1 /* $NetBSD: if_sk.c,v 1.109 2021/08/07 16:19:14 thorpej Exp $ */ 2 3 /*- 4 * Copyright (c) 2003 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 26 * POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /* $OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $ */ 30 31 /* 32 * Copyright (c) 1997, 1998, 1999, 2000 33 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. 34 * 35 * Redistribution and use in source and binary forms, with or without 36 * modification, are permitted provided that the following conditions 37 * are met: 38 * 1. Redistributions of source code must retain the above copyright 39 * notice, this list of conditions and the following disclaimer. 40 * 2. Redistributions in binary form must reproduce the above copyright 41 * notice, this list of conditions and the following disclaimer in the 42 * documentation and/or other materials provided with the distribution. 43 * 3. All advertising materials mentioning features or use of this software 44 * must display the following acknowledgement: 45 * This product includes software developed by Bill Paul. 46 * 4. Neither the name of the author nor the names of any co-contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 54 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 55 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 56 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 57 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 58 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 59 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 60 * THE POSSIBILITY OF SUCH DAMAGE. 61 * 62 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $ 63 */ 64 65 /* 66 * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu> 67 * 68 * Permission to use, copy, modify, and distribute this software for any 69 * purpose with or without fee is hereby granted, provided that the above 70 * copyright notice and this permission notice appear in all copies. 71 * 72 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 73 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 74 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 75 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 76 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 77 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 78 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 79 */ 80 81 /* 82 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports 83 * the SK-984x series adapters, both single port and dual port. 84 * References: 85 * The XaQti XMAC II datasheet, 86 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf 87 * The SysKonnect GEnesis manual, http://www.syskonnect.com 88 * 89 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the 90 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a 91 * convenience to others until Vitesse corrects this problem: 92 * 93 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf 94 * 95 * Written by Bill Paul <wpaul@ee.columbia.edu> 96 * Department of Electrical Engineering 97 * Columbia University, New York City 98 */ 99 100 /* 101 * The SysKonnect gigabit ethernet adapters consist of two main 102 * components: the SysKonnect GEnesis controller chip and the XaQti Corp. 103 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC 104 * components and a PHY while the GEnesis controller provides a PCI 105 * interface with DMA support. Each card may have between 512K and 106 * 2MB of SRAM on board depending on the configuration. 107 * 108 * The SysKonnect GEnesis controller can have either one or two XMAC 109 * chips connected to it, allowing single or dual port NIC configurations. 110 * SysKonnect has the distinction of being the only vendor on the market 111 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs, 112 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the 113 * XMAC registers. This driver takes advantage of these features to allow 114 * both XMACs to operate as independent interfaces. 115 */ 116 117 #include <sys/cdefs.h> 118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.109 2021/08/07 16:19:14 thorpej Exp $"); 119 120 #include <sys/param.h> 121 #include <sys/systm.h> 122 #include <sys/sockio.h> 123 #include <sys/mbuf.h> 124 #include <sys/malloc.h> 125 #include <sys/mutex.h> 126 #include <sys/kernel.h> 127 #include <sys/socket.h> 128 #include <sys/device.h> 129 #include <sys/queue.h> 130 #include <sys/callout.h> 131 #include <sys/sysctl.h> 132 #include <sys/endian.h> 133 134 #include <net/if.h> 135 #include <net/if_dl.h> 136 #include <net/if_types.h> 137 138 #include <net/if_media.h> 139 140 #include <net/bpf.h> 141 #include <sys/rndsource.h> 142 143 #include <dev/mii/mii.h> 144 #include <dev/mii/miivar.h> 145 #include <dev/mii/brgphyreg.h> 146 147 #include <dev/pci/pcireg.h> 148 #include <dev/pci/pcivar.h> 149 #include <dev/pci/pcidevs.h> 150 151 /* #define SK_USEIOSPACE */ 152 153 #include <dev/pci/if_skreg.h> 154 #include <dev/pci/if_skvar.h> 155 156 static int skc_probe(device_t, cfdata_t, void *); 157 static void skc_attach(device_t, device_t, void *); 158 static int sk_probe(device_t, cfdata_t, void *); 159 static void sk_attach(device_t, device_t, void *); 160 static int skcprint(void *, const char *); 161 static int sk_intr(void *); 162 static void sk_intr_bcom(struct sk_if_softc *); 163 static void sk_intr_xmac(struct sk_if_softc *); 164 static void sk_intr_yukon(struct sk_if_softc *); 165 static void sk_rxeof(struct sk_if_softc *); 166 static void sk_txeof(struct sk_if_softc *); 167 static int sk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *); 168 static void sk_start(struct ifnet *); 169 static int sk_ioctl(struct ifnet *, u_long, void *); 170 static int sk_init(struct ifnet *); 171 static void sk_unreset_xmac(struct sk_if_softc *); 172 static void sk_init_xmac(struct sk_if_softc *); 173 static void sk_unreset_yukon(struct sk_if_softc *); 174 static void sk_init_yukon(struct sk_if_softc *); 175 static void sk_stop(struct ifnet *, int); 176 static void sk_watchdog(struct ifnet *); 177 static int sk_ifmedia_upd(struct ifnet *); 178 static void sk_reset(struct sk_softc *); 179 static int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t); 180 static int sk_alloc_jumbo_mem(struct sk_if_softc *); 181 static void *sk_jalloc(struct sk_if_softc *); 182 static void sk_jfree(struct mbuf *, void *, size_t, void *); 183 static int sk_init_rx_ring(struct sk_if_softc *); 184 static int sk_init_tx_ring(struct sk_if_softc *); 185 static uint8_t sk_vpd_readbyte(struct sk_softc *, int); 186 static void sk_vpd_read_res(struct sk_softc *, struct vpd_res *, int); 187 static void sk_vpd_read(struct sk_softc *); 188 189 static void sk_update_int_mod(struct sk_softc *); 190 191 static int sk_xmac_miibus_readreg(device_t, int, int, uint16_t *); 192 static int sk_xmac_miibus_writereg(device_t, int, int, uint16_t); 193 static void sk_xmac_miibus_statchg(struct ifnet *); 194 195 static int sk_marv_miibus_readreg(device_t, int, int, uint16_t *); 196 static int sk_marv_miibus_writereg(device_t, int, int, uint16_t); 197 static void sk_marv_miibus_statchg(struct ifnet *); 198 199 static uint32_t sk_xmac_hash(void *); 200 static uint32_t sk_yukon_hash(void *); 201 static void sk_setfilt(struct sk_if_softc *, void *, int); 202 static void sk_setmulti(struct sk_if_softc *); 203 static void sk_tick(void *); 204 205 static bool skc_suspend(device_t, const pmf_qual_t *); 206 static bool skc_resume(device_t, const pmf_qual_t *); 207 static bool sk_resume(device_t dv, const pmf_qual_t *); 208 209 /* #define SK_DEBUG 2 */ 210 #ifdef SK_DEBUG 211 #define DPRINTF(x) if (skdebug) printf x 212 #define DPRINTFN(n, x) if (skdebug >= (n)) printf x 213 int skdebug = SK_DEBUG; 214 215 static void sk_dump_txdesc(struct sk_tx_desc *, int); 216 static void sk_dump_mbuf(struct mbuf *); 217 static void sk_dump_bytes(const char *, int); 218 #else 219 #define DPRINTF(x) 220 #define DPRINTFN(n, x) 221 #endif 222 223 static int sk_sysctl_handler(SYSCTLFN_PROTO); 224 static int sk_root_num; 225 226 /* supported device vendors */ 227 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */ 228 static const struct device_compatible_entry compat_data[] = { 229 { .id = PCI_ID_CODE(PCI_VENDOR_3COM, 230 PCI_PRODUCT_3COM_3C940) }, 231 232 { .id = PCI_ID_CODE(PCI_VENDOR_DLINK, 233 PCI_PRODUCT_DLINK_DGE530T) }, 234 235 { .id = PCI_ID_CODE(PCI_VENDOR_DLINK, 236 PCI_PRODUCT_DLINK_DGE560T_2) }, 237 238 { .id = PCI_ID_CODE(PCI_VENDOR_LINKSYS, 239 PCI_PRODUCT_LINKSYS_EG1064) }, 240 241 { .id = PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH, 242 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE) }, 243 244 { .id = PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH, 245 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2) }, 246 247 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 248 PCI_PRODUCT_MARVELL_SKNET) }, 249 250 { .id = PCI_ID_CODE(PCI_VENDOR_MARVELL, 251 PCI_PRODUCT_MARVELL_BELKIN) }, 252 253 PCI_COMPAT_EOL 254 }; 255 256 #define SK_LINKSYS_EG1032_SUBID 0x00151737 257 258 static inline uint32_t 259 sk_win_read_4(struct sk_softc *sc, uint32_t reg) 260 { 261 #ifdef SK_USEIOSPACE 262 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 263 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)); 264 #else 265 return CSR_READ_4(sc, reg); 266 #endif 267 } 268 269 static inline uint16_t 270 sk_win_read_2(struct sk_softc *sc, uint32_t reg) 271 { 272 #ifdef SK_USEIOSPACE 273 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 274 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)); 275 #else 276 return CSR_READ_2(sc, reg); 277 #endif 278 } 279 280 static inline uint8_t 281 sk_win_read_1(struct sk_softc *sc, uint32_t reg) 282 { 283 #ifdef SK_USEIOSPACE 284 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 285 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)); 286 #else 287 return CSR_READ_1(sc, reg); 288 #endif 289 } 290 291 static inline void 292 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x) 293 { 294 #ifdef SK_USEIOSPACE 295 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 296 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x); 297 #else 298 CSR_WRITE_4(sc, reg, x); 299 #endif 300 } 301 302 static inline void 303 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x) 304 { 305 #ifdef SK_USEIOSPACE 306 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 307 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x); 308 #else 309 CSR_WRITE_2(sc, reg, x); 310 #endif 311 } 312 313 static inline void 314 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x) 315 { 316 #ifdef SK_USEIOSPACE 317 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 318 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x); 319 #else 320 CSR_WRITE_1(sc, reg, x); 321 #endif 322 } 323 324 /* 325 * The VPD EEPROM contains Vital Product Data, as suggested in 326 * the PCI 2.1 specification. The VPD data is separared into areas 327 * denoted by resource IDs. The SysKonnect VPD contains an ID string 328 * resource (the name of the adapter), a read-only area resource 329 * containing various key/data fields and a read/write area which 330 * can be used to store asset management information or log messages. 331 * We read the ID string and read-only into buffers attached to 332 * the controller softc structure for later use. At the moment, 333 * we only use the ID string during sk_attach(). 