xref: /netbsd-src/sys/dev/pci/if_sip.c (revision f3cfa6f6ce31685c6c4a758bc430e69eb99f50a4)
1 /*	$NetBSD: if_sip.c,v 1.173 2019/05/28 07:41:49 msaitoh Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1999 Network Computer, Inc.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of Network Computer, Inc. nor the names of its
45  *    contributors may be used to endorse or promote products derived
46  *    from this software without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
49  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
50  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
51  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
52  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
53  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
54  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
55  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
56  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
57  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
58  * POSSIBILITY OF SUCH DAMAGE.
59  */
60 
61 /*
62  * Device driver for the Silicon Integrated Systems SiS 900,
63  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
64  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
65  * controllers.
66  *
67  * Originally written to support the SiS 900 by Jason R. Thorpe for
68  * Network Computer, Inc.
69  *
70  * TODO:
71  *
72  *	- Reduce the Rx interrupt load.
73  */
74 
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.173 2019/05/28 07:41:49 msaitoh Exp $");
77 
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/callout.h>
81 #include <sys/mbuf.h>
82 #include <sys/malloc.h>
83 #include <sys/kernel.h>
84 #include <sys/socket.h>
85 #include <sys/ioctl.h>
86 #include <sys/errno.h>
87 #include <sys/device.h>
88 #include <sys/queue.h>
89 #include <sys/rndsource.h>
90 
91 #include <net/if.h>
92 #include <net/if_dl.h>
93 #include <net/if_media.h>
94 #include <net/if_ether.h>
95 #include <net/bpf.h>
96 
97 #include <sys/bus.h>
98 #include <sys/intr.h>
99 #include <machine/endian.h>
100 
101 #include <dev/mii/mii.h>
102 #include <dev/mii/miivar.h>
103 #include <dev/mii/mii_bitbang.h>
104 
105 #include <dev/pci/pcireg.h>
106 #include <dev/pci/pcivar.h>
107 #include <dev/pci/pcidevs.h>
108 
109 #include <dev/pci/if_sipreg.h>
110 
111 /*
112  * Transmit descriptor list size.  This is arbitrary, but allocate
113  * enough descriptors for 128 pending transmissions, and 8 segments
114  * per packet (64 for DP83820 for jumbo frames).
115  *
116  * This MUST work out to a power of 2.
117  */
118 #define	GSIP_NTXSEGS_ALLOC	16
119 #define	SIP_NTXSEGS_ALLOC	8
120 
121 #define	SIP_TXQUEUELEN		256
122 #define	MAX_SIP_NTXDESC	\
123     (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
124 
125 /*
126  * Receive descriptor list size.  We have one Rx buffer per incoming
127  * packet, so this logic is a little simpler.
128  *
129  * Actually, on the DP83820, we allow the packet to consume more than
130  * one buffer, in order to support jumbo Ethernet frames.  In that
131  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
132  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
133  * so we'd better be quick about handling receive interrupts.
134  */
135 #define	GSIP_NRXDESC		256
136 #define	SIP_NRXDESC		128
137 
138 #define	MAX_SIP_NRXDESC	MAX(GSIP_NRXDESC, SIP_NRXDESC)
139 
140 /*
141  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
142  * a single clump that maps to a single DMA segment to make several things
143  * easier.
144  */
145 struct sip_control_data {
146 	/*
147 	 * The transmit descriptors.
148 	 */
149 	struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
150 
151 	/*
152 	 * The receive descriptors.
153 	 */
154 	struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
155 };
156 
157 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
158 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
159 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
160 
161 /*
162  * Software state for transmit jobs.
163  */
164 struct sip_txsoft {
165 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
166 	bus_dmamap_t txs_dmamap;	/* our DMA map */
167 	int txs_firstdesc;		/* first descriptor in packet */
168 	int txs_lastdesc;		/* last descriptor in packet */
169 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
170 };
171 
172 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
173 
174 /*
175  * Software state for receive jobs.
176  */
177 struct sip_rxsoft {
178 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
179 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
180 };
181 
182 enum sip_attach_stage {
183 	  SIP_ATTACH_FIN = 0
184 	, SIP_ATTACH_CREATE_RXMAP
185 	, SIP_ATTACH_CREATE_TXMAP
186 	, SIP_ATTACH_LOAD_MAP
187 	, SIP_ATTACH_CREATE_MAP
188 	, SIP_ATTACH_MAP_MEM
189 	, SIP_ATTACH_ALLOC_MEM
190 	, SIP_ATTACH_INTR
191 	, SIP_ATTACH_MAP
192 };
193 
194 /*
195  * Software state per device.
196  */
197 struct sip_softc {
198 	device_t sc_dev;		/* generic device information */
199 	device_suspensor_t		sc_suspensor;
200 	pmf_qual_t			sc_qual;
201 
202 	bus_space_tag_t sc_st;		/* bus space tag */
203 	bus_space_handle_t sc_sh;	/* bus space handle */
204 	bus_size_t sc_sz;		/* bus space size */
205 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
206 	pci_chipset_tag_t sc_pc;
207 	bus_dma_segment_t sc_seg;
208 	struct ethercom sc_ethercom;	/* ethernet common data */
209 
210 	const struct sip_product *sc_model; /* which model are we? */
211 	int sc_gigabit;			/* 1: 83820, 0: other */
212 	int sc_rev;			/* chip revision */
213 
214 	void *sc_ih;			/* interrupt cookie */
215 
216 	struct mii_data sc_mii;		/* MII/media information */
217 
218 	callout_t sc_tick_ch;		/* tick callout */
219 
220 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
221 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
222 
223 	/*
224 	 * Software state for transmit and receive descriptors.
225 	 */
226 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
227 	struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
228 
229 	/*
230 	 * Control data structures.
231 	 */
232 	struct sip_control_data *sc_control_data;
233 #define	sc_txdescs	sc_control_data->scd_txdescs
234 #define	sc_rxdescs	sc_control_data->scd_rxdescs
235 
236 #ifdef SIP_EVENT_COUNTERS
237 	/*
238 	 * Event counters.
239 	 */
240 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
241 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
242 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
243 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
244 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
245 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
246 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
247 	struct evcnt sc_ev_rxpause;	/* PAUSE received */
248 	/* DP83820 only */
249 	struct evcnt sc_ev_txpause;	/* PAUSE transmitted */
250 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
251 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
252 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
253 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
254 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
255 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
256 #endif /* SIP_EVENT_COUNTERS */
257 
258 	uint32_t sc_txcfg;		/* prototype TXCFG register */
259 	uint32_t sc_rxcfg;		/* prototype RXCFG register */
260 	uint32_t sc_imr;		/* prototype IMR register */
261 	uint32_t sc_rfcr;		/* prototype RFCR register */
262 
263 	uint32_t sc_cfg;		/* prototype CFG register */
264 
265 	uint32_t sc_gpior;		/* prototype GPIOR register */
266 
267 	uint32_t sc_tx_fill_thresh;	/* transmit fill threshold */
268 	uint32_t sc_tx_drain_thresh;	/* transmit drain threshold */
269 
270 	uint32_t sc_rx_drain_thresh;	/* receive drain threshold */
271 
272 	int	sc_flowflags;		/* 802.3x flow control flags */
273 	int	sc_rx_flow_thresh;	/* Rx FIFO threshold for flow control */
274 	int	sc_paused;		/* paused indication */
275 
276 	int	sc_txfree;		/* number of free Tx descriptors */
277 	int	sc_txnext;		/* next ready Tx descriptor */
278 	int	sc_txwin;		/* Tx descriptors since last intr */
279 
280 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
281 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
282 
283 	/* values of interface state at last init */
284 	struct {
285 		/* if_capenable */
286 		uint64_t	if_capenable;
287 		/* ec_capenable */
288 		int		ec_capenable;
289 		/* VLAN_ATTACHED */
290 		int		is_vlan;
291 	}	sc_prev;
292 
293 	short	sc_if_flags;
294 
295 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
296 	int	sc_rxdiscard;
297 	int	sc_rxlen;
298 	struct mbuf *sc_rxhead;
299 	struct mbuf *sc_rxtail;
300 	struct mbuf **sc_rxtailp;
301 
302 	int sc_ntxdesc;
303 	int sc_ntxdesc_mask;
304 
305 	int sc_nrxdesc_mask;
306 
307 	const struct sip_parm {
308 		const struct sip_regs {
309 			int r_rxcfg;
310 			int r_txcfg;
311 		} p_regs;
312 
313 		const struct sip_bits {
314 			uint32_t b_txcfg_mxdma_8;
315 			uint32_t b_txcfg_mxdma_16;
316 			uint32_t b_txcfg_mxdma_32;
317 			uint32_t b_txcfg_mxdma_64;
318 			uint32_t b_txcfg_mxdma_128;
319 			uint32_t b_txcfg_mxdma_256;
320 			uint32_t b_txcfg_mxdma_512;
321 			uint32_t b_txcfg_flth_mask;
322 			uint32_t b_txcfg_drth_mask;
323 
324 			uint32_t b_rxcfg_mxdma_8;
325 			uint32_t b_rxcfg_mxdma_16;
326 			uint32_t b_rxcfg_mxdma_32;
327 			uint32_t b_rxcfg_mxdma_64;
328 			uint32_t b_rxcfg_mxdma_128;
329 			uint32_t b_rxcfg_mxdma_256;
330 			uint32_t b_rxcfg_mxdma_512;
331 
332 			uint32_t b_isr_txrcmp;
333 			uint32_t b_isr_rxrcmp;
334 			uint32_t b_isr_dperr;
335 			uint32_t b_isr_sserr;
336 			uint32_t b_isr_rmabt;
337 			uint32_t b_isr_rtabt;
338 
339 			uint32_t b_cmdsts_size_mask;
340 		} p_bits;
341 		int		p_filtmem;
342 		int		p_rxbuf_len;
343 		bus_size_t	p_tx_dmamap_size;
344 		int		p_ntxsegs;
345 		int		p_ntxsegs_alloc;
346 		int		p_nrxdesc;
347 	} *sc_parm;
348 
349 	void (*sc_rxintr)(struct sip_softc *);
350 
351 	krndsource_t rnd_source;	/* random source */
352 };
353 
354 #define	sc_bits	sc_parm->p_bits
355 #define	sc_regs	sc_parm->p_regs
356 
357 static const struct sip_parm sip_parm = {
358 	  .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
359 	, .p_rxbuf_len = MCLBYTES - 1	/* field width */
360 	, .p_tx_dmamap_size = MCLBYTES
361 	, .p_ntxsegs = 16
362 	, .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
363 	, .p_nrxdesc = SIP_NRXDESC
364 	, .p_bits = {
365 		  .b_txcfg_mxdma_8	= 0x00200000	/*	 8 bytes */
366 		, .b_txcfg_mxdma_16	= 0x00300000	/*	16 bytes */
367 		, .b_txcfg_mxdma_32	= 0x00400000	/*	32 bytes */
368 		, .b_txcfg_mxdma_64	= 0x00500000	/*	64 bytes */
369 		, .b_txcfg_mxdma_128	= 0x00600000	/*     128 bytes */
370 		, .b_txcfg_mxdma_256	= 0x00700000	/*     256 bytes */
371 		, .b_txcfg_mxdma_512	= 0x00000000	/*     512 bytes */
372 		, .b_txcfg_flth_mask	= 0x00003f00	/* Tx fill threshold */
373 		, .b_txcfg_drth_mask	= 0x0000003f	/* Tx drain threshold */
374 
375 		, .b_rxcfg_mxdma_8	= 0x00200000	/*	 8 bytes */
376 		, .b_rxcfg_mxdma_16	= 0x00300000	/*	16 bytes */
377 		, .b_rxcfg_mxdma_32	= 0x00400000	/*	32 bytes */
378 		, .b_rxcfg_mxdma_64	= 0x00500000	/*	64 bytes */
379 		, .b_rxcfg_mxdma_128	= 0x00600000	/*     128 bytes */
380 		, .b_rxcfg_mxdma_256	= 0x00700000	/*     256 bytes */
381 		, .b_rxcfg_mxdma_512	= 0x00000000	/*     512 bytes */
382 
383 		, .b_isr_txrcmp	= 0x02000000	/* transmit reset complete */
384 		, .b_isr_rxrcmp	= 0x01000000	/* receive reset complete */
385 		, .b_isr_dperr	= 0x00800000	/* detected parity error */
386 		, .b_isr_sserr	= 0x00400000	/* signalled system error */
387 		, .b_isr_rmabt	= 0x00200000	/* received master abort */
388 		, .b_isr_rtabt	= 0x00100000	/* received target abort */
389 		, .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
390 	}
391 	, .p_regs = {
392 		.r_rxcfg = OTHER_SIP_RXCFG,
393 		.r_txcfg = OTHER_SIP_TXCFG
394 	}
395 }, gsip_parm = {
396 	  .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
397 	, .p_rxbuf_len = MCLBYTES - 8
398 	, .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
399 	, .p_ntxsegs = 64
400 	, .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
401 	, .p_nrxdesc = GSIP_NRXDESC
402 	, .p_bits = {
403 		  .b_txcfg_mxdma_8	= 0x00100000	/*	 8 bytes */
404 		, .b_txcfg_mxdma_16	= 0x00200000	/*	16 bytes */
405 		, .b_txcfg_mxdma_32	= 0x00300000	/*	32 bytes */
406 		, .b_txcfg_mxdma_64	= 0x00400000	/*	64 bytes */
407 		, .b_txcfg_mxdma_128	= 0x00500000	/*     128 bytes */
408 		, .b_txcfg_mxdma_256	= 0x00600000	/*     256 bytes */
409 		, .b_txcfg_mxdma_512	= 0x00700000	/*     512 bytes */
410 		, .b_txcfg_flth_mask	= 0x0000ff00	/* Fx fill threshold */
411 		, .b_txcfg_drth_mask	= 0x000000ff	/* Tx drain threshold */
412 
413 		, .b_rxcfg_mxdma_8	= 0x00100000	/*	 8 bytes */
414 		, .b_rxcfg_mxdma_16	= 0x00200000	/*	16 bytes */
415 		, .b_rxcfg_mxdma_32	= 0x00300000	/*	32 bytes */
416 		, .b_rxcfg_mxdma_64	= 0x00400000	/*	64 bytes */
417 		, .b_rxcfg_mxdma_128	= 0x00500000	/*     128 bytes */
418 		, .b_rxcfg_mxdma_256	= 0x00600000	/*     256 bytes */
419 		, .b_rxcfg_mxdma_512	= 0x00700000	/*     512 bytes */
420 
421 		, .b_isr_txrcmp	= 0x00400000	/* transmit reset complete */
422 		, .b_isr_rxrcmp	= 0x00200000	/* receive reset complete */
423 		, .b_isr_dperr	= 0x00100000	/* detected parity error */
424 		, .b_isr_sserr	= 0x00080000	/* signalled system error */
425 		, .b_isr_rmabt	= 0x00040000	/* received master abort */
426 		, .b_isr_rtabt	= 0x00020000	/* received target abort */
427 		, .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
428 	}
429 	, .p_regs = {
430 		.r_rxcfg = DP83820_SIP_RXCFG,
431 		.r_txcfg = DP83820_SIP_TXCFG
432 	}
433 };
434 
435 static inline int
436 sip_nexttx(const struct sip_softc *sc, int x)
437 {
438 	return (x + 1) & sc->sc_ntxdesc_mask;
439 }
440 
441 static inline int
