xref: /netbsd-src/sys/dev/pci/if_sk.c (revision 7330f729ccf0bd976a06f95fad452fe774fc7fd1)
1 /*	$NetBSD: if_sk.c,v 1.100 2019/06/03 15:49:04 msaitoh Exp $	*/
2 
3 /*-
4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*	$OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $	*/
30 
31 /*
32  * Copyright (c) 1997, 1998, 1999, 2000
33  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
34  *
35  * Redistribution and use in source and binary forms, with or without
36  * modification, are permitted provided that the following conditions
37  * are met:
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 3. All advertising materials mentioning features or use of this software
44  *    must display the following acknowledgement:
45  *	This product includes software developed by Bill Paul.
46  * 4. Neither the name of the author nor the names of any co-contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
54  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
60  * THE POSSIBILITY OF SUCH DAMAGE.
61  *
62  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
63  */
64 
65 /*
66  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
67  *
68  * Permission to use, copy, modify, and distribute this software for any
69  * purpose with or without fee is hereby granted, provided that the above
70  * copyright notice and this permission notice appear in all copies.
71  *
72  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
73  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
74  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
75  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
76  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
77  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
78  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
79  */
80 
81 /*
82  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
83  * the SK-984x series adapters, both single port and dual port.
84  * References:
85  *	The XaQti XMAC II datasheet,
86  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
87  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
88  *
89  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
90  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
91  * convenience to others until Vitesse corrects this problem:
92  *
93  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94  *
95  * Written by Bill Paul <wpaul@ee.columbia.edu>
96  * Department of Electrical Engineering
97  * Columbia University, New York City
98  */
99 
100 /*
101  * The SysKonnect gigabit ethernet adapters consist of two main
102  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
103  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
104  * components and a PHY while the GEnesis controller provides a PCI
105  * interface with DMA support. Each card may have between 512K and
106  * 2MB of SRAM on board depending on the configuration.
107  *
108  * The SysKonnect GEnesis controller can have either one or two XMAC
109  * chips connected to it, allowing single or dual port NIC configurations.
110  * SysKonnect has the distinction of being the only vendor on the market
111  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
112  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
113  * XMAC registers. This driver takes advantage of these features to allow
114  * both XMACs to operate as independent interfaces.
115  */
116 
117 #include <sys/cdefs.h>
118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.100 2019/06/03 15:49:04 msaitoh Exp $");
119 
120 #include <sys/param.h>
121 #include <sys/systm.h>
122 #include <sys/sockio.h>
123 #include <sys/mbuf.h>
124 #include <sys/malloc.h>
125 #include <sys/mutex.h>
126 #include <sys/kernel.h>
127 #include <sys/socket.h>
128 #include <sys/device.h>
129 #include <sys/queue.h>
130 #include <sys/callout.h>
131 #include <sys/sysctl.h>
132 #include <sys/endian.h>
133 
134 #include <net/if.h>
135 #include <net/if_dl.h>
136 #include <net/if_types.h>
137 
138 #include <net/if_media.h>
139 
140 #include <net/bpf.h>
141 #include <sys/rndsource.h>
142 
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145 #include <dev/mii/brgphyreg.h>
146 
147 #include <dev/pci/pcireg.h>
148 #include <dev/pci/pcivar.h>
149 #include <dev/pci/pcidevs.h>
150 
151 /* #define SK_USEIOSPACE */
152 
153 #include <dev/pci/if_skreg.h>
154 #include <dev/pci/if_skvar.h>
155 
156 int skc_probe(device_t, cfdata_t, void *);
157 void skc_attach(device_t, device_t, void *);
158 int sk_probe(device_t, cfdata_t, void *);
159 void sk_attach(device_t, device_t, void *);
160 int skcprint(void *, const char *);
161 int sk_intr(void *);
162 void sk_intr_bcom(struct sk_if_softc *);
163 void sk_intr_xmac(struct sk_if_softc *);
164 void sk_intr_yukon(struct sk_if_softc *);
165 void sk_rxeof(struct sk_if_softc *);
166 void sk_txeof(struct sk_if_softc *);
167 int sk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *);
168 void sk_start(struct ifnet *);
169 int sk_ioctl(struct ifnet *, u_long, void *);
170 int sk_init(struct ifnet *);
171 void sk_unreset_xmac(struct sk_if_softc *);
172 void sk_init_xmac(struct sk_if_softc *);
173 void sk_unreset_yukon(struct sk_if_softc *);
174 void sk_init_yukon(struct sk_if_softc *);
175 void sk_stop(struct ifnet *, int);
176 void sk_watchdog(struct ifnet *);
177 void sk_shutdown(void *);
178 int sk_ifmedia_upd(struct ifnet *);
179 void sk_reset(struct sk_softc *);
180 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
181 int sk_alloc_jumbo_mem(struct sk_if_softc *);
182 void sk_free_jumbo_mem(struct sk_if_softc *);
183 void *sk_jalloc(struct sk_if_softc *);
184 void sk_jfree(struct mbuf *, void *, size_t, void *);
185 int sk_init_rx_ring(struct sk_if_softc *);
186 int sk_init_tx_ring(struct sk_if_softc *);
187 uint8_t sk_vpd_readbyte(struct sk_softc *, int);
188 void sk_vpd_read_res(struct sk_softc *,
189 					struct vpd_res *, int);
190 void sk_vpd_read(struct sk_softc *);
191 
192 void sk_update_int_mod(struct sk_softc *);
193 
194 int sk_xmac_miibus_readreg(device_t, int, int, uint16_t *);
195 int sk_xmac_miibus_writereg(device_t, int, int, uint16_t);
196 void sk_xmac_miibus_statchg(struct ifnet *);
197 
198 int sk_marv_miibus_readreg(device_t, int, int, uint16_t *);
199 int sk_marv_miibus_writereg(device_t, int, int, uint16_t);
200 void sk_marv_miibus_statchg(struct ifnet *);
201 
202 uint32_t sk_xmac_hash(void *);
203 uint32_t sk_yukon_hash(void *);
204 void sk_setfilt(struct sk_if_softc *, void *, int);
205 void sk_setmulti(struct sk_if_softc *);
206 void sk_tick(void *);
207 
208 static bool skc_suspend(device_t, const pmf_qual_t *);
209 static bool skc_resume(device_t, const pmf_qual_t *);
210 static bool sk_resume(device_t dv, const pmf_qual_t *);
211 
212 /* #define SK_DEBUG 2 */
213 #ifdef SK_DEBUG
214 #define DPRINTF(x)	if (skdebug) printf x
215 #define DPRINTFN(n, x)	if (skdebug >= (n)) printf x
216 int	skdebug = SK_DEBUG;
217 
218 void sk_dump_txdesc(struct sk_tx_desc *, int);
219 void sk_dump_mbuf(struct mbuf *);
220 void sk_dump_bytes(const char *, int);
221 #else
222 #define DPRINTF(x)
223 #define DPRINTFN(n, x)
224 #endif
225 
226 static int sk_sysctl_handler(SYSCTLFN_PROTO);
227 static int sk_root_num;
228 
229 /* supported device vendors */
230 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
231 static const struct sk_product {
232 	pci_vendor_id_t		sk_vendor;
233 	pci_product_id_t	sk_product;
234 } sk_products[] = {
235 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
236 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
237 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
238 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
239 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
240 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
241 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
242 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
243 	{ 0, 0, }
244 };
245 
246 #define SK_LINKSYS_EG1032_SUBID	0x00151737
247 
248 static inline uint32_t
249 sk_win_read_4(struct sk_softc *sc, uint32_t reg)
250 {
251 #ifdef SK_USEIOSPACE
252 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
253 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
254 #else
255 	return CSR_READ_4(sc, reg);
256 #endif
257 }
258 
259 static inline uint16_t
260 sk_win_read_2(struct sk_softc *sc, uint32_t reg)
261 {
262 #ifdef SK_USEIOSPACE
263 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
264 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
265 #else
266 	return CSR_READ_2(sc, reg);
267 #endif
268 }
269 
270 static inline uint8_t
271 sk_win_read_1(struct sk_softc *sc, uint32_t reg)
272 {
273 #ifdef SK_USEIOSPACE
274 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
275 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
276 #else
277 	return CSR_READ_1(sc, reg);
278 #endif
279 }
280 
281 static inline void
282 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x)
283 {
284 #ifdef SK_USEIOSPACE
285 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
286 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
287 #else
288 	CSR_WRITE_4(sc, reg, x);
289 #endif
290 }
291 
292 static inline void
293 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x)
294 {
295 #ifdef SK_USEIOSPACE
296 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
297 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
298 #else
299 	CSR_WRITE_2(sc, reg, x);
300 #endif
301 }
302 
303 static inline void
304 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x)
305 {
306 #ifdef SK_USEIOSPACE
307 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
308 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
309 #else
310 	CSR_WRITE_1(sc, reg, x);
311 #endif
312 }
313 
314 /*
315  * The VPD EEPROM contains Vital Product Data, as suggested in
316  * the PCI 2.1 specification. The VPD data is separared into areas
317  * denoted by resource IDs. The SysKonnect VPD contains an ID string
318  * resource (the name of the adapter), a read-only area resource
319  * containing various key/data fields and a read/write area which
320  * can be used to store asset management information or log messages.
321  * We read the ID string and read-only into buffers attached to
322  * the controller softc structure for later use. At the moment,
323  * we only use the ID string during sk_attach().
324  */
325 uint8_t
326 sk_vpd_readbyte(struct sk_softc *sc, int addr)
327 {
328 	int			i;
329 
330 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
331 	for (i = 0; i < SK_TIMEOUT; i++) {
332 		DELAY(1);
333 		if (sk_win_read_2(sc,
334 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
335 			break;
336 	}
337 
338 	if (i == SK_TIMEOUT)
339 		return 0;
340 
341 	return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
342 }
343 
344 void
345 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
346 {
347 	int			i;
348 	uint8_t		*ptr;
349 
350 	ptr = (uint8_t *)res;
351 	for (i = 0; i < sizeof(struct vpd_res); i++)
352 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
353 }
354 
355 void
356 sk_vpd_read(struct sk_softc *sc)
357 {
358 	int			pos = 0, i;
359 	struct vpd_res		res;
360 
361 	if (sc->sk_vpd_prodname != NULL)
362 		free(sc->sk_vpd_prodname, M_DEVBUF);
363 	if (sc->sk_vpd_readonly != NULL)
364 		free(sc->sk_vpd_readonly, M_DEVBUF);
365 	sc->sk_vpd_prodname = NULL;
366 	sc->sk_vpd_readonly = NULL;
367 
368 	sk_vpd_read_res(sc, &res, pos);
369 
370 	if (res.vr_id != VPD_RES_ID) {
371 		aprint_error_dev(sc->sk_dev,
372 		    "bad VPD resource id: expected %x got %x\n",
373 		    VPD_RES_ID, res.vr_id);
374 		return;
375 	}
376 
377 	pos += sizeof(res);
378 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
379 	if (sc->sk_vpd_prodname == NULL)
380 		panic("sk_vpd_read");
381 	for (i = 0; i < res.vr_len; i++)
382 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
383 	sc->sk_vpd_prodname[i] = '\0';
384 	pos += i;
385 
386 	sk_vpd_read_res(sc, &res, pos);
387 
388 	if (res.vr_id != VPD_RES_READ) {
389 		aprint_error_dev(sc->sk_dev,
390 		    "bad VPD resource id: expected %x got %x\n",
391 		    VPD_RES_READ, res.vr_id);
392 		return;
393 	}
394 
395 	pos += sizeof(res);
396 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
397 	if (sc->sk_vpd_readonly == NULL)
398 		panic("sk_vpd_read");
399 	for (i = 0; i < res.vr_len ; i++)
400 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
401 }
402 
403 int
404 sk_xmac_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
405 {
406 	struct sk_if_softc *sc_if = device_private(dev);
407 	int i;
408 
409 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
410 
411 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
412 		return -1;
413 
414 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
415 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
416 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
417 		for (i = 0; i < SK_TIMEOUT; i++) {
418 			DELAY(1);
419 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
420 			    XM_MMUCMD_PHYDATARDY)
421 				break;
422 		}
423 
424 		if (i == SK_TIMEOUT) {
425 			aprint_error_dev(sc_if->sk_dev,
426 			    "phy failed to come ready\n");
427 			return ETIMEDOUT;
428 		}
429 	}
430 	DELAY(1);
431 	*val = SK_XM_READ_2(sc_if, XM_PHY_DATA);
432 	return 0;
433 }
434 
435 int
436 sk_xmac_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
437 {
438 	struct sk_if_softc *sc_if = device_private(dev);
439 	int i;
440 
441 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
442 
443 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
444 	for (i = 0; i < SK_TIMEOUT; i++) {
445 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
446 			break;
447 	}
448 
449 	if (i == SK_TIMEOUT) {
450 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
451 		return ETIMEDOUT;
452 	}
453 
454 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
455 	for (i = 0; i < SK_TIMEOUT; i++) {
456 		DELAY(1);
457 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
458 			break;
459 	}
460 
461 	if (i == SK_TIMEOUT) {
462 		aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
463 		return ETIMEDOUT;
464 	}
465 
466 	return 0;
467 }
468 
469 void
470 sk_xmac_miibus_statchg(struct ifnet *ifp)
471 {
472 	struct sk_if_softc *sc_if = ifp->if_softc;
473 	struct mii_data *mii = &sc_if->sk_mii;
474 
475 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
476 
477 	/*
478 	 * If this is a GMII PHY, manually set the XMAC's
479 	 * duplex mode accordingly.
