xref: /netbsd-src/sys/dev/pci/if_sk.c (revision 404fbe5fb94ca1e054339640cabb2801ce52dd30)
1 /*	$NetBSD: if_sk.c,v 1.55 2008/11/07 00:20:07 dyoung Exp $	*/
2 
3 /*-
4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*	$OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $	*/
30 
31 /*
32  * Copyright (c) 1997, 1998, 1999, 2000
33  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
34  *
35  * Redistribution and use in source and binary forms, with or without
36  * modification, are permitted provided that the following conditions
37  * are met:
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 3. All advertising materials mentioning features or use of this software
44  *    must display the following acknowledgement:
45  *	This product includes software developed by Bill Paul.
46  * 4. Neither the name of the author nor the names of any co-contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
54  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
60  * THE POSSIBILITY OF SUCH DAMAGE.
61  *
62  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
63  */
64 
65 /*
66  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
67  *
68  * Permission to use, copy, modify, and distribute this software for any
69  * purpose with or without fee is hereby granted, provided that the above
70  * copyright notice and this permission notice appear in all copies.
71  *
72  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
73  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
74  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
75  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
76  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
77  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
78  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
79  */
80 
81 /*
82  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
83  * the SK-984x series adapters, both single port and dual port.
84  * References:
85  * 	The XaQti XMAC II datasheet,
86  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
87  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
88  *
89  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
90  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
91  * convenience to others until Vitesse corrects this problem:
92  *
93  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94  *
95  * Written by Bill Paul <wpaul@ee.columbia.edu>
96  * Department of Electrical Engineering
97  * Columbia University, New York City
98  */
99 
100 /*
101  * The SysKonnect gigabit ethernet adapters consist of two main
102  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
103  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
104  * components and a PHY while the GEnesis controller provides a PCI
105  * interface with DMA support. Each card may have between 512K and
106  * 2MB of SRAM on board depending on the configuration.
107  *
108  * The SysKonnect GEnesis controller can have either one or two XMAC
109  * chips connected to it, allowing single or dual port NIC configurations.
110  * SysKonnect has the distinction of being the only vendor on the market
111  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
112  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
113  * XMAC registers. This driver takes advantage of these features to allow
114  * both XMACs to operate as independent interfaces.
115  */
116 
117 #include <sys/cdefs.h>
118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.55 2008/11/07 00:20:07 dyoung Exp $");
119 
120 #include "bpfilter.h"
121 #include "rnd.h"
122 
123 #include <sys/param.h>
124 #include <sys/systm.h>
125 #include <sys/sockio.h>
126 #include <sys/mbuf.h>
127 #include <sys/malloc.h>
128 #include <sys/mutex.h>
129 #include <sys/kernel.h>
130 #include <sys/socket.h>
131 #include <sys/device.h>
132 #include <sys/queue.h>
133 #include <sys/callout.h>
134 #include <sys/sysctl.h>
135 #include <sys/endian.h>
136 
137 #include <net/if.h>
138 #include <net/if_dl.h>
139 #include <net/if_types.h>
140 
141 #include <net/if_media.h>
142 
143 #if NBPFILTER > 0
144 #include <net/bpf.h>
145 #endif
146 #if NRND > 0
147 #include <sys/rnd.h>
148 #endif
149 
150 #include <dev/mii/mii.h>
151 #include <dev/mii/miivar.h>
152 #include <dev/mii/brgphyreg.h>
153 
154 #include <dev/pci/pcireg.h>
155 #include <dev/pci/pcivar.h>
156 #include <dev/pci/pcidevs.h>
157 
158 /* #define SK_USEIOSPACE */
159 
160 #include <dev/pci/if_skreg.h>
161 #include <dev/pci/if_skvar.h>
162 
163 int skc_probe(device_t, cfdata_t, void *);
164 void skc_attach(device_t, device_t, void *aux);
165 int sk_probe(device_t, cfdata_t, void *);
166 void sk_attach(device_t, device_t, void *aux);
167 int skcprint(void *, const char *);
168 int sk_intr(void *);
169 void sk_intr_bcom(struct sk_if_softc *);
170 void sk_intr_xmac(struct sk_if_softc *);
171 void sk_intr_yukon(struct sk_if_softc *);
172 void sk_rxeof(struct sk_if_softc *);
173 void sk_txeof(struct sk_if_softc *);
174 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
175 void sk_start(struct ifnet *);
176 int sk_ioctl(struct ifnet *, u_long, void *);
177 int sk_init(struct ifnet *);
178 void sk_init_xmac(struct sk_if_softc *);
179 void sk_init_yukon(struct sk_if_softc *);
180 void sk_stop(struct ifnet *, int);
181 void sk_watchdog(struct ifnet *);
182 void sk_shutdown(void *);
183 int sk_ifmedia_upd(struct ifnet *);
184 void sk_reset(struct sk_softc *);
185 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
186 int sk_alloc_jumbo_mem(struct sk_if_softc *);
187 void sk_free_jumbo_mem(struct sk_if_softc *);
188 void *sk_jalloc(struct sk_if_softc *);
189 void sk_jfree(struct mbuf *, void *, size_t, void *);
190 int sk_init_rx_ring(struct sk_if_softc *);
191 int sk_init_tx_ring(struct sk_if_softc *);
192 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
193 void sk_vpd_read_res(struct sk_softc *,
194 					struct vpd_res *, int);
195 void sk_vpd_read(struct sk_softc *);
196 
197 void sk_update_int_mod(struct sk_softc *);
198 
199 int sk_xmac_miibus_readreg(device_t, int, int);
200 void sk_xmac_miibus_writereg(device_t, int, int, int);
201 void sk_xmac_miibus_statchg(device_t);
202 
203 int sk_marv_miibus_readreg(device_t, int, int);
204 void sk_marv_miibus_writereg(device_t, int, int, int);
205 void sk_marv_miibus_statchg(device_t);
206 
207 u_int32_t sk_xmac_hash(void *);
208 u_int32_t sk_yukon_hash(void *);
209 void sk_setfilt(struct sk_if_softc *, void *, int);
210 void sk_setmulti(struct sk_if_softc *);
211 void sk_tick(void *);
212 
213 /* #define SK_DEBUG 2 */
214 #ifdef SK_DEBUG
215 #define DPRINTF(x)	if (skdebug) printf x
216 #define DPRINTFN(n,x)	if (skdebug >= (n)) printf x
217 int	skdebug = SK_DEBUG;
218 
219 void sk_dump_txdesc(struct sk_tx_desc *, int);
220 void sk_dump_mbuf(struct mbuf *);
221 void sk_dump_bytes(const char *, int);
222 #else
223 #define DPRINTF(x)
224 #define DPRINTFN(n,x)
225 #endif
226 
227 static int sk_sysctl_handler(SYSCTLFN_PROTO);
228 static int sk_root_num;
229 
230 /* supported device vendors */
231 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
232 static const struct sk_product {
233 	pci_vendor_id_t		sk_vendor;
234 	pci_product_id_t	sk_product;
235 } sk_products[] = {
236 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
237 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
238 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
239 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
240 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
241 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
242 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
243 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
244 	{ 0, 0, }
245 };
246 
247 #define SK_LINKSYS_EG1032_SUBID	0x00151737
248 
249 static inline u_int32_t
250 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
251 {
252 #ifdef SK_USEIOSPACE
253 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
254 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
255 #else
256 	return CSR_READ_4(sc, reg);
257 #endif
258 }
259 
260 static inline u_int16_t
261 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
262 {
263 #ifdef SK_USEIOSPACE
264 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
265 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
266 #else
267 	return CSR_READ_2(sc, reg);
268 #endif
269 }
270 
271 static inline u_int8_t
272 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
273 {
274 #ifdef SK_USEIOSPACE
275 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
276 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
277 #else
278 	return CSR_READ_1(sc, reg);
279 #endif
280 }
281 
282 static inline void
283 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
284 {
285 #ifdef SK_USEIOSPACE
286 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
287 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
288 #else
289 	CSR_WRITE_4(sc, reg, x);
290 #endif
291 }
292 
293 static inline void
294 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
295 {
296 #ifdef SK_USEIOSPACE
297 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
298 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
299 #else
300 	CSR_WRITE_2(sc, reg, x);
301 #endif
302 }
303 
304 static inline void
305 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
306 {
307 #ifdef SK_USEIOSPACE
308 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
309 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
310 #else
311 	CSR_WRITE_1(sc, reg, x);
312 #endif
313 }
314 
315 /*
316  * The VPD EEPROM contains Vital Product Data, as suggested in
317  * the PCI 2.1 specification. The VPD data is separared into areas
318  * denoted by resource IDs. The SysKonnect VPD contains an ID string
319  * resource (the name of the adapter), a read-only area resource
320  * containing various key/data fields and a read/write area which
321  * can be used to store asset management information or log messages.
322  * We read the ID string and read-only into buffers attached to
323  * the controller softc structure for later use. At the moment,
324  * we only use the ID string during sk_attach().
