1 /* $NetBSD: if_sk.c,v 1.63 2010/01/08 19:56:52 dyoung Exp $ */ 2 3 /*- 4 * Copyright (c) 2003 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 26 * POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /* $OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $ */ 30 31 /* 32 * Copyright (c) 1997, 1998, 1999, 2000 33 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. 34 * 35 * Redistribution and use in source and binary forms, with or without 36 * modification, are permitted provided that the following conditions 37 * are met: 38 * 1. Redistributions of source code must retain the above copyright 39 * notice, this list of conditions and the following disclaimer. 40 * 2. Redistributions in binary form must reproduce the above copyright 41 * notice, this list of conditions and the following disclaimer in the 42 * documentation and/or other materials provided with the distribution. 43 * 3. All advertising materials mentioning features or use of this software 44 * must display the following acknowledgement: 45 * This product includes software developed by Bill Paul. 46 * 4. Neither the name of the author nor the names of any co-contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 54 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 55 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 56 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 57 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 58 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 59 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 60 * THE POSSIBILITY OF SUCH DAMAGE. 61 * 62 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $ 63 */ 64 65 /* 66 * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu> 67 * 68 * Permission to use, copy, modify, and distribute this software for any 69 * purpose with or without fee is hereby granted, provided that the above 70 * copyright notice and this permission notice appear in all copies. 71 * 72 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 73 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 74 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 75 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 76 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 77 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 78 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 79 */ 80 81 /* 82 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports 83 * the SK-984x series adapters, both single port and dual port. 84 * References: 85 * The XaQti XMAC II datasheet, 86 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf 87 * The SysKonnect GEnesis manual, http://www.syskonnect.com 88 * 89 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the 90 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a 91 * convenience to others until Vitesse corrects this problem: 92 * 93 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf 94 * 95 * Written by Bill Paul <wpaul@ee.columbia.edu> 96 * Department of Electrical Engineering 97 * Columbia University, New York City 98 */ 99 100 /* 101 * The SysKonnect gigabit ethernet adapters consist of two main 102 * components: the SysKonnect GEnesis controller chip and the XaQti Corp. 103 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC 104 * components and a PHY while the GEnesis controller provides a PCI 105 * interface with DMA support. Each card may have between 512K and 106 * 2MB of SRAM on board depending on the configuration. 107 * 108 * The SysKonnect GEnesis controller can have either one or two XMAC 109 * chips connected to it, allowing single or dual port NIC configurations. 110 * SysKonnect has the distinction of being the only vendor on the market 111 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs, 112 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the 113 * XMAC registers. This driver takes advantage of these features to allow 114 * both XMACs to operate as independent interfaces. 115 */ 116 117 #include <sys/cdefs.h> 118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.63 2010/01/08 19:56:52 dyoung Exp $"); 119 120 #include "bpfilter.h" 121 #include "rnd.h" 122 123 #include <sys/param.h> 124 #include <sys/systm.h> 125 #include <sys/sockio.h> 126 #include <sys/mbuf.h> 127 #include <sys/malloc.h> 128 #include <sys/mutex.h> 129 #include <sys/kernel.h> 130 #include <sys/socket.h> 131 #include <sys/device.h> 132 #include <sys/queue.h> 133 #include <sys/callout.h> 134 #include <sys/sysctl.h> 135 #include <sys/endian.h> 136 137 #include <net/if.h> 138 #include <net/if_dl.h> 139 #include <net/if_types.h> 140 141 #include <net/if_media.h> 142 143 #if NBPFILTER > 0 144 #include <net/bpf.h> 145 #endif 146 #if NRND > 0 147 #include <sys/rnd.h> 148 #endif 149 150 #include <dev/mii/mii.h> 151 #include <dev/mii/miivar.h> 152 #include <dev/mii/brgphyreg.h> 153 154 #include <dev/pci/pcireg.h> 155 #include <dev/pci/pcivar.h> 156 #include <dev/pci/pcidevs.h> 157 158 /* #define SK_USEIOSPACE */ 159 160 #include <dev/pci/if_skreg.h> 161 #include <dev/pci/if_skvar.h> 162 163 int skc_probe(device_t, cfdata_t, void *); 164 void skc_attach(device_t, device_t, void *aux); 165 int sk_probe(device_t, cfdata_t, void *); 166 void sk_attach(device_t, device_t, void *aux); 167 int skcprint(void *, const char *); 168 int sk_intr(void *); 169 void sk_intr_bcom(struct sk_if_softc *); 170 void sk_intr_xmac(struct sk_if_softc *); 171 void sk_intr_yukon(struct sk_if_softc *); 172 void sk_rxeof(struct sk_if_softc *); 173 void sk_txeof(struct sk_if_softc *); 174 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *); 175 void sk_start(struct ifnet *); 176 int sk_ioctl(struct ifnet *, u_long, void *); 177 int sk_init(struct ifnet *); 178 void sk_init_xmac(struct sk_if_softc *); 179 void sk_init_yukon(struct sk_if_softc *); 180 void sk_stop(struct ifnet *, int); 181 void sk_watchdog(struct ifnet *); 182 void sk_shutdown(void *); 183 int sk_ifmedia_upd(struct ifnet *); 184 void sk_reset(struct sk_softc *); 185 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t); 186 int sk_alloc_jumbo_mem(struct sk_if_softc *); 187 void sk_free_jumbo_mem(struct sk_if_softc *); 188 void *sk_jalloc(struct sk_if_softc *); 189 void sk_jfree(struct mbuf *, void *, size_t, void *); 190 int sk_init_rx_ring(struct sk_if_softc *); 191 int sk_init_tx_ring(struct sk_if_softc *); 192 u_int8_t sk_vpd_readbyte(struct sk_softc *, int); 193 void sk_vpd_read_res(struct sk_softc *, 194 struct vpd_res *, int); 195 void sk_vpd_read(struct sk_softc *); 196 197 void sk_update_int_mod(struct sk_softc *); 198 199 int sk_xmac_miibus_readreg(device_t, int, int); 200 void sk_xmac_miibus_writereg(device_t, int, int, int); 201 void sk_xmac_miibus_statchg(device_t); 202 203 int sk_marv_miibus_readreg(device_t, int, int); 204 void sk_marv_miibus_writereg(device_t, int, int, int); 205 void sk_marv_miibus_statchg(device_t); 206 207 u_int32_t sk_xmac_hash(void *); 208 u_int32_t sk_yukon_hash(void *); 209 void sk_setfilt(struct sk_if_softc *, void *, int); 210 void sk_setmulti(struct sk_if_softc *); 211 void sk_tick(void *); 212 213 static bool skc_suspend(device_t dv, pmf_qual_t qual); 214 static bool skc_resume(device_t dv, pmf_qual_t qual); 215 static bool sk_resume(device_t dv, pmf_qual_t qual); 216 217 /* #define SK_DEBUG 2 */ 218 #ifdef SK_DEBUG 219 #define DPRINTF(x) if (skdebug) printf x 220 #define DPRINTFN(n,x) if (skdebug >= (n)) printf x 221 int skdebug = SK_DEBUG; 222 223 void sk_dump_txdesc(struct sk_tx_desc *, int); 224 void sk_dump_mbuf(struct mbuf *); 225 void sk_dump_bytes(const char *, int); 226 #else 227 #define DPRINTF(x) 228 #define DPRINTFN(n,x) 229 #endif 230 231 static int sk_sysctl_handler(SYSCTLFN_PROTO); 232 static int sk_root_num; 233 234 /* supported device vendors */ 235 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */ 236 static const struct sk_product { 237 pci_vendor_id_t sk_vendor; 238 pci_product_id_t sk_product; 239 } sk_products[] = { 240 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, }, 241 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, }, 242 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, }, 243 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, }, 244 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, }, 245 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, }, 246 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, }, 247 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, }, 248 { 0, 0, } 249 }; 250 251 #define SK_LINKSYS_EG1032_SUBID 0x00151737 252 253 static inline u_int32_t 254 sk_win_read_4(struct sk_softc *sc, u_int32_t reg) 255 { 256 #ifdef SK_USEIOSPACE 257 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 258 return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)); 259 #else 260 return CSR_READ_4(sc, reg); 261 #endif 262 } 263 264 static inline u_int16_t 265 sk_win_read_2(struct sk_softc *sc, u_int32_t reg) 266 { 267 #ifdef SK_USEIOSPACE 268 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 269 return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)); 270 #else 271 return CSR_READ_2(sc, reg); 272 #endif 273 } 274 275 static inline u_int8_t 276 sk_win_read_1(struct sk_softc *sc, u_int32_t reg) 277 { 278 #ifdef SK_USEIOSPACE 279 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 280 return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)); 281 #else 282 return CSR_READ_1(sc, reg); 283 #endif 284 } 285 286 static inline void 287 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x) 288 { 289 #ifdef SK_USEIOSPACE 290 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 291 CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x); 292 #else 293 CSR_WRITE_4(sc, reg, x); 294 #endif 295 } 296 297 static inline void 298 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x) 299 { 300 #ifdef SK_USEIOSPACE 301 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 302 CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x); 303 #else 304 CSR_WRITE_2(sc, reg, x); 305 #endif 306 } 307 308 static inline void 309 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x) 310 { 311 #ifdef SK_USEIOSPACE 312 CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); 313 CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x); 314 #else 315 CSR_WRITE_1(sc, reg, x); 316 #endif 317 } 318 319 /* 320 * The VPD EEPROM contains Vital Product Data, as suggested in 321 * the PCI 2.1 specification. The VPD data is separared into areas 322 * denoted by resource IDs. The SysKonnect VPD contains an ID string 323 * resource (the name of the adapter), a read-only area resource 324 * containing various key/data fields and a read/write area which 325 * can be used to store asset management information or log messages. 326 * We read the ID string and read-only into buffers attached to 327 * the controller softc structure for later use. At the moment, 328 * we only use the ID string during sk_attach(). 