480 	 */
481 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
482 		if ((mii->mii_media_active & IFM_FDX) != 0)
483 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
484 		else
485 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
486 	}
487 }
488 
489 int
490 sk_marv_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
491 {
492 	struct sk_if_softc *sc_if = device_private(dev);
493 	uint16_t data;
494 	int i;
495 
496 	if (phy != 0 ||
497 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
498 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
499 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
500 			     phy, reg));
501 		return -1;
502 	}
503 
504 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
505 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
506 
507 	for (i = 0; i < SK_TIMEOUT; i++) {
508 		DELAY(1);
509 		data = SK_YU_READ_2(sc_if, YUKON_SMICR);
510 		if (data & YU_SMICR_READ_VALID)
511 			break;
512 	}
513 
514 	if (i == SK_TIMEOUT) {
515 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
516 		return ETIMEDOUT;
517 	}
518 
519 	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
520 		     SK_TIMEOUT));
521 
522 	*val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
523 
524 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#hx\n",
525 		     phy, reg, *val));
526 
527 	return 0;
528 }
529 
530 int
531 sk_marv_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
532 {
533 	struct sk_if_softc *sc_if = device_private(dev);
534 	int i;
535 
536 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#hx\n",
537 		     phy, reg, val));
538 
539 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
540 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
541 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
542 
543 	for (i = 0; i < SK_TIMEOUT; i++) {
544 		DELAY(1);
545 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
546 			break;
547 	}
548 
549 	if (i == SK_TIMEOUT) {
550 		printf("%s: phy write timed out\n",
551 		    device_xname(sc_if->sk_dev));
552 		return ETIMEDOUT;
553 	}
554 
555 	return 0;
556 }
557 
558 void
559 sk_marv_miibus_statchg(struct ifnet *ifp)
560 {
561 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
562 		     SK_YU_READ_2(((struct sk_if_softc *)ifp->if_softc),
563 		     YUKON_GPCR)));
564 }
565 
566 uint32_t
567 sk_xmac_hash(void *addr)
568 {
569 	uint32_t		crc;
570 
571 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
572 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
573 	DPRINTFN(2,("multicast hash for %s is %x\n", ether_sprintf(addr),crc));
574 	return crc;
575 }
576 
577 uint32_t
578 sk_yukon_hash(void *addr)
579 {
580 	uint32_t		crc;
581 
582 	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
583 	crc &= ((1 << SK_HASH_BITS) - 1);
584 	DPRINTFN(2,("multicast hash for %s is %x\n", ether_sprintf(addr),crc));
585 	return crc;
586 }
587 
588 void
589 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
590 {
591 	char *addr = addrv;
592 	int base = XM_RXFILT_ENTRY(slot);
593 
594 	SK_XM_WRITE_2(sc_if, base, *(uint16_t *)(&addr[0]));
595 	SK_XM_WRITE_2(sc_if, base + 2, *(uint16_t *)(&addr[2]));
596 	SK_XM_WRITE_2(sc_if, base + 4, *(uint16_t *)(&addr[4]));
597 }
598 
599 void
600 sk_setmulti(struct sk_if_softc *sc_if)
601 {
602 	struct sk_softc *sc = sc_if->sk_softc;
603 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
604 	uint32_t hashes[2] = { 0, 0 };
605 	int h = 0, i;
606 	struct ethercom *ec = &sc_if->sk_ethercom;
607 	struct ether_multi *enm;
608 	struct ether_multistep step;
609 	uint8_t dummy[] = { 0, 0, 0, 0, 0, 0 };
610 
611 	/* First, zot all the existing filters. */
612 	switch (sc->sk_type) {
613 	case SK_GENESIS:
614 		for (i = 1; i < XM_RXFILT_MAX; i++)
615 			sk_setfilt(sc_if, (void *)&dummy, i);
616 
617 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
618 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
619 		break;
620 	case SK_YUKON:
621 	case SK_YUKON_LITE:
622 	case SK_YUKON_LP:
623 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
624 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
625 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
626 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
627 		break;
628 	}
629 
630 	/* Now program new ones. */
631 allmulti:
632 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
633 		hashes[0] = 0xFFFFFFFF;
634 		hashes[1] = 0xFFFFFFFF;
635 	} else {
636 		i = 1;
637 		/* First find the tail of the list. */
638 		ETHER_LOCK(ec);
639 		ETHER_FIRST_MULTI(step, ec, enm);
640 		while (enm != NULL) {
641 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
642 				 ETHER_ADDR_LEN)) {
643 				ifp->if_flags |= IFF_ALLMULTI;
644 				ETHER_UNLOCK(ec);
645 				goto allmulti;
646 			}
647 			DPRINTFN(2,("multicast address %s\n",
648 				ether_sprintf(enm->enm_addrlo)));
649 			/*
650 			 * Program the first XM_RXFILT_MAX multicast groups
651 			 * into the perfect filter. For all others,
652 			 * use the hash table.
653 			 */
654 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
655 				sk_setfilt(sc_if, enm->enm_addrlo, i);
656 				i++;
657 			}
658 			else {
659 				switch (sc->sk_type) {
660 				case SK_GENESIS:
661 					h = sk_xmac_hash(enm->enm_addrlo);
662 					break;
663 				case SK_YUKON:
664 				case SK_YUKON_LITE:
665 				case SK_YUKON_LP:
666 					h = sk_yukon_hash(enm->enm_addrlo);
667 					break;
668 				}
669 				if (h < 32)
670 					hashes[0] |= (1 << h);
671 				else
672 					hashes[1] |= (1 << (h - 32));
673 			}
674 
675 			ETHER_NEXT_MULTI(step, enm);
676 		}
677 		ETHER_UNLOCK(ec);
678 	}
679 
680 	switch (sc->sk_type) {
681 	case SK_GENESIS:
682 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH |
683 			       XM_MODE_RX_USE_PERFECT);
684 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
685 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
686 		break;
687 	case SK_YUKON:
688 	case SK_YUKON_LITE:
689 	case SK_YUKON_LP:
690 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
691 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
692 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
693 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
694 		break;
695 	}
696 }
697 
698 int
699 sk_init_rx_ring(struct sk_if_softc *sc_if)
700 {
701 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
702 	struct sk_ring_data	*rd = sc_if->sk_rdata;
703 	int			i;
704 
705 	memset((char *)rd->sk_rx_ring, 0,
706 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
707 
708 	for (i = 0; i < SK_RX_RING_CNT; i++) {
709 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
710 		if (i == (SK_RX_RING_CNT - 1)) {
711 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
712 			rd->sk_rx_ring[i].sk_next =
713 				htole32(SK_RX_RING_ADDR(sc_if, 0));
714 		} else {
715 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
716 			rd->sk_rx_ring[i].sk_next =
717 				htole32(SK_RX_RING_ADDR(sc_if, i+1));
718 		}
719 	}
720 
721 	for (i = 0; i < SK_RX_RING_CNT; i++) {
722 		if (sk_newbuf(sc_if, i, NULL,
723 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
724 			aprint_error_dev(sc_if->sk_dev,
725 			    "failed alloc of %dth mbuf\n", i);
726 			return ENOBUFS;
727 		}
728 	}
729 	sc_if->sk_cdata.sk_rx_prod = 0;
730 	sc_if->sk_cdata.sk_rx_cons = 0;
731 
732 	return 0;
733 }
734 
735 int
736 sk_init_tx_ring(struct sk_if_softc *sc_if)
737 {
738 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
739 	struct sk_ring_data	*rd = sc_if->sk_rdata;
740 	int			i;
741 
742 	memset(sc_if->sk_rdata->sk_tx_ring, 0,
743 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
744 
745 	for (i = 0; i < SK_TX_RING_CNT; i++) {
746 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
747 		if (i == (SK_TX_RING_CNT - 1)) {
748 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
749 			rd->sk_tx_ring[i].sk_next =
750 				htole32(SK_TX_RING_ADDR(sc_if, 0));
751 		} else {
752 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
753 			rd->sk_tx_ring[i].sk_next =
754 				htole32(SK_TX_RING_ADDR(sc_if, i+1));
755 		}
756 	}
757 
758 	sc_if->sk_cdata.sk_tx_prod = 0;
759 	sc_if->sk_cdata.sk_tx_cons = 0;
760 	sc_if->sk_cdata.sk_tx_cnt = 0;
761 
762 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
763 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
764 
765 	return 0;
766 }
767 
768 int
769 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
770 	  bus_dmamap_t dmamap)
771 {
772 	struct mbuf		*m_new = NULL;
773 	struct sk_chain		*c;
774 	struct sk_rx_desc	*r;
775 
776 	if (m == NULL) {
777 		void *buf = NULL;
778 
779 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
780 		if (m_new == NULL) {
781 			aprint_error_dev(sc_if->sk_dev,
782 			    "no memory for rx list -- packet dropped!\n");
783 			return ENOBUFS;
784 		}
785 
786 		/* Allocate the jumbo buffer */
787 		buf = sk_jalloc(sc_if);
788 		if (buf == NULL) {
789 			m_freem(m_new);
790 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
791 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
792 			return ENOBUFS;
793 		}
794 
795 		/* Attach the buffer to the mbuf */
796 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
797 		MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
798 
799 	} else {
800 		/*
801 		 * We're re-using a previously allocated mbuf;
802 		 * be sure to re-init pointers and lengths to
803 		 * default values.
804 		 */
805 		m_new = m;
806 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
807 		m_new->m_data = m_new->m_ext.ext_buf;
808 	}
809 	m_adj(m_new, ETHER_ALIGN);
810 
811 	c = &sc_if->sk_cdata.sk_rx_chain[i];
812 	r = c->sk_desc;
813 	c->sk_mbuf = m_new;
814 	r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
815 	    (((vaddr_t)m_new->m_data
816 		- (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
817 	r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
818 
819 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
820 
821 	return 0;
822 }
823 
824 /*
825  * Memory management for jumbo frames.
