xref: /netbsd-src/sys/dev/pci/if_sk.c (revision 267197ec1eebfcb9810ea27a89625b6ddf68e3e7)
1 /*	$NetBSD: if_sk.c,v 1.47 2008/02/07 01:21:57 dyoung Exp $	*/
2 
3 /*-
4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the NetBSD
18  *	Foundation, Inc. and its contributors.
19  * 4. Neither the name of The NetBSD Foundation nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 /*	$OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $	*/
37 
38 /*
39  * Copyright (c) 1997, 1998, 1999, 2000
40  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. All advertising materials mentioning features or use of this software
51  *    must display the following acknowledgement:
52  *	This product includes software developed by Bill Paul.
53  * 4. Neither the name of the author nor the names of any co-contributors
54  *    may be used to endorse or promote products derived from this software
55  *    without specific prior written permission.
56  *
57  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
61  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
67  * THE POSSIBILITY OF SUCH DAMAGE.
68  *
69  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
70  */
71 
72 /*
73  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
74  *
75  * Permission to use, copy, modify, and distribute this software for any
76  * purpose with or without fee is hereby granted, provided that the above
77  * copyright notice and this permission notice appear in all copies.
78  *
79  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
80  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
81  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
82  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
83  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
84  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
85  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
86  */
87 
88 /*
89  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
90  * the SK-984x series adapters, both single port and dual port.
91  * References:
92  * 	The XaQti XMAC II datasheet,
93  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
95  *
96  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
97  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
98  * convenience to others until Vitesse corrects this problem:
99  *
100  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
101  *
102  * Written by Bill Paul <wpaul@ee.columbia.edu>
103  * Department of Electrical Engineering
104  * Columbia University, New York City
105  */
106 
107 /*
108  * The SysKonnect gigabit ethernet adapters consist of two main
109  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
110  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
111  * components and a PHY while the GEnesis controller provides a PCI
112  * interface with DMA support. Each card may have between 512K and
113  * 2MB of SRAM on board depending on the configuration.
114  *
115  * The SysKonnect GEnesis controller can have either one or two XMAC
116  * chips connected to it, allowing single or dual port NIC configurations.
117  * SysKonnect has the distinction of being the only vendor on the market
118  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
119  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
120  * XMAC registers. This driver takes advantage of these features to allow
121  * both XMACs to operate as independent interfaces.
122  */
123 
124 #include <sys/cdefs.h>
125 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.47 2008/02/07 01:21:57 dyoung Exp $");
126 
127 #include "bpfilter.h"
128 #include "rnd.h"
129 
130 #include <sys/param.h>
131 #include <sys/systm.h>
132 #include <sys/sockio.h>
133 #include <sys/mbuf.h>
134 #include <sys/malloc.h>
135 #include <sys/kernel.h>
136 #include <sys/socket.h>
137 #include <sys/device.h>
138 #include <sys/queue.h>
139 #include <sys/callout.h>
140 #include <sys/sysctl.h>
141 #include <sys/endian.h>
142 
143 #include <net/if.h>
144 #include <net/if_dl.h>
145 #include <net/if_types.h>
146 
147 #include <net/if_media.h>
148 
149 #if NBPFILTER > 0
150 #include <net/bpf.h>
151 #endif
152 #if NRND > 0
153 #include <sys/rnd.h>
154 #endif
155 
156 #include <dev/mii/mii.h>
157 #include <dev/mii/miivar.h>
158 #include <dev/mii/brgphyreg.h>
159 
160 #include <dev/pci/pcireg.h>
161 #include <dev/pci/pcivar.h>
162 #include <dev/pci/pcidevs.h>
163 
164 /* #define SK_USEIOSPACE */
165 
166 #include <dev/pci/if_skreg.h>
167 #include <dev/pci/if_skvar.h>
168 
169 int skc_probe(struct device *, struct cfdata *, void *);
170 void skc_attach(struct device *, struct device *self, void *aux);
171 int sk_probe(struct device *, struct cfdata *, void *);
172 void sk_attach(struct device *, struct device *self, void *aux);
173 int skcprint(void *, const char *);
174 int sk_intr(void *);
175 void sk_intr_bcom(struct sk_if_softc *);
176 void sk_intr_xmac(struct sk_if_softc *);
177 void sk_intr_yukon(struct sk_if_softc *);
178 void sk_rxeof(struct sk_if_softc *);
179 void sk_txeof(struct sk_if_softc *);
180 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
181 void sk_start(struct ifnet *);
182 int sk_ioctl(struct ifnet *, u_long, void *);
183 int sk_init(struct ifnet *);
184 void sk_init_xmac(struct sk_if_softc *);
185 void sk_init_yukon(struct sk_if_softc *);
186 void sk_stop(struct ifnet *, int);
187 void sk_watchdog(struct ifnet *);
188 void sk_shutdown(void *);
189 int sk_ifmedia_upd(struct ifnet *);
190 void sk_reset(struct sk_softc *);
191 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
192 int sk_alloc_jumbo_mem(struct sk_if_softc *);
193 void sk_free_jumbo_mem(struct sk_if_softc *);
194 void *sk_jalloc(struct sk_if_softc *);
195 void sk_jfree(struct mbuf *, void *, size_t, void *);
196 int sk_init_rx_ring(struct sk_if_softc *);
197 int sk_init_tx_ring(struct sk_if_softc *);
198 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
199 void sk_vpd_read_res(struct sk_softc *,
200 					struct vpd_res *, int);
201 void sk_vpd_read(struct sk_softc *);
202 
203 void sk_update_int_mod(struct sk_softc *);
204 
205 int sk_xmac_miibus_readreg(struct device *, int, int);
206 void sk_xmac_miibus_writereg(struct device *, int, int, int);
207 void sk_xmac_miibus_statchg(struct device *);
208 
209 int sk_marv_miibus_readreg(struct device *, int, int);
210 void sk_marv_miibus_writereg(struct device *, int, int, int);
211 void sk_marv_miibus_statchg(struct device *);
212 
213 u_int32_t sk_xmac_hash(void *);
214 u_int32_t sk_yukon_hash(void *);
215 void sk_setfilt(struct sk_if_softc *, void *, int);
216 void sk_setmulti(struct sk_if_softc *);
217 void sk_tick(void *);
218 
219 /* #define SK_DEBUG 2 */
220 #ifdef SK_DEBUG
221 #define DPRINTF(x)	if (skdebug) printf x
222 #define DPRINTFN(n,x)	if (skdebug >= (n)) printf x
223 int	skdebug = SK_DEBUG;
224 
225 void sk_dump_txdesc(struct sk_tx_desc *, int);
226 void sk_dump_mbuf(struct mbuf *);
227 void sk_dump_bytes(const char *, int);
228 #else
229 #define DPRINTF(x)
230 #define DPRINTFN(n,x)
231 #endif
232 
233 static int sk_sysctl_handler(SYSCTLFN_PROTO);
234 static int sk_root_num;
235 
236 /* supported device vendors */
237 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
238 static const struct sk_product {
239 	pci_vendor_id_t		sk_vendor;
240 	pci_product_id_t	sk_product;
241 } sk_products[] = {
242 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
243 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
244 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
245 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
246 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
247 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
248 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
249 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
250 	{ 0, 0, }
251 };
252 
253 #define SK_LINKSYS_EG1032_SUBID	0x00151737
254 
255 static inline u_int32_t
256 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
257 {
258 #ifdef SK_USEIOSPACE
259 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
260 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
261 #else
262 	return CSR_READ_4(sc, reg);
263 #endif
264 }
265 
266 static inline u_int16_t
267 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
268 {
269 #ifdef SK_USEIOSPACE
270 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
271 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
272 #else
273 	return CSR_READ_2(sc, reg);
274 #endif
275 }
276 
277 static inline u_int8_t
278 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
279 {
280 #ifdef SK_USEIOSPACE
281 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
282 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
283 #else
284 	return CSR_READ_1(sc, reg);
285 #endif
286 }
287 
288 static inline void
289 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
290 {
291 #ifdef SK_USEIOSPACE
292 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
293 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
294 #else
295 	CSR_WRITE_4(sc, reg, x);
296 #endif
297 }
298 
299 static inline void
300 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
301 {
302 #ifdef SK_USEIOSPACE
303 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
304 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
305 #else
306 	CSR_WRITE_2(sc, reg, x);
307 #endif
308 }
309 
310 static inline void
311 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
312 {
313 #ifdef SK_USEIOSPACE
314 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
315 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
316 #else
317 	CSR_WRITE_1(sc, reg, x);
318 #endif
319 }
320 
321 /*
322  * The VPD EEPROM contains Vital Product Data, as suggested in
323  * the PCI 2.1 specification. The VPD data is separared into areas
324  * denoted by resource IDs. The SysKonnect VPD contains an ID string
325  * resource (the name of the adapter), a read-only area resource
326  * containing various key/data fields and a read/write area which
327  * can be used to store asset management information or log messages.
328  * We read the ID string and read-only into buffers attached to
329  * the controller softc structure for later use. At the moment,
330  * we only use the ID string during sk_attach().
331  */
332 u_int8_t
333 sk_vpd_readbyte(struct sk_softc *sc, int addr)
334 {
335 	int			i;
336 
337 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
338 	for (i = 0; i < SK_TIMEOUT; i++) {
339 		DELAY(1);
340 		if (sk_win_read_2(sc,
341 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
342 			break;
343 	}
344 
345 	if (i == SK_TIMEOUT)
346 		return 0;
347 
348 	return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
349 }
350 
351 void
352 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
353 {
354 	int			i;
355 	u_int8_t		*ptr;
356 
357 	ptr = (u_int8_t *)res;
358 	for (i = 0; i < sizeof(struct vpd_res); i++)
359 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
360 }
361 
362 void
363 sk_vpd_read(struct sk_softc *sc)
364 {
365 	int			pos = 0, i;
366 	struct vpd_res		res;
367 
368 	if (sc->sk_vpd_prodname != NULL)
369 		free(sc->sk_vpd_prodname, M_DEVBUF);
370 	if (sc->sk_vpd_readonly != NULL)
371 		free(sc->sk_vpd_readonly, M_DEVBUF);
372 	sc->sk_vpd_prodname = NULL;
373 	sc->sk_vpd_readonly = NULL;
374 
375 	sk_vpd_read_res(sc, &res, pos);
376 
377 	if (res.vr_id != VPD_RES_ID) {
378 		aprint_error("%s: bad VPD resource id: expected %x got %x\n",
379 		    sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
380 		return;
381 	}
382 
383 	pos += sizeof(res);
384 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
385 	if (sc->sk_vpd_prodname == NULL)
386 		panic("sk_vpd_read");
387 	for (i = 0; i < res.vr_len; i++)
388 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
389 	sc->sk_vpd_prodname[i] = '\0';
390 	pos += i;
391 
392 	sk_vpd_read_res(sc, &res, pos);
393 
394 	if (res.vr_id != VPD_RES_READ) {
395 		aprint_error("%s: bad VPD resource id: expected %x got %x\n",
396 		    sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
397 		return;
398 	}
399 
400 	pos += sizeof(res);
401 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
402 	if (sc->sk_vpd_readonly == NULL)
403 		panic("sk_vpd_read");
404 	for (i = 0; i < res.vr_len ; i++)
405 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
406 }
407 
408 int
409 sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
410 {
411 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
412 	int i;
413 
414 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
415 
416 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
417 		return 0;
418 
419 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
420 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
421 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
422 		for (i = 0; i < SK_TIMEOUT; i++) {
423 			DELAY(1);
424 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
425 			    XM_MMUCMD_PHYDATARDY)
426 				break;
427 		}
428 
429 		if (i == SK_TIMEOUT) {
430 			aprint_error("%s: phy failed to come ready\n",
431 			    sc_if->sk_dev.dv_xname);
432 			return 0;
433 		}
434 	}
435 	DELAY(1);
436 	return SK_XM_READ_2(sc_if, XM_PHY_DATA);
437 }
438 
439 void
440 sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
441 {
442 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
443 	int i;
444 
445 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
446 
447 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
448 	for (i = 0; i < SK_TIMEOUT; i++) {
449 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
450 			break;
451 	}
452 
453 	if (i == SK_TIMEOUT) {
454 		aprint_error("%s: phy failed to come ready\n",
455 		    sc_if->sk_dev.dv_xname);
456 		return;
457 	}
458 
459 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
460 	for (i = 0; i < SK_TIMEOUT; i++) {
461 		DELAY(1);
462 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
463 			break;
464 	}
465 
466 	if (i == SK_TIMEOUT)
467 		aprint_error("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
468 }
469 
470 void
471 sk_xmac_miibus_statchg(struct device *dev)
472 {
473 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
474 	struct mii_data *mii = &sc_if->sk_mii;
475 
476 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
477 
478 	/*
479 	 * If this is a GMII PHY, manually set the XMAC's
480 	 * duplex mode accordingly.
