xref: /netbsd-src/sys/dev/pci/if_sk.c (revision 627f7eb200a4419d89b531d55fccd2ee3ffdcde0)
1 /*	$NetBSD: if_sk.c,v 1.106 2020/07/02 09:07:10 msaitoh Exp $	*/
2 
3 /*-
4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*	$OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $	*/
30 
31 /*
32  * Copyright (c) 1997, 1998, 1999, 2000
33  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
34  *
35  * Redistribution and use in source and binary forms, with or without
36  * modification, are permitted provided that the following conditions
37  * are met:
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 3. All advertising materials mentioning features or use of this software
44  *    must display the following acknowledgement:
45  *	This product includes software developed by Bill Paul.
46  * 4. Neither the name of the author nor the names of any co-contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
54  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
60  * THE POSSIBILITY OF SUCH DAMAGE.
61  *
62  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
63  */
64 
65 /*
66  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
67  *
68  * Permission to use, copy, modify, and distribute this software for any
69  * purpose with or without fee is hereby granted, provided that the above
70  * copyright notice and this permission notice appear in all copies.
71  *
72  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
73  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
74  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
75  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
76  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
77  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
78  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
79  */
80 
81 /*
82  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
83  * the SK-984x series adapters, both single port and dual port.
84  * References:
85  *	The XaQti XMAC II datasheet,
86  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
87  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
88  *
89  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
90  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
91  * convenience to others until Vitesse corrects this problem:
92  *
93  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94  *
95  * Written by Bill Paul <wpaul@ee.columbia.edu>
96  * Department of Electrical Engineering
97  * Columbia University, New York City
98  */
99 
100 /*
101  * The SysKonnect gigabit ethernet adapters consist of two main
102  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
103  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
104  * components and a PHY while the GEnesis controller provides a PCI
105  * interface with DMA support. Each card may have between 512K and
106  * 2MB of SRAM on board depending on the configuration.
107  *
108  * The SysKonnect GEnesis controller can have either one or two XMAC
109  * chips connected to it, allowing single or dual port NIC configurations.
110  * SysKonnect has the distinction of being the only vendor on the market
111  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
112  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
113  * XMAC registers. This driver takes advantage of these features to allow
114  * both XMACs to operate as independent interfaces.
115  */
116 
117 #include <sys/cdefs.h>
118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.106 2020/07/02 09:07:10 msaitoh Exp $");
119 
120 #include <sys/param.h>
121 #include <sys/systm.h>
122 #include <sys/sockio.h>
123 #include <sys/mbuf.h>
124 #include <sys/malloc.h>
125 #include <sys/mutex.h>
126 #include <sys/kernel.h>
127 #include <sys/socket.h>
128 #include <sys/device.h>
129 #include <sys/queue.h>
130 #include <sys/callout.h>
131 #include <sys/sysctl.h>
132 #include <sys/endian.h>
133 
134 #include <net/if.h>
135 #include <net/if_dl.h>
136 #include <net/if_types.h>
137 
138 #include <net/if_media.h>
139 
140 #include <net/bpf.h>
141 #include <sys/rndsource.h>
142 
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145 #include <dev/mii/brgphyreg.h>
146 
147 #include <dev/pci/pcireg.h>
148 #include <dev/pci/pcivar.h>
149 #include <dev/pci/pcidevs.h>
150 
151 /* #define SK_USEIOSPACE */
152 
153 #include <dev/pci/if_skreg.h>
154 #include <dev/pci/if_skvar.h>
155 
156 static int skc_probe(device_t, cfdata_t, void *);
157 static void skc_attach(device_t, device_t, void *);
158 static int sk_probe(device_t, cfdata_t, void *);
159 static void sk_attach(device_t, device_t, void *);
160 static int skcprint(void *, const char *);
161 static int sk_intr(void *);
162 static void sk_intr_bcom(struct sk_if_softc *);
163 static void sk_intr_xmac(struct sk_if_softc *);
164 static void sk_intr_yukon(struct sk_if_softc *);
165 static void sk_rxeof(struct sk_if_softc *);
166 static void sk_txeof(struct sk_if_softc *);
167 static int sk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *);
168 static void sk_start(struct ifnet *);
169 static int sk_ioctl(struct ifnet *, u_long, void *);
170 static int sk_init(struct ifnet *);
171 static void sk_unreset_xmac(struct sk_if_softc *);
172 static void sk_init_xmac(struct sk_if_softc *);
173 static void sk_unreset_yukon(struct sk_if_softc *);
174 static void sk_init_yukon(struct sk_if_softc *);
175 static void sk_stop(struct ifnet *, int);
176 static void sk_watchdog(struct ifnet *);
177 static int sk_ifmedia_upd(struct ifnet *);
178 static void sk_reset(struct sk_softc *);
179 static int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
180 static int sk_alloc_jumbo_mem(struct sk_if_softc *);
181 static void *sk_jalloc(struct sk_if_softc *);
182 static void sk_jfree(struct mbuf *, void *, size_t, void *);
183 static int sk_init_rx_ring(struct sk_if_softc *);
184 static int sk_init_tx_ring(struct sk_if_softc *);
185 static uint8_t sk_vpd_readbyte(struct sk_softc *, int);
186 static void sk_vpd_read_res(struct sk_softc *, struct vpd_res *, int);
187 static void sk_vpd_read(struct sk_softc *);
188 
189 static void sk_update_int_mod(struct sk_softc *);
190 
191 static int sk_xmac_miibus_readreg(device_t, int, int, uint16_t *);
192 static int sk_xmac_miibus_writereg(device_t, int, int, uint16_t);
193 static void sk_xmac_miibus_statchg(struct ifnet *);
194 
195 static int sk_marv_miibus_readreg(device_t, int, int, uint16_t *);
196 static int sk_marv_miibus_writereg(device_t, int, int, uint16_t);
197 static void sk_marv_miibus_statchg(struct ifnet *);
198 
199 static uint32_t sk_xmac_hash(void *);
200 static uint32_t sk_yukon_hash(void *);
201 static void sk_setfilt(struct sk_if_softc *, void *, int);
202 static void sk_setmulti(struct sk_if_softc *);
203 static void sk_tick(void *);
204 
205 static bool skc_suspend(device_t, const pmf_qual_t *);
206 static bool skc_resume(device_t, const pmf_qual_t *);
207 static bool sk_resume(device_t dv, const pmf_qual_t *);
208 
209 /* #define SK_DEBUG 2 */
210 #ifdef SK_DEBUG
211 #define DPRINTF(x)	if (skdebug) printf x
212 #define DPRINTFN(n, x)	if (skdebug >= (n)) printf x
213 int	skdebug = SK_DEBUG;
214 
215 static void sk_dump_txdesc(struct sk_tx_desc *, int);
216 static void sk_dump_mbuf(struct mbuf *);
217 static void sk_dump_bytes(const char *, int);
218 #else
219 #define DPRINTF(x)
220 #define DPRINTFN(n, x)
221 #endif
222 
223 static int sk_sysctl_handler(SYSCTLFN_PROTO);
224 static int sk_root_num;
225 
226 /* supported device vendors */
227 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
228 static const struct sk_product {
229 	pci_vendor_id_t		sk_vendor;
230 	pci_product_id_t	sk_product;
231 } sk_products[] = {
232 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
233 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
234 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
235 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
236 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
237 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
238 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
239 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
240 	{ 0, 0, }
241 };
242 
243 #define SK_LINKSYS_EG1032_SUBID	0x00151737
244 
245 static inline uint32_t
246 sk_win_read_4(struct sk_softc *sc, uint32_t reg)
247 {
248 #ifdef SK_USEIOSPACE
249 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
250 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
251 #else
252 	return CSR_READ_4(sc, reg);
253 #endif
254 }
255 
256 static inline uint16_t
257 sk_win_read_2(struct sk_softc *sc, uint32_t reg)
258 {
259 #ifdef SK_USEIOSPACE
260 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
261 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
262 #else
263 	return CSR_READ_2(sc, reg);
264 #endif
265 }
266 
267 static inline uint8_t
268 sk_win_read_1(struct sk_softc *sc, uint32_t reg)
269 {
270 #ifdef SK_USEIOSPACE
271 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
272 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
273 #else
274 	return CSR_READ_1(sc, reg);
275 #endif
276 }
277 
278 static inline void
279 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x)
280 {
281 #ifdef SK_USEIOSPACE
282 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
283 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
284 #else
285 	CSR_WRITE_4(sc, reg, x);
286 #endif
287 }
288 
289 static inline void
290 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x)
291 {
292 #ifdef SK_USEIOSPACE
293 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
294 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
295 #else
296 	CSR_WRITE_2(sc, reg, x);
297 #endif
298 }
299 
300 static inline void
301 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x)
302 {
303 #ifdef SK_USEIOSPACE
304 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
305 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
306 #else
307 	CSR_WRITE_1(sc, reg, x);
308 #endif
309 }
310 
311 /*
312  * The VPD EEPROM contains Vital Product Data, as suggested in
313  * the PCI 2.1 specification. The VPD data is separared into areas
314  * denoted by resource IDs. The SysKonnect VPD contains an ID string
315  * resource (the name of the adapter), a read-only area resource
316  * containing various key/data fields and a read/write area which
317  * can be used to store asset management information or log messages.
318  * We read the ID string and read-only into buffers attached to
319  * the controller softc structure for later use. At the moment,
320  * we only use the ID string during sk_attach().
321  */
322 static uint8_t
323 sk_vpd_readbyte(struct sk_softc *sc, int addr)
324 {
325 	int			i;
326 
327 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
328 	for (i = 0; i < SK_TIMEOUT; i++) {
329 		DELAY(1);
330 		if (sk_win_read_2(sc,
331 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
332 			break;
333 	}
334 
335 	if (i == SK_TIMEOUT)
336 		return 0;
337 
338 	return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
339 }
340 
341 static void
342 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
343 {
344 	int			i;
345 	uint8_t		*ptr;
346 
347 	ptr = (uint8_t *)res;
348 	for (i = 0; i < sizeof(struct vpd_res); i++)
349 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
350 }
351 
352 static void
353 sk_vpd_read(struct sk_softc *sc)
354 {
355 	int			pos = 0, i;
356 	struct vpd_res		res;
357 
358 	if (sc->sk_vpd_prodname != NULL)
359 		free(sc->sk_vpd_prodname, M_DEVBUF);
360 	if (sc->sk_vpd_readonly != NULL)
361 		free(sc->sk_vpd_readonly, M_DEVBUF);
362 	sc->sk_vpd_prodname = NULL;
363 	sc->sk_vpd_readonly = NULL;
364 
365 	sk_vpd_read_res(sc, &res, pos);
366 
367 	if (res.vr_id != VPD_RES_ID) {
368 		aprint_error_dev(sc->sk_dev,
369 		    "bad VPD resource id: expected %x got %x\n",
370 		    VPD_RES_ID, res.vr_id);
371 		return;
372 	}
373 
374 	pos += sizeof(res);
375 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_WAITOK);
376 	for (i = 0; i < res.vr_len; i++)
377 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
378 	sc->sk_vpd_prodname[i] = '\0';
379 	pos += i;
380 
381 	sk_vpd_read_res(sc, &res, pos);
382 
383 	if (res.vr_id != VPD_RES_READ) {
384 		aprint_error_dev(sc->sk_dev,
385 		    "bad VPD resource id: expected %x got %x\n",
386 		    VPD_RES_READ, res.vr_id);
387 		return;
388 	}
389 
390 	pos += sizeof(res);
391 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_WAITOK);
392 	for (i = 0; i < res.vr_len ; i++)
393 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
394 }
395 
396 static int
397 sk_xmac_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
398 {
399 	struct sk_if_softc *sc_if = device_private(dev);
400 	int i;
401 
402 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
403 
404 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
405 		return -1;
406 
407 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
408 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
409 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
410 		for (i = 0; i < SK_TIMEOUT; i++) {
411 			DELAY(1);
412 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
413 			    XM_MMUCMD_PHYDATARDY)
414 				break;
415 		}
416 
417 		if (i == SK_TIMEOUT) {
418 			aprint_error_dev(sc_if->sk_dev,
419 			    "phy failed to come ready\n");
420 			return ETIMEDOUT;
421 		}
422 	}
423 	DELAY(1);
424 	*val = SK_XM_READ_2(sc_if, XM_PHY_DATA);
425 	return 0;
426 }
427 
428 static int
429 sk_xmac_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
430 {
431 	struct sk_if_softc *sc_if = device_private(dev);
432 	int i;
433 
434 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
435 
436 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
437 	for (i = 0; i < SK_TIMEOUT; i++) {
438 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
439 			break;
440 	}
441 
442 	if (i == SK_TIMEOUT) {
443 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
444 		return ETIMEDOUT;
445 	}
446 
447 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
448 	for (i = 0; i < SK_TIMEOUT; i++) {
449 		DELAY(1);
450 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
451 			break;
452 	}
453 
454 	if (i == SK_TIMEOUT) {
455 		aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
456 		return ETIMEDOUT;
457 	}
458 
459 	return 0;
460 }
461 
462 static void
463 sk_xmac_miibus_statchg(struct ifnet *ifp)
464 {
465 	struct sk_if_softc *sc_if = ifp->if_softc;
466 	struct mii_data *mii = &sc_if->sk_mii;
467 
468 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
469 
470 	/*
471 	 * If this is a GMII PHY, manually set the XMAC's
472 	 * duplex mode accordingly.