442 sip_nextrx(const struct sip_softc *sc, int x)
443 {
444 	return (x + 1) & sc->sc_nrxdesc_mask;
445 }
446 
447 /* 83820 only */
448 static inline void
449 sip_rxchain_reset(struct sip_softc *sc)
450 {
451 	sc->sc_rxtailp = &sc->sc_rxhead;
452 	*sc->sc_rxtailp = NULL;
453 	sc->sc_rxlen = 0;
454 }
455 
456 /* 83820 only */
457 static inline void
458 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
459 {
460 	*sc->sc_rxtailp = sc->sc_rxtail = m;
461 	sc->sc_rxtailp = &m->m_next;
462 }
463 
464 #ifdef SIP_EVENT_COUNTERS
465 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
466 #else
467 #define	SIP_EVCNT_INCR(ev)	/* nothing */
468 #endif
469 
470 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
471 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
472 
473 static inline void
474 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
475 {
476 	int x, n;
477 
478 	x = x0;
479 	n = n0;
480 
481 	/* If it will wrap around, sync to the end of the ring. */
482 	if (x + n > sc->sc_ntxdesc) {
483 		bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
484 		    SIP_CDTXOFF(x), sizeof(struct sip_desc) *
485 		    (sc->sc_ntxdesc - x), ops);
486 		n -= (sc->sc_ntxdesc - x);
487 		x = 0;
488 	}
489 
490 	/* Now sync whatever is left. */
491 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
492 	    SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
493 }
494 
495 static inline void
496 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
497 {
498 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
499 	    SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
500 }
501 
502 #if 0
503 #ifdef DP83820
504 	uint32_t	sipd_bufptr;	/* pointer to DMA segment */
505 	uint32_t	sipd_cmdsts;	/* command/status word */
506 #else
507 	uint32_t	sipd_cmdsts;	/* command/status word */
508 	uint32_t	sipd_bufptr;	/* pointer to DMA segment */
509 #endif /* DP83820 */
510 #endif /* 0 */
511 
512 static inline volatile uint32_t *
513 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
514 {
515 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
516 }
517 
518 static inline volatile uint32_t *
519 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
520 {
521 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
522 }
523 
524 static inline void
525 sip_init_rxdesc(struct sip_softc *sc, int x)
526 {
527 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
528 	struct sip_desc *sipd = &sc->sc_rxdescs[x];
529 
530 	sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
531 	*sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
532 	*sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
533 	    (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
534 	sipd->sipd_extsts = 0;
535 	sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
536 }
537 
538 #define	SIP_CHIP_VERS(sc, v, p, r)					\
539 	((sc)->sc_model->sip_vendor == (v) &&				\
540 	 (sc)->sc_model->sip_product == (p) &&				\
541 	 (sc)->sc_rev == (r))
542 
543 #define	SIP_CHIP_MODEL(sc, v, p)					\
544 	((sc)->sc_model->sip_vendor == (v) &&				\
545 	 (sc)->sc_model->sip_product == (p))
546 
547 #define	SIP_SIS900_REV(sc, rev)						\
548 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
549 
550 #define SIP_TIMEOUT 1000
551 
552 static int	sip_ifflags_cb(struct ethercom *);
553 static void	sipcom_start(struct ifnet *);
554 static void	sipcom_watchdog(struct ifnet *);
555 static int	sipcom_ioctl(struct ifnet *, u_long, void *);
556 static int	sipcom_init(struct ifnet *);
557 static void	sipcom_stop(struct ifnet *, int);
558 
559 static bool	sipcom_reset(struct sip_softc *);
560 static void	sipcom_rxdrain(struct sip_softc *);
561 static int	sipcom_add_rxbuf(struct sip_softc *, int);
562 static void	sipcom_read_eeprom(struct sip_softc *, int, int,
563 				      uint16_t *);
564 static void	sipcom_tick(void *);
565 
566 static void	sipcom_sis900_set_filter(struct sip_softc *);
567 static void	sipcom_dp83815_set_filter(struct sip_softc *);
568 
569 static void	sipcom_dp83820_read_macaddr(struct sip_softc *,
570 		    const struct pci_attach_args *, uint8_t *);
571 static void	sipcom_sis900_eeprom_delay(struct sip_softc *sc);
572 static void	sipcom_sis900_read_macaddr(struct sip_softc *,
573 		    const struct pci_attach_args *, uint8_t *);
574 static void	sipcom_dp83815_read_macaddr(struct sip_softc *,
575 		    const struct pci_attach_args *, uint8_t *);
576 
577 static int	sipcom_intr(void *);
578 static void	sipcom_txintr(struct sip_softc *);
579 static void	sip_rxintr(struct sip_softc *);
580 static void	gsip_rxintr(struct sip_softc *);
581 
582 static int	sipcom_dp83820_mii_readreg(device_t, int, int, uint16_t *);
583 static int	sipcom_dp83820_mii_writereg(device_t, int, int, uint16_t);
584 static void	sipcom_dp83820_mii_statchg(struct ifnet *);
585 
586 static int	sipcom_sis900_mii_readreg(device_t, int, int, uint16_t *);
587 static int	sipcom_sis900_mii_writereg(device_t, int, int, uint16_t);
588 static void	sipcom_sis900_mii_statchg(struct ifnet *);
589 
590 static int	sipcom_dp83815_mii_readreg(device_t, int, int, uint16_t *);
591 static int	sipcom_dp83815_mii_writereg(device_t, int, int, uint16_t);
592 static void	sipcom_dp83815_mii_statchg(struct ifnet *);
593 
594 static void	sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
595 
596 static int	sipcom_match(device_t, cfdata_t, void *);
597 static void	sipcom_attach(device_t, device_t, void *);
598 static void	sipcom_do_detach(device_t, enum sip_attach_stage);
599 static int	sipcom_detach(device_t, int);
600 static bool	sipcom_resume(device_t, const pmf_qual_t *);
601 static bool	sipcom_suspend(device_t, const pmf_qual_t *);
602 
603 int	gsip_copy_small = 0;
604 int	sip_copy_small = 0;
605 
606 CFATTACH_DECL3_NEW(gsip, sizeof(struct sip_softc),
607     sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
608     DVF_DETACH_SHUTDOWN);
609 CFATTACH_DECL3_NEW(sip, sizeof(struct sip_softc),
610     sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
611     DVF_DETACH_SHUTDOWN);
612 
613 /*
614  * Descriptions of the variants of the SiS900.
615  */
616 struct sip_variant {
617 	int	(*sipv_mii_readreg)(device_t, int, int, uint16_t *);
618 	int	(*sipv_mii_writereg)(device_t, int, int, uint16_t);
619 	void	(*sipv_mii_statchg)(struct ifnet *);
620 	void	(*sipv_set_filter)(struct sip_softc *);
621 	void	(*sipv_read_macaddr)(struct sip_softc *,
622 		    const struct pci_attach_args *, uint8_t *);
623 };
624 
625 static uint32_t sipcom_mii_bitbang_read(device_t);
626 static void	sipcom_mii_bitbang_write(device_t, uint32_t);
627 
628 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
629 	sipcom_mii_bitbang_read,
630 	sipcom_mii_bitbang_write,
631 	{
632 		EROMAR_MDIO,		/* MII_BIT_MDO */
633 		EROMAR_MDIO,		/* MII_BIT_MDI */
634 		EROMAR_MDC,		/* MII_BIT_MDC */
635 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
636 		0,			/* MII_BIT_DIR_PHY_HOST */
637 	}
638 };
639 
640 static const struct sip_variant sipcom_variant_dp83820 = {
641 	sipcom_dp83820_mii_readreg,
642 	sipcom_dp83820_mii_writereg,
643 	sipcom_dp83820_mii_statchg,
644 	sipcom_dp83815_set_filter,
645 	sipcom_dp83820_read_macaddr,
646 };
647 
648 static const struct sip_variant sipcom_variant_sis900 = {
649 	sipcom_sis900_mii_readreg,
650 	sipcom_sis900_mii_writereg,
651 	sipcom_sis900_mii_statchg,
652 	sipcom_sis900_set_filter,
653 	sipcom_sis900_read_macaddr,
654 };
655 
656 static const struct sip_variant sipcom_variant_dp83815 = {
657 	sipcom_dp83815_mii_readreg,
658 	sipcom_dp83815_mii_writereg,
659 	sipcom_dp83815_mii_statchg,
660 	sipcom_dp83815_set_filter,
661 	sipcom_dp83815_read_macaddr,
662 };
663 
664 
665 /*
666  * Devices supported by this driver.
667  */
668 static const struct sip_product {
669 	pci_vendor_id_t		sip_vendor;
670 	pci_product_id_t	sip_product;
671 	const char		*sip_name;
672 	const struct sip_variant *sip_variant;
673 	int			sip_gigabit;
674 } sipcom_products[] = {
675 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
676 	  "NatSemi DP83820 Gigabit Ethernet",
677 	  &sipcom_variant_dp83820, 1 },
678 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
679 	  "SiS 900 10/100 Ethernet",
680 	  &sipcom_variant_sis900, 0 },
681 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
682 	  "SiS 7016 10/100 Ethernet",
683 	  &sipcom_variant_sis900, 0 },
684 
685 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
686 	  "NatSemi DP83815 10/100 Ethernet",
687 	  &sipcom_variant_dp83815, 0 },
688 
689 	{ 0,			0,
690 	  NULL,
691 	  NULL, 0 },
692 };
693 
694 static const struct sip_product *
695 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
696 {
697 	const struct sip_product *sip;
698 
699 	for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
700 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
701 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
702 		    sip->sip_gigabit == gigabit)
703 			return sip;
704 	}
705 	return NULL;
706 }
707 
708 /*
709  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
710  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
711  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
712  * which means we try to use 64-bit data transfers on those cards if we
713  * happen to be plugged into a 32-bit slot.
714  *
715  * What we do is use this table of cards known to be 64-bit cards.  If
716  * you have a 64-bit card who's subsystem ID is not listed in this table,
717  * send the output of "pcictl dump ..." of the device to me so that your
718  * card will use the 64-bit data path when plugged into a 64-bit slot.
719  *
720  *	-- Jason R. Thorpe <thorpej@NetBSD.org>
721  *	   June 30, 2002
722  */
723 static int
724 sipcom_check_64bit(const struct pci_attach_args *pa)
725 {
726 	static const struct {
727 		pci_vendor_id_t c64_vendor;
728 		pci_product_id_t c64_product;
729 	} card64[] = {
730 		/* Asante GigaNIX */
731 		{ 0x128a,	0x0002 },
732 
733 		/* Accton EN1407-T, Planex GN-1000TE */
734 		{ 0x1113,	0x1407 },
735 
736 		/* Netgear GA621 */
737 		{ 0x1385,	0x621a },
738 
739 		/* Netgear GA622 */
740 		{ 0x1385,	0x622a },
741 
742 		/* SMC EZ Card 1000 (9462TX) */
743 		{ 0x10b8,	0x9462 },
744 
745 		{ 0, 0}
746 	};
747 	pcireg_t subsys;
748 	int i;
749 
750 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
751 
752 	for (i = 0; card64[i].c64_vendor != 0; i++) {
753 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
754 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
755 			return 1;
756 	}
757 
758 	return 0;
759 }
760 
761 static int
762 sipcom_match(device_t parent, cfdata_t cf, void *aux)
763 {
764 	struct pci_attach_args *pa = aux;
765 
766 	if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
767 		return 1;
768 
769 	return 0;
770 }
771 
772 static void
773 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
774 {
775 	uint32_t reg;
776 	int i;
777 
778 	/*
779 	 * Cause the chip to load configuration data from the EEPROM.
780 	 */
781 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
782 	for (i = 0; i < 10000; i++) {
783 		delay(10);
784 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
785 		    PTSCR_EELOAD_EN) == 0)
786 			break;
787 	}
788 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
789 	    PTSCR_EELOAD_EN) {
790 		printf("%s: timeout loading configuration from EEPROM\n",
791 		    device_xname(sc->sc_dev));
792 		return;
793 	}
794 
795 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
796 
797 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
798 	if (reg & CFG_PCI64_DET) {
799 		printf("%s: 64-bit PCI slot detected", device_xname(sc->sc_dev));
800 		/*
801 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
802 		 * data transfers.
803 		 *
804 		 * We can't use the DATA64_EN bit in the EEPROM, because
805 		 * vendors of 32-bit cards fail to clear that bit in many
806 		 * cases (yet the card still detects that it's in a 64-bit
807 		 * slot; go figure).
808 		 */
809 		if (sipcom_check_64bit(pa)) {
810 			sc->sc_cfg |= CFG_DATA64_EN;
811 			printf(", using 64-bit data transfers");
812 		}
813 		printf("\n");
814 	}
815 
816 	/*
817 	 * XXX Need some PCI flags indicating support for
818 	 * XXX 64-bit addressing.
819 	 */
820 #if 0
821 	if (reg & CFG_M64ADDR)
822 		sc->sc_cfg |= CFG_M64ADDR;
823 	if (reg & CFG_T64ADDR)
824 		sc->sc_cfg |= CFG_T64ADDR;
825 #endif
826 
827 	if (reg & (CFG_TBI_EN | CFG_EXT_125)) {
828 		const char *sep = "";
829 		printf("%s: using ", device_xname(sc->sc_dev));
830 		if (reg & CFG_EXT_125) {
831 			sc->sc_cfg |= CFG_EXT_125;
832 			printf("%s125MHz clock", sep);
833 			sep = ", ";
834 		}
835 		if (reg & CFG_TBI_EN) {
836 			sc->sc_cfg |= CFG_TBI_EN;
837 			printf("%sten-bit interface", sep);
838 			sep = ", ";
839 		}
840 		printf("\n");
841 	}
842 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
843 	    (reg & CFG_MRM_DIS) != 0)
844 		sc->sc_cfg |= CFG_MRM_DIS;
845 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
846 	    (reg & CFG_MWI_DIS) != 0)
847 		sc->sc_cfg |= CFG_MWI_DIS;
848 
849 	/*
850 	 * Use the extended descriptor format on the DP83820.  This
851 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
852 	 * checksumming.
853 	 */
854 	sc->sc_cfg |= CFG_EXTSTS_EN;
855 }
856 
857 static int
858 sipcom_detach(device_t self, int flags)
859 {
860 	int s;
861 
862 	s = splnet();
863 	sipcom_do_detach(self, SIP_ATTACH_FIN);
864 	splx(s);
865 
866 	return 0;
867 }
868 
869 static void
870 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
871 {
872 	int i;
873 	struct sip_softc *sc = device_private(self);
874 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
875 
876 	/*
877 	 * Free any resources we've allocated during attach.
878 	 * Do this in reverse order and fall through.
879 	 */
880 	switch (stage) {
881 	case SIP_ATTACH_FIN:
882 		sipcom_stop(ifp, 1);
883 		pmf_device_deregister(self);
884 #ifdef SIP_EVENT_COUNTERS
885 		/*
886 		 * Attach event counters.