481 	 */
482 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
483 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
484 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
485 		else
486 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
487 	}
488 }
489 
490 int
491 sk_marv_miibus_readreg(struct device *dev, int phy, int reg)
492 {
493 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
494 	u_int16_t val;
495 	int i;
496 
497 	if (phy != 0 ||
498 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
499 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
500 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
501 			     phy, reg));
502 		return 0;
503 	}
504 
505         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
506 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
507 
508 	for (i = 0; i < SK_TIMEOUT; i++) {
509 		DELAY(1);
510 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
511 		if (val & YU_SMICR_READ_VALID)
512 			break;
513 	}
514 
515 	if (i == SK_TIMEOUT) {
516 		aprint_error("%s: phy failed to come ready\n",
517 		       sc_if->sk_dev.dv_xname);
518 		return 0;
519 	}
520 
521  	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
522 		     SK_TIMEOUT));
523 
524         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
525 
526 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
527 		     phy, reg, val));
528 
529 	return val;
530 }
531 
532 void
533 sk_marv_miibus_writereg(struct device *dev, int phy, int reg, int val)
534 {
535 	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
536 	int i;
537 
538 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
539 		     phy, reg, val));
540 
541 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
542 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
543 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
544 
545 	for (i = 0; i < SK_TIMEOUT; i++) {
546 		DELAY(1);
547 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
548 			break;
549 	}
550 
551 	if (i == SK_TIMEOUT)
552 		printf("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
553 }
554 
555 void
556 sk_marv_miibus_statchg(struct device *dev)
557 {
558 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
559 		     SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
560 }
561 
562 #define SK_HASH_BITS		6
563 
564 u_int32_t
565 sk_xmac_hash(void *addr)
566 {
567 	u_int32_t		crc;
568 
569 	crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
570 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
571 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
572 	return crc;
573 }
574 
575 u_int32_t
576 sk_yukon_hash(void *addr)
577 {
578 	u_int32_t		crc;
579 
580 	crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
581 	crc &= ((1 << SK_HASH_BITS) - 1);
582 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
583 	return crc;
584 }
585 
586 void
587 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
588 {
589 	char *addr = addrv;
590 	int base = XM_RXFILT_ENTRY(slot);
591 
592 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
593 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
594 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
595 }
596 
597 void
598 sk_setmulti(struct sk_if_softc *sc_if)
599 {
600 	struct sk_softc *sc = sc_if->sk_softc;
601 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
602 	u_int32_t hashes[2] = { 0, 0 };
603 	int h = 0, i;
604 	struct ethercom *ec = &sc_if->sk_ethercom;
605 	struct ether_multi *enm;
606 	struct ether_multistep step;
607 	u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
608 
609 	/* First, zot all the existing filters. */
610 	switch (sc->sk_type) {
611 	case SK_GENESIS:
612 		for (i = 1; i < XM_RXFILT_MAX; i++)
613 			sk_setfilt(sc_if, (void *)&dummy, i);
614 
615 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
616 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
617 		break;
618 	case SK_YUKON:
619 	case SK_YUKON_LITE:
620 	case SK_YUKON_LP:
621 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
622 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
623 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
624 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
625 		break;
626 	}
627 
628 	/* Now program new ones. */
629 allmulti:
630 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
631 		hashes[0] = 0xFFFFFFFF;
632 		hashes[1] = 0xFFFFFFFF;
633 	} else {
634 		i = 1;
635 		/* First find the tail of the list. */
636 		ETHER_FIRST_MULTI(step, ec, enm);
637 		while (enm != NULL) {
638 			if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
639 				 ETHER_ADDR_LEN)) {
640 				ifp->if_flags |= IFF_ALLMULTI;
641 				goto allmulti;
642 			}
643 			DPRINTFN(2,("multicast address %s\n",
644 	    			ether_sprintf(enm->enm_addrlo)));
645 			/*
646 			 * Program the first XM_RXFILT_MAX multicast groups
647 			 * into the perfect filter. For all others,
648 			 * use the hash table.
649 			 */
650 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
651 				sk_setfilt(sc_if, enm->enm_addrlo, i);
652 				i++;
653 			}
654 			else {
655 				switch (sc->sk_type) {
656 				case SK_GENESIS:
657 					h = sk_xmac_hash(enm->enm_addrlo);
658 					break;
659 				case SK_YUKON:
660 				case SK_YUKON_LITE:
661 				case SK_YUKON_LP:
662 					h = sk_yukon_hash(enm->enm_addrlo);
663 					break;
664 				}
665 				if (h < 32)
666 					hashes[0] |= (1 << h);
667 				else
668 					hashes[1] |= (1 << (h - 32));
669 			}
670 
671 			ETHER_NEXT_MULTI(step, enm);
672 		}
673 	}
674 
675 	switch (sc->sk_type) {
676 	case SK_GENESIS:
677 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
678 			       XM_MODE_RX_USE_PERFECT);
679 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
680 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
681 		break;
682 	case SK_YUKON:
683 	case SK_YUKON_LITE:
684 	case SK_YUKON_LP:
685 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
686 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
687 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
688 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
689 		break;
690 	}
691 }
692 
693 int
694 sk_init_rx_ring(struct sk_if_softc *sc_if)
695 {
696 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
697 	struct sk_ring_data	*rd = sc_if->sk_rdata;
698 	int			i;
699 
700 	bzero((char *)rd->sk_rx_ring,
701 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
702 
703 	for (i = 0; i < SK_RX_RING_CNT; i++) {
704 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
705 		if (i == (SK_RX_RING_CNT - 1)) {
706 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
707 			rd->sk_rx_ring[i].sk_next =
708 				htole32(SK_RX_RING_ADDR(sc_if, 0));
709 		} else {
710 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
711 			rd->sk_rx_ring[i].sk_next =
712 				htole32(SK_RX_RING_ADDR(sc_if,i+1));
713 		}
714 	}
715 
716 	for (i = 0; i < SK_RX_RING_CNT; i++) {
717 		if (sk_newbuf(sc_if, i, NULL,
718 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
719 			aprint_error("%s: failed alloc of %dth mbuf\n",
720 			    sc_if->sk_dev.dv_xname, i);
721 			return ENOBUFS;
722 		}
723 	}
724 	sc_if->sk_cdata.sk_rx_prod = 0;
725 	sc_if->sk_cdata.sk_rx_cons = 0;
726 
727 	return 0;
728 }
729 
730 int
731 sk_init_tx_ring(struct sk_if_softc *sc_if)
732 {
733 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
734 	struct sk_ring_data	*rd = sc_if->sk_rdata;
735 	int			i;
736 
737 	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
738 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
739 
740 	for (i = 0; i < SK_TX_RING_CNT; i++) {
741 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
742 		if (i == (SK_TX_RING_CNT - 1)) {
743 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
744 			rd->sk_tx_ring[i].sk_next =
745 				htole32(SK_TX_RING_ADDR(sc_if, 0));
746 		} else {
747 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
748 			rd->sk_tx_ring[i].sk_next =
749 				htole32(SK_TX_RING_ADDR(sc_if,i+1));
750 		}
751 	}
752 
753 	sc_if->sk_cdata.sk_tx_prod = 0;
754 	sc_if->sk_cdata.sk_tx_cons = 0;
755 	sc_if->sk_cdata.sk_tx_cnt = 0;
756 
757 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
758 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
759 
760 	return 0;
761 }
762 
763 int
764 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
765 	  bus_dmamap_t dmamap)
766 {
767 	struct mbuf		*m_new = NULL;
768 	struct sk_chain		*c;
769 	struct sk_rx_desc	*r;
770 
771 	if (m == NULL) {
772 		void *buf = NULL;
773 
774 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
775 		if (m_new == NULL) {
776 			aprint_error("%s: no memory for rx list -- "
777 			    "packet dropped!\n", sc_if->sk_dev.dv_xname);
778 			return ENOBUFS;
779 		}
780 
781 		/* Allocate the jumbo buffer */
782 		buf = sk_jalloc(sc_if);
783 		if (buf == NULL) {
784 			m_freem(m_new);
785 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
786 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
787 			return ENOBUFS;
788 		}
789 
790 		/* Attach the buffer to the mbuf */
791 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
792 		MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
793 
794 	} else {
795 		/*
796 	 	 * We're re-using a previously allocated mbuf;
797 		 * be sure to re-init pointers and lengths to
798 		 * default values.
799 		 */
800 		m_new = m;
801 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
802 		m_new->m_data = m_new->m_ext.ext_buf;
803 	}
804 	m_adj(m_new, ETHER_ALIGN);
805 
806 	c = &sc_if->sk_cdata.sk_rx_chain[i];
807 	r = c->sk_desc;
808 	c->sk_mbuf = m_new;
809 	r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
810 	    (((vaddr_t)m_new->m_data
811 		- (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
812 	r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
813 
814 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
815 
816 	return 0;
817 }
818 
819 /*
820  * Memory management for jumbo frames.