473 	 */
474 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
475 		if ((mii->mii_media_active & IFM_FDX) != 0)
476 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
477 		else
478 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
479 	}
480 }
481 
482 static int
483 sk_marv_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
484 {
485 	struct sk_if_softc *sc_if = device_private(dev);
486 	uint16_t data;
487 	int i;
488 
489 	if (phy != 0 ||
490 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
491 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
492 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
493 			     phy, reg));
494 		return -1;
495 	}
496 
497 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
498 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
499 
500 	for (i = 0; i < SK_TIMEOUT; i++) {
501 		DELAY(1);
502 		data = SK_YU_READ_2(sc_if, YUKON_SMICR);
503 		if (data & YU_SMICR_READ_VALID)
504 			break;
505 	}
506 
507 	if (i == SK_TIMEOUT) {
508 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
509 		return ETIMEDOUT;
510 	}
511 
512 	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
513 		     SK_TIMEOUT));
514 
515 	*val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
516 
517 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#hx\n",
518 		     phy, reg, *val));
519 
520 	return 0;
521 }
522 
523 static int
524 sk_marv_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
525 {
526 	struct sk_if_softc *sc_if = device_private(dev);
527 	int i;
528 
529 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#hx\n",
530 		     phy, reg, val));
531 
532 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
533 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
534 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
535 
536 	for (i = 0; i < SK_TIMEOUT; i++) {
537 		DELAY(1);
538 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
539 			break;
540 	}
541 
542 	if (i == SK_TIMEOUT) {
543 		printf("%s: phy write timed out\n",
544 		    device_xname(sc_if->sk_dev));
545 		return ETIMEDOUT;
546 	}
547 
548 	return 0;
549 }
550 
551 static void
552 sk_marv_miibus_statchg(struct ifnet *ifp)
553 {
554 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
555 		     SK_YU_READ_2(((struct sk_if_softc *)ifp->if_softc),
556 		     YUKON_GPCR)));
557 }
558 
559 static uint32_t
560 sk_xmac_hash(void *addr)
561 {
562 	uint32_t		crc;
563 
564 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
565 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
566 	DPRINTFN(2,("multicast hash for %s is %x\n", ether_sprintf(addr),crc));
567 	return crc;
568 }
569 
570 static uint32_t
571 sk_yukon_hash(void *addr)
572 {
573 	uint32_t		crc;
574 
575 	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
576 	crc &= ((1 << SK_HASH_BITS) - 1);
577 	DPRINTFN(2,("multicast hash for %s is %x\n", ether_sprintf(addr),crc));
578 	return crc;
579 }
580 
581 static void
582 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
583 {
584 	char *addr = addrv;
585 	int base = XM_RXFILT_ENTRY(slot);
586 
587 	SK_XM_WRITE_2(sc_if, base, *(uint16_t *)(&addr[0]));
588 	SK_XM_WRITE_2(sc_if, base + 2, *(uint16_t *)(&addr[2]));
589 	SK_XM_WRITE_2(sc_if, base + 4, *(uint16_t *)(&addr[4]));
590 }
591 
592 static void
593 sk_setmulti(struct sk_if_softc *sc_if)
594 {
595 	struct sk_softc *sc = sc_if->sk_softc;
596 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
597 	uint32_t hashes[2] = { 0, 0 };
598 	int h = 0, i;
599 	struct ethercom *ec = &sc_if->sk_ethercom;
600 	struct ether_multi *enm;
601 	struct ether_multistep step;
602 	uint8_t dummy[] = { 0, 0, 0, 0, 0, 0 };
603 
604 	/* First, zot all the existing filters. */
605 	switch (sc->sk_type) {
606 	case SK_GENESIS:
607 		for (i = 1; i < XM_RXFILT_MAX; i++)
608 			sk_setfilt(sc_if, (void *)&dummy, i);
609 
610 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
611 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
612 		break;
613 	case SK_YUKON:
614 	case SK_YUKON_LITE:
615 	case SK_YUKON_LP:
616 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
617 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
618 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
619 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
620 		break;
621 	}
622 
623 	/* Now program new ones. */
624 allmulti:
625 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
626 		hashes[0] = 0xFFFFFFFF;
627 		hashes[1] = 0xFFFFFFFF;
628 	} else {
629 		i = 1;
630 		/* First find the tail of the list. */
631 		ETHER_LOCK(ec);
632 		ETHER_FIRST_MULTI(step, ec, enm);
633 		while (enm != NULL) {
634 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
635 				 ETHER_ADDR_LEN)) {
636 				ifp->if_flags |= IFF_ALLMULTI;
637 				ETHER_UNLOCK(ec);
638 				goto allmulti;
639 			}
640 			DPRINTFN(2,("multicast address %s\n",
641 				ether_sprintf(enm->enm_addrlo)));
642 			/*
643 			 * Program the first XM_RXFILT_MAX multicast groups
644 			 * into the perfect filter. For all others,
645 			 * use the hash table.
646 			 */
647 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
648 				sk_setfilt(sc_if, enm->enm_addrlo, i);
649 				i++;
650 			}
651 			else {
652 				switch (sc->sk_type) {
653 				case SK_GENESIS:
654 					h = sk_xmac_hash(enm->enm_addrlo);
655 					break;
656 				case SK_YUKON:
657 				case SK_YUKON_LITE:
658 				case SK_YUKON_LP:
659 					h = sk_yukon_hash(enm->enm_addrlo);
660 					break;
661 				}
662 				if (h < 32)
663 					hashes[0] |= (1 << h);
664 				else
665 					hashes[1] |= (1 << (h - 32));
666 			}
667 
668 			ETHER_NEXT_MULTI(step, enm);
669 		}
670 		ETHER_UNLOCK(ec);
671 	}
672 
673 	switch (sc->sk_type) {
674 	case SK_GENESIS:
675 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH |
676 			       XM_MODE_RX_USE_PERFECT);
677 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
678 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
679 		break;
680 	case SK_YUKON:
681 	case SK_YUKON_LITE:
682 	case SK_YUKON_LP:
683 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
684 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
685 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
686 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
687 		break;
688 	}
689 }
690 
691 static int
692 sk_init_rx_ring(struct sk_if_softc *sc_if)
693 {
694 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
695 	struct sk_ring_data	*rd = sc_if->sk_rdata;
696 	int			i;
697 
698 	memset((char *)rd->sk_rx_ring, 0,
699 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
700 
701 	for (i = 0; i < SK_RX_RING_CNT; i++) {
702 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
703 		if (i == (SK_RX_RING_CNT - 1)) {
704 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
705 			rd->sk_rx_ring[i].sk_next =
706 				htole32(SK_RX_RING_ADDR(sc_if, 0));
707 		} else {
708 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
709 			rd->sk_rx_ring[i].sk_next =
710 				htole32(SK_RX_RING_ADDR(sc_if, i+1));
711 		}
712 	}
713 
714 	for (i = 0; i < SK_RX_RING_CNT; i++) {
715 		if (sk_newbuf(sc_if, i, NULL,
716 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
717 			aprint_error_dev(sc_if->sk_dev,
718 			    "failed alloc of %dth mbuf\n", i);
719 			return ENOBUFS;
720 		}
721 	}
722 	sc_if->sk_cdata.sk_rx_prod = 0;
723 	sc_if->sk_cdata.sk_rx_cons = 0;
724 
725 	return 0;
726 }
727 
728 static int
729 sk_init_tx_ring(struct sk_if_softc *sc_if)
730 {
731 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
732 	struct sk_ring_data	*rd = sc_if->sk_rdata;
733 	int			i;
734 
735 	memset(sc_if->sk_rdata->sk_tx_ring, 0,
736 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
737 
738 	for (i = 0; i < SK_TX_RING_CNT; i++) {
739 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
740 		if (i == (SK_TX_RING_CNT - 1)) {
741 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
742 			rd->sk_tx_ring[i].sk_next =
743 				htole32(SK_TX_RING_ADDR(sc_if, 0));
744 		} else {
745 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
746 			rd->sk_tx_ring[i].sk_next =
747 				htole32(SK_TX_RING_ADDR(sc_if, i+1));
748 		}
749 	}
750 
751 	sc_if->sk_cdata.sk_tx_prod = 0;
752 	sc_if->sk_cdata.sk_tx_cons = 0;
753 	sc_if->sk_cdata.sk_tx_cnt = 0;
754 
755 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
756 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
757 
758 	return 0;
759 }
760 
761 static int
762 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
763 	  bus_dmamap_t dmamap)
764 {
765 	struct mbuf		*m_new = NULL;
766 	struct sk_chain		*c;
767 	struct sk_rx_desc	*r;
768 
769 	if (m == NULL) {
770 		void *buf = NULL;
771 
772 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
773 		if (m_new == NULL) {
774 			aprint_error_dev(sc_if->sk_dev,
775 			    "no memory for rx list -- packet dropped!\n");
776 			return ENOBUFS;
777 		}
778 
779 		/* Allocate the jumbo buffer */
780 		buf = sk_jalloc(sc_if);
781 		if (buf == NULL) {
782 			m_freem(m_new);
783 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
784 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
785 			return ENOBUFS;
786 		}
787 
788 		/* Attach the buffer to the mbuf */
789 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
790 		MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
791 
792 	} else {
793 		/*
794 		 * We're re-using a previously allocated mbuf;
795 		 * be sure to re-init pointers and lengths to
796 		 * default values.
797 		 */
798 		m_new = m;
799 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
800 		m_new->m_data = m_new->m_ext.ext_buf;
801 	}
802 	m_adj(m_new, ETHER_ALIGN);
803 
804 	c = &sc_if->sk_cdata.sk_rx_chain[i];
805 	r = c->sk_desc;
806 	c->sk_mbuf = m_new;
807 	r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
808 	    (((vaddr_t)m_new->m_data
809 		- (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
810 	r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
811 
812 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
813 
814 	return 0;
815 }
816 
817 /*
818  * Memory management for jumbo frames.
