xref: /netbsd-src/sys/dev/pci/if_sip.c (revision fd5cb0acea84d278e04e640d37ca2398f894991f)
1 /*	$NetBSD: if_sip.c,v 1.99 2005/02/06 08:52:08 cube Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*-
40  * Copyright (c) 1999 Network Computer, Inc.
41  * All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of Network Computer, Inc. nor the names of its
52  *    contributors may be used to endorse or promote products derived
53  *    from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65  * POSSIBILITY OF SUCH DAMAGE.
66  */
67 
68 /*
69  * Device driver for the Silicon Integrated Systems SiS 900,
70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72  * controllers.
73  *
74  * Originally written to support the SiS 900 by Jason R. Thorpe for
75  * Network Computer, Inc.
76  *
77  * TODO:
78  *
79  *	- Reduce the Rx interrupt load.
80  */
81 
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.99 2005/02/06 08:52:08 cube Exp $");
84 
85 #include "bpfilter.h"
86 #include "rnd.h"
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99 
100 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
101 
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105 
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110 
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114 
115 #include <machine/bus.h>
116 #include <machine/intr.h>
117 #include <machine/endian.h>
118 
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/mii_bitbang.h>
122 
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 #include <dev/pci/pcidevs.h>
126 
127 #include <dev/pci/if_sipreg.h>
128 
129 #ifdef DP83820		/* DP83820 Gigabit Ethernet */
130 #define	SIP_DECL(x)	__CONCAT(gsip_,x)
131 #else			/* SiS900 and DP83815 */
132 #define	SIP_DECL(x)	__CONCAT(sip_,x)
133 #endif
134 
135 #define	SIP_STR(x)	__STRING(SIP_DECL(x))
136 
137 /*
138  * Transmit descriptor list size.  This is arbitrary, but allocate
139  * enough descriptors for 128 pending transmissions, and 8 segments
140  * per packet (64 for DP83820 for jumbo frames).
141  *
142  * This MUST work out to a power of 2.
143  */
144 #ifdef DP83820
145 #define	SIP_NTXSEGS		64
146 #define	SIP_NTXSEGS_ALLOC	16
147 #else
148 #define	SIP_NTXSEGS		16
149 #define	SIP_NTXSEGS_ALLOC	8
150 #endif
151 
152 #define	SIP_TXQUEUELEN		256
153 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
154 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
155 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
156 
157 #if defined(DP83820)
158 #define	TX_DMAMAP_SIZE		ETHER_MAX_LEN_JUMBO
159 #else
160 #define	TX_DMAMAP_SIZE		MCLBYTES
161 #endif
162 
163 /*
164  * Receive descriptor list size.  We have one Rx buffer per incoming
165  * packet, so this logic is a little simpler.
166  *
167  * Actually, on the DP83820, we allow the packet to consume more than
168  * one buffer, in order to support jumbo Ethernet frames.  In that
169  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
170  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
171  * so we'd better be quick about handling receive interrupts.
172  */
173 #if defined(DP83820)
174 #define	SIP_NRXDESC		256
175 #else
176 #define	SIP_NRXDESC		128
177 #endif /* DP83820 */
178 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
179 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
180 
181 /*
182  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
183  * a single clump that maps to a single DMA segment to make several things
184  * easier.
185  */
186 struct sip_control_data {
187 	/*
188 	 * The transmit descriptors.
189 	 */
190 	struct sip_desc scd_txdescs[SIP_NTXDESC];
191 
192 	/*
193 	 * The receive descriptors.
194 	 */
195 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
196 };
197 
198 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
199 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
200 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
201 
202 /*
203  * Software state for transmit jobs.
204  */
205 struct sip_txsoft {
206 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
207 	bus_dmamap_t txs_dmamap;	/* our DMA map */
208 	int txs_firstdesc;		/* first descriptor in packet */
209 	int txs_lastdesc;		/* last descriptor in packet */
210 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
211 };
212 
213 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
214 
215 /*
216  * Software state for receive jobs.
217  */
218 struct sip_rxsoft {
219 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
220 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
221 };
222 
223 /*
224  * Software state per device.
225  */
226 struct sip_softc {
227 	struct device sc_dev;		/* generic device information */
228 	bus_space_tag_t sc_st;		/* bus space tag */
229 	bus_space_handle_t sc_sh;	/* bus space handle */
230 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
231 	struct ethercom sc_ethercom;	/* ethernet common data */
232 	void *sc_sdhook;		/* shutdown hook */
233 
234 	const struct sip_product *sc_model; /* which model are we? */
235 	int sc_rev;			/* chip revision */
236 
237 	void *sc_ih;			/* interrupt cookie */
238 
239 	struct mii_data sc_mii;		/* MII/media information */
240 
241 	struct callout sc_tick_ch;	/* tick callout */
242 
243 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
244 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
245 
246 	/*
247 	 * Software state for transmit and receive descriptors.
248 	 */
249 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
250 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
251 
252 	/*
253 	 * Control data structures.
254 	 */
255 	struct sip_control_data *sc_control_data;
256 #define	sc_txdescs	sc_control_data->scd_txdescs
257 #define	sc_rxdescs	sc_control_data->scd_rxdescs
258 
259 #ifdef SIP_EVENT_COUNTERS
260 	/*
261 	 * Event counters.
262 	 */
263 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
264 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
265 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
266 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
267 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
268 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
269 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
270 	struct evcnt sc_ev_rxpause;	/* PAUSE received */
271 #ifdef DP83820
272 	struct evcnt sc_ev_txpause;	/* PAUSE transmitted */
273 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
274 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
275 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
276 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
277 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
278 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
279 #endif /* DP83820 */
280 #endif /* SIP_EVENT_COUNTERS */
281 
282 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
283 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
284 	u_int32_t sc_imr;		/* prototype IMR register */
285 	u_int32_t sc_rfcr;		/* prototype RFCR register */
286 
287 	u_int32_t sc_cfg;		/* prototype CFG register */
288 
289 #ifdef DP83820
290 	u_int32_t sc_gpior;		/* prototype GPIOR register */
291 #endif /* DP83820 */
292 
293 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
294 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
295 
296 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
297 
298 	int	sc_flowflags;		/* 802.3x flow control flags */
299 #ifdef DP83820
300 	int	sc_rx_flow_thresh;	/* Rx FIFO threshold for flow control */
301 #else
302 	int	sc_paused;		/* paused indication */
303 #endif
304 
305 	int	sc_txfree;		/* number of free Tx descriptors */
306 	int	sc_txnext;		/* next ready Tx descriptor */
307 	int	sc_txwin;		/* Tx descriptors since last intr */
308 
309 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
310 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
311 
312 	short	sc_if_flags;
313 
314 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
315 #if defined(DP83820)
316 	int	sc_rxdiscard;
317 	int	sc_rxlen;
318 	struct mbuf *sc_rxhead;
319 	struct mbuf *sc_rxtail;
320 	struct mbuf **sc_rxtailp;
321 #endif /* DP83820 */
322 
323 #if NRND > 0
324 	rndsource_element_t rnd_source;	/* random source */
325 #endif
326 };
327 
328 #ifdef DP83820
329 #define	SIP_RXCHAIN_RESET(sc)						\
330 do {									\
331 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
332 	*(sc)->sc_rxtailp = NULL;					\
333 	(sc)->sc_rxlen = 0;						\
334 } while (/*CONSTCOND*/0)
335 
336 #define	SIP_RXCHAIN_LINK(sc, m)						\
337 do {									\
338 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
339 	(sc)->sc_rxtailp = &(m)->m_next;				\
340 } while (/*CONSTCOND*/0)
341 #endif /* DP83820 */
342 
343 #ifdef SIP_EVENT_COUNTERS
344 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
345 #else
346 #define	SIP_EVCNT_INCR(ev)	/* nothing */
347 #endif
348 
349 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
350 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
351 
352 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
353 do {									\
354 	int __x, __n;							\
355 									\
356 	__x = (x);							\
357 	__n = (n);							\
358 									\
359 	/* If it will wrap around, sync to the end of the ring. */	\
360 	if ((__x + __n) > SIP_NTXDESC) {				\
361 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
362 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
363 		    (SIP_NTXDESC - __x), (ops));			\
364 		__n -= (SIP_NTXDESC - __x);				\
365 		__x = 0;						\
366 	}								\
367 									\
368 	/* Now sync whatever is left. */				\
369 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
370 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
371 } while (0)
372 
373 #define	SIP_CDRXSYNC(sc, x, ops)					\
374 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
375 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
376 
377 #ifdef DP83820
378 #define	SIP_INIT_RXDESC_EXTSTS	__sipd->sipd_extsts = 0;
379 #define	SIP_RXBUF_LEN		(MCLBYTES - 8)
380 #else
381 #define	SIP_INIT_RXDESC_EXTSTS	/* nothing */
382 #define	SIP_RXBUF_LEN		(MCLBYTES - 1)	/* field width */
383 #endif
384 #define	SIP_INIT_RXDESC(sc, x)						\
385 do {									\
386 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
387 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
388 									\
389 	__sipd->sipd_link =						\
390 	    htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x))));		\
391 	__sipd->sipd_bufptr =						\
392 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr);		\
393 	__sipd->sipd_cmdsts = htole32(CMDSTS_INTR |			\
394 	    (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK));			\
395 	SIP_INIT_RXDESC_EXTSTS						\
396 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
397 } while (0)
398 
399 #define	SIP_CHIP_VERS(sc, v, p, r)					\
400 	((sc)->sc_model->sip_vendor == (v) &&				\
401 	 (sc)->sc_model->sip_product == (p) &&				\
402 	 (sc)->sc_rev == (r))
403 
404 #define	SIP_CHIP_MODEL(sc, v, p)					\
405 	((sc)->sc_model->sip_vendor == (v) &&				\
406 	 (sc)->sc_model->sip_product == (p))
407 
408 #if !defined(DP83820)
409 #define	SIP_SIS900_REV(sc, rev)						\
410 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
411 #endif
412 
413 #define SIP_TIMEOUT 1000
414 
415 static void	SIP_DECL(start)(struct ifnet *);
416 static void	SIP_DECL(watchdog)(struct ifnet *);
417 static int	SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
418 static int	SIP_DECL(init)(struct ifnet *);
419 static void	SIP_DECL(stop)(struct ifnet *, int);
420 
421 static void	SIP_DECL(shutdown)(void *);
422 
423 static void	SIP_DECL(reset)(struct sip_softc *);
424 static void	SIP_DECL(rxdrain)(struct sip_softc *);
425 static int	SIP_DECL(add_rxbuf)(struct sip_softc *, int);
426 static void	SIP_DECL(read_eeprom)(struct sip_softc *, int, int,
427 				      u_int16_t *);
428 static void	SIP_DECL(tick)(void *);
429 
430 #if !defined(DP83820)
431 static void	SIP_DECL(sis900_set_filter)(struct sip_softc *);
432 #endif /* ! DP83820 */
433 static void	SIP_DECL(dp83815_set_filter)(struct sip_softc *);
434 
435 #if defined(DP83820)
436 static void	SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
437 		    const struct pci_attach_args *, u_int8_t *);
438 #else
439 static void	SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc);
440 static void	SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
441 		    const struct pci_attach_args *, u_int8_t *);
442 static void	SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
443 		    const struct pci_attach_args *, u_int8_t *);
444 #endif /* DP83820 */
445 
446 static int	SIP_DECL(intr)(void *);
447 static void	SIP_DECL(txintr)(struct sip_softc *);
448 static void	SIP_DECL(rxintr)(struct sip_softc *);
449 
450 #if defined(DP83820)
451 static int	SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
452 static void	SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
453 static void	SIP_DECL(dp83820_mii_statchg)(struct device *);
454 #else
455 static int	SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
456 static void	SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
457 static void	SIP_DECL(sis900_mii_statchg)(struct device *);
458 
459 static int	SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
460 static void	SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
461 static void	SIP_DECL(dp83815_mii_statchg)(struct device *);
462 #endif /* DP83820 */
463 
464 static int	SIP_DECL(mediachange)(struct ifnet *);
465 static void	SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
466 
467 static int	SIP_DECL(match)(struct device *, struct cfdata *, void *);
468 static void	SIP_DECL(attach)(struct device *, struct device *, void *);
469 
470 int	SIP_DECL(copy_small) = 0;
471 
472 #ifdef DP83820
473 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
474     gsip_match, gsip_attach, NULL, NULL);
475 #else
476 CFATTACH_DECL(sip, sizeof(struct sip_softc),
477     sip_match, sip_attach, NULL, NULL);
478 #endif
479 
480 /*
481  * Descriptions of the variants of the SiS900.
482  */
483 struct sip_variant {
484 	int	(*sipv_mii_readreg)(struct device *, int, int);
485 	void	(*sipv_mii_writereg)(struct device *, int, int, int);
486 	void	(*sipv_mii_statchg)(struct device *);
487 	void	(*sipv_set_filter)(struct sip_softc *);
488 	void	(*sipv_read_macaddr)(struct sip_softc *,
489 		    const struct pci_attach_args *, u_int8_t *);
490 };
491 
492 static u_int32_t SIP_DECL(mii_bitbang_read)(struct device *);
493 static void	SIP_DECL(mii_bitbang_write)(struct device *, u_int32_t);
494 
495 static const struct mii_bitbang_ops SIP_DECL(mii_bitbang_ops) = {
496 	SIP_DECL(mii_bitbang_read),
497 	SIP_DECL(mii_bitbang_write),
498 	{
499 		EROMAR_MDIO,		/* MII_BIT_MDO */
500 		EROMAR_MDIO,		/* MII_BIT_MDI */
501 		EROMAR_MDC,		/* MII_BIT_MDC */
502 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
503 		0,			/* MII_BIT_DIR_PHY_HOST */
504 	}
505 };
506 
507 #if defined(DP83820)
508 static const struct sip_variant SIP_DECL(variant_dp83820) = {
509 	SIP_DECL(dp83820_mii_readreg),
510 	SIP_DECL(dp83820_mii_writereg),
511 	SIP_DECL(dp83820_mii_statchg),
512 	SIP_DECL(dp83815_set_filter),
513 	SIP_DECL(dp83820_read_macaddr),
514 };
515 #else
516 static const struct sip_variant SIP_DECL(variant_sis900) = {
517 	SIP_DECL(sis900_mii_readreg),
518 	SIP_DECL(sis900_mii_writereg),
519 	SIP_DECL(sis900_mii_statchg),
520 	SIP_DECL(sis900_set_filter),
521 	SIP_DECL(sis900_read_macaddr),
522 };
523 
524 static const struct sip_variant SIP_DECL(variant_dp83815) = {
525 	SIP_DECL(dp83815_mii_readreg),
526 	SIP_DECL(dp83815_mii_writereg),
527 	SIP_DECL(dp83815_mii_statchg),
528 	SIP_DECL(dp83815_set_filter),
529 	SIP_DECL(dp83815_read_macaddr),
530 };
531 #endif /* DP83820 */
532 
533 /*
534  * Devices supported by this driver.