821  */
822 
823 int
824 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
825 {
826 	struct sk_softc		*sc = sc_if->sk_softc;
827 	char *ptr, *kva;
828 	bus_dma_segment_t	seg;
829 	int		i, rseg, state, error;
830 	struct sk_jpool_entry   *entry;
831 
832 	state = error = 0;
833 
834 	/* Grab a big chunk o' storage. */
835 	if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
836 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
837 		aprint_error("%s: can't alloc rx buffers\n", sc->sk_dev.dv_xname);
838 		return ENOBUFS;
839 	}
840 
841 	state = 1;
842 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
843 			   BUS_DMA_NOWAIT)) {
844 		aprint_error("%s: can't map dma buffers (%d bytes)\n",
845 		    sc->sk_dev.dv_xname, SK_JMEM);
846 		error = ENOBUFS;
847 		goto out;
848 	}
849 
850 	state = 2;
851 	if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
852 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
853 		aprint_error("%s: can't create dma map\n", sc->sk_dev.dv_xname);
854 		error = ENOBUFS;
855 		goto out;
856 	}
857 
858 	state = 3;
859 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
860 			    kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
861 		aprint_error("%s: can't load dma map\n", sc->sk_dev.dv_xname);
862 		error = ENOBUFS;
863 		goto out;
864 	}
865 
866 	state = 4;
867 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
868 	DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
869 
870 	LIST_INIT(&sc_if->sk_jfree_listhead);
871 	LIST_INIT(&sc_if->sk_jinuse_listhead);
872 
873 	/*
874 	 * Now divide it up into 9K pieces and save the addresses
875 	 * in an array.
876 	 */
877 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
878 	for (i = 0; i < SK_JSLOTS; i++) {
879 		sc_if->sk_cdata.sk_jslots[i] = ptr;
880 		ptr += SK_JLEN;
881 		entry = malloc(sizeof(struct sk_jpool_entry),
882 		    M_DEVBUF, M_NOWAIT);
883 		if (entry == NULL) {
884 			aprint_error("%s: no memory for jumbo buffer queue!\n",
885 			    sc->sk_dev.dv_xname);
886 			error = ENOBUFS;
887 			goto out;
888 		}
889 		entry->slot = i;
890 		if (i)
891 			LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
892 				 entry, jpool_entries);
893 		else
894 			LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
895 				 entry, jpool_entries);
896 	}
897 out:
898 	if (error != 0) {
899 		switch (state) {
900 		case 4:
901 			bus_dmamap_unload(sc->sc_dmatag,
902 			    sc_if->sk_cdata.sk_rx_jumbo_map);
903 		case 3:
904 			bus_dmamap_destroy(sc->sc_dmatag,
905 			    sc_if->sk_cdata.sk_rx_jumbo_map);
906 		case 2:
907 			bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
908 		case 1:
909 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
910 			break;
911 		default:
912 			break;
913 		}
914 	}
915 
916 	return error;
917 }
918 
919 /*
920  * Allocate a jumbo buffer.
921  */
922 void *
923 sk_jalloc(struct sk_if_softc *sc_if)
924 {
925 	struct sk_jpool_entry   *entry;
926 
927 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
928 
929 	if (entry == NULL)
930 		return NULL;
931 
932 	LIST_REMOVE(entry, jpool_entries);
933 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
934 	return sc_if->sk_cdata.sk_jslots[entry->slot];
935 }
936 
937 /*
938  * Release a jumbo buffer.
939  */
940 void
941 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
942 {
943 	struct sk_jpool_entry *entry;
944 	struct sk_if_softc *sc;
945 	int i, s;
946 
947 	/* Extract the softc struct pointer. */
948 	sc = (struct sk_if_softc *)arg;
949 
950 	if (sc == NULL)
951 		panic("sk_jfree: can't find softc pointer!");
952 
953 	/* calculate the slot this buffer belongs to */
954 
955 	i = ((vaddr_t)buf
956 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
957 
958 	if ((i < 0) || (i >= SK_JSLOTS))
959 		panic("sk_jfree: asked to free buffer that we don't manage!");
960 
961 	s = splvm();
962 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
963 	if (entry == NULL)
964 		panic("sk_jfree: buffer not in use!");
965 	entry->slot = i;
966 	LIST_REMOVE(entry, jpool_entries);
967 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
968 
969 	if (__predict_true(m != NULL))
970 		pool_cache_put(mb_cache, m);
971 	splx(s);
972 }
973 
974 /*
975  * Set media options.
976  */
977 int
978 sk_ifmedia_upd(struct ifnet *ifp)
979 {
980 	struct sk_if_softc *sc_if = ifp->if_softc;
981 	int rc;
982 
983 	(void) sk_init(ifp);
984 	if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
985 		return 0;
986 	return rc;
987 }
988 
989 int
990 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
991 {
992 	struct sk_if_softc *sc_if = ifp->if_softc;
993 	struct sk_softc *sc = sc_if->sk_softc;
994 	int s, error = 0;
995 
996 	/* DPRINTFN(2, ("sk_ioctl\n")); */
997 
998 	s = splnet();
999 
1000 	switch (command) {
1001 
1002 	case SIOCSIFFLAGS:
1003 	        DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1004 		if (ifp->if_flags & IFF_UP) {
1005 			if (ifp->if_flags & IFF_RUNNING &&
1006 			    ifp->if_flags & IFF_PROMISC &&
1007 			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
1008 				switch (sc->sk_type) {
1009 				case SK_GENESIS:
1010 					SK_XM_SETBIT_4(sc_if, XM_MODE,
1011 					    XM_MODE_RX_PROMISC);
1012 					break;
1013 				case SK_YUKON:
1014 				case SK_YUKON_LITE:
1015 				case SK_YUKON_LP:
1016 					SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1017 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
1018 					break;
1019 				}
1020 				sk_setmulti(sc_if);
1021 			} else if (ifp->if_flags & IFF_RUNNING &&
1022 			    !(ifp->if_flags & IFF_PROMISC) &&
1023 			    sc_if->sk_if_flags & IFF_PROMISC) {
1024 				switch (sc->sk_type) {
1025 				case SK_GENESIS:
1026 					SK_XM_CLRBIT_4(sc_if, XM_MODE,
1027 					    XM_MODE_RX_PROMISC);
1028 					break;
1029 				case SK_YUKON:
1030 				case SK_YUKON_LITE:
1031 				case SK_YUKON_LP:
1032 					SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1033 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
1034 					break;
1035 				}
1036 
1037 				sk_setmulti(sc_if);
1038 			} else
1039 				(void) sk_init(ifp);
1040 		} else {
1041 			if (ifp->if_flags & IFF_RUNNING)
1042 				sk_stop(ifp,0);
1043 		}
1044 		sc_if->sk_if_flags = ifp->if_flags;
1045 		error = 0;
1046 		break;
1047 
1048 	default:
1049 	        DPRINTFN(2, ("sk_ioctl ETHER\n"));
1050 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1051 			break;
1052 
1053 		error = 0;
1054 
1055 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1056 			;
1057 		else if (ifp->if_flags & IFF_RUNNING) {
1058 			sk_setmulti(sc_if);
1059 			DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1060 		}
1061 		break;
1062 	}
1063 
1064 	splx(s);
1065 	return error;
1066 }
1067 
1068 void
1069 sk_update_int_mod(struct sk_softc *sc)
1070 {
1071 	u_int32_t imtimer_ticks;
1072 
1073 	/*
1074          * Configure interrupt moderation. The moderation timer
1075 	 * defers interrupts specified in the interrupt moderation
1076 	 * timer mask based on the timeout specified in the interrupt
1077 	 * moderation timer init register. Each bit in the timer
1078 	 * register represents one tick, so to specify a timeout in
1079 	 * microseconds, we have to multiply by the correct number of
1080 	 * ticks-per-microsecond.
1081 	 */
1082 	switch (sc->sk_type) {
1083 	case SK_GENESIS:
1084 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1085 		break;
1086 	case SK_YUKON_EC:
1087 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1088 		break;
1089 	default:
1090 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1091 	}
1092 	aprint_verbose("%s: interrupt moderation is %d us\n",
1093 	    sc->sk_dev.dv_xname, sc->sk_int_mod);
1094         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1095         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1096 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1097         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1098 	sc->sk_int_mod_pending = 0;
1099 }
1100 
1101 /*
1102  * Lookup: Check the PCI vendor and device, and return a pointer to
1103  * The structure if the IDs match against our list.
1104  */
1105 
1106 static const struct sk_product *
1107 sk_lookup(const struct pci_attach_args *pa)
1108 {
1109 	const struct sk_product *psk;
1110 
1111 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1112 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1113 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1114 			return psk;
1115 	}
1116 	return NULL;
1117 }
1118 
1119 /*
1120  * Probe for a SysKonnect GEnesis chip.
1121  */
1122 
1123 int
1124 skc_probe(struct device *parent, struct cfdata *match,
1125     void *aux)
1126 {
1127 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1128 	const struct sk_product *psk;
1129 	pcireg_t subid;
1130 
1131 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1132 
1133 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
1134 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1135 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1136 	    subid == SK_LINKSYS_EG1032_SUBID)
1137 		return 1;
1138 
1139 	if ((psk = sk_lookup(pa))) {
1140 		return 1;
1141 	}
1142 	return 0;
1143 }
1144 
1145 /*
1146  * Force the GEnesis into reset, then bring it out of reset.
1147  */
1148 void sk_reset(struct sk_softc *sc)
1149 {
1150 	DPRINTFN(2, ("sk_reset\n"));
1151 
1152 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1153 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1154 	if (SK_YUKON_FAMILY(sc->sk_type))
1155 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1156 
1157 	DELAY(1000);
1158 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1159 	DELAY(2);
1160 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1161 	if (SK_YUKON_FAMILY(sc->sk_type))
1162 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1163 
1164 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1165 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1166 		     CSR_READ_2(sc, SK_LINK_CTRL)));
1167 
1168 	if (sc->sk_type == SK_GENESIS) {
1169 		/* Configure packet arbiter */
1170 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1171 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1172 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1173 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1174 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1175 	}
1176 
1177 	/* Enable RAM interface */
1178 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1179 
1180 	sk_update_int_mod(sc);
1181 }
1182 
1183 int
1184 sk_probe(struct device *parent, struct cfdata *match,
1185     void *aux)
1186 {
1187 	struct skc_attach_args *sa = aux;
1188 
1189 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1190 		return 0;
1191 
1192 	return 1;
1193 }
1194 
1195 /*
1196  * Each XMAC chip is attached as a separate logical IP interface.
1197  * Single port cards will have only one logical interface of course.
1198  */
1199 void
1200 sk_attach(struct device *parent, struct device *self, void *aux)
1201 {
1202 	struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
1203 	struct sk_softc *sc = (struct sk_softc *)parent;
1204 	struct skc_attach_args *sa = aux;
1205 	struct sk_txmap_entry	*entry;
1206 	struct ifnet *ifp;
1207 	bus_dma_segment_t seg;
1208 	bus_dmamap_t dmamap;
1209 	void *kva;
1210 	int i, rseg;
1211 
1212 	aprint_naive("\n");
1213 
1214 	sc_if->sk_port = sa->skc_port;
1215 	sc_if->sk_softc = sc;
1216 	sc->sk_if[sa->skc_port] = sc_if;
1217 
1218 	if (sa->skc_port == SK_PORT_A)
1219 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1220 	if (sa->skc_port == SK_PORT_B)
1221 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1222 
1223 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1224 
1225 	/*
1226 	 * Get station address for this interface. Note that
1227 	 * dual port cards actually come with three station
1228 	 * addresses: one for each port, plus an extra. The
1229 	 * extra one is used by the SysKonnect driver software
1230 	 * as a 'virtual' station address for when both ports
1231 	 * are operating in failover mode. Currently we don't
1232 	 * use this extra address.