819  */
820 
821 static int
822 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
823 {
824 	struct sk_softc		*sc = sc_if->sk_softc;
825 	char *ptr, *kva;
826 	bus_dma_segment_t	seg;
827 	int		i, rseg, state, error;
828 	struct sk_jpool_entry	*entry;
829 
830 	state = error = 0;
831 
832 	/* Grab a big chunk o' storage. */
833 	if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
834 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
835 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
836 		return ENOBUFS;
837 	}
838 
839 	state = 1;
840 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
841 			   BUS_DMA_NOWAIT)) {
842 		aprint_error_dev(sc->sk_dev,
843 		    "can't map dma buffers (%d bytes)\n",
844 		    SK_JMEM);
845 		error = ENOBUFS;
846 		goto out;
847 	}
848 
849 	state = 2;
850 	if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
851 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
852 		aprint_error_dev(sc->sk_dev, "can't create dma map\n");
853 		error = ENOBUFS;
854 		goto out;
855 	}
856 
857 	state = 3;
858 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
859 			    kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
860 		aprint_error_dev(sc->sk_dev, "can't load dma map\n");
861 		error = ENOBUFS;
862 		goto out;
863 	}
864 
865 	state = 4;
866 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
867 	DPRINTFN(1,("sk_jumbo_buf = %p\n", sc_if->sk_cdata.sk_jumbo_buf));
868 
869 	LIST_INIT(&sc_if->sk_jfree_listhead);
870 	LIST_INIT(&sc_if->sk_jinuse_listhead);
871 	mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
872 
873 	/*
874 	 * Now divide it up into 9K pieces and save the addresses
875 	 * in an array.
876 	 */
877 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
878 	for (i = 0; i < SK_JSLOTS; i++) {
879 		sc_if->sk_cdata.sk_jslots[i] = ptr;
880 		ptr += SK_JLEN;
881 		entry = malloc(sizeof(struct sk_jpool_entry),
882 		    M_DEVBUF, M_WAITOK);
883 		entry->slot = i;
884 		if (i)
885 			LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
886 				 entry, jpool_entries);
887 		else
888 			LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
889 				 entry, jpool_entries);
890 	}
891 out:
892 	if (error != 0) {
893 		switch (state) {
894 		case 4:
895 			bus_dmamap_unload(sc->sc_dmatag,
896 			    sc_if->sk_cdata.sk_rx_jumbo_map);
897 			/* FALLTHROUGH */
898 		case 3:
899 			bus_dmamap_destroy(sc->sc_dmatag,
900 			    sc_if->sk_cdata.sk_rx_jumbo_map);
901 			/* FALLTHROUGH */
902 		case 2:
903 			bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
904 			/* FALLTHROUGH */
905 		case 1:
906 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
907 			break;
908 		default:
909 			break;
910 		}
911 	}
912 
913 	return error;
914 }
915 
916 /*
917  * Allocate a jumbo buffer.
918  */
919 static void *
920 sk_jalloc(struct sk_if_softc *sc_if)
921 {
922 	struct sk_jpool_entry	*entry;
923 
924 	mutex_enter(&sc_if->sk_jpool_mtx);
925 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
926 
927 	if (entry == NULL) {
928 		mutex_exit(&sc_if->sk_jpool_mtx);
929 		return NULL;
930 	}
931 
932 	LIST_REMOVE(entry, jpool_entries);
933 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
934 	mutex_exit(&sc_if->sk_jpool_mtx);
935 	return sc_if->sk_cdata.sk_jslots[entry->slot];
936 }
937 
938 /*
939  * Release a jumbo buffer.
940  */
941 static void
942 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
943 {
944 	struct sk_jpool_entry *entry;
945 	struct sk_if_softc *sc;
946 	int i;
947 
948 	/* Extract the softc struct pointer. */
949 	sc = (struct sk_if_softc *)arg;
950 
951 	if (sc == NULL)
952 		panic("sk_jfree: can't find softc pointer!");
953 
954 	/* calculate the slot this buffer belongs to */
955 
956 	i = ((vaddr_t)buf
957 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
958 
959 	if ((i < 0) || (i >= SK_JSLOTS))
960 		panic("sk_jfree: asked to free buffer that we don't manage!");
961 
962 	mutex_enter(&sc->sk_jpool_mtx);
963 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
964 	if (entry == NULL)
965 		panic("sk_jfree: buffer not in use!");
966 	entry->slot = i;
967 	LIST_REMOVE(entry, jpool_entries);
968 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
969 	mutex_exit(&sc->sk_jpool_mtx);
970 
971 	if (__predict_true(m != NULL))
972 		pool_cache_put(mb_cache, m);
973 }
974 
975 /*
976  * Set media options.
977  */
978 static int
979 sk_ifmedia_upd(struct ifnet *ifp)
980 {
981 	struct sk_if_softc *sc_if = ifp->if_softc;
982 	int rc;
983 
984 	(void) sk_init(ifp);
985 	if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
986 		return 0;
987 	return rc;
988 }
989 
990 static void
991 sk_promisc(struct sk_if_softc *sc_if, int on)
992 {
993 	struct sk_softc *sc = sc_if->sk_softc;
994 	switch (sc->sk_type) {
995 	case SK_GENESIS:
996 		if (on)
997 			SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
998 		else
999 			SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
1000 		break;
1001 	case SK_YUKON:
1002 	case SK_YUKON_LITE:
1003 	case SK_YUKON_LP:
1004 		if (on)
1005 			SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1006 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
1007 		else
1008 			SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1009 			    YU_RCR_UFLEN | YU_RCR_MUFLEN);
1010 		break;
1011 	default:
1012 		aprint_error_dev(sc_if->sk_dev, "Can't set promisc for %d\n",
1013 			sc->sk_type);
1014 		break;
1015 	}
1016 }
1017 
1018 static int
1019 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
1020 {
1021 	struct sk_if_softc *sc_if = ifp->if_softc;
1022 	int s, error = 0;
1023 
1024 	/* DPRINTFN(2, ("sk_ioctl\n")); */
1025 
1026 	s = splnet();
1027 
1028 	switch (command) {
1029 
1030 	case SIOCSIFFLAGS:
1031 		DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1032 		if ((error = ifioctl_common(ifp, command, data)) != 0)
1033 			break;
1034 		switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1035 		case IFF_RUNNING:
1036 			sk_stop(ifp, 1);
1037 			break;
1038 		case IFF_UP:
1039 			sk_init(ifp);
1040 			break;
1041 		case IFF_UP | IFF_RUNNING:
1042 			if ((ifp->if_flags ^ sc_if->sk_if_flags) == IFF_PROMISC)			{
1043 				sk_promisc(sc_if, ifp->if_flags & IFF_PROMISC);
1044 				sk_setmulti(sc_if);
1045 			} else
1046 				sk_init(ifp);
1047 			break;
1048 		}
1049 		sc_if->sk_if_flags = ifp->if_flags;
1050 		error = 0;
1051 		break;
1052 
1053 	default:
1054 		DPRINTFN(2, ("sk_ioctl ETHER\n"));
1055 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1056 			break;
1057 
1058 		error = 0;
1059 
1060 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1061 			;
1062 		else if (ifp->if_flags & IFF_RUNNING) {
1063 			sk_setmulti(sc_if);
1064 			DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1065 		}
1066 		break;
1067 	}
1068 
1069 	splx(s);
1070 	return error;
1071 }
1072 
1073 static void
1074 sk_update_int_mod(struct sk_softc *sc)
1075 {
1076 	uint32_t imtimer_ticks;
1077 
1078 	/*
1079 	 * Configure interrupt moderation. The moderation timer
1080 	 * defers interrupts specified in the interrupt moderation
1081 	 * timer mask based on the timeout specified in the interrupt
1082 	 * moderation timer init register. Each bit in the timer
1083 	 * register represents one tick, so to specify a timeout in
1084 	 * microseconds, we have to multiply by the correct number of
1085 	 * ticks-per-microsecond.
1086 	 */
1087 	switch (sc->sk_type) {
1088 	case SK_GENESIS:
1089 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1090 		break;
1091 	case SK_YUKON_EC:
1092 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1093 		break;
1094 	default:
1095 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1096 	}
1097 	aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n",
1098 	    sc->sk_int_mod);
1099 	sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1100 	sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF | SK_ISR_TX2_S_EOF |
1101 	    SK_ISR_RX1_EOF | SK_ISR_RX2_EOF);
1102 	sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1103 	sc->sk_int_mod_pending = 0;
1104 }
1105 
1106 /*
1107  * Lookup: Check the PCI vendor and device, and return a pointer to
1108  * The structure if the IDs match against our list.
1109  */
1110 
1111 static const struct sk_product *
1112 sk_lookup(const struct pci_attach_args *pa)
1113 {
1114 	const struct sk_product *psk;
1115 
1116 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1117 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1118 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1119 			return psk;
1120 	}
1121 	return NULL;
1122 }
1123 
1124 /*
1125  * Probe for a SysKonnect GEnesis chip.
1126  */
1127 
1128 static int
1129 skc_probe(device_t parent, cfdata_t match, void *aux)
1130 {
1131 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1132 	const struct sk_product *psk;
1133 	pcireg_t subid;
1134 
1135 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1136 
1137 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
1138 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1139 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1140 	    subid == SK_LINKSYS_EG1032_SUBID)
1141 		return 1;
1142 
1143 	if ((psk = sk_lookup(pa))) {
1144 		return 1;
1145 	}
1146 	return 0;
1147 }
1148 
1149 /*
1150  * Force the GEnesis into reset, then bring it out of reset.
1151  */
1152 static void
1153 sk_reset(struct sk_softc *sc)
1154 {
1155 	DPRINTFN(2, ("sk_reset\n"));
1156 
1157 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1158 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1159 	if (SK_YUKON_FAMILY(sc->sk_type))
1160 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1161 
1162 	DELAY(1000);
1163 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1164 	DELAY(2);
1165 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1166 	if (SK_YUKON_FAMILY(sc->sk_type))
1167 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1168 
1169 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1170 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1171 		     CSR_READ_2(sc, SK_LINK_CTRL)));
1172 
1173 	if (sc->sk_type == SK_GENESIS) {
1174 		/* Configure packet arbiter */
1175 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1176 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1177 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1178 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1179 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1180 	}
1181 
1182 	/* Enable RAM interface */
1183 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1184 
1185 	sk_update_int_mod(sc);
1186 }
1187 
1188 static int
1189 sk_probe(device_t parent, cfdata_t match, void *aux)
1190 {
1191 	struct skc_attach_args *sa = aux;
1192 
1193 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1194 		return 0;
1195 
1196 	return 1;
1197 }
1198 
1199 /*
1200  * Each XMAC chip is attached as a separate logical IP interface.
1201  * Single port cards will have only one logical interface of course.
1202  */
1203 static void
1204 sk_attach(device_t parent, device_t self, void *aux)
1205 {
1206 	struct sk_if_softc *sc_if = device_private(self);
1207 	struct mii_data *mii = &sc_if->sk_mii;
1208 	struct sk_softc *sc = device_private(parent);
1209 	struct skc_attach_args *sa = aux;
1210 	struct sk_txmap_entry	*entry;
1211 	struct ifnet *ifp;
1212 	bus_dma_segment_t seg;
1213 	bus_dmamap_t dmamap;
1214 	prop_data_t data;
1215 	void *kva;
1216 	int i, rseg;
1217 	int mii_flags = 0;
1218 
1219 	aprint_naive("\n");
1220 
1221 	sc_if->sk_dev = self;
1222 	sc_if->sk_port = sa->skc_port;
1223 	sc_if->sk_softc = sc;
1224 	sc->sk_if[sa->skc_port] = sc_if;
1225 
1226 	if (sa->skc_port == SK_PORT_A)
1227 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1228 	if (sa->skc_port == SK_PORT_B)
1229 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1230 
1231 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1232 
1233 	/*
1234 	 * Get station address for this interface. Note that
1235 	 * dual port cards actually come with three station
1236 	 * addresses: one for each port, plus an extra. The
1237 	 * extra one is used by the SysKonnect driver software
1238 	 * as a 'virtual' station address for when both ports
1239 	 * are operating in failover mode. Currently we don't
1240 	 * use this extra address.
