xref: /netbsd-src/sys/dev/pci/if_sk.c (revision 1b9578b8c2c1f848eeb16dabbfd7d1f0d9fdefbd)
1 /*	$NetBSD: if_sk.c,v 1.69 2011/05/29 13:31:30 phx Exp $	*/
2 
3 /*-
4  * Copyright (c) 2003 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*	$OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $	*/
30 
31 /*
32  * Copyright (c) 1997, 1998, 1999, 2000
33  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
34  *
35  * Redistribution and use in source and binary forms, with or without
36  * modification, are permitted provided that the following conditions
37  * are met:
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 3. All advertising materials mentioning features or use of this software
44  *    must display the following acknowledgement:
45  *	This product includes software developed by Bill Paul.
46  * 4. Neither the name of the author nor the names of any co-contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
54  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
60  * THE POSSIBILITY OF SUCH DAMAGE.
61  *
62  * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
63  */
64 
65 /*
66  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
67  *
68  * Permission to use, copy, modify, and distribute this software for any
69  * purpose with or without fee is hereby granted, provided that the above
70  * copyright notice and this permission notice appear in all copies.
71  *
72  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
73  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
74  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
75  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
76  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
77  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
78  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
79  */
80 
81 /*
82  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
83  * the SK-984x series adapters, both single port and dual port.
84  * References:
85  * 	The XaQti XMAC II datasheet,
86  * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
87  *	The SysKonnect GEnesis manual, http://www.syskonnect.com
88  *
89  * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
90  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
91  * convenience to others until Vitesse corrects this problem:
92  *
93  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
94  *
95  * Written by Bill Paul <wpaul@ee.columbia.edu>
96  * Department of Electrical Engineering
97  * Columbia University, New York City
98  */
99 
100 /*
101  * The SysKonnect gigabit ethernet adapters consist of two main
102  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
103  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
104  * components and a PHY while the GEnesis controller provides a PCI
105  * interface with DMA support. Each card may have between 512K and
106  * 2MB of SRAM on board depending on the configuration.
107  *
108  * The SysKonnect GEnesis controller can have either one or two XMAC
109  * chips connected to it, allowing single or dual port NIC configurations.
110  * SysKonnect has the distinction of being the only vendor on the market
111  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
112  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
113  * XMAC registers. This driver takes advantage of these features to allow
114  * both XMACs to operate as independent interfaces.
115  */
116 
117 #include <sys/cdefs.h>
118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.69 2011/05/29 13:31:30 phx Exp $");
119 
120 #include "rnd.h"
121 
122 #include <sys/param.h>
123 #include <sys/systm.h>
124 #include <sys/sockio.h>
125 #include <sys/mbuf.h>
126 #include <sys/malloc.h>
127 #include <sys/mutex.h>
128 #include <sys/kernel.h>
129 #include <sys/socket.h>
130 #include <sys/device.h>
131 #include <sys/queue.h>
132 #include <sys/callout.h>
133 #include <sys/sysctl.h>
134 #include <sys/endian.h>
135 
136 #include <net/if.h>
137 #include <net/if_dl.h>
138 #include <net/if_types.h>
139 
140 #include <net/if_media.h>
141 
142 #include <net/bpf.h>
143 #if NRND > 0
144 #include <sys/rnd.h>
145 #endif
146 
147 #include <dev/mii/mii.h>
148 #include <dev/mii/miivar.h>
149 #include <dev/mii/brgphyreg.h>
150 
151 #include <dev/pci/pcireg.h>
152 #include <dev/pci/pcivar.h>
153 #include <dev/pci/pcidevs.h>
154 
155 /* #define SK_USEIOSPACE */
156 
157 #include <dev/pci/if_skreg.h>
158 #include <dev/pci/if_skvar.h>
159 
160 int skc_probe(device_t, cfdata_t, void *);
161 void skc_attach(device_t, device_t, void *aux);
162 int sk_probe(device_t, cfdata_t, void *);
163 void sk_attach(device_t, device_t, void *aux);
164 int skcprint(void *, const char *);
165 int sk_intr(void *);
166 void sk_intr_bcom(struct sk_if_softc *);
167 void sk_intr_xmac(struct sk_if_softc *);
168 void sk_intr_yukon(struct sk_if_softc *);
169 void sk_rxeof(struct sk_if_softc *);
170 void sk_txeof(struct sk_if_softc *);
171 int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
172 void sk_start(struct ifnet *);
173 int sk_ioctl(struct ifnet *, u_long, void *);
174 int sk_init(struct ifnet *);
175 void sk_init_xmac(struct sk_if_softc *);
176 void sk_init_yukon(struct sk_if_softc *);
177 void sk_stop(struct ifnet *, int);
178 void sk_watchdog(struct ifnet *);
179 void sk_shutdown(void *);
180 int sk_ifmedia_upd(struct ifnet *);
181 void sk_reset(struct sk_softc *);
182 int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
183 int sk_alloc_jumbo_mem(struct sk_if_softc *);
184 void sk_free_jumbo_mem(struct sk_if_softc *);
185 void *sk_jalloc(struct sk_if_softc *);
186 void sk_jfree(struct mbuf *, void *, size_t, void *);
187 int sk_init_rx_ring(struct sk_if_softc *);
188 int sk_init_tx_ring(struct sk_if_softc *);
189 u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
190 void sk_vpd_read_res(struct sk_softc *,
191 					struct vpd_res *, int);
192 void sk_vpd_read(struct sk_softc *);
193 
194 void sk_update_int_mod(struct sk_softc *);
195 
196 int sk_xmac_miibus_readreg(device_t, int, int);
197 void sk_xmac_miibus_writereg(device_t, int, int, int);
198 void sk_xmac_miibus_statchg(device_t);
199 
200 int sk_marv_miibus_readreg(device_t, int, int);
201 void sk_marv_miibus_writereg(device_t, int, int, int);
202 void sk_marv_miibus_statchg(device_t);
203 
204 u_int32_t sk_xmac_hash(void *);
205 u_int32_t sk_yukon_hash(void *);
206 void sk_setfilt(struct sk_if_softc *, void *, int);
207 void sk_setmulti(struct sk_if_softc *);
208 void sk_tick(void *);
209 
210 static bool skc_suspend(device_t, const pmf_qual_t *);
211 static bool skc_resume(device_t, const pmf_qual_t *);
212 static bool sk_resume(device_t dv, const pmf_qual_t *);
213 
214 /* #define SK_DEBUG 2 */
215 #ifdef SK_DEBUG
216 #define DPRINTF(x)	if (skdebug) printf x
217 #define DPRINTFN(n,x)	if (skdebug >= (n)) printf x
218 int	skdebug = SK_DEBUG;
219 
220 void sk_dump_txdesc(struct sk_tx_desc *, int);
221 void sk_dump_mbuf(struct mbuf *);
222 void sk_dump_bytes(const char *, int);
223 #else
224 #define DPRINTF(x)
225 #define DPRINTFN(n,x)
226 #endif
227 
228 static int sk_sysctl_handler(SYSCTLFN_PROTO);
229 static int sk_root_num;
230 
231 /* supported device vendors */
232 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
233 static const struct sk_product {
234 	pci_vendor_id_t		sk_vendor;
235 	pci_product_id_t	sk_product;
236 } sk_products[] = {
237 	{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
238 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
239 	{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
240 	{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
241 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
242 	{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
243 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
244 	{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
245 	{ 0, 0, }
246 };
247 
248 #define SK_LINKSYS_EG1032_SUBID	0x00151737
249 
250 static inline u_int32_t
251 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
252 {
253 #ifdef SK_USEIOSPACE
254 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
255 	return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
256 #else
257 	return CSR_READ_4(sc, reg);
258 #endif
259 }
260 
261 static inline u_int16_t
262 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
263 {
264 #ifdef SK_USEIOSPACE
265 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
266 	return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
267 #else
268 	return CSR_READ_2(sc, reg);
269 #endif
270 }
271 
272 static inline u_int8_t
273 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
274 {
275 #ifdef SK_USEIOSPACE
276 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
277 	return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
278 #else
279 	return CSR_READ_1(sc, reg);
280 #endif
281 }
282 
283 static inline void
284 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
285 {
286 #ifdef SK_USEIOSPACE
287 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
288 	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
289 #else
290 	CSR_WRITE_4(sc, reg, x);
291 #endif
292 }
293 
294 static inline void
295 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
296 {
297 #ifdef SK_USEIOSPACE
298 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
299 	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
300 #else
301 	CSR_WRITE_2(sc, reg, x);
302 #endif
303 }
304 
305 static inline void
306 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
307 {
308 #ifdef SK_USEIOSPACE
309 	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
310 	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
311 #else
312 	CSR_WRITE_1(sc, reg, x);
313 #endif
314 }
315 
316 /*
317  * The VPD EEPROM contains Vital Product Data, as suggested in
318  * the PCI 2.1 specification. The VPD data is separared into areas
319  * denoted by resource IDs. The SysKonnect VPD contains an ID string
320  * resource (the name of the adapter), a read-only area resource
321  * containing various key/data fields and a read/write area which
322  * can be used to store asset management information or log messages.
323  * We read the ID string and read-only into buffers attached to
324  * the controller softc structure for later use. At the moment,
325  * we only use the ID string during sk_attach().
326  */
327 u_int8_t
328 sk_vpd_readbyte(struct sk_softc *sc, int addr)
329 {
330 	int			i;
331 
332 	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
333 	for (i = 0; i < SK_TIMEOUT; i++) {
334 		DELAY(1);
335 		if (sk_win_read_2(sc,
336 		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
337 			break;
338 	}
339 
340 	if (i == SK_TIMEOUT)
341 		return 0;
342 
343 	return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
344 }
345 
346 void
347 sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
348 {
349 	int			i;
350 	u_int8_t		*ptr;
351 
352 	ptr = (u_int8_t *)res;
353 	for (i = 0; i < sizeof(struct vpd_res); i++)
354 		ptr[i] = sk_vpd_readbyte(sc, i + addr);
355 }
356 
357 void
358 sk_vpd_read(struct sk_softc *sc)
359 {
360 	int			pos = 0, i;
361 	struct vpd_res		res;
362 
363 	if (sc->sk_vpd_prodname != NULL)
364 		free(sc->sk_vpd_prodname, M_DEVBUF);
365 	if (sc->sk_vpd_readonly != NULL)
366 		free(sc->sk_vpd_readonly, M_DEVBUF);
367 	sc->sk_vpd_prodname = NULL;
368 	sc->sk_vpd_readonly = NULL;
369 
370 	sk_vpd_read_res(sc, &res, pos);
371 
372 	if (res.vr_id != VPD_RES_ID) {
373 		aprint_error_dev(sc->sk_dev,
374 		    "bad VPD resource id: expected %x got %x\n",
375 		    VPD_RES_ID, res.vr_id);
376 		return;
377 	}
378 
379 	pos += sizeof(res);
380 	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
381 	if (sc->sk_vpd_prodname == NULL)
382 		panic("sk_vpd_read");
383 	for (i = 0; i < res.vr_len; i++)
384 		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
385 	sc->sk_vpd_prodname[i] = '\0';
386 	pos += i;
387 
388 	sk_vpd_read_res(sc, &res, pos);
389 
390 	if (res.vr_id != VPD_RES_READ) {
391 		aprint_error_dev(sc->sk_dev,
392 		    "bad VPD resource id: expected %x got %x\n",
393 		    VPD_RES_READ, res.vr_id);
394 		return;
395 	}
396 
397 	pos += sizeof(res);
398 	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
399 	if (sc->sk_vpd_readonly == NULL)
400 		panic("sk_vpd_read");
401 	for (i = 0; i < res.vr_len ; i++)
402 		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
403 }
404 
405 int
406 sk_xmac_miibus_readreg(device_t dev, int phy, int reg)
407 {
408 	struct sk_if_softc *sc_if = device_private(dev);
409 	int i;
410 
411 	DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
412 
413 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
414 		return 0;
415 
416 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
417 	SK_XM_READ_2(sc_if, XM_PHY_DATA);
418 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
419 		for (i = 0; i < SK_TIMEOUT; i++) {
420 			DELAY(1);
421 			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
422 			    XM_MMUCMD_PHYDATARDY)
423 				break;
424 		}
425 
426 		if (i == SK_TIMEOUT) {
427 			aprint_error_dev(sc_if->sk_dev,
428 			    "phy failed to come ready\n");
429 			return 0;
430 		}
431 	}
432 	DELAY(1);
433 	return SK_XM_READ_2(sc_if, XM_PHY_DATA);
434 }
435 
436 void
437 sk_xmac_miibus_writereg(device_t dev, int phy, int reg, int val)
438 {
439 	struct sk_if_softc *sc_if = device_private(dev);
440 	int i;
441 
442 	DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
443 
444 	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
445 	for (i = 0; i < SK_TIMEOUT; i++) {
446 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
447 			break;
448 	}
449 
450 	if (i == SK_TIMEOUT) {
451 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
452 		return;
453 	}
454 
455 	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
456 	for (i = 0; i < SK_TIMEOUT; i++) {
457 		DELAY(1);
458 		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
459 			break;
460 	}
461 
462 	if (i == SK_TIMEOUT)
463 		aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
464 }
465 
466 void
467 sk_xmac_miibus_statchg(device_t dev)
468 {
469 	struct sk_if_softc *sc_if = device_private(dev);
470 	struct mii_data *mii = &sc_if->sk_mii;
471 
472 	DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
473 
474 	/*
475 	 * If this is a GMII PHY, manually set the XMAC's
476 	 * duplex mode accordingly.