826  */
827 
828 int
829 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
830 {
831 	struct sk_softc		*sc = sc_if->sk_softc;
832 	char *ptr, *kva;
833 	bus_dma_segment_t	seg;
834 	int		i, rseg, state, error;
835 	struct sk_jpool_entry	*entry;
836 
837 	state = error = 0;
838 
839 	/* Grab a big chunk o' storage. */
840 	if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
841 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
842 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
843 		return ENOBUFS;
844 	}
845 
846 	state = 1;
847 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
848 			   BUS_DMA_NOWAIT)) {
849 		aprint_error_dev(sc->sk_dev,
850 		    "can't map dma buffers (%d bytes)\n",
851 		    SK_JMEM);
852 		error = ENOBUFS;
853 		goto out;
854 	}
855 
856 	state = 2;
857 	if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
858 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
859 		aprint_error_dev(sc->sk_dev, "can't create dma map\n");
860 		error = ENOBUFS;
861 		goto out;
862 	}
863 
864 	state = 3;
865 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
866 			    kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
867 		aprint_error_dev(sc->sk_dev, "can't load dma map\n");
868 		error = ENOBUFS;
869 		goto out;
870 	}
871 
872 	state = 4;
873 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
874 	DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
875 
876 	LIST_INIT(&sc_if->sk_jfree_listhead);
877 	LIST_INIT(&sc_if->sk_jinuse_listhead);
878 	mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
879 
880 	/*
881 	 * Now divide it up into 9K pieces and save the addresses
882 	 * in an array.
883 	 */
884 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
885 	for (i = 0; i < SK_JSLOTS; i++) {
886 		sc_if->sk_cdata.sk_jslots[i] = ptr;
887 		ptr += SK_JLEN;
888 		entry = malloc(sizeof(struct sk_jpool_entry),
889 		    M_DEVBUF, M_NOWAIT);
890 		if (entry == NULL) {
891 			aprint_error_dev(sc->sk_dev,
892 			    "no memory for jumbo buffer queue!\n");
893 			error = ENOBUFS;
894 			goto out;
895 		}
896 		entry->slot = i;
897 		if (i)
898 			LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
899 				 entry, jpool_entries);
900 		else
901 			LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
902 				 entry, jpool_entries);
903 	}
904 out:
905 	if (error != 0) {
906 		switch (state) {
907 		case 4:
908 			bus_dmamap_unload(sc->sc_dmatag,
909 			    sc_if->sk_cdata.sk_rx_jumbo_map);
910 			/* FALLTHROUGH */
911 		case 3:
912 			bus_dmamap_destroy(sc->sc_dmatag,
913 			    sc_if->sk_cdata.sk_rx_jumbo_map);
914 			/* FALLTHROUGH */
915 		case 2:
916 			bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
917 			/* FALLTHROUGH */
918 		case 1:
919 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
920 			break;
921 		default:
922 			break;
923 		}
924 	}
925 
926 	return error;
927 }
928 
929 /*
930  * Allocate a jumbo buffer.
931  */
932 void *
933 sk_jalloc(struct sk_if_softc *sc_if)
934 {
935 	struct sk_jpool_entry	*entry;
936 
937 	mutex_enter(&sc_if->sk_jpool_mtx);
938 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
939 
940 	if (entry == NULL) {
941 		mutex_exit(&sc_if->sk_jpool_mtx);
942 		return NULL;
943 	}
944 
945 	LIST_REMOVE(entry, jpool_entries);
946 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
947 	mutex_exit(&sc_if->sk_jpool_mtx);
948 	return sc_if->sk_cdata.sk_jslots[entry->slot];
949 }
950 
951 /*
952  * Release a jumbo buffer.
953  */
954 void
955 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
956 {
957 	struct sk_jpool_entry *entry;
958 	struct sk_if_softc *sc;
959 	int i;
960 
961 	/* Extract the softc struct pointer. */
962 	sc = (struct sk_if_softc *)arg;
963 
964 	if (sc == NULL)
965 		panic("sk_jfree: can't find softc pointer!");
966 
967 	/* calculate the slot this buffer belongs to */
968 
969 	i = ((vaddr_t)buf
970 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
971 
972 	if ((i < 0) || (i >= SK_JSLOTS))
973 		panic("sk_jfree: asked to free buffer that we don't manage!");
974 
975 	mutex_enter(&sc->sk_jpool_mtx);
976 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
977 	if (entry == NULL)
978 		panic("sk_jfree: buffer not in use!");
979 	entry->slot = i;
980 	LIST_REMOVE(entry, jpool_entries);
981 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
982 	mutex_exit(&sc->sk_jpool_mtx);
983 
984 	if (__predict_true(m != NULL))
985 		pool_cache_put(mb_cache, m);
986 }
987 
988 /*
989  * Set media options.
990  */
991 int
992 sk_ifmedia_upd(struct ifnet *ifp)
993 {
994 	struct sk_if_softc *sc_if = ifp->if_softc;
995 	int rc;
996 
997 	(void) sk_init(ifp);
998 	if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
999 		return 0;
1000 	return rc;
1001 }
1002 
1003 static void
1004 sk_promisc(struct sk_if_softc *sc_if, int on)
1005 {
1006 	struct sk_softc *sc = sc_if->sk_softc;
1007 	switch (sc->sk_type) {
1008 	case SK_GENESIS:
1009 		if (on)
1010 			SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
1011 		else
1012 			SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
1013 		break;
1014 	case SK_YUKON:
1015 	case SK_YUKON_LITE:
1016 	case SK_YUKON_LP:
1017 		if (on)
1018 			SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1019 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
1020 		else
1021 			SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1022 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
1023 		break;
1024 	default:
1025 		aprint_error_dev(sc_if->sk_dev, "Can't set promisc for %d\n",
1026 			sc->sk_type);
1027 		break;
1028 	}
1029 }
1030 
1031 int
1032 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
1033 {
1034 	struct sk_if_softc *sc_if = ifp->if_softc;
1035 	int s, error = 0;
1036 
1037 	/* DPRINTFN(2, ("sk_ioctl\n")); */
1038 
1039 	s = splnet();
1040 
1041 	switch (command) {
1042 
1043 	case SIOCSIFFLAGS:
1044 		DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1045 		if ((error = ifioctl_common(ifp, command, data)) != 0)
1046 			break;
1047 		switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1048 		case IFF_RUNNING:
1049 			sk_stop(ifp, 1);
1050 			break;
1051 		case IFF_UP:
1052 			sk_init(ifp);
1053 			break;
1054 		case IFF_UP | IFF_RUNNING:
1055 			if ((ifp->if_flags ^ sc_if->sk_if_flags) == IFF_PROMISC)			{
1056 				sk_promisc(sc_if, ifp->if_flags & IFF_PROMISC);
1057 				sk_setmulti(sc_if);
1058 			} else
1059 				sk_init(ifp);
1060 			break;
1061 		}
1062 		sc_if->sk_if_flags = ifp->if_flags;
1063 		error = 0;
1064 		break;
1065 
1066 	default:
1067 		DPRINTFN(2, ("sk_ioctl ETHER\n"));
1068 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1069 			break;
1070 
1071 		error = 0;
1072 
1073 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1074 			;
1075 		else if (ifp->if_flags & IFF_RUNNING) {
1076 			sk_setmulti(sc_if);
1077 			DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1078 		}
1079 		break;
1080 	}
1081 
1082 	splx(s);
1083 	return error;
1084 }
1085 
1086 void
1087 sk_update_int_mod(struct sk_softc *sc)
1088 {
1089 	uint32_t imtimer_ticks;
1090 
1091 	/*
1092 	 * Configure interrupt moderation. The moderation timer
1093 	 * defers interrupts specified in the interrupt moderation
1094 	 * timer mask based on the timeout specified in the interrupt
1095 	 * moderation timer init register. Each bit in the timer
1096 	 * register represents one tick, so to specify a timeout in
1097 	 * microseconds, we have to multiply by the correct number of
1098 	 * ticks-per-microsecond.
1099 	 */
1100 	switch (sc->sk_type) {
1101 	case SK_GENESIS:
1102 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1103 		break;
1104 	case SK_YUKON_EC:
1105 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1106 		break;
1107 	default:
1108 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1109 	}
1110 	aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n",
1111 	    sc->sk_int_mod);
1112 	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1113 	sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF | SK_ISR_TX2_S_EOF |
1114 	    SK_ISR_RX1_EOF | SK_ISR_RX2_EOF);
1115 	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1116 	sc->sk_int_mod_pending = 0;
1117 }
1118 
1119 /*
1120  * Lookup: Check the PCI vendor and device, and return a pointer to
1121  * The structure if the IDs match against our list.
1122  */
1123 
1124 static const struct sk_product *
1125 sk_lookup(const struct pci_attach_args *pa)
1126 {
1127 	const struct sk_product *psk;
1128 
1129 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1130 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1131 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1132 			return psk;
1133 	}
1134 	return NULL;
1135 }
1136 
1137 /*
1138  * Probe for a SysKonnect GEnesis chip.
1139  */
1140 
1141 int
1142 skc_probe(device_t parent, cfdata_t match, void *aux)
1143 {
1144 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1145 	const struct sk_product *psk;
1146 	pcireg_t subid;
1147 
1148 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1149 
1150 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
1151 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1152 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1153 	    subid == SK_LINKSYS_EG1032_SUBID)
1154 		return 1;
1155 
1156 	if ((psk = sk_lookup(pa))) {
1157 		return 1;
1158 	}
1159 	return 0;
1160 }
1161 
1162 /*
1163  * Force the GEnesis into reset, then bring it out of reset.
1164  */
1165 void
1166 sk_reset(struct sk_softc *sc)
1167 {
1168 	DPRINTFN(2, ("sk_reset\n"));
1169 
1170 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1171 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1172 	if (SK_YUKON_FAMILY(sc->sk_type))
1173 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1174 
1175 	DELAY(1000);
1176 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1177 	DELAY(2);
1178 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1179 	if (SK_YUKON_FAMILY(sc->sk_type))
1180 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1181 
1182 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1183 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1184 		     CSR_READ_2(sc, SK_LINK_CTRL)));
1185 
1186 	if (sc->sk_type == SK_GENESIS) {
1187 		/* Configure packet arbiter */
1188 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1189 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1190 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1191 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1192 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1193 	}
1194 
1195 	/* Enable RAM interface */
1196 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1197 
1198 	sk_update_int_mod(sc);
1199 }
1200 
1201 int
1202 sk_probe(device_t parent, cfdata_t match, void *aux)
1203 {
1204 	struct skc_attach_args *sa = aux;
1205 
1206 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1207 		return 0;
1208 
1209 	return 1;
1210 }
1211 
1212 /*
1213  * Each XMAC chip is attached as a separate logical IP interface.
1214  * Single port cards will have only one logical interface of course.
1215  */
1216 void
1217 sk_attach(device_t parent, device_t self, void *aux)
1218 {
1219 	struct sk_if_softc *sc_if = device_private(self);
1220 	struct mii_data *mii = &sc_if->sk_mii;
1221 	struct sk_softc *sc = device_private(parent);
1222 	struct skc_attach_args *sa = aux;
1223 	struct sk_txmap_entry	*entry;
1224 	struct ifnet *ifp;
1225 	bus_dma_segment_t seg;
1226 	bus_dmamap_t dmamap;
1227 	prop_data_t data;
1228 	void *kva;
1229 	int i, rseg;
1230 	int mii_flags = 0;
1231 
1232 	aprint_naive("\n");
1233 
1234 	sc_if->sk_dev = self;
1235 	sc_if->sk_port = sa->skc_port;
1236 	sc_if->sk_softc = sc;
1237 	sc->sk_if[sa->skc_port] = sc_if;
1238 
1239 	if (sa->skc_port == SK_PORT_A)
1240 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1241 	if (sa->skc_port == SK_PORT_B)
1242 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1243 
1244 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1245 
1246 	/*
1247 	 * Get station address for this interface. Note that
1248 	 * dual port cards actually come with three station
1249 	 * addresses: one for each port, plus an extra. The
1250 	 * extra one is used by the SysKonnect driver software
1251 	 * as a 'virtual' station address for when both ports
1252 	 * are operating in failover mode. Currently we don't
1253 	 * use this extra address.