887 		 */
888 		evcnt_detach(&sc->sc_ev_txforceintr);
889 		evcnt_detach(&sc->sc_ev_txdstall);
890 		evcnt_detach(&sc->sc_ev_txsstall);
891 		evcnt_detach(&sc->sc_ev_hiberr);
892 		evcnt_detach(&sc->sc_ev_rxintr);
893 		evcnt_detach(&sc->sc_ev_txiintr);
894 		evcnt_detach(&sc->sc_ev_txdintr);
895 		if (!sc->sc_gigabit) {
896 			evcnt_detach(&sc->sc_ev_rxpause);
897 		} else {
898 			evcnt_detach(&sc->sc_ev_txudpsum);
899 			evcnt_detach(&sc->sc_ev_txtcpsum);
900 			evcnt_detach(&sc->sc_ev_txipsum);
901 			evcnt_detach(&sc->sc_ev_rxudpsum);
902 			evcnt_detach(&sc->sc_ev_rxtcpsum);
903 			evcnt_detach(&sc->sc_ev_rxipsum);
904 			evcnt_detach(&sc->sc_ev_txpause);
905 			evcnt_detach(&sc->sc_ev_rxpause);
906 		}
907 #endif /* SIP_EVENT_COUNTERS */
908 
909 		rnd_detach_source(&sc->rnd_source);
910 
911 		ether_ifdetach(ifp);
912 		if_detach(ifp);
913 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
914 
915 		/*FALLTHROUGH*/
916 	case SIP_ATTACH_CREATE_RXMAP:
917 		for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
918 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
919 				bus_dmamap_destroy(sc->sc_dmat,
920 				    sc->sc_rxsoft[i].rxs_dmamap);
921 		}
922 		/*FALLTHROUGH*/
923 	case SIP_ATTACH_CREATE_TXMAP:
924 		for (i = 0; i < SIP_TXQUEUELEN; i++) {
925 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
926 				bus_dmamap_destroy(sc->sc_dmat,
927 				    sc->sc_txsoft[i].txs_dmamap);
928 		}
929 		/*FALLTHROUGH*/
930 	case SIP_ATTACH_LOAD_MAP:
931 		bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
932 		/*FALLTHROUGH*/
933 	case SIP_ATTACH_CREATE_MAP:
934 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
935 		/*FALLTHROUGH*/
936 	case SIP_ATTACH_MAP_MEM:
937 		bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
938 		    sizeof(struct sip_control_data));
939 		/*FALLTHROUGH*/
940 	case SIP_ATTACH_ALLOC_MEM:
941 		bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
942 		/* FALLTHROUGH*/
943 	case SIP_ATTACH_INTR:
944 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
945 		/* FALLTHROUGH*/
946 	case SIP_ATTACH_MAP:
947 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
948 		break;
949 	default:
950 		break;
951 	}
952 	return;
953 }
954 
955 static bool
956 sipcom_resume(device_t self, const pmf_qual_t *qual)
957 {
958 	struct sip_softc *sc = device_private(self);
959 
960 	return sipcom_reset(sc);
961 }
962 
963 static bool
964 sipcom_suspend(device_t self, const pmf_qual_t *qual)
965 {
966 	struct sip_softc *sc = device_private(self);
967 
968 	sipcom_rxdrain(sc);
969 	return true;
970 }
971 
972 static void
973 sipcom_attach(device_t parent, device_t self, void *aux)
974 {
975 	struct sip_softc *sc = device_private(self);
976 	struct pci_attach_args *pa = aux;
977 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
978 	struct mii_data * const mii = &sc->sc_mii;
979 	pci_chipset_tag_t pc = pa->pa_pc;
980 	pci_intr_handle_t ih;
981 	const char *intrstr = NULL;
982 	bus_space_tag_t iot, memt;
983 	bus_space_handle_t ioh, memh;
984 	bus_size_t iosz, memsz;
985 	int ioh_valid, memh_valid;
986 	int i, rseg, error;
987 	const struct sip_product *sip;
988 	uint8_t enaddr[ETHER_ADDR_LEN];
989 	pcireg_t csr;
990 	pcireg_t memtype;
991 	bus_size_t tx_dmamap_size;
992 	int ntxsegs_alloc;
993 	cfdata_t cf = device_cfdata(self);
994 	char intrbuf[PCI_INTRSTR_LEN];
995 
996 	callout_init(&sc->sc_tick_ch, 0);
997 
998 	sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
999 	if (sip == NULL) {
1000 		aprint_error("\n");
1001 		panic("%s: impossible", __func__);
1002 	}
1003 	sc->sc_dev = self;
1004 	sc->sc_gigabit = sip->sip_gigabit;
1005 	pmf_self_suspensor_init(self, &sc->sc_suspensor, &sc->sc_qual);
1006 	sc->sc_pc = pc;
1007 
1008 	if (sc->sc_gigabit) {
1009 		sc->sc_rxintr = gsip_rxintr;
1010 		sc->sc_parm = &gsip_parm;
1011 	} else {
1012 		sc->sc_rxintr = sip_rxintr;
1013 		sc->sc_parm = &sip_parm;
1014 	}
1015 	tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
1016 	ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
1017 	sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
1018 	sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
1019 	sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
1020 
1021 	sc->sc_rev = PCI_REVISION(pa->pa_class);
1022 
1023 	aprint_naive("\n");
1024 	aprint_normal(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
1025 
1026 	sc->sc_model = sip;
1027 
1028 	/*
1029 	 * XXX Work-around broken PXE firmware on some boards.
1030 	 *
1031 	 * The DP83815 shares an address decoder with the MEM BAR
1032 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
1033 	 * so that memory mapped access works.
1034 	 */
1035 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
1036 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
1037 	    ~PCI_MAPREG_ROM_ENABLE);
1038 
1039 	/*
1040 	 * Map the device.
1041 	 */
1042 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
1043 	    PCI_MAPREG_TYPE_IO, 0,
1044 	    &iot, &ioh, NULL, &iosz) == 0);
1045 	if (sc->sc_gigabit) {
1046 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
1047 		switch (memtype) {
1048 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1049 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1050 			memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1051 			    memtype, 0, &memt, &memh, NULL, &memsz) == 0);
1052 			break;
1053 		default:
1054 			memh_valid = 0;
1055 		}
1056 	} else {
1057 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1058 		    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
1059 		    &memt, &memh, NULL, &memsz) == 0);
1060 	}
1061 
1062 	if (memh_valid) {
1063 		sc->sc_st = memt;
1064 		sc->sc_sh = memh;
1065 		sc->sc_sz = memsz;
1066 	} else if (ioh_valid) {
1067 		sc->sc_st = iot;
1068 		sc->sc_sh = ioh;
1069 		sc->sc_sz = iosz;
1070 	} else {
1071 		aprint_error_dev(self, "unable to map device registers\n");
1072 		return;
1073 	}
1074 
1075 	sc->sc_dmat = pa->pa_dmat;
1076 
1077 	/*
1078 	 * Make sure bus mastering is enabled.  Also make sure
1079 	 * Write/Invalidate is enabled if we're allowed to use it.
1080 	 */
1081 	csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1082 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
1083 		csr |= PCI_COMMAND_INVALIDATE_ENABLE;
1084 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
1085 	    csr | PCI_COMMAND_MASTER_ENABLE);
1086 
1087 	/* Power up chip */
1088 	error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null);
1089 	if (error != 0 && error != EOPNOTSUPP) {
1090 		aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
1091 		return;
1092 	}
1093 
1094 	/*
1095 	 * Map and establish our interrupt.
1096 	 */
1097 	if (pci_intr_map(pa, &ih)) {
1098 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
1099 		return;
1100 	}
1101 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1102 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, sipcom_intr, sc,
1103 	    device_xname(self));
1104 	if (sc->sc_ih == NULL) {
1105 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
1106 		if (intrstr != NULL)
1107 			aprint_error(" at %s", intrstr);
1108 		aprint_error("\n");
1109 		sipcom_do_detach(self, SIP_ATTACH_MAP);
1110 		return;
1111 	}
1112 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1113 
1114 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1115 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1116 
1117 	/*
1118 	 * Allocate the control data structures, and create and load the
1119 	 * DMA map for it.
1120 	 */
1121 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
1122 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
1123 	    &rseg, 0)) != 0) {
1124 		aprint_error_dev(sc->sc_dev,
1125 		    "unable to allocate control data, error = %d\n", error);
1126 		sipcom_do_detach(self, SIP_ATTACH_INTR);
1127 		return;
1128 	}
1129 
1130 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
1131 	    sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
1132 	    BUS_DMA_COHERENT)) != 0) {
1133 		aprint_error_dev(sc->sc_dev,
1134 		    "unable to map control data, error = %d\n", error);
1135 		sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
1136 	}
1137 
1138 	if ((error = bus_dmamap_create(sc->sc_dmat,
1139 	    sizeof(struct sip_control_data), 1,
1140 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
1141 		aprint_error_dev(self, "unable to create control data DMA map"
1142 		    ", error = %d\n", error);
1143 		sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
1144 	}
1145 
1146 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1147 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
1148 	    0)) != 0) {
1149 		aprint_error_dev(self, "unable to load control data DMA map"
1150 		    ", error = %d\n", error);
1151 		sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
1152 	}
1153 
1154 	/*
1155 	 * Create the transmit buffer DMA maps.
1156 	 */
1157 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
1158 		if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
1159 		    sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
1160 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1161 			aprint_error_dev(self, "unable to create tx DMA map %d"
1162 			    ", error = %d\n", i, error);
1163 			sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1164 		}
1165 	}
1166 
1167 	/*
1168 	 * Create the receive buffer DMA maps.
1169 	 */
1170 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1171 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1172 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1173 			aprint_error_dev(self, "unable to create rx DMA map %d"
1174 			    ", error = %d\n", i, error);
1175 			sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1176 		}
1177 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
1178 	}
1179 
1180 	/*
1181 	 * Reset the chip to a known state.
1182 	 */
1183 	sipcom_reset(sc);
1184 
1185 	/*
1186 	 * Read the Ethernet address from the EEPROM.  This might
1187 	 * also fetch other stuff from the EEPROM and stash it
1188 	 * in the softc.
1189 	 */
1190 	sc->sc_cfg = 0;
1191 	if (!sc->sc_gigabit) {
1192 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
1193 		    SIP_SIS900_REV(sc, SIS_REV_900B))
1194 			sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1195 
1196 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
1197 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
1198 		    SIP_SIS900_REV(sc, SIS_REV_900B))
1199 			sc->sc_cfg |=
1200 			    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1201 			     CFG_EDBMASTEN);
1202 	}
1203 
1204 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1205 
1206 	aprint_normal_dev(self, "Ethernet address %s\n",ether_sprintf(enaddr));
1207 
1208 	/*
1209 	 * Initialize the configuration register: aggressive PCI
1210 	 * bus request algorithm, default backoff, default OW timer,
1211 	 * default parity error detection.
1212 	 *
1213 	 * NOTE: "Big endian mode" is useless on the SiS900 and
1214 	 * friends -- it affects packet data, not descriptors.
1215 	 */
1216 	if (sc->sc_gigabit)
1217 		sipcom_dp83820_attach(sc, pa);
1218 
1219 	/*
1220 	 * Initialize our media structures and probe the MII.
1221 	 */
1222 	mii->mii_ifp = ifp;
1223 	mii->mii_readreg = sip->sip_variant->sipv_mii_readreg;
1224 	mii->mii_writereg = sip->sip_variant->sipv_mii_writereg;
1225 	mii->mii_statchg = sip->sip_variant->sipv_mii_statchg;
1226 	sc->sc_ethercom.ec_mii = mii;
1227 	ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
1228 	    sipcom_mediastatus);
1229 
1230 	/*
1231 	 * XXX We cannot handle flow control on the DP83815.
1232 	 */
1233 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1234 		mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
1235 			   MII_OFFSET_ANY, 0);
1236 	else
1237 		mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
1238 			   MII_OFFSET_ANY, MIIF_DOPAUSE);
1239 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
1240 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
1241 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
1242 	} else
1243 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1244 
1245 	ifp = &sc->sc_ethercom.ec_if;
1246 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1247 	ifp->if_softc = sc;
1248 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1249 	sc->sc_if_flags = ifp->if_flags;
1250 	ifp->if_ioctl = sipcom_ioctl;
1251 	ifp->if_start = sipcom_start;
1252 	ifp->if_watchdog = sipcom_watchdog;
1253 	ifp->if_init = sipcom_init;
1254 	ifp->if_stop = sipcom_stop;
1255 	IFQ_SET_READY(&ifp->if_snd);
1256 
1257 	/*
1258 	 * We can support 802.1Q VLAN-sized frames.
1259 	 */
1260 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1261 
1262 	if (sc->sc_gigabit) {
1263 		/*
1264 		 * And the DP83820 can do VLAN tagging in hardware, and
1265 		 * support the jumbo Ethernet MTU.
1266 		 */
1267 		sc->sc_ethercom.ec_capabilities |=
1268 		    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1269 
1270 		/*
1271 		 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1272 		 * in hardware.
1273 		 */
1274 		ifp->if_capabilities |=
1275 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1276 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1277 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1278 	}
1279 
1280 	/*
1281 	 * Attach the interface.
1282 	 */
1283 	if_attach(ifp);
1284 	if_deferred_start_init(ifp, NULL);
1285 	ether_ifattach(ifp, enaddr);
1286 	ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb);
1287 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1288 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1289 	sc->sc_prev.if_capenable = ifp->if_capenable;
1290 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
1291 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
1292 
1293 	/*
1294 	 * The number of bytes that must be available in
1295 	 * the Tx FIFO before the bus master can DMA more
1296 	 * data into the FIFO.
1297 	 */
1298 	sc->sc_tx_fill_thresh = 64 / 32;
1299 
1300 	/*
1301 	 * Start at a drain threshold of 512 bytes.  We will
1302 	 * increase it if a DMA underrun occurs.
1303 	 *
1304 	 * XXX The minimum value of this variable should be
1305 	 * tuned.  We may be able to improve performance
1306 	 * by starting with a lower value.  That, however,
1307 	 * may trash the first few outgoing packets if the
1308 	 * PCI bus is saturated.
1309 	 */
1310 	if (sc->sc_gigabit)
1311 		sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1312 	else
1313 		sc->sc_tx_drain_thresh = 1504 / 32;
1314 
1315 	/*
1316 	 * Initialize the Rx FIFO drain threshold.
1317 	 *
1318 	 * This is in units of 8 bytes.
1319 	 *
1320 	 * We should never set this value lower than 2; 14 bytes are
1321 	 * required to filter the packet.
1322 	 */
1323 	sc->sc_rx_drain_thresh = 128 / 8;
1324 
1325 #ifdef SIP_EVENT_COUNTERS
1326 	/*
1327 	 * Attach event counters.