329 */ 330 u_int8_t 331 sk_vpd_readbyte(struct sk_softc *sc, int addr) 332 { 333 int i; 334 335 sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr); 336 for (i = 0; i < SK_TIMEOUT; i++) { 337 DELAY(1); 338 if (sk_win_read_2(sc, 339 SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG) 340 break; 341 } 342 343 if (i == SK_TIMEOUT) 344 return 0; 345 346 return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)); 347 } 348 349 void 350 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr) 351 { 352 int i; 353 u_int8_t *ptr; 354 355 ptr = (u_int8_t *)res; 356 for (i = 0; i < sizeof(struct vpd_res); i++) 357 ptr[i] = sk_vpd_readbyte(sc, i + addr); 358 } 359 360 void 361 sk_vpd_read(struct sk_softc *sc) 362 { 363 int pos = 0, i; 364 struct vpd_res res; 365 366 if (sc->sk_vpd_prodname != NULL) 367 free(sc->sk_vpd_prodname, M_DEVBUF); 368 if (sc->sk_vpd_readonly != NULL) 369 free(sc->sk_vpd_readonly, M_DEVBUF); 370 sc->sk_vpd_prodname = NULL; 371 sc->sk_vpd_readonly = NULL; 372 373 sk_vpd_read_res(sc, &res, pos); 374 375 if (res.vr_id != VPD_RES_ID) { 376 aprint_error_dev(sc->sk_dev, 377 "bad VPD resource id: expected %x got %x\n", 378 VPD_RES_ID, res.vr_id); 379 return; 380 } 381 382 pos += sizeof(res); 383 sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT); 384 if (sc->sk_vpd_prodname == NULL) 385 panic("sk_vpd_read"); 386 for (i = 0; i < res.vr_len; i++) 387 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos); 388 sc->sk_vpd_prodname[i] = '\0'; 389 pos += i; 390 391 sk_vpd_read_res(sc, &res, pos); 392 393 if (res.vr_id != VPD_RES_READ) { 394 aprint_error_dev(sc->sk_dev, 395 "bad VPD resource id: expected %x got %x\n", 396 VPD_RES_READ, res.vr_id); 397 return; 398 } 399 400 pos += sizeof(res); 401 sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT); 402 if (sc->sk_vpd_readonly == NULL) 403 panic("sk_vpd_read"); 404 for (i = 0; i < res.vr_len ; i++) 405 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos); 406 } 407 408 int 409 sk_xmac_miibus_readreg(device_t dev, int phy, int reg) 410 { 411 struct sk_if_softc *sc_if = device_private(dev); 412 int i; 413 414 DPRINTFN(9, ("sk_xmac_miibus_readreg\n")); 415 416 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0) 417 return 0; 418 419 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8)); 420 SK_XM_READ_2(sc_if, XM_PHY_DATA); 421 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) { 422 for (i = 0; i < SK_TIMEOUT; i++) { 423 DELAY(1); 424 if (SK_XM_READ_2(sc_if, XM_MMUCMD) & 425 XM_MMUCMD_PHYDATARDY) 426 break; 427 } 428 429 if (i == SK_TIMEOUT) { 430 aprint_error_dev(sc_if->sk_dev, 431 "phy failed to come ready\n"); 432 return 0; 433 } 434 } 435 DELAY(1); 436 return SK_XM_READ_2(sc_if, XM_PHY_DATA); 437 } 438 439 void 440 sk_xmac_miibus_writereg(device_t dev, int phy, int reg, int val) 441 { 442 struct sk_if_softc *sc_if = device_private(dev); 443 int i; 444 445 DPRINTFN(9, ("sk_xmac_miibus_writereg\n")); 446 447 SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8)); 448 for (i = 0; i < SK_TIMEOUT; i++) { 449 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY)) 450 break; 451 } 452 453 if (i == SK_TIMEOUT) { 454 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n"); 455 return; 456 } 457 458 SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val); 459 for (i = 0; i < SK_TIMEOUT; i++) { 460 DELAY(1); 461 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY)) 462 break; 463 } 464 465 if (i == SK_TIMEOUT) 466 aprint_error_dev(sc_if->sk_dev, "phy write timed out\n"); 467 } 468 469 void 470 sk_xmac_miibus_statchg(device_t dev) 471 { 472 struct sk_if_softc *sc_if = device_private(dev); 473 struct mii_data *mii = &sc_if->sk_mii; 474 475 DPRINTFN(9, ("sk_xmac_miibus_statchg\n")); 476 477 /* 478 * If this is a GMII PHY, manually set the XMAC's 479 * duplex mode accordingly. 480 */ 481 if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) { 482 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) 483 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX); 484 else 485 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX); 486 } 487 } 488 489 int 490 sk_marv_miibus_readreg(device_t dev, int phy, int reg) 491 { 492 struct sk_if_softc *sc_if = device_private(dev); 493 u_int16_t val; 494 int i; 495 496 if (phy != 0 || 497 (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER && 498 sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) { 499 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n", 500 phy, reg)); 501 return 0; 502 } 503 504 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) | 505 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ); 506 507 for (i = 0; i < SK_TIMEOUT; i++) { 508 DELAY(1); 509 val = SK_YU_READ_2(sc_if, YUKON_SMICR); 510 if (val & YU_SMICR_READ_VALID) 511 break; 512 } 513 514 if (i == SK_TIMEOUT) { 515 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n"); 516 return 0; 517 } 518 519 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i, 520 SK_TIMEOUT)); 521 522 val = SK_YU_READ_2(sc_if, YUKON_SMIDR); 523 524 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n", 525 phy, reg, val)); 526 527 return val; 528 } 529 530 void 531 sk_marv_miibus_writereg(device_t dev, int phy, int reg, int val) 532 { 533 struct sk_if_softc *sc_if = device_private(dev); 534 int i; 535 536 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n", 537 phy, reg, val)); 538 539 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val); 540 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) | 541 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE); 542 543 for (i = 0; i < SK_TIMEOUT; i++) { 544 DELAY(1); 545 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)) 546 break; 547 } 548 549 if (i == SK_TIMEOUT) 550 printf("%s: phy write timed out\n", 551 device_xname(sc_if->sk_dev)); 552 } 553 554 void 555 sk_marv_miibus_statchg(device_t dev) 556 { 557 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n", 558 SK_YU_READ_2(((struct sk_if_softc *)device_private(dev)), 559 YUKON_GPCR))); 560 } 561 562 #define SK_HASH_BITS 6 563 564 u_int32_t 565 sk_xmac_hash(void *addr) 566 { 567 u_int32_t crc; 568 569 crc = ether_crc32_le(addr,ETHER_ADDR_LEN); 570 crc = ~crc & ((1<< SK_HASH_BITS) - 1); 571 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc)); 572 return crc; 573 } 574 575 u_int32_t 576 sk_yukon_hash(void *addr) 577 { 578 u_int32_t crc; 579 580 crc = ether_crc32_be(addr,ETHER_ADDR_LEN); 581 crc &= ((1 << SK_HASH_BITS) - 1); 582 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc)); 583 return crc; 584 } 585 586 void 587 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot) 588 { 589 char *addr = addrv; 590 int base = XM_RXFILT_ENTRY(slot); 591 592 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0])); 593 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2])); 594 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4])); 595 } 596 597 void 598 sk_setmulti(struct sk_if_softc *sc_if) 599 { 600 struct sk_softc *sc = sc_if->sk_softc; 601 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if; 602 u_int32_t hashes[2] = { 0, 0 }; 603 int h = 0, i; 604 struct ethercom *ec = &sc_if->sk_ethercom; 605 struct ether_multi *enm; 606 struct ether_multistep step; 607 u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 }; 608 609 /* First, zot all the existing filters. */ 610 switch (sc->sk_type) { 611 case SK_GENESIS: 612 for (i = 1; i < XM_RXFILT_MAX; i++) 613 sk_setfilt(sc_if, (void *)&dummy, i); 614 615 SK_XM_WRITE_4(sc_if, XM_MAR0, 0); 616 SK_XM_WRITE_4(sc_if, XM_MAR2, 0); 617 break; 618 case SK_YUKON: 619 case SK_YUKON_LITE: 620 case SK_YUKON_LP: 621 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0); 622 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0); 623 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0); 624 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0); 625 break; 626 } 627 628 /* Now program new ones. */ 629 allmulti: 630 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { 631 hashes[0] = 0xFFFFFFFF; 632 hashes[1] = 0xFFFFFFFF; 633 } else { 634 i = 1; 635 /* First find the tail of the list. */ 636 ETHER_FIRST_MULTI(step, ec, enm); 637 while (enm != NULL) { 638 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 639 ETHER_ADDR_LEN)) { 640 ifp->if_flags |= IFF_ALLMULTI; 641 goto allmulti; 642 } 643 DPRINTFN(2,("multicast address %s\n", 644 ether_sprintf(enm->enm_addrlo))); 645 /* 646 * Program the first XM_RXFILT_MAX multicast groups 647 * into the perfect filter. For all others, 648 * use the hash table. 649 */ 650 if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) { 651 sk_setfilt(sc_if, enm->enm_addrlo, i); 652 i++; 653 } 654 else { 655 switch (sc->sk_type) { 656 case SK_GENESIS: 657 h = sk_xmac_hash(enm->enm_addrlo); 658 break; 659 case SK_YUKON: 660 case SK_YUKON_LITE: 661 case SK_YUKON_LP: 662 h = sk_yukon_hash(enm->enm_addrlo); 663 break; 664 } 665 if (h < 32) 666 hashes[0] |= (1 << h); 667 else 668 hashes[1] |= (1 << (h - 32)); 669 } 670 671 ETHER_NEXT_MULTI(step, enm); 672 } 673 } 674 675 switch (sc->sk_type) { 676 case SK_GENESIS: 677 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH| 678 XM_MODE_RX_USE_PERFECT); 679 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]); 680 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]); 681 break; 682 case SK_YUKON: 683 case SK_YUKON_LITE: 684 case SK_YUKON_LP: 685 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff); 686 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff); 687 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff); 688 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff); 689 break; 690 } 691 } 692 693 int 694 sk_init_rx_ring(struct sk_if_softc *sc_if) 695 { 696 struct sk_chain_data *cd = &sc_if->sk_cdata; 697 struct sk_ring_data *rd = sc_if->sk_rdata; 698 int i; 699 700 memset((char *)rd->sk_rx_ring, 0, 701 sizeof(struct sk_rx_desc) * SK_RX_RING_CNT); 702 703 for (i = 0; i < SK_RX_RING_CNT; i++) { 704 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i]; 705 if (i == (SK_RX_RING_CNT - 1)) { 706 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0]; 707 rd->sk_rx_ring[i].sk_next = 708 htole32(SK_RX_RING_ADDR(sc_if, 0)); 709 } else { 710 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1]; 711 rd->sk_rx_ring[i].sk_next = 712 htole32(SK_RX_RING_ADDR(sc_if,i+1)); 713 } 714 } 715 716 for (i = 0; i < SK_RX_RING_CNT; i++) { 717 if (sk_newbuf(sc_if, i, NULL, 718 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) { 719 aprint_error_dev(sc_if->sk_dev, 720 "failed alloc of %dth mbuf\n", i); 721 return ENOBUFS; 722 } 723 } 724 sc_if->sk_cdata.sk_rx_prod = 0; 725 sc_if->sk_cdata.sk_rx_cons = 0; 726 727 return 0; 728 } 729 730 int 731 sk_init_tx_ring(struct sk_if_softc *sc_if) 732 { 733 struct sk_chain_data *cd = &sc_if->sk_cdata; 734 struct sk_ring_data *rd = sc_if->sk_rdata; 735 int i; 736 737 memset(sc_if->sk_rdata->sk_tx_ring, 0, 738 sizeof(struct sk_tx_desc) * SK_TX_RING_CNT); 739 740 for (i = 0; i < SK_TX_RING_CNT; i++) { 741 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i]; 742 if (i == (SK_TX_RING_CNT - 1)) { 743 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0]; 744 rd->sk_tx_ring[i].sk_next = 745 htole32(SK_TX_RING_ADDR(sc_if, 0)); 746 } else { 747 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1]; 748 rd->sk_tx_ring[i].sk_next = 749 htole32(SK_TX_RING_ADDR(sc_if,i+1)); 750 } 751 } 752 753 sc_if->sk_cdata.sk_tx_prod = 0; 754 sc_if->sk_cdata.sk_tx_cons = 0; 755 sc_if->sk_cdata.sk_tx_cnt = 0; 756 757 SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT, 758 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 759 760 return 0; 761 } 762 763 int 764 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m, 765 bus_dmamap_t dmamap) 766 { 767 struct mbuf *m_new = NULL; 768 struct sk_chain *c; 769 struct sk_rx_desc *r; 770 771 if (m == NULL) { 772 void *buf = NULL; 773 774 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 775 if (m_new == NULL) { 776 aprint_error_dev(sc_if->sk_dev, 777 "no memory for rx list -- packet dropped!\n"); 778 return ENOBUFS; 779 } 780 781 /* Allocate the jumbo buffer */ 782 buf = sk_jalloc(sc_if); 783 if (buf == NULL) { 784 m_freem(m_new); 785 DPRINTFN(1, ("%s jumbo allocation failed -- packet " 786 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname)); 787 return ENOBUFS; 788 } 789 790 /* Attach the buffer to the mbuf */ 791 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN; 792 MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if); 793 794 } else { 795 /* 796 * We're re-using a previously allocated mbuf; 797 * be sure to re-init pointers and lengths to 798 * default values. 