477 	 */
478 	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
479 		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
480 			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
481 		else
482 			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
483 	}
484 }
485 
486 int
487 sk_marv_miibus_readreg(device_t dev, int phy, int reg)
488 {
489 	struct sk_if_softc *sc_if = device_private(dev);
490 	u_int16_t val;
491 	int i;
492 
493 	if (phy != 0 ||
494 	    (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
495 	     sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
496 		DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
497 			     phy, reg));
498 		return 0;
499 	}
500 
501         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
502 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
503 
504 	for (i = 0; i < SK_TIMEOUT; i++) {
505 		DELAY(1);
506 		val = SK_YU_READ_2(sc_if, YUKON_SMICR);
507 		if (val & YU_SMICR_READ_VALID)
508 			break;
509 	}
510 
511 	if (i == SK_TIMEOUT) {
512 		aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
513 		return 0;
514 	}
515 
516  	DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
517 		     SK_TIMEOUT));
518 
519         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
520 
521 	DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
522 		     phy, reg, val));
523 
524 	return val;
525 }
526 
527 void
528 sk_marv_miibus_writereg(device_t dev, int phy, int reg, int val)
529 {
530 	struct sk_if_softc *sc_if = device_private(dev);
531 	int i;
532 
533 	DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
534 		     phy, reg, val));
535 
536 	SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
537 	SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
538 		      YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
539 
540 	for (i = 0; i < SK_TIMEOUT; i++) {
541 		DELAY(1);
542 		if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
543 			break;
544 	}
545 
546 	if (i == SK_TIMEOUT)
547 		printf("%s: phy write timed out\n",
548 		    device_xname(sc_if->sk_dev));
549 }
550 
551 void
552 sk_marv_miibus_statchg(device_t dev)
553 {
554 	DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
555 		     SK_YU_READ_2(((struct sk_if_softc *)device_private(dev)),
556 		     YUKON_GPCR)));
557 }
558 
559 #define SK_HASH_BITS		6
560 
561 u_int32_t
562 sk_xmac_hash(void *addr)
563 {
564 	u_int32_t		crc;
565 
566 	crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
567 	crc = ~crc & ((1<< SK_HASH_BITS) - 1);
568 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
569 	return crc;
570 }
571 
572 u_int32_t
573 sk_yukon_hash(void *addr)
574 {
575 	u_int32_t		crc;
576 
577 	crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
578 	crc &= ((1 << SK_HASH_BITS) - 1);
579 	DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
580 	return crc;
581 }
582 
583 void
584 sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
585 {
586 	char *addr = addrv;
587 	int base = XM_RXFILT_ENTRY(slot);
588 
589 	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
590 	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
591 	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
592 }
593 
594 void
595 sk_setmulti(struct sk_if_softc *sc_if)
596 {
597 	struct sk_softc *sc = sc_if->sk_softc;
598 	struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
599 	u_int32_t hashes[2] = { 0, 0 };
600 	int h = 0, i;
601 	struct ethercom *ec = &sc_if->sk_ethercom;
602 	struct ether_multi *enm;
603 	struct ether_multistep step;
604 	u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
605 
606 	/* First, zot all the existing filters. */
607 	switch (sc->sk_type) {
608 	case SK_GENESIS:
609 		for (i = 1; i < XM_RXFILT_MAX; i++)
610 			sk_setfilt(sc_if, (void *)&dummy, i);
611 
612 		SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
613 		SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
614 		break;
615 	case SK_YUKON:
616 	case SK_YUKON_LITE:
617 	case SK_YUKON_LP:
618 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
619 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
620 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
621 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
622 		break;
623 	}
624 
625 	/* Now program new ones. */
626 allmulti:
627 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
628 		hashes[0] = 0xFFFFFFFF;
629 		hashes[1] = 0xFFFFFFFF;
630 	} else {
631 		i = 1;
632 		/* First find the tail of the list. */
633 		ETHER_FIRST_MULTI(step, ec, enm);
634 		while (enm != NULL) {
635 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
636 				 ETHER_ADDR_LEN)) {
637 				ifp->if_flags |= IFF_ALLMULTI;
638 				goto allmulti;
639 			}
640 			DPRINTFN(2,("multicast address %s\n",
641 	    			ether_sprintf(enm->enm_addrlo)));
642 			/*
643 			 * Program the first XM_RXFILT_MAX multicast groups
644 			 * into the perfect filter. For all others,
645 			 * use the hash table.
646 			 */
647 			if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
648 				sk_setfilt(sc_if, enm->enm_addrlo, i);
649 				i++;
650 			}
651 			else {
652 				switch (sc->sk_type) {
653 				case SK_GENESIS:
654 					h = sk_xmac_hash(enm->enm_addrlo);
655 					break;
656 				case SK_YUKON:
657 				case SK_YUKON_LITE:
658 				case SK_YUKON_LP:
659 					h = sk_yukon_hash(enm->enm_addrlo);
660 					break;
661 				}
662 				if (h < 32)
663 					hashes[0] |= (1 << h);
664 				else
665 					hashes[1] |= (1 << (h - 32));
666 			}
667 
668 			ETHER_NEXT_MULTI(step, enm);
669 		}
670 	}
671 
672 	switch (sc->sk_type) {
673 	case SK_GENESIS:
674 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
675 			       XM_MODE_RX_USE_PERFECT);
676 		SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
677 		SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
678 		break;
679 	case SK_YUKON:
680 	case SK_YUKON_LITE:
681 	case SK_YUKON_LP:
682 		SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
683 		SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
684 		SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
685 		SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
686 		break;
687 	}
688 }
689 
690 int
691 sk_init_rx_ring(struct sk_if_softc *sc_if)
692 {
693 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
694 	struct sk_ring_data	*rd = sc_if->sk_rdata;
695 	int			i;
696 
697 	memset((char *)rd->sk_rx_ring, 0,
698 	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
699 
700 	for (i = 0; i < SK_RX_RING_CNT; i++) {
701 		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
702 		if (i == (SK_RX_RING_CNT - 1)) {
703 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
704 			rd->sk_rx_ring[i].sk_next =
705 				htole32(SK_RX_RING_ADDR(sc_if, 0));
706 		} else {
707 			cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
708 			rd->sk_rx_ring[i].sk_next =
709 				htole32(SK_RX_RING_ADDR(sc_if,i+1));
710 		}
711 	}
712 
713 	for (i = 0; i < SK_RX_RING_CNT; i++) {
714 		if (sk_newbuf(sc_if, i, NULL,
715 		    sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
716 			aprint_error_dev(sc_if->sk_dev,
717 			    "failed alloc of %dth mbuf\n", i);
718 			return ENOBUFS;
719 		}
720 	}
721 	sc_if->sk_cdata.sk_rx_prod = 0;
722 	sc_if->sk_cdata.sk_rx_cons = 0;
723 
724 	return 0;
725 }
726 
727 int
728 sk_init_tx_ring(struct sk_if_softc *sc_if)
729 {
730 	struct sk_chain_data	*cd = &sc_if->sk_cdata;
731 	struct sk_ring_data	*rd = sc_if->sk_rdata;
732 	int			i;
733 
734 	memset(sc_if->sk_rdata->sk_tx_ring, 0,
735 	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
736 
737 	for (i = 0; i < SK_TX_RING_CNT; i++) {
738 		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
739 		if (i == (SK_TX_RING_CNT - 1)) {
740 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
741 			rd->sk_tx_ring[i].sk_next =
742 				htole32(SK_TX_RING_ADDR(sc_if, 0));
743 		} else {
744 			cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
745 			rd->sk_tx_ring[i].sk_next =
746 				htole32(SK_TX_RING_ADDR(sc_if,i+1));
747 		}
748 	}
749 
750 	sc_if->sk_cdata.sk_tx_prod = 0;
751 	sc_if->sk_cdata.sk_tx_cons = 0;
752 	sc_if->sk_cdata.sk_tx_cnt = 0;
753 
754 	SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
755 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
756 
757 	return 0;
758 }
759 
760 int
761 sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
762 	  bus_dmamap_t dmamap)
763 {
764 	struct mbuf		*m_new = NULL;
765 	struct sk_chain		*c;
766 	struct sk_rx_desc	*r;
767 
768 	if (m == NULL) {
769 		void *buf = NULL;
770 
771 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
772 		if (m_new == NULL) {
773 			aprint_error_dev(sc_if->sk_dev,
774 			    "no memory for rx list -- packet dropped!\n");
775 			return ENOBUFS;
776 		}
777 
778 		/* Allocate the jumbo buffer */
779 		buf = sk_jalloc(sc_if);
780 		if (buf == NULL) {
781 			m_freem(m_new);
782 			DPRINTFN(1, ("%s jumbo allocation failed -- packet "
783 			    "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
784 			return ENOBUFS;
785 		}
786 
787 		/* Attach the buffer to the mbuf */
788 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
789 		MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
790 
791 	} else {
792 		/*
793 	 	 * We're re-using a previously allocated mbuf;
794 		 * be sure to re-init pointers and lengths to
795 		 * default values.
796 		 */
797 		m_new = m;
798 		m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
799 		m_new->m_data = m_new->m_ext.ext_buf;
800 	}
801 	m_adj(m_new, ETHER_ALIGN);
802 
803 	c = &sc_if->sk_cdata.sk_rx_chain[i];
804 	r = c->sk_desc;
805 	c->sk_mbuf = m_new;
806 	r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
807 	    (((vaddr_t)m_new->m_data
808 		- (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
809 	r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
810 
811 	SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
812 
813 	return 0;
814 }
815 
816 /*
817  * Memory management for jumbo frames.
818  */
819 
820 int
821 sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
822 {
823 	struct sk_softc		*sc = sc_if->sk_softc;
824 	char *ptr, *kva;
825 	bus_dma_segment_t	seg;
826 	int		i, rseg, state, error;
827 	struct sk_jpool_entry   *entry;
828 
829 	state = error = 0;
830 
831 	/* Grab a big chunk o' storage. */
832 	if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
833 			     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
834 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
835 		return ENOBUFS;
836 	}
837 
838 	state = 1;
839 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
840 			   BUS_DMA_NOWAIT)) {
841 		aprint_error_dev(sc->sk_dev,
842 		    "can't map dma buffers (%d bytes)\n",
843 		    SK_JMEM);
844 		error = ENOBUFS;
845 		goto out;
846 	}
847 
848 	state = 2;
849 	if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
850 	    BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
851 		aprint_error_dev(sc->sk_dev, "can't create dma map\n");
852 		error = ENOBUFS;
853 		goto out;
854 	}
855 
856 	state = 3;
857 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
858 			    kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
859 		aprint_error_dev(sc->sk_dev, "can't load dma map\n");
860 		error = ENOBUFS;
861 		goto out;
862 	}
863 
864 	state = 4;
865 	sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
866 	DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
867 
868 	LIST_INIT(&sc_if->sk_jfree_listhead);
869 	LIST_INIT(&sc_if->sk_jinuse_listhead);
870 	mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
871 
872 	/*
873 	 * Now divide it up into 9K pieces and save the addresses
874 	 * in an array.