1233 	 */
1234 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1235 		sc_if->sk_enaddr[i] =
1236 			sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1237 
1238 
1239 	aprint_normal(": Ethernet address %s\n",
1240 	    ether_sprintf(sc_if->sk_enaddr));
1241 
1242 	/*
1243 	 * Set up RAM buffer addresses. The NIC will have a certain
1244 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1245 	 * need to divide this up a) between the transmitter and
1246  	 * receiver and b) between the two XMACs, if this is a
1247 	 * dual port NIC. Our algorithm is to divide up the memory
1248 	 * evenly so that everyone gets a fair share.
1249 	 */
1250 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1251 		u_int32_t		chunk, val;
1252 
1253 		chunk = sc->sk_ramsize / 2;
1254 		val = sc->sk_rboff / sizeof(u_int64_t);
1255 		sc_if->sk_rx_ramstart = val;
1256 		val += (chunk / sizeof(u_int64_t));
1257 		sc_if->sk_rx_ramend = val - 1;
1258 		sc_if->sk_tx_ramstart = val;
1259 		val += (chunk / sizeof(u_int64_t));
1260 		sc_if->sk_tx_ramend = val - 1;
1261 	} else {
1262 		u_int32_t		chunk, val;
1263 
1264 		chunk = sc->sk_ramsize / 4;
1265 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1266 		    sizeof(u_int64_t);
1267 		sc_if->sk_rx_ramstart = val;
1268 		val += (chunk / sizeof(u_int64_t));
1269 		sc_if->sk_rx_ramend = val - 1;
1270 		sc_if->sk_tx_ramstart = val;
1271 		val += (chunk / sizeof(u_int64_t));
1272 		sc_if->sk_tx_ramend = val - 1;
1273 	}
1274 
1275 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1276 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
1277 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1278 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1279 
1280 	/* Read and save PHY type and set PHY address */
1281 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1282 	switch (sc_if->sk_phytype) {
1283 	case SK_PHYTYPE_XMAC:
1284 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1285 		break;
1286 	case SK_PHYTYPE_BCOM:
1287 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1288 		break;
1289 	case SK_PHYTYPE_MARV_COPPER:
1290 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1291 		break;
1292 	default:
1293 		aprint_error("%s: unsupported PHY type: %d\n",
1294 		    sc->sk_dev.dv_xname, sc_if->sk_phytype);
1295 		return;
1296 	}
1297 
1298 	/* Allocate the descriptor queues. */
1299 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1300 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1301 		aprint_error("%s: can't alloc rx buffers\n",
1302 		    sc->sk_dev.dv_xname);
1303 		goto fail;
1304 	}
1305 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1306 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1307 		aprint_error("%s: can't map dma buffers (%lu bytes)\n",
1308 		       sc_if->sk_dev.dv_xname,
1309 		       (u_long) sizeof(struct sk_ring_data));
1310 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1311 		goto fail;
1312 	}
1313 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1314 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1315             &sc_if->sk_ring_map)) {
1316 		aprint_error("%s: can't create dma map\n",
1317 		    sc_if->sk_dev.dv_xname);
1318 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1319 		    sizeof(struct sk_ring_data));
1320 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1321 		goto fail;
1322 	}
1323 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1324 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1325 		aprint_error("%s: can't load dma map\n",
1326 		    sc_if->sk_dev.dv_xname);
1327 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1328 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1329 		    sizeof(struct sk_ring_data));
1330 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1331 		goto fail;
1332 	}
1333 
1334 	for (i = 0; i < SK_RX_RING_CNT; i++)
1335 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1336 
1337 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1338 	for (i = 0; i < SK_TX_RING_CNT; i++) {
1339 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1340 
1341 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1342 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1343 			aprint_error("%s: Can't create TX dmamap\n",
1344 				sc_if->sk_dev.dv_xname);
1345 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1346 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1347 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1348 			    sizeof(struct sk_ring_data));
1349 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1350 			goto fail;
1351 		}
1352 
1353 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1354 		if (!entry) {
1355 			aprint_error("%s: Can't alloc txmap entry\n",
1356 				sc_if->sk_dev.dv_xname);
1357 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1358 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1359 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1360 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1361 			    sizeof(struct sk_ring_data));
1362 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1363 			goto fail;
1364 		}
1365 		entry->dmamap = dmamap;
1366 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1367 	}
1368 
1369         sc_if->sk_rdata = (struct sk_ring_data *)kva;
1370 	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1371 
1372 	ifp = &sc_if->sk_ethercom.ec_if;
1373 	/* Try to allocate memory for jumbo buffers. */
1374 	if (sk_alloc_jumbo_mem(sc_if)) {
1375 		aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1376 		goto fail;
1377 	}
1378 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1379 		| ETHERCAP_JUMBO_MTU;
1380 
1381 	ifp->if_softc = sc_if;
1382 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1383 	ifp->if_ioctl = sk_ioctl;
1384 	ifp->if_start = sk_start;
1385 	ifp->if_stop = sk_stop;
1386 	ifp->if_init = sk_init;
1387 	ifp->if_watchdog = sk_watchdog;
1388 	ifp->if_capabilities = 0;
1389 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1390 	IFQ_SET_READY(&ifp->if_snd);
1391 	strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
1392 
1393 	/*
1394 	 * Do miibus setup.
1395 	 */
1396 	switch (sc->sk_type) {
1397 	case SK_GENESIS:
1398 		sk_init_xmac(sc_if);
1399 		break;
1400 	case SK_YUKON:
1401 	case SK_YUKON_LITE:
1402 	case SK_YUKON_LP:
1403 		sk_init_yukon(sc_if);
1404 		break;
1405 	default:
1406 		aprint_error("%s: unknown device type %d\n",
1407 		    sc->sk_dev.dv_xname, sc->sk_type);
1408 		goto fail;
1409 	}
1410 
1411  	DPRINTFN(2, ("sk_attach: 1\n"));
1412 
1413 	sc_if->sk_mii.mii_ifp = ifp;
1414 	switch (sc->sk_type) {
1415 	case SK_GENESIS:
1416 		sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1417 		sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1418 		sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1419 		break;
1420 	case SK_YUKON:
1421 	case SK_YUKON_LITE:
1422 	case SK_YUKON_LP:
1423 		sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1424 		sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1425 		sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1426 		break;
1427 	}
1428 
1429 	sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1430 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1431 	    sk_ifmedia_upd, ether_mediastatus);
1432 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1433 	    MII_OFFSET_ANY, 0);
1434 	if (LIST_EMPTY(&sc_if->sk_mii.mii_phys)) {
1435 		aprint_error("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
1436 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1437 			    0, NULL);
1438 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1439 	} else
1440 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1441 
1442 	callout_init(&sc_if->sk_tick_ch, 0);
1443 	callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1444 
1445 	DPRINTFN(2, ("sk_attach: 1\n"));
1446 
1447 	/*
1448 	 * Call MI attach routines.
1449 	 */
1450 	if_attach(ifp);
1451 
1452 	ether_ifattach(ifp, sc_if->sk_enaddr);
1453 
1454 #if NRND > 0
1455         rnd_attach_source(&sc->rnd_source, sc->sk_dev.dv_xname,
1456             RND_TYPE_NET, 0);
1457 #endif
1458 
1459 	DPRINTFN(2, ("sk_attach: end\n"));
1460 
1461 	return;
1462 
1463 fail:
1464 	sc->sk_if[sa->skc_port] = NULL;
1465 }
1466 
1467 int
1468 skcprint(void *aux, const char *pnp)
1469 {
1470 	struct skc_attach_args *sa = aux;
1471 
1472 	if (pnp)
1473 		aprint_normal("sk port %c at %s",
1474 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1475 	else
1476 		aprint_normal(" port %c",
1477 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1478 	return UNCONF;
1479 }
1480 
1481 /*
1482  * Attach the interface. Allocate softc structures, do ifmedia
1483  * setup and ethernet/BPF attach.
1484  */
1485 void
1486 skc_attach(struct device *parent, struct device *self, void *aux)
1487 {
1488 	struct sk_softc *sc = (struct sk_softc *)self;
1489 	struct pci_attach_args *pa = aux;
1490 	struct skc_attach_args skca;
1491 	pci_chipset_tag_t pc = pa->pa_pc;
1492 #ifndef SK_USEIOSPACE
1493 	pcireg_t memtype;
1494 #endif
1495 	pci_intr_handle_t ih;
1496 	const char *intrstr = NULL;
1497 	bus_addr_t iobase;
1498 	bus_size_t iosize;
1499 	int rc, sk_nodenum;
1500 	u_int32_t command;
1501 	const char *revstr;
1502 	const struct sysctlnode *node;
1503 
1504 	aprint_naive("\n");
1505 
1506 	DPRINTFN(2, ("begin skc_attach\n"));
1507 
1508 	/*
1509 	 * Handle power management nonsense.
1510 	 */
1511 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1512 
1513 	if (command == 0x01) {
1514 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1515 		if (command & SK_PSTATE_MASK) {
1516 			u_int32_t		xiobase, membase, irq;
1517 
1518 			/* Save important PCI config data. */
1519 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1520 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1521 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1522 
1523 			/* Reset the power state. */
1524 			aprint_normal("%s chip is in D%d power mode "
1525 			    "-- setting to D0\n", sc->sk_dev.dv_xname,
1526 			    command & SK_PSTATE_MASK);
1527 			command &= 0xFFFFFFFC;
1528 			pci_conf_write(pc, pa->pa_tag,
1529 			    SK_PCI_PWRMGMTCTRL, command);
1530 
1531 			/* Restore PCI config data. */
1532 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1533 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1534 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1535 		}
1536 	}
1537 
1538 	/*
1539 	 * Map control/status registers.
1540 	 */
1541 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1542 	command |= PCI_COMMAND_IO_ENABLE |
1543 	    PCI_COMMAND_MEM_ENABLE |
1544 	    PCI_COMMAND_MASTER_ENABLE;
1545 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1546 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1547 
1548 #ifdef SK_USEIOSPACE
1549 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
1550 		aprint_error(": failed to enable I/O ports!\n");
1551 		return;
1552 	}
1553 	/*
1554 	 * Map control/status registers.