799 */ 800 m_new = m; 801 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN; 802 m_new->m_data = m_new->m_ext.ext_buf; 803 } 804 m_adj(m_new, ETHER_ALIGN); 805 806 c = &sc_if->sk_cdata.sk_rx_chain[i]; 807 r = c->sk_desc; 808 c->sk_mbuf = m_new; 809 r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr + 810 (((vaddr_t)m_new->m_data 811 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf))); 812 r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT); 813 814 SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); 815 816 return 0; 817 } 818 819 /* 820 * Memory management for jumbo frames. 821 */ 822 823 int 824 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if) 825 { 826 struct sk_softc *sc = sc_if->sk_softc; 827 char *ptr, *kva; 828 bus_dma_segment_t seg; 829 int i, rseg, state, error; 830 struct sk_jpool_entry *entry; 831 832 state = error = 0; 833 834 /* Grab a big chunk o' storage. */ 835 if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0, 836 &seg, 1, &rseg, BUS_DMA_NOWAIT)) { 837 aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n"); 838 return ENOBUFS; 839 } 840 841 state = 1; 842 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva, 843 BUS_DMA_NOWAIT)) { 844 aprint_error_dev(sc->sk_dev, 845 "can't map dma buffers (%d bytes)\n", 846 SK_JMEM); 847 error = ENOBUFS; 848 goto out; 849 } 850 851 state = 2; 852 if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0, 853 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) { 854 aprint_error_dev(sc->sk_dev, "can't create dma map\n"); 855 error = ENOBUFS; 856 goto out; 857 } 858 859 state = 3; 860 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map, 861 kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) { 862 aprint_error_dev(sc->sk_dev, "can't load dma map\n"); 863 error = ENOBUFS; 864 goto out; 865 } 866 867 state = 4; 868 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva; 869 DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf)); 870 871 LIST_INIT(&sc_if->sk_jfree_listhead); 872 LIST_INIT(&sc_if->sk_jinuse_listhead); 873 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET); 874 875 /* 876 * Now divide it up into 9K pieces and save the addresses 877 * in an array. 878 */ 879 ptr = sc_if->sk_cdata.sk_jumbo_buf; 880 for (i = 0; i < SK_JSLOTS; i++) { 881 sc_if->sk_cdata.sk_jslots[i] = ptr; 882 ptr += SK_JLEN; 883 entry = malloc(sizeof(struct sk_jpool_entry), 884 M_DEVBUF, M_NOWAIT); 885 if (entry == NULL) { 886 aprint_error_dev(sc->sk_dev, 887 "no memory for jumbo buffer queue!\n"); 888 error = ENOBUFS; 889 goto out; 890 } 891 entry->slot = i; 892 if (i) 893 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, 894 entry, jpool_entries); 895 else 896 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, 897 entry, jpool_entries); 898 } 899 out: 900 if (error != 0) { 901 switch (state) { 902 case 4: 903 bus_dmamap_unload(sc->sc_dmatag, 904 sc_if->sk_cdata.sk_rx_jumbo_map); 905 case 3: 906 bus_dmamap_destroy(sc->sc_dmatag, 907 sc_if->sk_cdata.sk_rx_jumbo_map); 908 case 2: 909 bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM); 910 case 1: 911 bus_dmamem_free(sc->sc_dmatag, &seg, rseg); 912 break; 913 default: 914 break; 915 } 916 } 917 918 return error; 919 } 920 921 /* 922 * Allocate a jumbo buffer. 923 */ 924 void * 925 sk_jalloc(struct sk_if_softc *sc_if) 926 { 927 struct sk_jpool_entry *entry; 928 929 mutex_enter(&sc_if->sk_jpool_mtx); 930 entry = LIST_FIRST(&sc_if->sk_jfree_listhead); 931 932 if (entry == NULL) { 933 mutex_exit(&sc_if->sk_jpool_mtx); 934 return NULL; 935 } 936 937 LIST_REMOVE(entry, jpool_entries); 938 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries); 939 mutex_exit(&sc_if->sk_jpool_mtx); 940 return sc_if->sk_cdata.sk_jslots[entry->slot]; 941 } 942 943 /* 944 * Release a jumbo buffer. 945 */ 946 void 947 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg) 948 { 949 struct sk_jpool_entry *entry; 950 struct sk_if_softc *sc; 951 int i; 952 953 /* Extract the softc struct pointer. */ 954 sc = (struct sk_if_softc *)arg; 955 956 if (sc == NULL) 957 panic("sk_jfree: can't find softc pointer!"); 958 959 /* calculate the slot this buffer belongs to */ 960 961 i = ((vaddr_t)buf 962 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN; 963 964 if ((i < 0) || (i >= SK_JSLOTS)) 965 panic("sk_jfree: asked to free buffer that we don't manage!"); 966 967 mutex_enter(&sc->sk_jpool_mtx); 968 entry = LIST_FIRST(&sc->sk_jinuse_listhead); 969 if (entry == NULL) 970 panic("sk_jfree: buffer not in use!"); 971 entry->slot = i; 972 LIST_REMOVE(entry, jpool_entries); 973 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries); 974 mutex_exit(&sc->sk_jpool_mtx); 975 976 if (__predict_true(m != NULL)) 977 pool_cache_put(mb_cache, m); 978 } 979 980 /* 981 * Set media options. 982 */ 983 int 984 sk_ifmedia_upd(struct ifnet *ifp) 985 { 986 struct sk_if_softc *sc_if = ifp->if_softc; 987 int rc; 988 989 (void) sk_init(ifp); 990 if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO) 991 return 0; 992 return rc; 993 } 994 995 int 996 sk_ioctl(struct ifnet *ifp, u_long command, void *data) 997 { 998 struct sk_if_softc *sc_if = ifp->if_softc; 999 struct sk_softc *sc = sc_if->sk_softc; 1000 int s, error = 0; 1001 1002 /* DPRINTFN(2, ("sk_ioctl\n")); */ 1003 1004 s = splnet(); 1005 1006 switch (command) { 1007 1008 case SIOCSIFFLAGS: 1009 DPRINTFN(2, ("sk_ioctl IFFLAGS\n")); 1010 if ((error = ifioctl_common(ifp, command, data)) != 0) 1011 break; 1012 if (ifp->if_flags & IFF_UP) { 1013 if (ifp->if_flags & IFF_RUNNING && 1014 ifp->if_flags & IFF_PROMISC && 1015 !(sc_if->sk_if_flags & IFF_PROMISC)) { 1016 switch (sc->sk_type) { 1017 case SK_GENESIS: 1018 SK_XM_SETBIT_4(sc_if, XM_MODE, 1019 XM_MODE_RX_PROMISC); 1020 break; 1021 case SK_YUKON: 1022 case SK_YUKON_LITE: 1023 case SK_YUKON_LP: 1024 SK_YU_CLRBIT_2(sc_if, YUKON_RCR, 1025 YU_RCR_UFLEN | YU_RCR_MUFLEN); 1026 break; 1027 } 1028 sk_setmulti(sc_if); 1029 } else if (ifp->if_flags & IFF_RUNNING && 1030 !(ifp->if_flags & IFF_PROMISC) && 1031 sc_if->sk_if_flags & IFF_PROMISC) { 1032 switch (sc->sk_type) { 1033 case SK_GENESIS: 1034 SK_XM_CLRBIT_4(sc_if, XM_MODE, 1035 XM_MODE_RX_PROMISC); 1036 break; 1037 case SK_YUKON: 1038 case SK_YUKON_LITE: 1039 case SK_YUKON_LP: 1040 SK_YU_SETBIT_2(sc_if, YUKON_RCR, 1041 YU_RCR_UFLEN | YU_RCR_MUFLEN); 1042 break; 1043 } 1044 1045 sk_setmulti(sc_if); 1046 } else 1047 (void) sk_init(ifp); 1048 } else { 1049 if (ifp->if_flags & IFF_RUNNING) 1050 sk_stop(ifp,0); 1051 } 1052 sc_if->sk_if_flags = ifp->if_flags; 1053 error = 0; 1054 break; 1055 1056 default: 1057 DPRINTFN(2, ("sk_ioctl ETHER\n")); 1058 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET) 1059 break; 1060 1061 error = 0; 1062 1063 if (command != SIOCADDMULTI && command != SIOCDELMULTI) 1064 ; 1065 else if (ifp->if_flags & IFF_RUNNING) { 1066 sk_setmulti(sc_if); 1067 DPRINTFN(2, ("sk_ioctl setmulti called\n")); 1068 } 1069 break; 1070 } 1071 1072 splx(s); 1073 return error; 1074 } 1075 1076 void 1077 sk_update_int_mod(struct sk_softc *sc) 1078 { 1079 u_int32_t imtimer_ticks; 1080 1081 /* 1082 * Configure interrupt moderation. The moderation timer 1083 * defers interrupts specified in the interrupt moderation 1084 * timer mask based on the timeout specified in the interrupt 1085 * moderation timer init register. Each bit in the timer 1086 * register represents one tick, so to specify a timeout in 1087 * microseconds, we have to multiply by the correct number of 1088 * ticks-per-microsecond. 1089 */ 1090 switch (sc->sk_type) { 1091 case SK_GENESIS: 1092 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS; 1093 break; 1094 case SK_YUKON_EC: 1095 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC; 1096 break; 1097 default: 1098 imtimer_ticks = SK_IMTIMER_TICKS_YUKON; 1099 } 1100 aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n", 1101 sc->sk_int_mod); 1102 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod)); 1103 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF| 1104 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF); 1105 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START); 1106 sc->sk_int_mod_pending = 0; 1107 } 1108 1109 /* 1110 * Lookup: Check the PCI vendor and device, and return a pointer to 1111 * The structure if the IDs match against our list. 1112 */ 1113 1114 static const struct sk_product * 1115 sk_lookup(const struct pci_attach_args *pa) 1116 { 1117 const struct sk_product *psk; 1118 1119 for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) { 1120 if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor && 1121 PCI_PRODUCT(pa->pa_id) == psk->sk_product) 1122 return psk; 1123 } 1124 return NULL; 1125 } 1126 1127 /* 1128 * Probe for a SysKonnect GEnesis chip. 1129 */ 1130 1131 int 1132 skc_probe(device_t parent, cfdata_t match, void *aux) 1133 { 1134 struct pci_attach_args *pa = (struct pci_attach_args *)aux; 1135 const struct sk_product *psk; 1136 pcireg_t subid; 1137 1138 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG); 1139 1140 /* special-case Linksys EG1032, since rev 3 uses re(4) */ 1141 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS && 1142 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 && 1143 subid == SK_LINKSYS_EG1032_SUBID) 1144 return 1; 1145 1146 if ((psk = sk_lookup(pa))) { 1147 return 1; 1148 } 1149 return 0; 1150 } 1151 1152 /* 1153 * Force the GEnesis into reset, then bring it out of reset. 1154 */ 1155 void sk_reset(struct sk_softc *sc) 1156 { 1157 DPRINTFN(2, ("sk_reset\n")); 1158 1159 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET); 1160 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET); 1161 if (SK_YUKON_FAMILY(sc->sk_type)) 1162 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET); 1163 1164 DELAY(1000); 1165 CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET); 1166 DELAY(2); 1167 CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET); 1168 if (SK_YUKON_FAMILY(sc->sk_type)) 1169 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR); 1170 1171 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR))); 1172 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n", 1173 CSR_READ_2(sc, SK_LINK_CTRL))); 1174 1175 if (sc->sk_type == SK_GENESIS) { 1176 /* Configure packet arbiter */ 1177 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET); 1178 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT); 1179 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT); 1180 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT); 1181 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT); 1182 } 1183 1184 /* Enable RAM interface */ 1185 sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET); 1186 1187 sk_update_int_mod(sc); 1188 } 1189 1190 int 1191 sk_probe(device_t parent, cfdata_t match, void *aux) 1192 { 1193 struct skc_attach_args *sa = aux; 1194 1195 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B) 1196 return 0; 1197 1198 return 1; 1199 } 1200 1201 /* 1202 * Each XMAC chip is attached as a separate logical IP interface. 1203 * Single port cards will have only one logical interface of course. 