535  */
536 static const struct sip_product {
537 	pci_vendor_id_t		sip_vendor;
538 	pci_product_id_t	sip_product;
539 	const char		*sip_name;
540 	const struct sip_variant *sip_variant;
541 } SIP_DECL(products)[] = {
542 #if defined(DP83820)
543 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
544 	  "NatSemi DP83820 Gigabit Ethernet",
545 	  &SIP_DECL(variant_dp83820) },
546 #else
547 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
548 	  "SiS 900 10/100 Ethernet",
549 	  &SIP_DECL(variant_sis900) },
550 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
551 	  "SiS 7016 10/100 Ethernet",
552 	  &SIP_DECL(variant_sis900) },
553 
554 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
555 	  "NatSemi DP83815 10/100 Ethernet",
556 	  &SIP_DECL(variant_dp83815) },
557 #endif /* DP83820 */
558 
559 	{ 0,			0,
560 	  NULL,
561 	  NULL },
562 };
563 
564 static const struct sip_product *
565 SIP_DECL(lookup)(const struct pci_attach_args *pa)
566 {
567 	const struct sip_product *sip;
568 
569 	for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
570 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
571 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
572 			return (sip);
573 	}
574 	return (NULL);
575 }
576 
577 #ifdef DP83820
578 /*
579  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
580  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
581  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
582  * which means we try to use 64-bit data transfers on those cards if we
583  * happen to be plugged into a 32-bit slot.
584  *
585  * What we do is use this table of cards known to be 64-bit cards.  If
586  * you have a 64-bit card who's subsystem ID is not listed in this table,
587  * send the output of "pcictl dump ..." of the device to me so that your
588  * card will use the 64-bit data path when plugged into a 64-bit slot.
589  *
590  *	-- Jason R. Thorpe <thorpej@NetBSD.org>
591  *	   June 30, 2002
592  */
593 static int
594 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
595 {
596 	static const struct {
597 		pci_vendor_id_t c64_vendor;
598 		pci_product_id_t c64_product;
599 	} card64[] = {
600 		/* Asante GigaNIX */
601 		{ 0x128a,	0x0002 },
602 
603 		/* Accton EN1407-T, Planex GN-1000TE */
604 		{ 0x1113,	0x1407 },
605 
606 		/* Netgear GA-621 */
607 		{ 0x1385,	0x621a },
608 
609 		/* SMC EZ Card */
610 		{ 0x10b8,	0x9462 },
611 
612 		{ 0, 0}
613 	};
614 	pcireg_t subsys;
615 	int i;
616 
617 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
618 
619 	for (i = 0; card64[i].c64_vendor != 0; i++) {
620 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
621 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
622 			return (1);
623 	}
624 
625 	return (0);
626 }
627 #endif /* DP83820 */
628 
629 static int
630 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
631 {
632 	struct pci_attach_args *pa = aux;
633 
634 	if (SIP_DECL(lookup)(pa) != NULL)
635 		return (1);
636 
637 	return (0);
638 }
639 
640 static void
641 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
642 {
643 	struct sip_softc *sc = (struct sip_softc *) self;
644 	struct pci_attach_args *pa = aux;
645 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
646 	pci_chipset_tag_t pc = pa->pa_pc;
647 	pci_intr_handle_t ih;
648 	const char *intrstr = NULL;
649 	bus_space_tag_t iot, memt;
650 	bus_space_handle_t ioh, memh;
651 	bus_dma_segment_t seg;
652 	int ioh_valid, memh_valid;
653 	int i, rseg, error;
654 	const struct sip_product *sip;
655 	pcireg_t pmode;
656 	u_int8_t enaddr[ETHER_ADDR_LEN];
657 	int pmreg;
658 #ifdef DP83820
659 	pcireg_t memtype;
660 	u_int32_t reg;
661 #endif /* DP83820 */
662 
663 	callout_init(&sc->sc_tick_ch);
664 
665 	sip = SIP_DECL(lookup)(pa);
666 	if (sip == NULL) {
667 		printf("\n");
668 		panic(SIP_STR(attach) ": impossible");
669 	}
670 	sc->sc_rev = PCI_REVISION(pa->pa_class);
671 
672 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
673 
674 	sc->sc_model = sip;
675 
676 	/*
677 	 * XXX Work-around broken PXE firmware on some boards.
678 	 *
679 	 * The DP83815 shares an address decoder with the MEM BAR
680 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
681 	 * so that memory mapped access works.
682 	 */
683 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
684 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
685 	    ~PCI_MAPREG_ROM_ENABLE);
686 
687 	/*
688 	 * Map the device.
689 	 */
690 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
691 	    PCI_MAPREG_TYPE_IO, 0,
692 	    &iot, &ioh, NULL, NULL) == 0);
693 #ifdef DP83820
694 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
695 	switch (memtype) {
696 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
697 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
698 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
699 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
700 		break;
701 	default:
702 		memh_valid = 0;
703 	}
704 #else
705 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
706 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
707 	    &memt, &memh, NULL, NULL) == 0);
708 #endif /* DP83820 */
709 
710 	if (memh_valid) {
711 		sc->sc_st = memt;
712 		sc->sc_sh = memh;
713 	} else if (ioh_valid) {
714 		sc->sc_st = iot;
715 		sc->sc_sh = ioh;
716 	} else {
717 		printf("%s: unable to map device registers\n",
718 		    sc->sc_dev.dv_xname);
719 		return;
720 	}
721 
722 	sc->sc_dmat = pa->pa_dmat;
723 
724 	/*
725 	 * Make sure bus mastering is enabled.  Also make sure
726 	 * Write/Invalidate is enabled if we're allowed to use it.
727 	 */
728 	pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
729 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
730 		pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
731 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
732 	    pmreg | PCI_COMMAND_MASTER_ENABLE);
733 
734 	/* Get it out of power save mode if needed. */
735 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
736 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
737 		    PCI_PMCSR_STATE_MASK;
738 		if (pmode == PCI_PMCSR_STATE_D3) {
739 			/*
740 			 * The card has lost all configuration data in
741 			 * this state, so punt.
742 			 */
743 			printf("%s: unable to wake up from power state D3\n",
744 			    sc->sc_dev.dv_xname);
745 			return;
746 		}
747 		if (pmode != PCI_PMCSR_STATE_D0) {
748 			printf("%s: waking up from power state D%d\n",
749 			    sc->sc_dev.dv_xname, pmode);
750 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
751 			    PCI_PMCSR_STATE_D0);
752 		}
753 	}
754 
755 	/*
756 	 * Map and establish our interrupt.
757 	 */
758 	if (pci_intr_map(pa, &ih)) {
759 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
760 		return;
761 	}
762 	intrstr = pci_intr_string(pc, ih);
763 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
764 	if (sc->sc_ih == NULL) {
765 		printf("%s: unable to establish interrupt",
766 		    sc->sc_dev.dv_xname);
767 		if (intrstr != NULL)
768 			printf(" at %s", intrstr);
769 		printf("\n");
770 		return;
771 	}
772 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
773 
774 	SIMPLEQ_INIT(&sc->sc_txfreeq);
775 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
776 
777 	/*
778 	 * Allocate the control data structures, and create and load the
779 	 * DMA map for it.
780 	 */
781 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
782 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
783 	    0)) != 0) {
784 		printf("%s: unable to allocate control data, error = %d\n",
785 		    sc->sc_dev.dv_xname, error);
786 		goto fail_0;
787 	}
788 
789 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
790 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
791 	    BUS_DMA_COHERENT)) != 0) {
792 		printf("%s: unable to map control data, error = %d\n",
793 		    sc->sc_dev.dv_xname, error);
794 		goto fail_1;
795 	}
796 
797 	if ((error = bus_dmamap_create(sc->sc_dmat,
798 	    sizeof(struct sip_control_data), 1,
799 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
800 		printf("%s: unable to create control data DMA map, "
801 		    "error = %d\n", sc->sc_dev.dv_xname, error);
802 		goto fail_2;
803 	}
804 
805 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
806 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
807 	    0)) != 0) {
808 		printf("%s: unable to load control data DMA map, error = %d\n",
809 		    sc->sc_dev.dv_xname, error);
810 		goto fail_3;
811 	}
812 
813 	/*
814 	 * Create the transmit buffer DMA maps.
815 	 */
816 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
817 		if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
818 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
819 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
820 			printf("%s: unable to create tx DMA map %d, "
821 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
822 			goto fail_4;
823 		}
824 	}
825 
826 	/*
827 	 * Create the receive buffer DMA maps.
828 	 */
829 	for (i = 0; i < SIP_NRXDESC; i++) {
830 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
831 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
832 			printf("%s: unable to create rx DMA map %d, "
833 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
834 			goto fail_5;
835 		}
836 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
837 	}
838 
839 	/*
840 	 * Reset the chip to a known state.
841 	 */
842 	SIP_DECL(reset)(sc);
843 
844 	/*
845 	 * Read the Ethernet address from the EEPROM.  This might
846 	 * also fetch other stuff from the EEPROM and stash it
847 	 * in the softc.
848 	 */
849 	sc->sc_cfg = 0;
850 #if !defined(DP83820)
851 	if (SIP_SIS900_REV(sc,SIS_REV_635) ||
852 	    SIP_SIS900_REV(sc,SIS_REV_900B))
853 		sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
854 
855 	if (SIP_SIS900_REV(sc,SIS_REV_635) ||
856 	    SIP_SIS900_REV(sc,SIS_REV_960) ||
857 	    SIP_SIS900_REV(sc,SIS_REV_900B))
858 		sc->sc_cfg |= (bus_space_read_4(sc->sc_st, sc->sc_sh,
859 						SIP_CFG) & CFG_EDBMASTEN);
860 #endif
861 
862 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
863 
864 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
865 	    ether_sprintf(enaddr));
866 
867 	/*
868 	 * Initialize the configuration register: aggressive PCI
869 	 * bus request algorithm, default backoff, default OW timer,
870 	 * default parity error detection.
871 	 *
872 	 * NOTE: "Big endian mode" is useless on the SiS900 and
873 	 * friends -- it affects packet data, not descriptors.
874 	 */
875 #ifdef DP83820
876 	/*
877 	 * Cause the chip to load configuration data from the EEPROM.
878 	 */
879 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
880 	for (i = 0; i < 10000; i++) {
881 		delay(10);
882 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
883 		    PTSCR_EELOAD_EN) == 0)
884 			break;
885 	}
886 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
887 	    PTSCR_EELOAD_EN) {
888 		printf("%s: timeout loading configuration from EEPROM\n",
889 		    sc->sc_dev.dv_xname);
890 		return;
891 	}
892 
893 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
894 
895 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
896 	if (reg & CFG_PCI64_DET) {
897 		printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
898 		/*
899 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
900 		 * data transfers.
901 		 *
902 		 * We can't use the DATA64_EN bit in the EEPROM, because
903 		 * vendors of 32-bit cards fail to clear that bit in many
904 		 * cases (yet the card still detects that it's in a 64-bit
905 		 * slot; go figure).
906 		 */
907 		if (SIP_DECL(check_64bit)(pa)) {
908 			sc->sc_cfg |= CFG_DATA64_EN;
909 			printf(", using 64-bit data transfers");
910 		}
911 		printf("\n");
912 	}
913 
914 	/*
915 	 * XXX Need some PCI flags indicating support for
916 	 * XXX 64-bit addressing.
917 	 */
918 #if 0
919 	if (reg & CFG_M64ADDR)
920 		sc->sc_cfg |= CFG_M64ADDR;
921 	if (reg & CFG_T64ADDR)
922 		sc->sc_cfg |= CFG_T64ADDR;
923 #endif
924 
925 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
926 		const char *sep = "";
927 		printf("%s: using ", sc->sc_dev.dv_xname);
928 		if (reg & CFG_EXT_125) {
929 			sc->sc_cfg |= CFG_EXT_125;
930 			printf("%s125MHz clock", sep);
931 			sep = ", ";
932 		}
933 		if (reg & CFG_TBI_EN) {
934 			sc->sc_cfg |= CFG_TBI_EN;
935 			printf("%sten-bit interface", sep);
936 			sep = ", ";
937 		}
938 		printf("\n");
939 	}
940 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
941 	    (reg & CFG_MRM_DIS) != 0)
942 		sc->sc_cfg |= CFG_MRM_DIS;
943 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
944 	    (reg & CFG_MWI_DIS) != 0)
945 		sc->sc_cfg |= CFG_MWI_DIS;
946 
947 	/*
948 	 * Use the extended descriptor format on the DP83820.  This
949 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
950 	 * checksumming.
951 	 */
952 	sc->sc_cfg |= CFG_EXTSTS_EN;
953 #endif /* DP83820 */
954 
955 	/*
956 	 * Initialize our media structures and probe the MII.
957 	 */
958 	sc->sc_mii.mii_ifp = ifp;
959 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
960 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
961 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
962 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, SIP_DECL(mediachange),
963 	    SIP_DECL(mediastatus));
964 
965 	/*
966 	 * XXX We cannot handle flow control on the DP83815.
967 	 */
968 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
969 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
970 			   MII_OFFSET_ANY, 0);
971 	else
972 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
973 			   MII_OFFSET_ANY, MIIF_DOPAUSE);
974 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
975 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
976 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
977 	} else
978 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
979 
980 	ifp = &sc->sc_ethercom.ec_if;
981 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
982 	ifp->if_softc = sc;
983 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
984 	sc->sc_if_flags = ifp->if_flags;
985 	ifp->if_ioctl = SIP_DECL(ioctl);
986 	ifp->if_start = SIP_DECL(start);
987 	ifp->if_watchdog = SIP_DECL(watchdog);
988 	ifp->if_init = SIP_DECL(init);
989 	ifp->if_stop = SIP_DECL(stop);
990 	IFQ_SET_READY(&ifp->if_snd);
991 
992 	/*
993 	 * We can support 802.1Q VLAN-sized frames.