325  */
326 u_int8_t
327 sk_vpd_readbyte(struct sk_softc *sc, int addr)
328 {
329 	int			i;
330 
331 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
332 	for (i = 0; i < SK_TIMEOUT; i++) {
333 		DELAY(1);
334 		if (sk_win_read_2(sc,
335 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
336 			break;
337 	}
338 
339 	if (i == SK_TIMEOUT)
340 		return 0;
341 
342 	return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
343 }
344 
345 void
346 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
347 {
348 	int			i;
349 	u_int8_t		*ptr;
350 
351 	ptr = (u_int8_t *)res;
352 	for (i = 0; i < sizeof(struct vpd_res); i++)
353 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
354 }
355 
356 void
357 sk_vpd_read(struct sk_softc *sc)
358 {
359 	int			pos = 0, i;
360 	struct vpd_res		res;
361 
362 	if (sc->sk_vpd_prodname != NULL)
363 		free(sc->sk_vpd_prodname, M_DEVBUF);
364 	if (sc->sk_vpd_readonly != NULL)
365 		free(sc->sk_vpd_readonly, M_DEVBUF);
366 	sc->sk_vpd_prodname = NULL;
367 	sc->sk_vpd_readonly = NULL;
368 
369 	sk_vpd_read_res(sc, &res, pos);
370 
371 	if (res.vr_id != VPD_RES_ID) {
372 		aprint_error_dev(sc->sk_dev,
373 		    "bad VPD resource id: expected %x got %x\n",
374 		    VPD_RES_ID, res.vr_id);
375 		return;
376 	}
377 
378 	pos += sizeof(res);
379 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
380 	if (sc->sk_vpd_prodname == NULL)
381 		panic("sk_vpd_read");
382 	for (i = 0; i < res.vr_len; i++)
383 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
384 	sc->sk_vpd_prodname[i] = '\0';
385 	pos += i;
386 
387 	sk_vpd_read_res(sc, &res, pos);
388 
389 	if (res.vr_id != VPD_RES_READ) {
390 		aprint_error_dev(sc->sk_dev,
391 		    "bad VPD resource id: expected %x got %x\n",
392 		    VPD_RES_READ, res.vr_id);
393 		return;
394 	}
395 
396 	pos += sizeof(res);
397 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
398 	if (sc->sk_vpd_readonly == NULL)
399 		panic("sk_vpd_read");
400 	for (i = 0; i < res.vr_len ; i++)
401 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
402 }
403 
404 int
405 sk_xmac_miibus_readreg(device_t dev, int phy, int reg)
406 {
407 	struct sk_if_softc *sc_if = device_private(dev);
408 	int i;
409 
410 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
411 
412 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
413 		return 0;
414 
415 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
416 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
417 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
418 		for (i = 0; i < SK_TIMEOUT; i++) {
419 			DELAY(1);
420 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
421 			    XM_MMUCMD_PHYDATARDY)
422 				break;
423 		}
424 
425 		if (i == SK_TIMEOUT) {
426 			aprint_error_dev(sc_if->sk_dev,
427 			    "phy failed to come ready\n");
428 			return 0;
429 		}
430 	}
431 	DELAY(1);
432 	return SK_XM_READ_2(sc_if, XM_PHY_DATA);
433 }
434 
435 void
436 sk_xmac_miibus_writereg(device_t dev, int phy, int reg, int val)
437 {
438 	struct sk_if_softc *sc_if = device_private(dev);
439 	int i;
440 
441 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
442 
443 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
444 	for (i = 0; i < SK_TIMEOUT; i++) {
445 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
446 			break;
447 	}
448 
449 	if (i == SK_TIMEOUT) {
450 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
451 		return;
452 	}
453 
454 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
455 	for (i = 0; i < SK_TIMEOUT; i++) {
456 		DELAY(1);
457 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
458 			break;
459 	}
460 
461 	if (i == SK_TIMEOUT)
462 		aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
463 }
464 
465 void
466 sk_xmac_miibus_statchg(device_t dev)
467 {
468 	struct sk_if_softc *sc_if = device_private(dev);
469 	struct mii_data *mii = &sc_if->sk_mii;
470 
471 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
472 
473 	/*
474 	 * If this is a GMII PHY, manually set the XMAC's
475 	 * duplex mode accordingly.
476 	 */
477 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
478 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
479 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
480 		else
481 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
482 	}
483 }
484 
485 int
486 sk_marv_miibus_readreg(device_t dev, int phy, int reg)
487 {
488 	struct sk_if_softc *sc_if = device_private(dev);
489 	u_int16_t val;
490 	int i;
491 
492 	if (phy != 0 ||
493 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
494 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
495 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
496 			     phy, reg));
497 		return 0;
498 	}
499 
500         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
501 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
502 
503 	for (i = 0; i < SK_TIMEOUT; i++) {
504 		DELAY(1);
505 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
506 		if (val & YU_SMICR_READ_VALID)
507 			break;
508 	}
509 
510 	if (i == SK_TIMEOUT) {
511 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
512 		return 0;
513 	}
514 
515  	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
516 		     SK_TIMEOUT));
517 
518         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
519 
520 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
521 		     phy, reg, val));
522 
523 	return val;
524 }
525 
526 void
527 sk_marv_miibus_writereg(device_t dev, int phy, int reg, int val)
528 {
529 	struct sk_if_softc *sc_if = device_private(dev);
530 	int i;
531 
532 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
533 		     phy, reg, val));
534 
535 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
536 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
537 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
538 
539 	for (i = 0; i < SK_TIMEOUT; i++) {
540 		DELAY(1);
541 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
542 			break;
543 	}
544 
545 	if (i == SK_TIMEOUT)
546 		printf("%s: phy write timed out\n",
547 		    device_xname(sc_if->sk_dev));
548 }
549 
550 void
551 sk_marv_miibus_statchg(device_t dev)
552 {
553 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
554 		     SK_YU_READ_2(((struct sk_if_softc *)device_private(dev)),
555 		     YUKON_GPCR)));
556 }
557 
558 #define SK_HASH_BITS		6
559 
560 u_int32_t
561 sk_xmac_hash(void *addr)
562 {
563 	u_int32_t		crc;
564 
565 	crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
566 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
567 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
568 	return crc;
569 }
570 
571 u_int32_t
572 sk_yukon_hash(void *addr)
573 {
574 	u_int32_t		crc;
575 
576 	crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
577 	crc &= ((1 << SK_HASH_BITS) - 1);
578 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
579 	return crc;
580 }
581 
582 void
583 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
584 {
585 	char *addr = addrv;
586 	int base = XM_RXFILT_ENTRY(slot);
587 
588 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
589 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
590 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
591 }
592 
593 void
594 sk_setmulti(struct sk_if_softc *sc_if)
595 {
596 	struct sk_softc *sc = sc_if->sk_softc;
597 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
598 	u_int32_t hashes[2] = { 0, 0 };
599 	int h = 0, i;
600 	struct ethercom *ec = &sc_if->sk_ethercom;
601 	struct ether_multi *enm;
602 	struct ether_multistep step;
603 	u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
604 
605 	/* First, zot all the existing filters. */
606 	switch (sc->sk_type) {
607 	case SK_GENESIS:
608 		for (i = 1; i < XM_RXFILT_MAX; i++)
609 			sk_setfilt(sc_if, (void *)&dummy, i);
610 
611 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
612 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
613 		break;
614 	case SK_YUKON:
615 	case SK_YUKON_LITE:
616 	case SK_YUKON_LP:
617 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
618 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
619 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
620 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
621 		break;
622 	}
623 
624 	/* Now program new ones. */
625 allmulti:
626 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
627 		hashes[0] = 0xFFFFFFFF;
628 		hashes[1] = 0xFFFFFFFF;
629 	} else {
630 		i = 1;
631 		/* First find the tail of the list. */
632 		ETHER_FIRST_MULTI(step, ec, enm);
633 		while (enm != NULL) {
634 			if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
635 				 ETHER_ADDR_LEN)) {
636 				ifp->if_flags |= IFF_ALLMULTI;
637 				goto allmulti;
638 			}
639 			DPRINTFN(2,("multicast address %s\n",
640 	    			ether_sprintf(enm->enm_addrlo)));
641 			/*
642 			 * Program the first XM_RXFILT_MAX multicast groups
643 			 * into the perfect filter. For all others,
644 			 * use the hash table.
645 			 */
646 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
647 				sk_setfilt(sc_if, enm->enm_addrlo, i);
648 				i++;
649 			}
650 			else {
651 				switch (sc->sk_type) {
652 				case SK_GENESIS:
653 					h = sk_xmac_hash(enm->enm_addrlo);
654 					break;
655 				case SK_YUKON:
656 				case SK_YUKON_LITE:
657 				case SK_YUKON_LP:
658 					h = sk_yukon_hash(enm->enm_addrlo);
659 					break;
660 				}
661 				if (h < 32)
662 					hashes[0] |= (1 << h);
663 				else
664 					hashes[1] |= (1 << (h - 32));
665 			}
666 
667 			ETHER_NEXT_MULTI(step, enm);
668 		}
669 	}
670 
671 	switch (sc->sk_type) {
672 	case SK_GENESIS:
673 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
674 			       XM_MODE_RX_USE_PERFECT);
675 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
676 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
677 		break;
678 	case SK_YUKON:
679 	case SK_YUKON_LITE:
680 	case SK_YUKON_LP:
681 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
682 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
683 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
684 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
685 		break;
686 	}
687 }
688 
689 int
690 sk_init_rx_ring(struct sk_if_softc *sc_if)
691 {
692 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
693 	struct sk_ring_data	*rd = sc_if->sk_rdata;
694 	int			i;
695 
696 	bzero((char *)rd->sk_rx_ring,
697 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
698 
699 	for (i = 0; i < SK_RX_RING_CNT; i++) {
700 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
701 		if (i == (SK_RX_RING_CNT - 1)) {
702 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
703 			rd->sk_rx_ring[i].sk_next =
704 				htole32(SK_RX_RING_ADDR(sc_if, 0));
705 		} else {
706 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
707 			rd->sk_rx_ring[i].sk_next =
708 				htole32(SK_RX_RING_ADDR(sc_if,i+1));
709 		}
710 	}
711 
712 	for (i = 0; i < SK_RX_RING_CNT; i++) {
713 		if (sk_newbuf(sc_if, i, NULL,
714 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
715 			aprint_error_dev(sc_if->sk_dev,
716 			    "failed alloc of %dth mbuf\n", i);
717 			return ENOBUFS;
718 		}
719 	}
720 	sc_if->sk_cdata.sk_rx_prod = 0;
721 	sc_if->sk_cdata.sk_rx_cons = 0;
722 
723 	return 0;
724 }
725 
726 int
727 sk_init_tx_ring(struct sk_if_softc *sc_if)
728 {
729 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
730 	struct sk_ring_data	*rd = sc_if->sk_rdata;
731 	int			i;
732 
733 	memset(sc_if->sk_rdata->sk_tx_ring, 0,
734 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
735 
736 	for (i = 0; i < SK_TX_RING_CNT; i++) {
737 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
738 		if (i == (SK_TX_RING_CNT - 1)) {
739 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
740 			rd->sk_tx_ring[i].sk_next =
741 				htole32(SK_TX_RING_ADDR(sc_if, 0));
742 		} else {
743 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
744 			rd->sk_tx_ring[i].sk_next =
745 				htole32(SK_TX_RING_ADDR(sc_if,i+1));
746 		}
747 	}
748 
749 	sc_if->sk_cdata.sk_tx_prod = 0;
750 	sc_if->sk_cdata.sk_tx_cons = 0;
751 	sc_if->sk_cdata.sk_tx_cnt = 0;
752 
753 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
754 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
755 
756 	return 0;
757 }
758 
759 int
760 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
761 	  bus_dmamap_t dmamap)
762 {
763 	struct mbuf		*m_new = NULL;
764 	struct sk_chain		*c;
765 	struct sk_rx_desc	*r;
766 
767 	if (m == NULL) {
768 		void *buf = NULL;
769 
770 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
771 		if (m_new == NULL) {
772 			aprint_error_dev(sc_if->sk_dev,
773 			    "no memory for rx list -- packet dropped!\n");
774 			return ENOBUFS;
775 		}
776 
777 		/* Allocate the jumbo buffer */
778 		buf = sk_jalloc(sc_if);
779 		if (buf == NULL) {
780 			m_freem(m_new);
781 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
782 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
783 			return ENOBUFS;
784 		}
785 
786 		/* Attach the buffer to the mbuf */
787 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
788 		MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
789 
790 	} else {
791 		/*
792 	 	 * We're re-using a previously allocated mbuf;
793 		 * be sure to re-init pointers and lengths to
794 		 * default values.
795 		 */
796 		m_new = m;
797 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
798 		m_new->m_data = m_new->m_ext.ext_buf;
799 	}
800 	m_adj(m_new, ETHER_ALIGN);
801 
802 	c = &sc_if->sk_cdata.sk_rx_chain[i];
803 	r = c->sk_desc;
804 	c->sk_mbuf = m_new;
805 	r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
806 	    (((vaddr_t)m_new->m_data
807 		- (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
808 	r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
809 
810 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
811 
812 	return 0;
813 }
814 
815 /*
816  * Memory management for jumbo frames.