1555 	 */
1556 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1557 			&sc->sk_btag, &sc->sk_bhandle,
1558 			&iobase, &iosize)) {
1559 		aprint_error(": can't find i/o space\n");
1560 		return;
1561 	}
1562 #else
1563 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1564 		aprint_error(": failed to enable memory mapping!\n");
1565 		return;
1566 	}
1567 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1568 	switch (memtype) {
1569         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1570         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1571                 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1572 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1573 				   &iobase, &iosize) == 0)
1574                         break;
1575         default:
1576                 aprint_error("%s: can't find mem space\n",
1577 		       sc->sk_dev.dv_xname);
1578                 return;
1579 	}
1580 
1581 	DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
1582 #endif
1583 	sc->sc_dmatag = pa->pa_dmat;
1584 
1585 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1586 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1587 
1588 	/* bail out here if chip is not recognized */
1589 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1590 		aprint_error("%s: unknown chip type\n",sc->sk_dev.dv_xname);
1591 		goto fail;
1592 	}
1593 	if (SK_IS_YUKON2(sc)) {
1594 		aprint_error("%s: Does not support Yukon2--try msk(4).\n",
1595 		    sc->sk_dev.dv_xname);
1596 		goto fail;
1597 	}
1598 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1599 
1600 	/* Allocate interrupt */
1601 	if (pci_intr_map(pa, &ih)) {
1602 		aprint_error(": couldn't map interrupt\n");
1603 		goto fail;
1604 	}
1605 
1606 	intrstr = pci_intr_string(pc, ih);
1607 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1608 	if (sc->sk_intrhand == NULL) {
1609 		aprint_error(": couldn't establish interrupt");
1610 		if (intrstr != NULL)
1611 			aprint_normal(" at %s", intrstr);
1612 		goto fail;
1613 	}
1614 	aprint_normal(": %s\n", intrstr);
1615 
1616 	/* Reset the adapter. */
1617 	sk_reset(sc);
1618 
1619 	/* Read and save vital product data from EEPROM. */
1620 	sk_vpd_read(sc);
1621 
1622 	if (sc->sk_type == SK_GENESIS) {
1623 		u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1624 		/* Read and save RAM size and RAMbuffer offset */
1625 		switch (val) {
1626 		case SK_RAMSIZE_512K_64:
1627 			sc->sk_ramsize = 0x80000;
1628 			sc->sk_rboff = SK_RBOFF_0;
1629 			break;
1630 		case SK_RAMSIZE_1024K_64:
1631 			sc->sk_ramsize = 0x100000;
1632 			sc->sk_rboff = SK_RBOFF_80000;
1633 			break;
1634 		case SK_RAMSIZE_1024K_128:
1635 			sc->sk_ramsize = 0x100000;
1636 			sc->sk_rboff = SK_RBOFF_0;
1637 			break;
1638 		case SK_RAMSIZE_2048K_128:
1639 			sc->sk_ramsize = 0x200000;
1640 			sc->sk_rboff = SK_RBOFF_0;
1641 			break;
1642 		default:
1643 			aprint_error("%s: unknown ram size: %d\n",
1644 			       sc->sk_dev.dv_xname, val);
1645 			goto fail_1;
1646 			break;
1647 		}
1648 
1649 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1650 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
1651 			     sc->sk_rboff));
1652 	} else {
1653 	  	u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1654 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
1655 		sc->sk_rboff = SK_RBOFF_0;
1656 
1657 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1658 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
1659 			     sc->sk_rboff));
1660 	}
1661 
1662 	/* Read and save physical media type */
1663 	switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1664 	case SK_PMD_1000BASESX:
1665 		sc->sk_pmd = IFM_1000_SX;
1666 		break;
1667 	case SK_PMD_1000BASELX:
1668 		sc->sk_pmd = IFM_1000_LX;
1669 		break;
1670 	case SK_PMD_1000BASECX:
1671 		sc->sk_pmd = IFM_1000_CX;
1672 		break;
1673 	case SK_PMD_1000BASETX:
1674 	case SK_PMD_1000BASETX_ALT:
1675 		sc->sk_pmd = IFM_1000_T;
1676 		break;
1677 	default:
1678 		aprint_error("%s: unknown media type: 0x%x\n",
1679 		    sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
1680 		goto fail_1;
1681 	}
1682 
1683 	/* determine whether to name it with vpd or just make it up */
1684 	/* Marvell Yukon VPD's can freqently be bogus */
1685 
1686 	switch (pa->pa_id) {
1687 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1688 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1689 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1690 	case PCI_PRODUCT_3COM_3C940:
1691 	case PCI_PRODUCT_DLINK_DGE530T:
1692 	case PCI_PRODUCT_DLINK_DGE560T:
1693 	case PCI_PRODUCT_DLINK_DGE560T_2:
1694 	case PCI_PRODUCT_LINKSYS_EG1032:
1695 	case PCI_PRODUCT_LINKSYS_EG1064:
1696 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1697 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1698 	case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1699 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1700 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
1701 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
1702 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1703 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1704  		sc->sk_name = sc->sk_vpd_prodname;
1705  		break;
1706 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
1707 	/* whoops yukon vpd prodname bears no resemblance to reality */
1708 		switch (sc->sk_type) {
1709 		case SK_GENESIS:
1710 			sc->sk_name = sc->sk_vpd_prodname;
1711 			break;
1712 		case SK_YUKON:
1713 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1714 			break;
1715 		case SK_YUKON_LITE:
1716 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1717 			break;
1718 		case SK_YUKON_LP:
1719 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1720 			break;
1721 		default:
1722 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1723 		}
1724 
1725 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1726 
1727 		if ( sc->sk_type == SK_YUKON ) {
1728 			uint32_t flashaddr;
1729 			uint8_t testbyte;
1730 
1731 			flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1732 
1733 			/* test Flash-Address Register */
1734 			sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1735 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1736 
1737 			if (testbyte != 0) {
1738 				/* this is yukon lite Rev. A0 */
1739 				sc->sk_type = SK_YUKON_LITE;
1740 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
1741 				/* restore Flash-Address Register */
1742 				sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1743 			}
1744 		}
1745 		break;
1746 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
1747 		sc->sk_name = sc->sk_vpd_prodname;
1748 		break;
1749  	default:
1750 		sc->sk_name = "Unknown Marvell";
1751 	}
1752 
1753 
1754 	if ( sc->sk_type == SK_YUKON_LITE ) {
1755 		switch (sc->sk_rev) {
1756 		case SK_YUKON_LITE_REV_A0:
1757 			revstr = "A0";
1758 			break;
1759 		case SK_YUKON_LITE_REV_A1:
1760 			revstr = "A1";
1761 			break;
1762 		case SK_YUKON_LITE_REV_A3:
1763 			revstr = "A3";
1764 			break;
1765 		default:
1766 			revstr = "";
1767 		}
1768 	} else {
1769 		revstr = "";
1770 	}
1771 
1772 	/* Announce the product name. */
1773 	aprint_normal("%s: %s rev. %s(0x%x)\n", sc->sk_dev.dv_xname,
1774 			      sc->sk_name, revstr, sc->sk_rev);
1775 
1776 	skca.skc_port = SK_PORT_A;
1777 	(void)config_found(&sc->sk_dev, &skca, skcprint);
1778 
1779 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1780 		skca.skc_port = SK_PORT_B;
1781 		(void)config_found(&sc->sk_dev, &skca, skcprint);
1782 	}
1783 
1784 	/* Turn on the 'driver is loaded' LED. */
1785 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1786 
1787 	/* skc sysctl setup */
1788 
1789 	sc->sk_int_mod = SK_IM_DEFAULT;
1790 	sc->sk_int_mod_pending = 0;
1791 
1792 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1793 	    0, CTLTYPE_NODE, sc->sk_dev.dv_xname,
1794 	    SYSCTL_DESCR("skc per-controller controls"),
1795 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1796 	    CTL_EOL)) != 0) {
1797 		aprint_normal("%s: couldn't create sysctl node\n",
1798 		    sc->sk_dev.dv_xname);
1799 		goto fail_1;
1800 	}
1801 
1802 	sk_nodenum = node->sysctl_num;
1803 
1804 	/* interrupt moderation time in usecs */
1805 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1806 	    CTLFLAG_READWRITE,
1807 	    CTLTYPE_INT, "int_mod",
1808 	    SYSCTL_DESCR("sk interrupt moderation timer"),
1809 	    sk_sysctl_handler, 0, sc,
1810 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1811 	    CTL_EOL)) != 0) {
1812 		aprint_normal("%s: couldn't create int_mod sysctl node\n",
1813 		    sc->sk_dev.dv_xname);
1814 		goto fail_1;
1815 	}
1816 
1817 	return;
1818 
1819 fail_1:
1820 	pci_intr_disestablish(pc, sc->sk_intrhand);
1821 fail:
1822 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1823 }
1824 
1825 int
1826 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1827 {
1828 	struct sk_softc		*sc = sc_if->sk_softc;
1829 	struct sk_tx_desc	*f = NULL;
1830 	u_int32_t		frag, cur, cnt = 0, sk_ctl;
1831 	int			i;
1832 	struct sk_txmap_entry	*entry;
1833 	bus_dmamap_t		txmap;
1834 
1835 	DPRINTFN(3, ("sk_encap\n"));
1836 
1837 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1838 	if (entry == NULL) {
1839 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
1840 		return ENOBUFS;
1841 	}
1842 	txmap = entry->dmamap;
1843 
1844 	cur = frag = *txidx;
1845 
1846 #ifdef SK_DEBUG
1847 	if (skdebug >= 3)
1848 		sk_dump_mbuf(m_head);
1849 #endif
1850 
1851 	/*
1852 	 * Start packing the mbufs in this chain into
1853 	 * the fragment pointers. Stop when we run out
1854 	 * of fragments or hit the end of the mbuf chain.
1855 	 */
1856 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1857 	    BUS_DMA_NOWAIT)) {
1858 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1859 		return ENOBUFS;
1860 	}
1861 
1862 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1863 
1864 	/* Sync the DMA map. */
1865 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1866 	    BUS_DMASYNC_PREWRITE);
1867 
1868 	for (i = 0; i < txmap->dm_nsegs; i++) {
1869 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1870 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1871 			return ENOBUFS;
1872 		}
1873 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
1874 		f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1875 		sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1876 		if (cnt == 0)
1877 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
1878 		else
1879 			sk_ctl |= SK_TXCTL_OWN;
1880 		f->sk_ctl = htole32(sk_ctl);
1881 		cur = frag;
1882 		SK_INC(frag, SK_TX_RING_CNT);
1883 		cnt++;
1884 	}
1885 
1886 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1887 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1888 
1889 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
1890 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1891 		htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1892 
1893 	/* Sync descriptors before handing to chip */
1894 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1895 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1896 
1897 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1898 		htole32(SK_TXCTL_OWN);
1899 
1900 	/* Sync first descriptor to hand it off */
1901 	SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1902 
1903 	sc_if->sk_cdata.sk_tx_cnt += cnt;
1904 
1905 #ifdef SK_DEBUG
1906 	if (skdebug >= 3) {
1907 		struct sk_tx_desc *desc;
1908 		u_int32_t idx;
1909 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1910 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1911 			sk_dump_txdesc(desc, idx);
1912 		}
1913 	}
1914 #endif
1915 
1916 	*txidx = frag;
1917 
1918 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
1919 
1920 	return 0;
1921 }
1922 
1923 void
1924 sk_start(struct ifnet *ifp)
1925 {
1926         struct sk_if_softc	*sc_if = ifp->if_softc;
1927         struct sk_softc		*sc = sc_if->sk_softc;
1928         struct mbuf		*m_head = NULL;
1929         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
1930 	int			pkts = 0;
1931 
1932 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1933 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1934 
1935 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1936 		IFQ_POLL(&ifp->if_snd, m_head);
1937 		if (m_head == NULL)
1938 			break;
1939 
1940 		/*
1941 		 * Pack the data into the transmit ring. If we
1942 		 * don't have room, set the OACTIVE flag and wait
1943 		 * for the NIC to drain the ring.