1204 */ 1205 void 1206 sk_attach(device_t parent, device_t self, void *aux) 1207 { 1208 struct sk_if_softc *sc_if = device_private(self); 1209 struct sk_softc *sc = device_private(parent); 1210 struct skc_attach_args *sa = aux; 1211 struct sk_txmap_entry *entry; 1212 struct ifnet *ifp; 1213 bus_dma_segment_t seg; 1214 bus_dmamap_t dmamap; 1215 void *kva; 1216 int i, rseg; 1217 int mii_flags = 0; 1218 1219 aprint_naive("\n"); 1220 1221 sc_if->sk_dev = self; 1222 sc_if->sk_port = sa->skc_port; 1223 sc_if->sk_softc = sc; 1224 sc->sk_if[sa->skc_port] = sc_if; 1225 1226 if (sa->skc_port == SK_PORT_A) 1227 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0; 1228 if (sa->skc_port == SK_PORT_B) 1229 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1; 1230 1231 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port)); 1232 1233 /* 1234 * Get station address for this interface. Note that 1235 * dual port cards actually come with three station 1236 * addresses: one for each port, plus an extra. The 1237 * extra one is used by the SysKonnect driver software 1238 * as a 'virtual' station address for when both ports 1239 * are operating in failover mode. Currently we don't 1240 * use this extra address. 1241 */ 1242 for (i = 0; i < ETHER_ADDR_LEN; i++) 1243 sc_if->sk_enaddr[i] = 1244 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i); 1245 1246 1247 aprint_normal(": Ethernet address %s\n", 1248 ether_sprintf(sc_if->sk_enaddr)); 1249 1250 /* 1251 * Set up RAM buffer addresses. The NIC will have a certain 1252 * amount of SRAM on it, somewhere between 512K and 2MB. We 1253 * need to divide this up a) between the transmitter and 1254 * receiver and b) between the two XMACs, if this is a 1255 * dual port NIC. Our algorithm is to divide up the memory 1256 * evenly so that everyone gets a fair share. 1257 */ 1258 if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) { 1259 u_int32_t chunk, val; 1260 1261 chunk = sc->sk_ramsize / 2; 1262 val = sc->sk_rboff / sizeof(u_int64_t); 1263 sc_if->sk_rx_ramstart = val; 1264 val += (chunk / sizeof(u_int64_t)); 1265 sc_if->sk_rx_ramend = val - 1; 1266 sc_if->sk_tx_ramstart = val; 1267 val += (chunk / sizeof(u_int64_t)); 1268 sc_if->sk_tx_ramend = val - 1; 1269 } else { 1270 u_int32_t chunk, val; 1271 1272 chunk = sc->sk_ramsize / 4; 1273 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) / 1274 sizeof(u_int64_t); 1275 sc_if->sk_rx_ramstart = val; 1276 val += (chunk / sizeof(u_int64_t)); 1277 sc_if->sk_rx_ramend = val - 1; 1278 sc_if->sk_tx_ramstart = val; 1279 val += (chunk / sizeof(u_int64_t)); 1280 sc_if->sk_tx_ramend = val - 1; 1281 } 1282 1283 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n" 1284 " tx_ramstart=%#x tx_ramend=%#x\n", 1285 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend, 1286 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend)); 1287 1288 /* Read and save PHY type and set PHY address */ 1289 sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF; 1290 switch (sc_if->sk_phytype) { 1291 case SK_PHYTYPE_XMAC: 1292 sc_if->sk_phyaddr = SK_PHYADDR_XMAC; 1293 break; 1294 case SK_PHYTYPE_BCOM: 1295 sc_if->sk_phyaddr = SK_PHYADDR_BCOM; 1296 break; 1297 case SK_PHYTYPE_MARV_COPPER: 1298 sc_if->sk_phyaddr = SK_PHYADDR_MARV; 1299 break; 1300 default: 1301 aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n", 1302 sc_if->sk_phytype); 1303 return; 1304 } 1305 1306 /* Allocate the descriptor queues. */ 1307 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data), 1308 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) { 1309 aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n"); 1310 goto fail; 1311 } 1312 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, 1313 sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) { 1314 aprint_error_dev(sc_if->sk_dev, 1315 "can't map dma buffers (%lu bytes)\n", 1316 (u_long) sizeof(struct sk_ring_data)); 1317 bus_dmamem_free(sc->sc_dmatag, &seg, rseg); 1318 goto fail; 1319 } 1320 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1, 1321 sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT, 1322 &sc_if->sk_ring_map)) { 1323 aprint_error_dev(sc_if->sk_dev, "can't create dma map\n"); 1324 bus_dmamem_unmap(sc->sc_dmatag, kva, 1325 sizeof(struct sk_ring_data)); 1326 bus_dmamem_free(sc->sc_dmatag, &seg, rseg); 1327 goto fail; 1328 } 1329 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva, 1330 sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) { 1331 aprint_error_dev(sc_if->sk_dev, "can't load dma map\n"); 1332 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map); 1333 bus_dmamem_unmap(sc->sc_dmatag, kva, 1334 sizeof(struct sk_ring_data)); 1335 bus_dmamem_free(sc->sc_dmatag, &seg, rseg); 1336 goto fail; 1337 } 1338 1339 for (i = 0; i < SK_RX_RING_CNT; i++) 1340 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL; 1341 1342 SIMPLEQ_INIT(&sc_if->sk_txmap_head); 1343 for (i = 0; i < SK_TX_RING_CNT; i++) { 1344 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL; 1345 1346 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG, 1347 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) { 1348 aprint_error_dev(sc_if->sk_dev, 1349 "Can't create TX dmamap\n"); 1350 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map); 1351 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map); 1352 bus_dmamem_unmap(sc->sc_dmatag, kva, 1353 sizeof(struct sk_ring_data)); 1354 bus_dmamem_free(sc->sc_dmatag, &seg, rseg); 1355 goto fail; 1356 } 1357 1358 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT); 1359 if (!entry) { 1360 aprint_error_dev(sc_if->sk_dev, 1361 "Can't alloc txmap entry\n"); 1362 bus_dmamap_destroy(sc->sc_dmatag, dmamap); 1363 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map); 1364 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map); 1365 bus_dmamem_unmap(sc->sc_dmatag, kva, 1366 sizeof(struct sk_ring_data)); 1367 bus_dmamem_free(sc->sc_dmatag, &seg, rseg); 1368 goto fail; 1369 } 1370 entry->dmamap = dmamap; 1371 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link); 1372 } 1373 1374 sc_if->sk_rdata = (struct sk_ring_data *)kva; 1375 memset(sc_if->sk_rdata, 0, sizeof(struct sk_ring_data)); 1376 1377 ifp = &sc_if->sk_ethercom.ec_if; 1378 /* Try to allocate memory for jumbo buffers. */ 1379 if (sk_alloc_jumbo_mem(sc_if)) { 1380 aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname); 1381 goto fail; 1382 } 1383 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU 1384 | ETHERCAP_JUMBO_MTU; 1385 1386 ifp->if_softc = sc_if; 1387 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1388 ifp->if_ioctl = sk_ioctl; 1389 ifp->if_start = sk_start; 1390 ifp->if_stop = sk_stop; 1391 ifp->if_init = sk_init; 1392 ifp->if_watchdog = sk_watchdog; 1393 ifp->if_capabilities = 0; 1394 IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1); 1395 IFQ_SET_READY(&ifp->if_snd); 1396 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ); 1397 1398 /* 1399 * Do miibus setup. 1400 */ 1401 switch (sc->sk_type) { 1402 case SK_GENESIS: 1403 sk_init_xmac(sc_if); 1404 break; 1405 case SK_YUKON: 1406 case SK_YUKON_LITE: 1407 case SK_YUKON_LP: 1408 sk_init_yukon(sc_if); 1409 break; 1410 default: 1411 aprint_error_dev(sc->sk_dev, "unknown device type %d\n", 1412 sc->sk_type); 1413 goto fail; 1414 } 1415 1416 DPRINTFN(2, ("sk_attach: 1\n")); 1417 1418 sc_if->sk_mii.mii_ifp = ifp; 1419 switch (sc->sk_type) { 1420 case SK_GENESIS: 1421 sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg; 1422 sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg; 1423 sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg; 1424 break; 1425 case SK_YUKON: 1426 case SK_YUKON_LITE: 1427 case SK_YUKON_LP: 1428 sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg; 1429 sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg; 1430 sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg; 1431 mii_flags = MIIF_DOPAUSE; 1432 break; 1433 } 1434 1435 sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii; 1436 ifmedia_init(&sc_if->sk_mii.mii_media, 0, 1437 sk_ifmedia_upd, ether_mediastatus); 1438 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY, 1439 MII_OFFSET_ANY, mii_flags); 1440 if (LIST_EMPTY(&sc_if->sk_mii.mii_phys)) { 1441 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n"); 1442 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL, 1443 0, NULL); 1444 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL); 1445 } else 1446 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO); 1447 1448 callout_init(&sc_if->sk_tick_ch, 0); 1449 callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if); 1450 1451 DPRINTFN(2, ("sk_attach: 1\n")); 1452 1453 /* 1454 * Call MI attach routines. 1455 */ 1456 if_attach(ifp); 1457 1458 ether_ifattach(ifp, sc_if->sk_enaddr); 1459 1460 #if NRND > 0 1461 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev), 1462 RND_TYPE_NET, 0); 1463 #endif 1464 1465 if (pmf_device_register(self, NULL, sk_resume)) 1466 pmf_class_network_register(self, ifp); 1467 else 1468 aprint_error_dev(self, "couldn't establish power handler\n"); 1469 1470 DPRINTFN(2, ("sk_attach: end\n")); 1471 1472 return; 1473 1474 fail: 1475 sc->sk_if[sa->skc_port] = NULL; 1476 } 1477 1478 int 1479 skcprint(void *aux, const char *pnp) 1480 { 1481 struct skc_attach_args *sa = aux; 1482 1483 if (pnp) 1484 aprint_normal("sk port %c at %s", 1485 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp); 1486 else 1487 aprint_normal(" port %c", 1488 (sa->skc_port == SK_PORT_A) ? 'A' : 'B'); 1489 return UNCONF; 1490 } 1491 1492 /* 1493 * Attach the interface. Allocate softc structures, do ifmedia 1494 * setup and ethernet/BPF attach. 1495 */ 1496 void 1497 skc_attach(device_t parent, device_t self, void *aux) 1498 { 1499 struct sk_softc *sc = device_private(self); 1500 struct pci_attach_args *pa = aux; 1501 struct skc_attach_args skca; 1502 pci_chipset_tag_t pc = pa->pa_pc; 1503 #ifndef SK_USEIOSPACE 1504 pcireg_t memtype; 1505 #endif 1506 pci_intr_handle_t ih; 1507 const char *intrstr = NULL; 1508 bus_addr_t iobase; 1509 bus_size_t iosize; 1510 int rc, sk_nodenum; 1511 u_int32_t command; 1512 const char *revstr; 1513 const struct sysctlnode *node; 1514 1515 sc->sk_dev = self; 1516 aprint_naive("\n"); 1517 1518 DPRINTFN(2, ("begin skc_attach\n")); 1519 1520 /* 1521 * Handle power management nonsense. 1522 */ 1523 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF; 1524 1525 if (command == 0x01) { 1526 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL); 1527 if (command & SK_PSTATE_MASK) { 1528 u_int32_t xiobase, membase, irq; 1529 1530 /* Save important PCI config data. */ 1531 xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO); 1532 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM); 1533 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE); 1534 1535 /* Reset the power state. */ 1536 aprint_normal_dev(sc->sk_dev, 1537 "chip is in D%d power mode -- setting to D0\n", 1538 command & SK_PSTATE_MASK); 1539 command &= 0xFFFFFFFC; 1540 pci_conf_write(pc, pa->pa_tag, 1541 SK_PCI_PWRMGMTCTRL, command); 1542 1543 /* Restore PCI config data. */ 1544 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase); 1545 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase); 1546 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq); 1547 } 1548 } 1549 1550 /* 1551 * Map control/status registers. 1552 */ 1553 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 1554 command |= PCI_COMMAND_IO_ENABLE | 1555 PCI_COMMAND_MEM_ENABLE | 1556 PCI_COMMAND_MASTER_ENABLE; 1557 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command); 1558 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 1559 1560 #ifdef SK_USEIOSPACE 1561 if (!(command & PCI_COMMAND_IO_ENABLE)) { 1562 aprint_error(": failed to enable I/O ports!\n"); 1563 return; 1564 } 1565 /* 1566 * Map control/status registers. 1567 */ 1568 if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0, 1569 &sc->sk_btag, &sc->sk_bhandle, 1570 &iobase, &iosize)) { 1571 aprint_error(": can't find i/o space\n"); 1572 return; 1573 } 1574 #else 1575 if (!(command & PCI_COMMAND_MEM_ENABLE)) { 1576 aprint_error(": failed to enable memory mapping!