817  */
818 
819 int
820 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
821 {
822 	struct sk_softc		*sc = sc_if->sk_softc;
823 	char *ptr, *kva;
824 	bus_dma_segment_t	seg;
825 	int		i, rseg, state, error;
826 	struct sk_jpool_entry   *entry;
827 
828 	state = error = 0;
829 
830 	/* Grab a big chunk o' storage. */
831 	if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
832 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
833 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
834 		return ENOBUFS;
835 	}
836 
837 	state = 1;
838 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
839 			   BUS_DMA_NOWAIT)) {
840 		aprint_error_dev(sc->sk_dev,
841 		    "can't map dma buffers (%d bytes)\n",
842 		    SK_JMEM);
843 		error = ENOBUFS;
844 		goto out;
845 	}
846 
847 	state = 2;
848 	if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
849 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
850 		aprint_error_dev(sc->sk_dev, "can't create dma map\n");
851 		error = ENOBUFS;
852 		goto out;
853 	}
854 
855 	state = 3;
856 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
857 			    kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
858 		aprint_error_dev(sc->sk_dev, "can't load dma map\n");
859 		error = ENOBUFS;
860 		goto out;
861 	}
862 
863 	state = 4;
864 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
865 	DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
866 
867 	LIST_INIT(&sc_if->sk_jfree_listhead);
868 	LIST_INIT(&sc_if->sk_jinuse_listhead);
869 	mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
870 
871 	/*
872 	 * Now divide it up into 9K pieces and save the addresses
873 	 * in an array.
874 	 */
875 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
876 	for (i = 0; i < SK_JSLOTS; i++) {
877 		sc_if->sk_cdata.sk_jslots[i] = ptr;
878 		ptr += SK_JLEN;
879 		entry = malloc(sizeof(struct sk_jpool_entry),
880 		    M_DEVBUF, M_NOWAIT);
881 		if (entry == NULL) {
882 			aprint_error_dev(sc->sk_dev,
883 			    "no memory for jumbo buffer queue!\n");
884 			error = ENOBUFS;
885 			goto out;
886 		}
887 		entry->slot = i;
888 		if (i)
889 			LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
890 				 entry, jpool_entries);
891 		else
892 			LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
893 				 entry, jpool_entries);
894 	}
895 out:
896 	if (error != 0) {
897 		switch (state) {
898 		case 4:
899 			bus_dmamap_unload(sc->sc_dmatag,
900 			    sc_if->sk_cdata.sk_rx_jumbo_map);
901 		case 3:
902 			bus_dmamap_destroy(sc->sc_dmatag,
903 			    sc_if->sk_cdata.sk_rx_jumbo_map);
904 		case 2:
905 			bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
906 		case 1:
907 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
908 			break;
909 		default:
910 			break;
911 		}
912 	}
913 
914 	return error;
915 }
916 
917 /*
918  * Allocate a jumbo buffer.
919  */
920 void *
921 sk_jalloc(struct sk_if_softc *sc_if)
922 {
923 	struct sk_jpool_entry   *entry;
924 
925 	mutex_enter(&sc_if->sk_jpool_mtx);
926 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
927 
928 	if (entry == NULL) {
929 		mutex_exit(&sc_if->sk_jpool_mtx);
930 		return NULL;
931 	}
932 
933 	LIST_REMOVE(entry, jpool_entries);
934 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
935 	mutex_exit(&sc_if->sk_jpool_mtx);
936 	return sc_if->sk_cdata.sk_jslots[entry->slot];
937 }
938 
939 /*
940  * Release a jumbo buffer.
941  */
942 void
943 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
944 {
945 	struct sk_jpool_entry *entry;
946 	struct sk_if_softc *sc;
947 	int i;
948 
949 	/* Extract the softc struct pointer. */
950 	sc = (struct sk_if_softc *)arg;
951 
952 	if (sc == NULL)
953 		panic("sk_jfree: can't find softc pointer!");
954 
955 	/* calculate the slot this buffer belongs to */
956 
957 	i = ((vaddr_t)buf
958 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
959 
960 	if ((i < 0) || (i >= SK_JSLOTS))
961 		panic("sk_jfree: asked to free buffer that we don't manage!");
962 
963 	mutex_enter(&sc->sk_jpool_mtx);
964 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
965 	if (entry == NULL)
966 		panic("sk_jfree: buffer not in use!");
967 	entry->slot = i;
968 	LIST_REMOVE(entry, jpool_entries);
969 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
970 	mutex_exit(&sc->sk_jpool_mtx);
971 
972 	if (__predict_true(m != NULL))
973 		pool_cache_put(mb_cache, m);
974 }
975 
976 /*
977  * Set media options.
978  */
979 int
980 sk_ifmedia_upd(struct ifnet *ifp)
981 {
982 	struct sk_if_softc *sc_if = ifp->if_softc;
983 	int rc;
984 
985 	(void) sk_init(ifp);
986 	if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
987 		return 0;
988 	return rc;
989 }
990 
991 int
992 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
993 {
994 	struct sk_if_softc *sc_if = ifp->if_softc;
995 	struct sk_softc *sc = sc_if->sk_softc;
996 	int s, error = 0;
997 
998 	/* DPRINTFN(2, ("sk_ioctl\n")); */
999 
1000 	s = splnet();
1001 
1002 	switch (command) {
1003 
1004 	case SIOCSIFFLAGS:
1005 	        DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1006 		if ((error = ifioctl_common(ifp, command, data)) != 0)
1007 			break;
1008 		if (ifp->if_flags & IFF_UP) {
1009 			if (ifp->if_flags & IFF_RUNNING &&
1010 			    ifp->if_flags & IFF_PROMISC &&
1011 			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
1012 				switch (sc->sk_type) {
1013 				case SK_GENESIS:
1014 					SK_XM_SETBIT_4(sc_if, XM_MODE,
1015 					    XM_MODE_RX_PROMISC);
1016 					break;
1017 				case SK_YUKON:
1018 				case SK_YUKON_LITE:
1019 				case SK_YUKON_LP:
1020 					SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1021 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
1022 					break;
1023 				}
1024 				sk_setmulti(sc_if);
1025 			} else if (ifp->if_flags & IFF_RUNNING &&
1026 			    !(ifp->if_flags & IFF_PROMISC) &&
1027 			    sc_if->sk_if_flags & IFF_PROMISC) {
1028 				switch (sc->sk_type) {
1029 				case SK_GENESIS:
1030 					SK_XM_CLRBIT_4(sc_if, XM_MODE,
1031 					    XM_MODE_RX_PROMISC);
1032 					break;
1033 				case SK_YUKON:
1034 				case SK_YUKON_LITE:
1035 				case SK_YUKON_LP:
1036 					SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1037 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
1038 					break;
1039 				}
1040 
1041 				sk_setmulti(sc_if);
1042 			} else
1043 				(void) sk_init(ifp);
1044 		} else {
1045 			if (ifp->if_flags & IFF_RUNNING)
1046 				sk_stop(ifp,0);
1047 		}
1048 		sc_if->sk_if_flags = ifp->if_flags;
1049 		error = 0;
1050 		break;
1051 
1052 	default:
1053 	        DPRINTFN(2, ("sk_ioctl ETHER\n"));
1054 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1055 			break;
1056 
1057 		error = 0;
1058 
1059 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1060 			;
1061 		else if (ifp->if_flags & IFF_RUNNING) {
1062 			sk_setmulti(sc_if);
1063 			DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1064 		}
1065 		break;
1066 	}
1067 
1068 	splx(s);
1069 	return error;
1070 }
1071 
1072 void
1073 sk_update_int_mod(struct sk_softc *sc)
1074 {
1075 	u_int32_t imtimer_ticks;
1076 
1077 	/*
1078          * Configure interrupt moderation. The moderation timer
1079 	 * defers interrupts specified in the interrupt moderation
1080 	 * timer mask based on the timeout specified in the interrupt
1081 	 * moderation timer init register. Each bit in the timer
1082 	 * register represents one tick, so to specify a timeout in
1083 	 * microseconds, we have to multiply by the correct number of
1084 	 * ticks-per-microsecond.
1085 	 */
1086 	switch (sc->sk_type) {
1087 	case SK_GENESIS:
1088 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1089 		break;
1090 	case SK_YUKON_EC:
1091 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1092 		break;
1093 	default:
1094 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1095 	}
1096 	aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n",
1097 	    sc->sk_int_mod);
1098         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1099         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1100 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1101         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1102 	sc->sk_int_mod_pending = 0;
1103 }
1104 
1105 /*
1106  * Lookup: Check the PCI vendor and device, and return a pointer to
1107  * The structure if the IDs match against our list.
1108  */
1109 
1110 static const struct sk_product *
1111 sk_lookup(const struct pci_attach_args *pa)
1112 {
1113 	const struct sk_product *psk;
1114 
1115 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1116 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1117 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1118 			return psk;
1119 	}
1120 	return NULL;
1121 }
1122 
1123 /*
1124  * Probe for a SysKonnect GEnesis chip.
1125  */
1126 
1127 int
1128 skc_probe(device_t parent, cfdata_t match, void *aux)
1129 {
1130 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1131 	const struct sk_product *psk;
1132 	pcireg_t subid;
1133 
1134 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1135 
1136 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
1137 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1138 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1139 	    subid == SK_LINKSYS_EG1032_SUBID)
1140 		return 1;
1141 
1142 	if ((psk = sk_lookup(pa))) {
1143 		return 1;
1144 	}
1145 	return 0;
1146 }
1147 
1148 /*
1149  * Force the GEnesis into reset, then bring it out of reset.
1150  */
1151 void sk_reset(struct sk_softc *sc)
1152 {
1153 	DPRINTFN(2, ("sk_reset\n"));
1154 
1155 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1156 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1157 	if (SK_YUKON_FAMILY(sc->sk_type))
1158 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1159 
1160 	DELAY(1000);
1161 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1162 	DELAY(2);
1163 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1164 	if (SK_YUKON_FAMILY(sc->sk_type))
1165 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1166 
1167 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1168 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1169 		     CSR_READ_2(sc, SK_LINK_CTRL)));
1170 
1171 	if (sc->sk_type == SK_GENESIS) {
1172 		/* Configure packet arbiter */
1173 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1174 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1175 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1176 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1177 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1178 	}
1179 
1180 	/* Enable RAM interface */
1181 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1182 
1183 	sk_update_int_mod(sc);
1184 }
1185 
1186 int
1187 sk_probe(device_t parent, cfdata_t match, void *aux)
1188 {
1189 	struct skc_attach_args *sa = aux;
1190 
1191 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1192 		return 0;
1193 
1194 	return 1;
1195 }
1196 
1197 /*
1198  * Each XMAC chip is attached as a separate logical IP interface.