994 	 */
995 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
996 
997 #ifdef DP83820
998 	/*
999 	 * And the DP83820 can do VLAN tagging in hardware, and
1000 	 * support the jumbo Ethernet MTU.
1001 	 */
1002 	sc->sc_ethercom.ec_capabilities |=
1003 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1004 
1005 	/*
1006 	 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1007 	 * in hardware.
1008 	 */
1009 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
1010 	    IFCAP_CSUM_UDPv4;
1011 #endif /* DP83820 */
1012 
1013 	/*
1014 	 * Attach the interface.
1015 	 */
1016 	if_attach(ifp);
1017 	ether_ifattach(ifp, enaddr);
1018 #if NRND > 0
1019 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1020 	    RND_TYPE_NET, 0);
1021 #endif
1022 
1023 	/*
1024 	 * The number of bytes that must be available in
1025 	 * the Tx FIFO before the bus master can DMA more
1026 	 * data into the FIFO.
1027 	 */
1028 	sc->sc_tx_fill_thresh = 64 / 32;
1029 
1030 	/*
1031 	 * Start at a drain threshold of 512 bytes.  We will
1032 	 * increase it if a DMA underrun occurs.
1033 	 *
1034 	 * XXX The minimum value of this variable should be
1035 	 * tuned.  We may be able to improve performance
1036 	 * by starting with a lower value.  That, however,
1037 	 * may trash the first few outgoing packets if the
1038 	 * PCI bus is saturated.
1039 	 */
1040 #ifdef DP83820
1041 	sc->sc_tx_drain_thresh = 6400 / 32;	/* from FreeBSD nge(4) */
1042 #else
1043 	sc->sc_tx_drain_thresh = 1504 / 32;
1044 #endif
1045 
1046 	/*
1047 	 * Initialize the Rx FIFO drain threshold.
1048 	 *
1049 	 * This is in units of 8 bytes.
1050 	 *
1051 	 * We should never set this value lower than 2; 14 bytes are
1052 	 * required to filter the packet.
1053 	 */
1054 	sc->sc_rx_drain_thresh = 128 / 8;
1055 
1056 #ifdef SIP_EVENT_COUNTERS
1057 	/*
1058 	 * Attach event counters.
1059 	 */
1060 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1061 	    NULL, sc->sc_dev.dv_xname, "txsstall");
1062 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1063 	    NULL, sc->sc_dev.dv_xname, "txdstall");
1064 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1065 	    NULL, sc->sc_dev.dv_xname, "txforceintr");
1066 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1067 	    NULL, sc->sc_dev.dv_xname, "txdintr");
1068 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1069 	    NULL, sc->sc_dev.dv_xname, "txiintr");
1070 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1071 	    NULL, sc->sc_dev.dv_xname, "rxintr");
1072 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1073 	    NULL, sc->sc_dev.dv_xname, "hiberr");
1074 #ifndef DP83820
1075 	evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1076 	    NULL, sc->sc_dev.dv_xname, "rxpause");
1077 #endif /* !DP83820 */
1078 #ifdef DP83820
1079 	evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1080 	    NULL, sc->sc_dev.dv_xname, "rxpause");
1081 	evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1082 	    NULL, sc->sc_dev.dv_xname, "txpause");
1083 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1084 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
1085 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1086 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
1087 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1088 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
1089 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1090 	    NULL, sc->sc_dev.dv_xname, "txipsum");
1091 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1092 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
1093 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1094 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
1095 #endif /* DP83820 */
1096 #endif /* SIP_EVENT_COUNTERS */
1097 
1098 	/*
1099 	 * Make sure the interface is shutdown during reboot.
1100 	 */
1101 	sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
1102 	if (sc->sc_sdhook == NULL)
1103 		printf("%s: WARNING: unable to establish shutdown hook\n",
1104 		    sc->sc_dev.dv_xname);
1105 	return;
1106 
1107 	/*
1108 	 * Free any resources we've allocated during the failed attach
1109 	 * attempt.  Do this in reverse order and fall through.
1110 	 */
1111  fail_5:
1112 	for (i = 0; i < SIP_NRXDESC; i++) {
1113 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1114 			bus_dmamap_destroy(sc->sc_dmat,
1115 			    sc->sc_rxsoft[i].rxs_dmamap);
1116 	}
1117  fail_4:
1118 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
1119 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
1120 			bus_dmamap_destroy(sc->sc_dmat,
1121 			    sc->sc_txsoft[i].txs_dmamap);
1122 	}
1123 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1124  fail_3:
1125 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1126  fail_2:
1127 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1128 	    sizeof(struct sip_control_data));
1129  fail_1:
1130 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1131  fail_0:
1132 	return;
1133 }
1134 
1135 /*
1136  * sip_shutdown:
1137  *
1138  *	Make sure the interface is stopped at reboot time.
1139  */
1140 static void
1141 SIP_DECL(shutdown)(void *arg)
1142 {
1143 	struct sip_softc *sc = arg;
1144 
1145 	SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
1146 }
1147 
1148 /*
1149  * sip_start:		[ifnet interface function]
1150  *
1151  *	Start packet transmission on the interface.
1152  */
1153 static void
1154 SIP_DECL(start)(struct ifnet *ifp)
1155 {
1156 	struct sip_softc *sc = ifp->if_softc;
1157 	struct mbuf *m0;
1158 #ifndef DP83820
1159 	struct mbuf *m;
1160 #endif
1161 	struct sip_txsoft *txs;
1162 	bus_dmamap_t dmamap;
1163 	int error, nexttx, lasttx, seg;
1164 	int ofree = sc->sc_txfree;
1165 #if 0
1166 	int firsttx = sc->sc_txnext;
1167 #endif
1168 #ifdef DP83820
1169 	struct m_tag *mtag;
1170 	u_int32_t extsts;
1171 #endif
1172 
1173 #ifndef DP83820
1174 	/*
1175 	 * If we've been told to pause, don't transmit any more packets.
1176 	 */
1177 	if (sc->sc_paused)
1178 		ifp->if_flags |= IFF_OACTIVE;
1179 #endif
1180 
1181 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1182 		return;
1183 
1184 	/*
1185 	 * Loop through the send queue, setting up transmit descriptors
1186 	 * until we drain the queue, or use up all available transmit
1187 	 * descriptors.
1188 	 */
1189 	for (;;) {
1190 		/* Get a work queue entry. */
1191 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1192 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1193 			break;
1194 		}
1195 
1196 		/*
1197 		 * Grab a packet off the queue.
1198 		 */
1199 		IFQ_POLL(&ifp->if_snd, m0);
1200 		if (m0 == NULL)
1201 			break;
1202 #ifndef DP83820
1203 		m = NULL;
1204 #endif
1205 
1206 		dmamap = txs->txs_dmamap;
1207 
1208 #ifdef DP83820
1209 		/*
1210 		 * Load the DMA map.  If this fails, the packet either
1211 		 * didn't fit in the allotted number of segments, or we
1212 		 * were short on resources.  For the too-many-segments
1213 		 * case, we simply report an error and drop the packet,
1214 		 * since we can't sanely copy a jumbo packet to a single
1215 		 * buffer.
1216 		 */
1217 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1218 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1219 		if (error) {
1220 			if (error == EFBIG) {
1221 				printf("%s: Tx packet consumes too many "
1222 				    "DMA segments, dropping...\n",
1223 				    sc->sc_dev.dv_xname);
1224 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1225 				m_freem(m0);
1226 				continue;
1227 			}
1228 			/*
1229 			 * Short on resources, just stop for now.
1230 			 */
1231 			break;
1232 		}
1233 #else /* DP83820 */
1234 		/*
1235 		 * Load the DMA map.  If this fails, the packet either
1236 		 * didn't fit in the alloted number of segments, or we
1237 		 * were short on resources.  In this case, we'll copy
1238 		 * and try again.
1239 		 */
1240 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1241 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1242 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1243 			if (m == NULL) {
1244 				printf("%s: unable to allocate Tx mbuf\n",
1245 				    sc->sc_dev.dv_xname);
1246 				break;
1247 			}
1248 			if (m0->m_pkthdr.len > MHLEN) {
1249 				MCLGET(m, M_DONTWAIT);
1250 				if ((m->m_flags & M_EXT) == 0) {
1251 					printf("%s: unable to allocate Tx "
1252 					    "cluster\n", sc->sc_dev.dv_xname);
1253 					m_freem(m);
1254 					break;
1255 				}
1256 			}
1257 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1258 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1259 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1260 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1261 			if (error) {
1262 				printf("%s: unable to load Tx buffer, "
1263 				    "error = %d\n", sc->sc_dev.dv_xname, error);
1264 				break;
1265 			}
1266 		}
1267 #endif /* DP83820 */
1268 
1269 		/*
1270 		 * Ensure we have enough descriptors free to describe
1271 		 * the packet.  Note, we always reserve one descriptor
1272 		 * at the end of the ring as a termination point, to
1273 		 * prevent wrap-around.
1274 		 */
1275 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1276 			/*
1277 			 * Not enough free descriptors to transmit this
1278 			 * packet.  We haven't committed anything yet,
1279 			 * so just unload the DMA map, put the packet
1280 			 * back on the queue, and punt.  Notify the upper
1281 			 * layer that there are not more slots left.
1282 			 *
1283 			 * XXX We could allocate an mbuf and copy, but
1284 			 * XXX is it worth it?
1285 			 */
1286 			ifp->if_flags |= IFF_OACTIVE;
1287 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1288 #ifndef DP83820
1289 			if (m != NULL)
1290 				m_freem(m);
1291 #endif
1292 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1293 			break;
1294 		}
1295 
1296 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1297 #ifndef DP83820
1298 		if (m != NULL) {
1299 			m_freem(m0);
1300 			m0 = m;
1301 		}
1302 #endif
1303 
1304 		/*
1305 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1306 		 */
1307 
1308 		/* Sync the DMA map. */
1309 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1310 		    BUS_DMASYNC_PREWRITE);
1311 
1312 		/*
1313 		 * Initialize the transmit descriptors.
1314 		 */
1315 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1316 		     seg < dmamap->dm_nsegs;
1317 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
1318 			/*
1319 			 * If this is the first descriptor we're
1320 			 * enqueueing, don't set the OWN bit just
1321 			 * yet.  That could cause a race condition.
1322 			 * We'll do it below.
1323 			 */
1324 			sc->sc_txdescs[nexttx].sipd_bufptr =
1325 			    htole32(dmamap->dm_segs[seg].ds_addr);
1326 			sc->sc_txdescs[nexttx].sipd_cmdsts =
1327 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1328 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1329 #ifdef DP83820
1330 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
1331 #endif /* DP83820 */
1332 			lasttx = nexttx;
1333 		}
1334 
1335 		/* Clear the MORE bit on the last segment. */
1336 		sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1337 
1338 		/*
1339 		 * If we're in the interrupt delay window, delay the
1340 		 * interrupt.
1341 		 */
1342 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1343 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1344 			sc->sc_txdescs[lasttx].sipd_cmdsts |=
1345 			    htole32(CMDSTS_INTR);
1346 			sc->sc_txwin = 0;
1347 		}
1348 
1349 #ifdef DP83820
1350 		/*
1351 		 * If VLANs are enabled and the packet has a VLAN tag, set
1352 		 * up the descriptor to encapsulate the packet for us.
1353 		 *
1354 		 * This apparently has to be on the last descriptor of
1355 		 * the packet.
1356 		 */
1357 		if (sc->sc_ethercom.ec_nvlans != 0 &&
1358 		    (mtag = m_tag_find(m0, PACKET_TAG_VLAN, NULL)) != NULL) {
1359 			sc->sc_txdescs[lasttx].sipd_extsts |=
1360 			    htole32(EXTSTS_VPKT |
1361 				    (*(u_int *)(mtag + 1) & EXTSTS_VTCI));
1362 		}
1363 
1364 		/*
1365 		 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1366 		 * checksumming, set up the descriptor to do this work
1367 		 * for us.
1368 		 *
1369 		 * This apparently has to be on the first descriptor of
1370 		 * the packet.
1371 		 *
1372 		 * Byte-swap constants so the compiler can optimize.
1373 		 */
1374 		extsts = 0;
1375 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1376 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
1377 			SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1378 			extsts |= htole32(EXTSTS_IPPKT);
1379 		}
1380 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1381 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
1382 			SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1383 			extsts |= htole32(EXTSTS_TCPPKT);
1384 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1385 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
1386 			SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1387 			extsts |= htole32(EXTSTS_UDPPKT);
1388 		}
1389 		sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1390 #endif /* DP83820 */
1391 
1392 		/* Sync the descriptors we're using. */
1393 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1394 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1395 
1396 		/*
1397 		 * The entire packet is set up.  Give the first descrptor
1398 		 * to the chip now.
1399 		 */
1400 		sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
1401 		    htole32(CMDSTS_OWN);
1402 		SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
1403 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1404 
1405 		/*
1406 		 * Store a pointer to the packet so we can free it later,
1407 		 * and remember what txdirty will be once the packet is
1408 		 * done.
1409 		 */
1410 		txs->txs_mbuf = m0;
1411 		txs->txs_firstdesc = sc->sc_txnext;
1412 		txs->txs_lastdesc = lasttx;
1413 
1414 		/* Advance the tx pointer. */
1415 		sc->sc_txfree -= dmamap->dm_nsegs;
1416 		sc->sc_txnext = nexttx;
1417 
1418 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1419 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1420 
1421 #if NBPFILTER > 0
1422 		/*
1423 		 * Pass the packet to any BPF listeners.