1254 	 */
1255 	data = prop_dictionary_get(device_properties(self), "mac-address");
1256 	if (data != NULL) {
1257 		/*
1258 		 * Try to get the station address from device properties
1259 		 * first, in case the ROM is missing.
1260 		 */
1261 		KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
1262 		KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
1263 		memcpy(sc_if->sk_enaddr, prop_data_data_nocopy(data),
1264 		    ETHER_ADDR_LEN);
1265 	} else
1266 		for (i = 0; i < ETHER_ADDR_LEN; i++)
1267 			sc_if->sk_enaddr[i] = sk_win_read_1(sc,
1268 			    SK_MAC0_0 + (sa->skc_port * 8) + i);
1269 
1270 	aprint_normal(": Ethernet address %s\n",
1271 	    ether_sprintf(sc_if->sk_enaddr));
1272 
1273 	/*
1274 	 * Set up RAM buffer addresses. The NIC will have a certain
1275 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1276 	 * need to divide this up a) between the transmitter and
1277 	 * receiver and b) between the two XMACs, if this is a
1278 	 * dual port NIC. Our algorithm is to divide up the memory
1279 	 * evenly so that everyone gets a fair share.
1280 	 */
1281 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1282 		uint32_t		chunk, val;
1283 
1284 		chunk = sc->sk_ramsize / 2;
1285 		val = sc->sk_rboff / sizeof(uint64_t);
1286 		sc_if->sk_rx_ramstart = val;
1287 		val += (chunk / sizeof(uint64_t));
1288 		sc_if->sk_rx_ramend = val - 1;
1289 		sc_if->sk_tx_ramstart = val;
1290 		val += (chunk / sizeof(uint64_t));
1291 		sc_if->sk_tx_ramend = val - 1;
1292 	} else {
1293 		uint32_t		chunk, val;
1294 
1295 		chunk = sc->sk_ramsize / 4;
1296 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1297 		    sizeof(uint64_t);
1298 		sc_if->sk_rx_ramstart = val;
1299 		val += (chunk / sizeof(uint64_t));
1300 		sc_if->sk_rx_ramend = val - 1;
1301 		sc_if->sk_tx_ramstart = val;
1302 		val += (chunk / sizeof(uint64_t));
1303 		sc_if->sk_tx_ramend = val - 1;
1304 	}
1305 
1306 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1307 		     "		 tx_ramstart=%#x tx_ramend=%#x\n",
1308 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1309 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1310 
1311 	/* Read and save PHY type and set PHY address */
1312 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1313 	switch (sc_if->sk_phytype) {
1314 	case SK_PHYTYPE_XMAC:
1315 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1316 		break;
1317 	case SK_PHYTYPE_BCOM:
1318 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1319 		break;
1320 	case SK_PHYTYPE_MARV_COPPER:
1321 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1322 		break;
1323 	default:
1324 		aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n",
1325 		    sc_if->sk_phytype);
1326 		return;
1327 	}
1328 
1329 	/* Allocate the descriptor queues. */
1330 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1331 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1332 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
1333 		goto fail;
1334 	}
1335 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1336 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1337 		aprint_error_dev(sc_if->sk_dev,
1338 		    "can't map dma buffers (%lu bytes)\n",
1339 		    (u_long) sizeof(struct sk_ring_data));
1340 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1341 		goto fail;
1342 	}
1343 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1344 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1345 	    &sc_if->sk_ring_map)) {
1346 		aprint_error_dev(sc_if->sk_dev, "can't create dma map\n");
1347 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1348 		    sizeof(struct sk_ring_data));
1349 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1350 		goto fail;
1351 	}
1352 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1353 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1354 		aprint_error_dev(sc_if->sk_dev, "can't load dma map\n");
1355 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1356 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1357 		    sizeof(struct sk_ring_data));
1358 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1359 		goto fail;
1360 	}
1361 
1362 	for (i = 0; i < SK_RX_RING_CNT; i++)
1363 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1364 
1365 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1366 	for (i = 0; i < SK_TX_RING_CNT; i++) {
1367 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1368 
1369 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1370 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1371 			aprint_error_dev(sc_if->sk_dev,
1372 			    "Can't create TX dmamap\n");
1373 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1374 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1375 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1376 			    sizeof(struct sk_ring_data));
1377 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1378 			goto fail;
1379 		}
1380 
1381 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1382 		if (!entry) {
1383 			aprint_error_dev(sc_if->sk_dev,
1384 			    "Can't alloc txmap entry\n");
1385 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1386 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1387 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1388 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1389 			    sizeof(struct sk_ring_data));
1390 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1391 			goto fail;
1392 		}
1393 		entry->dmamap = dmamap;
1394 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1395 	}
1396 
1397 	sc_if->sk_rdata = (struct sk_ring_data *)kva;
1398 	memset(sc_if->sk_rdata, 0, sizeof(struct sk_ring_data));
1399 
1400 	ifp = &sc_if->sk_ethercom.ec_if;
1401 	/* Try to allocate memory for jumbo buffers. */
1402 	if (sk_alloc_jumbo_mem(sc_if)) {
1403 		aprint_error("%s: jumbo buffer allocation failed\n",
1404 		    ifp->if_xname);
1405 		goto fail;
1406 	}
1407 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1408 		| ETHERCAP_JUMBO_MTU;
1409 
1410 	ifp->if_softc = sc_if;
1411 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1412 	ifp->if_ioctl = sk_ioctl;
1413 	ifp->if_start = sk_start;
1414 	ifp->if_stop = sk_stop;
1415 	ifp->if_init = sk_init;
1416 	ifp->if_watchdog = sk_watchdog;
1417 	ifp->if_capabilities = 0;
1418 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1419 	IFQ_SET_READY(&ifp->if_snd);
1420 	strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1421 
1422 	/*
1423 	 * Do miibus setup.
1424 	 */
1425 	switch (sc->sk_type) {
1426 	case SK_GENESIS:
1427 		sk_unreset_xmac(sc_if);
1428 		break;
1429 	case SK_YUKON:
1430 	case SK_YUKON_LITE:
1431 	case SK_YUKON_LP:
1432 		sk_unreset_yukon(sc_if);
1433 		break;
1434 	default:
1435 		aprint_error_dev(sc->sk_dev, "unknown device type %d\n",
1436 			sc->sk_type);
1437 		goto fail;
1438 	}
1439 
1440 	DPRINTFN(2, ("sk_attach: 1\n"));
1441 
1442 	mii->mii_ifp = ifp;
1443 	switch (sc->sk_type) {
1444 	case SK_GENESIS:
1445 		mii->mii_readreg = sk_xmac_miibus_readreg;
1446 		mii->mii_writereg = sk_xmac_miibus_writereg;
1447 		mii->mii_statchg = sk_xmac_miibus_statchg;
1448 		break;
1449 	case SK_YUKON:
1450 	case SK_YUKON_LITE:
1451 	case SK_YUKON_LP:
1452 		mii->mii_readreg = sk_marv_miibus_readreg;
1453 		mii->mii_writereg = sk_marv_miibus_writereg;
1454 		mii->mii_statchg = sk_marv_miibus_statchg;
1455 		mii_flags = MIIF_DOPAUSE;
1456 		break;
1457 	}
1458 
1459 	sc_if->sk_ethercom.ec_mii = mii;
1460 	ifmedia_init(&mii->mii_media, 0, sk_ifmedia_upd, ether_mediastatus);
1461 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
1462 	    MII_OFFSET_ANY, mii_flags);
1463 	if (LIST_EMPTY(&mii->mii_phys)) {
1464 		aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1465 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
1466 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
1467 	} else
1468 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1469 
1470 	callout_init(&sc_if->sk_tick_ch, 0);
1471 	callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
1472 
1473 	DPRINTFN(2, ("sk_attach: 1\n"));
1474 
1475 	/*
1476 	 * Call MI attach routines.
1477 	 */
1478 	if_attach(ifp);
1479 	if_deferred_start_init(ifp, NULL);
1480 
1481 	ether_ifattach(ifp, sc_if->sk_enaddr);
1482 
1483 	if (sc->rnd_attached++ == 0) {
1484 		rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1485 		    RND_TYPE_NET, RND_FLAG_DEFAULT);
1486 	}
1487 
1488 	if (pmf_device_register(self, NULL, sk_resume))
1489 		pmf_class_network_register(self, ifp);
1490 	else
1491 		aprint_error_dev(self, "couldn't establish power handler\n");
1492 
1493 	DPRINTFN(2, ("sk_attach: end\n"));
1494 
1495 	return;
1496 
1497 fail:
1498 	sc->sk_if[sa->skc_port] = NULL;
1499 }
1500 
1501 int
1502 skcprint(void *aux, const char *pnp)
1503 {
1504 	struct skc_attach_args *sa = aux;
1505 
1506 	if (pnp)
1507 		aprint_normal("sk port %c at %s",
1508 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1509 	else
1510 		aprint_normal(" port %c",
1511 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1512 	return UNCONF;
1513 }
1514 
1515 /*
1516  * Attach the interface. Allocate softc structures, do ifmedia
1517  * setup and ethernet/BPF attach.
1518  */
1519 void
1520 skc_attach(device_t parent, device_t self, void *aux)
1521 {
1522 	struct sk_softc *sc = device_private(self);
1523 	struct pci_attach_args *pa = aux;
1524 	struct skc_attach_args skca;
1525 	pci_chipset_tag_t pc = pa->pa_pc;
1526 #ifndef SK_USEIOSPACE
1527 	pcireg_t memtype;
1528 #endif
1529 	pci_intr_handle_t ih;
1530 	const char *intrstr = NULL;
1531 	bus_addr_t iobase;
1532 	bus_size_t iosize;
1533 	int rc, sk_nodenum;
1534 	uint32_t command;
1535 	const char *revstr;
1536 	const struct sysctlnode *node;
1537 	char intrbuf[PCI_INTRSTR_LEN];
1538 
1539 	sc->sk_dev = self;
1540 	aprint_naive("\n");
1541 
1542 	DPRINTFN(2, ("begin skc_attach\n"));
1543 
1544 	/*
1545 	 * Handle power management nonsense.
1546 	 */
1547 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1548 
1549 	if (command == 0x01) {
1550 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1551 		if (command & SK_PSTATE_MASK) {
1552 			uint32_t		xiobase, membase, irq;
1553 
1554 			/* Save important PCI config data. */
1555 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1556 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1557 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1558 
1559 			/* Reset the power state. */
1560 			aprint_normal_dev(sc->sk_dev,
1561 			    "chip is in D%d power mode -- setting to D0\n",
1562 			    command & SK_PSTATE_MASK);
1563 			command &= 0xFFFFFFFC;
1564 			pci_conf_write(pc, pa->pa_tag,
1565 			    SK_PCI_PWRMGMTCTRL, command);
1566 
1567 			/* Restore PCI config data. */
1568 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1569 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1570 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1571 		}
1572 	}
1573 
1574 	/*
1575 	 * The firmware might have configured the interface to revert the
1576 	 * byte order in all descriptors. Make that undone.
1577 	 */
1578 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_OURREG2);
1579 	if (command & SK_REG2_REV_DESC)
1580 		pci_conf_write(pc, pa->pa_tag, SK_PCI_OURREG2,
1581 		    command & ~SK_REG2_REV_DESC);
1582 
1583 	/*
1584 	 * Map control/status registers.
1585 	 */
1586 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1587 	command |= PCI_COMMAND_IO_ENABLE |
1588 	    PCI_COMMAND_MEM_ENABLE |
1589 	    PCI_COMMAND_MASTER_ENABLE;
1590 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1591 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1592 
1593 #ifdef SK_USEIOSPACE
1594 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
1595 		aprint_error(": failed to enable I/O ports!\n");
1596 		return;
1597 	}
1598 	/*
1599 	 * Map control/status registers.