1199  * Single port cards will have only one logical interface of course.
1200  */
1201 void
1202 sk_attach(device_t parent, device_t self, void *aux)
1203 {
1204 	struct sk_if_softc *sc_if = device_private(self);
1205 	struct sk_softc *sc = device_private(parent);
1206 	struct skc_attach_args *sa = aux;
1207 	struct sk_txmap_entry	*entry;
1208 	struct ifnet *ifp;
1209 	bus_dma_segment_t seg;
1210 	bus_dmamap_t dmamap;
1211 	void *kva;
1212 	int i, rseg;
1213 
1214 	aprint_naive("\n");
1215 
1216 	sc_if->sk_dev = self;
1217 	sc_if->sk_port = sa->skc_port;
1218 	sc_if->sk_softc = sc;
1219 	sc->sk_if[sa->skc_port] = sc_if;
1220 
1221 	if (sa->skc_port == SK_PORT_A)
1222 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1223 	if (sa->skc_port == SK_PORT_B)
1224 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1225 
1226 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1227 
1228 	/*
1229 	 * Get station address for this interface. Note that
1230 	 * dual port cards actually come with three station
1231 	 * addresses: one for each port, plus an extra. The
1232 	 * extra one is used by the SysKonnect driver software
1233 	 * as a 'virtual' station address for when both ports
1234 	 * are operating in failover mode. Currently we don't
1235 	 * use this extra address.
1236 	 */
1237 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1238 		sc_if->sk_enaddr[i] =
1239 			sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1240 
1241 
1242 	aprint_normal(": Ethernet address %s\n",
1243 	    ether_sprintf(sc_if->sk_enaddr));
1244 
1245 	/*
1246 	 * Set up RAM buffer addresses. The NIC will have a certain
1247 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1248 	 * need to divide this up a) between the transmitter and
1249  	 * receiver and b) between the two XMACs, if this is a
1250 	 * dual port NIC. Our algorithm is to divide up the memory
1251 	 * evenly so that everyone gets a fair share.
1252 	 */
1253 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1254 		u_int32_t		chunk, val;
1255 
1256 		chunk = sc->sk_ramsize / 2;
1257 		val = sc->sk_rboff / sizeof(u_int64_t);
1258 		sc_if->sk_rx_ramstart = val;
1259 		val += (chunk / sizeof(u_int64_t));
1260 		sc_if->sk_rx_ramend = val - 1;
1261 		sc_if->sk_tx_ramstart = val;
1262 		val += (chunk / sizeof(u_int64_t));
1263 		sc_if->sk_tx_ramend = val - 1;
1264 	} else {
1265 		u_int32_t		chunk, val;
1266 
1267 		chunk = sc->sk_ramsize / 4;
1268 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1269 		    sizeof(u_int64_t);
1270 		sc_if->sk_rx_ramstart = val;
1271 		val += (chunk / sizeof(u_int64_t));
1272 		sc_if->sk_rx_ramend = val - 1;
1273 		sc_if->sk_tx_ramstart = val;
1274 		val += (chunk / sizeof(u_int64_t));
1275 		sc_if->sk_tx_ramend = val - 1;
1276 	}
1277 
1278 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1279 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
1280 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1281 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1282 
1283 	/* Read and save PHY type and set PHY address */
1284 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1285 	switch (sc_if->sk_phytype) {
1286 	case SK_PHYTYPE_XMAC:
1287 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1288 		break;
1289 	case SK_PHYTYPE_BCOM:
1290 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1291 		break;
1292 	case SK_PHYTYPE_MARV_COPPER:
1293 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1294 		break;
1295 	default:
1296 		aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n",
1297 		    sc_if->sk_phytype);
1298 		return;
1299 	}
1300 
1301 	/* Allocate the descriptor queues. */
1302 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1303 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1304 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
1305 		goto fail;
1306 	}
1307 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1308 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1309 		aprint_error_dev(sc_if->sk_dev,
1310 		    "can't map dma buffers (%lu bytes)\n",
1311 		    (u_long) sizeof(struct sk_ring_data));
1312 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1313 		goto fail;
1314 	}
1315 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1316 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1317             &sc_if->sk_ring_map)) {
1318 		aprint_error_dev(sc_if->sk_dev, "can't create dma map\n");
1319 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1320 		    sizeof(struct sk_ring_data));
1321 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1322 		goto fail;
1323 	}
1324 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1325 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1326 		aprint_error_dev(sc_if->sk_dev, "can't load dma map\n");
1327 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1328 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1329 		    sizeof(struct sk_ring_data));
1330 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1331 		goto fail;
1332 	}
1333 
1334 	for (i = 0; i < SK_RX_RING_CNT; i++)
1335 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1336 
1337 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1338 	for (i = 0; i < SK_TX_RING_CNT; i++) {
1339 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1340 
1341 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1342 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1343 			aprint_error_dev(sc_if->sk_dev,
1344 			    "Can't create TX dmamap\n");
1345 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1346 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1347 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1348 			    sizeof(struct sk_ring_data));
1349 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1350 			goto fail;
1351 		}
1352 
1353 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1354 		if (!entry) {
1355 			aprint_error_dev(sc_if->sk_dev,
1356 			    "Can't alloc txmap entry\n");
1357 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1358 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1359 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1360 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1361 			    sizeof(struct sk_ring_data));
1362 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1363 			goto fail;
1364 		}
1365 		entry->dmamap = dmamap;
1366 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1367 	}
1368 
1369         sc_if->sk_rdata = (struct sk_ring_data *)kva;
1370 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1371 
1372 	ifp = &sc_if->sk_ethercom.ec_if;
1373 	/* Try to allocate memory for jumbo buffers. */
1374 	if (sk_alloc_jumbo_mem(sc_if)) {
1375 		aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1376 		goto fail;
1377 	}
1378 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1379 		| ETHERCAP_JUMBO_MTU;
1380 
1381 	ifp->if_softc = sc_if;
1382 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1383 	ifp->if_ioctl = sk_ioctl;
1384 	ifp->if_start = sk_start;
1385 	ifp->if_stop = sk_stop;
1386 	ifp->if_init = sk_init;
1387 	ifp->if_watchdog = sk_watchdog;
1388 	ifp->if_capabilities = 0;
1389 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1390 	IFQ_SET_READY(&ifp->if_snd);
1391 	strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1392 
1393 	/*
1394 	 * Do miibus setup.
1395 	 */
1396 	switch (sc->sk_type) {
1397 	case SK_GENESIS:
1398 		sk_init_xmac(sc_if);
1399 		break;
1400 	case SK_YUKON:
1401 	case SK_YUKON_LITE:
1402 	case SK_YUKON_LP:
1403 		sk_init_yukon(sc_if);
1404 		break;
1405 	default:
1406 		aprint_error_dev(sc->sk_dev, "unknown device type %d\n",
1407 			sc->sk_type);
1408 		goto fail;
1409 	}
1410 
1411  	DPRINTFN(2, ("sk_attach: 1\n"));
1412 
1413 	sc_if->sk_mii.mii_ifp = ifp;
1414 	switch (sc->sk_type) {
1415 	case SK_GENESIS:
1416 		sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1417 		sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1418 		sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1419 		break;
1420 	case SK_YUKON:
1421 	case SK_YUKON_LITE:
1422 	case SK_YUKON_LP:
1423 		sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1424 		sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1425 		sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1426 		break;
1427 	}
1428 
1429 	sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1430 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1431 	    sk_ifmedia_upd, ether_mediastatus);
1432 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1433 	    MII_OFFSET_ANY, 0);
1434 	if (LIST_EMPTY(&sc_if->sk_mii.mii_phys)) {
1435 		aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1436 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1437 			    0, NULL);
1438 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1439 	} else
1440 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1441 
1442 	callout_init(&sc_if->sk_tick_ch, 0);
1443 	callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1444 
1445 	DPRINTFN(2, ("sk_attach: 1\n"));
1446 
1447 	/*
1448 	 * Call MI attach routines.
1449 	 */
1450 	if_attach(ifp);
1451 
1452 	ether_ifattach(ifp, sc_if->sk_enaddr);
1453 
1454 #if NRND > 0
1455         rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1456             RND_TYPE_NET, 0);
1457 #endif
1458 
1459 	DPRINTFN(2, ("sk_attach: end\n"));
1460 
1461 	return;
1462 
1463 fail:
1464 	sc->sk_if[sa->skc_port] = NULL;
1465 }
1466 
1467 int
1468 skcprint(void *aux, const char *pnp)
1469 {
1470 	struct skc_attach_args *sa = aux;
1471 
1472 	if (pnp)
1473 		aprint_normal("sk port %c at %s",
1474 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1475 	else
1476 		aprint_normal(" port %c",
1477 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1478 	return UNCONF;
1479 }
1480 
1481 /*
1482  * Attach the interface. Allocate softc structures, do ifmedia
1483  * setup and ethernet/BPF attach.
1484  */
1485 void
1486 skc_attach(device_t parent, device_t self, void *aux)
1487 {
1488 	struct sk_softc *sc = device_private(self);
1489 	struct pci_attach_args *pa = aux;
1490 	struct skc_attach_args skca;
1491 	pci_chipset_tag_t pc = pa->pa_pc;
1492 #ifndef SK_USEIOSPACE
1493 	pcireg_t memtype;
1494 #endif
1495 	pci_intr_handle_t ih;
1496 	const char *intrstr = NULL;
1497 	bus_addr_t iobase;
1498 	bus_size_t iosize;
1499 	int rc, sk_nodenum;
1500 	u_int32_t command;
1501 	const char *revstr;
1502 	const struct sysctlnode *node;
1503 
1504 	sc->sk_dev = self;
1505 	aprint_naive("\n");
1506 
1507 	DPRINTFN(2, ("begin skc_attach\n"));
1508 
1509 	/*
1510 	 * Handle power management nonsense.
1511 	 */
1512 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1513 
1514 	if (command == 0x01) {
1515 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1516 		if (command & SK_PSTATE_MASK) {
1517 			u_int32_t		xiobase, membase, irq;
1518 
1519 			/* Save important PCI config data. */
1520 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1521 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1522 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1523 
1524 			/* Reset the power state. */
1525 			aprint_normal_dev(sc->sk_dev,
1526 			    "chip is in D%d power mode -- setting to D0\n",
1527 			    command & SK_PSTATE_MASK);
1528 			command &= 0xFFFFFFFC;
1529 			pci_conf_write(pc, pa->pa_tag,
1530 			    SK_PCI_PWRMGMTCTRL, command);
1531 
1532 			/* Restore PCI config data. */
1533 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1534 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1535 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1536 		}
1537 	}
1538 
1539 	/*
1540 	 * Map control/status registers.
1541 	 */
1542 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1543 	command |= PCI_COMMAND_IO_ENABLE |
1544 	    PCI_COMMAND_MEM_ENABLE |
1545 	    PCI_COMMAND_MASTER_ENABLE;
1546 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1547 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1548 
1549 #ifdef SK_USEIOSPACE
1550 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
1551 		aprint_error(": failed to enable I/O ports!\n");
1552 		return;
1553 	}
1554 	/*
1555 	 * Map control/status registers.