1944 		 */
1945 		if (sk_encap(sc_if, m_head, &idx)) {
1946 			ifp->if_flags |= IFF_OACTIVE;
1947 			break;
1948 		}
1949 
1950 		/* now we are committed to transmit the packet */
1951 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1952 		pkts++;
1953 
1954 		/*
1955 		 * If there's a BPF listener, bounce a copy of this frame
1956 		 * to him.
1957 		 */
1958 #if NBPFILTER > 0
1959 		if (ifp->if_bpf)
1960 			bpf_mtap(ifp->if_bpf, m_head);
1961 #endif
1962 	}
1963 	if (pkts == 0)
1964 		return;
1965 
1966 	/* Transmit */
1967 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
1968 		sc_if->sk_cdata.sk_tx_prod = idx;
1969 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1970 
1971 		/* Set a timeout in case the chip goes out to lunch. */
1972 		ifp->if_timer = 5;
1973 	}
1974 }
1975 
1976 
1977 void
1978 sk_watchdog(struct ifnet *ifp)
1979 {
1980 	struct sk_if_softc *sc_if = ifp->if_softc;
1981 
1982 	/*
1983 	 * Reclaim first as there is a possibility of losing Tx completion
1984 	 * interrupts.
1985 	 */
1986 	sk_txeof(sc_if);
1987 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1988 		aprint_error("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
1989 
1990 		ifp->if_oerrors++;
1991 
1992 		sk_init(ifp);
1993 	}
1994 }
1995 
1996 void
1997 sk_shutdown(void *v)
1998 {
1999 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
2000 	struct sk_softc		*sc = sc_if->sk_softc;
2001 	struct ifnet 		*ifp = &sc_if->sk_ethercom.ec_if;
2002 
2003 	DPRINTFN(2, ("sk_shutdown\n"));
2004 	sk_stop(ifp,1);
2005 
2006 	/* Turn off the 'driver is loaded' LED. */
2007 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2008 
2009 	/*
2010 	 * Reset the GEnesis controller. Doing this should also
2011 	 * assert the resets on the attached XMAC(s).
2012 	 */
2013 	sk_reset(sc);
2014 }
2015 
2016 void
2017 sk_rxeof(struct sk_if_softc *sc_if)
2018 {
2019 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2020 	struct mbuf		*m;
2021 	struct sk_chain		*cur_rx;
2022 	struct sk_rx_desc	*cur_desc;
2023 	int			i, cur, total_len = 0;
2024 	u_int32_t		rxstat, sk_ctl;
2025 	bus_dmamap_t		dmamap;
2026 
2027 	i = sc_if->sk_cdata.sk_rx_prod;
2028 
2029 	DPRINTFN(3, ("sk_rxeof %d\n", i));
2030 
2031 	for (;;) {
2032 		cur = i;
2033 
2034 		/* Sync the descriptor */
2035 		SK_CDRXSYNC(sc_if, cur,
2036 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2037 
2038 		sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2039 		if (sk_ctl & SK_RXCTL_OWN) {
2040 			/* Invalidate the descriptor -- it's not ready yet */
2041 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2042 			sc_if->sk_cdata.sk_rx_prod = i;
2043 			break;
2044 		}
2045 
2046 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2047 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2048 		dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2049 
2050 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2051 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2052 
2053 		rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2054 		m = cur_rx->sk_mbuf;
2055 		cur_rx->sk_mbuf = NULL;
2056 		total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2057 
2058 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
2059 
2060 		SK_INC(i, SK_RX_RING_CNT);
2061 
2062 		if (rxstat & XM_RXSTAT_ERRFRAME) {
2063 			ifp->if_ierrors++;
2064 			sk_newbuf(sc_if, cur, m, dmamap);
2065 			continue;
2066 		}
2067 
2068 		/*
2069 		 * Try to allocate a new jumbo buffer. If that
2070 		 * fails, copy the packet to mbufs and put the
2071 		 * jumbo buffer back in the ring so it can be
2072 		 * re-used. If allocating mbufs fails, then we
2073 		 * have to drop the packet.
2074 		 */
2075 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2076 			struct mbuf		*m0;
2077 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2078 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
2079 			sk_newbuf(sc_if, cur, m, dmamap);
2080 			if (m0 == NULL) {
2081 				aprint_error("%s: no receive buffers "
2082 				    "available -- packet dropped!\n",
2083 				    sc_if->sk_dev.dv_xname);
2084 				ifp->if_ierrors++;
2085 				continue;
2086 			}
2087 			m_adj(m0, ETHER_ALIGN);
2088 			m = m0;
2089 		} else {
2090 			m->m_pkthdr.rcvif = ifp;
2091 			m->m_pkthdr.len = m->m_len = total_len;
2092 		}
2093 
2094 		ifp->if_ipackets++;
2095 
2096 #if NBPFILTER > 0
2097 		if (ifp->if_bpf)
2098 			bpf_mtap(ifp->if_bpf, m);
2099 #endif
2100 		/* pass it on. */
2101 		(*ifp->if_input)(ifp, m);
2102 	}
2103 }
2104 
2105 void
2106 sk_txeof(struct sk_if_softc *sc_if)
2107 {
2108 	struct sk_softc		*sc = sc_if->sk_softc;
2109 	struct sk_tx_desc	*cur_tx;
2110 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2111 	u_int32_t		idx, sk_ctl;
2112 	struct sk_txmap_entry	*entry;
2113 
2114 	DPRINTFN(3, ("sk_txeof\n"));
2115 
2116 	/*
2117 	 * Go through our tx ring and free mbufs for those
2118 	 * frames that have been sent.
2119 	 */
2120 	idx = sc_if->sk_cdata.sk_tx_cons;
2121 	while (idx != sc_if->sk_cdata.sk_tx_prod) {
2122 		SK_CDTXSYNC(sc_if, idx, 1,
2123 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2124 
2125 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2126 		sk_ctl = le32toh(cur_tx->sk_ctl);
2127 #ifdef SK_DEBUG
2128 		if (skdebug >= 3)
2129 			sk_dump_txdesc(cur_tx, idx);
2130 #endif
2131 		if (sk_ctl & SK_TXCTL_OWN) {
2132 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2133 			break;
2134 		}
2135 		if (sk_ctl & SK_TXCTL_LASTFRAG)
2136 			ifp->if_opackets++;
2137 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2138 			entry = sc_if->sk_cdata.sk_tx_map[idx];
2139 
2140 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2141 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2142 
2143 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2144 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2145 
2146 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2147 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2148 					  link);
2149 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2150 		}
2151 		sc_if->sk_cdata.sk_tx_cnt--;
2152 		SK_INC(idx, SK_TX_RING_CNT);
2153 	}
2154 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
2155 		ifp->if_timer = 0;
2156 	else /* nudge chip to keep tx ring moving */
2157 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2158 
2159 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2160 		ifp->if_flags &= ~IFF_OACTIVE;
2161 
2162 	sc_if->sk_cdata.sk_tx_cons = idx;
2163 }
2164 
2165 void
2166 sk_tick(void *xsc_if)
2167 {
2168 	struct sk_if_softc *sc_if = xsc_if;
2169 	struct mii_data *mii = &sc_if->sk_mii;
2170 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2171 	int i;
2172 
2173 	DPRINTFN(3, ("sk_tick\n"));
2174 
2175 	if (!(ifp->if_flags & IFF_UP))
2176 		return;
2177 
2178 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2179 		sk_intr_bcom(sc_if);
2180 		return;
2181 	}
2182 
2183 	/*
2184 	 * According to SysKonnect, the correct way to verify that
2185 	 * the link has come back up is to poll bit 0 of the GPIO
2186 	 * register three times. This pin has the signal from the
2187 	 * link sync pin connected to it; if we read the same link
2188 	 * state 3 times in a row, we know the link is up.
2189 	 */
2190 	for (i = 0; i < 3; i++) {
2191 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2192 			break;
2193 	}
2194 
2195 	if (i != 3) {
2196 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2197 		return;
2198 	}
2199 
2200 	/* Turn the GP0 interrupt back on. */
2201 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2202 	SK_XM_READ_2(sc_if, XM_ISR);
2203 	mii_tick(mii);
2204 	mii_pollstat(mii);
2205 	callout_stop(&sc_if->sk_tick_ch);
2206 }
2207 
2208 void
2209 sk_intr_bcom(struct sk_if_softc *sc_if)
2210 {
2211 	struct mii_data *mii = &sc_if->sk_mii;
2212 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2213 	int status;
2214 
2215 
2216 	DPRINTFN(3, ("sk_intr_bcom\n"));
2217 
2218 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2219 
2220 	/*
2221 	 * Read the PHY interrupt register to make sure
2222 	 * we clear any pending interrupts.