1600 	 */
1601 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1602 			&sc->sk_btag, &sc->sk_bhandle,
1603 			&iobase, &iosize)) {
1604 		aprint_error(": can't find i/o space\n");
1605 		return;
1606 	}
1607 #else
1608 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1609 		aprint_error(": failed to enable memory mapping!\n");
1610 		return;
1611 	}
1612 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1613 	switch (memtype) {
1614 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1615 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1616 		if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1617 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1618 				   &iobase, &iosize) == 0)
1619 			break;
1620 		/* FALLTHROUGH */
1621 	default:
1622 		aprint_error_dev(sc->sk_dev, "can't find mem space\n");
1623 		return;
1624 	}
1625 
1626 	DPRINTFN(2, ("skc_attach: iobase=%#" PRIxPADDR ", iosize=%zx\n",
1627 	    iobase, iosize));
1628 #endif
1629 	sc->sc_dmatag = pa->pa_dmat;
1630 
1631 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1632 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1633 
1634 	/* bail out here if chip is not recognized */
1635 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1636 		aprint_error_dev(sc->sk_dev, "unknown chip type\n");
1637 		goto fail;
1638 	}
1639 	if (SK_IS_YUKON2(sc)) {
1640 		aprint_error_dev(sc->sk_dev,
1641 		    "Does not support Yukon2--try msk(4).\n");
1642 		goto fail;
1643 	}
1644 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1645 
1646 	/* Allocate interrupt */
1647 	if (pci_intr_map(pa, &ih)) {
1648 		aprint_error(": couldn't map interrupt\n");
1649 		goto fail;
1650 	}
1651 
1652 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1653 	sc->sk_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, sk_intr,
1654 	    sc, device_xname(sc->sk_dev));
1655 	if (sc->sk_intrhand == NULL) {
1656 		aprint_error(": couldn't establish interrupt");
1657 		if (intrstr != NULL)
1658 			aprint_error(" at %s", intrstr);
1659 		aprint_error("\n");
1660 		goto fail;
1661 	}
1662 	aprint_normal(": %s\n", intrstr);
1663 
1664 	/* Reset the adapter. */
1665 	sk_reset(sc);
1666 
1667 	/* Read and save vital product data from EEPROM. */
1668 	sk_vpd_read(sc);
1669 
1670 	if (sc->sk_type == SK_GENESIS) {
1671 		uint8_t val = sk_win_read_1(sc, SK_EPROM0);
1672 		/* Read and save RAM size and RAMbuffer offset */
1673 		switch (val) {
1674 		case SK_RAMSIZE_512K_64:
1675 			sc->sk_ramsize = 0x80000;
1676 			sc->sk_rboff = SK_RBOFF_0;
1677 			break;
1678 		case SK_RAMSIZE_1024K_64:
1679 			sc->sk_ramsize = 0x100000;
1680 			sc->sk_rboff = SK_RBOFF_80000;
1681 			break;
1682 		case SK_RAMSIZE_1024K_128:
1683 			sc->sk_ramsize = 0x100000;
1684 			sc->sk_rboff = SK_RBOFF_0;
1685 			break;
1686 		case SK_RAMSIZE_2048K_128:
1687 			sc->sk_ramsize = 0x200000;
1688 			sc->sk_rboff = SK_RBOFF_0;
1689 			break;
1690 		default:
1691 			aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n",
1692 			       val);
1693 			goto fail_1;
1694 			break;
1695 		}
1696 
1697 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1698 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
1699 			     sc->sk_rboff));
1700 	} else {
1701 		uint8_t val = sk_win_read_1(sc, SK_EPROM0);
1702 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
1703 		sc->sk_rboff = SK_RBOFF_0;
1704 
1705 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1706 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
1707 			     sc->sk_rboff));
1708 	}
1709 
1710 	/* Read and save physical media type */
1711 	switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1712 	case SK_PMD_1000BASESX:
1713 		sc->sk_pmd = IFM_1000_SX;
1714 		break;
1715 	case SK_PMD_1000BASELX:
1716 		sc->sk_pmd = IFM_1000_LX;
1717 		break;
1718 	case SK_PMD_1000BASECX:
1719 		sc->sk_pmd = IFM_1000_CX;
1720 		break;
1721 	case SK_PMD_1000BASETX:
1722 	case SK_PMD_1000BASETX_ALT:
1723 		sc->sk_pmd = IFM_1000_T;
1724 		break;
1725 	default:
1726 		aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n",
1727 		    sk_win_read_1(sc, SK_PMDTYPE));
1728 		goto fail_1;
1729 	}
1730 
1731 	/* determine whether to name it with vpd or just make it up */
1732 	/* Marvell Yukon VPD's can freqently be bogus */
1733 
1734 	switch (pa->pa_id) {
1735 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1736 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1737 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1738 	case PCI_PRODUCT_3COM_3C940:
1739 	case PCI_PRODUCT_DLINK_DGE530T:
1740 	case PCI_PRODUCT_DLINK_DGE560T:
1741 	case PCI_PRODUCT_DLINK_DGE560T_2:
1742 	case PCI_PRODUCT_LINKSYS_EG1032:
1743 	case PCI_PRODUCT_LINKSYS_EG1064:
1744 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1745 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1746 	case PCI_ID_CODE(PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940):
1747 	case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T):
1748 	case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T):
1749 	case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2):
1750 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032):
1751 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064):
1752 		sc->sk_name = sc->sk_vpd_prodname;
1753 		break;
1754 	case PCI_ID_CODE(PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET):
1755 	/* whoops yukon vpd prodname bears no resemblance to reality */
1756 		switch (sc->sk_type) {
1757 		case SK_GENESIS:
1758 			sc->sk_name = sc->sk_vpd_prodname;
1759 			break;
1760 		case SK_YUKON:
1761 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1762 			break;
1763 		case SK_YUKON_LITE:
1764 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1765 			break;
1766 		case SK_YUKON_LP:
1767 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1768 			break;
1769 		default:
1770 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1771 		}
1772 
1773 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1774 
1775 		if ( sc->sk_type == SK_YUKON ) {
1776 			uint32_t flashaddr;
1777 			uint8_t testbyte;
1778 
1779 			flashaddr = sk_win_read_4(sc, SK_EP_ADDR);
1780 
1781 			/* test Flash-Address Register */
1782 			sk_win_write_1(sc, SK_EP_ADDR+3, 0xff);
1783 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1784 
1785 			if (testbyte != 0) {
1786 				/* this is yukon lite Rev. A0 */
1787 				sc->sk_type = SK_YUKON_LITE;
1788 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
1789 				/* restore Flash-Address Register */
1790 				sk_win_write_4(sc, SK_EP_ADDR, flashaddr);
1791 			}
1792 		}
1793 		break;
1794 	case PCI_ID_CODE(PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN):
1795 		sc->sk_name = sc->sk_vpd_prodname;
1796 		break;
1797 	default:
1798 		sc->sk_name = "Unknown Marvell";
1799 	}
1800 
1801 
1802 	if ( sc->sk_type == SK_YUKON_LITE ) {
1803 		switch (sc->sk_rev) {
1804 		case SK_YUKON_LITE_REV_A0:
1805 			revstr = "A0";
1806 			break;
1807 		case SK_YUKON_LITE_REV_A1:
1808 			revstr = "A1";
1809 			break;
1810 		case SK_YUKON_LITE_REV_A3:
1811 			revstr = "A3";
1812 			break;
1813 		default:
1814 			revstr = "";
1815 		}
1816 	} else {
1817 		revstr = "";
1818 	}
1819 
1820 	/* Announce the product name. */
1821 	aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n",
1822 			      sc->sk_name, revstr, sc->sk_rev);
1823 
1824 	skca.skc_port = SK_PORT_A;
1825 	(void)config_found(sc->sk_dev, &skca, skcprint);
1826 
1827 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1828 		skca.skc_port = SK_PORT_B;
1829 		(void)config_found(sc->sk_dev, &skca, skcprint);
1830 	}
1831 
1832 	/* Turn on the 'driver is loaded' LED. */
1833 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1834 
1835 	/* skc sysctl setup */
1836 
1837 	sc->sk_int_mod = SK_IM_DEFAULT;
1838 	sc->sk_int_mod_pending = 0;
1839 
1840 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1841 	    0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1842 	    SYSCTL_DESCR("skc per-controller controls"),
1843 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1844 	    CTL_EOL)) != 0) {
1845 		aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1846 		goto fail_1;
1847 	}
1848 
1849 	sk_nodenum = node->sysctl_num;
1850 
1851 	/* interrupt moderation time in usecs */
1852 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1853 	    CTLFLAG_READWRITE,
1854 	    CTLTYPE_INT, "int_mod",
1855 	    SYSCTL_DESCR("sk interrupt moderation timer"),
1856 	    sk_sysctl_handler, 0, (void *)sc,
1857 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1858 	    CTL_EOL)) != 0) {
1859 		aprint_normal_dev(sc->sk_dev,
1860 		    "couldn't create int_mod sysctl node\n");
1861 		goto fail_1;
1862 	}
1863 
1864 	if (!pmf_device_register(self, skc_suspend, skc_resume))
1865 		aprint_error_dev(self, "couldn't establish power handler\n");
1866 
1867 	return;
1868 
1869 fail_1:
1870 	pci_intr_disestablish(pc, sc->sk_intrhand);
1871 fail:
1872 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1873 }
1874 
1875 int
1876 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx)
1877 {
1878 	struct sk_softc		*sc = sc_if->sk_softc;
1879 	struct sk_tx_desc	*f = NULL;
1880 	uint32_t		frag, cur, cnt = 0, sk_ctl;
1881 	int			i;
1882 	struct sk_txmap_entry	*entry;
1883 	bus_dmamap_t		txmap;
1884 
1885 	DPRINTFN(3, ("sk_encap\n"));
1886 
1887 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1888 	if (entry == NULL) {
1889 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
1890 		return ENOBUFS;
1891 	}
1892 	txmap = entry->dmamap;
1893 
1894 	cur = frag = *txidx;
1895 
1896 #ifdef SK_DEBUG
1897 	if (skdebug >= 3)
1898 		sk_dump_mbuf(m_head);
1899 #endif
1900 
1901 	/*
1902 	 * Start packing the mbufs in this chain into
1903 	 * the fragment pointers. Stop when we run out
1904 	 * of fragments or hit the end of the mbuf chain.
1905 	 */
1906 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1907 	    BUS_DMA_NOWAIT)) {
1908 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1909 		return ENOBUFS;
1910 	}
1911 
1912 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1913 
1914 	/* Sync the DMA map. */
1915 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1916 	    BUS_DMASYNC_PREWRITE);
1917 
1918 	for (i = 0; i < txmap->dm_nsegs; i++) {
1919 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1920 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1921 			return ENOBUFS;
1922 		}
1923 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
1924 		f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1925 		sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1926 		if (cnt == 0)
1927 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
1928 		else
1929 			sk_ctl |= SK_TXCTL_OWN;
1930 		f->sk_ctl = htole32(sk_ctl);
1931 		cur = frag;
1932 		SK_INC(frag, SK_TX_RING_CNT);
1933 		cnt++;
1934 	}
1935 
1936 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1937 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1938 
1939 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
1940 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1941 		htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR);
1942 
1943 	/* Sync descriptors before handing to chip */
1944 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1945 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1946 
1947 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1948 		htole32(SK_TXCTL_OWN);
1949 
1950 	/* Sync first descriptor to hand it off */
1951 	SK_CDTXSYNC(sc_if, *txidx, 1,
1952 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1953 
1954 	sc_if->sk_cdata.sk_tx_cnt += cnt;
1955 
1956 #ifdef SK_DEBUG
1957 	if (skdebug >= 3) {
1958 		struct sk_tx_desc *desc;
1959 		uint32_t idx;
1960 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1961 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1962 			sk_dump_txdesc(desc, idx);
1963 		}
1964 	}
1965 #endif
1966 
1967 	*txidx = frag;
1968 
1969 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
1970 
1971 	return 0;
1972 }
1973 
1974 void
1975 sk_start(struct ifnet *ifp)
1976 {
1977 	struct sk_if_softc	*sc_if = ifp->if_softc;
1978 	struct sk_softc		*sc = sc_if->sk_softc;
1979 	struct mbuf		*m_head = NULL;
1980 	uint32_t		idx = sc_if->sk_cdata.sk_tx_prod;
1981 	int			pkts = 0;
1982 
1983 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1984 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1985 
1986 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1987 		IFQ_POLL(&ifp->if_snd, m_head);
1988 		if (m_head == NULL)
1989 			break;
1990 
1991 		/*
1992 		 * Pack the data into the transmit ring. If we
1993 		 * don't have room, set the OACTIVE flag and wait
1994 		 * for the NIC to drain the ring.