1424 		 */
1425 		if (ifp->if_bpf)
1426 			bpf_mtap(ifp->if_bpf, m0);
1427 #endif /* NBPFILTER > 0 */
1428 	}
1429 
1430 	if (txs == NULL || sc->sc_txfree == 0) {
1431 		/* No more slots left; notify upper layer. */
1432 		ifp->if_flags |= IFF_OACTIVE;
1433 	}
1434 
1435 	if (sc->sc_txfree != ofree) {
1436 		/*
1437 		 * Start the transmit process.  Note, the manual says
1438 		 * that if there are no pending transmissions in the
1439 		 * chip's internal queue (indicated by TXE being clear),
1440 		 * then the driver software must set the TXDP to the
1441 		 * first descriptor to be transmitted.  However, if we
1442 		 * do this, it causes serious performance degredation on
1443 		 * the DP83820 under load, not setting TXDP doesn't seem
1444 		 * to adversely affect the SiS 900 or DP83815.
1445 		 *
1446 		 * Well, I guess it wouldn't be the first time a manual
1447 		 * has lied -- and they could be speaking of the NULL-
1448 		 * terminated descriptor list case, rather than OWN-
1449 		 * terminated rings.
1450 		 */
1451 #if 0
1452 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1453 		     CR_TXE) == 0) {
1454 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1455 			    SIP_CDTXADDR(sc, firsttx));
1456 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1457 		}
1458 #else
1459 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1460 #endif
1461 
1462 		/* Set a watchdog timer in case the chip flakes out. */
1463 #ifdef DP83820
1464 		/* Gigabit autonegotiation takes 5 seconds. */
1465 		ifp->if_timer = 10;
1466 #else
1467 		ifp->if_timer = 5;
1468 #endif
1469 	}
1470 }
1471 
1472 /*
1473  * sip_watchdog:	[ifnet interface function]
1474  *
1475  *	Watchdog timer handler.
1476  */
1477 static void
1478 SIP_DECL(watchdog)(struct ifnet *ifp)
1479 {
1480 	struct sip_softc *sc = ifp->if_softc;
1481 
1482 	/*
1483 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1484 	 * If we get a timeout, try and sweep up transmit descriptors.
1485 	 * If we manage to sweep them all up, ignore the lack of
1486 	 * interrupt.
1487 	 */
1488 	SIP_DECL(txintr)(sc);
1489 
1490 	if (sc->sc_txfree != SIP_NTXDESC) {
1491 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1492 		ifp->if_oerrors++;
1493 
1494 		/* Reset the interface. */
1495 		(void) SIP_DECL(init)(ifp);
1496 	} else if (ifp->if_flags & IFF_DEBUG)
1497 		printf("%s: recovered from device timeout\n",
1498 		    sc->sc_dev.dv_xname);
1499 
1500 	/* Try to get more packets going. */
1501 	SIP_DECL(start)(ifp);
1502 }
1503 
1504 /*
1505  * sip_ioctl:		[ifnet interface function]
1506  *
1507  *	Handle control requests from the operator.
1508  */
1509 static int
1510 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1511 {
1512 	struct sip_softc *sc = ifp->if_softc;
1513 	struct ifreq *ifr = (struct ifreq *)data;
1514 	int s, error;
1515 
1516 	s = splnet();
1517 
1518 	switch (cmd) {
1519 	case SIOCSIFMEDIA:
1520 		/* Flow control requires full-duplex mode. */
1521 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1522 		    (ifr->ifr_media & IFM_FDX) == 0)
1523 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
1524 #ifdef DP83820
1525 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1526 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1527 				/* We can do both TXPAUSE and RXPAUSE. */
1528 				ifr->ifr_media |=
1529 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1530 			}
1531 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1532 		}
1533 #else
1534 		/* XXX */
1535 		if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1536 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1537 
1538 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1539 			if (ifr->ifr_media & IFM_FLOW) {
1540 				/*
1541 				 * Both TXPAUSE and RXPAUSE must be set.
1542 				 * (SiS900 and DP83815 don't have PAUSE_ASYM
1543 				 * feature.)
1544 				 *
1545 				 * XXX Can SiS900 and DP83815 send PAUSE?
1546 				 */
1547 				ifr->ifr_media |=
1548 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1549 			}
1550 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1551 		}
1552 #endif
1553 		/* FALLTHROUGH */
1554 	case SIOCGIFMEDIA:
1555 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1556 		break;
1557 	case SIOCSIFFLAGS:
1558 		/* If the interface is up and running, only modify the receive
1559 		 * filter when setting promiscuous or debug mode.  Otherwise
1560 		 * fall through to ether_ioctl, which will reset the chip.
1561 		 */
1562 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
1563 		if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
1564 		    == (IFF_UP|IFF_RUNNING))
1565 		    && ((ifp->if_flags & (~RESETIGN))
1566 		    == (sc->sc_if_flags & (~RESETIGN)))) {
1567 			/* Set up the receive filter. */
1568 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1569 			error = 0;
1570 			break;
1571 #undef RESETIGN
1572 		}
1573 		/* FALLTHROUGH */
1574 	default:
1575 		error = ether_ioctl(ifp, cmd, data);
1576 		if (error == ENETRESET) {
1577 			/*
1578 			 * Multicast list has changed; set the hardware filter
1579 			 * accordingly.
1580 			 */
1581 			if (ifp->if_flags & IFF_RUNNING)
1582 			    (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1583 			error = 0;
1584 		}
1585 		break;
1586 	}
1587 
1588 	/* Try to get more packets going. */
1589 	SIP_DECL(start)(ifp);
1590 
1591 	sc->sc_if_flags = ifp->if_flags;
1592 	splx(s);
1593 	return (error);
1594 }
1595 
1596 /*
1597  * sip_intr:
1598  *
1599  *	Interrupt service routine.
1600  */
1601 static int
1602 SIP_DECL(intr)(void *arg)
1603 {
1604 	struct sip_softc *sc = arg;
1605 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1606 	u_int32_t isr;
1607 	int handled = 0;
1608 
1609 	/* Disable interrupts. */
1610 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1611 
1612 	for (;;) {
1613 		/* Reading clears interrupt. */
1614 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1615 		if ((isr & sc->sc_imr) == 0)
1616 			break;
1617 
1618 #if NRND > 0
1619 		if (RND_ENABLED(&sc->rnd_source))
1620 			rnd_add_uint32(&sc->rnd_source, isr);
1621 #endif
1622 
1623 		handled = 1;
1624 
1625 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1626 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1627 
1628 			/* Grab any new packets. */
1629 			SIP_DECL(rxintr)(sc);
1630 
1631 			if (isr & ISR_RXORN) {
1632 				printf("%s: receive FIFO overrun\n",
1633 				    sc->sc_dev.dv_xname);
1634 
1635 				/* XXX adjust rx_drain_thresh? */
1636 			}
1637 
1638 			if (isr & ISR_RXIDLE) {
1639 				printf("%s: receive ring overrun\n",
1640 				    sc->sc_dev.dv_xname);
1641 
1642 				/* Get the receive process going again. */
1643 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1644 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1645 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1646 				    SIP_CR, CR_RXE);
1647 			}
1648 		}
1649 
1650 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1651 #ifdef SIP_EVENT_COUNTERS
1652 			if (isr & ISR_TXDESC)
1653 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1654 			else if (isr & ISR_TXIDLE)
1655 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1656 #endif
1657 
1658 			/* Sweep up transmit descriptors. */
1659 			SIP_DECL(txintr)(sc);
1660 
1661 			if (isr & ISR_TXURN) {
1662 				u_int32_t thresh;
1663 
1664 				printf("%s: transmit FIFO underrun",
1665 				    sc->sc_dev.dv_xname);
1666 
1667 				thresh = sc->sc_tx_drain_thresh + 1;
1668 				if (thresh <= TXCFG_DRTH &&
1669 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
1670 				     (sc->sc_tx_fill_thresh * 32))) {
1671 					printf("; increasing Tx drain "
1672 					    "threshold to %u bytes\n",
1673 					    thresh * 32);
1674 					sc->sc_tx_drain_thresh = thresh;
1675 					(void) SIP_DECL(init)(ifp);
1676 				} else {
1677 					(void) SIP_DECL(init)(ifp);
1678 					printf("\n");
1679 				}
1680 			}
1681 		}
1682 
1683 #if !defined(DP83820)
1684 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1685 			if (isr & ISR_PAUSE_ST) {
1686 				sc->sc_paused = 1;
1687 				SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1688 				ifp->if_flags |= IFF_OACTIVE;
1689 			}
1690 			if (isr & ISR_PAUSE_END) {
1691 				sc->sc_paused = 0;
1692 				ifp->if_flags &= ~IFF_OACTIVE;
1693 			}
1694 		}
1695 #endif /* ! DP83820 */
1696 
1697 		if (isr & ISR_HIBERR) {
1698 			int want_init = 0;
1699 
1700 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1701 
1702 #define	PRINTERR(bit, str)						\
1703 			do {						\
1704 				if ((isr & (bit)) != 0) {		\
1705 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
1706 						printf("%s: %s\n",	\
1707 						    sc->sc_dev.dv_xname, str); \
1708 					want_init = 1;			\
1709 				}					\
1710 			} while (/*CONSTCOND*/0)
1711 
1712 			PRINTERR(ISR_DPERR, "parity error");
1713 			PRINTERR(ISR_SSERR, "system error");
1714 			PRINTERR(ISR_RMABT, "master abort");
1715 			PRINTERR(ISR_RTABT, "target abort");
1716 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1717 			/*
1718 			 * Ignore:
1719 			 *	Tx reset complete
1720 			 *	Rx reset complete
1721 			 */
1722 			if (want_init)
1723 				(void) SIP_DECL(init)(ifp);
1724 #undef PRINTERR
1725 		}
1726 	}
1727 
1728 	/* Re-enable interrupts. */
1729 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1730 
1731 	/* Try to get more packets going. */
1732 	SIP_DECL(start)(ifp);
1733 
1734 	return (handled);
1735 }
1736 
1737 /*
1738  * sip_txintr:
1739  *
1740  *	Helper; handle transmit interrupts.
1741  */
1742 static void
1743 SIP_DECL(txintr)(struct sip_softc *sc)
1744 {
1745 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1746 	struct sip_txsoft *txs;
1747 	u_int32_t cmdsts;
1748 
1749 #ifndef DP83820
1750 	if (sc->sc_paused == 0)
1751 #endif
1752 		ifp->if_flags &= ~IFF_OACTIVE;
1753 
1754 	/*
1755 	 * Go through our Tx list and free mbufs for those
1756 	 * frames which have been transmitted.
1757 	 */
1758 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1759 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1760 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1761 
1762 		cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1763 		if (cmdsts & CMDSTS_OWN)
1764 			break;
1765 
1766 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1767 
1768 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1769 
1770 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1771 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1772 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1773 		m_freem(txs->txs_mbuf);
1774 		txs->txs_mbuf = NULL;
1775 
1776 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1777 
1778 		/*
1779 		 * Check for errors and collisions.
1780 		 */
1781 		if (cmdsts &
1782 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1783 			ifp->if_oerrors++;
1784 			if (cmdsts & CMDSTS_Tx_EC)
1785 				ifp->if_collisions += 16;
1786 			if (ifp->if_flags & IFF_DEBUG) {
1787 				if (cmdsts & CMDSTS_Tx_ED)
1788 					printf("%s: excessive deferral\n",
1789 					    sc->sc_dev.dv_xname);
1790 				if (cmdsts & CMDSTS_Tx_EC)
1791 					printf("%s: excessive collisions\n",
1792 					    sc->sc_dev.dv_xname);
1793 			}
1794 		} else {
1795 			/* Packet was transmitted successfully. */
1796 			ifp->if_opackets++;
1797 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1798 		}
1799 	}
1800 
1801 	/*
1802 	 * If there are no more pending transmissions, cancel the watchdog
1803 	 * timer.
1804 	 */
1805 	if (txs == NULL) {
1806 		ifp->if_timer = 0;
1807 		sc->sc_txwin = 0;
1808 	}
1809 }
1810 
1811 #if defined(DP83820)
1812 /*
1813  * sip_rxintr:
1814  *
1815  *	Helper; handle receive interrupts.
1816  */
1817 static void
1818 SIP_DECL(rxintr)(struct sip_softc *sc)
1819 {
1820 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1821 	struct sip_rxsoft *rxs;
1822 	struct mbuf *m;
1823 	u_int32_t cmdsts, extsts;
1824 	int i, len;
1825 
1826 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1827 		rxs = &sc->sc_rxsoft[i];
1828 
1829 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1830 
1831 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1832 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1833 		len = CMDSTS_SIZE(cmdsts);
1834 
1835 		/*
1836 		 * NOTE: OWN is set if owned by _consumer_.  We're the
1837 		 * consumer of the receive ring, so if the bit is clear,
1838 		 * we have processed all of the packets.
1839 		 */
1840 		if ((cmdsts & CMDSTS_OWN) == 0) {
1841 			/*
1842 			 * We have processed all of the receive buffers.
1843 			 */
1844 			break;
1845 		}
1846 
1847 		if (__predict_false(sc->sc_rxdiscard)) {
1848 			SIP_INIT_RXDESC(sc, i);
1849 			if ((cmdsts & CMDSTS_MORE) == 0) {
1850 				/* Reset our state. */
1851 				sc->sc_rxdiscard = 0;
1852 			}
1853 			continue;
1854 		}
1855 
1856 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1857 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1858 
1859 		m = rxs->rxs_mbuf;
1860 
1861 		/*
1862 		 * Add a new receive buffer to the ring.
1863 		 */
1864 		if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1865 			/*
1866 			 * Failed, throw away what we've done so
1867 			 * far, and discard the rest of the packet.
1868 			 */
1869 			ifp->if_ierrors++;
1870 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1871 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1872 			SIP_INIT_RXDESC(sc, i);
1873 			if (cmdsts & CMDSTS_MORE)
1874 				sc->sc_rxdiscard = 1;
1875 			if (sc->sc_rxhead != NULL)
1876 				m_freem(sc->sc_rxhead);
1877 			SIP_RXCHAIN_RESET(sc);
1878 			continue;
1879 		}
1880 
1881 		SIP_RXCHAIN_LINK(sc, m);
1882 
1883 		m->m_len = len;
1884 
1885 		/*
1886 		 * If this is not the end of the packet, keep
1887 		 * looking.
1888 		 */
1889 		if (cmdsts & CMDSTS_MORE) {
1890 			sc->sc_rxlen += len;
1891 			continue;
1892 		}
1893 
1894 		/*
1895 		 * Okay, we have the entire packet now.  The chip includes
1896 		 * the FCS, so we need to trim it.