334 */ 335 static uint8_t 336 sk_vpd_readbyte(struct sk_softc *sc, int addr) 337 { 338 int i; 339 340 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr); 341 for (i = 0; i < SK_TIMEOUT; i++) { 342 DELAY(1); 343 if (sk_win_read_2(sc, 344 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG) 345 break; 346 } 347 348 if (i == SK_TIMEOUT) 349 return 0; 350 351 return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)); 352 } 353 354 static void 355 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr) 356 { 357 int i; 358 uint8_t *ptr; 359 360 ptr = (uint8_t *)res; 361 for (i = 0; i < sizeof(struct vpd_res); i++) 362 ptr[i] = sk_vpd_readbyte(sc, i + addr); 363 } 364 365 static void 366 sk_vpd_read(struct sk_softc *sc) 367 { 368 int pos = 0, i; 369 struct vpd_res res; 370 371 if (sc->sk_vpd_prodname != NULL) 372 free(sc->sk_vpd_prodname, M_DEVBUF); 373 if (sc->sk_vpd_readonly != NULL) 374 free(sc->sk_vpd_readonly, M_DEVBUF); 375 sc->sk_vpd_prodname = NULL; 376 sc->sk_vpd_readonly = NULL; 377 378 sk_vpd_read_res(sc, &res, pos); 379 380 if (res.vr_id != VPD_RES_ID) { 381 aprint_error_dev(sc->sk_dev, 382 "bad VPD resource id: expected %x got %x\n", 383 VPD_RES_ID, res.vr_id); 384 return; 385 } 386 387 pos += sizeof(res); 388 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_WAITOK); 389 for (i = 0; i < res.vr_len; i++) 390 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos); 391 sc->sk_vpd_prodname[i] = '\0'; 392 pos += i; 393 394 sk_vpd_read_res(sc, &res, pos); 395 396 if (res.vr_id != VPD_RES_READ) { 397 aprint_error_dev(sc->sk_dev, 398 "bad VPD resource id: expected %x got %x\n", 399 VPD_RES_READ, res.vr_id); 400 return; 401 } 402 403 pos += sizeof(res); 404 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_WAITOK); 405 for (i = 0; i < res.vr_len ; i++) 406 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos); 407 } 408 409 static int 410 sk_xmac_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val) 411 { 412 struct sk_if_softc *sc_if = device_private(dev); 413 int i; 414 415 DPRINTFN(9, ("sk_xmac_miibus_readreg\n")); 416 417 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0) 418 return -1; 419 420 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8)); 421 SK_XM_READ_2(sc_if, XM_PHY_DATA); 422 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) { 423 for (i = 0; i < SK_TIMEOUT; i++) { 424 DELAY(1); 425 if (SK_XM_READ_2(sc_if, XM_MMUCMD) & 426 XM_MMUCMD_PHYDATARDY) 427 break; 428 } 429 430 if (i == SK_TIMEOUT) { 431 aprint_error_dev(sc_if->sk_dev, 432 "phy failed to come ready\n"); 433 return ETIMEDOUT; 434 } 435 } 436 DELAY(1); 437 *val = SK_XM_READ_2(sc_if, XM_PHY_DATA); 438 return 0; 439 } 440 441 static int 442 sk_xmac_miibus_writereg(device_t dev, int phy, int reg, uint16_t val) 443 { 444 struct sk_if_softc *sc_if = device_private(dev); 445 int i; 446 447 DPRINTFN(9, ("sk_xmac_miibus_writereg\n")); 448 449 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8)); 450 for (i = 0; i < SK_TIMEOUT; i++) { 451 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY)) 452 break; 453 } 454 455 if (i == SK_TIMEOUT) { 456 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n"); 457 return ETIMEDOUT; 458 } 459 460 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val); 461 for (i = 0; i < SK_TIMEOUT; i++) { 462 DELAY(1); 463 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY)) 464 break; 465 } 466 467 if (i == SK_TIMEOUT) { 468 aprint_error_dev(sc_if->sk_dev, "phy write timed out\n"); 469 return ETIMEDOUT; 470 } 471 472 return 0; 473 } 474 475 static void 476 sk_xmac_miibus_statchg(struct ifnet *ifp) 477 { 478 struct sk_if_softc *sc_if = ifp->if_softc; 479 struct mii_data *mii = &sc_if->sk_mii; 480 481 DPRINTFN(9, ("sk_xmac_miibus_statchg\n")); 482 483 /* 484 * If this is a GMII PHY, manually set the XMAC's 485 * duplex mode accordingly. 486 */ 487 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) { 488 if ((mii->mii_media_active & IFM_FDX) != 0) 489 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX); 490 else 491 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX); 492 } 493 } 494 495 static int 496 sk_marv_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val) 497 { 498 struct sk_if_softc *sc_if = device_private(dev); 499 uint16_t data; 500 int i; 501 502 if (phy != 0 || 503 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER && 504 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) { 505 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n", 506 phy, reg)); 507 return -1; 508 } 509 510 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) | 511 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ); 512 513 for (i = 0; i < SK_TIMEOUT; i++) { 514 DELAY(1); 515 data = SK_YU_READ_2(sc_if, YUKON_SMICR); 516 if (data & YU_SMICR_READ_VALID) 517 break; 518 } 519 520 if (i == SK_TIMEOUT) { 521 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n"); 522 return ETIMEDOUT; 523 } 524 525 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i, 526 SK_TIMEOUT)); 527 528 *val = SK_YU_READ_2(sc_if, YUKON_SMIDR); 529 530 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#hx\n", 531 phy, reg, *val)); 532 533 return 0; 534 } 535 536 static int 537 sk_marv_miibus_writereg(device_t dev, int phy, int reg, uint16_t val) 538 { 539 struct sk_if_softc *sc_if = device_private(dev); 540 int i; 541 542 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#hx\n", 543 phy, reg, val)); 544 545 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val); 546 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) | 547 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE); 548 549 for (i = 0; i < SK_TIMEOUT; i++) { 550 DELAY(1); 551 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)) 552 break; 553 } 554 555 if (i == SK_TIMEOUT) { 556 printf("%s: phy write timed out\n", 557 device_xname(sc_if->sk_dev)); 558 return ETIMEDOUT; 559 } 560 561 return 0; 562 } 563 564 static void 565 sk_marv_miibus_statchg(struct ifnet *ifp) 566 { 567 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n", 568 SK_YU_READ_2(((struct sk_if_softc *)ifp->if_softc), 569 YUKON_GPCR))); 570 } 571 572 static uint32_t 573 sk_xmac_hash(void *addr) 574 { 575 uint32_t crc; 576 577 crc = ether_crc32_le(addr, ETHER_ADDR_LEN); 578 crc = ~crc & ((1<< SK_HASH_BITS) - 1); 579 DPRINTFN(2,("multicast hash for %s is %x\n", ether_sprintf(addr),crc)); 580 return crc; 581 } 582 583 static uint32_t 584 sk_yukon_hash(void *addr) 585 { 586 uint32_t crc; 587 588 crc = ether_crc32_be(addr, ETHER_ADDR_LEN); 589 crc &= ((1 << SK_HASH_BITS) - 1); 590 DPRINTFN(2,("multicast hash for %s is %x\n", ether_sprintf(addr),crc)); 591 return crc; 592 } 593 594 static void 595 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot) 596 { 597 char *addr = addrv; 598 int base = XM_RXFILT_ENTRY(slot); 599 600 SK_XM_WRITE_2(sc_if, base, *(uint16_t *)(&addr[0])); 601 SK_XM_WRITE_2(sc_if, base + 2, *(uint16_t *)(&addr[2])); 602 SK_XM_WRITE_2(sc_if, base + 4, *(uint16_t *)(&addr[4])); 603 } 604 605 static void 606 sk_setmulti(struct sk_if_softc *sc_if) 607 { 608 struct sk_softc *sc = sc_if->sk_softc; 609 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if; 610 uint32_t hashes[2] = { 0, 0 }; 611 int h = 0, i; 612 struct ethercom *ec = &sc_if->sk_ethercom; 613 struct ether_multi *enm; 614 struct ether_multistep step; 615 uint8_t dummy[] = { 0, 0, 0, 0, 0, 0 }; 616 617 /* First, zot all the existing filters. */ 618 switch (sc->sk_type) { 619 case SK_GENESIS: 620 for (i = 1; i < XM_RXFILT_MAX; i++) 621 sk_setfilt(sc_if, (void *)&dummy, i); 622 623 SK_XM_WRITE_4(sc_if, XM_MAR0, 0); 624 SK_XM_WRITE_4(sc_if, XM_MAR2, 0); 625 break; 626 case SK_YUKON: 627 case SK_YUKON_LITE: 628 case SK_YUKON_LP: 629 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0); 630 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0); 631 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0); 632 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0); 633 break; 634 } 635 636 /* Now program new ones. */ 637 allmulti: 638 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { 639 hashes[0] = 0xFFFFFFFF; 640 hashes[1] = 0xFFFFFFFF; 641 } else { 642 i = 1; 643 /* First find the tail of the list. */ 644 ETHER_LOCK(ec); 645 ETHER_FIRST_MULTI(step, ec, enm); 646 while (enm != NULL) { 647 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 648 ETHER_ADDR_LEN)) { 649 ifp->if_flags |= IFF_ALLMULTI; 650 ETHER_UNLOCK(ec); 651 goto allmulti; 652 } 653 DPRINTFN(2,("multicast address %s\n", 654 ether_sprintf(enm->enm_addrlo))); 655 /* 656 * Program the first XM_RXFILT_MAX multicast groups 657 * into the perfect filter. For all others, 658 * use the hash table. 659 */ 660 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) { 661 sk_setfilt(sc_if, enm->enm_addrlo, i); 662 i++; 663 } 664 else { 665 switch (sc->sk_type) { 666 case SK_GENESIS: 667 h = sk_xmac_hash(enm->enm_addrlo); 668 break; 669 case SK_YUKON: 670 case SK_YUKON_LITE: 671 case SK_YUKON_LP: 672 h = sk_yukon_hash(enm->enm_addrlo); 673 break; 674 } 675 if (h < 32) 676 hashes[0] |= (1 << h); 677 else 678 hashes[1] |= (1 << (h - 32)); 679 } 680 681 ETHER_NEXT_MULTI(step, enm); 682 } 683 ETHER_UNLOCK(ec); 684 } 685 686 switch (sc->sk_type) { 687 case SK_GENESIS: 688 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH | 689 XM_MODE_RX_USE_PERFECT); 690 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]); 691 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]); 692 break; 693 case SK_YUKON: 694 case SK_YUKON_LITE: 695 case SK_YUKON_LP: 696 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff); 697 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff); 698 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff); 699 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff); 700 break; 701 } 702 } 703 704 static int 705 sk_init_rx_ring(struct sk_if_softc *sc_if) 706 { 707 struct sk_chain_data *cd = &sc_if->sk_cdata; 708 struct sk_ring_data *rd = sc_if->sk_rdata; 709 int i; 710 711 memset((char *)rd->sk_rx_ring, 0, 712 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT); 713 714 for (i = 0; i < SK_RX_RING_CNT; i++) { 715 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i]; 716 if (i == (SK_RX_RING_CNT - 1)) { 717 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0]; 718 rd->sk_rx_ring[i].sk_next = 719 htole32(SK_RX_RING_ADDR(sc_if, 0)); 720 } else { 721 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1]; 722 rd->sk_rx_ring[i].sk_next = 723 htole32(SK_RX_RING_ADDR(sc_if, i+1)); 724 } 725 } 726 727 for (i = 0; i < SK_RX_RING_CNT; i++) { 728 if (sk_newbuf(sc_if, i, NULL, 729 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) { 730 aprint_error_dev(sc_if->sk_dev, 731 "failed alloc of %dth mbuf\n", i); 732 return ENOBUFS; 733 } 734 } 735 sc_if->sk_cdata.sk_rx_prod = 0; 736 sc_if->sk_cdata.sk_rx_cons = 0; 737 738 return 0; 739 } 740 741 static int 742 sk_init_tx_ring(struct sk_if_softc *sc_if) 743 { 744 struct sk_chain_data *cd = &sc_if->sk_cdata; 745 struct sk_ring_data *rd = sc_if->sk_rdata; 746 int i; 747 748 memset(sc_if->sk_rdata->sk_tx_ring, 0, 749 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT); 750 751 for (i = 0; i < SK_TX_RING_CNT; i++) { 752 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i]; 753 if (i == (SK_TX_RING_CNT - 1)) { 754 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0]; 755 rd->sk_tx_ring[i].sk_next = 756 htole32(SK_TX_RING_ADDR(sc_if, 0)); 757 } else { 758 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1]; 759 rd->sk_tx_ring[i].sk_next = 760 htole32(SK_TX_RING_ADDR(sc_if, i+1)); 761 } 762 } 763 764 sc_if->sk_cdata.sk_tx_prod = 0; 765 sc_if->sk_cdata.sk_tx_cons = 0; 766 sc_if->sk_cdata.sk_tx_cnt = 0; 767 768 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT, 769 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 770 771 return 0; 772 } 773 774 static int 775 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m, 776 bus_dmamap_t dmamap) 777 { 778 struct mbuf *m_new = NULL; 779 struct sk_chain *c; 780 struct sk_rx_desc *r; 781 782 if (m == NULL) { 783 void *buf = NULL; 784 785 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 786 if (m_new == NULL) { 787 aprint_error_dev(sc_if->sk_dev, 788 "no memory for rx list -- packet dropped!