1241 	 */
1242 	data = prop_dictionary_get(device_properties(self), "mac-address");
1243 	if (data != NULL) {
1244 		/*
1245 		 * Try to get the station address from device properties
1246 		 * first, in case the ROM is missing.
1247 		 */
1248 		KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
1249 		KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
1250 		memcpy(sc_if->sk_enaddr, prop_data_value(data),
1251 		    ETHER_ADDR_LEN);
1252 	} else
1253 		for (i = 0; i < ETHER_ADDR_LEN; i++)
1254 			sc_if->sk_enaddr[i] = sk_win_read_1(sc,
1255 			    SK_MAC0_0 + (sa->skc_port * 8) + i);
1256 
1257 	aprint_normal(": Ethernet address %s\n",
1258 	    ether_sprintf(sc_if->sk_enaddr));
1259 
1260 	/*
1261 	 * Set up RAM buffer addresses. The NIC will have a certain
1262 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1263 	 * need to divide this up a) between the transmitter and
1264 	 * receiver and b) between the two XMACs, if this is a
1265 	 * dual port NIC. Our algorithm is to divide up the memory
1266 	 * evenly so that everyone gets a fair share.
1267 	 */
1268 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1269 		uint32_t		chunk, val;
1270 
1271 		chunk = sc->sk_ramsize / 2;
1272 		val = sc->sk_rboff / sizeof(uint64_t);
1273 		sc_if->sk_rx_ramstart = val;
1274 		val += (chunk / sizeof(uint64_t));
1275 		sc_if->sk_rx_ramend = val - 1;
1276 		sc_if->sk_tx_ramstart = val;
1277 		val += (chunk / sizeof(uint64_t));
1278 		sc_if->sk_tx_ramend = val - 1;
1279 	} else {
1280 		uint32_t		chunk, val;
1281 
1282 		chunk = sc->sk_ramsize / 4;
1283 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1284 		    sizeof(uint64_t);
1285 		sc_if->sk_rx_ramstart = val;
1286 		val += (chunk / sizeof(uint64_t));
1287 		sc_if->sk_rx_ramend = val - 1;
1288 		sc_if->sk_tx_ramstart = val;
1289 		val += (chunk / sizeof(uint64_t));
1290 		sc_if->sk_tx_ramend = val - 1;
1291 	}
1292 
1293 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1294 		     "		 tx_ramstart=%#x tx_ramend=%#x\n",
1295 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1296 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1297 
1298 	/* Read and save PHY type and set PHY address */
1299 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1300 	switch (sc_if->sk_phytype) {
1301 	case SK_PHYTYPE_XMAC:
1302 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1303 		break;
1304 	case SK_PHYTYPE_BCOM:
1305 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1306 		break;
1307 	case SK_PHYTYPE_MARV_COPPER:
1308 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1309 		break;
1310 	default:
1311 		aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n",
1312 		    sc_if->sk_phytype);
1313 		return;
1314 	}
1315 
1316 	/* Allocate the descriptor queues. */
1317 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1318 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1319 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
1320 		goto fail;
1321 	}
1322 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1323 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1324 		aprint_error_dev(sc_if->sk_dev,
1325 		    "can't map dma buffers (%lu bytes)\n",
1326 		    (u_long) sizeof(struct sk_ring_data));
1327 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1328 		goto fail;
1329 	}
1330 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1331 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1332 	    &sc_if->sk_ring_map)) {
1333 		aprint_error_dev(sc_if->sk_dev, "can't create dma map\n");
1334 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1335 		    sizeof(struct sk_ring_data));
1336 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1337 		goto fail;
1338 	}
1339 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1340 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1341 		aprint_error_dev(sc_if->sk_dev, "can't load dma map\n");
1342 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1343 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1344 		    sizeof(struct sk_ring_data));
1345 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1346 		goto fail;
1347 	}
1348 
1349 	for (i = 0; i < SK_RX_RING_CNT; i++)
1350 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1351 
1352 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1353 	for (i = 0; i < SK_TX_RING_CNT; i++) {
1354 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1355 
1356 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1357 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1358 			aprint_error_dev(sc_if->sk_dev,
1359 			    "Can't create TX dmamap\n");
1360 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1361 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1362 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1363 			    sizeof(struct sk_ring_data));
1364 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1365 			goto fail;
1366 		}
1367 
1368 		entry = malloc(sizeof(*entry), M_DEVBUF, M_WAITOK);
1369 		entry->dmamap = dmamap;
1370 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1371 	}
1372 
1373 	sc_if->sk_rdata = (struct sk_ring_data *)kva;
1374 	memset(sc_if->sk_rdata, 0, sizeof(struct sk_ring_data));
1375 
1376 	ifp = &sc_if->sk_ethercom.ec_if;
1377 	/* Try to allocate memory for jumbo buffers. */
1378 	if (sk_alloc_jumbo_mem(sc_if)) {
1379 		aprint_error("%s: jumbo buffer allocation failed\n",
1380 		    ifp->if_xname);
1381 		goto fail;
1382 	}
1383 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1384 		| ETHERCAP_JUMBO_MTU;
1385 
1386 	ifp->if_softc = sc_if;
1387 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1388 	ifp->if_ioctl = sk_ioctl;
1389 	ifp->if_start = sk_start;
1390 	ifp->if_stop = sk_stop;
1391 	ifp->if_init = sk_init;
1392 	ifp->if_watchdog = sk_watchdog;
1393 	ifp->if_capabilities = 0;
1394 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1395 	IFQ_SET_READY(&ifp->if_snd);
1396 	strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1397 
1398 	/*
1399 	 * Do miibus setup.
1400 	 */
1401 	switch (sc->sk_type) {
1402 	case SK_GENESIS:
1403 		sk_unreset_xmac(sc_if);
1404 		break;
1405 	case SK_YUKON:
1406 	case SK_YUKON_LITE:
1407 	case SK_YUKON_LP:
1408 		sk_unreset_yukon(sc_if);
1409 		break;
1410 	default:
1411 		aprint_error_dev(sc->sk_dev, "unknown device type %d\n",
1412 			sc->sk_type);
1413 		goto fail;
1414 	}
1415 
1416 	DPRINTFN(2, ("sk_attach: 1\n"));
1417 
1418 	mii->mii_ifp = ifp;
1419 	switch (sc->sk_type) {
1420 	case SK_GENESIS:
1421 		mii->mii_readreg = sk_xmac_miibus_readreg;
1422 		mii->mii_writereg = sk_xmac_miibus_writereg;
1423 		mii->mii_statchg = sk_xmac_miibus_statchg;
1424 		break;
1425 	case SK_YUKON:
1426 	case SK_YUKON_LITE:
1427 	case SK_YUKON_LP:
1428 		mii->mii_readreg = sk_marv_miibus_readreg;
1429 		mii->mii_writereg = sk_marv_miibus_writereg;
1430 		mii->mii_statchg = sk_marv_miibus_statchg;
1431 		mii_flags = MIIF_DOPAUSE;
1432 		break;
1433 	}
1434 
1435 	sc_if->sk_ethercom.ec_mii = mii;
1436 	ifmedia_init(&mii->mii_media, 0, sk_ifmedia_upd, ether_mediastatus);
1437 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
1438 	    MII_OFFSET_ANY, mii_flags);
1439 	if (LIST_EMPTY(&mii->mii_phys)) {
1440 		aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1441 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
1442 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
1443 	} else
1444 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1445 
1446 	callout_init(&sc_if->sk_tick_ch, 0);
1447 	callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
1448 
1449 	DPRINTFN(2, ("sk_attach: 1\n"));
1450 
1451 	/*
1452 	 * Call MI attach routines.
1453 	 */
1454 	if_attach(ifp);
1455 	if_deferred_start_init(ifp, NULL);
1456 
1457 	ether_ifattach(ifp, sc_if->sk_enaddr);
1458 
1459 	if (sc->rnd_attached++ == 0) {
1460 		rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1461 		    RND_TYPE_NET, RND_FLAG_DEFAULT);
1462 	}
1463 
1464 	if (pmf_device_register(self, NULL, sk_resume))
1465 		pmf_class_network_register(self, ifp);
1466 	else
1467 		aprint_error_dev(self, "couldn't establish power handler\n");
1468 
1469 	DPRINTFN(2, ("sk_attach: end\n"));
1470 
1471 	return;
1472 
1473 fail:
1474 	sc->sk_if[sa->skc_port] = NULL;
1475 }
1476 
1477 static int
1478 skcprint(void *aux, const char *pnp)
1479 {
1480 	struct skc_attach_args *sa = aux;
1481 
1482 	if (pnp)
1483 		aprint_normal("sk port %c at %s",
1484 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1485 	else
1486 		aprint_normal(" port %c",
1487 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1488 	return UNCONF;
1489 }
1490 
1491 /*
1492  * Attach the interface. Allocate softc structures, do ifmedia
1493  * setup and ethernet/BPF attach.
1494  */
1495 static void
1496 skc_attach(device_t parent, device_t self, void *aux)
1497 {
1498 	struct sk_softc *sc = device_private(self);
1499 	struct pci_attach_args *pa = aux;
1500 	struct skc_attach_args skca;
1501 	pci_chipset_tag_t pc = pa->pa_pc;
1502 #ifndef SK_USEIOSPACE
1503 	pcireg_t memtype;
1504 #endif
1505 	pci_intr_handle_t ih;
1506 	const char *intrstr = NULL;
1507 	bus_addr_t iobase;
1508 	bus_size_t iosize;
1509 	int rc, sk_nodenum;
1510 	uint32_t command;
1511 	const char *revstr;
1512 	const struct sysctlnode *node;
1513 	char intrbuf[PCI_INTRSTR_LEN];
1514 
1515 	sc->sk_dev = self;
1516 	aprint_naive("\n");
1517 
1518 	DPRINTFN(2, ("begin skc_attach\n"));
1519 
1520 	/*
1521 	 * Handle power management nonsense.
1522 	 */
1523 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1524 
1525 	if (command == 0x01) {
1526 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1527 		if (command & SK_PSTATE_MASK) {
1528 			uint32_t		xiobase, membase, irq;
1529 
1530 			/* Save important PCI config data. */
1531 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1532 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1533 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1534 
1535 			/* Reset the power state. */
1536 			aprint_normal_dev(sc->sk_dev,
1537 			    "chip is in D%d power mode -- setting to D0\n",
1538 			    command & SK_PSTATE_MASK);
1539 			command &= 0xFFFFFFFC;
1540 			pci_conf_write(pc, pa->pa_tag,
1541 			    SK_PCI_PWRMGMTCTRL, command);
1542 
1543 			/* Restore PCI config data. */
1544 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1545 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1546 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1547 		}
1548 	}
1549 
1550 	/*
1551 	 * The firmware might have configured the interface to revert the
1552 	 * byte order in all descriptors. Make that undone.
1553 	 */
1554 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_OURREG2);
1555 	if (command & SK_REG2_REV_DESC)
1556 		pci_conf_write(pc, pa->pa_tag, SK_PCI_OURREG2,
1557 		    command & ~SK_REG2_REV_DESC);
1558 
1559 	/*
1560 	 * Map control/status registers.
1561 	 */
1562 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1563 	command |= PCI_COMMAND_IO_ENABLE |
1564 	    PCI_COMMAND_MEM_ENABLE |
1565 	    PCI_COMMAND_MASTER_ENABLE;
1566 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1567 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1568 
1569 #ifdef SK_USEIOSPACE
1570 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
1571 		aprint_error(": failed to enable I/O ports!\n");
1572 		return;
1573 	}
1574 	/*
1575 	 * Map control/status registers.