1328 	 */
1329 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1330 	    NULL, device_xname(sc->sc_dev), "txsstall");
1331 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1332 	    NULL, device_xname(sc->sc_dev), "txdstall");
1333 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1334 	    NULL, device_xname(sc->sc_dev), "txforceintr");
1335 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1336 	    NULL, device_xname(sc->sc_dev), "txdintr");
1337 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1338 	    NULL, device_xname(sc->sc_dev), "txiintr");
1339 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1340 	    NULL, device_xname(sc->sc_dev), "rxintr");
1341 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1342 	    NULL, device_xname(sc->sc_dev), "hiberr");
1343 	if (!sc->sc_gigabit) {
1344 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1345 		    NULL, device_xname(sc->sc_dev), "rxpause");
1346 	} else {
1347 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1348 		    NULL, device_xname(sc->sc_dev), "rxpause");
1349 		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1350 		    NULL, device_xname(sc->sc_dev), "txpause");
1351 		evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1352 		    NULL, device_xname(sc->sc_dev), "rxipsum");
1353 		evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1354 		    NULL, device_xname(sc->sc_dev), "rxtcpsum");
1355 		evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1356 		    NULL, device_xname(sc->sc_dev), "rxudpsum");
1357 		evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1358 		    NULL, device_xname(sc->sc_dev), "txipsum");
1359 		evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1360 		    NULL, device_xname(sc->sc_dev), "txtcpsum");
1361 		evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1362 		    NULL, device_xname(sc->sc_dev), "txudpsum");
1363 	}
1364 #endif /* SIP_EVENT_COUNTERS */
1365 
1366 	if (pmf_device_register(self, sipcom_suspend, sipcom_resume))
1367 		pmf_class_network_register(self, ifp);
1368 	else
1369 		aprint_error_dev(self, "couldn't establish power handler\n");
1370 }
1371 
1372 static inline void
1373 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1374     uint64_t capenable)
1375 {
1376 	uint32_t extsts;
1377 #ifdef DEBUG
1378 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1379 #endif
1380 	/*
1381 	 * If VLANs are enabled and the packet has a VLAN tag, set
1382 	 * up the descriptor to encapsulate the packet for us.
1383 	 *
1384 	 * This apparently has to be on the last descriptor of
1385 	 * the packet.
1386 	 */
1387 
1388 	/*
1389 	 * Byte swapping is tricky. We need to provide the tag
1390 	 * in a network byte order. On a big-endian machine,
1391 	 * the byteorder is correct, but we need to swap it
1392 	 * anyway, because this will be undone by the outside
1393 	 * htole32(). That's why there must be an
1394 	 * unconditional swap instead of htons() inside.
1395 	 */
1396 	if (vlan_has_tag(m0)) {
1397 		sc->sc_txdescs[lasttx].sipd_extsts |=
1398 		    htole32(EXTSTS_VPKT |
1399 				(bswap16(vlan_get_tag(m0)) &
1400 				 EXTSTS_VTCI));
1401 	}
1402 
1403 	/*
1404 	 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1405 	 * checksumming, set up the descriptor to do this work
1406 	 * for us.
1407 	 *
1408 	 * This apparently has to be on the first descriptor of
1409 	 * the packet.
1410 	 *
1411 	 * Byte-swap constants so the compiler can optimize.
1412 	 */
1413 	extsts = 0;
1414 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1415 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1416 		SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1417 		extsts |= htole32(EXTSTS_IPPKT);
1418 	}
1419 	if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1420 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1421 		SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1422 		extsts |= htole32(EXTSTS_TCPPKT);
1423 	} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1424 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1425 		SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1426 		extsts |= htole32(EXTSTS_UDPPKT);
1427 	}
1428 	sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1429 }
1430 
1431 /*
1432  * sip_start:		[ifnet interface function]
1433  *
1434  *	Start packet transmission on the interface.
1435  */
1436 static void
1437 sipcom_start(struct ifnet *ifp)
1438 {
1439 	struct sip_softc *sc = ifp->if_softc;
1440 	struct mbuf *m0;
1441 	struct mbuf *m;
1442 	struct sip_txsoft *txs;
1443 	bus_dmamap_t dmamap;
1444 	int error, nexttx, lasttx, seg;
1445 	int ofree = sc->sc_txfree;
1446 #if 0
1447 	int firsttx = sc->sc_txnext;
1448 #endif
1449 
1450 	/*
1451 	 * If we've been told to pause, don't transmit any more packets.
1452 	 */
1453 	if (!sc->sc_gigabit && sc->sc_paused)
1454 		ifp->if_flags |= IFF_OACTIVE;
1455 
1456 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1457 		return;
1458 
1459 	/*
1460 	 * Loop through the send queue, setting up transmit descriptors
1461 	 * until we drain the queue, or use up all available transmit
1462 	 * descriptors.
1463 	 */
1464 	for (;;) {
1465 		/* Get a work queue entry. */
1466 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1467 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1468 			break;
1469 		}
1470 
1471 		/*
1472 		 * Grab a packet off the queue.
1473 		 */
1474 		IFQ_POLL(&ifp->if_snd, m0);
1475 		if (m0 == NULL)
1476 			break;
1477 		m = NULL;
1478 
1479 		dmamap = txs->txs_dmamap;
1480 
1481 		/*
1482 		 * Load the DMA map.  If this fails, the packet either
1483 		 * didn't fit in the alloted number of segments, or we
1484 		 * were short on resources.
1485 		 */
1486 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1487 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1488 		/* In the non-gigabit case, we'll copy and try again. */
1489 		if (error != 0 && !sc->sc_gigabit) {
1490 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1491 			if (m == NULL) {
1492 				printf("%s: unable to allocate Tx mbuf\n",
1493 				    device_xname(sc->sc_dev));
1494 				break;
1495 			}
1496 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1497 			if (m0->m_pkthdr.len > MHLEN) {
1498 				MCLGET(m, M_DONTWAIT);
1499 				if ((m->m_flags & M_EXT) == 0) {
1500 					printf("%s: unable to allocate Tx "
1501 					    "cluster\n",
1502 					    device_xname(sc->sc_dev));
1503 					m_freem(m);
1504 					break;
1505 				}
1506 			}
1507 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1508 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1509 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1510 			    m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1511 			if (error) {
1512 				printf("%s: unable to load Tx buffer, error = "
1513 				    "%d\n", device_xname(sc->sc_dev), error);
1514 				break;
1515 			}
1516 		} else if (error == EFBIG) {
1517 			/*
1518 			 * For the too-many-segments case, we simply
1519 			 * report an error and drop the packet,
1520 			 * since we can't sanely copy a jumbo packet
1521 			 * to a single buffer.
1522 			 */
1523 			printf("%s: Tx packet consumes too many DMA segments, "
1524 			    "dropping...\n", device_xname(sc->sc_dev));
1525 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1526 			m_freem(m0);
1527 			continue;
1528 		} else if (error != 0) {
1529 			/*
1530 			 * Short on resources, just stop for now.
1531 			 */
1532 			break;
1533 		}
1534 
1535 		/*
1536 		 * Ensure we have enough descriptors free to describe
1537 		 * the packet.  Note, we always reserve one descriptor
1538 		 * at the end of the ring as a termination point, to
1539 		 * prevent wrap-around.
1540 		 */
1541 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1542 			/*
1543 			 * Not enough free descriptors to transmit this
1544 			 * packet.  We haven't committed anything yet,
1545 			 * so just unload the DMA map, put the packet
1546 			 * back on the queue, and punt.  Notify the upper
1547 			 * layer that there are not more slots left.
1548 			 *
1549 			 * XXX We could allocate an mbuf and copy, but
1550 			 * XXX is it worth it?
1551 			 */
1552 			ifp->if_flags |= IFF_OACTIVE;
1553 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1554 			if (m != NULL)
1555 				m_freem(m);
1556 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1557 			break;
1558 		}
1559 
1560 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1561 		if (m != NULL) {
1562 			m_freem(m0);
1563 			m0 = m;
1564 		}
1565 
1566 		/*
1567 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1568 		 */
1569 
1570 		/* Sync the DMA map. */
1571 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1572 		    BUS_DMASYNC_PREWRITE);
1573 
1574 		/*
1575 		 * Initialize the transmit descriptors.
1576 		 */
1577 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1578 		     seg < dmamap->dm_nsegs;
1579 		     seg++, nexttx = sip_nexttx(sc, nexttx)) {
1580 			/*
1581 			 * If this is the first descriptor we're
1582 			 * enqueueing, don't set the OWN bit just
1583 			 * yet.  That could cause a race condition.
1584 			 * We'll do it below.
1585 			 */
1586 			*sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
1587 			    htole32(dmamap->dm_segs[seg].ds_addr);
1588 			*sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
1589 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN)
1590 				| CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1591 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
1592 			lasttx = nexttx;
1593 		}
1594 
1595 		/* Clear the MORE bit on the last segment. */
1596 		*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
1597 		    htole32(~CMDSTS_MORE);
1598 
1599 		/*
1600 		 * If we're in the interrupt delay window, delay the
1601 		 * interrupt.
1602 		 */
1603 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1604 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1605 			*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
1606 			    htole32(CMDSTS_INTR);
1607 			sc->sc_txwin = 0;
1608 		}
1609 
1610 		if (sc->sc_gigabit)
1611 			sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1612 
1613 		/* Sync the descriptors we're using. */
1614 		sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
1615 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1616 
1617 		/*
1618 		 * The entire packet is set up.  Give the first descrptor
1619 		 * to the chip now.
1620 		 */
1621 		*sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
1622 		    htole32(CMDSTS_OWN);
1623 		sip_cdtxsync(sc, sc->sc_txnext, 1,
1624 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1625 
1626 		/*
1627 		 * Store a pointer to the packet so we can free it later,
1628 		 * and remember what txdirty will be once the packet is
1629 		 * done.
1630 		 */
1631 		txs->txs_mbuf = m0;
1632 		txs->txs_firstdesc = sc->sc_txnext;
1633 		txs->txs_lastdesc = lasttx;
1634 
1635 		/* Advance the tx pointer. */
1636 		sc->sc_txfree -= dmamap->dm_nsegs;
1637 		sc->sc_txnext = nexttx;
1638 
1639 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1640 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1641 
1642 		/* Pass the packet to any BPF listeners. */
1643 		bpf_mtap(ifp, m0, BPF_D_OUT);
1644 	}
1645 
1646 	if (txs == NULL || sc->sc_txfree == 0) {
1647 		/* No more slots left; notify upper layer. */
1648 		ifp->if_flags |= IFF_OACTIVE;
1649 	}
1650 
1651 	if (sc->sc_txfree != ofree) {
1652 		/*
1653 		 * Start the transmit process.  Note, the manual says
1654 		 * that if there are no pending transmissions in the
1655 		 * chip's internal queue (indicated by TXE being clear),
1656 		 * then the driver software must set the TXDP to the
1657 		 * first descriptor to be transmitted.  However, if we
1658 		 * do this, it causes serious performance degredation on
1659 		 * the DP83820 under load, not setting TXDP doesn't seem
1660 		 * to adversely affect the SiS 900 or DP83815.
1661 		 *
1662 		 * Well, I guess it wouldn't be the first time a manual
1663 		 * has lied -- and they could be speaking of the NULL-
1664 		 * terminated descriptor list case, rather than OWN-
1665 		 * terminated rings.
1666 		 */
1667 #if 0
1668 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1669 		     CR_TXE) == 0) {
1670 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1671 			    SIP_CDTXADDR(sc, firsttx));
1672 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1673 		}
1674 #else
1675 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1676 #endif
1677 
1678 		/* Set a watchdog timer in case the chip flakes out. */
1679 		/* Gigabit autonegotiation takes 5 seconds. */
1680 		ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1681 	}
1682 }
1683 
1684 /*
1685  * sip_watchdog:	[ifnet interface function]
1686  *
1687  *	Watchdog timer handler.
1688  */
1689 static void
1690 sipcom_watchdog(struct ifnet *ifp)
1691 {
1692 	struct sip_softc *sc = ifp->if_softc;
1693 
1694 	/*
1695 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1696 	 * If we get a timeout, try and sweep up transmit descriptors.
1697 	 * If we manage to sweep them all up, ignore the lack of
1698 	 * interrupt.
1699 	 */
1700 	sipcom_txintr(sc);
1701 
1702 	if (sc->sc_txfree != sc->sc_ntxdesc) {
1703 		printf("%s: device timeout\n", device_xname(sc->sc_dev));
1704 		ifp->if_oerrors++;
1705 
1706 		/* Reset the interface. */
1707 		(void) sipcom_init(ifp);
1708 	} else if (ifp->if_flags & IFF_DEBUG)
1709 		printf("%s: recovered from device timeout\n",
1710 		    device_xname(sc->sc_dev));
1711 
1712 	/* Try to get more packets going. */
1713 	sipcom_start(ifp);
1714 }
1715 
1716 /* If the interface is up and running, only modify the receive
1717  * filter when setting promiscuous or debug mode.  Otherwise fall
1718  * through to ether_ioctl, which will reset the chip.
1719  */
1720 static int
1721 sip_ifflags_cb(struct ethercom *ec)
1722 {
1723 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable			\
1724 			 == (sc)->sc_ethercom.ec_capenable)		\
1725 			&& ((sc)->sc_prev.is_vlan ==			\
1726 			    VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1727 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1728 	struct ifnet *ifp = &ec->ec_if;
1729 	struct sip_softc *sc = ifp->if_softc;
1730 	int change = ifp->if_flags ^ sc->sc_if_flags;
1731 
1732 	if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0 || !COMPARE_EC(sc) ||
1733 	    !COMPARE_IC(sc, ifp))
1734 		return ENETRESET;
1735 	/* Set up the receive filter. */
1736 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1737 	return 0;
1738 }
1739 
1740 /*
1741  * sip_ioctl:		[ifnet interface function]
1742  *
1743  *	Handle control requests from the operator.
1744  */
1745 static int
1746 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1747 {
1748 	struct sip_softc *sc = ifp->if_softc;
1749 	struct ifreq *ifr = (struct ifreq *)data;
1750 	int s, error;
1751 
1752 	s = splnet();
1753 
1754 	switch (cmd) {
1755 	case SIOCSIFMEDIA:
1756 		/* Flow control requires full-duplex mode. */
1757 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1758 		    (ifr->ifr_media & IFM_FDX) == 0)
1759 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1760 
1761 		/* XXX */
1762 		if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1763 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1764 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1765 			if (sc->sc_gigabit &&
1766 			    (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1767 				/* We can do both TXPAUSE and RXPAUSE. */
1768 				ifr->ifr_media |=
1769 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1770 			} else if (ifr->ifr_media & IFM_FLOW) {
1771 				/*
1772 				 * Both TXPAUSE and RXPAUSE must be set.
1773 				 * (SiS900 and DP83815 don't have PAUSE_ASYM
1774 				 * feature.)
1775 				 *
1776 				 * XXX Can SiS900 and DP83815 send PAUSE?
1777 				 */
1778 				ifr->ifr_media |=
1779 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1780 			}
1781 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1782 		}
1783 		/*FALLTHROUGH*/
1784 	default:
1785 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1786 			break;
1787 
1788 		error = 0;
1789 
1790 		if (cmd == SIOCSIFCAP)
1791 			error = (*ifp->if_init)(ifp);
1792 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1793 			;
1794 		else if (ifp->if_flags & IFF_RUNNING) {
1795 			/*
1796 			 * Multicast list has changed; set the hardware filter
1797 			 * accordingly.
1798 			 */
1799 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1800 		}
1801 		break;
1802 	}
1803 
1804 	/* Try to get more packets going. */
1805 	sipcom_start(ifp);
1806 
1807 	sc->sc_if_flags = ifp->if_flags;
1808 	splx(s);
1809 	return error;
1810 }
1811 
1812 /*
1813  * sip_intr:
1814  *
1815  *	Interrupt service routine.