1995 		 */
1996 		if (sk_encap(sc_if, m_head, &idx)) {
1997 			ifp->if_flags |= IFF_OACTIVE;
1998 			break;
1999 		}
2000 
2001 		/* now we are committed to transmit the packet */
2002 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
2003 		pkts++;
2004 
2005 		/*
2006 		 * If there's a BPF listener, bounce a copy of this frame
2007 		 * to him.
2008 		 */
2009 		bpf_mtap(ifp, m_head, BPF_D_OUT);
2010 	}
2011 	if (pkts == 0)
2012 		return;
2013 
2014 	/* Transmit */
2015 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
2016 		sc_if->sk_cdata.sk_tx_prod = idx;
2017 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2018 
2019 		/* Set a timeout in case the chip goes out to lunch. */
2020 		ifp->if_timer = 5;
2021 	}
2022 }
2023 
2024 
2025 void
2026 sk_watchdog(struct ifnet *ifp)
2027 {
2028 	struct sk_if_softc *sc_if = ifp->if_softc;
2029 
2030 	/*
2031 	 * Reclaim first as there is a possibility of losing Tx completion
2032 	 * interrupts.
2033 	 */
2034 	sk_txeof(sc_if);
2035 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2036 		aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
2037 
2038 		ifp->if_oerrors++;
2039 
2040 		sk_init(ifp);
2041 	}
2042 }
2043 
2044 void
2045 sk_shutdown(void *v)
2046 {
2047 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
2048 	struct sk_softc		*sc = sc_if->sk_softc;
2049 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2050 
2051 	DPRINTFN(2, ("sk_shutdown\n"));
2052 	sk_stop(ifp, 1);
2053 
2054 	/* Turn off the 'driver is loaded' LED. */
2055 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2056 
2057 	/*
2058 	 * Reset the GEnesis controller. Doing this should also
2059 	 * assert the resets on the attached XMAC(s).
2060 	 */
2061 	sk_reset(sc);
2062 }
2063 
2064 void
2065 sk_rxeof(struct sk_if_softc *sc_if)
2066 {
2067 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2068 	struct mbuf		*m;
2069 	struct sk_chain		*cur_rx;
2070 	struct sk_rx_desc	*cur_desc;
2071 	int			i, cur, total_len = 0;
2072 	uint32_t		rxstat, sk_ctl;
2073 	bus_dmamap_t		dmamap;
2074 
2075 	i = sc_if->sk_cdata.sk_rx_prod;
2076 
2077 	DPRINTFN(3, ("sk_rxeof %d\n", i));
2078 
2079 	for (;;) {
2080 		cur = i;
2081 
2082 		/* Sync the descriptor */
2083 		SK_CDRXSYNC(sc_if, cur,
2084 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2085 
2086 		sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2087 		if (sk_ctl & SK_RXCTL_OWN) {
2088 			/* Invalidate the descriptor -- it's not ready yet */
2089 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2090 			sc_if->sk_cdata.sk_rx_prod = i;
2091 			break;
2092 		}
2093 
2094 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2095 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2096 		dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2097 
2098 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2099 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2100 
2101 		rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2102 		m = cur_rx->sk_mbuf;
2103 		cur_rx->sk_mbuf = NULL;
2104 		total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2105 
2106 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
2107 
2108 		SK_INC(i, SK_RX_RING_CNT);
2109 
2110 		if (rxstat & XM_RXSTAT_ERRFRAME) {
2111 			ifp->if_ierrors++;
2112 			sk_newbuf(sc_if, cur, m, dmamap);
2113 			continue;
2114 		}
2115 
2116 		/*
2117 		 * Try to allocate a new jumbo buffer. If that
2118 		 * fails, copy the packet to mbufs and put the
2119 		 * jumbo buffer back in the ring so it can be
2120 		 * re-used. If allocating mbufs fails, then we
2121 		 * have to drop the packet.
2122 		 */
2123 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2124 			struct mbuf		*m0;
2125 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2126 			    total_len + ETHER_ALIGN, 0, ifp);
2127 			sk_newbuf(sc_if, cur, m, dmamap);
2128 			if (m0 == NULL) {
2129 				aprint_error_dev(sc_if->sk_dev, "no receive "
2130 				    "buffers available -- packet dropped!\n");
2131 				ifp->if_ierrors++;
2132 				continue;
2133 			}
2134 			m_adj(m0, ETHER_ALIGN);
2135 			m = m0;
2136 		} else {
2137 			m_set_rcvif(m, ifp);
2138 			m->m_pkthdr.len = m->m_len = total_len;
2139 		}
2140 
2141 		/* pass it on. */
2142 		if_percpuq_enqueue(ifp->if_percpuq, m);
2143 	}
2144 }
2145 
2146 void
2147 sk_txeof(struct sk_if_softc *sc_if)
2148 {
2149 	struct sk_softc		*sc = sc_if->sk_softc;
2150 	struct sk_tx_desc	*cur_tx;
2151 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2152 	uint32_t		idx, sk_ctl;
2153 	struct sk_txmap_entry	*entry;
2154 
2155 	DPRINTFN(3, ("sk_txeof\n"));
2156 
2157 	/*
2158 	 * Go through our tx ring and free mbufs for those
2159 	 * frames that have been sent.
2160 	 */
2161 	idx = sc_if->sk_cdata.sk_tx_cons;
2162 	while (idx != sc_if->sk_cdata.sk_tx_prod) {
2163 		SK_CDTXSYNC(sc_if, idx, 1,
2164 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2165 
2166 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2167 		sk_ctl = le32toh(cur_tx->sk_ctl);
2168 #ifdef SK_DEBUG
2169 		if (skdebug >= 3)
2170 			sk_dump_txdesc(cur_tx, idx);
2171 #endif
2172 		if (sk_ctl & SK_TXCTL_OWN) {
2173 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2174 			break;
2175 		}
2176 		if (sk_ctl & SK_TXCTL_LASTFRAG)
2177 			ifp->if_opackets++;
2178 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2179 			entry = sc_if->sk_cdata.sk_tx_map[idx];
2180 
2181 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2182 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2183 
2184 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2185 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2186 
2187 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2188 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2189 					  link);
2190 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2191 		}
2192 		sc_if->sk_cdata.sk_tx_cnt--;
2193 		SK_INC(idx, SK_TX_RING_CNT);
2194 	}
2195 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
2196 		ifp->if_timer = 0;
2197 	else /* nudge chip to keep tx ring moving */
2198 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2199 
2200 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2201 		ifp->if_flags &= ~IFF_OACTIVE;
2202 
2203 	sc_if->sk_cdata.sk_tx_cons = idx;
2204 }
2205 
2206 void
2207 sk_tick(void *xsc_if)
2208 {
2209 	struct sk_if_softc *sc_if = xsc_if;
2210 	struct mii_data *mii = &sc_if->sk_mii;
2211 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2212 	int i;
2213 
2214 	DPRINTFN(3, ("sk_tick\n"));
2215 
2216 	if (!(ifp->if_flags & IFF_UP))
2217 		return;
2218 
2219 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2220 		sk_intr_bcom(sc_if);
2221 		return;
2222 	}
2223 
2224 	/*
2225 	 * According to SysKonnect, the correct way to verify that
2226 	 * the link has come back up is to poll bit 0 of the GPIO
2227 	 * register three times. This pin has the signal from the
2228 	 * link sync pin connected to it; if we read the same link
2229 	 * state 3 times in a row, we know the link is up.
2230 	 */
2231 	for (i = 0; i < 3; i++) {
2232 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2233 			break;
2234 	}
2235 
2236 	if (i != 3) {
2237 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2238 		return;
2239 	}
2240 
2241 	/* Turn the GP0 interrupt back on. */
2242 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2243 	SK_XM_READ_2(sc_if, XM_ISR);
2244 	mii_tick(mii);
2245 	if (ifp->if_link_state != LINK_STATE_UP)
2246 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2247 	else
2248 		callout_stop(&sc_if->sk_tick_ch);
2249 }
2250 
2251 void
2252 sk_intr_bcom(struct sk_if_softc *sc_if)
2253 {
2254 	struct mii_data *mii = &sc_if->sk_mii;
2255 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2256 	uint16_t status;
2257 
2258 
2259 	DPRINTFN(3, ("sk_intr_bcom\n"));
2260 
2261 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
2262 
2263 	/*
2264 	 * Read the PHY interrupt register to make sure
2265 	 * we clear any pending interrupts.