875 	 */
876 	ptr = sc_if->sk_cdata.sk_jumbo_buf;
877 	for (i = 0; i < SK_JSLOTS; i++) {
878 		sc_if->sk_cdata.sk_jslots[i] = ptr;
879 		ptr += SK_JLEN;
880 		entry = malloc(sizeof(struct sk_jpool_entry),
881 		    M_DEVBUF, M_NOWAIT);
882 		if (entry == NULL) {
883 			aprint_error_dev(sc->sk_dev,
884 			    "no memory for jumbo buffer queue!\n");
885 			error = ENOBUFS;
886 			goto out;
887 		}
888 		entry->slot = i;
889 		if (i)
890 			LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
891 				 entry, jpool_entries);
892 		else
893 			LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
894 				 entry, jpool_entries);
895 	}
896 out:
897 	if (error != 0) {
898 		switch (state) {
899 		case 4:
900 			bus_dmamap_unload(sc->sc_dmatag,
901 			    sc_if->sk_cdata.sk_rx_jumbo_map);
902 		case 3:
903 			bus_dmamap_destroy(sc->sc_dmatag,
904 			    sc_if->sk_cdata.sk_rx_jumbo_map);
905 		case 2:
906 			bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
907 		case 1:
908 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
909 			break;
910 		default:
911 			break;
912 		}
913 	}
914 
915 	return error;
916 }
917 
918 /*
919  * Allocate a jumbo buffer.
920  */
921 void *
922 sk_jalloc(struct sk_if_softc *sc_if)
923 {
924 	struct sk_jpool_entry   *entry;
925 
926 	mutex_enter(&sc_if->sk_jpool_mtx);
927 	entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
928 
929 	if (entry == NULL) {
930 		mutex_exit(&sc_if->sk_jpool_mtx);
931 		return NULL;
932 	}
933 
934 	LIST_REMOVE(entry, jpool_entries);
935 	LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
936 	mutex_exit(&sc_if->sk_jpool_mtx);
937 	return sc_if->sk_cdata.sk_jslots[entry->slot];
938 }
939 
940 /*
941  * Release a jumbo buffer.
942  */
943 void
944 sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
945 {
946 	struct sk_jpool_entry *entry;
947 	struct sk_if_softc *sc;
948 	int i;
949 
950 	/* Extract the softc struct pointer. */
951 	sc = (struct sk_if_softc *)arg;
952 
953 	if (sc == NULL)
954 		panic("sk_jfree: can't find softc pointer!");
955 
956 	/* calculate the slot this buffer belongs to */
957 
958 	i = ((vaddr_t)buf
959 	     - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
960 
961 	if ((i < 0) || (i >= SK_JSLOTS))
962 		panic("sk_jfree: asked to free buffer that we don't manage!");
963 
964 	mutex_enter(&sc->sk_jpool_mtx);
965 	entry = LIST_FIRST(&sc->sk_jinuse_listhead);
966 	if (entry == NULL)
967 		panic("sk_jfree: buffer not in use!");
968 	entry->slot = i;
969 	LIST_REMOVE(entry, jpool_entries);
970 	LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
971 	mutex_exit(&sc->sk_jpool_mtx);
972 
973 	if (__predict_true(m != NULL))
974 		pool_cache_put(mb_cache, m);
975 }
976 
977 /*
978  * Set media options.
979  */
980 int
981 sk_ifmedia_upd(struct ifnet *ifp)
982 {
983 	struct sk_if_softc *sc_if = ifp->if_softc;
984 	int rc;
985 
986 	(void) sk_init(ifp);
987 	if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
988 		return 0;
989 	return rc;
990 }
991 
992 int
993 sk_ioctl(struct ifnet *ifp, u_long command, void *data)
994 {
995 	struct sk_if_softc *sc_if = ifp->if_softc;
996 	struct sk_softc *sc = sc_if->sk_softc;
997 	int s, error = 0;
998 
999 	/* DPRINTFN(2, ("sk_ioctl\n")); */
1000 
1001 	s = splnet();
1002 
1003 	switch (command) {
1004 
1005 	case SIOCSIFFLAGS:
1006 	        DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1007 		if ((error = ifioctl_common(ifp, command, data)) != 0)
1008 			break;
1009 		if (ifp->if_flags & IFF_UP) {
1010 			if (ifp->if_flags & IFF_RUNNING &&
1011 			    ifp->if_flags & IFF_PROMISC &&
1012 			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
1013 				switch (sc->sk_type) {
1014 				case SK_GENESIS:
1015 					SK_XM_SETBIT_4(sc_if, XM_MODE,
1016 					    XM_MODE_RX_PROMISC);
1017 					break;
1018 				case SK_YUKON:
1019 				case SK_YUKON_LITE:
1020 				case SK_YUKON_LP:
1021 					SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
1022 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
1023 					break;
1024 				}
1025 				sk_setmulti(sc_if);
1026 			} else if (ifp->if_flags & IFF_RUNNING &&
1027 			    !(ifp->if_flags & IFF_PROMISC) &&
1028 			    sc_if->sk_if_flags & IFF_PROMISC) {
1029 				switch (sc->sk_type) {
1030 				case SK_GENESIS:
1031 					SK_XM_CLRBIT_4(sc_if, XM_MODE,
1032 					    XM_MODE_RX_PROMISC);
1033 					break;
1034 				case SK_YUKON:
1035 				case SK_YUKON_LITE:
1036 				case SK_YUKON_LP:
1037 					SK_YU_SETBIT_2(sc_if, YUKON_RCR,
1038 					    YU_RCR_UFLEN | YU_RCR_MUFLEN);
1039 					break;
1040 				}
1041 
1042 				sk_setmulti(sc_if);
1043 			} else
1044 				(void) sk_init(ifp);
1045 		} else {
1046 			if (ifp->if_flags & IFF_RUNNING)
1047 				sk_stop(ifp,0);
1048 		}
1049 		sc_if->sk_if_flags = ifp->if_flags;
1050 		error = 0;
1051 		break;
1052 
1053 	default:
1054 	        DPRINTFN(2, ("sk_ioctl ETHER\n"));
1055 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1056 			break;
1057 
1058 		error = 0;
1059 
1060 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1061 			;
1062 		else if (ifp->if_flags & IFF_RUNNING) {
1063 			sk_setmulti(sc_if);
1064 			DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1065 		}
1066 		break;
1067 	}
1068 
1069 	splx(s);
1070 	return error;
1071 }
1072 
1073 void
1074 sk_update_int_mod(struct sk_softc *sc)
1075 {
1076 	u_int32_t imtimer_ticks;
1077 
1078 	/*
1079          * Configure interrupt moderation. The moderation timer
1080 	 * defers interrupts specified in the interrupt moderation
1081 	 * timer mask based on the timeout specified in the interrupt
1082 	 * moderation timer init register. Each bit in the timer
1083 	 * register represents one tick, so to specify a timeout in
1084 	 * microseconds, we have to multiply by the correct number of
1085 	 * ticks-per-microsecond.
1086 	 */
1087 	switch (sc->sk_type) {
1088 	case SK_GENESIS:
1089 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
1090 		break;
1091 	case SK_YUKON_EC:
1092 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1093 		break;
1094 	default:
1095 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1096 	}
1097 	aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n",
1098 	    sc->sk_int_mod);
1099         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
1100         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1101 	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1102         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1103 	sc->sk_int_mod_pending = 0;
1104 }
1105 
1106 /*
1107  * Lookup: Check the PCI vendor and device, and return a pointer to
1108  * The structure if the IDs match against our list.
1109  */
1110 
1111 static const struct sk_product *
1112 sk_lookup(const struct pci_attach_args *pa)
1113 {
1114 	const struct sk_product *psk;
1115 
1116 	for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
1117 		if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
1118 		    PCI_PRODUCT(pa->pa_id) == psk->sk_product)
1119 			return psk;
1120 	}
1121 	return NULL;
1122 }
1123 
1124 /*
1125  * Probe for a SysKonnect GEnesis chip.
1126  */
1127 
1128 int
1129 skc_probe(device_t parent, cfdata_t match, void *aux)
1130 {
1131 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1132 	const struct sk_product *psk;
1133 	pcireg_t subid;
1134 
1135 	subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
1136 
1137 	/* special-case Linksys EG1032, since rev 3 uses re(4) */
1138 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
1139 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
1140 	    subid == SK_LINKSYS_EG1032_SUBID)
1141 		return 1;
1142 
1143 	if ((psk = sk_lookup(pa))) {
1144 		return 1;
1145 	}
1146 	return 0;
1147 }
1148 
1149 /*
1150  * Force the GEnesis into reset, then bring it out of reset.
1151  */
1152 void sk_reset(struct sk_softc *sc)
1153 {
1154 	DPRINTFN(2, ("sk_reset\n"));
1155 
1156 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1157 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1158 	if (SK_YUKON_FAMILY(sc->sk_type))
1159 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1160 
1161 	DELAY(1000);
1162 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1163 	DELAY(2);
1164 	CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1165 	if (SK_YUKON_FAMILY(sc->sk_type))
1166 		CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1167 
1168 	DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
1169 	DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1170 		     CSR_READ_2(sc, SK_LINK_CTRL)));
1171 
1172 	if (sc->sk_type == SK_GENESIS) {
1173 		/* Configure packet arbiter */
1174 		sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1175 		sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1176 		sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1177 		sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1178 		sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1179 	}
1180 
1181 	/* Enable RAM interface */
1182 	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1183 
1184 	sk_update_int_mod(sc);
1185 }
1186 
1187 int
1188 sk_probe(device_t parent, cfdata_t match, void *aux)
1189 {
1190 	struct skc_attach_args *sa = aux;
1191 
1192 	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1193 		return 0;
1194 
1195 	return 1;
1196 }
1197 
1198 /*
1199  * Each XMAC chip is attached as a separate logical IP interface.
1200  * Single port cards will have only one logical interface of course.
1201  */
1202 void
1203 sk_attach(device_t parent, device_t self, void *aux)
1204 {
1205 	struct sk_if_softc *sc_if = device_private(self);
1206 	struct sk_softc *sc = device_private(parent);
1207 	struct skc_attach_args *sa = aux;
1208 	struct sk_txmap_entry	*entry;
1209 	struct ifnet *ifp;
1210 	bus_dma_segment_t seg;
1211 	bus_dmamap_t dmamap;
1212 	prop_data_t data;
1213 	void *kva;
1214 	int i, rseg;
1215 	int mii_flags = 0;
1216 
1217 	aprint_naive("\n");
1218 
1219 	sc_if->sk_dev = self;
1220 	sc_if->sk_port = sa->skc_port;
1221 	sc_if->sk_softc = sc;
1222 	sc->sk_if[sa->skc_port] = sc_if;
1223 
1224 	if (sa->skc_port == SK_PORT_A)
1225 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1226 	if (sa->skc_port == SK_PORT_B)
1227 		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1228 
1229 	DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
1230 
1231 	/*
1232 	 * Get station address for this interface. Note that
1233 	 * dual port cards actually come with three station
1234 	 * addresses: one for each port, plus an extra. The
1235 	 * extra one is used by the SysKonnect driver software
1236 	 * as a 'virtual' station address for when both ports
1237 	 * are operating in failover mode. Currently we don't
1238 	 * use this extra address.
1239 	 */
1240 	data = prop_dictionary_get(device_properties(self), "mac-address");
1241 	if (data != NULL) {
1242 		/*
1243 		 * Try to get the station address from device properties
1244 		 * first, in case the ROM is missing.