1897 		 */
1898 		m->m_len -= ETHER_CRC_LEN;
1899 
1900 		*sc->sc_rxtailp = NULL;
1901 		m = sc->sc_rxhead;
1902 		len = m->m_len + sc->sc_rxlen;
1903 
1904 		SIP_RXCHAIN_RESET(sc);
1905 
1906 		/*
1907 		 * If an error occurred, update stats and drop the packet.
1908 		 */
1909 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1910 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1911 			ifp->if_ierrors++;
1912 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1913 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
1914 				/* Receive overrun handled elsewhere. */
1915 				printf("%s: receive descriptor error\n",
1916 				    sc->sc_dev.dv_xname);
1917 			}
1918 #define	PRINTERR(bit, str)						\
1919 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
1920 			    (cmdsts & (bit)) != 0)			\
1921 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1922 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1923 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1924 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1925 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1926 #undef PRINTERR
1927 			m_freem(m);
1928 			continue;
1929 		}
1930 
1931 		/*
1932 		 * If the packet is small enough to fit in a
1933 		 * single header mbuf, allocate one and copy
1934 		 * the data into it.  This greatly reduces
1935 		 * memory consumption when we receive lots
1936 		 * of small packets.
1937 		 */
1938 		if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1939 			struct mbuf *nm;
1940 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
1941 			if (nm == NULL) {
1942 				ifp->if_ierrors++;
1943 				m_freem(m);
1944 				continue;
1945 			}
1946 			nm->m_data += 2;
1947 			nm->m_pkthdr.len = nm->m_len = len;
1948 			m_copydata(m, 0, len, mtod(nm, caddr_t));
1949 			m_freem(m);
1950 			m = nm;
1951 		}
1952 #ifndef __NO_STRICT_ALIGNMENT
1953 		else {
1954 			/*
1955 			 * The DP83820's receive buffers must be 4-byte
1956 			 * aligned.  But this means that the data after
1957 			 * the Ethernet header is misaligned.  To compensate,
1958 			 * we have artificially shortened the buffer size
1959 			 * in the descriptor, and we do an overlapping copy
1960 			 * of the data two bytes further in (in the first
1961 			 * buffer of the chain only).
1962 			 */
1963 			memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1964 			    m->m_len);
1965 			m->m_data += 2;
1966 		}
1967 #endif /* ! __NO_STRICT_ALIGNMENT */
1968 
1969 		/*
1970 		 * If VLANs are enabled, VLAN packets have been unwrapped
1971 		 * for us.  Associate the tag with the packet.
1972 		 */
1973 		if (sc->sc_ethercom.ec_nvlans != 0 &&
1974 		    (extsts & EXTSTS_VPKT) != 0) {
1975 			struct m_tag *vtag;
1976 
1977 			vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
1978 			    M_NOWAIT);
1979 			if (vtag == NULL) {
1980 				ifp->if_ierrors++;
1981 				printf("%s: unable to allocate VLAN tag\n",
1982 				    sc->sc_dev.dv_xname);
1983 				m_freem(m);
1984 				continue;
1985 			}
1986 
1987 			*(u_int *)(vtag + 1) = ntohs(extsts & EXTSTS_VTCI);
1988 		}
1989 
1990 		/*
1991 		 * Set the incoming checksum information for the
1992 		 * packet.
1993 		 */
1994 		if ((extsts & EXTSTS_IPPKT) != 0) {
1995 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1996 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1997 			if (extsts & EXTSTS_Rx_IPERR)
1998 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1999 			if (extsts & EXTSTS_TCPPKT) {
2000 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2001 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2002 				if (extsts & EXTSTS_Rx_TCPERR)
2003 					m->m_pkthdr.csum_flags |=
2004 					    M_CSUM_TCP_UDP_BAD;
2005 			} else if (extsts & EXTSTS_UDPPKT) {
2006 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2007 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2008 				if (extsts & EXTSTS_Rx_UDPERR)
2009 					m->m_pkthdr.csum_flags |=
2010 					    M_CSUM_TCP_UDP_BAD;
2011 			}
2012 		}
2013 
2014 		ifp->if_ipackets++;
2015 		m->m_pkthdr.rcvif = ifp;
2016 		m->m_pkthdr.len = len;
2017 
2018 #if NBPFILTER > 0
2019 		/*
2020 		 * Pass this up to any BPF listeners, but only
2021 		 * pass if up the stack if it's for us.
2022 		 */
2023 		if (ifp->if_bpf)
2024 			bpf_mtap(ifp->if_bpf, m);
2025 #endif /* NBPFILTER > 0 */
2026 
2027 		/* Pass it on. */
2028 		(*ifp->if_input)(ifp, m);
2029 	}
2030 
2031 	/* Update the receive pointer. */
2032 	sc->sc_rxptr = i;
2033 }
2034 #else /* ! DP83820 */
2035 /*
2036  * sip_rxintr:
2037  *
2038  *	Helper; handle receive interrupts.
2039  */
2040 static void
2041 SIP_DECL(rxintr)(struct sip_softc *sc)
2042 {
2043 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2044 	struct sip_rxsoft *rxs;
2045 	struct mbuf *m;
2046 	u_int32_t cmdsts;
2047 	int i, len;
2048 
2049 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
2050 		rxs = &sc->sc_rxsoft[i];
2051 
2052 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2053 
2054 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
2055 
2056 		/*
2057 		 * NOTE: OWN is set if owned by _consumer_.  We're the
2058 		 * consumer of the receive ring, so if the bit is clear,
2059 		 * we have processed all of the packets.
2060 		 */
2061 		if ((cmdsts & CMDSTS_OWN) == 0) {
2062 			/*
2063 			 * We have processed all of the receive buffers.
2064 			 */
2065 			break;
2066 		}
2067 
2068 		/*
2069 		 * If any collisions were seen on the wire, count one.
2070 		 */
2071 		if (cmdsts & CMDSTS_Rx_COL)
2072 			ifp->if_collisions++;
2073 
2074 		/*
2075 		 * If an error occurred, update stats, clear the status
2076 		 * word, and leave the packet buffer in place.  It will
2077 		 * simply be reused the next time the ring comes around.
2078 		 */
2079 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2080 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2081 			ifp->if_ierrors++;
2082 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2083 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
2084 				/* Receive overrun handled elsewhere. */
2085 				printf("%s: receive descriptor error\n",
2086 				    sc->sc_dev.dv_xname);
2087 			}
2088 #define	PRINTERR(bit, str)						\
2089 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
2090 			    (cmdsts & (bit)) != 0)			\
2091 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
2092 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2093 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2094 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2095 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2096 #undef PRINTERR
2097 			SIP_INIT_RXDESC(sc, i);
2098 			continue;
2099 		}
2100 
2101 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2102 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2103 
2104 		/*
2105 		 * No errors; receive the packet.  Note, the SiS 900
2106 		 * includes the CRC with every packet.
2107 		 */
2108 		len = CMDSTS_SIZE(cmdsts) - ETHER_CRC_LEN;
2109 
2110 #ifdef __NO_STRICT_ALIGNMENT
2111 		/*
2112 		 * If the packet is small enough to fit in a
2113 		 * single header mbuf, allocate one and copy
2114 		 * the data into it.  This greatly reduces
2115 		 * memory consumption when we receive lots
2116 		 * of small packets.
2117 		 *
2118 		 * Otherwise, we add a new buffer to the receive
2119 		 * chain.  If this fails, we drop the packet and
2120 		 * recycle the old buffer.
2121 		 */
2122 		if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
2123 			MGETHDR(m, M_DONTWAIT, MT_DATA);
2124 			if (m == NULL)
2125 				goto dropit;
2126 			memcpy(mtod(m, caddr_t),
2127 			    mtod(rxs->rxs_mbuf, caddr_t), len);
2128 			SIP_INIT_RXDESC(sc, i);
2129 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2130 			    rxs->rxs_dmamap->dm_mapsize,
2131 			    BUS_DMASYNC_PREREAD);
2132 		} else {
2133 			m = rxs->rxs_mbuf;
2134 			if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
2135  dropit:
2136 				ifp->if_ierrors++;
2137 				SIP_INIT_RXDESC(sc, i);
2138 				bus_dmamap_sync(sc->sc_dmat,
2139 				    rxs->rxs_dmamap, 0,
2140 				    rxs->rxs_dmamap->dm_mapsize,
2141 				    BUS_DMASYNC_PREREAD);
2142 				continue;
2143 			}
2144 		}
2145 #else
2146 		/*
2147 		 * The SiS 900's receive buffers must be 4-byte aligned.
2148 		 * But this means that the data after the Ethernet header
2149 		 * is misaligned.  We must allocate a new buffer and
2150 		 * copy the data, shifted forward 2 bytes.
2151 		 */
2152 		MGETHDR(m, M_DONTWAIT, MT_DATA);
2153 		if (m == NULL) {
2154  dropit:
2155 			ifp->if_ierrors++;
2156 			SIP_INIT_RXDESC(sc, i);
2157 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2158 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2159 			continue;
2160 		}
2161 		if (len > (MHLEN - 2)) {
2162 			MCLGET(m, M_DONTWAIT);
2163 			if ((m->m_flags & M_EXT) == 0) {
2164 				m_freem(m);
2165 				goto dropit;
2166 			}
2167 		}
2168 		m->m_data += 2;
2169 
2170 		/*
2171 		 * Note that we use clusters for incoming frames, so the
2172 		 * buffer is virtually contiguous.
2173 		 */
2174 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
2175 
2176 		/* Allow the receive descriptor to continue using its mbuf. */
2177 		SIP_INIT_RXDESC(sc, i);
2178 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2179 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2180 #endif /* __NO_STRICT_ALIGNMENT */
2181 
2182 		ifp->if_ipackets++;
2183 		m->m_pkthdr.rcvif = ifp;
2184 		m->m_pkthdr.len = m->m_len = len;
2185 
2186 #if NBPFILTER > 0
2187 		/*
2188 		 * Pass this up to any BPF listeners, but only
2189 		 * pass if up the stack if it's for us.
2190 		 */
2191 		if (ifp->if_bpf)
2192 			bpf_mtap(ifp->if_bpf, m);
2193 #endif /* NBPFILTER > 0 */
2194 
2195 		/* Pass it on. */
2196 		(*ifp->if_input)(ifp, m);
2197 	}
2198 
2199 	/* Update the receive pointer. */
2200 	sc->sc_rxptr = i;
2201 }
2202 #endif /* DP83820 */
2203 
2204 /*
2205  * sip_tick:
2206  *
2207  *	One second timer, used to tick the MII.
2208  */
2209 static void
2210 SIP_DECL(tick)(void *arg)
2211 {
2212 	struct sip_softc *sc = arg;
2213 	int s;
2214 
2215 	s = splnet();
2216 #ifdef DP83820
2217 #ifdef SIP_EVENT_COUNTERS
2218 	/* Read PAUSE related counts from MIB registers. */
2219 	sc->sc_ev_rxpause.ev_count +=
2220 	    bus_space_read_4(sc->sc_st, sc->sc_sh,
2221 			     SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2222 	sc->sc_ev_txpause.ev_count +=
2223 	    bus_space_read_4(sc->sc_st, sc->sc_sh,
2224 			     SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2225 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2226 #endif /* SIP_EVENT_COUNTERS */
2227 #endif /* DP83820 */
2228 	mii_tick(&sc->sc_mii);
2229 	splx(s);
2230 
2231 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2232 }
2233 
2234 /*
2235  * sip_reset:
2236  *
2237  *	Perform a soft reset on the SiS 900.
2238  */
2239 static void
2240 SIP_DECL(reset)(struct sip_softc *sc)
2241 {
2242 	bus_space_tag_t st = sc->sc_st;
2243 	bus_space_handle_t sh = sc->sc_sh;
2244 	int i;
2245 
2246 	bus_space_write_4(st, sh, SIP_IER, 0);
2247 	bus_space_write_4(st, sh, SIP_IMR, 0);
2248 	bus_space_write_4(st, sh, SIP_RFCR, 0);
2249 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
2250 
2251 	for (i = 0; i < SIP_TIMEOUT; i++) {
2252 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2253 			break;
2254 		delay(2);
2255 	}
2256 
2257 	if (i == SIP_TIMEOUT)
2258 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2259 
2260 	delay(1000);
2261 
2262 #ifdef DP83820
2263 	/*
2264 	 * Set the general purpose I/O bits.  Do it here in case we
2265 	 * need to have GPIO set up to talk to the media interface.
2266 	 */
2267 	bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2268 	delay(1000);
2269 #endif /* DP83820 */
2270 }
2271 
2272 /*
2273  * sip_init:		[ ifnet interface function ]
2274  *
2275  *	Initialize the interface.  Must be called at splnet().
2276  */
2277 static int
2278 SIP_DECL(init)(struct ifnet *ifp)
2279 {
2280 	struct sip_softc *sc = ifp->if_softc;
2281 	bus_space_tag_t st = sc->sc_st;
2282 	bus_space_handle_t sh = sc->sc_sh;
2283 	struct sip_txsoft *txs;
2284 	struct sip_rxsoft *rxs;
2285 	struct sip_desc *sipd;
2286 #if defined(DP83820)
2287 	u_int32_t reg;
2288 #endif
2289 	int i, error = 0;
2290 
2291 	/*
2292 	 * Cancel any pending I/O.
2293 	 */
2294 	SIP_DECL(stop)(ifp, 0);
2295 
2296 	/*
2297 	 * Reset the chip to a known state.
2298 	 */
2299 	SIP_DECL(reset)(sc);
2300 
2301 #if !defined(DP83820)
2302 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2303 		/*
2304 		 * DP83815 manual, page 78:
2305 		 *    4.4 Recommended Registers Configuration
2306 		 *    For optimum performance of the DP83815, version noted
2307 		 *    as DP83815CVNG (SRR = 203h), the listed register
2308 		 *    modifications must be followed in sequence...
2309 		 *
2310 		 * It's not clear if this should be 302h or 203h because that
2311 		 * chip name is listed as SRR 302h in the description of the
2312 		 * SRR register.  However, my revision 302h DP83815 on the
2313 		 * Netgear FA311 purchased in 02/2001 needs these settings
2314 		 * to avoid tons of errors in AcceptPerfectMatch (non-
2315 		 * IFF_PROMISC) mode.  I do not know if other revisions need
2316 		 * this set or not.  [briggs -- 09 March 2001]
2317 		 *
2318 		 * Note that only the low-order 12 bits of 0xe4 are documented
2319 		 * and that this sets reserved bits in that register.