1576 	 */
1577 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1578 			&sc->sk_btag, &sc->sk_bhandle,
1579 			&iobase, &iosize)) {
1580 		aprint_error(": can't find i/o space\n");
1581 		return;
1582 	}
1583 #else
1584 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1585 		aprint_error(": failed to enable memory mapping!\n");
1586 		return;
1587 	}
1588 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1589 	switch (memtype) {
1590 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1591 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1592 		if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1593 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1594 				   &iobase, &iosize) == 0)
1595 			break;
1596 		/* FALLTHROUGH */
1597 	default:
1598 		aprint_error_dev(sc->sk_dev, "can't find mem space\n");
1599 		return;
1600 	}
1601 
1602 	DPRINTFN(2, ("skc_attach: iobase=%#" PRIxPADDR ", iosize=%zx\n",
1603 	    iobase, iosize));
1604 #endif
1605 	sc->sc_dmatag = pa->pa_dmat;
1606 
1607 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1608 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1609 
1610 	/* bail out here if chip is not recognized */
1611 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1612 		aprint_error_dev(sc->sk_dev, "unknown chip type\n");
1613 		goto fail;
1614 	}
1615 	if (SK_IS_YUKON2(sc)) {
1616 		aprint_error_dev(sc->sk_dev,
1617 		    "Does not support Yukon2--try msk(4).\n");
1618 		goto fail;
1619 	}
1620 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1621 
1622 	/* Allocate interrupt */
1623 	if (pci_intr_map(pa, &ih)) {
1624 		aprint_error(": couldn't map interrupt\n");
1625 		goto fail;
1626 	}
1627 
1628 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1629 	sc->sk_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, sk_intr,
1630 	    sc, device_xname(sc->sk_dev));
1631 	if (sc->sk_intrhand == NULL) {
1632 		aprint_error(": couldn't establish interrupt");
1633 		if (intrstr != NULL)
1634 			aprint_error(" at %s", intrstr);
1635 		aprint_error("\n");
1636 		goto fail;
1637 	}
1638 	aprint_normal(": %s\n", intrstr);
1639 
1640 	/* Reset the adapter. */
1641 	sk_reset(sc);
1642 
1643 	/* Read and save vital product data from EEPROM. */
1644 	sk_vpd_read(sc);
1645 
1646 	if (sc->sk_type == SK_GENESIS) {
1647 		uint8_t val = sk_win_read_1(sc, SK_EPROM0);
1648 		/* Read and save RAM size and RAMbuffer offset */
1649 		switch (val) {
1650 		case SK_RAMSIZE_512K_64:
1651 			sc->sk_ramsize = 0x80000;
1652 			sc->sk_rboff = SK_RBOFF_0;
1653 			break;
1654 		case SK_RAMSIZE_1024K_64:
1655 			sc->sk_ramsize = 0x100000;
1656 			sc->sk_rboff = SK_RBOFF_80000;
1657 			break;
1658 		case SK_RAMSIZE_1024K_128:
1659 			sc->sk_ramsize = 0x100000;
1660 			sc->sk_rboff = SK_RBOFF_0;
1661 			break;
1662 		case SK_RAMSIZE_2048K_128:
1663 			sc->sk_ramsize = 0x200000;
1664 			sc->sk_rboff = SK_RBOFF_0;
1665 			break;
1666 		default:
1667 			aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n",
1668 			       val);
1669 			goto fail_1;
1670 			break;
1671 		}
1672 
1673 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1674 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
1675 			     sc->sk_rboff));
1676 	} else {
1677 		uint8_t val = sk_win_read_1(sc, SK_EPROM0);
1678 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
1679 		sc->sk_rboff = SK_RBOFF_0;
1680 
1681 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1682 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
1683 			     sc->sk_rboff));
1684 	}
1685 
1686 	/* Read and save physical media type */
1687 	switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1688 	case SK_PMD_1000BASESX:
1689 		sc->sk_pmd = IFM_1000_SX;
1690 		break;
1691 	case SK_PMD_1000BASELX:
1692 		sc->sk_pmd = IFM_1000_LX;
1693 		break;
1694 	case SK_PMD_1000BASECX:
1695 		sc->sk_pmd = IFM_1000_CX;
1696 		break;
1697 	case SK_PMD_1000BASETX:
1698 	case SK_PMD_1000BASETX_ALT:
1699 		sc->sk_pmd = IFM_1000_T;
1700 		break;
1701 	default:
1702 		aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n",
1703 		    sk_win_read_1(sc, SK_PMDTYPE));
1704 		goto fail_1;
1705 	}
1706 
1707 	/* determine whether to name it with vpd or just make it up */
1708 	/* Marvell Yukon VPD's can freqently be bogus */
1709 
1710 	switch (pa->pa_id) {
1711 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1712 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1713 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1714 	case PCI_PRODUCT_3COM_3C940:
1715 	case PCI_PRODUCT_DLINK_DGE530T:
1716 	case PCI_PRODUCT_DLINK_DGE560T:
1717 	case PCI_PRODUCT_DLINK_DGE560T_2:
1718 	case PCI_PRODUCT_LINKSYS_EG1032:
1719 	case PCI_PRODUCT_LINKSYS_EG1064:
1720 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1721 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1722 	case PCI_ID_CODE(PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940):
1723 	case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T):
1724 	case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T):
1725 	case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2):
1726 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032):
1727 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064):
1728 		sc->sk_name = sc->sk_vpd_prodname;
1729 		break;
1730 	case PCI_ID_CODE(PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET):
1731 	/* whoops yukon vpd prodname bears no resemblance to reality */
1732 		switch (sc->sk_type) {
1733 		case SK_GENESIS:
1734 			sc->sk_name = sc->sk_vpd_prodname;
1735 			break;
1736 		case SK_YUKON:
1737 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1738 			break;
1739 		case SK_YUKON_LITE:
1740 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1741 			break;
1742 		case SK_YUKON_LP:
1743 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1744 			break;
1745 		default:
1746 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1747 		}
1748 
1749 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1750 
1751 		if ( sc->sk_type == SK_YUKON ) {
1752 			uint32_t flashaddr;
1753 			uint8_t testbyte;
1754 
1755 			flashaddr = sk_win_read_4(sc, SK_EP_ADDR);
1756 
1757 			/* test Flash-Address Register */
1758 			sk_win_write_1(sc, SK_EP_ADDR+3, 0xff);
1759 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1760 
1761 			if (testbyte != 0) {
1762 				/* this is yukon lite Rev. A0 */
1763 				sc->sk_type = SK_YUKON_LITE;
1764 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
1765 				/* restore Flash-Address Register */
1766 				sk_win_write_4(sc, SK_EP_ADDR, flashaddr);
1767 			}
1768 		}
1769 		break;
1770 	case PCI_ID_CODE(PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN):
1771 		sc->sk_name = sc->sk_vpd_prodname;
1772 		break;
1773 	default:
1774 		sc->sk_name = "Unknown Marvell";
1775 	}
1776 
1777 
1778 	if ( sc->sk_type == SK_YUKON_LITE ) {
1779 		switch (sc->sk_rev) {
1780 		case SK_YUKON_LITE_REV_A0:
1781 			revstr = "A0";
1782 			break;
1783 		case SK_YUKON_LITE_REV_A1:
1784 			revstr = "A1";
1785 			break;
1786 		case SK_YUKON_LITE_REV_A3:
1787 			revstr = "A3";
1788 			break;
1789 		default:
1790 			revstr = "";
1791 		}
1792 	} else {
1793 		revstr = "";
1794 	}
1795 
1796 	/* Announce the product name. */
1797 	aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n",
1798 			      sc->sk_name, revstr, sc->sk_rev);
1799 
1800 	skca.skc_port = SK_PORT_A;
1801 	(void)config_found(sc->sk_dev, &skca, skcprint);
1802 
1803 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1804 		skca.skc_port = SK_PORT_B;
1805 		(void)config_found(sc->sk_dev, &skca, skcprint);
1806 	}
1807 
1808 	/* Turn on the 'driver is loaded' LED. */
1809 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1810 
1811 	/* skc sysctl setup */
1812 
1813 	sc->sk_int_mod = SK_IM_DEFAULT;
1814 	sc->sk_int_mod_pending = 0;
1815 
1816 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1817 	    0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1818 	    SYSCTL_DESCR("skc per-controller controls"),
1819 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1820 	    CTL_EOL)) != 0) {
1821 		aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1822 		goto fail_1;
1823 	}
1824 
1825 	sk_nodenum = node->sysctl_num;
1826 
1827 	/* interrupt moderation time in usecs */
1828 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1829 	    CTLFLAG_READWRITE,
1830 	    CTLTYPE_INT, "int_mod",
1831 	    SYSCTL_DESCR("sk interrupt moderation timer"),
1832 	    sk_sysctl_handler, 0, (void *)sc,
1833 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1834 	    CTL_EOL)) != 0) {
1835 		aprint_normal_dev(sc->sk_dev,
1836 		    "couldn't create int_mod sysctl node\n");
1837 		goto fail_1;
1838 	}
1839 
1840 	if (!pmf_device_register(self, skc_suspend, skc_resume))
1841 		aprint_error_dev(self, "couldn't establish power handler\n");
1842 
1843 	return;
1844 
1845 fail_1:
1846 	pci_intr_disestablish(pc, sc->sk_intrhand);
1847 fail:
1848 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1849 }
1850 
1851 static int
1852 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx)
1853 {
1854 	struct sk_softc		*sc = sc_if->sk_softc;
1855 	struct sk_tx_desc	*f = NULL;
1856 	uint32_t		frag, cur, cnt = 0, sk_ctl;
1857 	int			i;
1858 	struct sk_txmap_entry	*entry;
1859 	bus_dmamap_t		txmap;
1860 
1861 	DPRINTFN(3, ("sk_encap\n"));
1862 
1863 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1864 	if (entry == NULL) {
1865 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
1866 		return ENOBUFS;
1867 	}
1868 	txmap = entry->dmamap;
1869 
1870 	cur = frag = *txidx;
1871 
1872 #ifdef SK_DEBUG
1873 	if (skdebug >= 3)
1874 		sk_dump_mbuf(m_head);
1875 #endif
1876 
1877 	/*
1878 	 * Start packing the mbufs in this chain into
1879 	 * the fragment pointers. Stop when we run out
1880 	 * of fragments or hit the end of the mbuf chain.
1881 	 */
1882 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1883 	    BUS_DMA_NOWAIT)) {
1884 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1885 		return ENOBUFS;
1886 	}
1887 
1888 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1889 
1890 	/* Sync the DMA map. */
1891 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1892 	    BUS_DMASYNC_PREWRITE);
1893 
1894 	for (i = 0; i < txmap->dm_nsegs; i++) {
1895 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1896 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1897 			return ENOBUFS;
1898 		}
1899 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
1900 		f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1901 		sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1902 		if (cnt == 0)
1903 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
1904 		else
1905 			sk_ctl |= SK_TXCTL_OWN;
1906 		f->sk_ctl = htole32(sk_ctl);
1907 		cur = frag;
1908 		SK_INC(frag, SK_TX_RING_CNT);
1909 		cnt++;
1910 	}
1911 
1912 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1913 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1914 
1915 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
1916 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1917 		htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR);
1918 
1919 	/* Sync descriptors before handing to chip */
1920 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1921 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1922 
1923 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1924 		htole32(SK_TXCTL_OWN);
1925 
1926 	/* Sync first descriptor to hand it off */
1927 	SK_CDTXSYNC(sc_if, *txidx, 1,
1928 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1929 
1930 	sc_if->sk_cdata.sk_tx_cnt += cnt;
1931 
1932 #ifdef SK_DEBUG
1933 	if (skdebug >= 3) {
1934 		struct sk_tx_desc *desc;
1935 		uint32_t idx;
1936 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1937 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1938 			sk_dump_txdesc(desc, idx);
1939 		}
1940 	}
1941 #endif
1942 
1943 	*txidx = frag;
1944 
1945 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
1946 
1947 	return 0;
1948 }
1949 
1950 static void
1951 sk_start(struct ifnet *ifp)
1952 {
1953 	struct sk_if_softc	*sc_if = ifp->if_softc;
1954 	struct sk_softc		*sc = sc_if->sk_softc;
1955 	struct mbuf		*m_head = NULL;
1956 	uint32_t		idx = sc_if->sk_cdata.sk_tx_prod;
1957 	int			pkts = 0;
1958 
1959 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1960 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1961 
1962 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1963 		IFQ_POLL(&ifp->if_snd, m_head);
1964 		if (m_head == NULL)
1965 			break;
1966 
1967 		/*
1968 		 * Pack the data into the transmit ring. If we
1969 		 * don't have room, set the OACTIVE flag and wait
1970 		 * for the NIC to drain the ring.