\n"); 1577 return; 1578 } 1579 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM); 1580 switch (memtype) { 1581 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT: 1582 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT: 1583 if (pci_mapreg_map(pa, SK_PCI_LOMEM, 1584 memtype, 0, &sc->sk_btag, &sc->sk_bhandle, 1585 &iobase, &iosize) == 0) 1586 break; 1587 default: 1588 aprint_error_dev(sc->sk_dev, "can't find mem space\n"); 1589 return; 1590 } 1591 1592 DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, 1593 (u_long)iosize)); 1594 #endif 1595 sc->sc_dmatag = pa->pa_dmat; 1596 1597 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER); 1598 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4); 1599 1600 /* bail out here if chip is not recognized */ 1601 if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) { 1602 aprint_error_dev(sc->sk_dev, "unknown chip type\n"); 1603 goto fail; 1604 } 1605 if (SK_IS_YUKON2(sc)) { 1606 aprint_error_dev(sc->sk_dev, 1607 "Does not support Yukon2--try msk(4).\n"); 1608 goto fail; 1609 } 1610 DPRINTFN(2, ("skc_attach: allocate interrupt\n")); 1611 1612 /* Allocate interrupt */ 1613 if (pci_intr_map(pa, &ih)) { 1614 aprint_error(": couldn't map interrupt\n"); 1615 goto fail; 1616 } 1617 1618 intrstr = pci_intr_string(pc, ih); 1619 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc); 1620 if (sc->sk_intrhand == NULL) { 1621 aprint_error(": couldn't establish interrupt"); 1622 if (intrstr != NULL) 1623 aprint_error(" at %s", intrstr); 1624 aprint_error("\n"); 1625 goto fail; 1626 } 1627 aprint_normal(": %s\n", intrstr); 1628 1629 /* Reset the adapter. */ 1630 sk_reset(sc); 1631 1632 /* Read and save vital product data from EEPROM. */ 1633 sk_vpd_read(sc); 1634 1635 if (sc->sk_type == SK_GENESIS) { 1636 u_int8_t val = sk_win_read_1(sc, SK_EPROM0); 1637 /* Read and save RAM size and RAMbuffer offset */ 1638 switch (val) { 1639 case SK_RAMSIZE_512K_64: 1640 sc->sk_ramsize = 0x80000; 1641 sc->sk_rboff = SK_RBOFF_0; 1642 break; 1643 case SK_RAMSIZE_1024K_64: 1644 sc->sk_ramsize = 0x100000; 1645 sc->sk_rboff = SK_RBOFF_80000; 1646 break; 1647 case SK_RAMSIZE_1024K_128: 1648 sc->sk_ramsize = 0x100000; 1649 sc->sk_rboff = SK_RBOFF_0; 1650 break; 1651 case SK_RAMSIZE_2048K_128: 1652 sc->sk_ramsize = 0x200000; 1653 sc->sk_rboff = SK_RBOFF_0; 1654 break; 1655 default: 1656 aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n", 1657 val); 1658 goto fail_1; 1659 break; 1660 } 1661 1662 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n", 1663 sc->sk_ramsize, sc->sk_ramsize / 1024, 1664 sc->sk_rboff)); 1665 } else { 1666 u_int8_t val = sk_win_read_1(sc, SK_EPROM0); 1667 sc->sk_ramsize = ( val == 0 ) ? 0x20000 : (( val * 4 )*1024); 1668 sc->sk_rboff = SK_RBOFF_0; 1669 1670 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n", 1671 sc->sk_ramsize / 1024, sc->sk_ramsize, 1672 sc->sk_rboff)); 1673 } 1674 1675 /* Read and save physical media type */ 1676 switch (sk_win_read_1(sc, SK_PMDTYPE)) { 1677 case SK_PMD_1000BASESX: 1678 sc->sk_pmd = IFM_1000_SX; 1679 break; 1680 case SK_PMD_1000BASELX: 1681 sc->sk_pmd = IFM_1000_LX; 1682 break; 1683 case SK_PMD_1000BASECX: 1684 sc->sk_pmd = IFM_1000_CX; 1685 break; 1686 case SK_PMD_1000BASETX: 1687 case SK_PMD_1000BASETX_ALT: 1688 sc->sk_pmd = IFM_1000_T; 1689 break; 1690 default: 1691 aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n", 1692 sk_win_read_1(sc, SK_PMDTYPE)); 1693 goto fail_1; 1694 } 1695 1696 /* determine whether to name it with vpd or just make it up */ 1697 /* Marvell Yukon VPD's can freqently be bogus */ 1698 1699 switch (pa->pa_id) { 1700 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH, 1701 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE): 1702 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2: 1703 case PCI_PRODUCT_3COM_3C940: 1704 case PCI_PRODUCT_DLINK_DGE530T: 1705 case PCI_PRODUCT_DLINK_DGE560T: 1706 case PCI_PRODUCT_DLINK_DGE560T_2: 1707 case PCI_PRODUCT_LINKSYS_EG1032: 1708 case PCI_PRODUCT_LINKSYS_EG1064: 1709 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH, 1710 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2): 1711 case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940): 1712 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T): 1713 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T): 1714 case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2): 1715 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032): 1716 case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064): 1717 sc->sk_name = sc->sk_vpd_prodname; 1718 break; 1719 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET): 1720 /* whoops yukon vpd prodname bears no resemblance to reality */ 1721 switch (sc->sk_type) { 1722 case SK_GENESIS: 1723 sc->sk_name = sc->sk_vpd_prodname; 1724 break; 1725 case SK_YUKON: 1726 sc->sk_name = "Marvell Yukon Gigabit Ethernet"; 1727 break; 1728 case SK_YUKON_LITE: 1729 sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet"; 1730 break; 1731 case SK_YUKON_LP: 1732 sc->sk_name = "Marvell Yukon LP Gigabit Ethernet"; 1733 break; 1734 default: 1735 sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet"; 1736 } 1737 1738 /* Yukon Lite Rev A0 needs special test, from sk98lin driver */ 1739 1740 if ( sc->sk_type == SK_YUKON ) { 1741 uint32_t flashaddr; 1742 uint8_t testbyte; 1743 1744 flashaddr = sk_win_read_4(sc,SK_EP_ADDR); 1745 1746 /* test Flash-Address Register */ 1747 sk_win_write_1(sc,SK_EP_ADDR+3, 0xff); 1748 testbyte = sk_win_read_1(sc, SK_EP_ADDR+3); 1749 1750 if (testbyte != 0) { 1751 /* this is yukon lite Rev. A0 */ 1752 sc->sk_type = SK_YUKON_LITE; 1753 sc->sk_rev = SK_YUKON_LITE_REV_A0; 1754 /* restore Flash-Address Register */ 1755 sk_win_write_4(sc,SK_EP_ADDR,flashaddr); 1756 } 1757 } 1758 break; 1759 case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN): 1760 sc->sk_name = sc->sk_vpd_prodname; 1761 break; 1762 default: 1763 sc->sk_name = "Unknown Marvell"; 1764 } 1765 1766 1767 if ( sc->sk_type == SK_YUKON_LITE ) { 1768 switch (sc->sk_rev) { 1769 case SK_YUKON_LITE_REV_A0: 1770 revstr = "A0"; 1771 break; 1772 case SK_YUKON_LITE_REV_A1: 1773 revstr = "A1"; 1774 break; 1775 case SK_YUKON_LITE_REV_A3: 1776 revstr = "A3"; 1777 break; 1778 default: 1779 revstr = ""; 1780 } 1781 } else { 1782 revstr = ""; 1783 } 1784 1785 /* Announce the product name. */ 1786 aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n", 1787 sc->sk_name, revstr, sc->sk_rev); 1788 1789 skca.skc_port = SK_PORT_A; 1790 (void)config_found(sc->sk_dev, &skca, skcprint); 1791 1792 if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) { 1793 skca.skc_port = SK_PORT_B; 1794 (void)config_found(sc->sk_dev, &skca, skcprint); 1795 } 1796 1797 /* Turn on the 'driver is loaded' LED. */ 1798 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON); 1799 1800 /* skc sysctl setup */ 1801 1802 sc->sk_int_mod = SK_IM_DEFAULT; 1803 sc->sk_int_mod_pending = 0; 1804 1805 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node, 1806 0, CTLTYPE_NODE, device_xname(sc->sk_dev), 1807 SYSCTL_DESCR("skc per-controller controls"), 1808 NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE, 1809 CTL_EOL)) != 0) { 1810 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n"); 1811 goto fail_1; 1812 } 1813 1814 sk_nodenum = node->sysctl_num; 1815 1816 /* interrupt moderation time in usecs */ 1817 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node, 1818 CTLFLAG_READWRITE, 1819 CTLTYPE_INT, "int_mod", 1820 SYSCTL_DESCR("sk interrupt moderation timer"), 1821 sk_sysctl_handler, 0, sc, 1822 0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE, 1823 CTL_EOL)) != 0) { 1824 aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n"); 1825 goto fail_1; 1826 } 1827 1828 if (!pmf_device_register(self, skc_suspend, skc_resume)) 1829 aprint_error_dev(self, "couldn't establish power handler\n"); 1830 1831 return; 1832 1833 fail_1: 1834 pci_intr_disestablish(pc, sc->sk_intrhand); 1835 fail: 1836 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize); 1837 } 1838 1839 int 1840 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx) 1841 { 1842 struct sk_softc *sc = sc_if->sk_softc; 1843 struct sk_tx_desc *f = NULL; 1844 u_int32_t frag, cur, cnt = 0, sk_ctl; 1845 int i; 1846 struct sk_txmap_entry *entry; 1847 bus_dmamap_t txmap; 1848 1849 DPRINTFN(3, ("sk_encap\n")); 1850 1851 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head); 1852 if (entry == NULL) { 1853 DPRINTFN(3, ("sk_encap: no txmap available\n")); 1854 return ENOBUFS; 1855 } 1856 txmap = entry->dmamap; 1857 1858 cur = frag = *txidx; 1859 1860 #ifdef SK_DEBUG 1861 if (skdebug >= 3) 1862 sk_dump_mbuf(m_head); 1863 #endif 1864 1865 /* 1866 * Start packing the mbufs in this chain into 1867 * the fragment pointers. Stop when we run out 1868 * of fragments or hit the end of the mbuf chain. 1869 */ 1870 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head, 1871 BUS_DMA_NOWAIT)) { 1872 DPRINTFN(1, ("sk_encap: dmamap failed\n")); 1873 return ENOBUFS; 1874 } 1875 1876 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs)); 1877 1878 /* Sync the DMA map. */ 1879 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize, 1880 BUS_DMASYNC_PREWRITE); 1881 1882 for (i = 0; i < txmap->dm_nsegs; i++) { 1883 if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) { 1884 DPRINTFN(1, ("sk_encap: too few descriptors free\n")); 1885 return ENOBUFS; 1886 } 1887 f = &sc_if->sk_rdata->sk_tx_ring[frag]; 1888 f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr); 1889 sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT; 1890 if (cnt == 0) 1891 sk_ctl |= SK_TXCTL_FIRSTFRAG; 1892 else 1893 sk_ctl |= SK_TXCTL_OWN; 1894 f->sk_ctl = htole32(sk_ctl); 1895 cur = frag; 1896 SK_INC(frag, SK_TX_RING_CNT); 1897 cnt++; 1898 } 1899 1900 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head; 1901 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link); 1902 1903 sc_if->sk_cdata.sk_tx_map[cur] = entry; 1904 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= 1905 htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR); 1906 1907 /* Sync descriptors before handing to chip */ 1908 SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs, 1909 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1910 1911 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= 1912 htole32(SK_TXCTL_OWN); 1913 1914 /* Sync first descriptor to hand it off */ 1915 SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1916 1917 sc_if->sk_cdata.sk_tx_cnt += cnt; 1918 1919 #ifdef SK_DEBUG 1920 if (skdebug >= 3) { 1921 struct sk_tx_desc *desc; 1922 u_int32_t idx; 1923 for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) { 1924 desc = &sc_if->sk_rdata->sk_tx_ring[idx]; 1925 sk_dump_txdesc(desc, idx); 1926 } 1927 } 1928 #endif 1929 1930 *txidx = frag; 1931 1932 DPRINTFN(3, ("sk_encap: completed successfully\n")); 1933 1934 return 0; 1935 } 1936 1937 void 1938 sk_start(struct ifnet *ifp) 1939 { 1940 struct sk_if_softc *sc_if = ifp->if_softc; 1941 struct sk_softc *sc = sc_if->sk_softc; 1942 struct mbuf *m_head = NULL; 1943 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod; 1944 int pkts = 0; 1945 1946 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx, 1947 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf)); 1948 1949 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) { 1950 IFQ_POLL(&ifp->if_snd, m_head); 1951 if (m_head == NULL) 1952 break; 1953 1954 /* 1955 * Pack the data into the transmit ring. If we 1956 * don't have room, set the OACTIVE flag and wait 1957 * for the NIC to drain the ring. 1958 */ 1959 if (sk_encap(sc_if, m_head, &idx)) { 1960 ifp->if_flags |= IFF_OACTIVE; 1961 break; 1962 } 1963 1964 /* now we are committed to transmit the packet */ 1965 IFQ_DEQUEUE(&ifp->if_snd, m_head); 1966 pkts++; 1967 1968 /* 1969 * If there's a BPF listener, bounce a copy of this frame 1970 * to him. 1971 */ 1972 #if NBPFILTER > 0 1973 if (ifp->if_bpf) 1974 bpf_mtap(ifp->if_bpf, m_head); 1975 #endif 1976 } 1977 if (pkts == 0) 1978 return; 1979 1980 /* Transmit */ 1981 if (idx != sc_if->sk_cdata.sk_tx_prod) { 1982 sc_if->sk_cdata.sk_tx_prod = idx; 1983 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START); 1984 1985 /* Set a timeout in case the chip goes out to lunch. */ 1986 ifp->if_timer = 5; 1987 } 1988 } 1989 1990 1991 void 1992 sk_watchdog(struct ifnet *ifp) 1993 { 1994 struct sk_if_softc *sc_if = ifp->if_softc; 1995 1996 /* 1997 * Reclaim first as there is a possibility of losing Tx completion 1998 * interrupts. 