1245 		 */
1246 		KASSERT(prop_object_type(data) == PROP_TYPE_DATA);
1247 		KASSERT(prop_data_size(data) == ETHER_ADDR_LEN);
1248 		memcpy(sc_if->sk_enaddr, prop_data_data_nocopy(data),
1249 		    ETHER_ADDR_LEN);
1250 	} else
1251 		for (i = 0; i < ETHER_ADDR_LEN; i++)
1252 			sc_if->sk_enaddr[i] = sk_win_read_1(sc,
1253 			    SK_MAC0_0 + (sa->skc_port * 8) + i);
1254 
1255 	aprint_normal(": Ethernet address %s\n",
1256 	    ether_sprintf(sc_if->sk_enaddr));
1257 
1258 	/*
1259 	 * Set up RAM buffer addresses. The NIC will have a certain
1260 	 * amount of SRAM on it, somewhere between 512K and 2MB. We
1261 	 * need to divide this up a) between the transmitter and
1262  	 * receiver and b) between the two XMACs, if this is a
1263 	 * dual port NIC. Our algorithm is to divide up the memory
1264 	 * evenly so that everyone gets a fair share.
1265 	 */
1266 	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1267 		u_int32_t		chunk, val;
1268 
1269 		chunk = sc->sk_ramsize / 2;
1270 		val = sc->sk_rboff / sizeof(u_int64_t);
1271 		sc_if->sk_rx_ramstart = val;
1272 		val += (chunk / sizeof(u_int64_t));
1273 		sc_if->sk_rx_ramend = val - 1;
1274 		sc_if->sk_tx_ramstart = val;
1275 		val += (chunk / sizeof(u_int64_t));
1276 		sc_if->sk_tx_ramend = val - 1;
1277 	} else {
1278 		u_int32_t		chunk, val;
1279 
1280 		chunk = sc->sk_ramsize / 4;
1281 		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1282 		    sizeof(u_int64_t);
1283 		sc_if->sk_rx_ramstart = val;
1284 		val += (chunk / sizeof(u_int64_t));
1285 		sc_if->sk_rx_ramend = val - 1;
1286 		sc_if->sk_tx_ramstart = val;
1287 		val += (chunk / sizeof(u_int64_t));
1288 		sc_if->sk_tx_ramend = val - 1;
1289 	}
1290 
1291 	DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1292 		     "           tx_ramstart=%#x tx_ramend=%#x\n",
1293 		     sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1294 		     sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1295 
1296 	/* Read and save PHY type and set PHY address */
1297 	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1298 	switch (sc_if->sk_phytype) {
1299 	case SK_PHYTYPE_XMAC:
1300 		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1301 		break;
1302 	case SK_PHYTYPE_BCOM:
1303 		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1304 		break;
1305 	case SK_PHYTYPE_MARV_COPPER:
1306 		sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1307 		break;
1308 	default:
1309 		aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n",
1310 		    sc_if->sk_phytype);
1311 		return;
1312 	}
1313 
1314 	/* Allocate the descriptor queues. */
1315 	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
1316 	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1317 		aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
1318 		goto fail;
1319 	}
1320 	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1321 	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1322 		aprint_error_dev(sc_if->sk_dev,
1323 		    "can't map dma buffers (%lu bytes)\n",
1324 		    (u_long) sizeof(struct sk_ring_data));
1325 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1326 		goto fail;
1327 	}
1328 	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
1329 	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
1330             &sc_if->sk_ring_map)) {
1331 		aprint_error_dev(sc_if->sk_dev, "can't create dma map\n");
1332 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1333 		    sizeof(struct sk_ring_data));
1334 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1335 		goto fail;
1336 	}
1337 	if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1338 	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1339 		aprint_error_dev(sc_if->sk_dev, "can't load dma map\n");
1340 		bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1341 		bus_dmamem_unmap(sc->sc_dmatag, kva,
1342 		    sizeof(struct sk_ring_data));
1343 		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1344 		goto fail;
1345 	}
1346 
1347 	for (i = 0; i < SK_RX_RING_CNT; i++)
1348 		sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1349 
1350 	SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1351 	for (i = 0; i < SK_TX_RING_CNT; i++) {
1352 		sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1353 
1354 		if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1355 		    SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1356 			aprint_error_dev(sc_if->sk_dev,
1357 			    "Can't create TX dmamap\n");
1358 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1359 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1360 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1361 			    sizeof(struct sk_ring_data));
1362 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1363 			goto fail;
1364 		}
1365 
1366 		entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
1367 		if (!entry) {
1368 			aprint_error_dev(sc_if->sk_dev,
1369 			    "Can't alloc txmap entry\n");
1370 			bus_dmamap_destroy(sc->sc_dmatag, dmamap);
1371 			bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
1372 			bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1373 			bus_dmamem_unmap(sc->sc_dmatag, kva,
1374 			    sizeof(struct sk_ring_data));
1375 			bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1376 			goto fail;
1377 		}
1378 		entry->dmamap = dmamap;
1379 		SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1380 	}
1381 
1382         sc_if->sk_rdata = (struct sk_ring_data *)kva;
1383 	memset(sc_if->sk_rdata, 0, sizeof(struct sk_ring_data));
1384 
1385 	ifp = &sc_if->sk_ethercom.ec_if;
1386 	/* Try to allocate memory for jumbo buffers. */
1387 	if (sk_alloc_jumbo_mem(sc_if)) {
1388 		aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
1389 		goto fail;
1390 	}
1391 	sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
1392 		| ETHERCAP_JUMBO_MTU;
1393 
1394 	ifp->if_softc = sc_if;
1395 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1396 	ifp->if_ioctl = sk_ioctl;
1397 	ifp->if_start = sk_start;
1398 	ifp->if_stop = sk_stop;
1399 	ifp->if_init = sk_init;
1400 	ifp->if_watchdog = sk_watchdog;
1401 	ifp->if_capabilities = 0;
1402 	IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
1403 	IFQ_SET_READY(&ifp->if_snd);
1404 	strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1405 
1406 	/*
1407 	 * Do miibus setup.
1408 	 */
1409 	switch (sc->sk_type) {
1410 	case SK_GENESIS:
1411 		sk_init_xmac(sc_if);
1412 		break;
1413 	case SK_YUKON:
1414 	case SK_YUKON_LITE:
1415 	case SK_YUKON_LP:
1416 		sk_init_yukon(sc_if);
1417 		break;
1418 	default:
1419 		aprint_error_dev(sc->sk_dev, "unknown device type %d\n",
1420 			sc->sk_type);
1421 		goto fail;
1422 	}
1423 
1424  	DPRINTFN(2, ("sk_attach: 1\n"));
1425 
1426 	sc_if->sk_mii.mii_ifp = ifp;
1427 	switch (sc->sk_type) {
1428 	case SK_GENESIS:
1429 		sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
1430 		sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
1431 		sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
1432 		break;
1433 	case SK_YUKON:
1434 	case SK_YUKON_LITE:
1435 	case SK_YUKON_LP:
1436 		sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
1437 		sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
1438 		sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
1439 		mii_flags = MIIF_DOPAUSE;
1440 		break;
1441 	}
1442 
1443 	sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1444 	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1445 	    sk_ifmedia_upd, ether_mediastatus);
1446 	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1447 	    MII_OFFSET_ANY, mii_flags);
1448 	if (LIST_EMPTY(&sc_if->sk_mii.mii_phys)) {
1449 		aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1450 		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1451 			    0, NULL);
1452 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1453 	} else
1454 		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1455 
1456 	callout_init(&sc_if->sk_tick_ch, 0);
1457 	callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
1458 
1459 	DPRINTFN(2, ("sk_attach: 1\n"));
1460 
1461 	/*
1462 	 * Call MI attach routines.
1463 	 */
1464 	if_attach(ifp);
1465 
1466 	ether_ifattach(ifp, sc_if->sk_enaddr);
1467 
1468 #if NRND > 0
1469         rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1470             RND_TYPE_NET, 0);
1471 #endif
1472 
1473 	if (pmf_device_register(self, NULL, sk_resume))
1474 		pmf_class_network_register(self, ifp);
1475 	else
1476 		aprint_error_dev(self, "couldn't establish power handler\n");
1477 
1478 	DPRINTFN(2, ("sk_attach: end\n"));
1479 
1480 	return;
1481 
1482 fail:
1483 	sc->sk_if[sa->skc_port] = NULL;
1484 }
1485 
1486 int
1487 skcprint(void *aux, const char *pnp)
1488 {
1489 	struct skc_attach_args *sa = aux;
1490 
1491 	if (pnp)
1492 		aprint_normal("sk port %c at %s",
1493 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1494 	else
1495 		aprint_normal(" port %c",
1496 		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1497 	return UNCONF;
1498 }
1499 
1500 /*
1501  * Attach the interface. Allocate softc structures, do ifmedia
1502  * setup and ethernet/BPF attach.
1503  */
1504 void
1505 skc_attach(device_t parent, device_t self, void *aux)
1506 {
1507 	struct sk_softc *sc = device_private(self);
1508 	struct pci_attach_args *pa = aux;
1509 	struct skc_attach_args skca;
1510 	pci_chipset_tag_t pc = pa->pa_pc;
1511 #ifndef SK_USEIOSPACE
1512 	pcireg_t memtype;
1513 #endif
1514 	pci_intr_handle_t ih;
1515 	const char *intrstr = NULL;
1516 	bus_addr_t iobase;
1517 	bus_size_t iosize;
1518 	int rc, sk_nodenum;
1519 	u_int32_t command;
1520 	const char *revstr;
1521 	const struct sysctlnode *node;
1522 
1523 	sc->sk_dev = self;
1524 	aprint_naive("\n");
1525 
1526 	DPRINTFN(2, ("begin skc_attach\n"));
1527 
1528 	/*
1529 	 * Handle power management nonsense.
1530 	 */
1531 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1532 
1533 	if (command == 0x01) {
1534 		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1535 		if (command & SK_PSTATE_MASK) {
1536 			u_int32_t		xiobase, membase, irq;
1537 
1538 			/* Save important PCI config data. */
1539 			xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1540 			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1541 			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1542 
1543 			/* Reset the power state. */
1544 			aprint_normal_dev(sc->sk_dev,
1545 			    "chip is in D%d power mode -- setting to D0\n",
1546 			    command & SK_PSTATE_MASK);
1547 			command &= 0xFFFFFFFC;
1548 			pci_conf_write(pc, pa->pa_tag,
1549 			    SK_PCI_PWRMGMTCTRL, command);
1550 
1551 			/* Restore PCI config data. */
1552 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
1553 			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1554 			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1555 		}
1556 	}
1557 
1558 	/*
1559 	 * The firmware might have configured the interface to revert the
1560 	 * byte order in all descriptors. Make that undone.
1561 	 */
1562 	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_OURREG2);
1563 	if (command & SK_REG2_REV_DESC)
1564 		pci_conf_write(pc, pa->pa_tag, SK_PCI_OURREG2,
1565 		    command & ~SK_REG2_REV_DESC);
1566 
1567 	/*
1568 	 * Map control/status registers.
1569 	 */
1570 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1571 	command |= PCI_COMMAND_IO_ENABLE |
1572 	    PCI_COMMAND_MEM_ENABLE |
1573 	    PCI_COMMAND_MASTER_ENABLE;
1574 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1575 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1576 
1577 #ifdef SK_USEIOSPACE
1578 	if (!(command & PCI_COMMAND_IO_ENABLE)) {
1579 		aprint_error(": failed to enable I/O ports!\n");
1580 		return;
1581 	}
1582 	/*
1583 	 * Map control/status registers.