2266 	 */
2267 	sk_xmac_miibus_readreg(sc_if->sk_dev,
2268 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR, &status);
2269 
2270 	if (!(ifp->if_flags & IFF_RUNNING)) {
2271 		sk_init_xmac(sc_if);
2272 		return;
2273 	}
2274 
2275 	if (status & (BRGPHY_ISR_LNK_CHG | BRGPHY_ISR_AN_PR)) {
2276 		uint16_t lstat;
2277 		sk_xmac_miibus_readreg(sc_if->sk_dev,
2278 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS, &lstat);
2279 
2280 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2281 			(void)mii_mediachg(mii);
2282 			/* Turn off the link LED. */
2283 			SK_IF_WRITE_1(sc_if, 0,
2284 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
2285 			sc_if->sk_link = 0;
2286 		} else if (status & BRGPHY_ISR_LNK_CHG) {
2287 			sk_xmac_miibus_writereg(sc_if->sk_dev,
2288 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2289 			mii_tick(mii);
2290 			sc_if->sk_link = 1;
2291 			/* Turn on the link LED. */
2292 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2293 			    SK_LINKLED_ON | SK_LINKLED_LINKSYNC_OFF |
2294 			    SK_LINKLED_BLINK_OFF);
2295 			mii_pollstat(mii);
2296 		} else {
2297 			mii_tick(mii);
2298 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2299 		}
2300 	}
2301 
2302 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
2303 }
2304 
2305 void
2306 sk_intr_xmac(struct sk_if_softc	*sc_if)
2307 {
2308 	uint16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2309 
2310 	DPRINTFN(3, ("sk_intr_xmac\n"));
2311 
2312 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2313 		if (status & XM_ISR_GP0_SET) {
2314 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2315 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2316 		}
2317 
2318 		if (status & XM_ISR_AUTONEG_DONE) {
2319 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2320 		}
2321 	}
2322 
2323 	if (status & XM_IMR_TX_UNDERRUN)
2324 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2325 
2326 	if (status & XM_IMR_RX_OVERRUN)
2327 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2328 }
2329 
2330 void
2331 sk_intr_yukon(struct sk_if_softc *sc_if)
2332 {
2333 #ifdef SK_DEBUG
2334 	int status;
2335 
2336 	status =
2337 #endif
2338 		SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2339 
2340 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2341 }
2342 
2343 int
2344 sk_intr(void *xsc)
2345 {
2346 	struct sk_softc		*sc = xsc;
2347 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
2348 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
2349 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2350 	uint32_t		status;
2351 	int			claimed = 0;
2352 
2353 	if (sc_if0 != NULL)
2354 		ifp0 = &sc_if0->sk_ethercom.ec_if;
2355 	if (sc_if1 != NULL)
2356 		ifp1 = &sc_if1->sk_ethercom.ec_if;
2357 
2358 	for (;;) {
2359 		status = CSR_READ_4(sc, SK_ISSR);
2360 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2361 
2362 		if (!(status & sc->sk_intrmask))
2363 			break;
2364 
2365 		claimed = 1;
2366 
2367 		/* Handle receive interrupts first. */
2368 		if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2369 			sk_rxeof(sc_if0);
2370 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2371 			    SK_RXBMU_CLR_IRQ_EOF | SK_RXBMU_RX_START);
2372 		}
2373 		if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2374 			sk_rxeof(sc_if1);
2375 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2376 			    SK_RXBMU_CLR_IRQ_EOF | SK_RXBMU_RX_START);
2377 		}
2378 
2379 		/* Then transmit interrupts. */
2380 		if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2381 			sk_txeof(sc_if0);
2382 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2383 			    SK_TXBMU_CLR_IRQ_EOF);
2384 		}
2385 		if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2386 			sk_txeof(sc_if1);
2387 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2388 			    SK_TXBMU_CLR_IRQ_EOF);
2389 		}
2390 
2391 		/* Then MAC interrupts. */
2392 		if (sc_if0 && (status & SK_ISR_MAC1) &&
2393 		    (ifp0->if_flags & IFF_RUNNING)) {
2394 			if (sc->sk_type == SK_GENESIS)
2395 				sk_intr_xmac(sc_if0);
2396 			else
2397 				sk_intr_yukon(sc_if0);
2398 		}
2399 
2400 		if (sc_if1 && (status & SK_ISR_MAC2) &&
2401 		    (ifp1->if_flags & IFF_RUNNING)) {
2402 			if (sc->sk_type == SK_GENESIS)
2403 				sk_intr_xmac(sc_if1);
2404 			else
2405 				sk_intr_yukon(sc_if1);
2406 
2407 		}
2408 
2409 		if (status & SK_ISR_EXTERNAL_REG) {
2410 			if (sc_if0 != NULL &&
2411 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2412 				sk_intr_bcom(sc_if0);
2413 
2414 			if (sc_if1 != NULL &&
2415 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2416 				sk_intr_bcom(sc_if1);
2417 		}
2418 	}
2419 
2420 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2421 
2422 	if (ifp0 != NULL)
2423 		if_schedule_deferred_start(ifp0);
2424 	if (ifp1 != NULL)
2425 		if_schedule_deferred_start(ifp1);
2426 
2427 	KASSERT(sc->rnd_attached > 0);
2428 	rnd_add_uint32(&sc->rnd_source, status);
2429 
2430 	if (sc->sk_int_mod_pending)
2431 		sk_update_int_mod(sc);
2432 
2433 	return claimed;
2434 }
2435 
2436 void
2437 sk_unreset_xmac(struct sk_if_softc *sc_if)
2438 {
2439 	struct sk_softc		*sc = sc_if->sk_softc;
2440 	static const struct sk_bcom_hack     bhack[] = {
2441 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2442 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2443 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2444 	{ 0, 0 } };
2445 
2446 	DPRINTFN(1, ("sk_unreset_xmac\n"));
2447 
2448 	/* Unreset the XMAC. */
2449 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2450 	DELAY(1000);
2451 
2452 	/* Reset the XMAC's internal state. */
2453 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2454 
2455 	/* Save the XMAC II revision */
2456 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2457 
2458 	/*
2459 	 * Perform additional initialization for external PHYs,
2460 	 * namely for the 1000baseTX cards that use the XMAC's
2461 	 * GMII mode.
2462 	 */
2463 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2464 		int			i = 0;
2465 		uint32_t		val;
2466 		uint16_t		phyval;
2467 
2468 		/* Take PHY out of reset. */
2469 		val = sk_win_read_4(sc, SK_GPIO);
2470 		if (sc_if->sk_port == SK_PORT_A)
2471 			val |= SK_GPIO_DIR0 | SK_GPIO_DAT0;
2472 		else
2473 			val |= SK_GPIO_DIR2 | SK_GPIO_DAT2;
2474 		sk_win_write_4(sc, SK_GPIO, val);
2475 
2476 		/* Enable GMII mode on the XMAC. */
2477 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2478 
2479 		sk_xmac_miibus_writereg(sc_if->sk_dev,
2480 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2481 		DELAY(10000);
2482 		sk_xmac_miibus_writereg(sc_if->sk_dev,
2483 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2484 
2485 		/*
2486 		 * Early versions of the BCM5400 apparently have
2487 		 * a bug that requires them to have their reserved
2488 		 * registers initialized to some magic values. I don't
2489 		 * know what the numbers do, I'm just the messenger.
2490 		 */
2491 		sk_xmac_miibus_readreg(sc_if->sk_dev,
2492 		    SK_PHYADDR_BCOM, 0x03, &phyval);
2493 		if (phyval == 0x6041) {
2494 			while (bhack[i].reg) {
2495 				sk_xmac_miibus_writereg(sc_if->sk_dev,
2496 				    SK_PHYADDR_BCOM, bhack[i].reg,
2497 				    bhack[i].val);
2498 				i++;
2499 			}
2500 		}
2501 	}
2502 }
2503 
2504 void
2505 sk_init_xmac(struct sk_if_softc *sc_if)
2506 {
2507 	struct sk_softc		*sc = sc_if->sk_softc;
2508 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2509 
2510 	sk_unreset_xmac(sc_if);
2511 
2512 	/* Set station address */
2513 	SK_XM_WRITE_2(sc_if, XM_PAR0,
2514 		      *(uint16_t *)(&sc_if->sk_enaddr[0]));
2515 	SK_XM_WRITE_2(sc_if, XM_PAR1,
2516 		      *(uint16_t *)(&sc_if->sk_enaddr[2]));
2517 	SK_XM_WRITE_2(sc_if, XM_PAR2,
2518 		      *(uint16_t *)(&sc_if->sk_enaddr[4]));
2519 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2520 
2521 	if (ifp->if_flags & IFF_PROMISC)
2522 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2523 	else
2524 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2525 
2526 	if (ifp->if_flags & IFF_BROADCAST)
2527 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2528 	else
2529 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2530 
2531 	/* We don't need the FCS appended to the packet. */
2532 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2533 
2534 	/* We want short frames padded to 60 bytes. */
2535 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2536 
2537 	/*
2538 	 * Enable the reception of all error frames. This is is
2539 	 * a necessary evil due to the design of the XMAC. The
2540 	 * XMAC's receive FIFO is only 8K in size, however jumbo
2541 	 * frames can be up to 9000 bytes in length. When bad
2542 	 * frame filtering is enabled, the XMAC's RX FIFO operates
2543 	 * in 'store and forward' mode. For this to work, the
2544 	 * entire frame has to fit into the FIFO, but that means
2545 	 * that jumbo frames larger than 8192 bytes will be
2546 	 * truncated. Disabling all bad frame filtering causes
2547 	 * the RX FIFO to operate in streaming mode, in which
2548 	 * case the XMAC will start transfering frames out of the
2549 	 * RX FIFO as soon as the FIFO threshold is reached.
2550 	 */
2551 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES |
2552 	    XM_MODE_RX_GIANTS | XM_MODE_RX_RUNTS | XM_MODE_RX_CRCERRS |
2553 	    XM_MODE_RX_INRANGELEN);
2554 
2555 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2556 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2557 	else
2558 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2559 
2560 	/*
2561 	 * Bump up the transmit threshold. This helps hold off transmit
2562 	 * underruns when we're blasting traffic from both ports at once.
2563 	 */
2564 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2565 
2566 	/* Set multicast filter */
2567 	sk_setmulti(sc_if);
2568 
2569 	/* Clear and enable interrupts */
2570 	SK_XM_READ_2(sc_if, XM_ISR);
2571 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2572 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2573 	else
2574 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2575 
2576 	/* Configure MAC arbiter */
2577 	switch (sc_if->sk_xmac_rev) {
2578 	case XM_XMAC_REV_B2:
2579 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2580 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2581 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2582 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2583 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2584 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2585 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2586 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2587 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2588 		break;
2589 	case XM_XMAC_REV_C1:
2590 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2591 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2592 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2593 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2594 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2595 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2596 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2597 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2598 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2599 		break;
2600 	default:
2601 		break;
2602 	}
2603 	sk_win_write_2(sc, SK_MACARB_CTL,
2604 	    SK_MACARBCTL_UNRESET | SK_MACARBCTL_FASTOE_OFF);
2605 
2606 	sc_if->sk_link = 1;
2607 }
2608 
2609 void
2610 sk_unreset_yukon(struct sk_if_softc *sc_if)
2611 {
2612 	uint32_t		/*mac, */phy;
2613 	struct sk_softc		*sc;
2614 
2615 	DPRINTFN(1, ("sk_unreset_yukon: start: sk_csr=%#x\n",
2616 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2617 
2618 	sc = sc_if->sk_softc;
2619 	if (sc->sk_type == SK_YUKON_LITE &&
2620 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2621 		/* Take PHY out of reset. */
2622 		sk_win_write_4(sc, SK_GPIO,
2623 		    (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9)
2624 		    & ~SK_GPIO_DAT9);
2625 	}
2626 
2627 	/* GMAC and GPHY Reset */
2628 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2629 
2630 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
2631 
2632 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2633 	DELAY(1000);
2634 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2635 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2636 	DELAY(1000);
2637 
2638 
2639 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
2640 
2641 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2642 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2643 
2644 	switch (sc_if->sk_softc->sk_pmd) {
2645 	case IFM_1000_SX:
2646 	case IFM_1000_LX:
2647 		phy |= SK_GPHY_FIBER;
2648 		break;
2649 
2650 	case IFM_1000_CX:
2651 	case IFM_1000_T:
2652 		phy |= SK_GPHY_COPPER;
2653 		break;
2654 	}
2655 
2656 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2657 
2658 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2659 	DELAY(1000);
2660 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2661 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2662 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2663 
2664 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2665 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2666 }
2667 
2668 void
2669 sk_init_yukon(struct sk_if_softc *sc_if)
2670 {
2671 	uint16_t		reg;
2672 	int			i;
2673 
2674 	DPRINTFN(1, ("sk_init_yukon: start\n"));
2675 	sk_unreset_yukon(sc_if);
2676 
2677 	/* unused read of the interrupt source register */
2678 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
2679 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2680 
2681 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2682 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2683 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2684 
2685 	/* MIB Counter Clear Mode set */
2686 	reg |= YU_PAR_MIB_CLR;
2687 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2688 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2689 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2690 
2691 	/* MIB Counter Clear Mode clear */
2692 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
2693 	reg &= ~YU_PAR_MIB_CLR;
2694 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2695 
2696 	/* receive control reg */
2697 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
2698 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2699 		      YU_RCR_CRCR);
2700 
2701 	/* transmit parameter register */
2702 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
2703 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2704 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a));
2705 
2706 	/* serial mode register */
2707 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
2708 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2709 		      YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2710 		      YU_SMR_IPG_DATA(0x1e));
2711 
2712 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
2713 	/* Setup Yukon's address */
2714 	for (i = 0; i < 3; i++) {
2715 		/* Write Source Address 1 (unicast filter) */
2716 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2717 			      sc_if->sk_enaddr[i * 2] |
2718 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
2719 	}
2720 
2721 	for (i = 0; i < 3; i++) {
2722 		reg = sk_win_read_2(sc_if->sk_softc,
2723 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2724 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2725 	}
2726 
2727 	/* Set multicast filter */
2728 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
2729 	sk_setmulti(sc_if);
2730 
2731 	/* enable interrupt mask for counter overflows */
2732 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
2733 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2734 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2735 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2736 
2737 	/* Configure RX MAC FIFO */
2738 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2739 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2740 
2741 	/* Configure TX MAC FIFO */
2742 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2743 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2744 
2745 	DPRINTFN(6, ("sk_init_yukon: end\n"));
2746 }
2747 
2748 /*
2749  * Note that to properly initialize any part of the GEnesis chip,
2750  * you first have to take it out of reset mode.