2320 		 */
2321 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
2322 
2323 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
2324 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
2325 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
2326 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
2327 
2328 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
2329 	}
2330 #endif /* ! DP83820 */
2331 
2332 	/*
2333 	 * Initialize the transmit descriptor ring.
2334 	 */
2335 	for (i = 0; i < SIP_NTXDESC; i++) {
2336 		sipd = &sc->sc_txdescs[i];
2337 		memset(sipd, 0, sizeof(struct sip_desc));
2338 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2339 	}
2340 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2341 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2342 	sc->sc_txfree = SIP_NTXDESC;
2343 	sc->sc_txnext = 0;
2344 	sc->sc_txwin = 0;
2345 
2346 	/*
2347 	 * Initialize the transmit job descriptors.
2348 	 */
2349 	SIMPLEQ_INIT(&sc->sc_txfreeq);
2350 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
2351 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
2352 		txs = &sc->sc_txsoft[i];
2353 		txs->txs_mbuf = NULL;
2354 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2355 	}
2356 
2357 	/*
2358 	 * Initialize the receive descriptor and receive job
2359 	 * descriptor rings.
2360 	 */
2361 	for (i = 0; i < SIP_NRXDESC; i++) {
2362 		rxs = &sc->sc_rxsoft[i];
2363 		if (rxs->rxs_mbuf == NULL) {
2364 			if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2365 				printf("%s: unable to allocate or map rx "
2366 				    "buffer %d, error = %d\n",
2367 				    sc->sc_dev.dv_xname, i, error);
2368 				/*
2369 				 * XXX Should attempt to run with fewer receive
2370 				 * XXX buffers instead of just failing.
2371 				 */
2372 				SIP_DECL(rxdrain)(sc);
2373 				goto out;
2374 			}
2375 		} else
2376 			SIP_INIT_RXDESC(sc, i);
2377 	}
2378 	sc->sc_rxptr = 0;
2379 #ifdef DP83820
2380 	sc->sc_rxdiscard = 0;
2381 	SIP_RXCHAIN_RESET(sc);
2382 #endif /* DP83820 */
2383 
2384 	/*
2385 	 * Set the configuration register; it's already initialized
2386 	 * in sip_attach().
2387 	 */
2388 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2389 
2390 	/*
2391 	 * Initialize the prototype TXCFG register.
2392 	 */
2393 #if defined(DP83820)
2394 	sc->sc_txcfg = TXCFG_MXDMA_512;
2395 	sc->sc_rxcfg = RXCFG_MXDMA_512;
2396 #else
2397 	if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2398 	     SIP_SIS900_REV(sc, SIS_REV_960) ||
2399 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2400 	    (sc->sc_cfg & CFG_EDBMASTEN)) {
2401 		sc->sc_txcfg = TXCFG_MXDMA_64;
2402 		sc->sc_rxcfg = RXCFG_MXDMA_64;
2403 	} else {
2404 		sc->sc_txcfg = TXCFG_MXDMA_512;
2405 		sc->sc_rxcfg = RXCFG_MXDMA_512;
2406 	}
2407 #endif /* DP83820 */
2408 
2409 	sc->sc_txcfg |= TXCFG_ATP |
2410 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2411 	    sc->sc_tx_drain_thresh;
2412 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2413 
2414 	/*
2415 	 * Initialize the receive drain threshold if we have never
2416 	 * done so.
2417 	 */
2418 	if (sc->sc_rx_drain_thresh == 0) {
2419 		/*
2420 		 * XXX This value should be tuned.  This is set to the
2421 		 * maximum of 248 bytes, and we may be able to improve
2422 		 * performance by decreasing it (although we should never
2423 		 * set this value lower than 2; 14 bytes are required to
2424 		 * filter the packet).
2425 		 */
2426 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2427 	}
2428 
2429 	/*
2430 	 * Initialize the prototype RXCFG register.
2431 	 */
2432 	sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2433 #ifdef DP83820
2434 	/*
2435 	 * Accept long packets (including FCS) so we can handle
2436 	 * 802.1q-tagged frames and jumbo frames properly.
2437 	 */
2438 	if (ifp->if_mtu > ETHERMTU ||
2439 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2440 		sc->sc_rxcfg |= RXCFG_ALP;
2441 
2442 	/*
2443 	 * Checksum offloading is disabled if the user selects an MTU
2444 	 * larger than 8109.  (FreeBSD says 8152, but there is emperical
2445 	 * evidence that >8109 does not work on some boards, such as the
2446 	 * Planex GN-1000TE).
2447 	 */
2448 	if (ifp->if_mtu > 8109 &&
2449 	    (ifp->if_capenable &
2450 	     (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))) {
2451 		printf("%s: Checksum offloading does not work if MTU > 8109 - "
2452 		       "disabled.\n", sc->sc_dev.dv_xname);
2453 		ifp->if_capenable &= ~(IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|
2454 				       IFCAP_CSUM_UDPv4);
2455 		ifp->if_csum_flags_tx = 0;
2456 		ifp->if_csum_flags_rx = 0;
2457 	}
2458 #else
2459 	/*
2460 	 * Accept packets >1518 bytes (including FCS) so we can handle
2461 	 * 802.1q-tagged frames properly.
2462 	 */
2463 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2464 		sc->sc_rxcfg |= RXCFG_ALP;
2465 #endif
2466 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2467 
2468 #ifdef DP83820
2469 	/*
2470 	 * Initialize the VLAN/IP receive control register.
2471 	 * We enable checksum computation on all incoming
2472 	 * packets, and do not reject packets w/ bad checksums.
2473 	 */
2474 	reg = 0;
2475 	if (ifp->if_capenable &
2476 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2477 		reg |= VRCR_IPEN;
2478 	if (sc->sc_ethercom.ec_nvlans != 0)
2479 		reg |= VRCR_VTDEN|VRCR_VTREN;
2480 	bus_space_write_4(st, sh, SIP_VRCR, reg);
2481 
2482 	/*
2483 	 * Initialize the VLAN/IP transmit control register.
2484 	 * We enable outgoing checksum computation on a
2485 	 * per-packet basis.
2486 	 */
2487 	reg = 0;
2488 	if (ifp->if_capenable &
2489 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2490 		reg |= VTCR_PPCHK;
2491 	if (sc->sc_ethercom.ec_nvlans != 0)
2492 		reg |= VTCR_VPPTI;
2493 	bus_space_write_4(st, sh, SIP_VTCR, reg);
2494 
2495 	/*
2496 	 * If we're using VLANs, initialize the VLAN data register.
2497 	 * To understand why we bswap the VLAN Ethertype, see section
2498 	 * 4.2.36 of the DP83820 manual.
2499 	 */
2500 	if (sc->sc_ethercom.ec_nvlans != 0)
2501 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2502 #endif /* DP83820 */
2503 
2504 	/*
2505 	 * Give the transmit and receive rings to the chip.
2506 	 */
2507 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2508 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2509 
2510 	/*
2511 	 * Initialize the interrupt mask.
2512 	 */
2513 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2514 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2515 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2516 
2517 	/* Set up the receive filter. */
2518 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2519 
2520 #ifdef DP83820
2521 	/*
2522 	 * Tune sc_rx_flow_thresh.
2523 	 * XXX "More than 8KB" is too short for jumbo frames.
2524 	 * XXX TODO: Threshold value should be user-settable.
2525 	 */
2526 	sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2527 				 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2528 				 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2529 #endif
2530 
2531 	/*
2532 	 * Set the current media.  Do this after initializing the prototype
2533 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2534 	 * control.
2535 	 */
2536 	mii_mediachg(&sc->sc_mii);
2537 
2538 #ifdef DP83820
2539 	/*
2540 	 * Set the interrupt hold-off timer to 100us.
2541 	 */
2542 	bus_space_write_4(st, sh, SIP_IHR, 0x01);
2543 #endif
2544 
2545 	/*
2546 	 * Enable interrupts.
2547 	 */
2548 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
2549 
2550 	/*
2551 	 * Start the transmit and receive processes.
2552 	 */
2553 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2554 
2555 	/*
2556 	 * Start the one second MII clock.
2557 	 */
2558 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2559 
2560 	/*
2561 	 * ...all done!
2562 	 */
2563 	ifp->if_flags |= IFF_RUNNING;
2564 	ifp->if_flags &= ~IFF_OACTIVE;
2565 	sc->sc_if_flags = ifp->if_flags;
2566 
2567  out:
2568 	if (error)
2569 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2570 	return (error);
2571 }
2572 
2573 /*
2574  * sip_drain:
2575  *
2576  *	Drain the receive queue.
2577  */
2578 static void
2579 SIP_DECL(rxdrain)(struct sip_softc *sc)
2580 {
2581 	struct sip_rxsoft *rxs;
2582 	int i;
2583 
2584 	for (i = 0; i < SIP_NRXDESC; i++) {
2585 		rxs = &sc->sc_rxsoft[i];
2586 		if (rxs->rxs_mbuf != NULL) {
2587 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2588 			m_freem(rxs->rxs_mbuf);
2589 			rxs->rxs_mbuf = NULL;
2590 		}
2591 	}
2592 }
2593 
2594 /*
2595  * sip_stop:		[ ifnet interface function ]
2596  *
2597  *	Stop transmission on the interface.
2598  */
2599 static void
2600 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2601 {
2602 	struct sip_softc *sc = ifp->if_softc;
2603 	bus_space_tag_t st = sc->sc_st;
2604 	bus_space_handle_t sh = sc->sc_sh;
2605 	struct sip_txsoft *txs;
2606 	u_int32_t cmdsts = 0;		/* DEBUG */
2607 
2608 	/*
2609 	 * Stop the one second clock.
2610 	 */
2611 	callout_stop(&sc->sc_tick_ch);
2612 
2613 	/* Down the MII. */
2614 	mii_down(&sc->sc_mii);
2615 
2616 	/*
2617 	 * Disable interrupts.
2618 	 */
2619 	bus_space_write_4(st, sh, SIP_IER, 0);
2620 
2621 	/*
2622 	 * Stop receiver and transmitter.
2623 	 */
2624 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2625 
2626 	/*
2627 	 * Release any queued transmit buffers.
2628 	 */
2629 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2630 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2631 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2632 		    (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2633 		     CMDSTS_INTR) == 0)
2634 			printf("%s: sip_stop: last descriptor does not "
2635 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
2636 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2637 #ifdef DIAGNOSTIC
2638 		if (txs->txs_mbuf == NULL) {
2639 			printf("%s: dirty txsoft with no mbuf chain\n",
2640 			    sc->sc_dev.dv_xname);
2641 			panic("sip_stop");
2642 		}
2643 #endif
2644 		cmdsts |=		/* DEBUG */
2645 		    le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2646 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2647 		m_freem(txs->txs_mbuf);
2648 		txs->txs_mbuf = NULL;
2649 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2650 	}
2651 
2652 	if (disable)
2653 		SIP_DECL(rxdrain)(sc);
2654 
2655 	/*
2656 	 * Mark the interface down and cancel the watchdog timer.
2657 	 */
2658 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2659 	ifp->if_timer = 0;
2660 
2661 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2662 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2663 		printf("%s: sip_stop: no INTR bits set in dirty tx "
2664 		    "descriptors\n", sc->sc_dev.dv_xname);
2665 }
2666 
2667 /*
2668  * sip_read_eeprom:
2669  *
2670  *	Read data from the serial EEPROM.
2671  */
2672 static void
2673 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2674     u_int16_t *data)
2675 {
2676 	bus_space_tag_t st = sc->sc_st;
2677 	bus_space_handle_t sh = sc->sc_sh;
2678 	u_int16_t reg;
2679 	int i, x;
2680 
2681 	for (i = 0; i < wordcnt; i++) {
2682 		/* Send CHIP SELECT. */
2683 		reg = EROMAR_EECS;
2684 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
2685 
2686 		/* Shift in the READ opcode. */
2687 		for (x = 3; x > 0; x--) {
2688 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2689 				reg |= EROMAR_EEDI;
2690 			else
2691 				reg &= ~EROMAR_EEDI;
2692 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2693 			bus_space_write_4(st, sh, SIP_EROMAR,
2694 			    reg | EROMAR_EESK);
2695 			delay(4);
2696 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2697 			delay(4);
2698 		}
2699 
2700 		/* Shift in address. */
2701 		for (x = 6; x > 0; x--) {
2702 			if ((word + i) & (1 << (x - 1)))
2703 				reg |= EROMAR_EEDI;
2704 			else
2705 				reg &= ~EROMAR_EEDI;
2706 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2707 			bus_space_write_4(st, sh, SIP_EROMAR,
2708 			    reg | EROMAR_EESK);
2709 			delay(4);
2710 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2711 			delay(4);
2712 		}
2713 
2714 		/* Shift out data. */
2715 		reg = EROMAR_EECS;
2716 		data[i] = 0;
2717 		for (x = 16; x > 0; x--) {
2718 			bus_space_write_4(st, sh, SIP_EROMAR,
2719 			    reg | EROMAR_EESK);
2720 			delay(4);
2721 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2722 				data[i] |= (1 << (x - 1));
2723 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2724 			delay(4);
2725 		}
2726 
2727 		/* Clear CHIP SELECT. */
2728 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
2729 		delay(4);
2730 	}
2731 }
2732 
2733 /*
2734  * sip_add_rxbuf:
2735  *
2736  *	Add a receive buffer to the indicated descriptor.