1584 	 */
1585 	if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
1586 			&sc->sk_btag, &sc->sk_bhandle,
1587 			&iobase, &iosize)) {
1588 		aprint_error(": can't find i/o space\n");
1589 		return;
1590 	}
1591 #else
1592 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1593 		aprint_error(": failed to enable memory mapping!\n");
1594 		return;
1595 	}
1596 	memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1597 	switch (memtype) {
1598         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1599         case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1600                 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1601 				   memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1602 				   &iobase, &iosize) == 0)
1603                         break;
1604         default:
1605                 aprint_error_dev(sc->sk_dev, "can't find mem space\n");
1606                 return;
1607 	}
1608 
1609 	DPRINTFN(2, ("skc_attach: iobase=%#" PRIxPADDR ", iosize=%zx\n",
1610 	    iobase, iosize));
1611 #endif
1612 	sc->sc_dmatag = pa->pa_dmat;
1613 
1614 	sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1615 	sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1616 
1617 	/* bail out here if chip is not recognized */
1618 	if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
1619 		aprint_error_dev(sc->sk_dev, "unknown chip type\n");
1620 		goto fail;
1621 	}
1622 	if (SK_IS_YUKON2(sc)) {
1623 		aprint_error_dev(sc->sk_dev,
1624 		    "Does not support Yukon2--try msk(4).\n");
1625 		goto fail;
1626 	}
1627 	DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1628 
1629 	/* Allocate interrupt */
1630 	if (pci_intr_map(pa, &ih)) {
1631 		aprint_error(": couldn't map interrupt\n");
1632 		goto fail;
1633 	}
1634 
1635 	intrstr = pci_intr_string(pc, ih);
1636 	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
1637 	if (sc->sk_intrhand == NULL) {
1638 		aprint_error(": couldn't establish interrupt");
1639 		if (intrstr != NULL)
1640 			aprint_error(" at %s", intrstr);
1641 		aprint_error("\n");
1642 		goto fail;
1643 	}
1644 	aprint_normal(": %s\n", intrstr);
1645 
1646 	/* Reset the adapter. */
1647 	sk_reset(sc);
1648 
1649 	/* Read and save vital product data from EEPROM. */
1650 	sk_vpd_read(sc);
1651 
1652 	if (sc->sk_type == SK_GENESIS) {
1653 		u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1654 		/* Read and save RAM size and RAMbuffer offset */
1655 		switch (val) {
1656 		case SK_RAMSIZE_512K_64:
1657 			sc->sk_ramsize = 0x80000;
1658 			sc->sk_rboff = SK_RBOFF_0;
1659 			break;
1660 		case SK_RAMSIZE_1024K_64:
1661 			sc->sk_ramsize = 0x100000;
1662 			sc->sk_rboff = SK_RBOFF_80000;
1663 			break;
1664 		case SK_RAMSIZE_1024K_128:
1665 			sc->sk_ramsize = 0x100000;
1666 			sc->sk_rboff = SK_RBOFF_0;
1667 			break;
1668 		case SK_RAMSIZE_2048K_128:
1669 			sc->sk_ramsize = 0x200000;
1670 			sc->sk_rboff = SK_RBOFF_0;
1671 			break;
1672 		default:
1673 			aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n",
1674 			       val);
1675 			goto fail_1;
1676 			break;
1677 		}
1678 
1679 		DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1680 			     sc->sk_ramsize, sc->sk_ramsize / 1024,
1681 			     sc->sk_rboff));
1682 	} else {
1683 	  	u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
1684 		sc->sk_ramsize =  ( val == 0 ) ?  0x20000 : (( val * 4 )*1024);
1685 		sc->sk_rboff = SK_RBOFF_0;
1686 
1687 		DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1688 			     sc->sk_ramsize / 1024, sc->sk_ramsize,
1689 			     sc->sk_rboff));
1690 	}
1691 
1692 	/* Read and save physical media type */
1693 	switch (sk_win_read_1(sc, SK_PMDTYPE)) {
1694 	case SK_PMD_1000BASESX:
1695 		sc->sk_pmd = IFM_1000_SX;
1696 		break;
1697 	case SK_PMD_1000BASELX:
1698 		sc->sk_pmd = IFM_1000_LX;
1699 		break;
1700 	case SK_PMD_1000BASECX:
1701 		sc->sk_pmd = IFM_1000_CX;
1702 		break;
1703 	case SK_PMD_1000BASETX:
1704 	case SK_PMD_1000BASETX_ALT:
1705 		sc->sk_pmd = IFM_1000_T;
1706 		break;
1707 	default:
1708 		aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n",
1709 		    sk_win_read_1(sc, SK_PMDTYPE));
1710 		goto fail_1;
1711 	}
1712 
1713 	/* determine whether to name it with vpd or just make it up */
1714 	/* Marvell Yukon VPD's can freqently be bogus */
1715 
1716 	switch (pa->pa_id) {
1717 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1718 			 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
1719 	case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
1720 	case PCI_PRODUCT_3COM_3C940:
1721 	case PCI_PRODUCT_DLINK_DGE530T:
1722 	case PCI_PRODUCT_DLINK_DGE560T:
1723 	case PCI_PRODUCT_DLINK_DGE560T_2:
1724 	case PCI_PRODUCT_LINKSYS_EG1032:
1725 	case PCI_PRODUCT_LINKSYS_EG1064:
1726 	case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
1727 			 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
1728 	case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
1729 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
1730 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
1731 	case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
1732 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
1733 	case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
1734  		sc->sk_name = sc->sk_vpd_prodname;
1735  		break;
1736 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
1737 	/* whoops yukon vpd prodname bears no resemblance to reality */
1738 		switch (sc->sk_type) {
1739 		case SK_GENESIS:
1740 			sc->sk_name = sc->sk_vpd_prodname;
1741 			break;
1742 		case SK_YUKON:
1743 			sc->sk_name = "Marvell Yukon Gigabit Ethernet";
1744 			break;
1745 		case SK_YUKON_LITE:
1746 			sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
1747 			break;
1748 		case SK_YUKON_LP:
1749 			sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
1750 			break;
1751 		default:
1752 			sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
1753 		}
1754 
1755 	/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1756 
1757 		if ( sc->sk_type == SK_YUKON ) {
1758 			uint32_t flashaddr;
1759 			uint8_t testbyte;
1760 
1761 			flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
1762 
1763 			/* test Flash-Address Register */
1764 			sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
1765 			testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
1766 
1767 			if (testbyte != 0) {
1768 				/* this is yukon lite Rev. A0 */
1769 				sc->sk_type = SK_YUKON_LITE;
1770 				sc->sk_rev = SK_YUKON_LITE_REV_A0;
1771 				/* restore Flash-Address Register */
1772 				sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
1773 			}
1774 		}
1775 		break;
1776 	case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
1777 		sc->sk_name = sc->sk_vpd_prodname;
1778 		break;
1779  	default:
1780 		sc->sk_name = "Unknown Marvell";
1781 	}
1782 
1783 
1784 	if ( sc->sk_type == SK_YUKON_LITE ) {
1785 		switch (sc->sk_rev) {
1786 		case SK_YUKON_LITE_REV_A0:
1787 			revstr = "A0";
1788 			break;
1789 		case SK_YUKON_LITE_REV_A1:
1790 			revstr = "A1";
1791 			break;
1792 		case SK_YUKON_LITE_REV_A3:
1793 			revstr = "A3";
1794 			break;
1795 		default:
1796 			revstr = "";
1797 		}
1798 	} else {
1799 		revstr = "";
1800 	}
1801 
1802 	/* Announce the product name. */
1803 	aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n",
1804 			      sc->sk_name, revstr, sc->sk_rev);
1805 
1806 	skca.skc_port = SK_PORT_A;
1807 	(void)config_found(sc->sk_dev, &skca, skcprint);
1808 
1809 	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1810 		skca.skc_port = SK_PORT_B;
1811 		(void)config_found(sc->sk_dev, &skca, skcprint);
1812 	}
1813 
1814 	/* Turn on the 'driver is loaded' LED. */
1815 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1816 
1817 	/* skc sysctl setup */
1818 
1819 	sc->sk_int_mod = SK_IM_DEFAULT;
1820 	sc->sk_int_mod_pending = 0;
1821 
1822 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1823 	    0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1824 	    SYSCTL_DESCR("skc per-controller controls"),
1825 	    NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
1826 	    CTL_EOL)) != 0) {
1827 		aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1828 		goto fail_1;
1829 	}
1830 
1831 	sk_nodenum = node->sysctl_num;
1832 
1833 	/* interrupt moderation time in usecs */
1834 	if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1835 	    CTLFLAG_READWRITE,
1836 	    CTLTYPE_INT, "int_mod",
1837 	    SYSCTL_DESCR("sk interrupt moderation timer"),
1838 	    sk_sysctl_handler, 0, sc,
1839 	    0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
1840 	    CTL_EOL)) != 0) {
1841 		aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
1842 		goto fail_1;
1843 	}
1844 
1845 	if (!pmf_device_register(self, skc_suspend, skc_resume))
1846 		aprint_error_dev(self, "couldn't establish power handler\n");
1847 
1848 	return;
1849 
1850 fail_1:
1851 	pci_intr_disestablish(pc, sc->sk_intrhand);
1852 fail:
1853 	bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
1854 }
1855 
1856 int
1857 sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1858 {
1859 	struct sk_softc		*sc = sc_if->sk_softc;
1860 	struct sk_tx_desc	*f = NULL;
1861 	u_int32_t		frag, cur, cnt = 0, sk_ctl;
1862 	int			i;
1863 	struct sk_txmap_entry	*entry;
1864 	bus_dmamap_t		txmap;
1865 
1866 	DPRINTFN(3, ("sk_encap\n"));
1867 
1868 	entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1869 	if (entry == NULL) {
1870 		DPRINTFN(3, ("sk_encap: no txmap available\n"));
1871 		return ENOBUFS;
1872 	}
1873 	txmap = entry->dmamap;
1874 
1875 	cur = frag = *txidx;
1876 
1877 #ifdef SK_DEBUG
1878 	if (skdebug >= 3)
1879 		sk_dump_mbuf(m_head);
1880 #endif
1881 
1882 	/*
1883 	 * Start packing the mbufs in this chain into
1884 	 * the fragment pointers. Stop when we run out
1885 	 * of fragments or hit the end of the mbuf chain.
1886 	 */
1887 	if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1888 	    BUS_DMA_NOWAIT)) {
1889 		DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1890 		return ENOBUFS;
1891 	}
1892 
1893 	DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1894 
1895 	/* Sync the DMA map. */
1896 	bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1897 	    BUS_DMASYNC_PREWRITE);
1898 
1899 	for (i = 0; i < txmap->dm_nsegs; i++) {
1900 		if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
1901 			DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1902 			return ENOBUFS;
1903 		}
1904 		f = &sc_if->sk_rdata->sk_tx_ring[frag];
1905 		f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
1906 		sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
1907 		if (cnt == 0)
1908 			sk_ctl |= SK_TXCTL_FIRSTFRAG;
1909 		else
1910 			sk_ctl |= SK_TXCTL_OWN;
1911 		f->sk_ctl = htole32(sk_ctl);
1912 		cur = frag;
1913 		SK_INC(frag, SK_TX_RING_CNT);
1914 		cnt++;
1915 	}
1916 
1917 	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1918 	SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1919 
1920 	sc_if->sk_cdata.sk_tx_map[cur] = entry;
1921 	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1922 		htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
1923 
1924 	/* Sync descriptors before handing to chip */
1925 	SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1926 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1927 
1928 	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
1929 		htole32(SK_TXCTL_OWN);
1930 
1931 	/* Sync first descriptor to hand it off */
1932 	SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1933 
1934 	sc_if->sk_cdata.sk_tx_cnt += cnt;
1935 
1936 #ifdef SK_DEBUG
1937 	if (skdebug >= 3) {
1938 		struct sk_tx_desc *desc;
1939 		u_int32_t idx;
1940 		for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
1941 			desc = &sc_if->sk_rdata->sk_tx_ring[idx];
1942 			sk_dump_txdesc(desc, idx);
1943 		}
1944 	}
1945 #endif
1946 
1947 	*txidx = frag;
1948 
1949 	DPRINTFN(3, ("sk_encap: completed successfully\n"));
1950 
1951 	return 0;
1952 }
1953 
1954 void
1955 sk_start(struct ifnet *ifp)
1956 {
1957         struct sk_if_softc	*sc_if = ifp->if_softc;
1958         struct sk_softc		*sc = sc_if->sk_softc;
1959         struct mbuf		*m_head = NULL;
1960         u_int32_t		idx = sc_if->sk_cdata.sk_tx_prod;
1961 	int			pkts = 0;
1962 
1963 	DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
1964 		sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
1965 
1966 	while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1967 		IFQ_POLL(&ifp->if_snd, m_head);
1968 		if (m_head == NULL)
1969 			break;
1970 
1971 		/*
1972 		 * Pack the data into the transmit ring. If we
1973 		 * don't have room, set the OACTIVE flag and wait
1974 		 * for the NIC to drain the ring.