\n"); 789 return ENOBUFS; 790 } 791 792 /* Allocate the jumbo buffer */ 793 buf = sk_jalloc(sc_if); 794 if (buf == NULL) { 795 m_freem(m_new); 796 DPRINTFN(1, ("%s jumbo allocation failed -- packet " 797 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname)); 798 return ENOBUFS; 799 } 800 801 /* Attach the buffer to the mbuf */ 802 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN; 803 MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if); 804 805 } else { 806 /* 807 * We're re-using a previously allocated mbuf; 808 * be sure to re-init pointers and lengths to 809 * default values. 810 */ 811 m_new = m; 812 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN; 813 m_new->m_data = m_new->m_ext.ext_buf; 814 } 815 m_adj(m_new, ETHER_ALIGN); 816 817 c = &sc_if->sk_cdata.sk_rx_chain[i]; 818 r = c->sk_desc; 819 c->sk_mbuf = m_new; 820 r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr + 821 (((vaddr_t)m_new->m_data 822 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf))); 823 r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT); 824 825 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); 826 827 return 0; 828 } 829 830 /* 831 * Memory management for jumbo frames. 832 */ 833 834 static int 835 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if) 836 { 837 struct sk_softc *sc = sc_if->sk_softc; 838 char *ptr, *kva; 839 bus_dma_segment_t seg; 840 int i, rseg, state, error; 841 struct sk_jpool_entry *entry; 842 843 state = error = 0; 844 845 /* Grab a big chunk o' storage. */ 846 if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0, 847 &seg, 1, &rseg, BUS_DMA_NOWAIT)) { 848 aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n"); 849 return ENOBUFS; 850 } 851 852 state = 1; 853 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva, 854 BUS_DMA_NOWAIT)) { 855 aprint_error_dev(sc->sk_dev, 856 "can't map dma buffers (%d bytes)\n", 857 SK_JMEM); 858 error = ENOBUFS; 859 goto out; 860 } 861 862 state = 2; 863 if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0, 864 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) { 865 aprint_error_dev(sc->sk_dev, "can't create dma map\n"); 866 error = ENOBUFS; 867 goto out; 868 } 869 870 state = 3; 871 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map, 872 kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) { 873 aprint_error_dev(sc->sk_dev, "can't load dma map\n"); 874 error = ENOBUFS; 875 goto out; 876 } 877 878 state = 4; 879 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva; 880 DPRINTFN(1,("sk_jumbo_buf = %p\n", sc_if->sk_cdata.sk_jumbo_buf)); 881 882 LIST_INIT(&sc_if->sk_jfree_listhead); 883 LIST_INIT(&sc_if->sk_jinuse_listhead); 884 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET); 885 886 /* 887 * Now divide it up into 9K pieces and save the addresses 888 * in an array. 889 */ 890 ptr = sc_if->sk_cdata.sk_jumbo_buf; 891 for (i = 0; i < SK_JSLOTS; i++) { 892 sc_if->sk_cdata.sk_jslots[i] = ptr; 893 ptr += SK_JLEN; 894 entry = malloc(sizeof(struct sk_jpool_entry), 895 M_DEVBUF, M_WAITOK); 896 entry->slot = i; 897 if (i) 898 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, 899 entry, jpool_entries); 900 else 901 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, 902 entry, jpool_entries); 903 } 904 out: 905 if (error != 0) { 906 switch (state) { 907 case 4: 908 bus_dmamap_unload(sc->sc_dmatag, 909 sc_if->sk_cdata.sk_rx_jumbo_map); 910 /* FALLTHROUGH */ 911 case 3: 912 bus_dmamap_destroy(sc->sc_dmatag, 913 sc_if->sk_cdata.sk_rx_jumbo_map); 914 /* FALLTHROUGH */ 915 case 2: 916 bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM); 917 /* FALLTHROUGH */ 918 case 1: 919 bus_dmamem_free(sc->sc_dmatag, &seg, rseg); 920 break; 921 default: 922 break; 923 } 924 } 925 926 return error; 927 } 928 929 /* 930 * Allocate a jumbo buffer. 931 */ 932 static void * 933 sk_jalloc(struct sk_if_softc *sc_if) 934 { 935 struct sk_jpool_entry *entry; 936 937 mutex_enter(&sc_if->sk_jpool_mtx); 938 entry = LIST_FIRST(&sc_if->sk_jfree_listhead); 939 940 if (entry == NULL) { 941 mutex_exit(&sc_if->sk_jpool_mtx); 942 return NULL; 943 } 944 945 LIST_REMOVE(entry, jpool_entries); 946 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries); 947 mutex_exit(&sc_if->sk_jpool_mtx); 948 return sc_if->sk_cdata.sk_jslots[entry->slot]; 949 } 950 951 /* 952 * Release a jumbo buffer. 953 */ 954 static void 955 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg) 956 { 957 struct sk_jpool_entry *entry; 958 struct sk_if_softc *sc; 959 int i; 960 961 /* Extract the softc struct pointer. */ 962 sc = (struct sk_if_softc *)arg; 963 964 if (sc == NULL) 965 panic("sk_jfree: can't find softc pointer!"); 966 967 /* calculate the slot this buffer belongs to */ 968 969 i = ((vaddr_t)buf 970 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN; 971 972 if ((i < 0) || (i >= SK_JSLOTS)) 973 panic("sk_jfree: asked to free buffer that we don't manage!"); 974 975 mutex_enter(&sc->sk_jpool_mtx); 976 entry = LIST_FIRST(&sc->sk_jinuse_listhead); 977 if (entry == NULL) 978 panic("sk_jfree: buffer not in use!"); 979 entry->slot = i; 980 LIST_REMOVE(entry, jpool_entries); 981 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries); 982 mutex_exit(&sc->sk_jpool_mtx); 983 984 if (__predict_true(m != NULL)) 985 pool_cache_put(mb_cache, m); 986 } 987 988 /* 989 * Set media options. 990 */ 991 static int 992 sk_ifmedia_upd(struct ifnet *ifp) 993 { 994 struct sk_if_softc *sc_if = ifp->if_softc; 995 int rc; 996 997 (void) sk_init(ifp); 998 if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO) 999 return 0; 1000 return rc; 1001 } 1002 1003 static void 1004 sk_promisc(struct sk_if_softc *sc_if, int on) 1005 { 1006 struct sk_softc *sc = sc_if->sk_softc; 1007 switch (sc->sk_type) { 1008 case SK_GENESIS: 1009 if (on) 1010 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC); 1011 else 1012 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC); 1013 break; 1014 case SK_YUKON: 1015 case SK_YUKON_LITE: 1016 case SK_YUKON_LP: 1017 if (on) 1018 SK_YU_CLRBIT_2(sc_if, YUKON_RCR, 1019 YU_RCR_UFLEN | YU_RCR_MUFLEN); 1020 else 1021 SK_YU_SETBIT_2(sc_if, YUKON_RCR, 1022 YU_RCR_UFLEN | YU_RCR_MUFLEN); 1023 break; 1024 default: 1025 aprint_error_dev(sc_if->sk_dev, "Can't set promisc for %d\n", 1026 sc->sk_type); 1027 break; 1028 } 1029 } 1030 1031 static int 1032 sk_ioctl(struct ifnet *ifp, u_long command, void *data) 1033 { 1034 struct sk_if_softc *sc_if = ifp->if_softc; 1035 int s, error = 0; 1036 1037 /* DPRINTFN(2, ("sk_ioctl\n")); */ 1038 1039 s = splnet(); 1040 1041 switch (command) { 1042 1043 case SIOCSIFFLAGS: 1044 DPRINTFN(2, ("sk_ioctl IFFLAGS\n")); 1045 if ((error = ifioctl_common(ifp, command, data)) != 0) 1046 break; 1047 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) { 1048 case IFF_RUNNING: 1049 sk_stop(ifp, 1); 1050 break; 1051 case IFF_UP: 1052 sk_init(ifp); 1053 break; 1054 case IFF_UP | IFF_RUNNING: 1055 if ((ifp->if_flags ^ sc_if->sk_if_flags) == IFF_PROMISC) { 1056 sk_promisc(sc_if, ifp->if_flags & IFF_PROMISC); 1057 sk_setmulti(sc_if); 1058 } else 1059 sk_init(ifp); 1060 break; 1061 } 1062 sc_if->sk_if_flags = ifp->if_flags; 1063 error = 0; 1064 break; 1065 1066 default: 1067 DPRINTFN(2, ("sk_ioctl ETHER\n")); 1068 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET) 1069 break; 1070 1071 error = 0; 1072 1073 if (command != SIOCADDMULTI && command != SIOCDELMULTI) 1074 ; 1075 else if (ifp->if_flags & IFF_RUNNING) { 1076 sk_setmulti(sc_if); 1077 DPRINTFN(2, ("sk_ioctl setmulti called\n")); 1078 } 1079 break; 1080 } 1081 1082 splx(s); 1083 return error; 1084 } 1085 1086 static void 1087 sk_update_int_mod(struct sk_softc *sc) 1088 { 1089 uint32_t imtimer_ticks; 1090 1091 /* 1092 * Configure interrupt moderation. The moderation timer 1093 * defers interrupts specified in the interrupt moderation 1094 * timer mask based on the timeout specified in the interrupt 1095 * moderation timer init register. Each bit in the timer 1096 * register represents one tick, so to specify a timeout in 1097 * microseconds, we have to multiply by the correct number of 1098 * ticks-per-microsecond. 1099 */ 1100 switch (sc->sk_type) { 1101 case SK_GENESIS: 1102 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS; 1103 break; 1104 case SK_YUKON_EC: 1105 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC; 1106 break; 1107 default: 1108 imtimer_ticks = SK_IMTIMER_TICKS_YUKON; 1109 } 1110 aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n", 1111 sc->sk_int_mod); 1112 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod)); 1113 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF | SK_ISR_TX2_S_EOF | 1114 SK_ISR_RX1_EOF | SK_ISR_RX2_EOF); 1115 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START); 1116 sc->sk_int_mod_pending = 0; 1117 } 1118 1119 /* 1120 * Lookup: Check the PCI vendor and device, and return a pointer to 1121 * The structure if the IDs match against our list. 1122 */ 1123 1124 /* 1125 * Probe for a SysKonnect GEnesis chip. 1126 */ 1127 1128 static int 1129 skc_probe(device_t parent, cfdata_t match, void *aux) 1130 { 1131 struct pci_attach_args *pa = (struct pci_attach_args *)aux; 1132 pcireg_t subid; 1133 1134 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG); 1135 1136 /* special-case Linksys EG1032, since rev 3 uses re(4) */ 1137 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS && 1138 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 && 1139 subid == SK_LINKSYS_EG1032_SUBID) 1140 return 1; 1141 1142 return pci_compatible_match(pa, compat_data); 1143 } 1144 1145 /* 1146 * Force the GEnesis into reset, then bring it out of reset. 1147 */ 1148 static void 1149 sk_reset(struct sk_softc *sc) 1150 { 1151 DPRINTFN(2, ("sk_reset\n")); 1152 1153 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET); 1154 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET); 1155 if (SK_YUKON_FAMILY(sc->sk_type)) 1156 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET); 1157 1158 DELAY(1000); 1159 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET); 1160 DELAY(2); 1161 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET); 1162 if (SK_YUKON_FAMILY(sc->sk_type)) 1163 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR); 1164 1165 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR))); 1166 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n", 1167 CSR_READ_2(sc, SK_LINK_CTRL))); 1168 1169 if (sc->sk_type == SK_GENESIS) { 1170 /* Configure packet arbiter */ 1171 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET); 1172 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT); 1173 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT); 1174 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT); 1175 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT); 1176 } 1177 1178 /* Enable RAM interface */ 1179 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET); 1180 1181 sk_update_int_mod(sc); 1182 } 1183 1184 static int 1185 sk_probe(device_t parent, cfdata_t match, void *aux) 1186 { 1187 struct skc_attach_args *sa = aux; 1188 1189 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B) 1190 return 0; 1191 1192 return 1; 1193 } 1194 1195 /* 1196 * Each XMAC chip is attached as a separate logical IP interface. 1197 * Single port cards will have only one logical interface of course. 1198 */ 1199 static void 1200 sk_attach(device_t parent, device_t self, void *aux) 1201 { 1202 struct sk_if_softc *sc_if = device_private(self); 1203 struct mii_data *mii = &sc_if->sk_mii; 1204 struct sk_softc *sc = device_private(parent); 1205 struct skc_attach_args *sa = aux; 1206 struct sk_txmap_entry *entry; 1207 struct ifnet *ifp; 1208 bus_dma_segment_t seg; 1209 bus_dmamap_t dmamap; 1210 prop_data_t data; 1211 void *kva; 1212 int i, rseg; 1213 int mii_flags = 0; 1214 1215 aprint_naive("\n"); 1216 1217 sc_if->sk_dev = self; 1218 sc_if->sk_port = sa->skc_port; 1219 sc_if->sk_softc = sc; 1220 sc->sk_if[sa->skc_port] = sc_if; 1221 1222 if (sa->skc_port == SK_PORT_A) 1223 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0; 1224 if (sa->skc_port == SK_PORT_B) 1225 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1; 1226 1227 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port)); 1228 1229 /* 1230 * Get station address for this interface. Note that 1231 * dual port cards actually come with three station 1232 * addresses: one for each port, plus an extra. The 1233 * extra one is used by the SysKonnect driver software 1234 * as a 'virtual' station address for when both ports 1235 * are operating in failover mode. Currently we don't 1236 * use this extra address. 