1816  */
1817 static int
1818 sipcom_intr(void *arg)
1819 {
1820 	struct sip_softc *sc = arg;
1821 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1822 	uint32_t isr;
1823 	int handled = 0;
1824 
1825 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
1826 		return 0;
1827 
1828 	/* Disable interrupts. */
1829 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1830 
1831 	for (;;) {
1832 		/* Reading clears interrupt. */
1833 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1834 		if ((isr & sc->sc_imr) == 0)
1835 			break;
1836 
1837 		rnd_add_uint32(&sc->rnd_source, isr);
1838 
1839 		handled = 1;
1840 
1841 		if ((ifp->if_flags & IFF_RUNNING) == 0)
1842 			break;
1843 
1844 		if (isr & (ISR_RXORN | ISR_RXIDLE | ISR_RXDESC)) {
1845 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1846 
1847 			/* Grab any new packets. */
1848 			(*sc->sc_rxintr)(sc);
1849 
1850 			if (isr & ISR_RXORN) {
1851 				printf("%s: receive FIFO overrun\n",
1852 				    device_xname(sc->sc_dev));
1853 
1854 				/* XXX adjust rx_drain_thresh? */
1855 			}
1856 
1857 			if (isr & ISR_RXIDLE) {
1858 				printf("%s: receive ring overrun\n",
1859 				    device_xname(sc->sc_dev));
1860 
1861 				/* Get the receive process going again. */
1862 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1863 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1864 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1865 				    SIP_CR, CR_RXE);
1866 			}
1867 		}
1868 
1869 		if (isr & (ISR_TXURN | ISR_TXDESC | ISR_TXIDLE)) {
1870 #ifdef SIP_EVENT_COUNTERS
1871 			if (isr & ISR_TXDESC)
1872 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1873 			else if (isr & ISR_TXIDLE)
1874 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1875 #endif
1876 
1877 			/* Sweep up transmit descriptors. */
1878 			sipcom_txintr(sc);
1879 
1880 			if (isr & ISR_TXURN) {
1881 				uint32_t thresh;
1882 				int txfifo_size = (sc->sc_gigabit)
1883 				    ? DP83820_SIP_TXFIFO_SIZE
1884 				    : OTHER_SIP_TXFIFO_SIZE;
1885 
1886 				printf("%s: transmit FIFO underrun",
1887 				    device_xname(sc->sc_dev));
1888 				thresh = sc->sc_tx_drain_thresh + 1;
1889 				if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
1890 				&& (thresh * 32) <= (txfifo_size -
1891 				     (sc->sc_tx_fill_thresh * 32))) {
1892 					printf("; increasing Tx drain "
1893 					    "threshold to %u bytes\n",
1894 					    thresh * 32);
1895 					sc->sc_tx_drain_thresh = thresh;
1896 					(void) sipcom_init(ifp);
1897 				} else {
1898 					(void) sipcom_init(ifp);
1899 					printf("\n");
1900 				}
1901 			}
1902 		}
1903 
1904 		if (sc->sc_imr & (ISR_PAUSE_END | ISR_PAUSE_ST)) {
1905 			if (isr & ISR_PAUSE_ST) {
1906 				sc->sc_paused = 1;
1907 				SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1908 				ifp->if_flags |= IFF_OACTIVE;
1909 			}
1910 			if (isr & ISR_PAUSE_END) {
1911 				sc->sc_paused = 0;
1912 				ifp->if_flags &= ~IFF_OACTIVE;
1913 			}
1914 		}
1915 
1916 		if (isr & ISR_HIBERR) {
1917 			int want_init = 0;
1918 
1919 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1920 
1921 #define	PRINTERR(bit, str)						\
1922 			do {						\
1923 				if ((isr & (bit)) != 0) {		\
1924 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
1925 						printf("%s: %s\n",	\
1926 						    device_xname(sc->sc_dev), str); \
1927 					want_init = 1;			\
1928 				}					\
1929 			} while (/*CONSTCOND*/0)
1930 
1931 			PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
1932 			PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
1933 			PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
1934 			PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
1935 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1936 			/*
1937 			 * Ignore:
1938 			 *	Tx reset complete
1939 			 *	Rx reset complete
1940 			 */
1941 			if (want_init)
1942 				(void) sipcom_init(ifp);
1943 #undef PRINTERR
1944 		}
1945 	}
1946 
1947 	/* Re-enable interrupts. */
1948 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1949 
1950 	/* Try to get more packets going. */
1951 	if_schedule_deferred_start(ifp);
1952 
1953 	return handled;
1954 }
1955 
1956 /*
1957  * sip_txintr:
1958  *
1959  *	Helper; handle transmit interrupts.
1960  */
1961 static void
1962 sipcom_txintr(struct sip_softc *sc)
1963 {
1964 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1965 	struct sip_txsoft *txs;
1966 	uint32_t cmdsts;
1967 
1968 	if (sc->sc_paused == 0)
1969 		ifp->if_flags &= ~IFF_OACTIVE;
1970 
1971 	/*
1972 	 * Go through our Tx list and free mbufs for those
1973 	 * frames which have been transmitted.
1974 	 */
1975 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1976 		sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1977 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1978 
1979 		cmdsts = le32toh(*sipd_cmdsts(sc,
1980 			&sc->sc_txdescs[txs->txs_lastdesc]));
1981 		if (cmdsts & CMDSTS_OWN)
1982 			break;
1983 
1984 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1985 
1986 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1987 
1988 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1989 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1990 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1991 		m_freem(txs->txs_mbuf);
1992 		txs->txs_mbuf = NULL;
1993 
1994 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1995 
1996 		/* Check for errors and collisions. */
1997 		if (cmdsts & (CMDSTS_Tx_TXA | CMDSTS_Tx_TFU | CMDSTS_Tx_ED |
1998 		    CMDSTS_Tx_EC)) {
1999 			ifp->if_oerrors++;
2000 			if (cmdsts & CMDSTS_Tx_EC)
2001 				ifp->if_collisions += 16;
2002 			if (ifp->if_flags & IFF_DEBUG) {
2003 				if (cmdsts & CMDSTS_Tx_ED)
2004 					printf("%s: excessive deferral\n",
2005 					    device_xname(sc->sc_dev));
2006 				if (cmdsts & CMDSTS_Tx_EC)
2007 					printf("%s: excessive collisions\n",
2008 					    device_xname(sc->sc_dev));
2009 			}
2010 		} else {
2011 			/* Packet was transmitted successfully. */
2012 			ifp->if_opackets++;
2013 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
2014 		}
2015 	}
2016 
2017 	/*
2018 	 * If there are no more pending transmissions, cancel the watchdog
2019 	 * timer.
2020 	 */
2021 	if (txs == NULL) {
2022 		ifp->if_timer = 0;
2023 		sc->sc_txwin = 0;
2024 	}
2025 }
2026 
2027 /*
2028  * gsip_rxintr:
2029  *
2030  *	Helper; handle receive interrupts on gigabit parts.
2031  */
2032 static void
2033 gsip_rxintr(struct sip_softc *sc)
2034 {
2035 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2036 	struct sip_rxsoft *rxs;
2037 	struct mbuf *m;
2038 	uint32_t cmdsts, extsts;
2039 	int i, len;
2040 
2041 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2042 		rxs = &sc->sc_rxsoft[i];
2043 
2044 		sip_cdrxsync(sc, i,
2045 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2046 
2047 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2048 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
2049 		len = CMDSTS_SIZE(sc, cmdsts);
2050 
2051 		/*
2052 		 * NOTE: OWN is set if owned by _consumer_.  We're the
2053 		 * consumer of the receive ring, so if the bit is clear,
2054 		 * we have processed all of the packets.
2055 		 */
2056 		if ((cmdsts & CMDSTS_OWN) == 0) {
2057 			/*
2058 			 * We have processed all of the receive buffers.
2059 			 */
2060 			break;
2061 		}
2062 
2063 		if (__predict_false(sc->sc_rxdiscard)) {
2064 			sip_init_rxdesc(sc, i);
2065 			if ((cmdsts & CMDSTS_MORE) == 0) {
2066 				/* Reset our state. */
2067 				sc->sc_rxdiscard = 0;
2068 			}
2069 			continue;
2070 		}
2071 
2072 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2073 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2074 
2075 		m = rxs->rxs_mbuf;
2076 
2077 		/*
2078 		 * Add a new receive buffer to the ring.
2079 		 */
2080 		if (sipcom_add_rxbuf(sc, i) != 0) {
2081 			/*
2082 			 * Failed, throw away what we've done so
2083 			 * far, and discard the rest of the packet.
2084 			 */
2085 			ifp->if_ierrors++;
2086 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2087 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2088 			sip_init_rxdesc(sc, i);
2089 			if (cmdsts & CMDSTS_MORE)
2090 				sc->sc_rxdiscard = 1;
2091 			if (sc->sc_rxhead != NULL)
2092 				m_freem(sc->sc_rxhead);
2093 			sip_rxchain_reset(sc);
2094 			continue;
2095 		}
2096 
2097 		sip_rxchain_link(sc, m);
2098 
2099 		m->m_len = len;
2100 
2101 		/*
2102 		 * If this is not the end of the packet, keep
2103 		 * looking.
2104 		 */
2105 		if (cmdsts & CMDSTS_MORE) {
2106 			sc->sc_rxlen += len;
2107 			continue;
2108 		}
2109 
2110 		/*
2111 		 * Okay, we have the entire packet now.  The chip includes
2112 		 * the FCS, so we need to trim it.
2113 		 */
2114 		m->m_len -= ETHER_CRC_LEN;
2115 
2116 		*sc->sc_rxtailp = NULL;
2117 		len = m->m_len + sc->sc_rxlen;
2118 		m = sc->sc_rxhead;
2119 
2120 		sip_rxchain_reset(sc);
2121 
2122 		/* If an error occurred, update stats and drop the packet. */
2123 		if (cmdsts & (CMDSTS_Rx_RXA | CMDSTS_Rx_RUNT |
2124 		    CMDSTS_Rx_ISE | CMDSTS_Rx_CRCE | CMDSTS_Rx_FAE)) {
2125 			ifp->if_ierrors++;
2126 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2127 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
2128 				/* Receive overrun handled elsewhere. */
2129 				printf("%s: receive descriptor error\n",
2130 				    device_xname(sc->sc_dev));
2131 			}
2132 #define	PRINTERR(bit, str)						\
2133 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
2134 			    (cmdsts & (bit)) != 0)			\
2135 				printf("%s: %s\n", device_xname(sc->sc_dev), str)
2136 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2137 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2138 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2139 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2140 #undef PRINTERR
2141 			m_freem(m);
2142 			continue;
2143 		}
2144 
2145 		/*
2146 		 * If the packet is small enough to fit in a
2147 		 * single header mbuf, allocate one and copy
2148 		 * the data into it.  This greatly reduces
2149 		 * memory consumption when we receive lots
2150 		 * of small packets.
2151 		 */
2152 		if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
2153 			struct mbuf *nm;
2154 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
2155 			if (nm == NULL) {
2156 				ifp->if_ierrors++;
2157 				m_freem(m);
2158 				continue;
2159 			}
2160 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2161 			nm->m_data += 2;
2162 			nm->m_pkthdr.len = nm->m_len = len;
2163 			m_copydata(m, 0, len, mtod(nm, void *));
2164 			m_freem(m);
2165 			m = nm;
2166 		}
2167 #ifndef __NO_STRICT_ALIGNMENT
2168 		else {
2169 			/*
2170 			 * The DP83820's receive buffers must be 4-byte
2171 			 * aligned.  But this means that the data after
2172 			 * the Ethernet header is misaligned.  To compensate,
2173 			 * we have artificially shortened the buffer size
2174 			 * in the descriptor, and we do an overlapping copy
2175 			 * of the data two bytes further in (in the first
2176 			 * buffer of the chain only).
2177 			 */
2178 			memmove(mtod(m, char *) + 2, mtod(m, void *),
2179 			    m->m_len);
2180 			m->m_data += 2;
2181 		}
2182 #endif /* ! __NO_STRICT_ALIGNMENT */
2183 
2184 		/*
2185 		 * If VLANs are enabled, VLAN packets have been unwrapped
2186 		 * for us.  Associate the tag with the packet.
2187 		 */
2188 
2189 		/*
2190 		 * Again, byte swapping is tricky. Hardware provided
2191 		 * the tag in the network byte order, but extsts was
2192 		 * passed through le32toh() in the meantime. On a
2193 		 * big-endian machine, we need to swap it again. On a
2194 		 * little-endian machine, we need to convert from the
2195 		 * network to host byte order. This means that we must
2196 		 * swap it in any case, so unconditional swap instead
2197 		 * of htons() is used.
2198 		 */
2199 		if ((extsts & EXTSTS_VPKT) != 0) {
2200 			vlan_set_tag(m, bswap16(extsts & EXTSTS_VTCI));
2201 		}
2202 
2203 		/*
2204 		 * Set the incoming checksum information for the
2205 		 * packet.
2206 		 */
2207 		if ((extsts & EXTSTS_IPPKT) != 0) {
2208 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2209 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2210 			if (extsts & EXTSTS_Rx_IPERR)
2211 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2212 			if (extsts & EXTSTS_TCPPKT) {
2213 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2214 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2215 				if (extsts & EXTSTS_Rx_TCPERR)
2216 					m->m_pkthdr.csum_flags |=
2217 					    M_CSUM_TCP_UDP_BAD;
2218 			} else if (extsts & EXTSTS_UDPPKT) {
2219 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2220 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2221 				if (extsts & EXTSTS_Rx_UDPERR)
2222 					m->m_pkthdr.csum_flags |=
2223 					    M_CSUM_TCP_UDP_BAD;
2224 			}
2225 		}
2226 
2227 		m_set_rcvif(m, ifp);
2228 		m->m_pkthdr.len = len;
2229 
2230 		/* Pass it on. */
2231 		if_percpuq_enqueue(ifp->if_percpuq, m);
2232 	}
2233 
2234 	/* Update the receive pointer. */
2235 	sc->sc_rxptr = i;
2236 }
2237 
2238 /*
2239  * sip_rxintr:
2240  *
2241  *	Helper; handle receive interrupts on 10/100 parts.
2242  */
2243 static void
2244 sip_rxintr(struct sip_softc *sc)
2245 {
2246 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2247 	struct sip_rxsoft *rxs;
2248 	struct mbuf *m;
2249 	uint32_t cmdsts;
2250 	int i, len;
2251 
2252 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2253 		rxs = &sc->sc_rxsoft[i];
2254 
2255 		sip_cdrxsync(sc, i,
2256 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2257 
2258 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2259 
2260 		/*
2261 		 * NOTE: OWN is set if owned by _consumer_.  We're the
2262 		 * consumer of the receive ring, so if the bit is clear,
2263 		 * we have processed all of the packets.
2264 		 */
2265 		if ((cmdsts & CMDSTS_OWN) == 0) {
2266 			/*
2267 			 * We have processed all of the receive buffers.
2268 			 */
2269 			break;
2270 		}
2271 
2272 		/* If any collisions were seen on the wire, count one. */
2273 		if (cmdsts & CMDSTS_Rx_COL)
2274 			ifp->if_collisions++;
2275 
2276 		/*
2277 		 * If an error occurred, update stats, clear the status
2278 		 * word, and leave the packet buffer in place.  It will
2279 		 * simply be reused the next time the ring comes around.