1999 */ 2000 sk_txeof(sc_if); 2001 if (sc_if->sk_cdata.sk_tx_cnt != 0) { 2002 aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n"); 2003 2004 ifp->if_oerrors++; 2005 2006 sk_init(ifp); 2007 } 2008 } 2009 2010 void 2011 sk_shutdown(void *v) 2012 { 2013 struct sk_if_softc *sc_if = (struct sk_if_softc *)v; 2014 struct sk_softc *sc = sc_if->sk_softc; 2015 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if; 2016 2017 DPRINTFN(2, ("sk_shutdown\n")); 2018 sk_stop(ifp,1); 2019 2020 /* Turn off the 'driver is loaded' LED. */ 2021 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF); 2022 2023 /* 2024 * Reset the GEnesis controller. Doing this should also 2025 * assert the resets on the attached XMAC(s). 2026 */ 2027 sk_reset(sc); 2028 } 2029 2030 void 2031 sk_rxeof(struct sk_if_softc *sc_if) 2032 { 2033 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if; 2034 struct mbuf *m; 2035 struct sk_chain *cur_rx; 2036 struct sk_rx_desc *cur_desc; 2037 int i, cur, total_len = 0; 2038 u_int32_t rxstat, sk_ctl; 2039 bus_dmamap_t dmamap; 2040 2041 i = sc_if->sk_cdata.sk_rx_prod; 2042 2043 DPRINTFN(3, ("sk_rxeof %d\n", i)); 2044 2045 for (;;) { 2046 cur = i; 2047 2048 /* Sync the descriptor */ 2049 SK_CDRXSYNC(sc_if, cur, 2050 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 2051 2052 sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl); 2053 if (sk_ctl & SK_RXCTL_OWN) { 2054 /* Invalidate the descriptor -- it's not ready yet */ 2055 SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD); 2056 sc_if->sk_cdata.sk_rx_prod = i; 2057 break; 2058 } 2059 2060 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur]; 2061 cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur]; 2062 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map; 2063 2064 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0, 2065 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 2066 2067 rxstat = le32toh(cur_desc->sk_xmac_rxstat); 2068 m = cur_rx->sk_mbuf; 2069 cur_rx->sk_mbuf = NULL; 2070 total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl)); 2071 2072 sc_if->sk_cdata.sk_rx_map[cur] = 0; 2073 2074 SK_INC(i, SK_RX_RING_CNT); 2075 2076 if (rxstat & XM_RXSTAT_ERRFRAME) { 2077 ifp->if_ierrors++; 2078 sk_newbuf(sc_if, cur, m, dmamap); 2079 continue; 2080 } 2081 2082 /* 2083 * Try to allocate a new jumbo buffer. If that 2084 * fails, copy the packet to mbufs and put the 2085 * jumbo buffer back in the ring so it can be 2086 * re-used. If allocating mbufs fails, then we 2087 * have to drop the packet. 2088 */ 2089 if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) { 2090 struct mbuf *m0; 2091 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN, 2092 total_len + ETHER_ALIGN, 0, ifp, NULL); 2093 sk_newbuf(sc_if, cur, m, dmamap); 2094 if (m0 == NULL) { 2095 aprint_error_dev(sc_if->sk_dev, "no receive " 2096 "buffers available -- packet dropped!\n"); 2097 ifp->if_ierrors++; 2098 continue; 2099 } 2100 m_adj(m0, ETHER_ALIGN); 2101 m = m0; 2102 } else { 2103 m->m_pkthdr.rcvif = ifp; 2104 m->m_pkthdr.len = m->m_len = total_len; 2105 } 2106 2107 ifp->if_ipackets++; 2108 2109 #if NBPFILTER > 0 2110 if (ifp->if_bpf) 2111 bpf_mtap(ifp->if_bpf, m); 2112 #endif 2113 /* pass it on. */ 2114 (*ifp->if_input)(ifp, m); 2115 } 2116 } 2117 2118 void 2119 sk_txeof(struct sk_if_softc *sc_if) 2120 { 2121 struct sk_softc *sc = sc_if->sk_softc; 2122 struct sk_tx_desc *cur_tx; 2123 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if; 2124 u_int32_t idx, sk_ctl; 2125 struct sk_txmap_entry *entry; 2126 2127 DPRINTFN(3, ("sk_txeof\n")); 2128 2129 /* 2130 * Go through our tx ring and free mbufs for those 2131 * frames that have been sent. 2132 */ 2133 idx = sc_if->sk_cdata.sk_tx_cons; 2134 while (idx != sc_if->sk_cdata.sk_tx_prod) { 2135 SK_CDTXSYNC(sc_if, idx, 1, 2136 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 2137 2138 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx]; 2139 sk_ctl = le32toh(cur_tx->sk_ctl); 2140 #ifdef SK_DEBUG 2141 if (skdebug >= 3) 2142 sk_dump_txdesc(cur_tx, idx); 2143 #endif 2144 if (sk_ctl & SK_TXCTL_OWN) { 2145 SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD); 2146 break; 2147 } 2148 if (sk_ctl & SK_TXCTL_LASTFRAG) 2149 ifp->if_opackets++; 2150 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) { 2151 entry = sc_if->sk_cdata.sk_tx_map[idx]; 2152 2153 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf); 2154 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL; 2155 2156 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0, 2157 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 2158 2159 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap); 2160 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry, 2161 link); 2162 sc_if->sk_cdata.sk_tx_map[idx] = NULL; 2163 } 2164 sc_if->sk_cdata.sk_tx_cnt--; 2165 SK_INC(idx, SK_TX_RING_CNT); 2166 } 2167 if (sc_if->sk_cdata.sk_tx_cnt == 0) 2168 ifp->if_timer = 0; 2169 else /* nudge chip to keep tx ring moving */ 2170 CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START); 2171 2172 if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2) 2173 ifp->if_flags &= ~IFF_OACTIVE; 2174 2175 sc_if->sk_cdata.sk_tx_cons = idx; 2176 } 2177 2178 void 2179 sk_tick(void *xsc_if) 2180 { 2181 struct sk_if_softc *sc_if = xsc_if; 2182 struct mii_data *mii = &sc_if->sk_mii; 2183 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if; 2184 int i; 2185 2186 DPRINTFN(3, ("sk_tick\n")); 2187 2188 if (!(ifp->if_flags & IFF_UP)) 2189 return; 2190 2191 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { 2192 sk_intr_bcom(sc_if); 2193 return; 2194 } 2195 2196 /* 2197 * According to SysKonnect, the correct way to verify that 2198 * the link has come back up is to poll bit 0 of the GPIO 2199 * register three times. This pin has the signal from the 2200 * link sync pin connected to it; if we read the same link 2201 * state 3 times in a row, we know the link is up. 2202 */ 2203 for (i = 0; i < 3; i++) { 2204 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET) 2205 break; 2206 } 2207 2208 if (i != 3) { 2209 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if); 2210 return; 2211 } 2212 2213 /* Turn the GP0 interrupt back on. */ 2214 SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET); 2215 SK_XM_READ_2(sc_if, XM_ISR); 2216 mii_tick(mii); 2217 mii_pollstat(mii); 2218 callout_stop(&sc_if->sk_tick_ch); 2219 } 2220 2221 void 2222 sk_intr_bcom(struct sk_if_softc *sc_if) 2223 { 2224 struct mii_data *mii = &sc_if->sk_mii; 2225 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if; 2226 int status; 2227 2228 2229 DPRINTFN(3, ("sk_intr_bcom\n")); 2230 2231 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); 2232 2233 /* 2234 * Read the PHY interrupt register to make sure 2235 * we clear any pending interrupts. 2236 */ 2237 status = sk_xmac_miibus_readreg(sc_if->sk_dev, 2238 SK_PHYADDR_BCOM, BRGPHY_MII_ISR); 2239 2240 if (!(ifp->if_flags & IFF_RUNNING)) { 2241 sk_init_xmac(sc_if); 2242 return; 2243 } 2244 2245 if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) { 2246 int lstat; 2247 lstat = sk_xmac_miibus_readreg(sc_if->sk_dev, 2248 SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS); 2249 2250 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) { 2251 (void)mii_mediachg(mii); 2252 /* Turn off the link LED. */ 2253 SK_IF_WRITE_1(sc_if, 0, 2254 SK_LINKLED1_CTL, SK_LINKLED_OFF); 2255 sc_if->sk_link = 0; 2256 } else if (status & BRGPHY_ISR_LNK_CHG) { 2257 sk_xmac_miibus_writereg(sc_if->sk_dev, 2258 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00); 2259 mii_tick(mii); 2260 sc_if->sk_link = 1; 2261 /* Turn on the link LED. */ 2262 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, 2263 SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF| 2264 SK_LINKLED_BLINK_OFF); 2265 mii_pollstat(mii); 2266 } else { 2267 mii_tick(mii); 2268 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if); 2269 } 2270 } 2271 2272 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); 2273 } 2274 2275 void 2276 sk_intr_xmac(struct sk_if_softc *sc_if) 2277 { 2278 u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR); 2279 2280 DPRINTFN(3, ("sk_intr_xmac\n")); 2281 2282 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) { 2283 if (status & XM_ISR_GP0_SET) { 2284 SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET); 2285 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if); 2286 } 2287 2288 if (status & XM_ISR_AUTONEG_DONE) { 2289 callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if); 2290 } 2291 } 2292 2293 if (status & XM_IMR_TX_UNDERRUN) 2294 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO); 2295 2296 if (status & XM_IMR_RX_OVERRUN) 2297 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO); 2298 } 2299 2300 void 2301 sk_intr_yukon(struct sk_if_softc *sc_if) 2302 { 2303 int status; 2304 2305 status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR); 2306 2307 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status)); 2308 } 2309 2310 int 2311 sk_intr(void *xsc) 2312 { 2313 struct sk_softc *sc = xsc; 2314 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A]; 2315 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B]; 2316 struct ifnet *ifp0 = NULL, *ifp1 = NULL; 2317 u_int32_t status; 2318 int claimed = 0; 2319 2320 if (sc_if0 != NULL) 2321 ifp0 = &sc_if0->sk_ethercom.ec_if; 2322 if (sc_if1 != NULL) 2323 ifp1 = &sc_if1->sk_ethercom.ec_if; 2324 2325 for (;;) { 2326 status = CSR_READ_4(sc, SK_ISSR); 2327 DPRINTFN(3, ("sk_intr: status=%#x\n", status)); 2328 2329 if (!