1237 */ 1238 data = prop_dictionary_get(device_properties(self), "mac-address"); 1239 if (data != NULL) { 1240 /* 1241 * Try to get the station address from device properties 1242 * first, in case the ROM is missing. 1243 */ 1244 KASSERT(prop_object_type(data) == PROP_TYPE_DATA); 1245 KASSERT(prop_data_size(data) == ETHER_ADDR_LEN); 1246 memcpy(sc_if->sk_enaddr, prop_data_value(data), 1247 ETHER_ADDR_LEN); 1248 } else 1249 for (i = 0; i < ETHER_ADDR_LEN; i++) 1250 sc_if->sk_enaddr[i] = sk_win_read_1(sc, 1251 SK_MAC0_0 + (sa->skc_port * 8) + i); 1252 1253 aprint_normal(": Ethernet address %s\n", 1254 ether_sprintf(sc_if->sk_enaddr)); 1255 1256 /* 1257 * Set up RAM buffer addresses. The NIC will have a certain 1258 * amount of SRAM on it, somewhere between 512K and 2MB. We 1259 * need to divide this up a) between the transmitter and 1260 * receiver and b) between the two XMACs, if this is a 1261 * dual port NIC. Our algorithm is to divide up the memory 1262 * evenly so that everyone gets a fair share. 1263 */ 1264 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) { 1265 uint32_t chunk, val; 1266 1267 chunk = sc->sk_ramsize / 2; 1268 val = sc->sk_rboff / sizeof(uint64_t); 1269 sc_if->sk_rx_ramstart = val; 1270 val += (chunk / sizeof(uint64_t)); 1271 sc_if->sk_rx_ramend = val - 1; 1272 sc_if->sk_tx_ramstart = val; 1273 val += (chunk / sizeof(uint64_t)); 1274 sc_if->sk_tx_ramend = val - 1; 1275 } else { 1276 uint32_t chunk, val; 1277 1278 chunk = sc->sk_ramsize / 4; 1279 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) / 1280 sizeof(uint64_t); 1281 sc_if->sk_rx_ramstart = val; 1282 val += (chunk / sizeof(uint64_t)); 1283 sc_if->sk_rx_ramend = val - 1; 1284 sc_if->sk_tx_ramstart = val; 1285 val += (chunk / sizeof(uint64_t)); 1286 sc_if->sk_tx_ramend = val - 1; 1287 } 1288 1289 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n" 1290 " tx_ramstart=%#x tx_ramend=%#x\n", 1291 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend, 1292 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend)); 1293 1294 /* Read and save PHY type and set PHY address */ 1295 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF; 1296 switch (sc_if->sk_phytype) { 1297 case SK_PHYTYPE_XMAC: 1298 sc_if->sk_phyaddr = SK_PHYADDR_XMAC; 1299 break; 1300 case SK_PHYTYPE_BCOM: 1301 sc_if->sk_phyaddr = SK_PHYADDR_BCOM; 1302 break; 1303 case SK_PHYTYPE_MARV_COPPER: 1304 sc_if->sk_phyaddr = SK_PHYADDR_MARV; 1305 break; 1306 default: 1307 aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n", 1308 sc_if->sk_phytype); 1309 return; 1310 } 1311 1312 /* Allocate the descriptor queues. */ 1313 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data), 1314 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) { 1315 aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n"); 1316 goto fail; 1317 } 1318 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, 1319 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) { 1320 aprint_error_dev(sc_if->sk_dev, 1321 "can't map dma buffers (%lu bytes)\n", 1322 (u_long) sizeof(struct sk_ring_data)); 1323 bus_dmamem_free(sc->sc_dmatag, &seg, rseg); 1324 goto fail; 1325 } 1326 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1, 1327 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT, 1328 &sc_if->sk_ring_map)) { 1329 aprint_error_dev(sc_if->sk_dev, "can't create dma map\n"); 1330 bus_dmamem_unmap(sc->sc_dmatag, kva, 1331 sizeof(struct sk_ring_data)); 1332 bus_dmamem_free(sc->sc_dmatag, &seg, rseg); 1333 goto fail; 1334 } 1335 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva, 1336 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) { 1337 aprint_error_dev(sc_if->sk_dev, "can't load dma map\n"); 1338 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map); 1339 bus_dmamem_unmap(sc->sc_dmatag, kva, 1340 sizeof(struct sk_ring_data)); 1341 bus_dmamem_free(sc->sc_dmatag, &seg, rseg); 1342 goto fail; 1343 } 1344 1345 for (i = 0; i < SK_RX_RING_CNT; i++) 1346 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL; 1347 1348 SIMPLEQ_INIT(&sc_if->sk_txmap_head); 1349 for (i = 0; i < SK_TX_RING_CNT; i++) { 1350 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL; 1351 1352 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG, 1353 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) { 1354 aprint_error_dev(sc_if->sk_dev, 1355 "Can't create TX dmamap\n"); 1356 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map); 1357 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map); 1358 bus_dmamem_unmap(sc->sc_dmatag, kva, 1359 sizeof(struct sk_ring_data)); 1360 bus_dmamem_free(sc->sc_dmatag, &seg, rseg); 1361 goto fail; 1362 } 1363 1364 entry = malloc(sizeof(*entry), M_DEVBUF, M_WAITOK); 1365 entry->dmamap = dmamap; 1366 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link); 1367 } 1368 1369 sc_if->sk_rdata = (struct sk_ring_data *)kva; 1370 memset(sc_if->sk_rdata, 0, sizeof(struct sk_ring_data)); 1371 1372 ifp = &sc_if->sk_ethercom.ec_if; 1373 /* Try to allocate memory for jumbo buffers. */ 1374 if (sk_alloc_jumbo_mem(sc_if)) { 1375 aprint_error("%s: jumbo buffer allocation failed\n", 1376 ifp->if_xname); 1377 goto fail; 1378 } 1379 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU 1380 | ETHERCAP_JUMBO_MTU; 1381 1382 ifp->if_softc = sc_if; 1383 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1384 ifp->if_ioctl = sk_ioctl; 1385 ifp->if_start = sk_start; 1386 ifp->if_stop = sk_stop; 1387 ifp->if_init = sk_init; 1388 ifp->if_watchdog = sk_watchdog; 1389 ifp->if_capabilities = 0; 1390 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1); 1391 IFQ_SET_READY(&ifp->if_snd); 1392 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ); 1393 1394 /* 1395 * Do miibus setup. 1396 */ 1397 switch (sc->sk_type) { 1398 case SK_GENESIS: 1399 sk_unreset_xmac(sc_if); 1400 break; 1401 case SK_YUKON: 1402 case SK_YUKON_LITE: 1403 case SK_YUKON_LP: 1404 sk_unreset_yukon(sc_if); 1405 break; 1406 default: 1407 aprint_error_dev(sc->sk_dev, "unknown device type %d\n", 1408 sc->sk_type); 1409 goto fail; 1410 } 1411 1412 DPRINTFN(2, ("sk_attach: 1\n")); 1413 1414 mii->mii_ifp = ifp; 1415 switch (sc->sk_type) { 1416 case SK_GENESIS: 1417 mii->mii_readreg = sk_xmac_miibus_readreg; 1418 mii->mii_writereg = sk_xmac_miibus_writereg; 1419 mii->mii_statchg = sk_xmac_miibus_statchg; 1420 break; 1421 case SK_YUKON: 1422 case SK_YUKON_LITE: 1423 case SK_YUKON_LP: 1424 mii->mii_readreg = sk_marv_miibus_readreg; 1425 mii->mii_writereg = sk_marv_miibus_writereg; 1426 mii->mii_statchg = sk_marv_miibus_statchg; 1427 mii_flags = MIIF_DOPAUSE; 1428 break; 1429 } 1430 1431 sc_if->sk_ethercom.ec_mii = mii; 1432 ifmedia_init(&mii->mii_media, 0, sk_ifmedia_upd, ether_mediastatus); 1433 mii_attach(self, mii, 0xffffffff, MII_PHY_ANY, 1434 MII_OFFSET_ANY, mii_flags); 1435 if (LIST_EMPTY(&mii->mii_phys)) { 1436 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n"); 1437 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL); 1438 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL); 1439 } else 1440 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); 1441 1442 callout_init(&sc_if->sk_tick_ch, 0); 1443 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if); 1444 1445 DPRINTFN(2, ("sk_attach: 1\n")); 1446 1447 /* 1448 * Call MI attach routines. 1449 */ 1450 if_attach(ifp); 1451 if_deferred_start_init(ifp, NULL); 1452 1453 ether_ifattach(ifp, sc_if->sk_enaddr); 1454 1455 if (sc->rnd_attached++ == 0) { 1456 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev), 1457 RND_TYPE_NET, RND_FLAG_DEFAULT); 1458 } 1459 1460 if (pmf_device_register(self, NULL, sk_resume)) 1461 pmf_class_network_register(self, ifp); 1462 else 1463 aprint_error_dev(self, "couldn't establish power handler\n"); 1464 1465 DPRINTFN(2, ("sk_attach: end\n")); 1466 1467 return; 1468 1469 fail: 1470 sc->sk_if[sa->skc_port] = NULL; 1471 } 1472 1473 static int 1474 skcprint(void *aux, const char *pnp) 1475 { 1476 struct skc_attach_args *sa = aux; 1477 1478 if (pnp) 1479 aprint_normal("sk port %c at %s", 1480 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp); 1481 else 1482 aprint_normal(" port %c", 1483 (sa->skc_port == SK_PORT_A) ? 'A' : 'B'); 1484 return UNCONF; 1485 } 1486 1487 /* 1488 * Attach the interface. Allocate softc structures, do ifmedia 1489 * setup and ethernet/BPF attach. 1490 */ 1491 static void 1492 skc_attach(device_t parent, device_t self, void *aux) 1493 { 1494 struct sk_softc *sc = device_private(self); 1495 struct pci_attach_args *pa = aux; 1496 struct skc_attach_args skca; 1497 pci_chipset_tag_t pc = pa->pa_pc; 1498 #ifndef SK_USEIOSPACE 1499 pcireg_t memtype; 1500 #endif 1501 pci_intr_handle_t ih; 1502 const char *intrstr = NULL; 1503 bus_addr_t iobase; 1504 bus_size_t iosize; 1505 int rc, sk_nodenum; 1506 uint32_t command; 1507 const char *revstr; 1508 const struct sysctlnode *node; 1509 char intrbuf[PCI_INTRSTR_LEN]; 1510 1511 sc->sk_dev = self; 1512 aprint_naive("\n"); 1513 1514 DPRINTFN(2, ("begin skc_attach\n")); 1515 1516 /* 1517 * Handle power management nonsense. 1518 */ 1519 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF; 1520 1521 if (command == 0x01) { 1522 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL); 1523 if (command & SK_PSTATE_MASK) { 1524 uint32_t xiobase, membase, irq; 1525 1526 /* Save important PCI config data. */ 1527 xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO); 1528 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM); 1529 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE); 1530 1531 /* Reset the power state. */ 1532 aprint_normal_dev(sc->sk_dev, 1533 "chip is in D%d power mode -- setting to D0\n", 1534 command & SK_PSTATE_MASK); 1535 command &= 0xFFFFFFFC; 1536 pci_conf_write(pc, pa->pa_tag, 1537 SK_PCI_PWRMGMTCTRL, command); 1538 1539 /* Restore PCI config data. */ 1540 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase); 1541 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase); 1542 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq); 1543 } 1544 } 1545 1546 /* 1547 * The firmware might have configured the interface to revert the 1548 * byte order in all descriptors. Make that undone. 1549 */ 1550 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_OURREG2); 1551 if (command & SK_REG2_REV_DESC) 1552 pci_conf_write(pc, pa->pa_tag, SK_PCI_OURREG2, 1553 command & ~SK_REG2_REV_DESC); 1554 1555 /* 1556 * Map control/status registers. 1557 */ 1558 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 1559 command |= PCI_COMMAND_IO_ENABLE | 1560 PCI_COMMAND_MEM_ENABLE | 1561 PCI_COMMAND_MASTER_ENABLE; 1562 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command); 1563 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 1564 1565 #ifdef SK_USEIOSPACE 1566 if (!(command & PCI_COMMAND_IO_ENABLE)) { 1567 aprint_error(": failed to enable I/O ports!\n"); 1568 return; 1569 } 1570 /* 1571 * Map control/status registers. 1572 */ 1573 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0, 1574 &sc->sk_btag, &sc->sk_bhandle, 1575 &iobase, &iosize)) { 1576 aprint_error(": can't find i/o space\n"); 1577 return; 1578 } 1579 #else 1580 if (!(command & PCI_COMMAND_MEM_ENABLE)) { 1581 aprint_error(": failed to enable memory mapping!