1556 	 */
1557 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1558 			&sc->sk_btag, &sc->sk_bhandle,
1559 			&iobase, &iosize)) {
1560 		aprint_error(": can't find i/o space\n");
1561 		return;
1562 	}
1563 #else
1564 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1565 		aprint_error(": failed to enable memory mapping!\n");
1566 		return;
1567 	}
1568 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1569 	switch (memtype) {
1570         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1571         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1572                 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1573 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1574 				   &iobase, &iosize) == 0)
1575                         break;
1576         default:
1577                 aprint_error_dev(sc->sk_dev, "can't find mem space\n");
1578                 return;
1579 	}
1580 
1581 	DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
1582 #endif
1583 	sc->sc_dmatag = pa->pa_dmat;
1584 
1585 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1586 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1587 
1588 	/* bail out here if chip is not recognized */
1589 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1590 		aprint_error_dev(sc->sk_dev, "unknown chip type\n");
1591 		goto fail;
1592 	}
1593 	if (SK_IS_YUKON2(sc)) {
1594 		aprint_error_dev(sc->sk_dev,
1595 		    "Does not support Yukon2--try msk(4).\n");
1596 		goto fail;
1597 	}
1598 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1599 
1600 	/* Allocate interrupt */
1601 	if (pci_intr_map(pa, &ih)) {
1602 		aprint_error(": couldn't map interrupt\n");
1603 		goto fail;
1604 	}
1605 
1606 	intrstr = pci_intr_string(pc, ih);
1607 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1608 	if (sc->sk_intrhand == NULL) {
1609 		aprint_error(": couldn't establish interrupt");
1610 		if (intrstr != NULL)
1611 			aprint_normal(" at %s", intrstr);
1612 		goto fail;
1613 	}
1614 	aprint_normal(": %s\n", intrstr);
1615 
1616 	/* Reset the adapter. */
1617 	sk_reset(sc);
1618 
1619 	/* Read and save vital product data from EEPROM. */
1620 	sk_vpd_read(sc);
1621 
1622 	if (sc->sk_type == SK_GENESIS) {
1623 		u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1624 		/* Read and save RAM size and RAMbuffer offset */
1625 		switch (val) {
1626 		case SK_RAMSIZE_512K_64:
1627 			sc->sk_ramsize = 0x80000;
1628 			sc->sk_rboff = SK_RBOFF_0;
1629 			break;
1630 		case SK_RAMSIZE_1024K_64:
1631 			sc->sk_ramsize = 0x100000;
1632 			sc->sk_rboff = SK_RBOFF_80000;
1633 			break;
1634 		case SK_RAMSIZE_1024K_128:
1635 			sc->sk_ramsize = 0x100000;
1636 			sc->sk_rboff = SK_RBOFF_0;
1637 			break;
1638 		case SK_RAMSIZE_2048K_128:
1639 			sc->sk_ramsize = 0x200000;
1640 			sc->sk_rboff = SK_RBOFF_0;
1641 			break;
1642 		default:
1643 			aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n",
1644 			       val);
1645 			goto fail_1;
1646 			break;
1647 		}
1648 
1649 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1650 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
1651 			     sc->sk_rboff));
1652 	} else {
1653 	  	u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1654 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
1655 		sc->sk_rboff = SK_RBOFF_0;
1656 
1657 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1658 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
1659 			     sc->sk_rboff));
1660 	}
1661 
1662 	/* Read and save physical media type */
1663 	switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1664 	case SK_PMD_1000BASESX:
1665 		sc->sk_pmd = IFM_1000_SX;
1666 		break;
1667 	case SK_PMD_1000BASELX:
1668 		sc->sk_pmd = IFM_1000_LX;
1669 		break;
1670 	case SK_PMD_1000BASECX:
1671 		sc->sk_pmd = IFM_1000_CX;
1672 		break;
1673 	case SK_PMD_1000BASETX:
1674 	case SK_PMD_1000BASETX_ALT:
1675 		sc->sk_pmd = IFM_1000_T;
1676 		break;
1677 	default:
1678 		aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n",
1679 		    sk_win_read_1(sc, SK_PMDTYPE));
1680 		goto fail_1;
1681 	}
1682 
1683 	/* determine whether to name it with vpd or just make it up */
1684 	/* Marvell Yukon VPD's can freqently be bogus */
1685 
1686 	switch (pa->pa_id) {
1687 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1688 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1689 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1690 	case PCI_PRODUCT_3COM_3C940:
1691 	case PCI_PRODUCT_DLINK_DGE530T:
1692 	case PCI_PRODUCT_DLINK_DGE560T:
1693 	case PCI_PRODUCT_DLINK_DGE560T_2:
1694 	case PCI_PRODUCT_LINKSYS_EG1032:
1695 	case PCI_PRODUCT_LINKSYS_EG1064:
1696 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1697 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1698 	case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1699 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1700 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
1701 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
1702 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1703 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1704  		sc->sk_name = sc->sk_vpd_prodname;
1705  		break;
1706 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
1707 	/* whoops yukon vpd prodname bears no resemblance to reality */
1708 		switch (sc->sk_type) {
1709 		case SK_GENESIS:
1710 			sc->sk_name = sc->sk_vpd_prodname;
1711 			break;
1712 		case SK_YUKON:
1713 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1714 			break;
1715 		case SK_YUKON_LITE:
1716 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1717 			break;
1718 		case SK_YUKON_LP:
1719 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1720 			break;
1721 		default:
1722 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1723 		}
1724 
1725 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1726 
1727 		if ( sc->sk_type == SK_YUKON ) {
1728 			uint32_t flashaddr;
1729 			uint8_t testbyte;
1730 
1731 			flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1732 
1733 			/* test Flash-Address Register */
1734 			sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1735 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1736 
1737 			if (testbyte != 0) {
1738 				/* this is yukon lite Rev. A0 */
1739 				sc->sk_type = SK_YUKON_LITE;
1740 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
1741 				/* restore Flash-Address Register */
1742 				sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1743 			}
1744 		}
1745 		break;
1746 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
1747 		sc->sk_name = sc->sk_vpd_prodname;
1748 		break;
1749  	default:
1750 		sc->sk_name = "Unknown Marvell";
1751 	}
1752 
1753 
1754 	if ( sc->sk_type == SK_YUKON_LITE ) {
1755 		switch (sc->sk_rev) {
1756 		case SK_YUKON_LITE_REV_A0:
1757 			revstr = "A0";
1758 			break;
1759 		case SK_YUKON_LITE_REV_A1:
1760 			revstr = "A1";
1761 			break;
1762 		case SK_YUKON_LITE_REV_A3:
1763 			revstr = "A3";
1764 			break;
1765 		default:
1766 			revstr = "";
1767 		}
1768 	} else {
1769 		revstr = "";
1770 	}
1771 
1772 	/* Announce the product name. */
1773 	aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n",
1774 			      sc->sk_name, revstr, sc->sk_rev);
1775 
1776 	skca.skc_port = SK_PORT_A;
1777 	(void)config_found(sc->sk_dev, &skca, skcprint);
1778 
1779 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1780 		skca.skc_port = SK_PORT_B;
1781 		(void)config_found(sc->sk_dev, &skca, skcprint);
1782 	}
1783 
1784 	/* Turn on the 'driver is loaded' LED. */
1785 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1786 
1787 	/* skc sysctl setup */
1788 
1789 	sc->sk_int_mod = SK_IM_DEFAULT;
1790 	sc->sk_int_mod_pending = 0;
1791 
1792 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1793 	    0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1794 	    SYSCTL_DESCR("skc per-controller controls"),
1795 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1796 	    CTL_EOL)) != 0) {
1797 		aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1798 		goto fail_1;
1799 	}
1800 
1801 	sk_nodenum = node->sysctl_num;
1802 
1803 	/* interrupt moderation time in usecs */
1804 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1805 	    CTLFLAG_READWRITE,
1806 	    CTLTYPE_INT, "int_mod",
1807 	    SYSCTL_DESCR("sk interrupt moderation timer"),
1808 	    sk_sysctl_handler, 0, sc,
1809 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1810 	    CTL_EOL)) != 0) {
1811 		aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
1812 		goto fail_1;
1813 	}
1814 
1815 	return;
1816 
1817 fail_1:
1818 	pci_intr_disestablish(pc, sc->sk_intrhand);
1819 fail:
1820 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1821 }
1822 
1823 int
1824 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1825 {
1826 	struct sk_softc		*sc = sc_if->sk_softc;
1827 	struct sk_tx_desc	*f = NULL;
1828 	u_int32_t		frag, cur, cnt = 0, sk_ctl;
1829 	int			i;
1830 	struct sk_txmap_entry	*entry;
1831 	bus_dmamap_t		txmap;
1832 
1833 	DPRINTFN(3, ("sk_encap\n"));
1834 
1835 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1836 	if (entry == NULL) {
1837 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
1838 		return ENOBUFS;
1839 	}
1840 	txmap = entry->dmamap;
1841 
1842 	cur = frag = *txidx;
1843 
1844 #ifdef SK_DEBUG
1845 	if (skdebug >= 3)
1846 		sk_dump_mbuf(m_head);
1847 #endif
1848 
1849 	/*
1850 	 * Start packing the mbufs in this chain into
1851 	 * the fragment pointers. Stop when we run out
1852 	 * of fragments or hit the end of the mbuf chain.
1853 	 */
1854 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1855 	    BUS_DMA_NOWAIT)) {
1856 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1857 		return ENOBUFS;
1858 	}
1859 
1860 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1861 
1862 	/* Sync the DMA map. */
1863 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1864 	    BUS_DMASYNC_PREWRITE);
1865 
1866 	for (i = 0; i < txmap->dm_nsegs; i++) {
1867 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1868 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1869 			return ENOBUFS;
1870 		}
1871 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
1872 		f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1873 		sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1874 		if (cnt == 0)
1875 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
1876 		else
1877 			sk_ctl |= SK_TXCTL_OWN;
1878 		f->sk_ctl = htole32(sk_ctl);
1879 		cur = frag;
1880 		SK_INC(frag, SK_TX_RING_CNT);
1881 		cnt++;
1882 	}
1883 
1884 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1885 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1886 
1887 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
1888 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1889 		htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1890 
1891 	/* Sync descriptors before handing to chip */
1892 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1893 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1894 
1895 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1896 		htole32(SK_TXCTL_OWN);
1897 
1898 	/* Sync first descriptor to hand it off */
1899 	SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1900 
1901 	sc_if->sk_cdata.sk_tx_cnt += cnt;
1902 
1903 #ifdef SK_DEBUG
1904 	if (skdebug >= 3) {
1905 		struct sk_tx_desc *desc;
1906 		u_int32_t idx;
1907 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1908 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1909 			sk_dump_txdesc(desc, idx);
1910 		}
1911 	}
1912 #endif
1913 
1914 	*txidx = frag;
1915 
1916 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
1917 
1918 	return 0;
1919 }
1920 
1921 void
1922 sk_start(struct ifnet *ifp)
1923 {
1924         struct sk_if_softc	*sc_if = ifp->if_softc;
1925         struct sk_softc		*sc = sc_if->sk_softc;
1926         struct mbuf		*m_head = NULL;
1927         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
1928 	int			pkts = 0;
1929 
1930 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1931 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1932 
1933 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1934 		IFQ_POLL(&ifp->if_snd, m_head);
1935 		if (m_head == NULL)
1936 			break;
1937 
1938 		/*
1939 		 * Pack the data into the transmit ring. If we
1940 		 * don't have room, set the OACTIVE flag and wait
1941 		 * for the NIC to drain the ring.