2280 		 */
2281 		if (cmdsts & (CMDSTS_Rx_RXA | CMDSTS_Rx_RUNT |
2282 		    CMDSTS_Rx_ISE | CMDSTS_Rx_CRCE | CMDSTS_Rx_FAE)) {
2283 			ifp->if_ierrors++;
2284 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2285 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
2286 				/* Receive overrun handled elsewhere. */
2287 				printf("%s: receive descriptor error\n",
2288 				    device_xname(sc->sc_dev));
2289 			}
2290 #define	PRINTERR(bit, str)						\
2291 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
2292 			    (cmdsts & (bit)) != 0)			\
2293 				printf("%s: %s\n", device_xname(sc->sc_dev), str)
2294 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2295 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2296 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2297 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2298 #undef PRINTERR
2299 			sip_init_rxdesc(sc, i);
2300 			continue;
2301 		}
2302 
2303 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2304 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2305 
2306 		/*
2307 		 * No errors; receive the packet.  Note, the SiS 900
2308 		 * includes the CRC with every packet.
2309 		 */
2310 		len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
2311 
2312 #ifdef __NO_STRICT_ALIGNMENT
2313 		/*
2314 		 * If the packet is small enough to fit in a
2315 		 * single header mbuf, allocate one and copy
2316 		 * the data into it.  This greatly reduces
2317 		 * memory consumption when we receive lots
2318 		 * of small packets.
2319 		 *
2320 		 * Otherwise, we add a new buffer to the receive
2321 		 * chain.  If this fails, we drop the packet and
2322 		 * recycle the old buffer.
2323 		 */
2324 		if (sip_copy_small != 0 && len <= MHLEN) {
2325 			MGETHDR(m, M_DONTWAIT, MT_DATA);
2326 			if (m == NULL)
2327 				goto dropit;
2328 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2329 			memcpy(mtod(m, void *),
2330 			    mtod(rxs->rxs_mbuf, void *), len);
2331 			sip_init_rxdesc(sc, i);
2332 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2333 			    rxs->rxs_dmamap->dm_mapsize,
2334 			    BUS_DMASYNC_PREREAD);
2335 		} else {
2336 			m = rxs->rxs_mbuf;
2337 			if (sipcom_add_rxbuf(sc, i) != 0) {
2338  dropit:
2339 				ifp->if_ierrors++;
2340 				sip_init_rxdesc(sc, i);
2341 				bus_dmamap_sync(sc->sc_dmat,
2342 				    rxs->rxs_dmamap, 0,
2343 				    rxs->rxs_dmamap->dm_mapsize,
2344 				    BUS_DMASYNC_PREREAD);
2345 				continue;
2346 			}
2347 		}
2348 #else
2349 		/*
2350 		 * The SiS 900's receive buffers must be 4-byte aligned.
2351 		 * But this means that the data after the Ethernet header
2352 		 * is misaligned.  We must allocate a new buffer and
2353 		 * copy the data, shifted forward 2 bytes.
2354 		 */
2355 		MGETHDR(m, M_DONTWAIT, MT_DATA);
2356 		if (m == NULL) {
2357  dropit:
2358 			ifp->if_ierrors++;
2359 			sip_init_rxdesc(sc, i);
2360 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2361 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2362 			continue;
2363 		}
2364 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2365 		if (len > (MHLEN - 2)) {
2366 			MCLGET(m, M_DONTWAIT);
2367 			if ((m->m_flags & M_EXT) == 0) {
2368 				m_freem(m);
2369 				goto dropit;
2370 			}
2371 		}
2372 		m->m_data += 2;
2373 
2374 		/*
2375 		 * Note that we use clusters for incoming frames, so the
2376 		 * buffer is virtually contiguous.
2377 		 */
2378 		memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2379 
2380 		/* Allow the receive descriptor to continue using its mbuf. */
2381 		sip_init_rxdesc(sc, i);
2382 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2383 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2384 #endif /* __NO_STRICT_ALIGNMENT */
2385 
2386 		m_set_rcvif(m, ifp);
2387 		m->m_pkthdr.len = m->m_len = len;
2388 
2389 		/* Pass it on. */
2390 		if_percpuq_enqueue(ifp->if_percpuq, m);
2391 	}
2392 
2393 	/* Update the receive pointer. */
2394 	sc->sc_rxptr = i;
2395 }
2396 
2397 /*
2398  * sip_tick:
2399  *
2400  *	One second timer, used to tick the MII.
2401  */
2402 static void
2403 sipcom_tick(void *arg)
2404 {
2405 	struct sip_softc *sc = arg;
2406 	int s;
2407 
2408 	s = splnet();
2409 #ifdef SIP_EVENT_COUNTERS
2410 	if (sc->sc_gigabit) {
2411 		/* Read PAUSE related counts from MIB registers. */
2412 		sc->sc_ev_rxpause.ev_count +=
2413 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
2414 				     SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2415 		sc->sc_ev_txpause.ev_count +=
2416 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
2417 				     SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2418 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2419 	}
2420 #endif /* SIP_EVENT_COUNTERS */
2421 	mii_tick(&sc->sc_mii);
2422 	splx(s);
2423 
2424 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2425 }
2426 
2427 /*
2428  * sip_reset:
2429  *
2430  *	Perform a soft reset on the SiS 900.
2431  */
2432 static bool
2433 sipcom_reset(struct sip_softc *sc)
2434 {
2435 	bus_space_tag_t st = sc->sc_st;
2436 	bus_space_handle_t sh = sc->sc_sh;
2437 	int i;
2438 
2439 	bus_space_write_4(st, sh, SIP_IER, 0);
2440 	bus_space_write_4(st, sh, SIP_IMR, 0);
2441 	bus_space_write_4(st, sh, SIP_RFCR, 0);
2442 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
2443 
2444 	for (i = 0; i < SIP_TIMEOUT; i++) {
2445 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2446 			break;
2447 		delay(2);
2448 	}
2449 
2450 	if (i == SIP_TIMEOUT) {
2451 		printf("%s: reset failed to complete\n",
2452 		    device_xname(sc->sc_dev));
2453 		return false;
2454 	}
2455 
2456 	delay(1000);
2457 
2458 	if (sc->sc_gigabit) {
2459 		/*
2460 		 * Set the general purpose I/O bits.  Do it here in case we
2461 		 * need to have GPIO set up to talk to the media interface.
2462 		 */
2463 		bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2464 		delay(1000);
2465 	}
2466 	return true;
2467 }
2468 
2469 static void
2470 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2471 {
2472 	uint32_t reg;
2473 	bus_space_tag_t st = sc->sc_st;
2474 	bus_space_handle_t sh = sc->sc_sh;
2475 	/*
2476 	 * Initialize the VLAN/IP receive control register.
2477 	 * We enable checksum computation on all incoming
2478 	 * packets, and do not reject packets w/ bad checksums.
2479 	 */
2480 	reg = 0;
2481 	if (capenable &
2482 	    (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
2483 		reg |= VRCR_IPEN;
2484 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2485 		reg |= VRCR_VTDEN | VRCR_VTREN;
2486 	bus_space_write_4(st, sh, SIP_VRCR, reg);
2487 
2488 	/*
2489 	 * Initialize the VLAN/IP transmit control register.
2490 	 * We enable outgoing checksum computation on a
2491 	 * per-packet basis.
2492 	 */
2493 	reg = 0;
2494 	if (capenable &
2495 	    (IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx))
2496 		reg |= VTCR_PPCHK;
2497 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2498 		reg |= VTCR_VPPTI;
2499 	bus_space_write_4(st, sh, SIP_VTCR, reg);
2500 
2501 	/*
2502 	 * If we're using VLANs, initialize the VLAN data register.
2503 	 * To understand why we bswap the VLAN Ethertype, see section
2504 	 * 4.2.36 of the DP83820 manual.
2505 	 */
2506 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2507 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2508 }
2509 
2510 /*
2511  * sip_init:		[ ifnet interface function ]
2512  *
2513  *	Initialize the interface.  Must be called at splnet().
2514  */
2515 static int
2516 sipcom_init(struct ifnet *ifp)
2517 {
2518 	struct sip_softc *sc = ifp->if_softc;
2519 	bus_space_tag_t st = sc->sc_st;
2520 	bus_space_handle_t sh = sc->sc_sh;
2521 	struct sip_txsoft *txs;
2522 	struct sip_rxsoft *rxs;
2523 	struct sip_desc *sipd;
2524 	int i, error = 0;
2525 
2526 	if (device_is_active(sc->sc_dev)) {
2527 		/*
2528 		 * Cancel any pending I/O.
2529 		 */
2530 		sipcom_stop(ifp, 0);
2531 	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
2532 		   !device_is_active(sc->sc_dev))
2533 		return 0;
2534 
2535 	/*
2536 	 * Reset the chip to a known state.
2537 	 */
2538 	if (!sipcom_reset(sc))
2539 		return EBUSY;
2540 
2541 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2542 		/*
2543 		 * DP83815 manual, page 78:
2544 		 *    4.4 Recommended Registers Configuration
2545 		 *    For optimum performance of the DP83815, version noted
2546 		 *    as DP83815CVNG (SRR = 203h), the listed register
2547 		 *    modifications must be followed in sequence...
2548 		 *
2549 		 * It's not clear if this should be 302h or 203h because that
2550 		 * chip name is listed as SRR 302h in the description of the
2551 		 * SRR register.  However, my revision 302h DP83815 on the
2552 		 * Netgear FA311 purchased in 02/2001 needs these settings
2553 		 * to avoid tons of errors in AcceptPerfectMatch (non-
2554 		 * IFF_PROMISC) mode.  I do not know if other revisions need
2555 		 * this set or not.  [briggs -- 09 March 2001]
2556 		 *
2557 		 * Note that only the low-order 12 bits of 0xe4 are documented
2558 		 * and that this sets reserved bits in that register.
2559 		 */
2560 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
2561 
2562 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
2563 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
2564 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
2565 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
2566 
2567 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
2568 	}
2569 
2570 	/*
2571 	 * Initialize the transmit descriptor ring.
2572 	 */
2573 	for (i = 0; i < sc->sc_ntxdesc; i++) {
2574 		sipd = &sc->sc_txdescs[i];
2575 		memset(sipd, 0, sizeof(struct sip_desc));
2576 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
2577 	}
2578 	sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
2579 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2580 	sc->sc_txfree = sc->sc_ntxdesc;
2581 	sc->sc_txnext = 0;
2582 	sc->sc_txwin = 0;
2583 
2584 	/*
2585 	 * Initialize the transmit job descriptors.
2586 	 */
2587 	SIMPLEQ_INIT(&sc->sc_txfreeq);
2588 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
2589 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
2590 		txs = &sc->sc_txsoft[i];
2591 		txs->txs_mbuf = NULL;
2592 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2593 	}
2594 
2595 	/*
2596 	 * Initialize the receive descriptor and receive job
2597 	 * descriptor rings.
2598 	 */
2599 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2600 		rxs = &sc->sc_rxsoft[i];
2601 		if (rxs->rxs_mbuf == NULL) {
2602 			if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
2603 				printf("%s: unable to allocate or map rx "
2604 				    "buffer %d, error = %d\n",
2605 				    device_xname(sc->sc_dev), i, error);
2606 				/*
2607 				 * XXX Should attempt to run with fewer receive
2608 				 * XXX buffers instead of just failing.
2609 				 */
2610 				sipcom_rxdrain(sc);
2611 				goto out;
2612 			}
2613 		} else
2614 			sip_init_rxdesc(sc, i);
2615 	}
2616 	sc->sc_rxptr = 0;
2617 	sc->sc_rxdiscard = 0;
2618 	sip_rxchain_reset(sc);
2619 
2620 	/*
2621 	 * Set the configuration register; it's already initialized
2622 	 * in sip_attach().
2623 	 */
2624 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2625 
2626 	/*
2627 	 * Initialize the prototype TXCFG register.
2628 	 */
2629 	if (sc->sc_gigabit) {
2630 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2631 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2632 	} else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2633 	     SIP_SIS900_REV(sc, SIS_REV_960) ||
2634 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2635 	    (sc->sc_cfg & CFG_EDBMASTEN)) {
2636 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
2637 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
2638 	} else {
2639 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2640 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2641 	}
2642 
2643 	sc->sc_txcfg |= TXCFG_ATP |
2644 	    __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
2645 	    sc->sc_tx_drain_thresh;
2646 	bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
2647 
2648 	/*
2649 	 * Initialize the receive drain threshold if we have never
2650 	 * done so.
2651 	 */
2652 	if (sc->sc_rx_drain_thresh == 0) {
2653 		/*
2654 		 * XXX This value should be tuned.  This is set to the
2655 		 * maximum of 248 bytes, and we may be able to improve
2656 		 * performance by decreasing it (although we should never
2657 		 * set this value lower than 2; 14 bytes are required to
2658 		 * filter the packet).
2659 		 */
2660 		sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
2661 	}
2662 
2663 	/*
2664 	 * Initialize the prototype RXCFG register.
2665 	 */
2666 	sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
2667 	/*
2668 	 * Accept long packets (including FCS) so we can handle
2669 	 * 802.1q-tagged frames and jumbo frames properly.
2670 	 */
2671 	if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2672 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2673 		sc->sc_rxcfg |= RXCFG_ALP;
2674 
2675 	/*
2676 	 * Checksum offloading is disabled if the user selects an MTU
2677 	 * larger than 8109.  (FreeBSD says 8152, but there is emperical
2678 	 * evidence that >8109 does not work on some boards, such as the
2679 	 * Planex GN-1000TE).
2680 	 */
2681 	if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2682 	    (ifp->if_capenable &
2683 	     (IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2684 	      IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2685 	      IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx))) {
2686 		printf("%s: Checksum offloading does not work if MTU > 8109 - "
2687 		       "disabled.\n", device_xname(sc->sc_dev));
2688 		ifp->if_capenable &=
2689 		    ~(IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2690 		     IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2691 		     IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx);
2692 		ifp->if_csum_flags_tx = 0;
2693 		ifp->if_csum_flags_rx = 0;
2694 	}
2695 
2696 	bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
2697 
2698 	if (sc->sc_gigabit)
2699 		sipcom_dp83820_init(sc, ifp->if_capenable);
2700 
2701 	/*
2702 	 * Give the transmit and receive rings to the chip.
2703 	 */
2704 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2705 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2706 
2707 	/*
2708 	 * Initialize the interrupt mask.
2709 	 */
2710 	sc->sc_imr = sc->sc_bits.b_isr_dperr |
2711 		     sc->sc_bits.b_isr_sserr |
2712 		     sc->sc_bits.b_isr_rmabt |
2713 		     sc->sc_bits.b_isr_rtabt |
2714 	    ISR_RXSOVR | ISR_TXURN | ISR_TXDESC | ISR_TXIDLE | ISR_RXORN |
2715 	    ISR_RXIDLE | ISR_RXDESC;
2716 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2717 
2718 	/* Set up the receive filter. */
2719 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2720 
2721 	/*
2722 	 * Tune sc_rx_flow_thresh.
2723 	 * XXX "More than 8KB" is too short for jumbo frames.
2724 	 * XXX TODO: Threshold value should be user-settable.