\n"); 1582 return; 1583 } 1584 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM); 1585 switch (memtype) { 1586 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT: 1587 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT: 1588 if (pci_mapreg_map(pa, SK_PCI_LOMEM, 1589 memtype, 0, &sc->sk_btag, &sc->sk_bhandle, 1590 &iobase, &iosize) == 0) 1591 break; 1592 /* FALLTHROUGH */ 1593 default: 1594 aprint_error_dev(sc->sk_dev, "can't find mem space\n"); 1595 return; 1596 } 1597 1598 DPRINTFN(2, ("skc_attach: iobase=%#" PRIxPADDR ", iosize=%zx\n", 1599 iobase, iosize)); 1600 #endif 1601 sc->sc_dmatag = pa->pa_dmat; 1602 1603 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER); 1604 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4); 1605 1606 /* bail out here if chip is not recognized */ 1607 if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) { 1608 aprint_error_dev(sc->sk_dev, "unknown chip type\n"); 1609 goto fail; 1610 } 1611 if (SK_IS_YUKON2(sc)) { 1612 aprint_error_dev(sc->sk_dev, 1613 "Does not support Yukon2--try msk(4).\n"); 1614 goto fail; 1615 } 1616 DPRINTFN(2, ("skc_attach: allocate interrupt\n")); 1617 1618 /* Allocate interrupt */ 1619 if (pci_intr_map(pa, &ih)) { 1620 aprint_error(": couldn't map interrupt\n"); 1621 goto fail; 1622 } 1623 1624 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf)); 1625 sc->sk_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, sk_intr, 1626 sc, device_xname(sc->sk_dev)); 1627 if (sc->sk_intrhand == NULL) { 1628 aprint_error(": couldn't establish interrupt"); 1629 if (intrstr != NULL) 1630 aprint_error(" at %s", intrstr); 1631 aprint_error("\n"); 1632 goto fail; 1633 } 1634 aprint_normal(": %s\n", intrstr); 1635 1636 /* Reset the adapter. */ 1637 sk_reset(sc); 1638 1639 /* Read and save vital product data from EEPROM. */ 1640 sk_vpd_read(sc); 1641 1642 if (sc->sk_type == SK_GENESIS) { 1643 uint8_t val = sk_win_read_1(sc, SK_EPROM0); 1644 /* Read and save RAM size and RAMbuffer offset */ 1645 switch (val) { 1646 case SK_RAMSIZE_512K_64: 1647 sc->sk_ramsize = 0x80000; 1648 sc->sk_rboff = SK_RBOFF_0; 1649 break; 1650 case SK_RAMSIZE_1024K_64: 1651 sc->sk_ramsize = 0x100000; 1652 sc->sk_rboff = SK_RBOFF_80000; 1653 break; 1654 case SK_RAMSIZE_1024K_128: 1655 sc->sk_ramsize = 0x100000; 1656 sc->sk_rboff = SK_RBOFF_0; 1657 break; 1658 case SK_RAMSIZE_2048K_128: 1659 sc->sk_ramsize = 0x200000; 1660 sc->sk_rboff = SK_RBOFF_0; 1661 break; 1662 default: 1663 aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n", 1664 val); 1665 goto fail_1; 1666 break; 1667 } 1668 1669 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n", 1670 sc->sk_ramsize, sc->sk_ramsize / 1024, 1671 sc->sk_rboff)); 1672 } else { 1673 uint8_t val = sk_win_read_1(sc, SK_EPROM0); 1674 sc->sk_ramsize = ( val == 0 ) ? 0x20000 : (( val * 4 )*1024); 1675 sc->sk_rboff = SK_RBOFF_0; 1676 1677 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n", 1678 sc->sk_ramsize / 1024, sc->sk_ramsize, 1679 sc->sk_rboff)); 1680 } 1681 1682 /* Read and save physical media type */ 1683 switch (sk_win_read_1(sc, SK_PMDTYPE)) { 1684 case SK_PMD_1000BASESX: 1685 sc->sk_pmd = IFM_1000_SX; 1686 break; 1687 case SK_PMD_1000BASELX: 1688 sc->sk_pmd = IFM_1000_LX; 1689 break; 1690 case SK_PMD_1000BASECX: 1691 sc->sk_pmd = IFM_1000_CX; 1692 break; 1693 case SK_PMD_1000BASETX: 1694 case SK_PMD_1000BASETX_ALT: 1695 sc->sk_pmd = IFM_1000_T; 1696 break; 1697 default: 1698 aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n", 1699 sk_win_read_1(sc, SK_PMDTYPE)); 1700 goto fail_1; 1701 } 1702 1703 /* determine whether to name it with vpd or just make it up */ 1704 /* Marvell Yukon VPD's can freqently be bogus */ 1705 1706 switch (pa->pa_id) { 1707 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH, 1708 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE): 1709 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2: 1710 case PCI_PRODUCT_3COM_3C940: 1711 case PCI_PRODUCT_DLINK_DGE530T: 1712 case PCI_PRODUCT_DLINK_DGE560T: 1713 case PCI_PRODUCT_DLINK_DGE560T_2: 1714 case PCI_PRODUCT_LINKSYS_EG1032: 1715 case PCI_PRODUCT_LINKSYS_EG1064: 1716 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH, 1717 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2): 1718 case PCI_ID_CODE(PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940): 1719 case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T): 1720 case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T): 1721 case PCI_ID_CODE(PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2): 1722 case PCI_ID_CODE(PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032): 1723 case PCI_ID_CODE(PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064): 1724 sc->sk_name = sc->sk_vpd_prodname; 1725 break; 1726 case PCI_ID_CODE(PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET): 1727 /* whoops yukon vpd prodname bears no resemblance to reality */ 1728 switch (sc->sk_type) { 1729 case SK_GENESIS: 1730 sc->sk_name = sc->sk_vpd_prodname; 1731 break; 1732 case SK_YUKON: 1733 sc->sk_name = "Marvell Yukon Gigabit Ethernet"; 1734 break; 1735 case SK_YUKON_LITE: 1736 sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet"; 1737 break; 1738 case SK_YUKON_LP: 1739 sc->sk_name = "Marvell Yukon LP Gigabit Ethernet"; 1740 break; 1741 default: 1742 sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet"; 1743 } 1744 1745 /* Yukon Lite Rev A0 needs special test, from sk98lin driver */ 1746 1747 if ( sc->sk_type == SK_YUKON ) { 1748 uint32_t flashaddr; 1749 uint8_t testbyte; 1750 1751 flashaddr = sk_win_read_4(sc, SK_EP_ADDR); 1752 1753 /* test Flash-Address Register */ 1754 sk_win_write_1(sc, SK_EP_ADDR+3, 0xff); 1755 testbyte = sk_win_read_1(sc, SK_EP_ADDR+3); 1756 1757 if (testbyte != 0) { 1758 /* this is yukon lite Rev. A0 */ 1759 sc->sk_type = SK_YUKON_LITE; 1760 sc->sk_rev = SK_YUKON_LITE_REV_A0; 1761 /* restore Flash-Address Register */ 1762 sk_win_write_4(sc, SK_EP_ADDR, flashaddr); 1763 } 1764 } 1765 break; 1766 case PCI_ID_CODE(PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN): 1767 sc->sk_name = sc->sk_vpd_prodname; 1768 break; 1769 default: 1770 sc->sk_name = "Unknown Marvell"; 1771 } 1772 1773 1774 if ( sc->sk_type == SK_YUKON_LITE ) { 1775 switch (sc->sk_rev) { 1776 case SK_YUKON_LITE_REV_A0: 1777 revstr = "A0"; 1778 break; 1779 case SK_YUKON_LITE_REV_A1: 1780 revstr = "A1"; 1781 break; 1782 case SK_YUKON_LITE_REV_A3: 1783 revstr = "A3"; 1784 break; 1785 default: 1786 revstr = ""; 1787 } 1788 } else { 1789 revstr = ""; 1790 } 1791 1792 /* Announce the product name. */ 1793 aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n", 1794 sc->sk_name, revstr, sc->sk_rev); 1795 1796 skca.skc_port = SK_PORT_A; 1797 (void)config_found(sc->sk_dev, &skca, skcprint, CFARGS_NONE); 1798 1799 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) { 1800 skca.skc_port = SK_PORT_B; 1801 (void)config_found(sc->sk_dev, &skca, skcprint, CFARGS_NONE); 1802 } 1803 1804 /* Turn on the 'driver is loaded' LED. */ 1805 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON); 1806 1807 /* skc sysctl setup */ 1808 1809 sc->sk_int_mod = SK_IM_DEFAULT; 1810 sc->sk_int_mod_pending = 0; 1811 1812 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node, 1813 0, CTLTYPE_NODE, device_xname(sc->sk_dev), 1814 SYSCTL_DESCR("skc per-controller controls"), 1815 NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE, 1816 CTL_EOL)) != 0) { 1817 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n"); 1818 goto fail_1; 1819 } 1820 1821 sk_nodenum = node->sysctl_num; 1822 1823 /* interrupt moderation time in usecs */ 1824 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node, 1825 CTLFLAG_READWRITE, 1826 CTLTYPE_INT, "int_mod", 1827 SYSCTL_DESCR("sk interrupt moderation timer"), 1828 sk_sysctl_handler, 0, (void *)sc, 1829 0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE, 1830 CTL_EOL)) != 0) { 1831 aprint_normal_dev(sc->sk_dev, 1832 "couldn't create int_mod sysctl node\n"); 1833 goto fail_1; 1834 } 1835 1836 if (!pmf_device_register(self, skc_suspend, skc_resume)) 1837 aprint_error_dev(self, "couldn't establish power handler\n"); 1838 1839 return; 1840 1841 fail_1: 1842 pci_intr_disestablish(pc, sc->sk_intrhand); 1843 fail: 1844 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize); 1845 } 1846 1847 static int 1848 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx) 1849 { 1850 struct sk_softc *sc = sc_if->sk_softc; 1851 struct sk_tx_desc *f = NULL; 1852 uint32_t frag, cur, cnt = 0, sk_ctl; 1853 int i; 1854 struct sk_txmap_entry *entry; 1855 bus_dmamap_t txmap; 1856 1857 DPRINTFN(3, ("sk_encap\n")); 1858 1859 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head); 1860 if (entry == NULL) { 1861 DPRINTFN(3, ("sk_encap: no txmap available\n")); 1862 return ENOBUFS; 1863 } 1864 txmap = entry->dmamap; 1865 1866 cur = frag = *txidx; 1867 1868 #ifdef SK_DEBUG 1869 if (skdebug >= 3) 1870 sk_dump_mbuf(m_head); 1871 #endif 1872 1873 /* 1874 * Start packing the mbufs in this chain into 1875 * the fragment pointers. Stop when we run out 1876 * of fragments or hit the end of the mbuf chain. 1877 */ 1878 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head, 1879 BUS_DMA_NOWAIT)) { 1880 DPRINTFN(1, ("sk_encap: dmamap failed\n")); 1881 return ENOBUFS; 1882 } 1883 1884 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs)); 1885 1886 /* Sync the DMA map. */ 1887 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize, 1888 BUS_DMASYNC_PREWRITE); 1889 1890 for (i = 0; i < txmap->dm_nsegs; i++) { 1891 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) { 1892 DPRINTFN(1, ("sk_encap: too few descriptors free\n")); 1893 return ENOBUFS; 1894 } 1895 f = &sc_if->sk_rdata->sk_tx_ring[frag]; 1896 f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr); 1897 sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT; 1898 if (cnt == 0) 1899 sk_ctl |= SK_TXCTL_FIRSTFRAG; 1900 else 1901 sk_ctl |= SK_TXCTL_OWN; 1902 f->sk_ctl = htole32(sk_ctl); 1903 cur = frag; 1904 SK_INC(frag, SK_TX_RING_CNT); 1905 cnt++; 1906 } 1907 1908 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head; 1909 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link); 1910 1911 sc_if->sk_cdata.sk_tx_map[cur] = entry; 1912 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= 1913 htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR); 1914 1915 /* Sync descriptors before handing to chip */ 1916 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs, 1917 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1918 1919 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= 1920 htole32(SK_TXCTL_OWN); 1921 1922 /* Sync first descriptor to hand it off */ 1923 SK_CDTXSYNC(sc_if, *txidx, 1, 1924 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1925 1926 sc_if->sk_cdata.sk_tx_cnt += cnt; 1927 1928 #ifdef SK_DEBUG 1929 if (skdebug >= 3) { 1930 struct sk_tx_desc *desc; 1931 uint32_t idx; 1932 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) { 1933 desc = &sc_if->sk_rdata->sk_tx_ring[idx]; 1934 sk_dump_txdesc(desc, idx); 1935 } 1936 } 1937 #endif 1938 1939 *txidx = frag; 1940 1941 DPRINTFN(3, ("sk_encap: completed successfully\n")); 1942 1943 return 0; 1944 } 1945 1946 static void 1947 sk_start(struct ifnet *ifp) 1948 { 1949 struct sk_if_softc *sc_if = ifp->if_softc; 1950 struct sk_softc *sc = sc_if->sk_softc; 1951 struct mbuf *m_head = NULL; 1952 uint32_t idx = sc_if->sk_cdata.sk_tx_prod; 1953 int pkts = 0; 1954 1955 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx, 1956 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf)); 1957 1958 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) { 1959 IFQ_POLL(&ifp->if_snd, m_head); 1960 if (m_head == NULL) 1961 break; 1962 1963 /* 1964 * Pack the data into the transmit ring. If we 1965 * don't have room, set the OACTIVE flag and wait 1966 * for the NIC to drain the ring. 1967 */ 1968 if (sk_encap(sc_if, m_head, &idx)) { 1969 ifp->if_flags |= IFF_OACTIVE; 1970 break; 1971 } 1972 1973 /* now we are committed to transmit the packet */ 1974 IFQ_DEQUEUE(&ifp->if_snd, m_head); 1975 pkts++; 1976 1977 /* 1978 * If there's a BPF listener, bounce a copy of this frame 1979 * to him. 1980 */ 1981 bpf_mtap(ifp, m_head, BPF_D_OUT); 1982 } 1983 if (pkts == 0) 1984 return; 1985 1986 /* Transmit */ 1987 if (idx != sc_if->sk_cdata.sk_tx_prod) { 1988 sc_if->sk_cdata.sk_tx_prod = idx; 1989 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START); 1990 1991 /* Set a timeout in case the chip goes out to lunch. */ 1992 ifp->if_timer = 5; 1993 } 1994 } 1995 1996 1997 static void 1998 sk_watchdog(struct ifnet *ifp) 1999 { 2000 struct sk_if_softc *sc_if = ifp->if_softc; 2001 2002 /* 2003 * Reclaim first as there is a possibility of losing Tx completion 2004 * interrupts. 