1971 		 */
1972 		if (sk_encap(sc_if, m_head, &idx)) {
1973 			ifp->if_flags |= IFF_OACTIVE;
1974 			break;
1975 		}
1976 
1977 		/* now we are committed to transmit the packet */
1978 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1979 		pkts++;
1980 
1981 		/*
1982 		 * If there's a BPF listener, bounce a copy of this frame
1983 		 * to him.
1984 		 */
1985 		bpf_mtap(ifp, m_head, BPF_D_OUT);
1986 	}
1987 	if (pkts == 0)
1988 		return;
1989 
1990 	/* Transmit */
1991 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
1992 		sc_if->sk_cdata.sk_tx_prod = idx;
1993 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1994 
1995 		/* Set a timeout in case the chip goes out to lunch. */
1996 		ifp->if_timer = 5;
1997 	}
1998 }
1999 
2000 
2001 static void
2002 sk_watchdog(struct ifnet *ifp)
2003 {
2004 	struct sk_if_softc *sc_if = ifp->if_softc;
2005 
2006 	/*
2007 	 * Reclaim first as there is a possibility of losing Tx completion
2008 	 * interrupts.
2009 	 */
2010 	sk_txeof(sc_if);
2011 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2012 		aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
2013 
2014 		if_statinc(ifp, if_oerrors);
2015 
2016 		sk_init(ifp);
2017 	}
2018 }
2019 
2020 #if 0 /* XXX XXX XXX UNUSED */
2021 static void
2022 sk_shutdown(void *v)
2023 {
2024 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
2025 	struct sk_softc		*sc = sc_if->sk_softc;
2026 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2027 
2028 	DPRINTFN(2, ("sk_shutdown\n"));
2029 	sk_stop(ifp, 1);
2030 
2031 	/* Turn off the 'driver is loaded' LED. */
2032 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2033 
2034 	/*
2035 	 * Reset the GEnesis controller. Doing this should also
2036 	 * assert the resets on the attached XMAC(s).
2037 	 */
2038 	sk_reset(sc);
2039 }
2040 #endif
2041 
2042 static void
2043 sk_rxeof(struct sk_if_softc *sc_if)
2044 {
2045 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2046 	struct mbuf		*m;
2047 	struct sk_chain		*cur_rx;
2048 	struct sk_rx_desc	*cur_desc;
2049 	int			i, cur, total_len = 0;
2050 	uint32_t		rxstat, sk_ctl;
2051 	bus_dmamap_t		dmamap;
2052 
2053 	i = sc_if->sk_cdata.sk_rx_prod;
2054 
2055 	DPRINTFN(3, ("sk_rxeof %d\n", i));
2056 
2057 	for (;;) {
2058 		cur = i;
2059 
2060 		/* Sync the descriptor */
2061 		SK_CDRXSYNC(sc_if, cur,
2062 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2063 
2064 		sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2065 		if (sk_ctl & SK_RXCTL_OWN) {
2066 			/* Invalidate the descriptor -- it's not ready yet */
2067 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2068 			sc_if->sk_cdata.sk_rx_prod = i;
2069 			break;
2070 		}
2071 
2072 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2073 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2074 		dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2075 
2076 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2077 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2078 
2079 		rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2080 		m = cur_rx->sk_mbuf;
2081 		cur_rx->sk_mbuf = NULL;
2082 		total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2083 
2084 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
2085 
2086 		SK_INC(i, SK_RX_RING_CNT);
2087 
2088 		if (rxstat & XM_RXSTAT_ERRFRAME) {
2089 			if_statinc(ifp, if_ierrors);
2090 			sk_newbuf(sc_if, cur, m, dmamap);
2091 			continue;
2092 		}
2093 
2094 		/*
2095 		 * Try to allocate a new jumbo buffer. If that
2096 		 * fails, copy the packet to mbufs and put the
2097 		 * jumbo buffer back in the ring so it can be
2098 		 * re-used. If allocating mbufs fails, then we
2099 		 * have to drop the packet.
2100 		 */
2101 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2102 			struct mbuf		*m0;
2103 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2104 			    total_len + ETHER_ALIGN, 0, ifp);
2105 			sk_newbuf(sc_if, cur, m, dmamap);
2106 			if (m0 == NULL) {
2107 				aprint_error_dev(sc_if->sk_dev, "no receive "
2108 				    "buffers available -- packet dropped!\n");
2109 				if_statinc(ifp, if_ierrors);
2110 				continue;
2111 			}
2112 			m_adj(m0, ETHER_ALIGN);
2113 			m = m0;
2114 		} else {
2115 			m_set_rcvif(m, ifp);
2116 			m->m_pkthdr.len = m->m_len = total_len;
2117 		}
2118 
2119 		/* pass it on. */
2120 		if_percpuq_enqueue(ifp->if_percpuq, m);
2121 	}
2122 }
2123 
2124 static void
2125 sk_txeof(struct sk_if_softc *sc_if)
2126 {
2127 	struct sk_softc		*sc = sc_if->sk_softc;
2128 	struct sk_tx_desc	*cur_tx;
2129 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2130 	uint32_t		idx, sk_ctl;
2131 	struct sk_txmap_entry	*entry;
2132 
2133 	DPRINTFN(3, ("sk_txeof\n"));
2134 
2135 	/*
2136 	 * Go through our tx ring and free mbufs for those
2137 	 * frames that have been sent.
2138 	 */
2139 	idx = sc_if->sk_cdata.sk_tx_cons;
2140 	while (idx != sc_if->sk_cdata.sk_tx_prod) {
2141 		SK_CDTXSYNC(sc_if, idx, 1,
2142 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2143 
2144 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2145 		sk_ctl = le32toh(cur_tx->sk_ctl);
2146 #ifdef SK_DEBUG
2147 		if (skdebug >= 3)
2148 			sk_dump_txdesc(cur_tx, idx);
2149 #endif
2150 		if (sk_ctl & SK_TXCTL_OWN) {
2151 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2152 			break;
2153 		}
2154 		if (sk_ctl & SK_TXCTL_LASTFRAG)
2155 			if_statinc(ifp, if_opackets);
2156 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2157 			entry = sc_if->sk_cdata.sk_tx_map[idx];
2158 
2159 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2160 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2161 
2162 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2163 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2164 
2165 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2166 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2167 					  link);
2168 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2169 		}
2170 		sc_if->sk_cdata.sk_tx_cnt--;
2171 		SK_INC(idx, SK_TX_RING_CNT);
2172 	}
2173 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
2174 		ifp->if_timer = 0;
2175 	else /* nudge chip to keep tx ring moving */
2176 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2177 
2178 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2179 		ifp->if_flags &= ~IFF_OACTIVE;
2180 
2181 	sc_if->sk_cdata.sk_tx_cons = idx;
2182 }
2183 
2184 static void
2185 sk_tick(void *xsc_if)
2186 {
2187 	struct sk_if_softc *sc_if = xsc_if;
2188 	struct mii_data *mii = &sc_if->sk_mii;
2189 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2190 	int i;
2191 
2192 	DPRINTFN(3, ("sk_tick\n"));
2193 
2194 	if (!(ifp->if_flags & IFF_UP))
2195 		return;
2196 
2197 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2198 		sk_intr_bcom(sc_if);
2199 		return;
2200 	}
2201 
2202 	/*
2203 	 * According to SysKonnect, the correct way to verify that
2204 	 * the link has come back up is to poll bit 0 of the GPIO
2205 	 * register three times. This pin has the signal from the
2206 	 * link sync pin connected to it; if we read the same link
2207 	 * state 3 times in a row, we know the link is up.
2208 	 */
2209 	for (i = 0; i < 3; i++) {
2210 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2211 			break;
2212 	}
2213 
2214 	if (i != 3) {
2215 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2216 		return;
2217 	}
2218 
2219 	/* Turn the GP0 interrupt back on. */
2220 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2221 	SK_XM_READ_2(sc_if, XM_ISR);
2222 	mii_tick(mii);
2223 	if (ifp->if_link_state != LINK_STATE_UP)
2224 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2225 	else
2226 		callout_stop(&sc_if->sk_tick_ch);
2227 }
2228 
2229 static void
2230 sk_intr_bcom(struct sk_if_softc *sc_if)
2231 {
2232 	struct mii_data *mii = &sc_if->sk_mii;
2233 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2234 	uint16_t status;
2235 
2236 
2237 	DPRINTFN(3, ("sk_intr_bcom\n"));
2238 
2239 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
2240 
2241 	/*
2242 	 * Read the PHY interrupt register to make sure
2243 	 * we clear any pending interrupts.