2725 	 */
2726 	sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2727 				 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2728 				 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2729 
2730 	/*
2731 	 * Set the current media.  Do this after initializing the prototype
2732 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2733 	 * control.
2734 	 */
2735 	if ((error = ether_mediachange(ifp)) != 0)
2736 		goto out;
2737 
2738 	/*
2739 	 * Set the interrupt hold-off timer to 100us.
2740 	 */
2741 	if (sc->sc_gigabit)
2742 		bus_space_write_4(st, sh, SIP_IHR, 0x01);
2743 
2744 	/*
2745 	 * Enable interrupts.
2746 	 */
2747 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
2748 
2749 	/*
2750 	 * Start the transmit and receive processes.
2751 	 */
2752 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2753 
2754 	/*
2755 	 * Start the one second MII clock.
2756 	 */
2757 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2758 
2759 	/*
2760 	 * ...all done!
2761 	 */
2762 	ifp->if_flags |= IFF_RUNNING;
2763 	ifp->if_flags &= ~IFF_OACTIVE;
2764 	sc->sc_if_flags = ifp->if_flags;
2765 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2766 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2767 	sc->sc_prev.if_capenable = ifp->if_capenable;
2768 
2769  out:
2770 	if (error)
2771 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
2772 	return error;
2773 }
2774 
2775 /*
2776  * sip_drain:
2777  *
2778  *	Drain the receive queue.
2779  */
2780 static void
2781 sipcom_rxdrain(struct sip_softc *sc)
2782 {
2783 	struct sip_rxsoft *rxs;
2784 	int i;
2785 
2786 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2787 		rxs = &sc->sc_rxsoft[i];
2788 		if (rxs->rxs_mbuf != NULL) {
2789 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2790 			m_freem(rxs->rxs_mbuf);
2791 			rxs->rxs_mbuf = NULL;
2792 		}
2793 	}
2794 }
2795 
2796 /*
2797  * sip_stop:		[ ifnet interface function ]
2798  *
2799  *	Stop transmission on the interface.
2800  */
2801 static void
2802 sipcom_stop(struct ifnet *ifp, int disable)
2803 {
2804 	struct sip_softc *sc = ifp->if_softc;
2805 	bus_space_tag_t st = sc->sc_st;
2806 	bus_space_handle_t sh = sc->sc_sh;
2807 	struct sip_txsoft *txs;
2808 	uint32_t cmdsts = 0;		/* DEBUG */
2809 
2810 	/*
2811 	 * Stop the one second clock.
2812 	 */
2813 	callout_stop(&sc->sc_tick_ch);
2814 
2815 	/* Down the MII. */
2816 	mii_down(&sc->sc_mii);
2817 
2818 	if (device_is_active(sc->sc_dev)) {
2819 		/*
2820 		 * Disable interrupts.
2821 		 */
2822 		bus_space_write_4(st, sh, SIP_IER, 0);
2823 
2824 		/*
2825 		 * Stop receiver and transmitter.
2826 		 */
2827 		bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2828 	}
2829 
2830 	/*
2831 	 * Release any queued transmit buffers.
2832 	 */
2833 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2834 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2835 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2836 		    (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
2837 		     CMDSTS_INTR) == 0)
2838 			printf("%s: sip_stop: last descriptor does not "
2839 			    "have INTR bit set\n", device_xname(sc->sc_dev));
2840 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2841 #ifdef DIAGNOSTIC
2842 		if (txs->txs_mbuf == NULL) {
2843 			printf("%s: dirty txsoft with no mbuf chain\n",
2844 			    device_xname(sc->sc_dev));
2845 			panic("sip_stop");
2846 		}
2847 #endif
2848 		cmdsts |=		/* DEBUG */
2849 		    le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
2850 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2851 		m_freem(txs->txs_mbuf);
2852 		txs->txs_mbuf = NULL;
2853 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2854 	}
2855 
2856 	/*
2857 	 * Mark the interface down and cancel the watchdog timer.
2858 	 */
2859 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2860 	ifp->if_timer = 0;
2861 
2862 	if (disable)
2863 		pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
2864 
2865 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2866 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2867 		printf("%s: sip_stop: no INTR bits set in dirty tx "
2868 		    "descriptors\n", device_xname(sc->sc_dev));
2869 }
2870 
2871 /*
2872  * sip_read_eeprom:
2873  *
2874  *	Read data from the serial EEPROM.
2875  */
2876 static void
2877 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2878     uint16_t *data)
2879 {
2880 	bus_space_tag_t st = sc->sc_st;
2881 	bus_space_handle_t sh = sc->sc_sh;
2882 	uint16_t reg;
2883 	int i, x;
2884 
2885 	for (i = 0; i < wordcnt; i++) {
2886 		/* Send CHIP SELECT. */
2887 		reg = EROMAR_EECS;
2888 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
2889 
2890 		/* Shift in the READ opcode. */
2891 		for (x = 3; x > 0; x--) {
2892 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2893 				reg |= EROMAR_EEDI;
2894 			else
2895 				reg &= ~EROMAR_EEDI;
2896 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2897 			bus_space_write_4(st, sh, SIP_EROMAR,
2898 			    reg | EROMAR_EESK);
2899 			delay(4);
2900 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2901 			delay(4);
2902 		}
2903 
2904 		/* Shift in address. */
2905 		for (x = 6; x > 0; x--) {
2906 			if ((word + i) & (1 << (x - 1)))
2907 				reg |= EROMAR_EEDI;
2908 			else
2909 				reg &= ~EROMAR_EEDI;
2910 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2911 			bus_space_write_4(st, sh, SIP_EROMAR,
2912 			    reg | EROMAR_EESK);
2913 			delay(4);
2914 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2915 			delay(4);
2916 		}
2917 
2918 		/* Shift out data. */
2919 		reg = EROMAR_EECS;
2920 		data[i] = 0;
2921 		for (x = 16; x > 0; x--) {
2922 			bus_space_write_4(st, sh, SIP_EROMAR,
2923 			    reg | EROMAR_EESK);
2924 			delay(4);
2925 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2926 				data[i] |= (1 << (x - 1));
2927 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2928 			delay(4);
2929 		}
2930 
2931 		/* Clear CHIP SELECT. */
2932 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
2933 		delay(4);
2934 	}
2935 }
2936 
2937 /*
2938  * sipcom_add_rxbuf:
2939  *
2940  *	Add a receive buffer to the indicated descriptor.
2941  */
2942 static int
2943 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
2944 {
2945 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2946 	struct mbuf *m;
2947 	int error;
2948 
2949 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2950 	if (m == NULL)
2951 		return ENOBUFS;
2952 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2953 
2954 	MCLGET(m, M_DONTWAIT);
2955 	if ((m->m_flags & M_EXT) == 0) {
2956 		m_freem(m);
2957 		return ENOBUFS;
2958 	}
2959 
2960 	/* XXX I don't believe this is necessary. --dyoung */
2961 	if (sc->sc_gigabit)
2962 		m->m_len = sc->sc_parm->p_rxbuf_len;
2963 
2964 	if (rxs->rxs_mbuf != NULL)
2965 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2966 
2967 	rxs->rxs_mbuf = m;
2968 
2969 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2970 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2971 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
2972 	if (error) {
2973 		printf("%s: can't load rx DMA map %d, error = %d\n",
2974 		    device_xname(sc->sc_dev), idx, error);
2975 		panic("%s", __func__);		/* XXX */
2976 	}
2977 
2978 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2979 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2980 
2981 	sip_init_rxdesc(sc, idx);
2982 
2983 	return 0;
2984 }
2985 
2986 /*
2987  * sip_sis900_set_filter:
2988  *
2989  *	Set up the receive filter.
2990  */
2991 static void
2992 sipcom_sis900_set_filter(struct sip_softc *sc)
2993 {
2994 	bus_space_tag_t st = sc->sc_st;
2995 	bus_space_handle_t sh = sc->sc_sh;
2996 	struct ethercom *ec = &sc->sc_ethercom;
2997 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2998 	struct ether_multi *enm;
2999 	const uint8_t *cp;
3000 	struct ether_multistep step;
3001 	uint32_t crc, mchash[16];
3002 
3003 	/*
3004 	 * Initialize the prototype RFCR.
3005 	 */
3006 	sc->sc_rfcr = RFCR_RFEN;
3007 	if (ifp->if_flags & IFF_BROADCAST)
3008 		sc->sc_rfcr |= RFCR_AAB;
3009 	if (ifp->if_flags & IFF_PROMISC) {
3010 		sc->sc_rfcr |= RFCR_AAP;
3011 		goto allmulti;
3012 	}
3013 
3014 	/*
3015 	 * Set up the multicast address filter by passing all multicast
3016 	 * addresses through a CRC generator, and then using the high-order
3017 	 * 6 bits as an index into the 128 bit multicast hash table (only
3018 	 * the lower 16 bits of each 32 bit multicast hash register are
3019 	 * valid).  The high order bits select the register, while the
3020 	 * rest of the bits select the bit within the register.
3021 	 */
3022 
3023 	memset(mchash, 0, sizeof(mchash));
3024 
3025 	/*
3026 	 * SiS900 (at least SiS963) requires us to register the address of
3027 	 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3028 	 */
3029 	crc = 0x0ed423f9;
3030 
3031 	if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3032 	    SIP_SIS900_REV(sc, SIS_REV_960) ||
3033 	    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3034 		/* Just want the 8 most significant bits. */
3035 		crc >>= 24;
3036 	} else {
3037 		/* Just want the 7 most significant bits. */
3038 		crc >>= 25;
3039 	}
3040 
3041 	/* Set the corresponding bit in the hash table. */
3042 	mchash[crc >> 4] |= 1 << (crc & 0xf);
3043 
3044 	ETHER_LOCK(ec);
3045 	ETHER_FIRST_MULTI(step, ec, enm);
3046 	while (enm != NULL) {
3047 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3048 			/*
3049 			 * We must listen to a range of multicast addresses.
3050 			 * For now, just accept all multicasts, rather than
3051 			 * trying to set only those filter bits needed to match
3052 			 * the range.  (At this time, the only use of address
3053 			 * ranges is for IP multicast routing, for which the
3054 			 * range is big enough to require all bits set.)
3055 			 */
3056 			ETHER_UNLOCK(ec);
3057 			goto allmulti;
3058 		}
3059 
3060 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3061 
3062 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3063 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
3064 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3065 			/* Just want the 8 most significant bits. */
3066 			crc >>= 24;
3067 		} else {
3068 			/* Just want the 7 most significant bits. */
3069 			crc >>= 25;
3070 		}
3071 
3072 		/* Set the corresponding bit in the hash table. */
3073 		mchash[crc >> 4] |= 1 << (crc & 0xf);
3074 
3075 		ETHER_NEXT_MULTI(step, enm);
3076 	}
3077 	ETHER_UNLOCK(ec);
3078 
3079 	ifp->if_flags &= ~IFF_ALLMULTI;
3080 	goto setit;
3081 
3082  allmulti:
3083 	ifp->if_flags |= IFF_ALLMULTI;
3084 	sc->sc_rfcr |= RFCR_AAM;
3085 
3086  setit:
3087 #define	FILTER_EMIT(addr, data)						\
3088 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
3089 	delay(1);							\
3090 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
3091 	delay(1)
3092 
3093 	/*
3094 	 * Disable receive filter, and program the node address.
3095 	 */
3096 	cp = CLLADDR(ifp->if_sadl);
3097 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
3098 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
3099 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
3100 
3101 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3102 		/*
3103 		 * Program the multicast hash table.
3104 		 */
3105 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
3106 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
3107 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
3108 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
3109 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
3110 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
3111 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
3112 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
3113 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3114 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
3115 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3116 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
3117 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
3118 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
3119 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
3120 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
3121 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
3122 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
3123 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
3124 		}
3125 	}
3126 #undef FILTER_EMIT
3127 
3128 	/*
3129 	 * Re-enable the receiver filter.
3130 	 */
3131 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3132 }
3133 
3134 /*
3135  * sip_dp83815_set_filter:
3136  *
3137  *	Set up the receive filter.
3138  */
3139 static void
3140 sipcom_dp83815_set_filter(struct sip_softc *sc)
3141 {
3142 	bus_space_tag_t st = sc->sc_st;
3143 	bus_space_handle_t sh = sc->sc_sh;
3144 	struct ethercom *ec = &sc->sc_ethercom;
3145 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3146 	struct ether_multi *enm;
3147 	const uint8_t *cp;
3148 	struct ether_multistep step;
3149 	uint32_t crc, hash, slot, bit;
3150 #define	MCHASH_NWORDS_83820	128
3151 #define	MCHASH_NWORDS_83815	32
3152 #define	MCHASH_NWORDS	MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3153 	uint16_t mchash[MCHASH_NWORDS];
3154 	int i;
3155 
3156 	/*
3157 	 * Initialize the prototype RFCR.
3158 	 * Enable the receive filter, and accept on
3159 	 *    Perfect (destination address) Match
3160 	 * If IFF_BROADCAST, also accept all broadcast packets.
3161 	 * If IFF_PROMISC, accept all unicast packets (and later, set
3162 	 *    IFF_ALLMULTI and accept all multicast, too).
3163 	 */
3164 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3165 	if (ifp->if_flags & IFF_BROADCAST)
3166 		sc->sc_rfcr |= RFCR_AAB;
3167 	if (ifp->if_flags & IFF_PROMISC) {
3168 		sc->sc_rfcr |= RFCR_AAP;
3169 		goto allmulti;
3170 	}
3171 
3172 	/*
3173 	 * Set up the DP83820/DP83815 multicast address filter by
3174 	 * passing all multicast addresses through a CRC generator,
3175 	 * and then using the high-order 11/9 bits as an index into
3176 	 * the 2048/512 bit multicast hash table.  The high-order
3177 	 * 7/5 bits select the slot, while the low-order 4 bits
3178 	 * select the bit within the slot.  Note that only the low
3179 	 * 16-bits of each filter word are used, and there are
3180 	 * 128/32 filter words.
3181 	 */
3182 
3183 	memset(mchash, 0, sizeof(mchash));
3184 
3185 	ifp->if_flags &= ~IFF_ALLMULTI;
3186 	ETHER_FIRST_MULTI(step, ec, enm);
3187 	if (enm == NULL)
3188 		goto setit;
3189 	while (enm != NULL) {
3190 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3191 			/*
3192 			 * We must listen to a range of multicast addresses.
3193 			 * For now, just accept all multicasts, rather than
3194 			 * trying to set only those filter bits needed to match
3195 			 * the range.  (At this time, the only use of address
3196 			 * ranges is for IP multicast routing, for which the
3197 			 * range is big enough to require all bits set.)
3198 			 */
3199 			goto allmulti;
3200 		}
3201 
3202 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3203 
3204 		if (sc->sc_gigabit) {
3205 			/* Just want the 11 most significant bits. */
3206 			hash = crc >> 21;
3207 		} else {
3208 			/* Just want the 9 most significant bits. */
3209 			hash = crc >> 23;
3210 		}
3211 
3212 		slot = hash >> 4;
3213 		bit = hash & 0xf;
3214 
3215 		/* Set the corresponding bit in the hash table. */
3216 		mchash[slot] |= 1 << bit;
3217 
3218 		ETHER_NEXT_MULTI(step, enm);
3219 	}
3220 	sc->sc_rfcr |= RFCR_MHEN;
3221 	goto setit;
3222 
3223  allmulti:
3224 	ifp->if_flags |= IFF_ALLMULTI;
3225 	sc->sc_rfcr |= RFCR_AAM;
3226 
3227  setit:
3228 #define	FILTER_EMIT(addr, data)						\
3229 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
3230 	delay(1);							\
3231 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
3232 	delay(1)
3233 
3234 	/*
3235 	 * Disable receive filter, and program the node address.