2737  */
2738 static int
2739 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2740 {
2741 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2742 	struct mbuf *m;
2743 	int error;
2744 
2745 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2746 	if (m == NULL)
2747 		return (ENOBUFS);
2748 
2749 	MCLGET(m, M_DONTWAIT);
2750 	if ((m->m_flags & M_EXT) == 0) {
2751 		m_freem(m);
2752 		return (ENOBUFS);
2753 	}
2754 
2755 #if defined(DP83820)
2756 	m->m_len = SIP_RXBUF_LEN;
2757 #endif /* DP83820 */
2758 
2759 	if (rxs->rxs_mbuf != NULL)
2760 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2761 
2762 	rxs->rxs_mbuf = m;
2763 
2764 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2765 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2766 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2767 	if (error) {
2768 		printf("%s: can't load rx DMA map %d, error = %d\n",
2769 		    sc->sc_dev.dv_xname, idx, error);
2770 		panic("sip_add_rxbuf");		/* XXX */
2771 	}
2772 
2773 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2774 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2775 
2776 	SIP_INIT_RXDESC(sc, idx);
2777 
2778 	return (0);
2779 }
2780 
2781 #if !defined(DP83820)
2782 /*
2783  * sip_sis900_set_filter:
2784  *
2785  *	Set up the receive filter.
2786  */
2787 static void
2788 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2789 {
2790 	bus_space_tag_t st = sc->sc_st;
2791 	bus_space_handle_t sh = sc->sc_sh;
2792 	struct ethercom *ec = &sc->sc_ethercom;
2793 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2794 	struct ether_multi *enm;
2795 	u_int8_t *cp;
2796 	struct ether_multistep step;
2797 	u_int32_t crc, mchash[16];
2798 
2799 	/*
2800 	 * Initialize the prototype RFCR.
2801 	 */
2802 	sc->sc_rfcr = RFCR_RFEN;
2803 	if (ifp->if_flags & IFF_BROADCAST)
2804 		sc->sc_rfcr |= RFCR_AAB;
2805 	if (ifp->if_flags & IFF_PROMISC) {
2806 		sc->sc_rfcr |= RFCR_AAP;
2807 		goto allmulti;
2808 	}
2809 
2810 	/*
2811 	 * Set up the multicast address filter by passing all multicast
2812 	 * addresses through a CRC generator, and then using the high-order
2813 	 * 6 bits as an index into the 128 bit multicast hash table (only
2814 	 * the lower 16 bits of each 32 bit multicast hash register are
2815 	 * valid).  The high order bits select the register, while the
2816 	 * rest of the bits select the bit within the register.
2817 	 */
2818 
2819 	memset(mchash, 0, sizeof(mchash));
2820 
2821 	/*
2822 	 * SiS900 (at least SiS963) requires us to register the address of
2823 	 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
2824 	 */
2825 	crc = 0x0ed423f9;
2826 
2827 	if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2828 	    SIP_SIS900_REV(sc, SIS_REV_960) ||
2829 	    SIP_SIS900_REV(sc, SIS_REV_900B)) {
2830 		/* Just want the 8 most significant bits. */
2831 		crc >>= 24;
2832 	} else {
2833 		/* Just want the 7 most significant bits. */
2834 		crc >>= 25;
2835 	}
2836 
2837 	/* Set the corresponding bit in the hash table. */
2838 	mchash[crc >> 4] |= 1 << (crc & 0xf);
2839 
2840 	ETHER_FIRST_MULTI(step, ec, enm);
2841 	while (enm != NULL) {
2842 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2843 			/*
2844 			 * We must listen to a range of multicast addresses.
2845 			 * For now, just accept all multicasts, rather than
2846 			 * trying to set only those filter bits needed to match
2847 			 * the range.  (At this time, the only use of address
2848 			 * ranges is for IP multicast routing, for which the
2849 			 * range is big enough to require all bits set.)
2850 			 */
2851 			goto allmulti;
2852 		}
2853 
2854 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2855 
2856 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2857 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
2858 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
2859 			/* Just want the 8 most significant bits. */
2860 			crc >>= 24;
2861 		} else {
2862 			/* Just want the 7 most significant bits. */
2863 			crc >>= 25;
2864 		}
2865 
2866 		/* Set the corresponding bit in the hash table. */
2867 		mchash[crc >> 4] |= 1 << (crc & 0xf);
2868 
2869 		ETHER_NEXT_MULTI(step, enm);
2870 	}
2871 
2872 	ifp->if_flags &= ~IFF_ALLMULTI;
2873 	goto setit;
2874 
2875  allmulti:
2876 	ifp->if_flags |= IFF_ALLMULTI;
2877 	sc->sc_rfcr |= RFCR_AAM;
2878 
2879  setit:
2880 #define	FILTER_EMIT(addr, data)						\
2881 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
2882 	delay(1);							\
2883 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
2884 	delay(1)
2885 
2886 	/*
2887 	 * Disable receive filter, and program the node address.
2888 	 */
2889 	cp = LLADDR(ifp->if_sadl);
2890 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2891 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2892 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2893 
2894 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2895 		/*
2896 		 * Program the multicast hash table.
2897 		 */
2898 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2899 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2900 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2901 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2902 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2903 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2904 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2905 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2906 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2907 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
2908 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
2909 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2910 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2911 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2912 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2913 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2914 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2915 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2916 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2917 		}
2918 	}
2919 #undef FILTER_EMIT
2920 
2921 	/*
2922 	 * Re-enable the receiver filter.
2923 	 */
2924 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2925 }
2926 #endif /* ! DP83820 */
2927 
2928 /*
2929  * sip_dp83815_set_filter:
2930  *
2931  *	Set up the receive filter.
2932  */
2933 static void
2934 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2935 {
2936 	bus_space_tag_t st = sc->sc_st;
2937 	bus_space_handle_t sh = sc->sc_sh;
2938 	struct ethercom *ec = &sc->sc_ethercom;
2939 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2940 	struct ether_multi *enm;
2941 	u_int8_t *cp;
2942 	struct ether_multistep step;
2943 	u_int32_t crc, hash, slot, bit;
2944 #ifdef DP83820
2945 #define	MCHASH_NWORDS	128
2946 #else
2947 #define	MCHASH_NWORDS	32
2948 #endif /* DP83820 */
2949 	u_int16_t mchash[MCHASH_NWORDS];
2950 	int i;
2951 
2952 	/*
2953 	 * Initialize the prototype RFCR.
2954 	 * Enable the receive filter, and accept on
2955 	 *    Perfect (destination address) Match
2956 	 * If IFF_BROADCAST, also accept all broadcast packets.
2957 	 * If IFF_PROMISC, accept all unicast packets (and later, set
2958 	 *    IFF_ALLMULTI and accept all multicast, too).
2959 	 */
2960 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2961 	if (ifp->if_flags & IFF_BROADCAST)
2962 		sc->sc_rfcr |= RFCR_AAB;
2963 	if (ifp->if_flags & IFF_PROMISC) {
2964 		sc->sc_rfcr |= RFCR_AAP;
2965 		goto allmulti;
2966 	}
2967 
2968 #ifdef DP83820
2969 	/*
2970 	 * Set up the DP83820 multicast address filter by passing all multicast
2971 	 * addresses through a CRC generator, and then using the high-order
2972 	 * 11 bits as an index into the 2048 bit multicast hash table.  The
2973 	 * high-order 7 bits select the slot, while the low-order 4 bits
2974 	 * select the bit within the slot.  Note that only the low 16-bits
2975 	 * of each filter word are used, and there are 128 filter words.
2976 	 */
2977 #else
2978 	/*
2979 	 * Set up the DP83815 multicast address filter by passing all multicast
2980 	 * addresses through a CRC generator, and then using the high-order
2981 	 * 9 bits as an index into the 512 bit multicast hash table.  The
2982 	 * high-order 5 bits select the slot, while the low-order 4 bits
2983 	 * select the bit within the slot.  Note that only the low 16-bits
2984 	 * of each filter word are used, and there are 32 filter words.
2985 	 */
2986 #endif /* DP83820 */
2987 
2988 	memset(mchash, 0, sizeof(mchash));
2989 
2990 	ifp->if_flags &= ~IFF_ALLMULTI;
2991 	ETHER_FIRST_MULTI(step, ec, enm);
2992 	if (enm == NULL)
2993 		goto setit;
2994 	while (enm != NULL) {
2995 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2996 			/*
2997 			 * We must listen to a range of multicast addresses.
2998 			 * For now, just accept all multicasts, rather than
2999 			 * trying to set only those filter bits needed to match
3000 			 * the range.  (At this time, the only use of address
3001 			 * ranges is for IP multicast routing, for which the
3002 			 * range is big enough to require all bits set.)
3003 			 */
3004 			goto allmulti;
3005 		}
3006 
3007 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3008 
3009 #ifdef DP83820
3010 		/* Just want the 11 most significant bits. */
3011 		hash = crc >> 21;
3012 #else
3013 		/* Just want the 9 most significant bits. */
3014 		hash = crc >> 23;
3015 #endif /* DP83820 */
3016 
3017 		slot = hash >> 4;
3018 		bit = hash & 0xf;
3019 
3020 		/* Set the corresponding bit in the hash table. */
3021 		mchash[slot] |= 1 << bit;
3022 
3023 		ETHER_NEXT_MULTI(step, enm);
3024 	}
3025 	sc->sc_rfcr |= RFCR_MHEN;
3026 	goto setit;
3027 
3028  allmulti:
3029 	ifp->if_flags |= IFF_ALLMULTI;
3030 	sc->sc_rfcr |= RFCR_AAM;
3031 
3032  setit:
3033 #define	FILTER_EMIT(addr, data)						\
3034 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
3035 	delay(1);							\
3036 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
3037 	delay(1)
3038 
3039 	/*
3040 	 * Disable receive filter, and program the node address.
3041 	 */
3042 	cp = LLADDR(ifp->if_sadl);
3043 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3044 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3045 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3046 
3047 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3048 		/*
3049 		 * Program the multicast hash table.
3050 		 */
3051 		for (i = 0; i < MCHASH_NWORDS; i++) {
3052 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
3053 			    mchash[i]);
3054 		}
3055 	}
3056 #undef FILTER_EMIT
3057 #undef MCHASH_NWORDS
3058 
3059 	/*
3060 	 * Re-enable the receiver filter.
3061 	 */
3062 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3063 }
3064 
3065 #if defined(DP83820)
3066 /*
3067  * sip_dp83820_mii_readreg:	[mii interface function]
3068  *
3069  *	Read a PHY register on the MII of the DP83820.
3070  */
3071 static int
3072 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
3073 {
3074 	struct sip_softc *sc = (void *) self;
3075 
3076 	if (sc->sc_cfg & CFG_TBI_EN) {
3077 		bus_addr_t tbireg;
3078 		int rv;
3079 
3080 		if (phy != 0)
3081 			return (0);
3082 
3083 		switch (reg) {
3084 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3085 		case MII_BMSR:		tbireg = SIP_TBISR; break;
3086 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3087 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3088 		case MII_ANER:		tbireg = SIP_TANER; break;
3089 		case MII_EXTSR:
3090 			/*
3091 			 * Don't even bother reading the TESR register.
3092 			 * The manual documents that the device has
3093 			 * 1000baseX full/half capability, but the
3094 			 * register itself seems read back 0 on some
3095 			 * boards.  Just hard-code the result.
3096 			 */
3097 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3098 
3099 		default:
3100 			return (0);
3101 		}
3102 
3103 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3104 		if (tbireg == SIP_TBISR) {
3105 			/* LINK and ACOMP are switched! */
3106 			int val = rv;
3107 
3108 			rv = 0;
3109 			if (val & TBISR_MR_LINK_STATUS)
3110 				rv |= BMSR_LINK;
3111 			if (val & TBISR_MR_AN_COMPLETE)
3112 				rv |= BMSR_ACOMP;
3113 
3114 			/*
3115 			 * The manual claims this register reads back 0
3116 			 * on hard and soft reset.  But we want to let
3117 			 * the gentbi driver know that we support auto-
3118 			 * negotiation, so hard-code this bit in the
3119 			 * result.
3120 			 */
3121 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
3122 		}
3123 
3124 		return (rv);
3125 	}
3126 
3127 	return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
3128 	    phy, reg));
3129 }
3130 
3131 /*
3132  * sip_dp83820_mii_writereg:	[mii interface function]
3133  *
3134  *	Write a PHY register on the MII of the DP83820.
3135  */
3136 static void
3137 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
3138 {
3139 	struct sip_softc *sc = (void *) self;
3140 
3141 	if (sc->sc_cfg & CFG_TBI_EN) {
3142 		bus_addr_t tbireg;
3143 
3144 		if (phy != 0)
3145 			return;
3146 
3147 		switch (reg) {
3148 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3149 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3150 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3151 		default:
3152 			return;
3153 		}
3154 
3155 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3156 		return;
3157 	}
3158 
3159 	mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
3160 	    phy, reg, val);
3161 }
3162 
3163 /*
3164  * sip_dp83820_mii_statchg:	[mii interface function]
3165  *
3166  *	Callback from MII layer when media changes.
3167  */
3168 static void
3169 SIP_DECL(dp83820_mii_statchg)(struct device *self)
3170 {
3171 	struct sip_softc *sc = (struct sip_softc *) self;
3172 	struct mii_data *mii = &sc->sc_mii;
3173 	u_int32_t cfg, pcr;
3174 
3175 	/*
3176 	 * Get flow control negotiation result.
3177 	 */
3178 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3179 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3180 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3181 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3182 	}
3183 
3184 	/*
3185 	 * Update TXCFG for full-duplex operation.
3186 	 */
3187 	if ((mii->mii_media_active & IFM_FDX) != 0)
3188 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3189 	else
3190 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3191 
3192 	/*
3193 	 * Update RXCFG for full-duplex or loopback.
3194 	 */
3195 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3196 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3197 		sc->sc_rxcfg |= RXCFG_ATX;
3198 	else
3199 		sc->sc_rxcfg &= ~RXCFG_ATX;
3200 
3201 	/*
3202 	 * Update CFG for MII/GMII.
3203 	 */
3204 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3205 		cfg = sc->sc_cfg | CFG_MODE_1000;
3206 	else
3207 		cfg = sc->sc_cfg;
3208 
3209 	/*
3210 	 * 802.3x flow control.
3211 	 */
3212 	pcr = 0;
3213 	if (sc->sc_flowflags & IFM_FLOW) {
3214 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3215 			pcr |= sc->sc_rx_flow_thresh;
3216 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3217 			pcr |= PCR_PSEN | PCR_PS_MCAST;
3218 	}
3219 
3220 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3221 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3222 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3223 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3224 }
3225 #endif /* ! DP83820 */
3226 
3227 /*
3228  * sip_mii_bitbang_read: [mii bit-bang interface function]
3229  *
3230  *	Read the MII serial port for the MII bit-bang module.