2244 	 */
2245 	sk_xmac_miibus_readreg(sc_if->sk_dev,
2246 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR, &status);
2247 
2248 	if (!(ifp->if_flags & IFF_RUNNING)) {
2249 		sk_init_xmac(sc_if);
2250 		return;
2251 	}
2252 
2253 	if (status & (BRGPHY_ISR_LNK_CHG | BRGPHY_ISR_AN_PR)) {
2254 		uint16_t lstat;
2255 		sk_xmac_miibus_readreg(sc_if->sk_dev,
2256 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS, &lstat);
2257 
2258 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2259 			(void)mii_mediachg(mii);
2260 			/* Turn off the link LED. */
2261 			SK_IF_WRITE_1(sc_if, 0,
2262 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
2263 			sc_if->sk_link = 0;
2264 		} else if (status & BRGPHY_ISR_LNK_CHG) {
2265 			sk_xmac_miibus_writereg(sc_if->sk_dev,
2266 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2267 			mii_tick(mii);
2268 			sc_if->sk_link = 1;
2269 			/* Turn on the link LED. */
2270 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2271 			    SK_LINKLED_ON | SK_LINKLED_LINKSYNC_OFF |
2272 			    SK_LINKLED_BLINK_OFF);
2273 			mii_pollstat(mii);
2274 		} else {
2275 			mii_tick(mii);
2276 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2277 		}
2278 	}
2279 
2280 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
2281 }
2282 
2283 static void
2284 sk_intr_xmac(struct sk_if_softc	*sc_if)
2285 {
2286 	uint16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2287 
2288 	DPRINTFN(3, ("sk_intr_xmac\n"));
2289 
2290 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2291 		if (status & XM_ISR_GP0_SET) {
2292 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2293 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2294 		}
2295 
2296 		if (status & XM_ISR_AUTONEG_DONE) {
2297 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2298 		}
2299 	}
2300 
2301 	if (status & XM_IMR_TX_UNDERRUN)
2302 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2303 
2304 	if (status & XM_IMR_RX_OVERRUN)
2305 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2306 }
2307 
2308 static void
2309 sk_intr_yukon(struct sk_if_softc *sc_if)
2310 {
2311 #ifdef SK_DEBUG
2312 	int status;
2313 
2314 	status =
2315 #endif
2316 		SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2317 
2318 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2319 }
2320 
2321 static int
2322 sk_intr(void *xsc)
2323 {
2324 	struct sk_softc		*sc = xsc;
2325 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
2326 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
2327 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2328 	uint32_t		status;
2329 	int			claimed = 0;
2330 
2331 	if (sc_if0 != NULL)
2332 		ifp0 = &sc_if0->sk_ethercom.ec_if;
2333 	if (sc_if1 != NULL)
2334 		ifp1 = &sc_if1->sk_ethercom.ec_if;
2335 
2336 	for (;;) {
2337 		status = CSR_READ_4(sc, SK_ISSR);
2338 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2339 
2340 		if (!(status & sc->sk_intrmask))
2341 			break;
2342 
2343 		claimed = 1;
2344 
2345 		/* Handle receive interrupts first. */
2346 		if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2347 			sk_rxeof(sc_if0);
2348 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2349 			    SK_RXBMU_CLR_IRQ_EOF | SK_RXBMU_RX_START);
2350 		}
2351 		if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2352 			sk_rxeof(sc_if1);
2353 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2354 			    SK_RXBMU_CLR_IRQ_EOF | SK_RXBMU_RX_START);
2355 		}
2356 
2357 		/* Then transmit interrupts. */
2358 		if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2359 			sk_txeof(sc_if0);
2360 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2361 			    SK_TXBMU_CLR_IRQ_EOF);
2362 		}
2363 		if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2364 			sk_txeof(sc_if1);
2365 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2366 			    SK_TXBMU_CLR_IRQ_EOF);
2367 		}
2368 
2369 		/* Then MAC interrupts. */
2370 		if (sc_if0 && (status & SK_ISR_MAC1) &&
2371 		    (ifp0->if_flags & IFF_RUNNING)) {
2372 			if (sc->sk_type == SK_GENESIS)
2373 				sk_intr_xmac(sc_if0);
2374 			else
2375 				sk_intr_yukon(sc_if0);
2376 		}
2377 
2378 		if (sc_if1 && (status & SK_ISR_MAC2) &&
2379 		    (ifp1->if_flags & IFF_RUNNING)) {
2380 			if (sc->sk_type == SK_GENESIS)
2381 				sk_intr_xmac(sc_if1);
2382 			else
2383 				sk_intr_yukon(sc_if1);
2384 
2385 		}
2386 
2387 		if (status & SK_ISR_EXTERNAL_REG) {
2388 			if (sc_if0 != NULL &&
2389 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2390 				sk_intr_bcom(sc_if0);
2391 
2392 			if (sc_if1 != NULL &&
2393 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2394 				sk_intr_bcom(sc_if1);
2395 		}
2396 	}
2397 
2398 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2399 
2400 	if (ifp0 != NULL)
2401 		if_schedule_deferred_start(ifp0);
2402 	if (ifp1 != NULL)
2403 		if_schedule_deferred_start(ifp1);
2404 
2405 	KASSERT(sc->rnd_attached > 0);
2406 	rnd_add_uint32(&sc->rnd_source, status);
2407 
2408 	if (sc->sk_int_mod_pending)
2409 		sk_update_int_mod(sc);
2410 
2411 	return claimed;
2412 }
2413 
2414 static void
2415 sk_unreset_xmac(struct sk_if_softc *sc_if)
2416 {
2417 	struct sk_softc		*sc = sc_if->sk_softc;
2418 	static const struct sk_bcom_hack     bhack[] = {
2419 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2420 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2421 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2422 	{ 0, 0 } };
2423 
2424 	DPRINTFN(1, ("sk_unreset_xmac\n"));
2425 
2426 	/* Unreset the XMAC. */
2427 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2428 	DELAY(1000);
2429 
2430 	/* Reset the XMAC's internal state. */
2431 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2432 
2433 	/* Save the XMAC II revision */
2434 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2435 
2436 	/*
2437 	 * Perform additional initialization for external PHYs,
2438 	 * namely for the 1000baseTX cards that use the XMAC's
2439 	 * GMII mode.
2440 	 */
2441 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2442 		int			i = 0;
2443 		uint32_t		val;
2444 		uint16_t		phyval;
2445 
2446 		/* Take PHY out of reset. */
2447 		val = sk_win_read_4(sc, SK_GPIO);
2448 		if (sc_if->sk_port == SK_PORT_A)
2449 			val |= SK_GPIO_DIR0 | SK_GPIO_DAT0;
2450 		else
2451 			val |= SK_GPIO_DIR2 | SK_GPIO_DAT2;
2452 		sk_win_write_4(sc, SK_GPIO, val);
2453 
2454 		/* Enable GMII mode on the XMAC. */
2455 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2456 
2457 		sk_xmac_miibus_writereg(sc_if->sk_dev,
2458 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2459 		DELAY(10000);
2460 		sk_xmac_miibus_writereg(sc_if->sk_dev,
2461 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2462 
2463 		/*
2464 		 * Early versions of the BCM5400 apparently have
2465 		 * a bug that requires them to have their reserved
2466 		 * registers initialized to some magic values. I don't
2467 		 * know what the numbers do, I'm just the messenger.
2468 		 */
2469 		sk_xmac_miibus_readreg(sc_if->sk_dev,
2470 		    SK_PHYADDR_BCOM, 0x03, &phyval);
2471 		if (phyval == 0x6041) {
2472 			while (bhack[i].reg) {
2473 				sk_xmac_miibus_writereg(sc_if->sk_dev,
2474 				    SK_PHYADDR_BCOM, bhack[i].reg,
2475 				    bhack[i].val);
2476 				i++;
2477 			}
2478 		}
2479 	}
2480 }
2481 
2482 static void
2483 sk_init_xmac(struct sk_if_softc *sc_if)
2484 {
2485 	struct sk_softc		*sc = sc_if->sk_softc;
2486 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2487 
2488 	sk_unreset_xmac(sc_if);
2489 
2490 	/* Set station address */
2491 	SK_XM_WRITE_2(sc_if, XM_PAR0,
2492 		      *(uint16_t *)(&sc_if->sk_enaddr[0]));
2493 	SK_XM_WRITE_2(sc_if, XM_PAR1,
2494 		      *(uint16_t *)(&sc_if->sk_enaddr[2]));
2495 	SK_XM_WRITE_2(sc_if, XM_PAR2,
2496 		      *(uint16_t *)(&sc_if->sk_enaddr[4]));
2497 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2498 
2499 	if (ifp->if_flags & IFF_PROMISC)
2500 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2501 	else
2502 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2503 
2504 	if (ifp->if_flags & IFF_BROADCAST)
2505 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2506 	else
2507 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2508 
2509 	/* We don't need the FCS appended to the packet. */
2510 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2511 
2512 	/* We want short frames padded to 60 bytes. */
2513 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2514 
2515 	/*
2516 	 * Enable the reception of all error frames. This is
2517 	 * a necessary evil due to the design of the XMAC. The
2518 	 * XMAC's receive FIFO is only 8K in size, however jumbo
2519 	 * frames can be up to 9000 bytes in length. When bad
2520 	 * frame filtering is enabled, the XMAC's RX FIFO operates
2521 	 * in 'store and forward' mode. For this to work, the
2522 	 * entire frame has to fit into the FIFO, but that means
2523 	 * that jumbo frames larger than 8192 bytes will be
2524 	 * truncated. Disabling all bad frame filtering causes
2525 	 * the RX FIFO to operate in streaming mode, in which
2526 	 * case the XMAC will start transfering frames out of the
2527 	 * RX FIFO as soon as the FIFO threshold is reached.
2528 	 */
2529 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES |
2530 	    XM_MODE_RX_GIANTS | XM_MODE_RX_RUNTS | XM_MODE_RX_CRCERRS |
2531 	    XM_MODE_RX_INRANGELEN);
2532 
2533 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2534 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2535 	else
2536 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2537 
2538 	/*
2539 	 * Bump up the transmit threshold. This helps hold off transmit
2540 	 * underruns when we're blasting traffic from both ports at once.
2541 	 */
2542 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2543 
2544 	/* Set multicast filter */
2545 	sk_setmulti(sc_if);
2546 
2547 	/* Clear and enable interrupts */
2548 	SK_XM_READ_2(sc_if, XM_ISR);
2549 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2550 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2551 	else
2552 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2553 
2554 	/* Configure MAC arbiter */
2555 	switch (sc_if->sk_xmac_rev) {
2556 	case XM_XMAC_REV_B2:
2557 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2558 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2559 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2560 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2561 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2562 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2563 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2564 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2565 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2566 		break;
2567 	case XM_XMAC_REV_C1:
2568 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2569 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2570 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2571 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2572 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2573 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2574 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2575 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2576 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2577 		break;
2578 	default:
2579 		break;
2580 	}
2581 	sk_win_write_2(sc, SK_MACARB_CTL,
2582 	    SK_MACARBCTL_UNRESET | SK_MACARBCTL_FASTOE_OFF);
2583 
2584 	sc_if->sk_link = 1;
2585 }
2586 
2587 static void
2588 sk_unreset_yukon(struct sk_if_softc *sc_if)
2589 {
2590 	uint32_t		/*mac, */phy;
2591 	struct sk_softc		*sc;
2592 
2593 	DPRINTFN(1, ("sk_unreset_yukon: start: sk_csr=%#x\n",
2594 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2595 
2596 	sc = sc_if->sk_softc;
2597 	if (sc->sk_type == SK_YUKON_LITE &&
2598 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2599 		/* Take PHY out of reset. */
2600 		sk_win_write_4(sc, SK_GPIO,
2601 		    (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9)
2602 		    & ~SK_GPIO_DAT9);
2603 	}
2604 
2605 	/* GMAC and GPHY Reset */
2606 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2607 
2608 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
2609 
2610 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2611 	DELAY(1000);
2612 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2613 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2614 	DELAY(1000);
2615 
2616 
2617 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
2618 
2619 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2620 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2621 
2622 	switch (sc_if->sk_softc->sk_pmd) {
2623 	case IFM_1000_SX:
2624 	case IFM_1000_LX:
2625 		phy |= SK_GPHY_FIBER;
2626 		break;
2627 
2628 	case IFM_1000_CX:
2629 	case IFM_1000_T:
2630 		phy |= SK_GPHY_COPPER;
2631 		break;
2632 	}
2633 
2634 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2635 
2636 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2637 	DELAY(1000);
2638 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2639 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2640 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2641 
2642 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2643 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2644 }
2645 
2646 static void
2647 sk_init_yukon(struct sk_if_softc *sc_if)
2648 {
2649 	uint16_t		reg;
2650 	int			i;
2651 
2652 	DPRINTFN(1, ("sk_init_yukon: start\n"));
2653 	sk_unreset_yukon(sc_if);
2654 
2655 	/* unused read of the interrupt source register */
2656 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
2657 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2658 
2659 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2660 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2661 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2662 
2663 	/* MIB Counter Clear Mode set */
2664 	reg |= YU_PAR_MIB_CLR;
2665 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2666 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2667 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2668 
2669 	/* MIB Counter Clear Mode clear */
2670 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
2671 	reg &= ~YU_PAR_MIB_CLR;
2672 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2673 
2674 	/* receive control reg */
2675 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
2676 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2677 		      YU_RCR_CRCR);
2678 
2679 	/* transmit parameter register */
2680 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
2681 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2682 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a));
2683 
2684 	/* serial mode register */
2685 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
2686 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2687 		      YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2688 		      YU_SMR_IPG_DATA(0x1e));
2689 
2690 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
2691 	/* Setup Yukon's address */
2692 	for (i = 0; i < 3; i++) {
2693 		/* Write Source Address 1 (unicast filter) */
2694 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2695 			      sc_if->sk_enaddr[i * 2] |
2696 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
2697 	}
2698 
2699 	for (i = 0; i < 3; i++) {
2700 		reg = sk_win_read_2(sc_if->sk_softc,
2701 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2702 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2703 	}
2704 
2705 	/* Set multicast filter */
2706 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
2707 	sk_setmulti(sc_if);
2708 
2709 	/* enable interrupt mask for counter overflows */
2710 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
2711 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2712 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2713 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2714 
2715 	/* Configure RX MAC FIFO */
2716 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2717 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2718 
2719 	/* Configure TX MAC FIFO */
2720 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2721 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2722 
2723 	DPRINTFN(6, ("sk_init_yukon: end\n"));
2724 }
2725 
2726 /*
2727  * Note that to properly initialize any part of the GEnesis chip,
2728  * you first have to take it out of reset mode.