2223 	 */
2224 	status = sk_xmac_miibus_readreg((struct device *)sc_if,
2225 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2226 
2227 	if (!(ifp->if_flags & IFF_RUNNING)) {
2228 		sk_init_xmac(sc_if);
2229 		return;
2230 	}
2231 
2232 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2233 		int lstat;
2234 		lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
2235 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2236 
2237 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2238 			(void)mii_mediachg(mii);
2239 			/* Turn off the link LED. */
2240 			SK_IF_WRITE_1(sc_if, 0,
2241 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
2242 			sc_if->sk_link = 0;
2243 		} else if (status & BRGPHY_ISR_LNK_CHG) {
2244 			sk_xmac_miibus_writereg((struct device *)sc_if,
2245 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2246 			mii_tick(mii);
2247 			sc_if->sk_link = 1;
2248 			/* Turn on the link LED. */
2249 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2250 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2251 			    SK_LINKLED_BLINK_OFF);
2252 			mii_pollstat(mii);
2253 		} else {
2254 			mii_tick(mii);
2255 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2256 		}
2257 	}
2258 
2259 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2260 }
2261 
2262 void
2263 sk_intr_xmac(struct sk_if_softc	*sc_if)
2264 {
2265 	u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2266 
2267 	DPRINTFN(3, ("sk_intr_xmac\n"));
2268 
2269 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2270 		if (status & XM_ISR_GP0_SET) {
2271 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2272 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2273 		}
2274 
2275 		if (status & XM_ISR_AUTONEG_DONE) {
2276 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2277 		}
2278 	}
2279 
2280 	if (status & XM_IMR_TX_UNDERRUN)
2281 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2282 
2283 	if (status & XM_IMR_RX_OVERRUN)
2284 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2285 }
2286 
2287 void
2288 sk_intr_yukon(struct sk_if_softc *sc_if)
2289 {
2290 	int status;
2291 
2292 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2293 
2294 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2295 }
2296 
2297 int
2298 sk_intr(void *xsc)
2299 {
2300 	struct sk_softc		*sc = xsc;
2301 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
2302 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
2303 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2304 	u_int32_t		status;
2305 	int			claimed = 0;
2306 
2307 	if (sc_if0 != NULL)
2308 		ifp0 = &sc_if0->sk_ethercom.ec_if;
2309 	if (sc_if1 != NULL)
2310 		ifp1 = &sc_if1->sk_ethercom.ec_if;
2311 
2312 	for (;;) {
2313 		status = CSR_READ_4(sc, SK_ISSR);
2314 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2315 
2316 		if (!(status & sc->sk_intrmask))
2317 			break;
2318 
2319 		claimed = 1;
2320 
2321 		/* Handle receive interrupts first. */
2322 		if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2323 			sk_rxeof(sc_if0);
2324 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2325 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2326 		}
2327 		if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2328 			sk_rxeof(sc_if1);
2329 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2330 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2331 		}
2332 
2333 		/* Then transmit interrupts. */
2334 		if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2335 			sk_txeof(sc_if0);
2336 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2337 			    SK_TXBMU_CLR_IRQ_EOF);
2338 		}
2339 		if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2340 			sk_txeof(sc_if1);
2341 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2342 			    SK_TXBMU_CLR_IRQ_EOF);
2343 		}
2344 
2345 		/* Then MAC interrupts. */
2346 		if (sc_if0 && (status & SK_ISR_MAC1) &&
2347 		    (ifp0->if_flags & IFF_RUNNING)) {
2348 			if (sc->sk_type == SK_GENESIS)
2349 				sk_intr_xmac(sc_if0);
2350 			else
2351 				sk_intr_yukon(sc_if0);
2352 		}
2353 
2354 		if (sc_if1 && (status & SK_ISR_MAC2) &&
2355 		    (ifp1->if_flags & IFF_RUNNING)) {
2356 			if (sc->sk_type == SK_GENESIS)
2357 				sk_intr_xmac(sc_if1);
2358 			else
2359 				sk_intr_yukon(sc_if1);
2360 
2361 		}
2362 
2363 		if (status & SK_ISR_EXTERNAL_REG) {
2364 			if (sc_if0 != NULL &&
2365 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2366 				sk_intr_bcom(sc_if0);
2367 
2368 			if (sc_if1 != NULL &&
2369 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2370 				sk_intr_bcom(sc_if1);
2371 		}
2372 	}
2373 
2374 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2375 
2376 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2377 		sk_start(ifp0);
2378 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2379 		sk_start(ifp1);
2380 
2381 #if NRND > 0
2382 	if (RND_ENABLED(&sc->rnd_source))
2383 		rnd_add_uint32(&sc->rnd_source, status);
2384 #endif
2385 
2386 	if (sc->sk_int_mod_pending)
2387 		sk_update_int_mod(sc);
2388 
2389 	return claimed;
2390 }
2391 
2392 void
2393 sk_init_xmac(struct sk_if_softc	*sc_if)
2394 {
2395 	struct sk_softc		*sc = sc_if->sk_softc;
2396 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2397 	static const struct sk_bcom_hack     bhack[] = {
2398 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2399 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2400 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2401 	{ 0, 0 } };
2402 
2403 	DPRINTFN(1, ("sk_init_xmac\n"));
2404 
2405 	/* Unreset the XMAC. */
2406 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2407 	DELAY(1000);
2408 
2409 	/* Reset the XMAC's internal state. */
2410 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2411 
2412 	/* Save the XMAC II revision */
2413 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2414 
2415 	/*
2416 	 * Perform additional initialization for external PHYs,
2417 	 * namely for the 1000baseTX cards that use the XMAC's
2418 	 * GMII mode.
2419 	 */
2420 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2421 		int			i = 0;
2422 		u_int32_t		val;
2423 
2424 		/* Take PHY out of reset. */
2425 		val = sk_win_read_4(sc, SK_GPIO);
2426 		if (sc_if->sk_port == SK_PORT_A)
2427 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2428 		else
2429 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2430 		sk_win_write_4(sc, SK_GPIO, val);
2431 
2432 		/* Enable GMII mode on the XMAC. */
2433 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2434 
2435 		sk_xmac_miibus_writereg((struct device *)sc_if,
2436 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2437 		DELAY(10000);
2438 		sk_xmac_miibus_writereg((struct device *)sc_if,
2439 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2440 
2441 		/*
2442 		 * Early versions of the BCM5400 apparently have
2443 		 * a bug that requires them to have their reserved
2444 		 * registers initialized to some magic values. I don't
2445 		 * know what the numbers do, I'm just the messenger.
2446 		 */
2447 		if (sk_xmac_miibus_readreg((struct device *)sc_if,
2448 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2449 			while (bhack[i].reg) {
2450 				sk_xmac_miibus_writereg((struct device *)sc_if,
2451 				    SK_PHYADDR_BCOM, bhack[i].reg,
2452 				    bhack[i].val);
2453 				i++;
2454 			}
2455 		}
2456 	}
2457 
2458 	/* Set station address */
2459 	SK_XM_WRITE_2(sc_if, XM_PAR0,
2460 		      *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2461 	SK_XM_WRITE_2(sc_if, XM_PAR1,
2462 		      *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2463 	SK_XM_WRITE_2(sc_if, XM_PAR2,
2464 		      *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2465 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2466 
2467 	if (ifp->if_flags & IFF_PROMISC)
2468 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2469 	else
2470 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2471 
2472 	if (ifp->if_flags & IFF_BROADCAST)
2473 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2474 	else
2475 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2476 
2477 	/* We don't need the FCS appended to the packet. */
2478 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2479 
2480 	/* We want short frames padded to 60 bytes. */
2481 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2482 
2483 	/*
2484 	 * Enable the reception of all error frames. This is is
2485 	 * a necessary evil due to the design of the XMAC. The
2486 	 * XMAC's receive FIFO is only 8K in size, however jumbo
2487 	 * frames can be up to 9000 bytes in length. When bad
2488 	 * frame filtering is enabled, the XMAC's RX FIFO operates
2489 	 * in 'store and forward' mode. For this to work, the
2490 	 * entire frame has to fit into the FIFO, but that means
2491 	 * that jumbo frames larger than 8192 bytes will be
2492 	 * truncated. Disabling all bad frame filtering causes
2493 	 * the RX FIFO to operate in streaming mode, in which
2494 	 * case the XMAC will start transfering frames out of the
2495 	 * RX FIFO as soon as the FIFO threshold is reached.
2496 	 */
2497 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2498 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2499 	    XM_MODE_RX_INRANGELEN);
2500 
2501 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2502 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2503 	else
2504 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2505 
2506 	/*
2507 	 * Bump up the transmit threshold. This helps hold off transmit
2508 	 * underruns when we're blasting traffic from both ports at once.
2509 	 */
2510 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2511 
2512 	/* Set multicast filter */
2513 	sk_setmulti(sc_if);
2514 
2515 	/* Clear and enable interrupts */
2516 	SK_XM_READ_2(sc_if, XM_ISR);
2517 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2518 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2519 	else
2520 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2521 
2522 	/* Configure MAC arbiter */
2523 	switch (sc_if->sk_xmac_rev) {
2524 	case XM_XMAC_REV_B2:
2525 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2526 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2527 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2528 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2529 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2530 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2531 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2532 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2533 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2534 		break;
2535 	case XM_XMAC_REV_C1:
2536 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2537 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2538 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2539 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2540 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2541 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2542 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2543 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2544 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2545 		break;
2546 	default:
2547 		break;
2548 	}
2549 	sk_win_write_2(sc, SK_MACARB_CTL,
2550 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2551 
2552 	sc_if->sk_link = 1;
2553 }
2554 
2555 void sk_init_yukon(struct sk_if_softc *sc_if)
2556 {
2557 	u_int32_t		/*mac, */phy;
2558 	u_int16_t		reg;
2559 	struct sk_softc		*sc;
2560 	int			i;
2561 
2562 	DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2563 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2564 
2565 	sc = sc_if->sk_softc;
2566 	if (sc->sk_type == SK_YUKON_LITE &&
2567 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2568 		/* Take PHY out of reset. */
2569 		sk_win_write_4(sc, SK_GPIO,
2570 			(sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2571 	}
2572 
2573 
2574 	/* GMAC and GPHY Reset */
2575 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2576 
2577 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
2578 
2579 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2580 	DELAY(1000);
2581 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2582 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2583 	DELAY(1000);
2584 
2585 
2586 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
2587 
2588 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2589 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2590 
2591 	switch (sc_if->sk_softc->sk_pmd) {
2592 	case IFM_1000_SX:
2593 	case IFM_1000_LX:
2594 		phy |= SK_GPHY_FIBER;
2595 		break;
2596 
2597 	case IFM_1000_CX:
2598 	case IFM_1000_T:
2599 		phy |= SK_GPHY_COPPER;
2600 		break;
2601 	}
2602 
2603 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2604 
2605 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2606 	DELAY(1000);
2607 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2608 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2609 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2610 
2611 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2612 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2613 
2614 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
2615 
2616 	/* unused read of the interrupt source register */
2617 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
2618 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2619 
2620 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2621 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2622 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2623 
2624 	/* MIB Counter Clear Mode set */
2625         reg |= YU_PAR_MIB_CLR;
2626 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2627 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2628 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2629 
2630 	/* MIB Counter Clear Mode clear */
2631 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
2632         reg &= ~YU_PAR_MIB_CLR;
2633 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2634 
2635 	/* receive control reg */
2636 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
2637 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2638 		      YU_RCR_CRCR);
2639 
2640 	/* transmit parameter register */
2641 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
2642 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2643 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2644 
2645 	/* serial mode register */
2646 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
2647 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2648 		      YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2649 		      YU_SMR_IPG_DATA(0x1e));
2650 
2651 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
2652 	/* Setup Yukon's address */
2653 	for (i = 0; i < 3; i++) {
2654 		/* Write Source Address 1 (unicast filter) */
2655 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2656 			      sc_if->sk_enaddr[i * 2] |
2657 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
2658 	}
2659 
2660 	for (i = 0; i < 3; i++) {
2661 		reg = sk_win_read_2(sc_if->sk_softc,
2662 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2663 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2664 	}
2665 
2666 	/* Set multicast filter */
2667 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
2668 	sk_setmulti(sc_if);
2669 
2670 	/* enable interrupt mask for counter overflows */
2671 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
2672 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2673 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2674 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2675 
2676 	/* Configure RX MAC FIFO */
2677 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2678 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2679 
2680 	/* Configure TX MAC FIFO */
2681 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2682 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2683 
2684 	DPRINTFN(6, ("sk_init_yukon: end\n"));
2685 }
2686 
2687 /*
2688  * Note that to properly initialize any part of the GEnesis chip,
2689  * you first have to take it out of reset mode.