3231  */
3232 static u_int32_t
3233 SIP_DECL(mii_bitbang_read)(struct device *self)
3234 {
3235 	struct sip_softc *sc = (void *) self;
3236 
3237 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3238 }
3239 
3240 /*
3241  * sip_mii_bitbang_write: [mii big-bang interface function]
3242  *
3243  *	Write the MII serial port for the MII bit-bang module.
3244  */
3245 static void
3246 SIP_DECL(mii_bitbang_write)(struct device *self, u_int32_t val)
3247 {
3248 	struct sip_softc *sc = (void *) self;
3249 
3250 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3251 }
3252 
3253 #ifndef DP83820
3254 /*
3255  * sip_sis900_mii_readreg:	[mii interface function]
3256  *
3257  *	Read a PHY register on the MII.
3258  */
3259 static int
3260 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
3261 {
3262 	struct sip_softc *sc = (struct sip_softc *) self;
3263 	u_int32_t enphy;
3264 
3265 	/*
3266 	 * The PHY of recent SiS chipsets is accessed through bitbang
3267 	 * operations.
3268 	 */
3269 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3270 		return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
3271 		    phy, reg));
3272 
3273 #ifndef SIS900_MII_RESTRICT
3274 	/*
3275 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3276 	 * MII address 0.
3277 	 */
3278 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3279 		return (0);
3280 #endif
3281 
3282 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3283 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3284 	    ENPHY_RWCMD | ENPHY_ACCESS);
3285 	do {
3286 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3287 	} while (enphy & ENPHY_ACCESS);
3288 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3289 }
3290 
3291 /*
3292  * sip_sis900_mii_writereg:	[mii interface function]
3293  *
3294  *	Write a PHY register on the MII.
3295  */
3296 static void
3297 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
3298 {
3299 	struct sip_softc *sc = (struct sip_softc *) self;
3300 	u_int32_t enphy;
3301 
3302 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3303 		mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
3304 		    phy, reg, val);
3305 		return;
3306 	}
3307 
3308 #ifndef SIS900_MII_RESTRICT
3309 	/*
3310 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3311 	 * MII address 0.
3312 	 */
3313 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3314 		return;
3315 #endif
3316 
3317 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3318 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3319 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3320 	do {
3321 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3322 	} while (enphy & ENPHY_ACCESS);
3323 }
3324 
3325 /*
3326  * sip_sis900_mii_statchg:	[mii interface function]
3327  *
3328  *	Callback from MII layer when media changes.
3329  */
3330 static void
3331 SIP_DECL(sis900_mii_statchg)(struct device *self)
3332 {
3333 	struct sip_softc *sc = (struct sip_softc *) self;
3334 	struct mii_data *mii = &sc->sc_mii;
3335 	u_int32_t flowctl;
3336 
3337 	/*
3338 	 * Get flow control negotiation result.
3339 	 */
3340 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3341 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3342 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3343 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3344 	}
3345 
3346 	/*
3347 	 * Update TXCFG for full-duplex operation.
3348 	 */
3349 	if ((mii->mii_media_active & IFM_FDX) != 0)
3350 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3351 	else
3352 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3353 
3354 	/*
3355 	 * Update RXCFG for full-duplex or loopback.
3356 	 */
3357 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3358 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3359 		sc->sc_rxcfg |= RXCFG_ATX;
3360 	else
3361 		sc->sc_rxcfg &= ~RXCFG_ATX;
3362 
3363 	/*
3364 	 * Update IMR for use of 802.3x flow control.
3365 	 */
3366 	if (sc->sc_flowflags & IFM_FLOW) {
3367 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3368 		flowctl = FLOWCTL_FLOWEN;
3369 	} else {
3370 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3371 		flowctl = 0;
3372 	}
3373 
3374 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3375 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3376 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3377 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3378 }
3379 
3380 /*
3381  * sip_dp83815_mii_readreg:	[mii interface function]
3382  *
3383  *	Read a PHY register on the MII.
3384  */
3385 static int
3386 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
3387 {
3388 	struct sip_softc *sc = (struct sip_softc *) self;
3389 	u_int32_t val;
3390 
3391 	/*
3392 	 * The DP83815 only has an internal PHY.  Only allow
3393 	 * MII address 0.
3394 	 */
3395 	if (phy != 0)
3396 		return (0);
3397 
3398 	/*
3399 	 * Apparently, after a reset, the DP83815 can take a while
3400 	 * to respond.  During this recovery period, the BMSR returns
3401 	 * a value of 0.  Catch this -- it's not supposed to happen
3402 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3403 	 * PHY to come back to life.
3404 	 *
3405 	 * This works out because the BMSR is the first register
3406 	 * read during the PHY probe process.
3407 	 */
3408 	do {
3409 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3410 	} while (reg == MII_BMSR && val == 0);
3411 
3412 	return (val & 0xffff);
3413 }
3414 
3415 /*
3416  * sip_dp83815_mii_writereg:	[mii interface function]
3417  *
3418  *	Write a PHY register to the MII.
3419  */
3420 static void
3421 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
3422 {
3423 	struct sip_softc *sc = (struct sip_softc *) self;
3424 
3425 	/*
3426 	 * The DP83815 only has an internal PHY.  Only allow
3427 	 * MII address 0.
3428 	 */
3429 	if (phy != 0)
3430 		return;
3431 
3432 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3433 }
3434 
3435 /*
3436  * sip_dp83815_mii_statchg:	[mii interface function]
3437  *
3438  *	Callback from MII layer when media changes.
3439  */
3440 static void
3441 SIP_DECL(dp83815_mii_statchg)(struct device *self)
3442 {
3443 	struct sip_softc *sc = (struct sip_softc *) self;
3444 
3445 	/*
3446 	 * Update TXCFG for full-duplex operation.
3447 	 */
3448 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3449 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3450 	else
3451 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3452 
3453 	/*
3454 	 * Update RXCFG for full-duplex or loopback.
3455 	 */
3456 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3457 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3458 		sc->sc_rxcfg |= RXCFG_ATX;
3459 	else
3460 		sc->sc_rxcfg &= ~RXCFG_ATX;
3461 
3462 	/*
3463 	 * XXX 802.3x flow control.
3464 	 */
3465 
3466 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3467 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3468 
3469 	/*
3470 	 * Some DP83815s experience problems when used with short
3471 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
3472 	 * sequence adjusts the DSP's signal attenuation to fix the
3473 	 * problem.
3474 	 */
3475 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3476 		uint32_t reg;
3477 
3478 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3479 
3480 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3481 		reg &= 0x0fff;
3482 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3483 		delay(100);
3484 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3485 		reg &= 0x00ff;
3486 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3487 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3488 			    0x00e8);
3489 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3490 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3491 			    reg | 0x20);
3492 		}
3493 
3494 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3495 	}
3496 }
3497 #endif /* DP83820 */
3498 
3499 #if defined(DP83820)
3500 static void
3501 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
3502     const struct pci_attach_args *pa, u_int8_t *enaddr)
3503 {
3504 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3505 	u_int8_t cksum, *e, match;
3506 	int i;
3507 
3508 	/*
3509 	 * EEPROM data format for the DP83820 can be found in
3510 	 * the DP83820 manual, section 4.2.4.
3511 	 */
3512 
3513 	SIP_DECL(read_eeprom)(sc, 0,
3514 	    sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
3515 
3516 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3517 	match = ~(match - 1);
3518 
3519 	cksum = 0x55;
3520 	e = (u_int8_t *) eeprom_data;
3521 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3522 		cksum += *e++;
3523 
3524 	if (cksum != match)
3525 		printf("%s: Checksum (%x) mismatch (%x)",
3526 		    sc->sc_dev.dv_xname, cksum, match);
3527 
3528 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3529 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3530 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3531 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3532 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3533 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3534 }
3535 #else /* ! DP83820 */
3536 static void
3537 SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc)
3538 {
3539 	int i;
3540 
3541 	/*
3542 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
3543 	 * a reason, but I don't know it.
3544 	 */
3545 	for (i = 0; i < 10; i++)
3546 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3547 }
3548 
3549 static void
3550 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
3551     const struct pci_attach_args *pa, u_int8_t *enaddr)
3552 {
3553 	u_int16_t myea[ETHER_ADDR_LEN / 2];
3554 
3555 	switch (sc->sc_rev) {
3556 	case SIS_REV_630S:
3557 	case SIS_REV_630E:
3558 	case SIS_REV_630EA1:
3559 	case SIS_REV_630ET:
3560 	case SIS_REV_635:
3561 		/*
3562 		 * The MAC address for the on-board Ethernet of
3563 		 * the SiS 630 chipset is in the NVRAM.  Kick
3564 		 * the chip into re-loading it from NVRAM, and
3565 		 * read the MAC address out of the filter registers.
3566 		 */
3567 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3568 
3569 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3570 		    RFCR_RFADDR_NODE0);
3571 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3572 		    0xffff;
3573 
3574 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3575 		    RFCR_RFADDR_NODE2);
3576 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3577 		    0xffff;
3578 
3579 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3580 		    RFCR_RFADDR_NODE4);
3581 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3582 		    0xffff;
3583 		break;
3584 
3585 	case SIS_REV_960:
3586 		{
3587 #define	SIS_SET_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3588 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3589 
3590 #define	SIS_CLR_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3591 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3592 
3593 			int waittime, i;
3594 
3595 			/* Allow to read EEPROM from LAN. It is shared
3596 			 * between a 1394 controller and the NIC and each
3597 			 * time we access it, we need to set SIS_EECMD_REQ.
3598 			 */
3599 			SIS_SET_EROMAR(sc, EROMAR_REQ);
3600 
3601 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3602 				/* Force EEPROM to idle state. */
3603 
3604 				/*
3605 				 * XXX-cube This is ugly.  I'll look for docs about it.
3606 				 */
3607 				SIS_SET_EROMAR(sc, EROMAR_EECS);
3608 				SIP_DECL(sis900_eeprom_delay)(sc);
3609 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3610 					SIS_SET_EROMAR(sc, EROMAR_EESK);
3611 					SIP_DECL(sis900_eeprom_delay)(sc);
3612 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
3613 					SIP_DECL(sis900_eeprom_delay)(sc);
3614 				}
3615 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
3616 				SIP_DECL(sis900_eeprom_delay)(sc);
3617 				bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3618 
3619 				if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3620 					SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3621 					    sizeof(myea) / sizeof(myea[0]), myea);
3622 					break;
3623 				}
3624 				DELAY(1);
3625 			}
3626 
3627 			/*
3628 			 * Set SIS_EECTL_CLK to high, so a other master
3629 			 * can operate on the i2c bus.
3630 			 */
3631 			SIS_SET_EROMAR(sc, EROMAR_EESK);
3632 
3633 			/* Refuse EEPROM access by LAN */
3634 			SIS_SET_EROMAR(sc, EROMAR_DONE);
3635 		} break;
3636 
3637 	default:
3638 		SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3639 		    sizeof(myea) / sizeof(myea[0]), myea);
3640 	}
3641 
3642 	enaddr[0] = myea[0] & 0xff;
3643 	enaddr[1] = myea[0] >> 8;
3644 	enaddr[2] = myea[1] & 0xff;
3645 	enaddr[3] = myea[1] >> 8;
3646 	enaddr[4] = myea[2] & 0xff;
3647 	enaddr[5] = myea[2] >> 8;
3648 }
3649 
3650 /* Table and macro to bit-reverse an octet. */
3651 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3652 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3653 
3654 static void
3655 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3656     const struct pci_attach_args *pa, u_int8_t *enaddr)
3657 {
3658 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3659 	u_int8_t cksum, *e, match;
3660 	int i;
3661 
3662 	SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3663 	    sizeof(eeprom_data[0]), eeprom_data);
3664 
3665 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3666 	match = ~(match - 1);
3667 
3668 	cksum = 0x55;
3669 	e = (u_int8_t *) eeprom_data;
3670 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3671 		cksum += *e++;
3672 	}
3673 	if (cksum != match) {
3674 		printf("%s: Checksum (%x) mismatch (%x)",
3675 		    sc->sc_dev.dv_xname, cksum, match);
3676 	}
3677 
3678 	/*
3679 	 * Unrolled because it makes slightly more sense this way.
3680 	 * The DP83815 stores the MAC address in bit 0 of word 6
3681 	 * through bit 15 of word 8.
3682 	 */
3683 	ea = &eeprom_data[6];
3684 	enaddr[0] = ((*ea & 0x1) << 7);
3685 	ea++;
3686 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
3687 	enaddr[1] = ((*ea & 0x1FE) >> 1);
3688 	enaddr[2] = ((*ea & 0x1) << 7);
3689 	ea++;
3690 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
3691 	enaddr[3] = ((*ea & 0x1FE) >> 1);
3692 	enaddr[4] = ((*ea & 0x1) << 7);
3693 	ea++;
3694 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
3695 	enaddr[5] = ((*ea & 0x1FE) >> 1);
3696 
3697 	/*
3698 	 * In case that's not weird enough, we also need to reverse
3699 	 * the bits in each byte.  This all actually makes more sense
3700 	 * if you think about the EEPROM storage as an array of bits
3701 	 * being shifted into bytes, but that's not how we're looking
3702 	 * at it here...
3703 	 */
3704 	for (i = 0; i < 6 ;i++)
3705 		enaddr[i] = bbr(enaddr[i]);
3706 }
3707 #endif /* DP83820 */
3708 
3709 /*
3710  * sip_mediastatus:	[ifmedia interface function]
3711  *
3712  *	Get the current interface media status.
3713  */
3714 static void
3715 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3716 {
3717 	struct sip_softc *sc = ifp->if_softc;
3718 
3719 	mii_pollstat(&sc->sc_mii);
3720 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
3721 	ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3722 			   sc->sc_flowflags;
3723 }
3724 
3725 /*
3726  * sip_mediachange:	[ifmedia interface function]
3727  *
3728  *	Set hardware to newly-selected media.
3729  */
3730 static int
3731 SIP_DECL(mediachange)(struct ifnet *ifp)
3732 {
3733 	struct sip_softc *sc = ifp->if_softc;
3734 
3735 	if (ifp->if_flags & IFF_UP)
3736 		mii_mediachg(&sc->sc_mii);
3737 	return (0);
3738 }
3739