2729  */
2730 static int
2731 sk_init(struct ifnet *ifp)
2732 {
2733 	struct sk_if_softc	*sc_if = ifp->if_softc;
2734 	struct sk_softc		*sc = sc_if->sk_softc;
2735 	struct mii_data		*mii = &sc_if->sk_mii;
2736 	int			rc = 0, s;
2737 	uint32_t		imr, imtimer_ticks;
2738 
2739 	DPRINTFN(1, ("sk_init\n"));
2740 
2741 	s = splnet();
2742 
2743 	if (ifp->if_flags & IFF_RUNNING) {
2744 		splx(s);
2745 		return 0;
2746 	}
2747 
2748 	/* Cancel pending I/O and free all RX/TX buffers. */
2749 	sk_stop(ifp, 0);
2750 
2751 	if (sc->sk_type == SK_GENESIS) {
2752 		/* Configure LINK_SYNC LED */
2753 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2754 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2755 			      SK_LINKLED_LINKSYNC_ON);
2756 
2757 		/* Configure RX LED */
2758 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2759 			      SK_RXLEDCTL_COUNTER_START);
2760 
2761 		/* Configure TX LED */
2762 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2763 			      SK_TXLEDCTL_COUNTER_START);
2764 	}
2765 
2766 	/* Configure I2C registers */
2767 
2768 	/* Configure XMAC(s) */
2769 	switch (sc->sk_type) {
2770 	case SK_GENESIS:
2771 		sk_init_xmac(sc_if);
2772 		break;
2773 	case SK_YUKON:
2774 	case SK_YUKON_LITE:
2775 	case SK_YUKON_LP:
2776 		sk_init_yukon(sc_if);
2777 		break;
2778 	}
2779 	if ((rc = mii_mediachg(mii)) == ENXIO)
2780 		rc = 0;
2781 	else if (rc != 0)
2782 		goto out;
2783 
2784 	if (sc->sk_type == SK_GENESIS) {
2785 		/* Configure MAC FIFOs */
2786 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2787 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2788 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2789 
2790 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2791 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2792 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2793 	}
2794 
2795 	/* Configure transmit arbiter(s) */
2796 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2797 	    SK_TXARCTL_ON | SK_TXARCTL_FSYNC_ON);
2798 
2799 	/* Configure RAMbuffers */
2800 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2801 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2802 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2803 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2804 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2805 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2806 
2807 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2808 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2809 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2810 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2811 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2812 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2813 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2814 
2815 	/* Configure BMUs */
2816 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2817 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2818 	    SK_RX_RING_ADDR(sc_if, 0));
2819 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2820 
2821 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2822 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2823 	    SK_TX_RING_ADDR(sc_if, 0));
2824 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2825 
2826 	/* Init descriptors */
2827 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2828 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2829 		    "memory for rx buffers\n");
2830 		sk_stop(ifp, 0);
2831 		splx(s);
2832 		return ENOBUFS;
2833 	}
2834 
2835 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2836 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2837 		    "memory for tx buffers\n");
2838 		sk_stop(ifp, 0);
2839 		splx(s);
2840 		return ENOBUFS;
2841 	}
2842 
2843 	/* Set interrupt moderation if changed via sysctl. */
2844 	switch (sc->sk_type) {
2845 	case SK_GENESIS:
2846 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2847 		break;
2848 	case SK_YUKON_EC:
2849 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2850 		break;
2851 	default:
2852 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2853 	}
2854 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2855 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2856 		sk_win_write_4(sc, SK_IMTIMERINIT,
2857 		    SK_IM_USECS(sc->sk_int_mod));
2858 		aprint_verbose_dev(sc->sk_dev,
2859 		    "interrupt moderation is %d us\n", sc->sk_int_mod);
2860 	}
2861 
2862 	/* Configure interrupt handling */
2863 	CSR_READ_4(sc, SK_ISSR);
2864 	if (sc_if->sk_port == SK_PORT_A)
2865 		sc->sk_intrmask |= SK_INTRS1;
2866 	else
2867 		sc->sk_intrmask |= SK_INTRS2;
2868 
2869 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2870 
2871 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2872 
2873 	/* Start BMUs. */
2874 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2875 
2876 	if (sc->sk_type == SK_GENESIS) {
2877 		/* Enable XMACs TX and RX state machines */
2878 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2879 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2880 			       XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB);
2881 	}
2882 
2883 	if (SK_YUKON_FAMILY(sc->sk_type)) {
2884 		uint16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2885 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2886 #if 0
2887 		/* XXX disable 100Mbps and full duplex mode? */
2888 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2889 #endif
2890 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2891 	}
2892 
2893 
2894 	ifp->if_flags |= IFF_RUNNING;
2895 	ifp->if_flags &= ~IFF_OACTIVE;
2896 	callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2897 
2898 out:
2899 	splx(s);
2900 	return rc;
2901 }
2902 
2903 static void
2904 sk_stop(struct ifnet *ifp, int disable)
2905 {
2906 	struct sk_if_softc	*sc_if = ifp->if_softc;
2907 	struct sk_softc		*sc = sc_if->sk_softc;
2908 	int			i;
2909 
2910 	DPRINTFN(1, ("sk_stop\n"));
2911 
2912 	callout_stop(&sc_if->sk_tick_ch);
2913 
2914 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2915 		uint32_t		val;
2916 
2917 		/* Put PHY back into reset. */
2918 		val = sk_win_read_4(sc, SK_GPIO);
2919 		if (sc_if->sk_port == SK_PORT_A) {
2920 			val |= SK_GPIO_DIR0;
2921 			val &= ~SK_GPIO_DAT0;
2922 		} else {
2923 			val |= SK_GPIO_DIR2;
2924 			val &= ~SK_GPIO_DAT2;
2925 		}
2926 		sk_win_write_4(sc, SK_GPIO, val);
2927 	}
2928 
2929 	/* Turn off various components of this interface. */
2930 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2931 	switch (sc->sk_type) {
2932 	case SK_GENESIS:
2933 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2934 			      SK_TXMACCTL_XMAC_RESET);
2935 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2936 		break;
2937 	case SK_YUKON:
2938 	case SK_YUKON_LITE:
2939 	case SK_YUKON_LP:
2940 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2941 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2942 		break;
2943 	}
2944 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2945 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET |SK_RBCTL_OFF);
2946 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2947 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2948 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2949 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2950 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2951 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2952 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2953 
2954 	/* Disable interrupts */
2955 	if (sc_if->sk_port == SK_PORT_A)
2956 		sc->sk_intrmask &= ~SK_INTRS1;
2957 	else
2958 		sc->sk_intrmask &= ~SK_INTRS2;
2959 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2960 
2961 	SK_XM_READ_2(sc_if, XM_ISR);
2962 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2963 
2964 	/* Free RX and TX mbufs still in the queues. */
2965 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2966 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2967 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2968 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2969 		}
2970 	}
2971 
2972 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2973 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2974 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2975 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2976 		}
2977 	}
2978 
2979 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2980 }
2981 
2982 /* Power Management Framework */
2983 
2984 static bool
2985 skc_suspend(device_t dv, const pmf_qual_t *qual)
2986 {
2987 	struct sk_softc *sc = device_private(dv);
2988 
2989 	DPRINTFN(2, ("skc_suspend\n"));
2990 
2991 	/* Turn off the driver is loaded LED */
2992 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2993 
2994 	return true;
2995 }
2996 
2997 static bool
2998 skc_resume(device_t dv, const pmf_qual_t *qual)
2999 {
3000 	struct sk_softc *sc = device_private(dv);
3001 
3002 	DPRINTFN(2, ("skc_resume\n"));
3003 
3004 	sk_reset(sc);
3005 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
3006 
3007 	return true;
3008 }
3009 
3010 static bool
3011 sk_resume(device_t dv, const pmf_qual_t *qual)
3012 {
3013 	struct sk_if_softc *sc_if = device_private(dv);
3014 
3015 	sk_init_yukon(sc_if);
3016 	return true;
3017 }
3018 
3019 CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc),
3020     skc_probe, skc_attach, NULL, NULL);
3021 
3022 CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc),
3023     sk_probe, sk_attach, NULL, NULL);
3024 
3025 #ifdef SK_DEBUG
3026 static void
3027 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
3028 {
3029 #define DESC_PRINT(X)					\
3030 	if (X)						\
3031 		printf("txdesc[%d]." #X "=%#x\n",	\
3032 		       idx, X);
3033 
3034 	DESC_PRINT(le32toh(desc->sk_ctl));
3035 	DESC_PRINT(le32toh(desc->sk_next));
3036 	DESC_PRINT(le32toh(desc->sk_data_lo));
3037 	DESC_PRINT(le32toh(desc->sk_data_hi));
3038 	DESC_PRINT(le32toh(desc->sk_xmac_txstat));
3039 	DESC_PRINT(le16toh(desc->sk_rsvd0));
3040 	DESC_PRINT(le16toh(desc->sk_csum_startval));
3041 	DESC_PRINT(le16toh(desc->sk_csum_startpos));
3042 	DESC_PRINT(le16toh(desc->sk_csum_writepos));
3043 	DESC_PRINT(le16toh(desc->sk_rsvd1));
3044 #undef PRINT
3045 }
3046 
3047 static void
3048 sk_dump_bytes(const char *data, int len)
3049 {
3050 	int c, i, j;
3051 
3052 	for (i = 0; i < len; i += 16) {
3053 		printf("%08x  ", i);
3054 		c = len - i;
3055 		if (c > 16) c = 16;
3056 
3057 		for (j = 0; j < c; j++) {
3058 			printf("%02x ", data[i + j] & 0xff);
3059 			if ((j & 0xf) == 7 && j > 0)
3060 				printf(" ");
3061 		}
3062 
3063 		for (; j < 16; j++)
3064 			printf("   ");
3065 		printf("  ");
3066 
3067 		for (j = 0; j < c; j++) {
3068 			int ch = data[i + j] & 0xff;
3069 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
3070 		}
3071 
3072 		printf("\n");
3073 
3074 		if (c < 16)
3075 			break;
3076 	}
3077 }
3078 
3079 static void
3080 sk_dump_mbuf(struct mbuf *m)
3081 {
3082 	int count = m->m_pkthdr.len;
3083 
3084 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3085 
3086 	while (count > 0 && m) {
3087 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3088 		       m, m->m_data, m->m_len);
3089 		sk_dump_bytes(mtod(m, char *), m->m_len);
3090 
3091 		count -= m->m_len;
3092 		m = m->m_next;
3093 	}
3094 }
3095 #endif
3096 
3097 static int
3098 sk_sysctl_handler(SYSCTLFN_ARGS)
3099 {
3100 	int error, t;
3101 	struct sysctlnode node;
3102 	struct sk_softc *sc;
3103 
3104 	node = *rnode;
3105 	sc = node.sysctl_data;
3106 	t = sc->sk_int_mod;
3107 	node.sysctl_data = &t;
3108 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3109 	if (error || newp == NULL)
3110 		return error;
3111 
3112 	if (t < SK_IM_MIN || t > SK_IM_MAX)
3113 		return EINVAL;
3114 
3115 	/* update the softc with sysctl-changed value, and mark
3116 	   for hardware update */
3117 	sc->sk_int_mod = t;
3118 	sc->sk_int_mod_pending = 1;
3119 	return 0;
3120 }
3121 
3122 /*
3123  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3124  * set up in skc_attach()
3125  */
3126 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3127 {
3128 	int rc;
3129 	const struct sysctlnode *node;
3130 
3131 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
3132 	    0, CTLTYPE_NODE, "sk",
3133 	    SYSCTL_DESCR("sk interface controls"),
3134 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3135 		goto err;
3136 	}
3137 
3138 	sk_root_num = node->sysctl_num;
3139 	return;
3140 
3141 err:
3142 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3143 }
3144