1942 		 */
1943 		if (sk_encap(sc_if, m_head, &idx)) {
1944 			ifp->if_flags |= IFF_OACTIVE;
1945 			break;
1946 		}
1947 
1948 		/* now we are committed to transmit the packet */
1949 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1950 		pkts++;
1951 
1952 		/*
1953 		 * If there's a BPF listener, bounce a copy of this frame
1954 		 * to him.
1955 		 */
1956 #if NBPFILTER > 0
1957 		if (ifp->if_bpf)
1958 			bpf_mtap(ifp->if_bpf, m_head);
1959 #endif
1960 	}
1961 	if (pkts == 0)
1962 		return;
1963 
1964 	/* Transmit */
1965 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
1966 		sc_if->sk_cdata.sk_tx_prod = idx;
1967 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1968 
1969 		/* Set a timeout in case the chip goes out to lunch. */
1970 		ifp->if_timer = 5;
1971 	}
1972 }
1973 
1974 
1975 void
1976 sk_watchdog(struct ifnet *ifp)
1977 {
1978 	struct sk_if_softc *sc_if = ifp->if_softc;
1979 
1980 	/*
1981 	 * Reclaim first as there is a possibility of losing Tx completion
1982 	 * interrupts.
1983 	 */
1984 	sk_txeof(sc_if);
1985 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1986 		aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
1987 
1988 		ifp->if_oerrors++;
1989 
1990 		sk_init(ifp);
1991 	}
1992 }
1993 
1994 void
1995 sk_shutdown(void *v)
1996 {
1997 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
1998 	struct sk_softc		*sc = sc_if->sk_softc;
1999 	struct ifnet 		*ifp = &sc_if->sk_ethercom.ec_if;
2000 
2001 	DPRINTFN(2, ("sk_shutdown\n"));
2002 	sk_stop(ifp,1);
2003 
2004 	/* Turn off the 'driver is loaded' LED. */
2005 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2006 
2007 	/*
2008 	 * Reset the GEnesis controller. Doing this should also
2009 	 * assert the resets on the attached XMAC(s).
2010 	 */
2011 	sk_reset(sc);
2012 }
2013 
2014 void
2015 sk_rxeof(struct sk_if_softc *sc_if)
2016 {
2017 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2018 	struct mbuf		*m;
2019 	struct sk_chain		*cur_rx;
2020 	struct sk_rx_desc	*cur_desc;
2021 	int			i, cur, total_len = 0;
2022 	u_int32_t		rxstat, sk_ctl;
2023 	bus_dmamap_t		dmamap;
2024 
2025 	i = sc_if->sk_cdata.sk_rx_prod;
2026 
2027 	DPRINTFN(3, ("sk_rxeof %d\n", i));
2028 
2029 	for (;;) {
2030 		cur = i;
2031 
2032 		/* Sync the descriptor */
2033 		SK_CDRXSYNC(sc_if, cur,
2034 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2035 
2036 		sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2037 		if (sk_ctl & SK_RXCTL_OWN) {
2038 			/* Invalidate the descriptor -- it's not ready yet */
2039 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2040 			sc_if->sk_cdata.sk_rx_prod = i;
2041 			break;
2042 		}
2043 
2044 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2045 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2046 		dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2047 
2048 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2049 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2050 
2051 		rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2052 		m = cur_rx->sk_mbuf;
2053 		cur_rx->sk_mbuf = NULL;
2054 		total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2055 
2056 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
2057 
2058 		SK_INC(i, SK_RX_RING_CNT);
2059 
2060 		if (rxstat & XM_RXSTAT_ERRFRAME) {
2061 			ifp->if_ierrors++;
2062 			sk_newbuf(sc_if, cur, m, dmamap);
2063 			continue;
2064 		}
2065 
2066 		/*
2067 		 * Try to allocate a new jumbo buffer. If that
2068 		 * fails, copy the packet to mbufs and put the
2069 		 * jumbo buffer back in the ring so it can be
2070 		 * re-used. If allocating mbufs fails, then we
2071 		 * have to drop the packet.
2072 		 */
2073 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2074 			struct mbuf		*m0;
2075 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2076 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
2077 			sk_newbuf(sc_if, cur, m, dmamap);
2078 			if (m0 == NULL) {
2079 				aprint_error_dev(sc_if->sk_dev, "no receive "
2080 				    "buffers available -- packet dropped!\n");
2081 				ifp->if_ierrors++;
2082 				continue;
2083 			}
2084 			m_adj(m0, ETHER_ALIGN);
2085 			m = m0;
2086 		} else {
2087 			m->m_pkthdr.rcvif = ifp;
2088 			m->m_pkthdr.len = m->m_len = total_len;
2089 		}
2090 
2091 		ifp->if_ipackets++;
2092 
2093 #if NBPFILTER > 0
2094 		if (ifp->if_bpf)
2095 			bpf_mtap(ifp->if_bpf, m);
2096 #endif
2097 		/* pass it on. */
2098 		(*ifp->if_input)(ifp, m);
2099 	}
2100 }
2101 
2102 void
2103 sk_txeof(struct sk_if_softc *sc_if)
2104 {
2105 	struct sk_softc		*sc = sc_if->sk_softc;
2106 	struct sk_tx_desc	*cur_tx;
2107 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2108 	u_int32_t		idx, sk_ctl;
2109 	struct sk_txmap_entry	*entry;
2110 
2111 	DPRINTFN(3, ("sk_txeof\n"));
2112 
2113 	/*
2114 	 * Go through our tx ring and free mbufs for those
2115 	 * frames that have been sent.
2116 	 */
2117 	idx = sc_if->sk_cdata.sk_tx_cons;
2118 	while (idx != sc_if->sk_cdata.sk_tx_prod) {
2119 		SK_CDTXSYNC(sc_if, idx, 1,
2120 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2121 
2122 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2123 		sk_ctl = le32toh(cur_tx->sk_ctl);
2124 #ifdef SK_DEBUG
2125 		if (skdebug >= 3)
2126 			sk_dump_txdesc(cur_tx, idx);
2127 #endif
2128 		if (sk_ctl & SK_TXCTL_OWN) {
2129 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2130 			break;
2131 		}
2132 		if (sk_ctl & SK_TXCTL_LASTFRAG)
2133 			ifp->if_opackets++;
2134 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2135 			entry = sc_if->sk_cdata.sk_tx_map[idx];
2136 
2137 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2138 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2139 
2140 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2141 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2142 
2143 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2144 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2145 					  link);
2146 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2147 		}
2148 		sc_if->sk_cdata.sk_tx_cnt--;
2149 		SK_INC(idx, SK_TX_RING_CNT);
2150 	}
2151 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
2152 		ifp->if_timer = 0;
2153 	else /* nudge chip to keep tx ring moving */
2154 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2155 
2156 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2157 		ifp->if_flags &= ~IFF_OACTIVE;
2158 
2159 	sc_if->sk_cdata.sk_tx_cons = idx;
2160 }
2161 
2162 void
2163 sk_tick(void *xsc_if)
2164 {
2165 	struct sk_if_softc *sc_if = xsc_if;
2166 	struct mii_data *mii = &sc_if->sk_mii;
2167 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2168 	int i;
2169 
2170 	DPRINTFN(3, ("sk_tick\n"));
2171 
2172 	if (!(ifp->if_flags & IFF_UP))
2173 		return;
2174 
2175 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2176 		sk_intr_bcom(sc_if);
2177 		return;
2178 	}
2179 
2180 	/*
2181 	 * According to SysKonnect, the correct way to verify that
2182 	 * the link has come back up is to poll bit 0 of the GPIO
2183 	 * register three times. This pin has the signal from the
2184 	 * link sync pin connected to it; if we read the same link
2185 	 * state 3 times in a row, we know the link is up.
2186 	 */
2187 	for (i = 0; i < 3; i++) {
2188 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2189 			break;
2190 	}
2191 
2192 	if (i != 3) {
2193 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2194 		return;
2195 	}
2196 
2197 	/* Turn the GP0 interrupt back on. */
2198 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2199 	SK_XM_READ_2(sc_if, XM_ISR);
2200 	mii_tick(mii);
2201 	mii_pollstat(mii);
2202 	callout_stop(&sc_if->sk_tick_ch);
2203 }
2204 
2205 void
2206 sk_intr_bcom(struct sk_if_softc *sc_if)
2207 {
2208 	struct mii_data *mii = &sc_if->sk_mii;
2209 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2210 	int status;
2211 
2212 
2213 	DPRINTFN(3, ("sk_intr_bcom\n"));
2214 
2215 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2216 
2217 	/*
2218 	 * Read the PHY interrupt register to make sure
2219 	 * we clear any pending interrupts.