2751  */
2752 int
2753 sk_init(struct ifnet *ifp)
2754 {
2755 	struct sk_if_softc	*sc_if = ifp->if_softc;
2756 	struct sk_softc		*sc = sc_if->sk_softc;
2757 	struct mii_data		*mii = &sc_if->sk_mii;
2758 	int			rc = 0, s;
2759 	uint32_t		imr, imtimer_ticks;
2760 
2761 	DPRINTFN(1, ("sk_init\n"));
2762 
2763 	s = splnet();
2764 
2765 	if (ifp->if_flags & IFF_RUNNING) {
2766 		splx(s);
2767 		return 0;
2768 	}
2769 
2770 	/* Cancel pending I/O and free all RX/TX buffers. */
2771 	sk_stop(ifp, 0);
2772 
2773 	if (sc->sk_type == SK_GENESIS) {
2774 		/* Configure LINK_SYNC LED */
2775 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2776 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2777 			      SK_LINKLED_LINKSYNC_ON);
2778 
2779 		/* Configure RX LED */
2780 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2781 			      SK_RXLEDCTL_COUNTER_START);
2782 
2783 		/* Configure TX LED */
2784 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2785 			      SK_TXLEDCTL_COUNTER_START);
2786 	}
2787 
2788 	/* Configure I2C registers */
2789 
2790 	/* Configure XMAC(s) */
2791 	switch (sc->sk_type) {
2792 	case SK_GENESIS:
2793 		sk_init_xmac(sc_if);
2794 		break;
2795 	case SK_YUKON:
2796 	case SK_YUKON_LITE:
2797 	case SK_YUKON_LP:
2798 		sk_init_yukon(sc_if);
2799 		break;
2800 	}
2801 	if ((rc = mii_mediachg(mii)) == ENXIO)
2802 		rc = 0;
2803 	else if (rc != 0)
2804 		goto out;
2805 
2806 	if (sc->sk_type == SK_GENESIS) {
2807 		/* Configure MAC FIFOs */
2808 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2809 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2810 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2811 
2812 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2813 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2814 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2815 	}
2816 
2817 	/* Configure transmit arbiter(s) */
2818 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2819 	    SK_TXARCTL_ON | SK_TXARCTL_FSYNC_ON);
2820 
2821 	/* Configure RAMbuffers */
2822 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2823 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2824 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2825 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2826 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2827 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2828 
2829 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2830 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2831 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2832 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2833 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2834 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2835 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2836 
2837 	/* Configure BMUs */
2838 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2839 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2840 	    SK_RX_RING_ADDR(sc_if, 0));
2841 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2842 
2843 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2844 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2845 	    SK_TX_RING_ADDR(sc_if, 0));
2846 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2847 
2848 	/* Init descriptors */
2849 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2850 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2851 		    "memory for rx buffers\n");
2852 		sk_stop(ifp, 0);
2853 		splx(s);
2854 		return ENOBUFS;
2855 	}
2856 
2857 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2858 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2859 		    "memory for tx buffers\n");
2860 		sk_stop(ifp, 0);
2861 		splx(s);
2862 		return ENOBUFS;
2863 	}
2864 
2865 	/* Set interrupt moderation if changed via sysctl. */
2866 	switch (sc->sk_type) {
2867 	case SK_GENESIS:
2868 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2869 		break;
2870 	case SK_YUKON_EC:
2871 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2872 		break;
2873 	default:
2874 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2875 	}
2876 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2877 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2878 		sk_win_write_4(sc, SK_IMTIMERINIT,
2879 		    SK_IM_USECS(sc->sk_int_mod));
2880 		aprint_verbose_dev(sc->sk_dev,
2881 		    "interrupt moderation is %d us\n", sc->sk_int_mod);
2882 	}
2883 
2884 	/* Configure interrupt handling */
2885 	CSR_READ_4(sc, SK_ISSR);
2886 	if (sc_if->sk_port == SK_PORT_A)
2887 		sc->sk_intrmask |= SK_INTRS1;
2888 	else
2889 		sc->sk_intrmask |= SK_INTRS2;
2890 
2891 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2892 
2893 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2894 
2895 	/* Start BMUs. */
2896 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2897 
2898 	if (sc->sk_type == SK_GENESIS) {
2899 		/* Enable XMACs TX and RX state machines */
2900 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2901 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2902 			       XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
2903 	}
2904 
2905 	if (SK_YUKON_FAMILY(sc->sk_type)) {
2906 		uint16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2907 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2908 #if 0
2909 		/* XXX disable 100Mbps and full duplex mode? */
2910 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2911 #endif
2912 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2913 	}
2914 
2915 
2916 	ifp->if_flags |= IFF_RUNNING;
2917 	ifp->if_flags &= ~IFF_OACTIVE;
2918 	callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2919 
2920 out:
2921 	splx(s);
2922 	return rc;
2923 }
2924 
2925 void
2926 sk_stop(struct ifnet *ifp, int disable)
2927 {
2928 	struct sk_if_softc	*sc_if = ifp->if_softc;
2929 	struct sk_softc		*sc = sc_if->sk_softc;
2930 	int			i;
2931 
2932 	DPRINTFN(1, ("sk_stop\n"));
2933 
2934 	callout_stop(&sc_if->sk_tick_ch);
2935 
2936 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2937 		uint32_t		val;
2938 
2939 		/* Put PHY back into reset. */
2940 		val = sk_win_read_4(sc, SK_GPIO);
2941 		if (sc_if->sk_port == SK_PORT_A) {
2942 			val |= SK_GPIO_DIR0;
2943 			val &= ~SK_GPIO_DAT0;
2944 		} else {
2945 			val |= SK_GPIO_DIR2;
2946 			val &= ~SK_GPIO_DAT2;
2947 		}
2948 		sk_win_write_4(sc, SK_GPIO, val);
2949 	}
2950 
2951 	/* Turn off various components of this interface. */
2952 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2953 	switch (sc->sk_type) {
2954 	case SK_GENESIS:
2955 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2956 			      SK_TXMACCTL_XMAC_RESET);
2957 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2958 		break;
2959 	case SK_YUKON:
2960 	case SK_YUKON_LITE:
2961 	case SK_YUKON_LP:
2962 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2963 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2964 		break;
2965 	}
2966 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2967 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET |SK_RBCTL_OFF);
2968 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2969 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2970 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2971 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2972 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2973 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2974 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2975 
2976 	/* Disable interrupts */
2977 	if (sc_if->sk_port == SK_PORT_A)
2978 		sc->sk_intrmask &= ~SK_INTRS1;
2979 	else
2980 		sc->sk_intrmask &= ~SK_INTRS2;
2981 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2982 
2983 	SK_XM_READ_2(sc_if, XM_ISR);
2984 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2985 
2986 	/* Free RX and TX mbufs still in the queues. */
2987 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2988 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2989 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2990 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2991 		}
2992 	}
2993 
2994 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2995 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2996 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2997 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2998 		}
2999 	}
3000 
3001 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3002 }
3003 
3004 /* Power Management Framework */
3005 
3006 static bool
3007 skc_suspend(device_t dv, const pmf_qual_t *qual)
3008 {
3009 	struct sk_softc *sc = device_private(dv);
3010 
3011 	DPRINTFN(2, ("skc_suspend\n"));
3012 
3013 	/* Turn off the driver is loaded LED */
3014 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
3015 
3016 	return true;
3017 }
3018 
3019 static bool
3020 skc_resume(device_t dv, const pmf_qual_t *qual)
3021 {
3022 	struct sk_softc *sc = device_private(dv);
3023 
3024 	DPRINTFN(2, ("skc_resume\n"));
3025 
3026 	sk_reset(sc);
3027 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
3028 
3029 	return true;
3030 }
3031 
3032 static bool
3033 sk_resume(device_t dv, const pmf_qual_t *qual)
3034 {
3035 	struct sk_if_softc *sc_if = device_private(dv);
3036 
3037 	sk_init_yukon(sc_if);
3038 	return true;
3039 }
3040 
3041 CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc),
3042     skc_probe, skc_attach, NULL, NULL);
3043 
3044 CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc),
3045     sk_probe, sk_attach, NULL, NULL);
3046 
3047 #ifdef SK_DEBUG
3048 void
3049 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
3050 {
3051 #define DESC_PRINT(X)					\
3052 	if (X)						\
3053 		printf("txdesc[%d]." #X "=%#x\n",	\
3054 		       idx, X);
3055 
3056 	DESC_PRINT(le32toh(desc->sk_ctl));
3057 	DESC_PRINT(le32toh(desc->sk_next));
3058 	DESC_PRINT(le32toh(desc->sk_data_lo));
3059 	DESC_PRINT(le32toh(desc->sk_data_hi));
3060 	DESC_PRINT(le32toh(desc->sk_xmac_txstat));
3061 	DESC_PRINT(le16toh(desc->sk_rsvd0));
3062 	DESC_PRINT(le16toh(desc->sk_csum_startval));
3063 	DESC_PRINT(le16toh(desc->sk_csum_startpos));
3064 	DESC_PRINT(le16toh(desc->sk_csum_writepos));
3065 	DESC_PRINT(le16toh(desc->sk_rsvd1));
3066 #undef PRINT
3067 }
3068 
3069 void
3070 sk_dump_bytes(const char *data, int len)
3071 {
3072 	int c, i, j;
3073 
3074 	for (i = 0; i < len; i += 16) {
3075 		printf("%08x  ", i);
3076 		c = len - i;
3077 		if (c > 16) c = 16;
3078 
3079 		for (j = 0; j < c; j++) {
3080 			printf("%02x ", data[i + j] & 0xff);
3081 			if ((j & 0xf) == 7 && j > 0)
3082 				printf(" ");
3083 		}
3084 
3085 		for (; j < 16; j++)
3086 			printf("   ");
3087 		printf("  ");
3088 
3089 		for (j = 0; j < c; j++) {
3090 			int ch = data[i + j] & 0xff;
3091 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
3092 		}
3093 
3094 		printf("\n");
3095 
3096 		if (c < 16)
3097 			break;
3098 	}
3099 }
3100 
3101 void
3102 sk_dump_mbuf(struct mbuf *m)
3103 {
3104 	int count = m->m_pkthdr.len;
3105 
3106 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3107 
3108 	while (count > 0 && m) {
3109 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3110 		       m, m->m_data, m->m_len);
3111 		sk_dump_bytes(mtod(m, char *), m->m_len);
3112 
3113 		count -= m->m_len;
3114 		m = m->m_next;
3115 	}
3116 }
3117 #endif
3118 
3119 static int
3120 sk_sysctl_handler(SYSCTLFN_ARGS)
3121 {
3122 	int error, t;
3123 	struct sysctlnode node;
3124 	struct sk_softc *sc;
3125 
3126 	node = *rnode;
3127 	sc = node.sysctl_data;
3128 	t = sc->sk_int_mod;
3129 	node.sysctl_data = &t;
3130 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3131 	if (error || newp == NULL)
3132 		return error;
3133 
3134 	if (t < SK_IM_MIN || t > SK_IM_MAX)
3135 		return EINVAL;
3136 
3137 	/* update the softc with sysctl-changed value, and mark
3138 	   for hardware update */
3139 	sc->sk_int_mod = t;
3140 	sc->sk_int_mod_pending = 1;
3141 	return 0;
3142 }
3143 
3144 /*
3145  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3146  * set up in skc_attach()
3147  */
3148 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3149 {
3150 	int rc;
3151 	const struct sysctlnode *node;
3152 
3153 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
3154 	    0, CTLTYPE_NODE, "sk",
3155 	    SYSCTL_DESCR("sk interface controls"),
3156 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3157 		goto err;
3158 	}
3159 
3160 	sk_root_num = node->sysctl_num;
3161 	return;
3162 
3163 err:
3164 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3165 }
3166