1975 		 */
1976 		if (sk_encap(sc_if, m_head, &idx)) {
1977 			ifp->if_flags |= IFF_OACTIVE;
1978 			break;
1979 		}
1980 
1981 		/* now we are committed to transmit the packet */
1982 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1983 		pkts++;
1984 
1985 		/*
1986 		 * If there's a BPF listener, bounce a copy of this frame
1987 		 * to him.
1988 		 */
1989 		bpf_mtap(ifp, m_head);
1990 	}
1991 	if (pkts == 0)
1992 		return;
1993 
1994 	/* Transmit */
1995 	if (idx != sc_if->sk_cdata.sk_tx_prod) {
1996 		sc_if->sk_cdata.sk_tx_prod = idx;
1997 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1998 
1999 		/* Set a timeout in case the chip goes out to lunch. */
2000 		ifp->if_timer = 5;
2001 	}
2002 }
2003 
2004 
2005 void
2006 sk_watchdog(struct ifnet *ifp)
2007 {
2008 	struct sk_if_softc *sc_if = ifp->if_softc;
2009 
2010 	/*
2011 	 * Reclaim first as there is a possibility of losing Tx completion
2012 	 * interrupts.
2013 	 */
2014 	sk_txeof(sc_if);
2015 	if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2016 		aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
2017 
2018 		ifp->if_oerrors++;
2019 
2020 		sk_init(ifp);
2021 	}
2022 }
2023 
2024 void
2025 sk_shutdown(void *v)
2026 {
2027 	struct sk_if_softc	*sc_if = (struct sk_if_softc *)v;
2028 	struct sk_softc		*sc = sc_if->sk_softc;
2029 	struct ifnet 		*ifp = &sc_if->sk_ethercom.ec_if;
2030 
2031 	DPRINTFN(2, ("sk_shutdown\n"));
2032 	sk_stop(ifp,1);
2033 
2034 	/* Turn off the 'driver is loaded' LED. */
2035 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2036 
2037 	/*
2038 	 * Reset the GEnesis controller. Doing this should also
2039 	 * assert the resets on the attached XMAC(s).
2040 	 */
2041 	sk_reset(sc);
2042 }
2043 
2044 void
2045 sk_rxeof(struct sk_if_softc *sc_if)
2046 {
2047 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2048 	struct mbuf		*m;
2049 	struct sk_chain		*cur_rx;
2050 	struct sk_rx_desc	*cur_desc;
2051 	int			i, cur, total_len = 0;
2052 	u_int32_t		rxstat, sk_ctl;
2053 	bus_dmamap_t		dmamap;
2054 
2055 	i = sc_if->sk_cdata.sk_rx_prod;
2056 
2057 	DPRINTFN(3, ("sk_rxeof %d\n", i));
2058 
2059 	for (;;) {
2060 		cur = i;
2061 
2062 		/* Sync the descriptor */
2063 		SK_CDRXSYNC(sc_if, cur,
2064 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2065 
2066 		sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
2067 		if (sk_ctl & SK_RXCTL_OWN) {
2068 			/* Invalidate the descriptor -- it's not ready yet */
2069 			SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
2070 			sc_if->sk_cdata.sk_rx_prod = i;
2071 			break;
2072 		}
2073 
2074 		cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
2075 		cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
2076 		dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2077 
2078 		bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2079 		    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2080 
2081 		rxstat = le32toh(cur_desc->sk_xmac_rxstat);
2082 		m = cur_rx->sk_mbuf;
2083 		cur_rx->sk_mbuf = NULL;
2084 		total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
2085 
2086 		sc_if->sk_cdata.sk_rx_map[cur] = 0;
2087 
2088 		SK_INC(i, SK_RX_RING_CNT);
2089 
2090 		if (rxstat & XM_RXSTAT_ERRFRAME) {
2091 			ifp->if_ierrors++;
2092 			sk_newbuf(sc_if, cur, m, dmamap);
2093 			continue;
2094 		}
2095 
2096 		/*
2097 		 * Try to allocate a new jumbo buffer. If that
2098 		 * fails, copy the packet to mbufs and put the
2099 		 * jumbo buffer back in the ring so it can be
2100 		 * re-used. If allocating mbufs fails, then we
2101 		 * have to drop the packet.
2102 		 */
2103 		if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
2104 			struct mbuf		*m0;
2105 			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
2106 			    total_len + ETHER_ALIGN, 0, ifp, NULL);
2107 			sk_newbuf(sc_if, cur, m, dmamap);
2108 			if (m0 == NULL) {
2109 				aprint_error_dev(sc_if->sk_dev, "no receive "
2110 				    "buffers available -- packet dropped!\n");
2111 				ifp->if_ierrors++;
2112 				continue;
2113 			}
2114 			m_adj(m0, ETHER_ALIGN);
2115 			m = m0;
2116 		} else {
2117 			m->m_pkthdr.rcvif = ifp;
2118 			m->m_pkthdr.len = m->m_len = total_len;
2119 		}
2120 
2121 		ifp->if_ipackets++;
2122 
2123 		bpf_mtap(ifp, m);
2124 		/* pass it on. */
2125 		(*ifp->if_input)(ifp, m);
2126 	}
2127 }
2128 
2129 void
2130 sk_txeof(struct sk_if_softc *sc_if)
2131 {
2132 	struct sk_softc		*sc = sc_if->sk_softc;
2133 	struct sk_tx_desc	*cur_tx;
2134 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2135 	u_int32_t		idx, sk_ctl;
2136 	struct sk_txmap_entry	*entry;
2137 
2138 	DPRINTFN(3, ("sk_txeof\n"));
2139 
2140 	/*
2141 	 * Go through our tx ring and free mbufs for those
2142 	 * frames that have been sent.
2143 	 */
2144 	idx = sc_if->sk_cdata.sk_tx_cons;
2145 	while (idx != sc_if->sk_cdata.sk_tx_prod) {
2146 		SK_CDTXSYNC(sc_if, idx, 1,
2147 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2148 
2149 		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2150 		sk_ctl = le32toh(cur_tx->sk_ctl);
2151 #ifdef SK_DEBUG
2152 		if (skdebug >= 3)
2153 			sk_dump_txdesc(cur_tx, idx);
2154 #endif
2155 		if (sk_ctl & SK_TXCTL_OWN) {
2156 			SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
2157 			break;
2158 		}
2159 		if (sk_ctl & SK_TXCTL_LASTFRAG)
2160 			ifp->if_opackets++;
2161 		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2162 			entry = sc_if->sk_cdata.sk_tx_map[idx];
2163 
2164 			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2165 			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2166 
2167 			bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2168 			    entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2169 
2170 			bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2171 			SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2172 					  link);
2173 			sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2174 		}
2175 		sc_if->sk_cdata.sk_tx_cnt--;
2176 		SK_INC(idx, SK_TX_RING_CNT);
2177 	}
2178 	if (sc_if->sk_cdata.sk_tx_cnt == 0)
2179 		ifp->if_timer = 0;
2180 	else /* nudge chip to keep tx ring moving */
2181 		CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
2182 
2183 	if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
2184 		ifp->if_flags &= ~IFF_OACTIVE;
2185 
2186 	sc_if->sk_cdata.sk_tx_cons = idx;
2187 }
2188 
2189 void
2190 sk_tick(void *xsc_if)
2191 {
2192 	struct sk_if_softc *sc_if = xsc_if;
2193 	struct mii_data *mii = &sc_if->sk_mii;
2194 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2195 	int i;
2196 
2197 	DPRINTFN(3, ("sk_tick\n"));
2198 
2199 	if (!(ifp->if_flags & IFF_UP))
2200 		return;
2201 
2202 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2203 		sk_intr_bcom(sc_if);
2204 		return;
2205 	}
2206 
2207 	/*
2208 	 * According to SysKonnect, the correct way to verify that
2209 	 * the link has come back up is to poll bit 0 of the GPIO
2210 	 * register three times. This pin has the signal from the
2211 	 * link sync pin connected to it; if we read the same link
2212 	 * state 3 times in a row, we know the link is up.
2213 	 */
2214 	for (i = 0; i < 3; i++) {
2215 		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2216 			break;
2217 	}
2218 
2219 	if (i != 3) {
2220 		callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2221 		return;
2222 	}
2223 
2224 	/* Turn the GP0 interrupt back on. */
2225 	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2226 	SK_XM_READ_2(sc_if, XM_ISR);
2227 	mii_tick(mii);
2228 	mii_pollstat(mii);
2229 	callout_stop(&sc_if->sk_tick_ch);
2230 }
2231 
2232 void
2233 sk_intr_bcom(struct sk_if_softc *sc_if)
2234 {
2235 	struct mii_data *mii = &sc_if->sk_mii;
2236 	struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2237 	int status;
2238 
2239 
2240 	DPRINTFN(3, ("sk_intr_bcom\n"));
2241 
2242 	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2243 
2244 	/*
2245 	 * Read the PHY interrupt register to make sure
2246 	 * we clear any pending interrupts.