2220 	 */
2221 	status = sk_xmac_miibus_readreg(sc_if->sk_dev,
2222 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2223 
2224 	if (!(ifp->if_flags & IFF_RUNNING)) {
2225 		sk_init_xmac(sc_if);
2226 		return;
2227 	}
2228 
2229 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2230 		int lstat;
2231 		lstat = sk_xmac_miibus_readreg(sc_if->sk_dev,
2232 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2233 
2234 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2235 			(void)mii_mediachg(mii);
2236 			/* Turn off the link LED. */
2237 			SK_IF_WRITE_1(sc_if, 0,
2238 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
2239 			sc_if->sk_link = 0;
2240 		} else if (status & BRGPHY_ISR_LNK_CHG) {
2241 			sk_xmac_miibus_writereg(sc_if->sk_dev,
2242 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2243 			mii_tick(mii);
2244 			sc_if->sk_link = 1;
2245 			/* Turn on the link LED. */
2246 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2247 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2248 			    SK_LINKLED_BLINK_OFF);
2249 			mii_pollstat(mii);
2250 		} else {
2251 			mii_tick(mii);
2252 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2253 		}
2254 	}
2255 
2256 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2257 }
2258 
2259 void
2260 sk_intr_xmac(struct sk_if_softc	*sc_if)
2261 {
2262 	u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2263 
2264 	DPRINTFN(3, ("sk_intr_xmac\n"));
2265 
2266 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2267 		if (status & XM_ISR_GP0_SET) {
2268 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2269 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2270 		}
2271 
2272 		if (status & XM_ISR_AUTONEG_DONE) {
2273 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2274 		}
2275 	}
2276 
2277 	if (status & XM_IMR_TX_UNDERRUN)
2278 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2279 
2280 	if (status & XM_IMR_RX_OVERRUN)
2281 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2282 }
2283 
2284 void
2285 sk_intr_yukon(struct sk_if_softc *sc_if)
2286 {
2287 	int status;
2288 
2289 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2290 
2291 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2292 }
2293 
2294 int
2295 sk_intr(void *xsc)
2296 {
2297 	struct sk_softc		*sc = xsc;
2298 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
2299 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
2300 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2301 	u_int32_t		status;
2302 	int			claimed = 0;
2303 
2304 	if (sc_if0 != NULL)
2305 		ifp0 = &sc_if0->sk_ethercom.ec_if;
2306 	if (sc_if1 != NULL)
2307 		ifp1 = &sc_if1->sk_ethercom.ec_if;
2308 
2309 	for (;;) {
2310 		status = CSR_READ_4(sc, SK_ISSR);
2311 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2312 
2313 		if (!(status & sc->sk_intrmask))
2314 			break;
2315 
2316 		claimed = 1;
2317 
2318 		/* Handle receive interrupts first. */
2319 		if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2320 			sk_rxeof(sc_if0);
2321 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2322 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2323 		}
2324 		if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2325 			sk_rxeof(sc_if1);
2326 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2327 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2328 		}
2329 
2330 		/* Then transmit interrupts. */
2331 		if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2332 			sk_txeof(sc_if0);
2333 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2334 			    SK_TXBMU_CLR_IRQ_EOF);
2335 		}
2336 		if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2337 			sk_txeof(sc_if1);
2338 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2339 			    SK_TXBMU_CLR_IRQ_EOF);
2340 		}
2341 
2342 		/* Then MAC interrupts. */
2343 		if (sc_if0 && (status & SK_ISR_MAC1) &&
2344 		    (ifp0->if_flags & IFF_RUNNING)) {
2345 			if (sc->sk_type == SK_GENESIS)
2346 				sk_intr_xmac(sc_if0);
2347 			else
2348 				sk_intr_yukon(sc_if0);
2349 		}
2350 
2351 		if (sc_if1 && (status & SK_ISR_MAC2) &&
2352 		    (ifp1->if_flags & IFF_RUNNING)) {
2353 			if (sc->sk_type == SK_GENESIS)
2354 				sk_intr_xmac(sc_if1);
2355 			else
2356 				sk_intr_yukon(sc_if1);
2357 
2358 		}
2359 
2360 		if (status & SK_ISR_EXTERNAL_REG) {
2361 			if (sc_if0 != NULL &&
2362 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2363 				sk_intr_bcom(sc_if0);
2364 
2365 			if (sc_if1 != NULL &&
2366 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2367 				sk_intr_bcom(sc_if1);
2368 		}
2369 	}
2370 
2371 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2372 
2373 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2374 		sk_start(ifp0);
2375 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2376 		sk_start(ifp1);
2377 
2378 #if NRND > 0
2379 	if (RND_ENABLED(&sc->rnd_source))
2380 		rnd_add_uint32(&sc->rnd_source, status);
2381 #endif
2382 
2383 	if (sc->sk_int_mod_pending)
2384 		sk_update_int_mod(sc);
2385 
2386 	return claimed;
2387 }
2388 
2389 void
2390 sk_init_xmac(struct sk_if_softc	*sc_if)
2391 {
2392 	struct sk_softc		*sc = sc_if->sk_softc;
2393 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2394 	static const struct sk_bcom_hack     bhack[] = {
2395 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2396 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2397 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2398 	{ 0, 0 } };
2399 
2400 	DPRINTFN(1, ("sk_init_xmac\n"));
2401 
2402 	/* Unreset the XMAC. */
2403 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2404 	DELAY(1000);
2405 
2406 	/* Reset the XMAC's internal state. */
2407 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2408 
2409 	/* Save the XMAC II revision */
2410 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2411 
2412 	/*
2413 	 * Perform additional initialization for external PHYs,
2414 	 * namely for the 1000baseTX cards that use the XMAC's
2415 	 * GMII mode.
2416 	 */
2417 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2418 		int			i = 0;
2419 		u_int32_t		val;
2420 
2421 		/* Take PHY out of reset. */
2422 		val = sk_win_read_4(sc, SK_GPIO);
2423 		if (sc_if->sk_port == SK_PORT_A)
2424 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2425 		else
2426 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2427 		sk_win_write_4(sc, SK_GPIO, val);
2428 
2429 		/* Enable GMII mode on the XMAC. */
2430 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2431 
2432 		sk_xmac_miibus_writereg(sc_if->sk_dev,
2433 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2434 		DELAY(10000);
2435 		sk_xmac_miibus_writereg(sc_if->sk_dev,
2436 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2437 
2438 		/*
2439 		 * Early versions of the BCM5400 apparently have
2440 		 * a bug that requires them to have their reserved
2441 		 * registers initialized to some magic values. I don't
2442 		 * know what the numbers do, I'm just the messenger.
2443 		 */
2444 		if (sk_xmac_miibus_readreg(sc_if->sk_dev,
2445 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2446 			while (bhack[i].reg) {
2447 				sk_xmac_miibus_writereg(sc_if->sk_dev,
2448 				    SK_PHYADDR_BCOM, bhack[i].reg,
2449 				    bhack[i].val);
2450 				i++;
2451 			}
2452 		}
2453 	}
2454 
2455 	/* Set station address */
2456 	SK_XM_WRITE_2(sc_if, XM_PAR0,
2457 		      *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2458 	SK_XM_WRITE_2(sc_if, XM_PAR1,
2459 		      *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2460 	SK_XM_WRITE_2(sc_if, XM_PAR2,
2461 		      *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2462 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2463 
2464 	if (ifp->if_flags & IFF_PROMISC)
2465 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2466 	else
2467 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2468 
2469 	if (ifp->if_flags & IFF_BROADCAST)
2470 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2471 	else
2472 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2473 
2474 	/* We don't need the FCS appended to the packet. */
2475 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2476 
2477 	/* We want short frames padded to 60 bytes. */
2478 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2479 
2480 	/*
2481 	 * Enable the reception of all error frames. This is is
2482 	 * a necessary evil due to the design of the XMAC. The
2483 	 * XMAC's receive FIFO is only 8K in size, however jumbo
2484 	 * frames can be up to 9000 bytes in length. When bad
2485 	 * frame filtering is enabled, the XMAC's RX FIFO operates
2486 	 * in 'store and forward' mode. For this to work, the
2487 	 * entire frame has to fit into the FIFO, but that means
2488 	 * that jumbo frames larger than 8192 bytes will be
2489 	 * truncated. Disabling all bad frame filtering causes
2490 	 * the RX FIFO to operate in streaming mode, in which
2491 	 * case the XMAC will start transfering frames out of the
2492 	 * RX FIFO as soon as the FIFO threshold is reached.
2493 	 */
2494 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2495 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2496 	    XM_MODE_RX_INRANGELEN);
2497 
2498 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2499 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2500 	else
2501 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2502 
2503 	/*
2504 	 * Bump up the transmit threshold. This helps hold off transmit
2505 	 * underruns when we're blasting traffic from both ports at once.
2506 	 */
2507 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2508 
2509 	/* Set multicast filter */
2510 	sk_setmulti(sc_if);
2511 
2512 	/* Clear and enable interrupts */
2513 	SK_XM_READ_2(sc_if, XM_ISR);
2514 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2515 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2516 	else
2517 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2518 
2519 	/* Configure MAC arbiter */
2520 	switch (sc_if->sk_xmac_rev) {
2521 	case XM_XMAC_REV_B2:
2522 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2523 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2524 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2525 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2526 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2527 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2528 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2529 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2530 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2531 		break;
2532 	case XM_XMAC_REV_C1:
2533 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2534 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2535 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2536 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2537 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2538 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2539 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2540 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2541 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2542 		break;
2543 	default:
2544 		break;
2545 	}
2546 	sk_win_write_2(sc, SK_MACARB_CTL,
2547 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2548 
2549 	sc_if->sk_link = 1;
2550 }
2551 
2552 void sk_init_yukon(struct sk_if_softc *sc_if)
2553 {
2554 	u_int32_t		/*mac, */phy;
2555 	u_int16_t		reg;
2556 	struct sk_softc		*sc;
2557 	int			i;
2558 
2559 	DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2560 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2561 
2562 	sc = sc_if->sk_softc;
2563 	if (sc->sk_type == SK_YUKON_LITE &&
2564 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2565 		/* Take PHY out of reset. */
2566 		sk_win_write_4(sc, SK_GPIO,
2567 			(sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2568 	}
2569 
2570 
2571 	/* GMAC and GPHY Reset */
2572 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2573 
2574 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
2575 
2576 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2577 	DELAY(1000);
2578 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2579 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2580 	DELAY(1000);
2581 
2582 
2583 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
2584 
2585 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2586 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2587 
2588 	switch (sc_if->sk_softc->sk_pmd) {
2589 	case IFM_1000_SX:
2590 	case IFM_1000_LX:
2591 		phy |= SK_GPHY_FIBER;
2592 		break;
2593 
2594 	case IFM_1000_CX:
2595 	case IFM_1000_T:
2596 		phy |= SK_GPHY_COPPER;
2597 		break;
2598 	}
2599 
2600 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2601 
2602 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2603 	DELAY(1000);
2604 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2605 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2606 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2607 
2608 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2609 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2610 
2611 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
2612 
2613 	/* unused read of the interrupt source register */
2614 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
2615 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2616 
2617 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2618 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2619 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2620 
2621 	/* MIB Counter Clear Mode set */
2622         reg |= YU_PAR_MIB_CLR;
2623 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2624 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2625 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2626 
2627 	/* MIB Counter Clear Mode clear */
2628 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
2629         reg &= ~YU_PAR_MIB_CLR;
2630 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2631 
2632 	/* receive control reg */
2633 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
2634 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2635 		      YU_RCR_CRCR);
2636 
2637 	/* transmit parameter register */
2638 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
2639 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2640 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2641 
2642 	/* serial mode register */
2643 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
2644 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2645 		      YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2646 		      YU_SMR_IPG_DATA(0x1e));
2647 
2648 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
2649 	/* Setup Yukon's address */
2650 	for (i = 0; i < 3; i++) {
2651 		/* Write Source Address 1 (unicast filter) */
2652 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2653 			      sc_if->sk_enaddr[i * 2] |
2654 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
2655 	}
2656 
2657 	for (i = 0; i < 3; i++) {
2658 		reg = sk_win_read_2(sc_if->sk_softc,
2659 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2660 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2661 	}
2662 
2663 	/* Set multicast filter */
2664 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
2665 	sk_setmulti(sc_if);
2666 
2667 	/* enable interrupt mask for counter overflows */
2668 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
2669 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2670 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2671 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2672 
2673 	/* Configure RX MAC FIFO */
2674 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2675 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2676 
2677 	/* Configure TX MAC FIFO */
2678 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2679 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2680 
2681 	DPRINTFN(6, ("sk_init_yukon: end\n"));
2682 }
2683 
2684 /*
2685  * Note that to properly initialize any part of the GEnesis chip,
2686  * you first have to take it out of reset mode.