2005 */ 2006 sk_txeof(sc_if); 2007 if (sc_if->sk_cdata.sk_tx_cnt != 0) { 2008 aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n"); 2009 2010 if_statinc(ifp, if_oerrors); 2011 2012 sk_init(ifp); 2013 } 2014 } 2015 2016 #if 0 /* XXX XXX XXX UNUSED */ 2017 static void 2018 sk_shutdown(void *v) 2019 { 2020 struct sk_if_softc *sc_if = (struct sk_if_softc *)v; 2021 struct sk_softc *sc = sc_if->sk_softc; 2022 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if; 2023 2024 DPRINTFN(2, ("sk_shutdown\n")); 2025 sk_stop(ifp, 1); 2026 2027 /* Turn off the 'driver is loaded' LED. */ 2028 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF); 2029 2030 /* 2031 * Reset the GEnesis controller. Doing this should also 2032 * assert the resets on the attached XMAC(s). 2033 */ 2034 sk_reset(sc); 2035 } 2036 #endif 2037 2038 static void 2039 sk_rxeof(struct sk_if_softc *sc_if) 2040 { 2041 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if; 2042 struct mbuf *m; 2043 struct sk_chain *cur_rx; 2044 struct sk_rx_desc *cur_desc; 2045 int i, cur, total_len = 0; 2046 uint32_t rxstat, sk_ctl; 2047 bus_dmamap_t dmamap; 2048 2049 i = sc_if->sk_cdata.sk_rx_prod; 2050 2051 DPRINTFN(3, ("sk_rxeof %d\n", i)); 2052 2053 for (;;) { 2054 cur = i; 2055 2056 /* Sync the descriptor */ 2057 SK_CDRXSYNC(sc_if, cur, 2058 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2059 2060 sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl); 2061 if (sk_ctl & SK_RXCTL_OWN) { 2062 /* Invalidate the descriptor -- it's not ready yet */ 2063 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD); 2064 sc_if->sk_cdata.sk_rx_prod = i; 2065 break; 2066 } 2067 2068 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur]; 2069 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur]; 2070 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map; 2071 2072 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0, 2073 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 2074 2075 rxstat = le32toh(cur_desc->sk_xmac_rxstat); 2076 m = cur_rx->sk_mbuf; 2077 cur_rx->sk_mbuf = NULL; 2078 total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl)); 2079 2080 sc_if->sk_cdata.sk_rx_map[cur] = 0; 2081 2082 SK_INC(i, SK_RX_RING_CNT); 2083 2084 if (rxstat & XM_RXSTAT_ERRFRAME) { 2085 if_statinc(ifp, if_ierrors); 2086 sk_newbuf(sc_if, cur, m, dmamap); 2087 continue; 2088 } 2089 2090 /* 2091 * Try to allocate a new jumbo buffer. If that 2092 * fails, copy the packet to mbufs and put the 2093 * jumbo buffer back in the ring so it can be 2094 * re-used. If allocating mbufs fails, then we 2095 * have to drop the packet. 2096 */ 2097 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) { 2098 struct mbuf *m0; 2099 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN, 2100 total_len + ETHER_ALIGN, 0, ifp); 2101 sk_newbuf(sc_if, cur, m, dmamap); 2102 if (m0 == NULL) { 2103 aprint_error_dev(sc_if->sk_dev, "no receive " 2104 "buffers available -- packet dropped!\n"); 2105 if_statinc(ifp, if_ierrors); 2106 continue; 2107 } 2108 m_adj(m0, ETHER_ALIGN); 2109 m = m0; 2110 } else { 2111 m_set_rcvif(m, ifp); 2112 m->m_pkthdr.len = m->m_len = total_len; 2113 } 2114 2115 /* pass it on. */ 2116 if_percpuq_enqueue(ifp->if_percpuq, m); 2117 } 2118 } 2119 2120 static void 2121 sk_txeof(struct sk_if_softc *sc_if) 2122 { 2123 struct sk_softc *sc = sc_if->sk_softc; 2124 struct sk_tx_desc *cur_tx; 2125 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if; 2126 uint32_t idx, sk_ctl; 2127 struct sk_txmap_entry *entry; 2128 2129 DPRINTFN(3, ("sk_txeof\n")); 2130 2131 /* 2132 * Go through our tx ring and free mbufs for those 2133 * frames that have been sent. 2134 */ 2135 idx = sc_if->sk_cdata.sk_tx_cons; 2136 while (idx != sc_if->sk_cdata.sk_tx_prod) { 2137 SK_CDTXSYNC(sc_if, idx, 1, 2138 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2139 2140 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx]; 2141 sk_ctl = le32toh(cur_tx->sk_ctl); 2142 #ifdef SK_DEBUG 2143 if (skdebug >= 3) 2144 sk_dump_txdesc(cur_tx, idx); 2145 #endif 2146 if (sk_ctl & SK_TXCTL_OWN) { 2147 SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD); 2148 break; 2149 } 2150 if (sk_ctl & SK_TXCTL_LASTFRAG) 2151 if_statinc(ifp, if_opackets); 2152 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) { 2153 entry = sc_if->sk_cdata.sk_tx_map[idx]; 2154 2155 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf); 2156 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL; 2157 2158 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0, 2159 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 2160 2161 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap); 2162 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry, 2163 link); 2164 sc_if->sk_cdata.sk_tx_map[idx] = NULL; 2165 } 2166 sc_if->sk_cdata.sk_tx_cnt--; 2167 SK_INC(idx, SK_TX_RING_CNT); 2168 } 2169 if (sc_if->sk_cdata.sk_tx_cnt == 0) 2170 ifp->if_timer = 0; 2171 else /* nudge chip to keep tx ring moving */ 2172 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START); 2173 2174 if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2) 2175 ifp->if_flags &= ~IFF_OACTIVE; 2176 2177 sc_if->sk_cdata.sk_tx_cons = idx; 2178 } 2179 2180 static void 2181 sk_tick(void *xsc_if) 2182 { 2183 struct sk_if_softc *sc_if = xsc_if; 2184 struct mii_data *mii = &sc_if->sk_mii; 2185 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if; 2186 int i; 2187 2188 DPRINTFN(3, ("sk_tick\n")); 2189 2190 if (!(ifp->if_flags & IFF_UP)) 2191 return; 2192 2193 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { 2194 sk_intr_bcom(sc_if); 2195 return; 2196 } 2197 2198 /* 2199 * According to SysKonnect, the correct way to verify that 2200 * the link has come back up is to poll bit 0 of the GPIO 2201 * register three times. This pin has the signal from the 2202 * link sync pin connected to it; if we read the same link 2203 * state 3 times in a row, we know the link is up. 2204 */ 2205 for (i = 0; i < 3; i++) { 2206 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET) 2207 break; 2208 } 2209 2210 if (i != 3) { 2211 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if); 2212 return; 2213 } 2214 2215 /* Turn the GP0 interrupt back on. */ 2216 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET); 2217 SK_XM_READ_2(sc_if, XM_ISR); 2218 mii_tick(mii); 2219 if (ifp->if_link_state != LINK_STATE_UP) 2220 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if); 2221 else 2222 callout_stop(&sc_if->sk_tick_ch); 2223 } 2224 2225 static void 2226 sk_intr_bcom(struct sk_if_softc *sc_if) 2227 { 2228 struct mii_data *mii = &sc_if->sk_mii; 2229 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if; 2230 uint16_t status; 2231 2232 2233 DPRINTFN(3, ("sk_intr_bcom\n")); 2234 2235 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB); 2236 2237 /* 2238 * Read the PHY interrupt register to make sure 2239 * we clear any pending interrupts. 2240 */ 2241 sk_xmac_miibus_readreg(sc_if->sk_dev, 2242 SK_PHYADDR_BCOM, BRGPHY_MII_ISR, &status); 2243 2244 if (!(ifp->if_flags & IFF_RUNNING)) { 2245 sk_init_xmac(sc_if); 2246 return; 2247 } 2248 2249 if (status & (BRGPHY_ISR_LNK_CHG | BRGPHY_ISR_AN_PR)) { 2250 uint16_t lstat; 2251 sk_xmac_miibus_readreg(sc_if->sk_dev, 2252 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS, &lstat); 2253 2254 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) { 2255 (void)mii_mediachg(mii); 2256 /* Turn off the link LED. */ 2257 SK_IF_WRITE_1(sc_if, 0, 2258 SK_LINKLED1_CTL, SK_LINKLED_OFF); 2259 sc_if->sk_link = 0; 2260 } else if (status & BRGPHY_ISR_LNK_CHG) { 2261 sk_xmac_miibus_writereg(sc_if->sk_dev, 2262 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00); 2263 mii_tick(mii); 2264 sc_if->sk_link = 1; 2265 /* Turn on the link LED. */ 2266 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, 2267 SK_LINKLED_ON | SK_LINKLED_LINKSYNC_OFF | 2268 SK_LINKLED_BLINK_OFF); 2269 mii_pollstat(mii); 2270 } else { 2271 mii_tick(mii); 2272 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if); 2273 } 2274 } 2275 2276 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB); 2277 } 2278 2279 static void 2280 sk_intr_xmac(struct sk_if_softc *sc_if) 2281 { 2282 uint16_t status = SK_XM_READ_2(sc_if, XM_ISR); 2283 2284 DPRINTFN(3, ("sk_intr_xmac\n")); 2285 2286 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) { 2287 if (status & XM_ISR_GP0_SET) { 2288 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET); 2289 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if); 2290 } 2291 2292 if (status & XM_ISR_AUTONEG_DONE) { 2293 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if); 2294 } 2295 } 2296 2297 if (status & XM_IMR_TX_UNDERRUN) 2298 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO); 2299 2300 if (status & XM_IMR_RX_OVERRUN) 2301 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO); 2302 } 2303 2304 static void 2305 sk_intr_yukon(struct sk_if_softc *sc_if) 2306 { 2307 #ifdef SK_DEBUG 2308 int status; 2309 2310 status = 2311 #endif 2312 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR); 2313 2314 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status)); 2315 } 2316 2317 static int 2318 sk_intr(void *xsc) 2319 { 2320 struct sk_softc *sc = xsc; 2321 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A]; 2322 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B]; 2323 struct ifnet *ifp0 = NULL, *ifp1 = NULL; 2324 uint32_t status; 2325 int claimed = 0; 2326 2327 if (sc_if0 != NULL) 2328 ifp0 = &sc_if0->sk_ethercom.ec_if; 2329 if (sc_if1 != NULL) 2330 ifp1 = &sc_if1->sk_ethercom.ec_if; 2331 2332 for (;;) { 2333 status = CSR_READ_4(sc, SK_ISSR); 2334 DPRINTFN(3, ("sk_intr: status=%#x\n", status)); 2335 2336 if (!