2247 	 */
2248 	status = sk_xmac_miibus_readreg(sc_if->sk_dev,
2249 	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2250 
2251 	if (!(ifp->if_flags & IFF_RUNNING)) {
2252 		sk_init_xmac(sc_if);
2253 		return;
2254 	}
2255 
2256 	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2257 		int lstat;
2258 		lstat = sk_xmac_miibus_readreg(sc_if->sk_dev,
2259 		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
2260 
2261 		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2262 			(void)mii_mediachg(mii);
2263 			/* Turn off the link LED. */
2264 			SK_IF_WRITE_1(sc_if, 0,
2265 			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
2266 			sc_if->sk_link = 0;
2267 		} else if (status & BRGPHY_ISR_LNK_CHG) {
2268 			sk_xmac_miibus_writereg(sc_if->sk_dev,
2269 			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
2270 			mii_tick(mii);
2271 			sc_if->sk_link = 1;
2272 			/* Turn on the link LED. */
2273 			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2274 			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2275 			    SK_LINKLED_BLINK_OFF);
2276 			mii_pollstat(mii);
2277 		} else {
2278 			mii_tick(mii);
2279 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
2280 		}
2281 	}
2282 
2283 	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2284 }
2285 
2286 void
2287 sk_intr_xmac(struct sk_if_softc	*sc_if)
2288 {
2289 	u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
2290 
2291 	DPRINTFN(3, ("sk_intr_xmac\n"));
2292 
2293 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2294 		if (status & XM_ISR_GP0_SET) {
2295 			SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2296 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2297 		}
2298 
2299 		if (status & XM_ISR_AUTONEG_DONE) {
2300 			callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
2301 		}
2302 	}
2303 
2304 	if (status & XM_IMR_TX_UNDERRUN)
2305 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2306 
2307 	if (status & XM_IMR_RX_OVERRUN)
2308 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2309 }
2310 
2311 void
2312 sk_intr_yukon(struct sk_if_softc *sc_if)
2313 {
2314 	int status;
2315 
2316 	status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2317 
2318 	DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
2319 }
2320 
2321 int
2322 sk_intr(void *xsc)
2323 {
2324 	struct sk_softc		*sc = xsc;
2325 	struct sk_if_softc	*sc_if0 = sc->sk_if[SK_PORT_A];
2326 	struct sk_if_softc	*sc_if1 = sc->sk_if[SK_PORT_B];
2327 	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
2328 	u_int32_t		status;
2329 	int			claimed = 0;
2330 
2331 	if (sc_if0 != NULL)
2332 		ifp0 = &sc_if0->sk_ethercom.ec_if;
2333 	if (sc_if1 != NULL)
2334 		ifp1 = &sc_if1->sk_ethercom.ec_if;
2335 
2336 	for (;;) {
2337 		status = CSR_READ_4(sc, SK_ISSR);
2338 		DPRINTFN(3, ("sk_intr: status=%#x\n", status));
2339 
2340 		if (!(status & sc->sk_intrmask))
2341 			break;
2342 
2343 		claimed = 1;
2344 
2345 		/* Handle receive interrupts first. */
2346 		if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
2347 			sk_rxeof(sc_if0);
2348 			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2349 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2350 		}
2351 		if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
2352 			sk_rxeof(sc_if1);
2353 			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2354 			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2355 		}
2356 
2357 		/* Then transmit interrupts. */
2358 		if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
2359 			sk_txeof(sc_if0);
2360 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2361 			    SK_TXBMU_CLR_IRQ_EOF);
2362 		}
2363 		if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
2364 			sk_txeof(sc_if1);
2365 			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2366 			    SK_TXBMU_CLR_IRQ_EOF);
2367 		}
2368 
2369 		/* Then MAC interrupts. */
2370 		if (sc_if0 && (status & SK_ISR_MAC1) &&
2371 		    (ifp0->if_flags & IFF_RUNNING)) {
2372 			if (sc->sk_type == SK_GENESIS)
2373 				sk_intr_xmac(sc_if0);
2374 			else
2375 				sk_intr_yukon(sc_if0);
2376 		}
2377 
2378 		if (sc_if1 && (status & SK_ISR_MAC2) &&
2379 		    (ifp1->if_flags & IFF_RUNNING)) {
2380 			if (sc->sk_type == SK_GENESIS)
2381 				sk_intr_xmac(sc_if1);
2382 			else
2383 				sk_intr_yukon(sc_if1);
2384 
2385 		}
2386 
2387 		if (status & SK_ISR_EXTERNAL_REG) {
2388 			if (sc_if0 != NULL &&
2389 			    sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2390 				sk_intr_bcom(sc_if0);
2391 
2392 			if (sc_if1 != NULL &&
2393 			    sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2394 				sk_intr_bcom(sc_if1);
2395 		}
2396 	}
2397 
2398 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2399 
2400 	if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2401 		sk_start(ifp0);
2402 	if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2403 		sk_start(ifp1);
2404 
2405 #if NRND > 0
2406 	if (RND_ENABLED(&sc->rnd_source))
2407 		rnd_add_uint32(&sc->rnd_source, status);
2408 #endif
2409 
2410 	if (sc->sk_int_mod_pending)
2411 		sk_update_int_mod(sc);
2412 
2413 	return claimed;
2414 }
2415 
2416 void
2417 sk_init_xmac(struct sk_if_softc	*sc_if)
2418 {
2419 	struct sk_softc		*sc = sc_if->sk_softc;
2420 	struct ifnet		*ifp = &sc_if->sk_ethercom.ec_if;
2421 	static const struct sk_bcom_hack     bhack[] = {
2422 	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2423 	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2424 	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2425 	{ 0, 0 } };
2426 
2427 	DPRINTFN(1, ("sk_init_xmac\n"));
2428 
2429 	/* Unreset the XMAC. */
2430 	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2431 	DELAY(1000);
2432 
2433 	/* Reset the XMAC's internal state. */
2434 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2435 
2436 	/* Save the XMAC II revision */
2437 	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2438 
2439 	/*
2440 	 * Perform additional initialization for external PHYs,
2441 	 * namely for the 1000baseTX cards that use the XMAC's
2442 	 * GMII mode.
2443 	 */
2444 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2445 		int			i = 0;
2446 		u_int32_t		val;
2447 
2448 		/* Take PHY out of reset. */
2449 		val = sk_win_read_4(sc, SK_GPIO);
2450 		if (sc_if->sk_port == SK_PORT_A)
2451 			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2452 		else
2453 			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2454 		sk_win_write_4(sc, SK_GPIO, val);
2455 
2456 		/* Enable GMII mode on the XMAC. */
2457 		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2458 
2459 		sk_xmac_miibus_writereg(sc_if->sk_dev,
2460 		    SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
2461 		DELAY(10000);
2462 		sk_xmac_miibus_writereg(sc_if->sk_dev,
2463 		    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
2464 
2465 		/*
2466 		 * Early versions of the BCM5400 apparently have
2467 		 * a bug that requires them to have their reserved
2468 		 * registers initialized to some magic values. I don't
2469 		 * know what the numbers do, I'm just the messenger.
2470 		 */
2471 		if (sk_xmac_miibus_readreg(sc_if->sk_dev,
2472 		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
2473 			while (bhack[i].reg) {
2474 				sk_xmac_miibus_writereg(sc_if->sk_dev,
2475 				    SK_PHYADDR_BCOM, bhack[i].reg,
2476 				    bhack[i].val);
2477 				i++;
2478 			}
2479 		}
2480 	}
2481 
2482 	/* Set station address */
2483 	SK_XM_WRITE_2(sc_if, XM_PAR0,
2484 		      *(u_int16_t *)(&sc_if->sk_enaddr[0]));
2485 	SK_XM_WRITE_2(sc_if, XM_PAR1,
2486 		      *(u_int16_t *)(&sc_if->sk_enaddr[2]));
2487 	SK_XM_WRITE_2(sc_if, XM_PAR2,
2488 		      *(u_int16_t *)(&sc_if->sk_enaddr[4]));
2489 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2490 
2491 	if (ifp->if_flags & IFF_PROMISC)
2492 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2493 	else
2494 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
2495 
2496 	if (ifp->if_flags & IFF_BROADCAST)
2497 		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2498 	else
2499 		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2500 
2501 	/* We don't need the FCS appended to the packet. */
2502 	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2503 
2504 	/* We want short frames padded to 60 bytes. */
2505 	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2506 
2507 	/*
2508 	 * Enable the reception of all error frames. This is is
2509 	 * a necessary evil due to the design of the XMAC. The
2510 	 * XMAC's receive FIFO is only 8K in size, however jumbo
2511 	 * frames can be up to 9000 bytes in length. When bad
2512 	 * frame filtering is enabled, the XMAC's RX FIFO operates
2513 	 * in 'store and forward' mode. For this to work, the
2514 	 * entire frame has to fit into the FIFO, but that means
2515 	 * that jumbo frames larger than 8192 bytes will be
2516 	 * truncated. Disabling all bad frame filtering causes
2517 	 * the RX FIFO to operate in streaming mode, in which
2518 	 * case the XMAC will start transfering frames out of the
2519 	 * RX FIFO as soon as the FIFO threshold is reached.
2520 	 */
2521 	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2522 	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2523 	    XM_MODE_RX_INRANGELEN);
2524 
2525 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2526 		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2527 	else
2528 		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2529 
2530 	/*
2531 	 * Bump up the transmit threshold. This helps hold off transmit
2532 	 * underruns when we're blasting traffic from both ports at once.
2533 	 */
2534 	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2535 
2536 	/* Set multicast filter */
2537 	sk_setmulti(sc_if);
2538 
2539 	/* Clear and enable interrupts */
2540 	SK_XM_READ_2(sc_if, XM_ISR);
2541 	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2542 		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2543 	else
2544 		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2545 
2546 	/* Configure MAC arbiter */
2547 	switch (sc_if->sk_xmac_rev) {
2548 	case XM_XMAC_REV_B2:
2549 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2550 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2551 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2552 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2553 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2554 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2555 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2556 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2557 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2558 		break;
2559 	case XM_XMAC_REV_C1:
2560 		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2561 		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2562 		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2563 		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2564 		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2565 		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2566 		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2567 		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2568 		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2569 		break;
2570 	default:
2571 		break;
2572 	}
2573 	sk_win_write_2(sc, SK_MACARB_CTL,
2574 	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2575 
2576 	sc_if->sk_link = 1;
2577 }
2578 
2579 void sk_init_yukon(struct sk_if_softc *sc_if)
2580 {
2581 	u_int32_t		/*mac, */phy;
2582 	u_int16_t		reg;
2583 	struct sk_softc		*sc;
2584 	int			i;
2585 
2586 	DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2587 		     CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2588 
2589 	sc = sc_if->sk_softc;
2590 	if (sc->sk_type == SK_YUKON_LITE &&
2591 	    sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
2592 		/* Take PHY out of reset. */
2593 		sk_win_write_4(sc, SK_GPIO,
2594 			(sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
2595 	}
2596 
2597 
2598 	/* GMAC and GPHY Reset */
2599 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2600 
2601 	DPRINTFN(6, ("sk_init_yukon: 1\n"));
2602 
2603 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2604 	DELAY(1000);
2605 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2606 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2607 	DELAY(1000);
2608 
2609 
2610 	DPRINTFN(6, ("sk_init_yukon: 2\n"));
2611 
2612 	phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2613 		SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2614 
2615 	switch (sc_if->sk_softc->sk_pmd) {
2616 	case IFM_1000_SX:
2617 	case IFM_1000_LX:
2618 		phy |= SK_GPHY_FIBER;
2619 		break;
2620 
2621 	case IFM_1000_CX:
2622 	case IFM_1000_T:
2623 		phy |= SK_GPHY_COPPER;
2624 		break;
2625 	}
2626 
2627 	DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
2628 
2629 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2630 	DELAY(1000);
2631 	SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2632 	SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2633 		      SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2634 
2635 	DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2636 		     SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2637 
2638 	DPRINTFN(6, ("sk_init_yukon: 3\n"));
2639 
2640 	/* unused read of the interrupt source register */
2641 	DPRINTFN(6, ("sk_init_yukon: 4\n"));
2642 	SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2643 
2644 	DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2645 	reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2646 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2647 
2648 	/* MIB Counter Clear Mode set */
2649         reg |= YU_PAR_MIB_CLR;
2650 	DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
2651 	DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2652 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2653 
2654 	/* MIB Counter Clear Mode clear */
2655 	DPRINTFN(6, ("sk_init_yukon: 5\n"));
2656         reg &= ~YU_PAR_MIB_CLR;
2657 	SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2658 
2659 	/* receive control reg */
2660 	DPRINTFN(6, ("sk_init_yukon: 7\n"));
2661 	SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
2662 		      YU_RCR_CRCR);
2663 
2664 	/* transmit parameter register */
2665 	DPRINTFN(6, ("sk_init_yukon: 8\n"));
2666 	SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2667 		      YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2668 
2669 	/* serial mode register */
2670 	DPRINTFN(6, ("sk_init_yukon: 9\n"));
2671 	SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
2672 		      YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
2673 		      YU_SMR_IPG_DATA(0x1e));
2674 
2675 	DPRINTFN(6, ("sk_init_yukon: 10\n"));
2676 	/* Setup Yukon's address */
2677 	for (i = 0; i < 3; i++) {
2678 		/* Write Source Address 1 (unicast filter) */
2679 		SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2680 			      sc_if->sk_enaddr[i * 2] |
2681 			      sc_if->sk_enaddr[i * 2 + 1] << 8);
2682 	}
2683 
2684 	for (i = 0; i < 3; i++) {
2685 		reg = sk_win_read_2(sc_if->sk_softc,
2686 				    SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2687 		SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2688 	}
2689 
2690 	/* Set multicast filter */
2691 	DPRINTFN(6, ("sk_init_yukon: 11\n"));
2692 	sk_setmulti(sc_if);
2693 
2694 	/* enable interrupt mask for counter overflows */
2695 	DPRINTFN(6, ("sk_init_yukon: 12\n"));
2696 	SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2697 	SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2698 	SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2699 
2700 	/* Configure RX MAC FIFO */
2701 	SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2702 	SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2703 
2704 	/* Configure TX MAC FIFO */
2705 	SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2706 	SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2707 
2708 	DPRINTFN(6, ("sk_init_yukon: end\n"));
2709 }
2710 
2711 /*
2712  * Note that to properly initialize any part of the GEnesis chip,
2713  * you first have to take it out of reset mode.
