DIR0;
2892 			val &= ~SK_GPIO_DAT0;
2893 		} else {
2894 			val |= SK_GPIO_DIR2;
2895 			val &= ~SK_GPIO_DAT2;
2896 		}
2897 		sk_win_write_4(sc, SK_GPIO, val);
2898 	}
2899 
2900 	/* Turn off various components of this interface. */
2901 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2902 	switch (sc->sk_type) {
2903 	case SK_GENESIS:
2904 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2905 			      SK_TXMACCTL_XMAC_RESET);
2906 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2907 		break;
2908 	case SK_YUKON:
2909 	case SK_YUKON_LITE:
2910 	case SK_YUKON_LP:
2911 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2912 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2913 		break;
2914 	}
2915 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2916 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2917 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2918 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2919 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2920 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2921 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2922 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2923 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2924 
2925 	/* Disable interrupts */
2926 	if (sc_if->sk_port == SK_PORT_A)
2927 		sc->sk_intrmask &= ~SK_INTRS1;
2928 	else
2929 		sc->sk_intrmask &= ~SK_INTRS2;
2930 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2931 
2932 	SK_XM_READ_2(sc_if, XM_ISR);
2933 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2934 
2935 	/* Free RX and TX mbufs still in the queues. */
2936 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2937 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2938 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2939 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2940 		}
2941 	}
2942 
2943 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2944 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2945 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2946 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2947 		}
2948 	}
2949 
2950 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2951 }
2952 
2953 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
2954 
2955 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
2956 
2957 #ifdef SK_DEBUG
2958 void
2959 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2960 {
2961 #define DESC_PRINT(X)					\
2962 	if (X)					\
2963 		printf("txdesc[%d]." #X "=%#x\n",	\
2964 		       idx, X);
2965 
2966 	DESC_PRINT(le32toh(desc->sk_ctl));
2967 	DESC_PRINT(le32toh(desc->sk_next));
2968 	DESC_PRINT(le32toh(desc->sk_data_lo));
2969 	DESC_PRINT(le32toh(desc->sk_data_hi));
2970 	DESC_PRINT(le32toh(desc->sk_xmac_txstat));
2971 	DESC_PRINT(le16toh(desc->sk_rsvd0));
2972 	DESC_PRINT(le16toh(desc->sk_csum_startval));
2973 	DESC_PRINT(le16toh(desc->sk_csum_startpos));
2974 	DESC_PRINT(le16toh(desc->sk_csum_writepos));
2975 	DESC_PRINT(le16toh(desc->sk_rsvd1));
2976 #undef PRINT
2977 }
2978 
2979 void
2980 sk_dump_bytes(const char *data, int len)
2981 {
2982 	int c, i, j;
2983 
2984 	for (i = 0; i < len; i += 16) {
2985 		printf("%08x  ", i);
2986 		c = len - i;
2987 		if (c > 16) c = 16;
2988 
2989 		for (j = 0; j < c; j++) {
2990 			printf("%02x ", data[i + j] & 0xff);
2991 			if ((j & 0xf) == 7 && j > 0)
2992 				printf(" ");
2993 		}
2994 
2995 		for (; j < 16; j++)
2996 			printf("   ");
2997 		printf("  ");
2998 
2999 		for (j = 0; j < c; j++) {
3000 			int ch = data[i + j] & 0xff;
3001 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
3002 		}
3003 
3004 		printf("\n");
3005 
3006 		if (c < 16)
3007 			break;
3008 	}
3009 }
3010 
3011 void
3012 sk_dump_mbuf(struct mbuf *m)
3013 {
3014 	int count = m->m_pkthdr.len;
3015 
3016 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3017 
3018 	while (count > 0 && m) {
3019 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3020 		       m, m->m_data, m->m_len);
3021 		sk_dump_bytes(mtod(m, char *), m->m_len);
3022 
3023 		count -= m->m_len;
3024 		m = m->m_next;
3025 	}
3026 }
3027 #endif
3028 
3029 static int
3030 sk_sysctl_handler(SYSCTLFN_ARGS)
3031 {
3032 	int error, t;
3033 	struct sysctlnode node;
3034 	struct sk_softc *sc;
3035 
3036 	node = *rnode;
3037 	sc = node.sysctl_data;
3038 	t = sc->sk_int_mod;
3039 	node.sysctl_data = &t;
3040 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3041 	if (error || newp == NULL)
3042 		return error;
3043 
3044 	if (t < SK_IM_MIN || t > SK_IM_MAX)
3045 		return EINVAL;
3046 
3047 	/* update the softc with sysctl-changed value, and mark
3048 	   for hardware update */
3049 	sc->sk_int_mod = t;
3050 	sc->sk_int_mod_pending = 1;
3051 	return 0;
3052 }
3053 
3054 /*
3055  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3056  * set up in skc_attach()
3057  */
3058 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3059 {
3060 	int rc;
3061 	const struct sysctlnode *node;
3062 
3063 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3064 	    0, CTLTYPE_NODE, "hw", NULL,
3065 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3066 		goto err;
3067 	}
3068 
3069 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
3070 	    0, CTLTYPE_NODE, "sk",
3071 	    SYSCTL_DESCR("sk interface controls"),
3072 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3073 		goto err;
3074 	}
3075 
3076 	sk_root_num = node->sysctl_num;
3077 	return;
3078 
3079 err:
3080 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3081 }
3082