(status & sc->sk_intrmask)) 2337 break; 2338 2339 claimed = 1; 2340 2341 /* Handle receive interrupts first. */ 2342 if (sc_if0 && (status & SK_ISR_RX1_EOF)) { 2343 sk_rxeof(sc_if0); 2344 CSR_WRITE_4(sc, SK_BMU_RX_CSR0, 2345 SK_RXBMU_CLR_IRQ_EOF | SK_RXBMU_RX_START); 2346 } 2347 if (sc_if1 && (status & SK_ISR_RX2_EOF)) { 2348 sk_rxeof(sc_if1); 2349 CSR_WRITE_4(sc, SK_BMU_RX_CSR1, 2350 SK_RXBMU_CLR_IRQ_EOF | SK_RXBMU_RX_START); 2351 } 2352 2353 /* Then transmit interrupts. */ 2354 if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) { 2355 sk_txeof(sc_if0); 2356 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0, 2357 SK_TXBMU_CLR_IRQ_EOF); 2358 } 2359 if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) { 2360 sk_txeof(sc_if1); 2361 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1, 2362 SK_TXBMU_CLR_IRQ_EOF); 2363 } 2364 2365 /* Then MAC interrupts. */ 2366 if (sc_if0 && (status & SK_ISR_MAC1) && 2367 (ifp0->if_flags & IFF_RUNNING)) { 2368 if (sc->sk_type == SK_GENESIS) 2369 sk_intr_xmac(sc_if0); 2370 else 2371 sk_intr_yukon(sc_if0); 2372 } 2373 2374 if (sc_if1 && (status & SK_ISR_MAC2) && 2375 (ifp1->if_flags & IFF_RUNNING)) { 2376 if (sc->sk_type == SK_GENESIS) 2377 sk_intr_xmac(sc_if1); 2378 else 2379 sk_intr_yukon(sc_if1); 2380 2381 } 2382 2383 if (status & SK_ISR_EXTERNAL_REG) { 2384 if (sc_if0 != NULL && 2385 sc_if0->sk_phytype == SK_PHYTYPE_BCOM) 2386 sk_intr_bcom(sc_if0); 2387 2388 if (sc_if1 != NULL && 2389 sc_if1->sk_phytype == SK_PHYTYPE_BCOM) 2390 sk_intr_bcom(sc_if1); 2391 } 2392 } 2393 2394 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); 2395 2396 if (ifp0 != NULL) 2397 if_schedule_deferred_start(ifp0); 2398 if (ifp1 != NULL) 2399 if_schedule_deferred_start(ifp1); 2400 2401 KASSERT(sc->rnd_attached > 0); 2402 rnd_add_uint32(&sc->rnd_source, status); 2403 2404 if (sc->sk_int_mod_pending) 2405 sk_update_int_mod(sc); 2406 2407 return claimed; 2408 } 2409 2410 static void 2411 sk_unreset_xmac(struct sk_if_softc *sc_if) 2412 { 2413 struct sk_softc *sc = sc_if->sk_softc; 2414 static const struct sk_bcom_hack bhack[] = { 2415 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 }, 2416 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 }, 2417 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 }, 2418 { 0, 0 } }; 2419 2420 DPRINTFN(1, ("sk_unreset_xmac\n")); 2421 2422 /* Unreset the XMAC. */ 2423 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET); 2424 DELAY(1000); 2425 2426 /* Reset the XMAC's internal state. */ 2427 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC); 2428 2429 /* Save the XMAC II revision */ 2430 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID)); 2431 2432 /* 2433 * Perform additional initialization for external PHYs, 2434 * namely for the 1000baseTX cards that use the XMAC's 2435 * GMII mode. 2436 */ 2437 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { 2438 int i = 0; 2439 uint32_t val; 2440 uint16_t phyval; 2441 2442 /* Take PHY out of reset. */ 2443 val = sk_win_read_4(sc, SK_GPIO); 2444 if (sc_if->sk_port == SK_PORT_A) 2445 val |= SK_GPIO_DIR0 | SK_GPIO_DAT0; 2446 else 2447 val |= SK_GPIO_DIR2 | SK_GPIO_DAT2; 2448 sk_win_write_4(sc, SK_GPIO, val); 2449 2450 /* Enable GMII mode on the XMAC. */ 2451 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE); 2452 2453 sk_xmac_miibus_writereg(sc_if->sk_dev, 2454 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET); 2455 DELAY(10000); 2456 sk_xmac_miibus_writereg(sc_if->sk_dev, 2457 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0); 2458 2459 /* 2460 * Early versions of the BCM5400 apparently have 2461 * a bug that requires them to have their reserved 2462 * registers initialized to some magic values. I don't 2463 * know what the numbers do, I'm just the messenger. 2464 */ 2465 sk_xmac_miibus_readreg(sc_if->sk_dev, 2466 SK_PHYADDR_BCOM, 0x03, &phyval); 2467 if (phyval == 0x6041) { 2468 while (bhack[i].reg) { 2469 sk_xmac_miibus_writereg(sc_if->sk_dev, 2470 SK_PHYADDR_BCOM, bhack[i].reg, 2471 bhack[i].val); 2472 i++; 2473 } 2474 } 2475 } 2476 } 2477 2478 static void 2479 sk_init_xmac(struct sk_if_softc *sc_if) 2480 { 2481 struct sk_softc *sc = sc_if->sk_softc; 2482 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if; 2483 2484 sk_unreset_xmac(sc_if); 2485 2486 /* Set station address */ 2487 SK_XM_WRITE_2(sc_if, XM_PAR0, 2488 *(uint16_t *)(&sc_if->sk_enaddr[0])); 2489 SK_XM_WRITE_2(sc_if, XM_PAR1, 2490 *(uint16_t *)(&sc_if->sk_enaddr[2])); 2491 SK_XM_WRITE_2(sc_if, XM_PAR2, 2492 *(uint16_t *)(&sc_if->sk_enaddr[4])); 2493 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION); 2494 2495 if (ifp->if_flags & IFF_PROMISC) 2496 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC); 2497 else 2498 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC); 2499 2500 if (ifp->if_flags & IFF_BROADCAST) 2501 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD); 2502 else 2503 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD); 2504 2505 /* We don't need the FCS appended to the packet. */ 2506 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS); 2507 2508 /* We want short frames padded to 60 bytes. */ 2509 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD); 2510 2511 /* 2512 * Enable the reception of all error frames. This is 2513 * a necessary evil due to the design of the XMAC. The 2514 * XMAC's receive FIFO is only 8K in size, however jumbo 2515 * frames can be up to 9000 bytes in length. When bad 2516 * frame filtering is enabled, the XMAC's RX FIFO operates 2517 * in 'store and forward' mode. For this to work, the 2518 * entire frame has to fit into the FIFO, but that means 2519 * that jumbo frames larger than 8192 bytes will be 2520 * truncated. Disabling all bad frame filtering causes 2521 * the RX FIFO to operate in streaming mode, in which 2522 * case the XMAC will start transfering frames out of the 2523 * RX FIFO as soon as the FIFO threshold is reached. 2524 */ 2525 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES | 2526 XM_MODE_RX_GIANTS | XM_MODE_RX_RUNTS | XM_MODE_RX_CRCERRS | 2527 XM_MODE_RX_INRANGELEN); 2528 2529 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) 2530 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK); 2531 else 2532 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK); 2533 2534 /* 2535 * Bump up the transmit threshold. This helps hold off transmit 2536 * underruns when we're blasting traffic from both ports at once. 2537 */ 2538 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH); 2539 2540 /* Set multicast filter */ 2541 sk_setmulti(sc_if); 2542 2543 /* Clear and enable interrupts */ 2544 SK_XM_READ_2(sc_if, XM_ISR); 2545 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) 2546 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS); 2547 else 2548 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF); 2549 2550 /* Configure MAC arbiter */ 2551 switch (sc_if->sk_xmac_rev) { 2552 case XM_XMAC_REV_B2: 2553 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2); 2554 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2); 2555 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2); 2556 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2); 2557 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2); 2558 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2); 2559 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2); 2560 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2); 2561 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2); 2562 break; 2563 case XM_XMAC_REV_C1: 2564 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1); 2565 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1); 2566 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1); 2567 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1); 2568 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1); 2569 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1); 2570 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1); 2571 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1); 2572 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2); 2573 break; 2574 default: 2575 break; 2576 } 2577 sk_win_write_2(sc, SK_MACARB_CTL, 2578 SK_MACARBCTL_UNRESET | SK_MACARBCTL_FASTOE_OFF); 2579 2580 sc_if->sk_link = 1; 2581 } 2582 2583 static void 2584 sk_unreset_yukon(struct sk_if_softc *sc_if) 2585 { 2586 uint32_t /*mac, */phy; 2587 struct sk_softc *sc; 2588 2589 DPRINTFN(1, ("sk_unreset_yukon: start: sk_csr=%#x\n", 2590 CSR_READ_4(sc_if->sk_softc, SK_CSR))); 2591 2592 sc = sc_if->sk_softc; 2593 if (sc->sk_type == SK_YUKON_LITE && 2594 sc->sk_rev >= SK_YUKON_LITE_REV_A3) { 2595 /* Take PHY out of reset. */ 2596 sk_win_write_4(sc, SK_GPIO, 2597 (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) 2598 & ~SK_GPIO_DAT9); 2599 } 2600 2601 /* GMAC and GPHY Reset */ 2602 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET); 2603 2604 DPRINTFN(6, ("sk_init_yukon: 1\n")); 2605 2606 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET); 2607 DELAY(1000); 2608 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR); 2609 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET); 2610 DELAY(1000); 2611 2612 2613 DPRINTFN(6, ("sk_init_yukon: 2\n")); 2614 2615 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP | 2616 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE; 2617 2618 switch (sc_if->sk_softc->sk_pmd) { 2619 case IFM_1000_SX: 2620 case IFM_1000_LX: 2621 phy |= SK_GPHY_FIBER; 2622 break; 2623 2624 case IFM_1000_CX: 2625 case IFM_1000_T: 2626 phy |= SK_GPHY_COPPER; 2627 break; 2628 } 2629 2630 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy)); 2631 2632 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET); 2633 DELAY(1000); 2634 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR); 2635 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF | 2636 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR); 2637 2638 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n", 2639 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL))); 2640 } 2641 2642 static void 2643 sk_init_yukon(struct sk_if_softc *sc_if) 2644 { 2645 uint16_t reg; 2646 int i; 2647 2648 DPRINTFN(1, ("sk_init_yukon: start\n")); 2649 sk_unreset_yukon(sc_if); 2650 2651 /* unused read of the interrupt source register */ 2652 DPRINTFN(6, ("sk_init_yukon: 4\n")); 2653 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR); 2654 2655 DPRINTFN(6, ("sk_init_yukon: 4a\n")); 2656 reg = SK_YU_READ_2(sc_if, YUKON_PAR); 2657 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg)); 2658 2659 /* MIB Counter Clear Mode set */ 2660 reg |= YU_PAR_MIB_CLR; 2661 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg)); 2662 DPRINTFN(6, ("sk_init_yukon: 4b\n")); 2663 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg); 2664 2665 /* MIB Counter Clear Mode clear */ 2666 DPRINTFN(6, ("sk_init_yukon: 5\n")); 2667 reg &= ~YU_PAR_MIB_CLR; 2668 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg); 2669 2670 /* receive control reg */ 2671 DPRINTFN(6, ("sk_init_yukon: 7\n")); 2672 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN | 2673 YU_RCR_CRCR); 2674 2675 /* transmit parameter register */ 2676 DPRINTFN(6, ("sk_init_yukon: 8\n")); 2677 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) | 2678 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a)); 2679 2680 /* serial mode register */ 2681 DPRINTFN(6, ("sk_init_yukon: 9\n")); 2682 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) | 2683 YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO | 2684 YU_SMR_IPG_DATA(0x1e)); 2685 2686 DPRINTFN(6, ("sk_init_yukon: 10\n")); 2687 /* Setup Yukon's address */ 2688 for (i = 0; i < 3; i++) { 2689 /* Write Source Address 1 (unicast filter) */ 2690 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4, 2691 sc_if->sk_enaddr[i * 2] | 2692 sc_if->sk_enaddr[i * 2 + 1] << 8); 2693 } 2694 2695 for (i = 0; i < 3; i++) { 2696 reg = sk_win_read_2(sc_if->sk_softc, 2697 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8); 2698 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg); 2699 } 2700 2701 /* Set multicast filter */ 2702 DPRINTFN(6, ("sk_init_yukon: 11\n")); 2703 sk_setmulti(sc_if); 2704 2705 /* enable interrupt mask for counter overflows */ 2706 DPRINTFN(6, ("sk_init_yukon: 12\n")); 2707 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0); 2708 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0); 2709 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0); 2710 2711 /* Configure RX MAC FIFO */ 2712 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR); 2713 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON); 2714 2715 /* Configure TX MAC FIFO */ 2716 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR); 2717 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON); 2718 2719 DPRINTFN(6, ("sk_init_yukon: end\n")); 2720 } 2721 2722 /* 2723 * Note that to properly initialize any part of the GEnesis chip, 2724 * you first have to take it out of reset mode. 2725 */ 2726 static int 2727 sk_init(struct ifnet *ifp) 2728 { 2729 struct sk_if_softc *sc_if = ifp->if_softc; 2730 struct sk_softc *sc = sc_if->sk_softc; 2731 struct mii_data *mii = &sc_if->sk_mii; 2732 int rc = 0, s; 2733 uint32_t imr, imtimer_ticks; 2734 2735 DPRINTFN(1, ("sk_init\n")); 2736 2737 s = splnet(); 2738 2739 if (ifp->if_flags & IFF_RUNNING) { 2740 