2714  */
2715 int
2716 sk_init(struct ifnet *ifp)
2717 {
2718 	struct sk_if_softc	*sc_if = ifp->if_softc;
2719 	struct sk_softc		*sc = sc_if->sk_softc;
2720 	struct mii_data		*mii = &sc_if->sk_mii;
2721 	int			rc = 0, s;
2722 	u_int32_t		imr, imtimer_ticks;
2723 
2724 	DPRINTFN(1, ("sk_init\n"));
2725 
2726 	s = splnet();
2727 
2728 	if (ifp->if_flags & IFF_RUNNING) {
2729 		splx(s);
2730 		return 0;
2731 	}
2732 
2733 	/* Cancel pending I/O and free all RX/TX buffers. */
2734 	sk_stop(ifp,0);
2735 
2736 	if (sc->sk_type == SK_GENESIS) {
2737 		/* Configure LINK_SYNC LED */
2738 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2739 		SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2740 			      SK_LINKLED_LINKSYNC_ON);
2741 
2742 		/* Configure RX LED */
2743 		SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
2744 			      SK_RXLEDCTL_COUNTER_START);
2745 
2746 		/* Configure TX LED */
2747 		SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2748 			      SK_TXLEDCTL_COUNTER_START);
2749 	}
2750 
2751 	/* Configure I2C registers */
2752 
2753 	/* Configure XMAC(s) */
2754 	switch (sc->sk_type) {
2755 	case SK_GENESIS:
2756 		sk_init_xmac(sc_if);
2757 		break;
2758 	case SK_YUKON:
2759 	case SK_YUKON_LITE:
2760 	case SK_YUKON_LP:
2761 		sk_init_yukon(sc_if);
2762 		break;
2763 	}
2764 	if ((rc = mii_mediachg(mii)) == ENXIO)
2765 		rc = 0;
2766 	else if (rc != 0)
2767 		goto out;
2768 
2769 	if (sc->sk_type == SK_GENESIS) {
2770 		/* Configure MAC FIFOs */
2771 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2772 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2773 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2774 
2775 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2776 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2777 		SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2778 	}
2779 
2780 	/* Configure transmit arbiter(s) */
2781 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2782 	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2783 
2784 	/* Configure RAMbuffers */
2785 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2786 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2787 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2788 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2789 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2790 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2791 
2792 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2793 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2794 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2795 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2796 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2797 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2798 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2799 
2800 	/* Configure BMUs */
2801 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2802 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2803 	    SK_RX_RING_ADDR(sc_if, 0));
2804 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2805 
2806 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2807 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2808             SK_TX_RING_ADDR(sc_if, 0));
2809 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2810 
2811 	/* Init descriptors */
2812 	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2813 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2814 		    "memory for rx buffers\n");
2815 		sk_stop(ifp,0);
2816 		splx(s);
2817 		return ENOBUFS;
2818 	}
2819 
2820 	if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2821 		aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2822 		    "memory for tx buffers\n");
2823 		sk_stop(ifp,0);
2824 		splx(s);
2825 		return ENOBUFS;
2826 	}
2827 
2828 	/* Set interrupt moderation if changed via sysctl. */
2829 	switch (sc->sk_type) {
2830 	case SK_GENESIS:
2831 		imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
2832 		break;
2833 	case SK_YUKON_EC:
2834 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2835 		break;
2836 	default:
2837 		imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2838 	}
2839 	imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2840 	if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2841 		sk_win_write_4(sc, SK_IMTIMERINIT,
2842 		    SK_IM_USECS(sc->sk_int_mod));
2843 		aprint_verbose_dev(sc->sk_dev,
2844 		    "interrupt moderation is %d us\n", sc->sk_int_mod);
2845 	}
2846 
2847 	/* Configure interrupt handling */
2848 	CSR_READ_4(sc, SK_ISSR);
2849 	if (sc_if->sk_port == SK_PORT_A)
2850 		sc->sk_intrmask |= SK_INTRS1;
2851 	else
2852 		sc->sk_intrmask |= SK_INTRS2;
2853 
2854 	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2855 
2856 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2857 
2858 	/* Start BMUs. */
2859 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2860 
2861 	if (sc->sk_type == SK_GENESIS) {
2862 		/* Enable XMACs TX and RX state machines */
2863 		SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2864 		SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
2865 			       XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2866 	}
2867 
2868 	if (SK_YUKON_FAMILY(sc->sk_type)) {
2869 		u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2870 		reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2871 #if 0
2872 		/* XXX disable 100Mbps and full duplex mode? */
2873 		reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
2874 #endif
2875 		SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2876 	}
2877 
2878 
2879 	ifp->if_flags |= IFF_RUNNING;
2880 	ifp->if_flags &= ~IFF_OACTIVE;
2881 
2882 out:
2883 	splx(s);
2884 	return rc;
2885 }
2886 
2887 void
2888 sk_stop(struct ifnet *ifp, int disable)
2889 {
2890         struct sk_if_softc	*sc_if = ifp->if_softc;
2891 	struct sk_softc		*sc = sc_if->sk_softc;
2892 	int			i;
2893 
2894 	DPRINTFN(1, ("sk_stop\n"));
2895 
2896 	callout_stop(&sc_if->sk_tick_ch);
2897 
2898 	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2899 		u_int32_t		val;
2900 
2901 		/* Put PHY back into reset. */
2902 		val = sk_win_read_4(sc, SK_GPIO);
2903 		if (sc_if->sk_port == SK_PORT_A) {
2904 			val |= SK_GPIO_DIR0;
2905 			val &= ~SK_GPIO_DAT0;
2906 		} else {
2907 			val |= SK_GPIO_DIR2;
2908 			val &= ~SK_GPIO_DAT2;
2909 		}
2910 		sk_win_write_4(sc, SK_GPIO, val);
2911 	}
2912 
2913 	/* Turn off various components of this interface. */
2914 	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2915 	switch (sc->sk_type) {
2916 	case SK_GENESIS:
2917 		SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
2918 			      SK_TXMACCTL_XMAC_RESET);
2919 		SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2920 		break;
2921 	case SK_YUKON:
2922 	case SK_YUKON_LITE:
2923 	case SK_YUKON_LP:
2924 		SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2925 		SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2926 		break;
2927 	}
2928 	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2929 	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2930 	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2931 	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2932 	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2933 	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2934 	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2935 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2936 	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2937 
2938 	/* Disable interrupts */
2939 	if (sc_if->sk_port == SK_PORT_A)
2940 		sc->sk_intrmask &= ~SK_INTRS1;
2941 	else
2942 		sc->sk_intrmask &= ~SK_INTRS2;
2943 	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2944 
2945 	SK_XM_READ_2(sc_if, XM_ISR);
2946 	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2947 
2948 	/* Free RX and TX mbufs still in the queues. */
2949 	for (i = 0; i < SK_RX_RING_CNT; i++) {
2950 		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2951 			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2952 			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2953 		}
2954 	}
2955 
2956 	for (i = 0; i < SK_TX_RING_CNT; i++) {
2957 		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2958 			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2959 			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2960 		}
2961 	}
2962 
2963 	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2964 }
2965 
2966 /* Power Management Framework */
2967 
2968 static bool
2969 skc_suspend(device_t dv, const pmf_qual_t *qual)
2970 {
2971 	struct sk_softc *sc = device_private(dv);
2972 
2973 	DPRINTFN(2, ("skc_suspend\n"));
2974 
2975 	/* Turn off the driver is loaded LED */
2976 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2977 
2978 	return true;
2979 }
2980 
2981 static bool
2982 skc_resume(device_t dv, const pmf_qual_t *qual)
2983 {
2984 	struct sk_softc *sc = device_private(dv);
2985 
2986 	DPRINTFN(2, ("skc_resume\n"));
2987 
2988 	sk_reset(sc);
2989 	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
2990 
2991 	return true;
2992 }
2993 
2994 static bool
2995 sk_resume(device_t dv, const pmf_qual_t *qual)
2996 {
2997 	struct sk_if_softc *sc_if = device_private(dv);
2998 
2999 	sk_init_yukon(sc_if);
3000 	return true;
3001 }
3002 
3003 CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc),
3004     skc_probe, skc_attach, NULL, NULL);
3005 
3006 CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc),
3007     sk_probe, sk_attach, NULL, NULL);
3008 
3009 #ifdef SK_DEBUG
3010 void
3011 sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
3012 {
3013 #define DESC_PRINT(X)					\
3014 	if (X)					\
3015 		printf("txdesc[%d]." #X "=%#x\n",	\
3016 		       idx, X);
3017 
3018 	DESC_PRINT(le32toh(desc->sk_ctl));
3019 	DESC_PRINT(le32toh(desc->sk_next));
3020 	DESC_PRINT(le32toh(desc->sk_data_lo));
3021 	DESC_PRINT(le32toh(desc->sk_data_hi));
3022 	DESC_PRINT(le32toh(desc->sk_xmac_txstat));
3023 	DESC_PRINT(le16toh(desc->sk_rsvd0));
3024 	DESC_PRINT(le16toh(desc->sk_csum_startval));
3025 	DESC_PRINT(le16toh(desc->sk_csum_startpos));
3026 	DESC_PRINT(le16toh(desc->sk_csum_writepos));
3027 	DESC_PRINT(le16toh(desc->sk_rsvd1));
3028 #undef PRINT
3029 }
3030 
3031 void
3032 sk_dump_bytes(const char *data, int len)
3033 {
3034 	int c, i, j;
3035 
3036 	for (i = 0; i < len; i += 16) {
3037 		printf("%08x  ", i);
3038 		c = len - i;
3039 		if (c > 16) c = 16;
3040 
3041 		for (j = 0; j < c; j++) {
3042 			printf("%02x ", data[i + j] & 0xff);
3043 			if ((j & 0xf) == 7 && j > 0)
3044 				printf(" ");
3045 		}
3046 
3047 		for (; j < 16; j++)
3048 			printf("   ");
3049 		printf("  ");
3050 
3051 		for (j = 0; j < c; j++) {
3052 			int ch = data[i + j] & 0xff;
3053 			printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
3054 		}
3055 
3056 		printf("\n");
3057 
3058 		if (c < 16)
3059 			break;
3060 	}
3061 }
3062 
3063 void
3064 sk_dump_mbuf(struct mbuf *m)
3065 {
3066 	int count = m->m_pkthdr.len;
3067 
3068 	printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
3069 
3070 	while (count > 0 && m) {
3071 		printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3072 		       m, m->m_data, m->m_len);
3073 		sk_dump_bytes(mtod(m, char *), m->m_len);
3074 
3075 		count -= m->m_len;
3076 		m = m->m_next;
3077 	}
3078 }
3079 #endif
3080 
3081 static int
3082 sk_sysctl_handler(SYSCTLFN_ARGS)
3083 {
3084 	int error, t;
3085 	struct sysctlnode node;
3086 	struct sk_softc *sc;
3087 
3088 	node = *rnode;
3089 	sc = node.sysctl_data;
3090 	t = sc->sk_int_mod;
3091 	node.sysctl_data = &t;
3092 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3093 	if (error || newp == NULL)
3094 		return error;
3095 
3096 	if (t < SK_IM_MIN || t > SK_IM_MAX)
3097 		return EINVAL;
3098 
3099 	/* update the softc with sysctl-changed value, and mark
3100 	   for hardware update */
3101 	sc->sk_int_mod = t;
3102 	sc->sk_int_mod_pending = 1;
3103 	return 0;
3104 }
3105 
3106 /*
3107  * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3108  * set up in skc_attach()
3109  */
3110 SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
3111 {
3112 	int rc;
3113 	const struct sysctlnode *node;
3114 
3115 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3116 	    0, CTLTYPE_NODE, "hw", NULL,
3117 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3118 		goto err;
3119 	}
3120 
3121 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
3122 	    0, CTLTYPE_NODE, "sk",
3123 	    SYSCTL_DESCR("sk interface controls"),
3124 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3125 		goto err;
3126 	}
3127 
3128 	sk_root_num = node->sysctl_num;
3129 	return;
3130 
3131 err:
3132 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
3133 }
3134