(status & sc->sk_intrmask)) 2330 break; 2331 2332 claimed = 1; 2333 2334 /* Handle receive interrupts first. */ 2335 if (sc_if0 && (status & SK_ISR_RX1_EOF)) { 2336 sk_rxeof(sc_if0); 2337 CSR_WRITE_4(sc, SK_BMU_RX_CSR0, 2338 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START); 2339 } 2340 if (sc_if1 && (status & SK_ISR_RX2_EOF)) { 2341 sk_rxeof(sc_if1); 2342 CSR_WRITE_4(sc, SK_BMU_RX_CSR1, 2343 SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START); 2344 } 2345 2346 /* Then transmit interrupts. */ 2347 if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) { 2348 sk_txeof(sc_if0); 2349 CSR_WRITE_4(sc, SK_BMU_TXS_CSR0, 2350 SK_TXBMU_CLR_IRQ_EOF); 2351 } 2352 if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) { 2353 sk_txeof(sc_if1); 2354 CSR_WRITE_4(sc, SK_BMU_TXS_CSR1, 2355 SK_TXBMU_CLR_IRQ_EOF); 2356 } 2357 2358 /* Then MAC interrupts. */ 2359 if (sc_if0 && (status & SK_ISR_MAC1) && 2360 (ifp0->if_flags & IFF_RUNNING)) { 2361 if (sc->sk_type == SK_GENESIS) 2362 sk_intr_xmac(sc_if0); 2363 else 2364 sk_intr_yukon(sc_if0); 2365 } 2366 2367 if (sc_if1 && (status & SK_ISR_MAC2) && 2368 (ifp1->if_flags & IFF_RUNNING)) { 2369 if (sc->sk_type == SK_GENESIS) 2370 sk_intr_xmac(sc_if1); 2371 else 2372 sk_intr_yukon(sc_if1); 2373 2374 } 2375 2376 if (status & SK_ISR_EXTERNAL_REG) { 2377 if (sc_if0 != NULL && 2378 sc_if0->sk_phytype == SK_PHYTYPE_BCOM) 2379 sk_intr_bcom(sc_if0); 2380 2381 if (sc_if1 != NULL && 2382 sc_if1->sk_phytype == SK_PHYTYPE_BCOM) 2383 sk_intr_bcom(sc_if1); 2384 } 2385 } 2386 2387 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); 2388 2389 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd)) 2390 sk_start(ifp0); 2391 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd)) 2392 sk_start(ifp1); 2393 2394 #if NRND > 0 2395 if (RND_ENABLED(&sc->rnd_source)) 2396 rnd_add_uint32(&sc->rnd_source, status); 2397 #endif 2398 2399 if (sc->sk_int_mod_pending) 2400 sk_update_int_mod(sc); 2401 2402 return claimed; 2403 } 2404 2405 void 2406 sk_init_xmac(struct sk_if_softc *sc_if) 2407 { 2408 struct sk_softc *sc = sc_if->sk_softc; 2409 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if; 2410 static const struct sk_bcom_hack bhack[] = { 2411 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 }, 2412 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 }, 2413 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 }, 2414 { 0, 0 } }; 2415 2416 DPRINTFN(1, ("sk_init_xmac\n")); 2417 2418 /* Unreset the XMAC. */ 2419 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET); 2420 DELAY(1000); 2421 2422 /* Reset the XMAC's internal state. */ 2423 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC); 2424 2425 /* Save the XMAC II revision */ 2426 sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID)); 2427 2428 /* 2429 * Perform additional initialization for external PHYs, 2430 * namely for the 1000baseTX cards that use the XMAC's 2431 * GMII mode. 2432 */ 2433 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { 2434 int i = 0; 2435 u_int32_t val; 2436 2437 /* Take PHY out of reset. */ 2438 val = sk_win_read_4(sc, SK_GPIO); 2439 if (sc_if->sk_port == SK_PORT_A) 2440 val |= SK_GPIO_DIR0|SK_GPIO_DAT0; 2441 else 2442 val |= SK_GPIO_DIR2|SK_GPIO_DAT2; 2443 sk_win_write_4(sc, SK_GPIO, val); 2444 2445 /* Enable GMII mode on the XMAC. */ 2446 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE); 2447 2448 sk_xmac_miibus_writereg(sc_if->sk_dev, 2449 SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET); 2450 DELAY(10000); 2451 sk_xmac_miibus_writereg(sc_if->sk_dev, 2452 SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0); 2453 2454 /* 2455 * Early versions of the BCM5400 apparently have 2456 * a bug that requires them to have their reserved 2457 * registers initialized to some magic values. I don't 2458 * know what the numbers do, I'm just the messenger. 2459 */ 2460 if (sk_xmac_miibus_readreg(sc_if->sk_dev, 2461 SK_PHYADDR_BCOM, 0x03) == 0x6041) { 2462 while (bhack[i].reg) { 2463 sk_xmac_miibus_writereg(sc_if->sk_dev, 2464 SK_PHYADDR_BCOM, bhack[i].reg, 2465 bhack[i].val); 2466 i++; 2467 } 2468 } 2469 } 2470 2471 /* Set station address */ 2472 SK_XM_WRITE_2(sc_if, XM_PAR0, 2473 *(u_int16_t *)(&sc_if->sk_enaddr[0])); 2474 SK_XM_WRITE_2(sc_if, XM_PAR1, 2475 *(u_int16_t *)(&sc_if->sk_enaddr[2])); 2476 SK_XM_WRITE_2(sc_if, XM_PAR2, 2477 *(u_int16_t *)(&sc_if->sk_enaddr[4])); 2478 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION); 2479 2480 if (ifp->if_flags & IFF_PROMISC) 2481 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC); 2482 else 2483 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC); 2484 2485 if (ifp->if_flags & IFF_BROADCAST) 2486 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD); 2487 else 2488 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD); 2489 2490 /* We don't need the FCS appended to the packet. */ 2491 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS); 2492 2493 /* We want short frames padded to 60 bytes. */ 2494 SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD); 2495 2496 /* 2497 * Enable the reception of all error frames. This is is 2498 * a necessary evil due to the design of the XMAC. The 2499 * XMAC's receive FIFO is only 8K in size, however jumbo 2500 * frames can be up to 9000 bytes in length. When bad 2501 * frame filtering is enabled, the XMAC's RX FIFO operates 2502 * in 'store and forward' mode. For this to work, the 2503 * entire frame has to fit into the FIFO, but that means 2504 * that jumbo frames larger than 8192 bytes will be 2505 * truncated. Disabling all bad frame filtering causes 2506 * the RX FIFO to operate in streaming mode, in which 2507 * case the XMAC will start transfering frames out of the 2508 * RX FIFO as soon as the FIFO threshold is reached. 2509 */ 2510 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES| 2511 XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS| 2512 XM_MODE_RX_INRANGELEN); 2513 2514 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) 2515 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK); 2516 else 2517 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK); 2518 2519 /* 2520 * Bump up the transmit threshold. This helps hold off transmit 2521 * underruns when we're blasting traffic from both ports at once. 2522 */ 2523 SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH); 2524 2525 /* Set multicast filter */ 2526 sk_setmulti(sc_if); 2527 2528 /* Clear and enable interrupts */ 2529 SK_XM_READ_2(sc_if, XM_ISR); 2530 if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) 2531 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS); 2532 else 2533 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF); 2534 2535 /* Configure MAC arbiter */ 2536 switch (sc_if->sk_xmac_rev) { 2537 case XM_XMAC_REV_B2: 2538 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2); 2539 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2); 2540 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2); 2541 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2); 2542 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2); 2543 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2); 2544 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2); 2545 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2); 2546 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2); 2547 break; 2548 case XM_XMAC_REV_C1: 2549 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1); 2550 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1); 2551 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1); 2552 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1); 2553 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1); 2554 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1); 2555 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1); 2556 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1); 2557 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2); 2558 break; 2559 default: 2560 break; 2561 } 2562 sk_win_write_2(sc, SK_MACARB_CTL, 2563 SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF); 2564 2565 sc_if->sk_link = 1; 2566 } 2567 2568 void sk_init_yukon(struct sk_if_softc *sc_if) 2569 { 2570 u_int32_t /*mac, */phy; 2571 u_int16_t reg; 2572 struct sk_softc *sc; 2573 int i; 2574 2575 DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n", 2576 CSR_READ_4(sc_if->sk_softc, SK_CSR))); 2577 2578 sc = sc_if->sk_softc; 2579 if (sc->sk_type == SK_YUKON_LITE && 2580 sc->sk_rev >= SK_YUKON_LITE_REV_A3) { 2581 /* Take PHY out of reset. */ 2582 sk_win_write_4(sc, SK_GPIO, 2583 (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9); 2584 } 2585 2586 2587 /* GMAC and GPHY Reset */ 2588 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET); 2589 2590 DPRINTFN(6, ("sk_init_yukon: 1\n")); 2591 2592 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET); 2593 DELAY(1000); 2594 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR); 2595 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET); 2596 DELAY(1000); 2597 2598 2599 DPRINTFN(6, ("sk_init_yukon: 2\n")); 2600 2601 phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP | 2602 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE; 2603 2604 switch (sc_if->sk_softc->sk_pmd) { 2605 case IFM_1000_SX: 2606 case IFM_1000_LX: 2607 phy |= SK_GPHY_FIBER; 2608 break; 2609 2610 case IFM_1000_CX: 2611 case IFM_1000_T: 2612 phy |= SK_GPHY_COPPER; 2613 break; 2614 } 2615 2616 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy)); 2617 2618 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET); 2619 DELAY(1000); 2620 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR); 2621 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF | 2622 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR); 2623 2624 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n", 2625 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL))); 2626 2627 DPRINTFN(6, ("sk_init_yukon: 3\n")); 2628 2629 /* unused read of the interrupt source register */ 2630 DPRINTFN(6, ("sk_init_yukon: 4\n")); 2631 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR); 2632 2633 DPRINTFN(6, ("sk_init_yukon: 4a\n")); 2634 reg = SK_YU_READ_2(sc_if, YUKON_PAR); 2635 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg)); 2636 2637 /* MIB Counter Clear Mode set */ 2638 reg |= YU_PAR_MIB_CLR; 2639 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg)); 2640 DPRINTFN(6, ("sk_init_yukon: 4b\n")); 2641 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg); 2642 2643 /* MIB Counter Clear Mode clear */ 2644 DPRINTFN(6, ("sk_init_yukon: 5\n")); 2645 reg &= ~YU_PAR_MIB_CLR; 2646 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg); 2647 2648 /* receive control reg */ 2649 DPRINTFN(6, ("sk_init_yukon: 7\n")); 2650 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN | 2651 YU_RCR_CRCR); 2652 2653 /* transmit parameter register */ 2654 DPRINTFN(6, ("sk_init_yukon: 8\n")); 2655 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) | 2656 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) ); 2657 2658 /* serial mode register */ 2659 DPRINTFN(6, ("sk_init_yukon: 9\n")); 2660 SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) | 2661 YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO | 2662 YU_SMR_IPG_DATA(0x1e)); 2663 2664 DPRINTFN(6, ("sk_init_yukon: 10\n")); 2665 /* Setup Yukon's address */ 2666 for (i = 0; i < 3; i++) { 2667 /* Write Source Address 1 (unicast filter) */ 2668 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4, 2669 sc_if->sk_enaddr[i * 2] | 2670 sc_if->sk_enaddr[i * 2 + 1] << 8); 2671 } 2672 2673 for (i = 0; i < 3; i++) { 2674 reg = sk_win_read_2(sc_if->sk_softc, 2675 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8); 2676 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg); 2677 } 2678 2679 /* Set multicast filter */ 2680 DPRINTFN(6, ("sk_init_yukon: 11\n")); 2681 sk_setmulti(sc_if); 2682 2683 /* enable interrupt mask for counter overflows */ 2684 DPRINTFN(6, ("sk_init_yukon: 12\n")); 2685 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0); 2686 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0); 2687 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0); 2688 2689 /* Configure RX MAC FIFO */ 2690 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR); 2691 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON); 2692 2693 /* Configure TX MAC FIFO */ 2694 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR); 2695 SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON); 2696 2697 DPRINTFN(6, ("sk_init_yukon: end\n")); 2698 } 2699 2700 /* 2701 * Note that to properly initialize any part of the GEnesis chip, 2702 * you first have to take it out of reset mode. 2703 */ 2704 int 2705 sk_init(struct ifnet *ifp) 2706 { 2707 struct sk_if_softc *sc_if = ifp->if_softc; 2708 struct sk_softc *sc = sc_if->sk_softc; 2709 struct mii_data *mii = &sc_if->sk_mii; 2710 int rc = 0, s; 2711 u_int32_t imr, imtimer_ticks; 2712 2713 DPRINTFN(1, ("sk_init\n")); 2714 2715 s = splnet(); 2716 2717 if (ifp->if_flags & IFF_RUNNING) { 2718 splx(s); 2719 return 0; 2720 } 2721 2722 /* Cancel pending I/O and free all RX/TX buffers. */ 2723 sk_stop(ifp,0); 2724 2725 if (sc->sk_type == SK_GENESIS) { 2726 /* Configure LINK_SYNC LED */ 2727 