2690  */
2691 int
2692 sk_init(struct ifnet *ifp)
2693 {
2694 	struct sk_if_softc	*sc_if = ifp->if_softc;
2695 	struct sk_softc		*sc = sc_if->sk_softc;
2696 	struct mii_data		*mii = &sc_if->sk_mii;
2697 	int			rc = 0, s;
2698 	u_int32_t		imr, imtimer_ticks;
2699 
2700 	DPRINTFN(1, ("sk_init\n"));
2701 
2702 	s = splnet();
2703 
2704 	if (ifp->if_flags & IFF_RUNNING) {
2705 		splx(s);
2706 		return 0;
2707 	}
2708 
2709 	/* Cancel pending I/O and free all RX/TX buffers. */
2710 	sk_stop(ifp,0);
2711 
2712 	if (sc->sk_type == SK_GENESIS) {
2713 		/* Configure LINK_SYNC LED */
2714 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2715 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2716 			      SK_LINKLED_LINKSYNC_ON);
2717 
2718 		/* Configure RX LED */
2719 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2720 			      SK_RXLEDCTL_COUNTER_START);
2721 
2722 		/* Configure TX LED */
2723 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2724 			      SK_TXLEDCTL_COUNTER_START);
2725 	}
2726 
2727 	/* Configure I2C registers */
2728 
2729 	/* Configure XMAC(s) */
2730 	switch (sc->sk_type) {
2731 	case SK_GENESIS:
2732 		sk_init_xmac(sc_if);
2733 		break;
2734 	case SK_YUKON:
2735 	case SK_YUKON_LITE:
2736 	case SK_YUKON_LP:
2737 		sk_init_yukon(sc_if);
2738 		break;
2739 	}
2740 	if ((rc = mii_mediachg(mii)) == ENXIO)
2741 		rc = 0;
2742 	else if (rc != 0)
2743 		goto out;
2744 
2745 	if (sc->sk_type == SK_GENESIS) {
2746 		/* Configure MAC FIFOs */
2747 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2748 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2749 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2750 
2751 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2752 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2753 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2754 	}
2755 
2756 	/* Configure transmit arbiter(s) */
2757 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2758 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2759 
2760 	/* Configure RAMbuffers */
2761 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2762 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2763 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2764 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2765 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2766 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2767 
2768 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2769 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2770 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2771 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2772 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2773 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2774 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2775 
2776 	/* Configure BMUs */
2777 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2778 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2779 	    SK_RX_RING_ADDR(sc_if, 0));
2780 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2781 
2782 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2783 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2784             SK_TX_RING_ADDR(sc_if, 0));
2785 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2786 
2787 	/* Init descriptors */
2788 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2789 		aprint_error("%s: initialization failed: no "
2790 		    "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
2791 		sk_stop(ifp,0);
2792 		splx(s);
2793 		return ENOBUFS;
2794 	}
2795 
2796 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2797 		aprint_error("%s: initialization failed: no "
2798 		    "memory for tx buffers\n", sc_if->sk_dev.dv_xname);
2799 		sk_stop(ifp,0);
2800 		splx(s);
2801 		return ENOBUFS;
2802 	}
2803 
2804 	/* Set interrupt moderation if changed via sysctl. */
2805 	switch (sc->sk_type) {
2806 	case SK_GENESIS:
2807 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2808 		break;
2809 	case SK_YUKON_EC:
2810 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2811 		break;
2812 	default:
2813 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2814 	}
2815 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2816 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2817 		sk_win_write_4(sc, SK_IMTIMERINIT,
2818 		    SK_IM_USECS(sc->sk_int_mod));
2819 		aprint_verbose("%s: interrupt moderation is %d us\n",
2820 		    sc->sk_dev.dv_xname, sc->sk_int_mod);
2821 	}
2822 
2823 	/* Configure interrupt handling */
2824 	CSR_READ_4(sc, SK_ISSR);
2825 	if (sc_if->sk_port == SK_PORT_A)
2826 		sc->sk_intrmask |= SK_INTRS1;
2827 	else
2828 		sc->sk_intrmask |= SK_INTRS2;
2829 
2830 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2831 
2832 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2833 
2834 	/* Start BMUs. */
2835 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2836 
2837 	if (sc->sk_type == SK_GENESIS) {
2838 		/* Enable XMACs TX and RX state machines */
2839 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2840 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2841 			       XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2842 	}
2843 
2844 	if (SK_YUKON_FAMILY(sc->sk_type)) {
2845 		u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2846 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2847 #if 0
2848 		/* XXX disable 100Mbps and full duplex mode? */
2849 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2850 #endif
2851 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2852 	}
2853 
2854 
2855 	ifp->if_flags |= IFF_RUNNING;
2856 	ifp->if_flags &= ~IFF_OACTIVE;
2857 
2858 out:
2859 	splx(s);
2860 	return rc;
2861 }
2862 
2863 void
2864 sk_stop(struct ifnet *ifp, int disable)
2865 {
2866         struct sk_if_softc	*sc_if = ifp->if_softc;
2867 	struct sk_softc		*sc = sc_if->sk_softc;
2868 	int			i;
2869 
2870 	DPRINTFN(1, ("sk_stop\n"));
2871 
2872 	callout_stop(&sc_if->sk_tick_ch);
2873 
2874 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2875 		u_int32_t		val;
2876 
2877 		/* Put PHY back into reset. */
2878 		val = sk_win_read_4(sc, SK_GPIO);
2879 		if (sc_if->sk_port == SK_PORT_A) {
2880 			val |= SK_GPIO_DIR0;
2881 			val &= ~SK_GPIO_DAT0;
2882 		} else {
2883 			val |= SK_GPIO_DIR2;
2884 			val &= ~SK_GPIO_DAT2;
2885 		}
2886 		sk_win_write_4(sc, SK_GPIO, val);
2887 	}
2888 
2889 	/* Turn off various components of this interface. */
2890 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2891 	switch (sc->sk_type) {
2892 	case SK_GENESIS:
2893 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2894 			      SK_TXMACCTL_XMAC_RESET);
2895 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2896 		break;
2897 	case SK_YUKON:
2898 	case SK_YUKON_LITE:
2899 	case SK_YUKON_LP:
2900 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2901 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2902 		break;
2903 	}
2904 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2905 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2906 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2907 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2908 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2909 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2910 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2911 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2912 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2913 
2914 	/* Disable interrupts */
2915 	if (sc_if->sk_port == SK_PORT_A)
2916 		sc->sk_intrmask &= ~SK_INTRS1;
2917 	else
2918 		sc->sk_intrmask &= ~SK_INTRS2;
2919 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2920 
2921 	SK_XM_READ_2(sc_if, XM_ISR);
2922 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2923 
2924 	/* Free RX and TX mbufs still in the queues. */
2925 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2926 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2927 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2928 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2929 		}
2930 	}
2931 
2932 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2933 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2934 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2935 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2936 		}
2937 	}
2938 
2939 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2940 }
2941 
2942 CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
2943 
2944 CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
2945 
2946 #ifdef SK_DEBUG
2947 void
2948 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
2949 {
2950 #define DESC_PRINT(X)					\
2951 	if (X)					\
2952 		printf("txdesc[%d]." #X "=%#x\n",	\
2953 		       idx, X);
2954 
2955 	DESC_PRINT(le32toh(desc->sk_ctl));
2956 	DESC_PRINT(le32toh(desc->sk_next));
2957 	DESC_PRINT(le32toh(desc->sk_data_lo));
2958 	DESC_PRINT(le32toh(desc->sk_data_hi));
2959 	DESC_PRINT(le32toh(desc->sk_xmac_txstat));
2960 	DESC_PRINT(le16toh(desc->sk_rsvd0));
2961 	DESC_PRINT(le16toh(desc->sk_csum_startval));
2962 	DESC_PRINT(le16toh(desc->sk_csum_startpos));
2963 	DESC_PRINT(le16toh(desc->sk_csum_writepos));
2964 	DESC_PRINT(le16toh(desc->sk_rsvd1));
2965 #undef PRINT
2966 }
2967 
2968 void
2969 sk_dump_bytes(const char *data, int len)
2970 {
2971 	int c, i, j;
2972 
2973 	for (i = 0; i < len; i += 16) {
2974 		printf("%08x  ", i);
2975 		c = len - i;
2976 		if (c > 16) c = 16;
2977 
2978 		for (j = 0; j < c; j++) {
2979 			printf("%02x ", data[i + j] & 0xff);
2980 			if ((j & 0xf) == 7 && j > 0)
2981 				printf(" ");
2982 		}
2983 
2984 		for (; j < 16; j++)
2985 			printf("   ");
2986 		printf("  ");
2987 
2988 		for (j = 0; j < c; j++) {
2989 			int ch = data[i + j] & 0xff;
2990 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2991 		}
2992 
2993 		printf("\n");
2994 
2995 		if (c < 16)
2996 			break;
2997 	}
2998 }
2999 
3000 void
3001 sk_dump_mbuf(struct mbuf *m)
3002 {
3003 	int count = m->m_pkthdr.len;
3004 
3005 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3006 
3007 	while (count > 0 && m) {
3008 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3009 		       m, m->m_data, m->m_len);
3010 		sk_dump_bytes(mtod(m, char *), m->m_len);
3011 
3012 		count -= m->m_len;
3013 		m = m->m_next;
3014 	}
3015 }
3016 #endif
3017 
3018 static int
3019 sk_sysctl_handler(SYSCTLFN_ARGS)
3020 {
3021 	int error, t;
3022 	struct sysctlnode node;
3023 	struct sk_softc *sc;
3024 
3025 	node = *rnode;
3026 	sc = node.sysctl_data;
3027 	t = sc->sk_int_mod;
3028 	node.sysctl_data = &t;
3029 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3030 	if (error || newp == NULL)
3031 		return error;
3032 
3033 	if (t < SK_IM_MIN || t > SK_IM_MAX)
3034 		return EINVAL;
3035 
3036 	/* update the softc with sysctl-changed value, and mark
3037 	   for hardware update */
3038 	sc->sk_int_mod = t;
3039 	sc->sk_int_mod_pending = 1;
3040 	return 0;
3041 }
3042 
3043 /*
3044  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3045  * set up in skc_attach()
3046  */
3047 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3048 {
3049 	int rc;
3050 	const struct sysctlnode *node;
3051 
3052 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3053 	    0, CTLTYPE_NODE, "hw", NULL,
3054 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3055 		goto err;
3056 	}
3057 
3058 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
3059 	    0, CTLTYPE_NODE, "sk",
3060 	    SYSCTL_DESCR("sk interface controls"),
3061 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3062 		goto err;
3063 	}
3064 
3065 	sk_root_num = node->sysctl_num;
3066 	return;
3067 
3068 err:
3069 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3070 }
3071