2687  */
2688 int
2689 sk_init(struct ifnet *ifp)
2690 {
2691 	struct sk_if_softc	*sc_if = ifp->if_softc;
2692 	struct sk_softc		*sc = sc_if->sk_softc;
2693 	struct mii_data		*mii = &sc_if->sk_mii;
2694 	int			rc = 0, s;
2695 	u_int32_t		imr, imtimer_ticks;
2696 
2697 	DPRINTFN(1, ("sk_init\n"));
2698 
2699 	s = splnet();
2700 
2701 	if (ifp->if_flags & IFF_RUNNING) {
2702 		splx(s);
2703 		return 0;
2704 	}
2705 
2706 	/* Cancel pending I/O and free all RX/TX buffers. */
2707 	sk_stop(ifp,0);
2708 
2709 	if (sc->sk_type == SK_GENESIS) {
2710 		/* Configure LINK_SYNC LED */
2711 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2712 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2713 			      SK_LINKLED_LINKSYNC_ON);
2714 
2715 		/* Configure RX LED */
2716 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2717 			      SK_RXLEDCTL_COUNTER_START);
2718 
2719 		/* Configure TX LED */
2720 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2721 			      SK_TXLEDCTL_COUNTER_START);
2722 	}
2723 
2724 	/* Configure I2C registers */
2725 
2726 	/* Configure XMAC(s) */
2727 	switch (sc->sk_type) {
2728 	case SK_GENESIS:
2729 		sk_init_xmac(sc_if);
2730 		break;
2731 	case SK_YUKON:
2732 	case SK_YUKON_LITE:
2733 	case SK_YUKON_LP:
2734 		sk_init_yukon(sc_if);
2735 		break;
2736 	}
2737 	if ((rc = mii_mediachg(mii)) == ENXIO)
2738 		rc = 0;
2739 	else if (rc != 0)
2740 		goto out;
2741 
2742 	if (sc->sk_type == SK_GENESIS) {
2743 		/* Configure MAC FIFOs */
2744 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2745 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2746 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2747 
2748 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2749 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2750 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2751 	}
2752 
2753 	/* Configure transmit arbiter(s) */
2754 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2755 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2756 
2757 	/* Configure RAMbuffers */
2758 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2759 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2760 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2761 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2762 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2763 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2764 
2765 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2766 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2767 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2768 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2769 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2770 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2771 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2772 
2773 	/* Configure BMUs */
2774 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2775 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2776 	    SK_RX_RING_ADDR(sc_if, 0));
2777 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2778 
2779 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2780 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2781             SK_TX_RING_ADDR(sc_if, 0));
2782 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2783 
2784 	/* Init descriptors */
2785 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2786 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2787 		    "memory for rx buffers\n");
2788 		sk_stop(ifp,0);
2789 		splx(s);
2790 		return ENOBUFS;
2791 	}
2792 
2793 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2794 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2795 		    "memory for tx buffers\n");
2796 		sk_stop(ifp,0);
2797 		splx(s);
2798 		return ENOBUFS;
2799 	}
2800 
2801 	/* Set interrupt moderation if changed via sysctl. */
2802 	switch (sc->sk_type) {
2803 	case SK_GENESIS:
2804 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2805 		break;
2806 	case SK_YUKON_EC:
2807 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2808 		break;
2809 	default:
2810 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2811 	}
2812 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2813 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2814 		sk_win_write_4(sc, SK_IMTIMERINIT,
2815 		    SK_IM_USECS(sc->sk_int_mod));
2816 		aprint_verbose_dev(sc->sk_dev,
2817 		    "interrupt moderation is %d us\n", sc->sk_int_mod);
2818 	}
2819 
2820 	/* Configure interrupt handling */
2821 	CSR_READ_4(sc, SK_ISSR);
2822 	if (sc_if->sk_port == SK_PORT_A)
2823 		sc->sk_intrmask |= SK_INTRS1;
2824 	else
2825 		sc->sk_intrmask |= SK_INTRS2;
2826 
2827 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2828 
2829 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2830 
2831 	/* Start BMUs. */
2832 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2833 
2834 	if (sc->sk_type == SK_GENESIS) {
2835 		/* Enable XMACs TX and RX state machines */
2836 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2837 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2838 			       XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2839 	}
2840 
2841 	if (SK_YUKON_FAMILY(sc->sk_type)) {
2842 		u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2843 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2844 #if 0
2845 		/* XXX disable 100Mbps and full duplex mode? */
2846 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2847 #endif
2848 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2849 	}
2850 
2851 
2852 	ifp->if_flags |= IFF_RUNNING;
2853 	ifp->if_flags &= ~IFF_OACTIVE;
2854 
2855 out:
2856 	splx(s);
2857 	return rc;
2858 }
2859 
2860 void
2861 sk_stop(struct ifnet *ifp, int disable)
2862 {
2863         struct sk_if_softc	*sc_if = ifp->if_softc;
2864 	struct sk_softc		*sc = sc_if->sk_softc;
2865 	int			i;
2866 
2867 	DPRINTFN(1, ("sk_stop\n"));
2868 
2869 	callout_stop(&sc_if->sk_tick_ch);
2870 
2871 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2872 		u_int32_t		val;
2873 
2874 		/* Put PHY back into reset. */
2875 		val = sk_win_read_4(sc, SK_GPIO);
2876 		if (sc_if->sk_port == SK_PORT_A) {
2877 			val |= SK_GPIO_DIR0;
2878 			val &= ~SK_GPIO_DAT0;
2879 		} else {
2880 			val |= SK_GPIO_DIR2;
2881 			val &= ~SK_GPIO_DAT2;
2882 		}
2883 		sk_win_write_4(sc, SK_GPIO, val);
2884 	}
2885 
2886 	/* Turn off various components of this interface. */
2887 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2888 	switch (sc->sk_type) {
2889 	case SK_GENESIS:
2890 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2891 			      SK_TXMACCTL_XMAC_RESET);
2892 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2893 		break;
2894 	case SK_YUKON:
2895 	case SK_YUKON_LITE:
2896 	case SK_YUKON_LP:
2897 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2898 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2899 		break;
2900 	}
2901 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2902 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2903 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2904 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2905 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2906 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2907 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2908 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2909 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2910 
2911 	/* Disable interrupts */
2912 	if (sc_if->sk_port == SK_PORT_A)
2913 		sc->sk_intrmask &= ~SK_INTRS1;
2914 	else
2915 		sc->sk_intrmask &= ~SK_INTRS2;
2916 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2917 
2918 	SK_XM_READ_2(sc_if, XM_ISR);
2919 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2920 
2921 	/* Free RX and TX mbufs still in the queues. */
2922 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2923 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2924 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2925 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2926 		}
2927 	}
2928 
2929 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2930 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2931 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2932 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2933 		}
2934 	}
2935 
2936 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2937 }
2938 
2939 CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc),
2940     skc_probe, skc_attach, NULL, NULL);
2941 
2942 CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc),
2943     sk_probe, sk_attach, NULL, NULL);
2944 
2945 #ifdef SK_DEBUG
2946 void
2947 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2948 {
2949 #define DESC_PRINT(X)					\
2950 	if (X)					\
2951 		printf("txdesc[%d]." #X "=%#x\n",	\
2952 		       idx, X);
2953 
2954 	DESC_PRINT(le32toh(desc->sk_ctl));
2955 	DESC_PRINT(le32toh(desc->sk_next));
2956 	DESC_PRINT(le32toh(desc->sk_data_lo));
2957 	DESC_PRINT(le32toh(desc->sk_data_hi));
2958 	DESC_PRINT(le32toh(desc->sk_xmac_txstat));
2959 	DESC_PRINT(le16toh(desc->sk_rsvd0));
2960 	DESC_PRINT(le16toh(desc->sk_csum_startval));
2961 	DESC_PRINT(le16toh(desc->sk_csum_startpos));
2962 	DESC_PRINT(le16toh(desc->sk_csum_writepos));
2963 	DESC_PRINT(le16toh(desc->sk_rsvd1));
2964 #undef PRINT
2965 }
2966 
2967 void
2968 sk_dump_bytes(const char *data, int len)
2969 {
2970 	int c, i, j;
2971 
2972 	for (i = 0; i < len; i += 16) {
2973 		printf("%08x  ", i);
2974 		c = len - i;
2975 		if (c > 16) c = 16;
2976 
2977 		for (j = 0; j < c; j++) {
2978 			printf("%02x ", data[i + j] & 0xff);
2979 			if ((j & 0xf) == 7 && j > 0)
2980 				printf(" ");
2981 		}
2982 
2983 		for (; j < 16; j++)
2984 			printf("   ");
2985 		printf("  ");
2986 
2987 		for (j = 0; j < c; j++) {
2988 			int ch = data[i + j] & 0xff;
2989 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2990 		}
2991 
2992 		printf("\n");
2993 
2994 		if (c < 16)
2995 			break;
2996 	}
2997 }
2998 
2999 void
3000 sk_dump_mbuf(struct mbuf *m)
3001 {
3002 	int count = m->m_pkthdr.len;
3003 
3004 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3005 
3006 	while (count > 0 && m) {
3007 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3008 		       m, m->m_data, m->m_len);
3009 		sk_dump_bytes(mtod(m, char *), m->m_len);
3010 
3011 		count -= m->m_len;
3012 		m = m->m_next;
3013 	}
3014 }
3015 #endif
3016 
3017 static int
3018 sk_sysctl_handler(SYSCTLFN_ARGS)
3019 {
3020 	int error, t;
3021 	struct sysctlnode node;
3022 	struct sk_softc *sc;
3023 
3024 	node = *rnode;
3025 	sc = node.sysctl_data;
3026 	t = sc->sk_int_mod;
3027 	node.sysctl_data = &t;
3028 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3029 	if (error || newp == NULL)
3030 		return error;
3031 
3032 	if (t < SK_IM_MIN || t > SK_IM_MAX)
3033 		return EINVAL;
3034 
3035 	/* update the softc with sysctl-changed value, and mark
3036 	   for hardware update */
3037 	sc->sk_int_mod = t;
3038 	sc->sk_int_mod_pending = 1;
3039 	return 0;
3040 }
3041 
3042 /*
3043  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3044  * set up in skc_attach()
3045  */
3046 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3047 {
3048 	int rc;
3049 	const struct sysctlnode *node;
3050 
3051 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3052 	    0, CTLTYPE_NODE, "hw", NULL,
3053 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3054 		goto err;
3055 	}
3056 
3057 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
3058 	    0, CTLTYPE_NODE, "sk",
3059 	    SYSCTL_DESCR("sk interface controls"),
3060 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3061 		goto err;
3062 	}
3063 
3064 	sk_root_num = node->sysctl_num;
3065 	return;
3066 
3067 err:
3068 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3069 }
3070