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON); 2728 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, 2729 SK_LINKLED_LINKSYNC_ON); 2730 2731 /* Configure RX LED */ 2732 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, 2733 SK_RXLEDCTL_COUNTER_START); 2734 2735 /* Configure TX LED */ 2736 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, 2737 SK_TXLEDCTL_COUNTER_START); 2738 } 2739 2740 /* Configure I2C registers */ 2741 2742 /* Configure XMAC(s) */ 2743 switch (sc->sk_type) { 2744 case SK_GENESIS: 2745 sk_init_xmac(sc_if); 2746 break; 2747 case SK_YUKON: 2748 case SK_YUKON_LITE: 2749 case SK_YUKON_LP: 2750 sk_init_yukon(sc_if); 2751 break; 2752 } 2753 if ((rc = mii_mediachg(mii)) == ENXIO) 2754 rc = 0; 2755 else if (rc != 0) 2756 goto out; 2757 2758 if (sc->sk_type == SK_GENESIS) { 2759 /* Configure MAC FIFOs */ 2760 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET); 2761 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END); 2762 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON); 2763 2764 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET); 2765 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END); 2766 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON); 2767 } 2768 2769 /* Configure transmit arbiter(s) */ 2770 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, 2771 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON); 2772 2773 /* Configure RAMbuffers */ 2774 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET); 2775 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart); 2776 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart); 2777 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart); 2778 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend); 2779 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON); 2780 2781 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET); 2782 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON); 2783 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart); 2784 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart); 2785 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart); 2786 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend); 2787 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON); 2788 2789 /* Configure BMUs */ 2790 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE); 2791 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO, 2792 SK_RX_RING_ADDR(sc_if, 0)); 2793 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0); 2794 2795 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE); 2796 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO, 2797 SK_TX_RING_ADDR(sc_if, 0)); 2798 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0); 2799 2800 /* Init descriptors */ 2801 if (sk_init_rx_ring(sc_if) == ENOBUFS) { 2802 aprint_error_dev(sc_if->sk_dev, "initialization failed: no " 2803 "memory for rx buffers\n"); 2804 sk_stop(ifp,0); 2805 splx(s); 2806 return ENOBUFS; 2807 } 2808 2809 if (sk_init_tx_ring(sc_if) == ENOBUFS) { 2810 aprint_error_dev(sc_if->sk_dev, "initialization failed: no " 2811 "memory for tx buffers\n"); 2812 sk_stop(ifp,0); 2813 splx(s); 2814 return ENOBUFS; 2815 } 2816 2817 /* Set interrupt moderation if changed via sysctl. */ 2818 switch (sc->sk_type) { 2819 case SK_GENESIS: 2820 imtimer_ticks = SK_IMTIMER_TICKS_GENESIS; 2821 break; 2822 case SK_YUKON_EC: 2823 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC; 2824 break; 2825 default: 2826 imtimer_ticks = SK_IMTIMER_TICKS_YUKON; 2827 } 2828 imr = sk_win_read_4(sc, SK_IMTIMERINIT); 2829 if (imr != SK_IM_USECS(sc->sk_int_mod)) { 2830 sk_win_write_4(sc, SK_IMTIMERINIT, 2831 SK_IM_USECS(sc->sk_int_mod)); 2832 aprint_verbose_dev(sc->sk_dev, 2833 "interrupt moderation is %d us\n", sc->sk_int_mod); 2834 } 2835 2836 /* Configure interrupt handling */ 2837 CSR_READ_4(sc, SK_ISSR); 2838 if (sc_if->sk_port == SK_PORT_A) 2839 sc->sk_intrmask |= SK_INTRS1; 2840 else 2841 sc->sk_intrmask |= SK_INTRS2; 2842 2843 sc->sk_intrmask |= SK_ISR_EXTERNAL_REG; 2844 2845 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); 2846 2847 /* Start BMUs. */ 2848 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START); 2849 2850 if (sc->sk_type == SK_GENESIS) { 2851 /* Enable XMACs TX and RX state machines */ 2852 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE); 2853 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, 2854 XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); 2855 } 2856 2857 if (SK_YUKON_FAMILY(sc->sk_type)) { 2858 u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR); 2859 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN; 2860 #if 0 2861 /* XXX disable 100Mbps and full duplex mode? */ 2862 reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN); 2863 #endif 2864 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg); 2865 } 2866 2867 2868 ifp->if_flags |= IFF_RUNNING; 2869 ifp->if_flags &= ~IFF_OACTIVE; 2870 2871 out: 2872 splx(s); 2873 return rc; 2874 } 2875 2876 void 2877 sk_stop(struct ifnet *ifp, int disable) 2878 { 2879 struct sk_if_softc *sc_if = ifp->if_softc; 2880 struct sk_softc *sc = sc_if->sk_softc; 2881 int i; 2882 2883 DPRINTFN(1, ("sk_stop\n")); 2884 2885 callout_stop(&sc_if->sk_tick_ch); 2886 2887 if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { 2888 u_int32_t val; 2889 2890 /* Put PHY back into reset. */ 2891 val = sk_win_read_4(sc, SK_GPIO); 2892 if (sc_if->sk_port == SK_PORT_A) { 2893 val |= SK_GPIO_DIR0; 2894 val &= ~SK_GPIO_DAT0; 2895 } else { 2896 val |= SK_GPIO_DIR2; 2897 val &= ~SK_GPIO_DAT2; 2898 } 2899 sk_win_write_4(sc, SK_GPIO, val); 2900 } 2901 2902 /* Turn off various components of this interface. */ 2903 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC); 2904 switch (sc->sk_type) { 2905 case SK_GENESIS: 2906 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, 2907 SK_TXMACCTL_XMAC_RESET); 2908 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET); 2909 break; 2910 case SK_YUKON: 2911 case SK_YUKON_LITE: 2912 case SK_YUKON_LP: 2913 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET); 2914 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET); 2915 break; 2916 } 2917 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE); 2918 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF); 2919 SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE); 2920 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF); 2921 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF); 2922 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP); 2923 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP); 2924 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF); 2925 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF); 2926 2927 /* Disable interrupts */ 2928 if (sc_if->sk_port == SK_PORT_A) 2929 sc->sk_intrmask &= ~SK_INTRS1; 2930 else 2931 sc->sk_intrmask &= ~SK_INTRS2; 2932 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); 2933 2934 SK_XM_READ_2(sc_if, XM_ISR); 2935 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF); 2936 2937 /* Free RX and TX mbufs still in the queues. */ 2938 for (i = 0; i < SK_RX_RING_CNT; i++) { 2939 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) { 2940 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf); 2941 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL; 2942 } 2943 } 2944 2945 for (i = 0; i < SK_TX_RING_CNT; i++) { 2946 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) { 2947 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf); 2948 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL; 2949 } 2950 } 2951 2952 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE); 2953 } 2954 2955 /* Power Management Framework */ 2956 2957 static bool 2958 skc_suspend(device_t dv, pmf_qual_t qual) 2959 { 2960 struct sk_softc *sc = device_private(dv); 2961 2962 DPRINTFN(2, ("skc_suspend\n")); 2963 2964 /* Turn off the driver is loaded LED */ 2965 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF); 2966 2967 return true; 2968 } 2969 2970 static bool 2971 skc_resume(device_t dv, pmf_qual_t qual) 2972 { 2973 struct sk_softc *sc = device_private(dv); 2974 2975 DPRINTFN(2, ("skc_resume\n")); 2976 2977 sk_reset(sc); 2978 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON); 2979 2980 return true; 2981 } 2982 2983 static bool 2984 sk_resume(device_t dv, pmf_qual_t qual) 2985 { 2986 struct sk_if_softc *sc_if = device_private(dv); 2987 2988 sk_init_yukon(sc_if); 2989 return true; 2990 } 2991 2992 CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc), 2993 skc_probe, skc_attach, NULL, NULL); 2994 2995 CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc), 2996 sk_probe, sk_attach, NULL, NULL); 2997 2998 #ifdef SK_DEBUG 2999 void 3000 sk_dump_txdesc(struct sk_tx_desc *desc, int idx) 3001 { 3002 #define DESC_PRINT(X) \ 3003 if (X) \ 3004 printf("txdesc[%d]." #X "=%#x\n", \ 3005 idx, X); 3006 3007 DESC_PRINT(le32toh(desc->sk_ctl)); 3008 DESC_PRINT(le32toh(desc->sk_next)); 3009 DESC_PRINT(le32toh(desc->sk_data_lo)); 3010 DESC_PRINT(le32toh(desc->sk_data_hi)); 3011 DESC_PRINT(le32toh(desc->sk_xmac_txstat)); 3012 DESC_PRINT(le16toh(desc->sk_rsvd0)); 3013 DESC_PRINT(le16toh(desc->sk_csum_startval)); 3014 DESC_PRINT(le16toh(desc->sk_csum_startpos)); 3015 DESC_PRINT(le16toh(desc->sk_csum_writepos)); 3016 DESC_PRINT(le16toh(desc->sk_rsvd1)); 3017 #undef PRINT 3018 } 3019 3020 void 3021 sk_dump_bytes(const char *data, int len) 3022 { 3023 int c, i, j; 3024 3025 for (i = 0; i < len; i += 16) { 3026 printf("%08x ", i); 3027 c = len - i; 3028 if (c > 16) c = 16; 3029 3030 for (j = 0; j < c; j++) { 3031 printf("%02x ", data[i + j] & 0xff); 3032 if ((j & 0xf) == 7 && j > 0) 3033 printf(" "); 3034 } 3035 3036 for (; j < 16; j++) 3037 printf(" "); 3038 printf(" "); 3039 3040 for (j = 0; j < c; j++) { 3041 int ch = data[i + j] & 0xff; 3042 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' '); 3043 } 3044 3045 printf("\n"); 3046 3047 if (c < 16) 3048 break; 3049 } 3050 } 3051 3052 void 3053 sk_dump_mbuf(struct mbuf *m) 3054 { 3055 int count = m->m_pkthdr.len; 3056 3057 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len); 3058 3059 while (count > 0 && m) { 3060 printf("m=%p, m->m_data=%p, m->m_len=%d\n", 3061 m, m->m_data, m->m_len); 3062 sk_dump_bytes(mtod(m, char *), m->m_len); 3063 3064 count -= m->m_len; 3065 m = m->m_next; 3066 } 3067 } 3068 #endif 3069 3070 static int 3071 sk_sysctl_handler(SYSCTLFN_ARGS) 3072 { 3073 int error, t; 3074 struct sysctlnode node; 3075 struct sk_softc *sc; 3076 3077 node = *rnode; 3078 sc = node.sysctl_data; 3079 t = sc->sk_int_mod; 3080 node.sysctl_data = &t; 3081 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 3082 if (error || newp == NULL) 3083 return error; 3084 3085 if (t < SK_IM_MIN || t > SK_IM_MAX) 3086 return EINVAL; 3087 3088 /* update the softc with sysctl-changed value, and mark 3089 for hardware update */ 3090 sc->sk_int_mod = t; 3091 sc->sk_int_mod_pending = 1; 3092 return 0; 3093 } 3094 3095 /* 3096 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be 3097 * set up in skc_attach() 3098 */ 3099 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup") 3100 { 3101 int rc; 3102 const struct sysctlnode *node; 3103 3104 if ((rc = sysctl_createv(clog, 0, NULL, NULL, 3105 0, CTLTYPE_NODE, "hw", NULL, 3106 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) { 3107 goto err; 3108 } 3109 3110 if ((rc = sysctl_createv(clog, 0, NULL, &node, 3111 0, CTLTYPE_NODE, "sk", 3112 SYSCTL_DESCR("sk interface controls"), 3113 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) { 3114 goto err; 3115 } 3116 3117 sk_root_num = node->sysctl_num; 3118 return; 3119 3120 err: 3121 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc); 3122 } 3123