splx(s); 2741 return 0; 2742 } 2743 2744 /* Cancel pending I/O and free all RX/TX buffers. */ 2745 sk_stop(ifp, 0); 2746 2747 if (sc->sk_type == SK_GENESIS) { 2748 /* Configure LINK_SYNC LED */ 2749 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON); 2750 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, 2751 SK_LINKLED_LINKSYNC_ON); 2752 2753 /* Configure RX LED */ 2754 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, 2755 SK_RXLEDCTL_COUNTER_START); 2756 2757 /* Configure TX LED */ 2758 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, 2759 SK_TXLEDCTL_COUNTER_START); 2760 } 2761 2762 /* Configure I2C registers */ 2763 2764 /* Configure XMAC(s) */ 2765 switch (sc->sk_type) { 2766 case SK_GENESIS: 2767 sk_init_xmac(sc_if); 2768 break; 2769 case SK_YUKON: 2770 case SK_YUKON_LITE: 2771 case SK_YUKON_LP: 2772 sk_init_yukon(sc_if); 2773 break; 2774 } 2775 if ((rc = mii_mediachg(mii)) == ENXIO) 2776 rc = 0; 2777 else if (rc != 0) 2778 goto out; 2779 2780 if (sc->sk_type == SK_GENESIS) { 2781 /* Configure MAC FIFOs */ 2782 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET); 2783 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END); 2784 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON); 2785 2786 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET); 2787 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END); 2788 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON); 2789 } 2790 2791 /* Configure transmit arbiter(s) */ 2792 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, 2793 SK_TXARCTL_ON | SK_TXARCTL_FSYNC_ON); 2794 2795 /* Configure RAMbuffers */ 2796 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET); 2797 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart); 2798 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart); 2799 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart); 2800 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend); 2801 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON); 2802 2803 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET); 2804 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON); 2805 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart); 2806 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart); 2807 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart); 2808 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend); 2809 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON); 2810 2811 /* Configure BMUs */ 2812 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE); 2813 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO, 2814 SK_RX_RING_ADDR(sc_if, 0)); 2815 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0); 2816 2817 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE); 2818 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO, 2819 SK_TX_RING_ADDR(sc_if, 0)); 2820 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0); 2821 2822 /* Init descriptors */ 2823 if (sk_init_rx_ring(sc_if) == ENOBUFS) { 2824 aprint_error_dev(sc_if->sk_dev, "initialization failed: no " 2825 "memory for rx buffers\n"); 2826 sk_stop(ifp, 0); 2827 splx(s); 2828 return ENOBUFS; 2829 } 2830 2831 if (sk_init_tx_ring(sc_if) == ENOBUFS) { 2832 aprint_error_dev(sc_if->sk_dev, "initialization failed: no " 2833 "memory for tx buffers\n"); 2834 sk_stop(ifp, 0); 2835 splx(s); 2836 return ENOBUFS; 2837 } 2838 2839 /* Set interrupt moderation if changed via sysctl. */ 2840 switch (sc->sk_type) { 2841 case SK_GENESIS: 2842 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS; 2843 break; 2844 case SK_YUKON_EC: 2845 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC; 2846 break; 2847 default: 2848 imtimer_ticks = SK_IMTIMER_TICKS_YUKON; 2849 } 2850 imr = sk_win_read_4(sc, SK_IMTIMERINIT); 2851 if (imr != SK_IM_USECS(sc->sk_int_mod)) { 2852 sk_win_write_4(sc, SK_IMTIMERINIT, 2853 SK_IM_USECS(sc->sk_int_mod)); 2854 aprint_verbose_dev(sc->sk_dev, 2855 "interrupt moderation is %d us\n", sc->sk_int_mod); 2856 } 2857 2858 /* Configure interrupt handling */ 2859 CSR_READ_4(sc, SK_ISSR); 2860 if (sc_if->sk_port == SK_PORT_A) 2861 sc->sk_intrmask |= SK_INTRS1; 2862 else 2863 sc->sk_intrmask |= SK_INTRS2; 2864 2865 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG; 2866 2867 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); 2868 2869 /* Start BMUs. */ 2870 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START); 2871 2872 if (sc->sk_type == SK_GENESIS) { 2873 /* Enable XMACs TX and RX state machines */ 2874 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE); 2875 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, 2876 XM_MMUCMD_TX_ENB | XM_MMUCMD_RX_ENB); 2877 } 2878 2879 if (SK_YUKON_FAMILY(sc->sk_type)) { 2880 uint16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR); 2881 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN; 2882 #if 0 2883 /* XXX disable 100Mbps and full duplex mode? */ 2884 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN); 2885 #endif 2886 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg); 2887 } 2888 2889 2890 ifp->if_flags |= IFF_RUNNING; 2891 ifp->if_flags &= ~IFF_OACTIVE; 2892 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if); 2893 2894 out: 2895 splx(s); 2896 return rc; 2897 } 2898 2899 static void 2900 sk_stop(struct ifnet *ifp, int disable) 2901 { 2902 struct sk_if_softc *sc_if = ifp->if_softc; 2903 struct sk_softc *sc = sc_if->sk_softc; 2904 int i; 2905 2906 DPRINTFN(1, ("sk_stop\n")); 2907 2908 callout_stop(&sc_if->sk_tick_ch); 2909 2910 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { 2911 uint32_t val; 2912 2913 /* Put PHY back into reset. */ 2914 val = sk_win_read_4(sc, SK_GPIO); 2915 if (sc_if->sk_port == SK_PORT_A) { 2916 val |= SK_GPIO_DIR0; 2917 val &= ~SK_GPIO_DAT0; 2918 } else { 2919 val |= SK_GPIO_DIR2; 2920 val &= ~SK_GPIO_DAT2; 2921 } 2922 sk_win_write_4(sc, SK_GPIO, val); 2923 } 2924 2925 /* Turn off various components of this interface. */ 2926 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC); 2927 switch (sc->sk_type) { 2928 case SK_GENESIS: 2929 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, 2930 SK_TXMACCTL_XMAC_RESET); 2931 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET); 2932 break; 2933 case SK_YUKON: 2934 case SK_YUKON_LITE: 2935 case SK_YUKON_LP: 2936 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET); 2937 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET); 2938 break; 2939 } 2940 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE); 2941 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET |SK_RBCTL_OFF); 2942 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE); 2943 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF); 2944 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF); 2945 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP); 2946 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP); 2947 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF); 2948 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF); 2949 2950 /* Disable interrupts */ 2951 if (sc_if->sk_port == SK_PORT_A) 2952 sc->sk_intrmask &= ~SK_INTRS1; 2953 else 2954 sc->sk_intrmask &= ~SK_INTRS2; 2955 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); 2956 2957 SK_XM_READ_2(sc_if, XM_ISR); 2958 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF); 2959 2960 /* Free RX and TX mbufs still in the queues. */ 2961 for (i = 0; i < SK_RX_RING_CNT; i++) { 2962 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) { 2963 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf); 2964 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL; 2965 } 2966 } 2967 2968 for (i = 0; i < SK_TX_RING_CNT; i++) { 2969 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) { 2970 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf); 2971 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL; 2972 } 2973 } 2974 2975 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2976 } 2977 2978 /* Power Management Framework */ 2979 2980 static bool 2981 skc_suspend(device_t dv, const pmf_qual_t *qual) 2982 { 2983 struct sk_softc *sc = device_private(dv); 2984 2985 DPRINTFN(2, ("skc_suspend\n")); 2986 2987 /* Turn off the driver is loaded LED */ 2988 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF); 2989 2990 return true; 2991 } 2992 2993 static bool 2994 skc_resume(device_t dv, const pmf_qual_t *qual) 2995 { 2996 struct sk_softc *sc = device_private(dv); 2997 2998 DPRINTFN(2, ("skc_resume\n")); 2999 3000 sk_reset(sc); 3001 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON); 3002 3003 return true; 3004 } 3005 3006 static bool 3007 sk_resume(device_t dv, const pmf_qual_t *qual) 3008 { 3009 struct sk_if_softc *sc_if = device_private(dv); 3010 3011 sk_init_yukon(sc_if); 3012 return true; 3013 } 3014 3015 CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc), 3016 skc_probe, skc_attach, NULL, NULL); 3017 3018 CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc), 3019 sk_probe, sk_attach, NULL, NULL); 3020 3021 #ifdef SK_DEBUG 3022 static void 3023 sk_dump_txdesc(struct sk_tx_desc *desc, int idx) 3024 { 3025 #define DESC_PRINT(X) \ 3026 if (X) \ 3027 printf("txdesc[%d]." #X "=%#x\n", \ 3028 idx, X); 3029 3030 DESC_PRINT(le32toh(desc->sk_ctl)); 3031 DESC_PRINT(le32toh(desc->sk_next)); 3032 DESC_PRINT(le32toh(desc->sk_data_lo)); 3033 DESC_PRINT(le32toh(desc->sk_data_hi)); 3034 DESC_PRINT(le32toh(desc->sk_xmac_txstat)); 3035 DESC_PRINT(le16toh(desc->sk_rsvd0)); 3036 DESC_PRINT(le16toh(desc->sk_csum_startval)); 3037 DESC_PRINT(le16toh(desc->sk_csum_startpos)); 3038 DESC_PRINT(le16toh(desc->sk_csum_writepos)); 3039 DESC_PRINT(le16toh(desc->sk_rsvd1)); 3040 #undef PRINT 3041 } 3042 3043 static void 3044 sk_dump_bytes(const char *data, int len) 3045 { 3046 int c, i, j; 3047 3048 for (i = 0; i < len; i += 16) { 3049 printf("%08x ", i); 3050 c = len - i; 3051 if (c > 16) c = 16; 3052 3053 for (j = 0; j < c; j++) { 3054 printf("%02x ", data[i + j] & 0xff); 3055 if ((j & 0xf) == 7 && j > 0) 3056 printf(" "); 3057 } 3058 3059 for (; j < 16; j++) 3060 printf(" "); 3061 printf(" "); 3062 3063 for (j = 0; j < c; j++) { 3064 int ch = data[i + j] & 0xff; 3065 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' '); 3066 } 3067 3068 printf("\n"); 3069 3070 if (c < 16) 3071 break; 3072 } 3073 } 3074 3075 static void 3076 sk_dump_mbuf(struct mbuf *m) 3077 { 3078 int count = m->m_pkthdr.len; 3079 3080 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len); 3081 3082 while (count > 0 && m) { 3083 printf("m=%p, m->m_data=%p, m->m_len=%d\n", 3084 m, m->m_data, m->m_len); 3085 sk_dump_bytes(mtod(m, char *), m->m_len); 3086 3087 count -= m->m_len; 3088 m = m->m_next; 3089 } 3090 } 3091 #endif 3092 3093 static int 3094 sk_sysctl_handler(SYSCTLFN_ARGS) 3095 { 3096 int error, t; 3097 struct sysctlnode node; 3098 struct sk_softc *sc; 3099 3100 node = *rnode; 3101 sc = node.sysctl_data; 3102 t = sc->sk_int_mod; 3103 node.sysctl_data = &t; 3104 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 3105 if (error || newp == NULL) 3106 return error; 3107 3108 if (t < SK_IM_MIN || t > SK_IM_MAX) 3109 return EINVAL; 3110 3111 /* update the softc with sysctl-changed value, and mark 3112 for hardware update */ 3113 sc->sk_int_mod = t; 3114 sc->sk_int_mod_pending = 1; 3115 return 0; 3116 } 3117 3118 /* 3119 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be 3120 * set up in skc_attach() 3121 */ 3122 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup") 3123 { 3124 int rc; 3125 const struct sysctlnode *node; 3126 3127 if ((rc = sysctl_createv(clog, 0, NULL, &node, 3128 0, CTLTYPE_NODE, "sk", 3129 SYSCTL_DESCR("sk interface controls"), 3130 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) { 3131 goto err; 3132 } 3133 3134 sk_root_num = node->sysctl_num; 3135 return; 3136 3137 err: 3138 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc); 3139 } 3140