3236 	 */
3237 	cp = CLLADDR(ifp->if_sadl);
3238 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3239 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3240 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3241 
3242 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3243 		int nwords =
3244 		    sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3245 		/*
3246 		 * Program the multicast hash table.
3247 		 */
3248 		for (i = 0; i < nwords; i++) {
3249 			FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
3250 		}
3251 	}
3252 #undef FILTER_EMIT
3253 #undef MCHASH_NWORDS
3254 #undef MCHASH_NWORDS_83815
3255 #undef MCHASH_NWORDS_83820
3256 
3257 	/*
3258 	 * Re-enable the receiver filter.
3259 	 */
3260 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3261 }
3262 
3263 /*
3264  * sip_dp83820_mii_readreg:	[mii interface function]
3265  *
3266  *	Read a PHY register on the MII of the DP83820.
3267  */
3268 static int
3269 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
3270 {
3271 	struct sip_softc *sc = device_private(self);
3272 
3273 	if (sc->sc_cfg & CFG_TBI_EN) {
3274 		bus_addr_t tbireg;
3275 
3276 		if (phy != 0)
3277 			return -1;
3278 
3279 		switch (reg) {
3280 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3281 		case MII_BMSR:		tbireg = SIP_TBISR; break;
3282 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3283 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3284 		case MII_ANER:		tbireg = SIP_TANER; break;
3285 		case MII_EXTSR:
3286 			/*
3287 			 * Don't even bother reading the TESR register.
3288 			 * The manual documents that the device has
3289 			 * 1000baseX full/half capability, but the
3290 			 * register itself seems read back 0 on some
3291 			 * boards.  Just hard-code the result.
3292 			 */
3293 			*val = (EXTSR_1000XFDX | EXTSR_1000XHDX);
3294 			return 0;
3295 
3296 		default:
3297 			return 0;
3298 		}
3299 
3300 		*val = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3301 		if (tbireg == SIP_TBISR) {
3302 			/* LINK and ACOMP are switched! */
3303 			int sr = *val;
3304 
3305 			*val = 0;
3306 			if (sr & TBISR_MR_LINK_STATUS)
3307 				*val |= BMSR_LINK;
3308 			if (sr & TBISR_MR_AN_COMPLETE)
3309 				*val |= BMSR_ACOMP;
3310 
3311 			/*
3312 			 * The manual claims this register reads back 0
3313 			 * on hard and soft reset.  But we want to let
3314 			 * the gentbi driver know that we support auto-
3315 			 * negotiation, so hard-code this bit in the
3316 			 * result.
3317 			 */
3318 			*val |= BMSR_ANEG | BMSR_EXTSTAT;
3319 		}
3320 
3321 		return 0;
3322 	}
3323 
3324 	return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg,
3325 	    val);
3326 }
3327 
3328 /*
3329  * sip_dp83820_mii_writereg:	[mii interface function]
3330  *
3331  *	Write a PHY register on the MII of the DP83820.
3332  */
3333 static int
3334 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, uint16_t val)
3335 {
3336 	struct sip_softc *sc = device_private(self);
3337 
3338 	if (sc->sc_cfg & CFG_TBI_EN) {
3339 		bus_addr_t tbireg;
3340 
3341 		if (phy != 0)
3342 			return -1;
3343 
3344 		switch (reg) {
3345 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3346 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3347 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3348 		default:
3349 			return 0;
3350 		}
3351 
3352 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3353 		return 0;
3354 	}
3355 
3356 	return mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg,
3357 	    val);
3358 }
3359 
3360 /*
3361  * sip_dp83820_mii_statchg:	[mii interface function]
3362  *
3363  *	Callback from MII layer when media changes.
3364  */
3365 static void
3366 sipcom_dp83820_mii_statchg(struct ifnet *ifp)
3367 {
3368 	struct sip_softc *sc = ifp->if_softc;
3369 	struct mii_data *mii = &sc->sc_mii;
3370 	uint32_t cfg, pcr;
3371 
3372 	/*
3373 	 * Get flow control negotiation result.
3374 	 */
3375 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3376 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3377 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3378 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3379 	}
3380 
3381 	/*
3382 	 * Update TXCFG for full-duplex operation.
3383 	 */
3384 	if ((mii->mii_media_active & IFM_FDX) != 0)
3385 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3386 	else
3387 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3388 
3389 	/*
3390 	 * Update RXCFG for full-duplex or loopback.
3391 	 */
3392 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3393 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3394 		sc->sc_rxcfg |= RXCFG_ATX;
3395 	else
3396 		sc->sc_rxcfg &= ~RXCFG_ATX;
3397 
3398 	/*
3399 	 * Update CFG for MII/GMII.
3400 	 */
3401 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3402 		cfg = sc->sc_cfg | CFG_MODE_1000;
3403 	else
3404 		cfg = sc->sc_cfg;
3405 
3406 	/*
3407 	 * 802.3x flow control.
3408 	 */
3409 	pcr = 0;
3410 	if (sc->sc_flowflags & IFM_FLOW) {
3411 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3412 			pcr |= sc->sc_rx_flow_thresh;
3413 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3414 			pcr |= PCR_PSEN | PCR_PS_MCAST;
3415 	}
3416 
3417 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3418 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3419 	    sc->sc_txcfg);
3420 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3421 	    sc->sc_rxcfg);
3422 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3423 }
3424 
3425 /*
3426  * sip_mii_bitbang_read: [mii bit-bang interface function]
3427  *
3428  *	Read the MII serial port for the MII bit-bang module.
3429  */
3430 static uint32_t
3431 sipcom_mii_bitbang_read(device_t self)
3432 {
3433 	struct sip_softc *sc = device_private(self);
3434 
3435 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3436 }
3437 
3438 /*
3439  * sip_mii_bitbang_write: [mii big-bang interface function]
3440  *
3441  *	Write the MII serial port for the MII bit-bang module.
3442  */
3443 static void
3444 sipcom_mii_bitbang_write(device_t self, uint32_t val)
3445 {
3446 	struct sip_softc *sc = device_private(self);
3447 
3448 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3449 }
3450 
3451 /*
3452  * sip_sis900_mii_readreg:	[mii interface function]
3453  *
3454  *	Read a PHY register on the MII.
3455  */
3456 static int
3457 sipcom_sis900_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
3458 {
3459 	struct sip_softc *sc = device_private(self);
3460 	uint32_t enphy;
3461 
3462 	/*
3463 	 * The PHY of recent SiS chipsets is accessed through bitbang
3464 	 * operations.
3465 	 */
3466 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3467 		return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3468 		    phy, reg, val);
3469 
3470 #ifndef SIS900_MII_RESTRICT
3471 	/*
3472 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3473 	 * MII address 0.
3474 	 */
3475 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3476 		return -1;
3477 #endif
3478 
3479 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3480 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3481 	    ENPHY_RWCMD | ENPHY_ACCESS);
3482 	do {
3483 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3484 	} while (enphy & ENPHY_ACCESS);
3485 
3486 	*val = (enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT;
3487 	return 0;
3488 }
3489 
3490 /*
3491  * sip_sis900_mii_writereg:	[mii interface function]
3492  *
3493  *	Write a PHY register on the MII.
3494  */
3495 static int
3496 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, uint16_t val)
3497 {
3498 	struct sip_softc *sc = device_private(self);
3499 	uint32_t enphy;
3500 
3501 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3502 		return mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3503 		    phy, reg, val);
3504 	}
3505 
3506 #ifndef SIS900_MII_RESTRICT
3507 	/*
3508 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3509 	 * MII address 0.
3510 	 */
3511 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3512 		return -1;
3513 #endif
3514 
3515 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3516 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3517 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3518 	do {
3519 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3520 	} while (enphy & ENPHY_ACCESS);
3521 
3522 	return 0;
3523 }
3524 
3525 /*
3526  * sip_sis900_mii_statchg:	[mii interface function]
3527  *
3528  *	Callback from MII layer when media changes.
3529  */
3530 static void
3531 sipcom_sis900_mii_statchg(struct ifnet *ifp)
3532 {
3533 	struct sip_softc *sc = ifp->if_softc;
3534 	struct mii_data *mii = &sc->sc_mii;
3535 	uint32_t flowctl;
3536 
3537 	/*
3538 	 * Get flow control negotiation result.
3539 	 */
3540 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3541 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3542 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3543 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3544 	}
3545 
3546 	/*
3547 	 * Update TXCFG for full-duplex operation.
3548 	 */
3549 	if ((mii->mii_media_active & IFM_FDX) != 0)
3550 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3551 	else
3552 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3553 
3554 	/*
3555 	 * Update RXCFG for full-duplex or loopback.
3556 	 */
3557 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3558 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3559 		sc->sc_rxcfg |= RXCFG_ATX;
3560 	else
3561 		sc->sc_rxcfg &= ~RXCFG_ATX;
3562 
3563 	/*
3564 	 * Update IMR for use of 802.3x flow control.
3565 	 */
3566 	if (sc->sc_flowflags & IFM_FLOW) {
3567 		sc->sc_imr |= (ISR_PAUSE_END | ISR_PAUSE_ST);
3568 		flowctl = FLOWCTL_FLOWEN;
3569 	} else {
3570 		sc->sc_imr &= ~(ISR_PAUSE_END | ISR_PAUSE_ST);
3571 		flowctl = 0;
3572 	}
3573 
3574 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3575 	    sc->sc_txcfg);
3576 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3577 	    sc->sc_rxcfg);
3578 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3579 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3580 }
3581 
3582 /*
3583  * sip_dp83815_mii_readreg:	[mii interface function]
3584  *
3585  *	Read a PHY register on the MII.
3586  */
3587 static int
3588 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
3589 {
3590 	struct sip_softc *sc = device_private(self);
3591 	uint32_t data;
3592 
3593 	/*
3594 	 * The DP83815 only has an internal PHY.  Only allow
3595 	 * MII address 0.
3596 	 */
3597 	if (phy != 0)
3598 		return -1;
3599 
3600 	/*
3601 	 * Apparently, after a reset, the DP83815 can take a while
3602 	 * to respond.  During this recovery period, the BMSR returns
3603 	 * a value of 0.  Catch this -- it's not supposed to happen
3604 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3605 	 * PHY to come back to life.
3606 	 *
3607 	 * This works out because the BMSR is the first register
3608 	 * read during the PHY probe process.
3609 	 */
3610 	do {
3611 		data = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3612 	} while (reg == MII_BMSR && data == 0);
3613 
3614 	*val = data & 0xffff;
3615 	return 0;
3616 }
3617 
3618 /*
3619  * sip_dp83815_mii_writereg:	[mii interface function]
3620  *
3621  *	Write a PHY register to the MII.
3622  */
3623 static int
3624 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, uint16_t val)
3625 {
3626 	struct sip_softc *sc = device_private(self);
3627 
3628 	/*
3629 	 * The DP83815 only has an internal PHY.  Only allow
3630 	 * MII address 0.
3631 	 */
3632 	if (phy != 0)
3633 		return -1;
3634 
3635 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3636 
3637 	return 0;
3638 }
3639 
3640 /*
3641  * sip_dp83815_mii_statchg:	[mii interface function]
3642  *
3643  *	Callback from MII layer when media changes.
3644  */
3645 static void
3646 sipcom_dp83815_mii_statchg(struct ifnet *ifp)
3647 {
3648 	struct sip_softc *sc = ifp->if_softc;
3649 
3650 	/*
3651 	 * Update TXCFG for full-duplex operation.
3652 	 */
3653 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3654 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3655 	else
3656 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3657 
3658 	/*
3659 	 * Update RXCFG for full-duplex or loopback.
3660 	 */
3661 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3662 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3663 		sc->sc_rxcfg |= RXCFG_ATX;
3664 	else
3665 		sc->sc_rxcfg &= ~RXCFG_ATX;
3666 
3667 	/*
3668 	 * XXX 802.3x flow control.
3669 	 */
3670 
3671 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3672 	    sc->sc_txcfg);
3673 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3674 	    sc->sc_rxcfg);
3675 
3676 	/*
3677 	 * Some DP83815s experience problems when used with short
3678 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
3679 	 * sequence adjusts the DSP's signal attenuation to fix the
3680 	 * problem.
3681 	 */
3682 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3683 		uint32_t reg;
3684 
3685 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3686 
3687 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3688 		reg &= 0x0fff;
3689 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3690 		delay(100);
3691 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3692 		reg &= 0x00ff;
3693 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3694 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3695 			    0x00e8);
3696 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3697 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3698 			    reg | 0x20);
3699 		}
3700 
3701 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3702 	}
3703 }
3704 
3705 static void
3706 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3707     const struct pci_attach_args *pa, uint8_t *enaddr)
3708 {
3709 	uint16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3710 	uint8_t cksum, *e, match;
3711 	int i;
3712 
3713 	/*
3714 	 * EEPROM data format for the DP83820 can be found in
3715 	 * the DP83820 manual, section 4.2.4.
3716 	 */
3717 
3718 	sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3719 
3720 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3721 	match = ~(match - 1);
3722 
3723 	cksum = 0x55;
3724 	e = (uint8_t *)eeprom_data;
3725 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3726 		cksum += *e++;
3727 
3728 	if (cksum != match)
3729 		printf("%s: Checksum (%x) mismatch (%x)",
3730 		    device_xname(sc->sc_dev), cksum, match);
3731 
3732 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3733 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3734 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3735 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3736 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3737 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3738 }
3739 
3740 static void
3741 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3742 {
3743 	int i;
3744 
3745 	/*
3746 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
3747 	 * a reason, but I don't know it.
3748 	 */
3749 	for (i = 0; i < 10; i++)
3750 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3751 }
3752 
3753 static void
3754 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3755     const struct pci_attach_args *pa, uint8_t *enaddr)
3756 {
3757 	uint16_t myea[ETHER_ADDR_LEN / 2];
3758 
3759 	switch (sc->sc_rev) {
3760 	case SIS_REV_630S:
3761 	case SIS_REV_630E:
3762 	case SIS_REV_630EA1:
3763 	case SIS_REV_630ET:
3764 	case SIS_REV_635:
3765 		/*
3766 		 * The MAC address for the on-board Ethernet of
3767 		 * the SiS 630 chipset is in the NVRAM.  Kick
3768 		 * the chip into re-loading it from NVRAM, and
3769 		 * read the MAC address out of the filter registers.
3770 		 */
3771 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3772 
3773 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3774 		    RFCR_RFADDR_NODE0);
3775 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3776 		    0xffff;
3777 
3778 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3779 		    RFCR_RFADDR_NODE2);
3780 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3781 		    0xffff;
3782 
3783 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3784 		    RFCR_RFADDR_NODE4);
3785 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3786 		    0xffff;
3787 		break;
3788 
3789 	case SIS_REV_960:
3790 		{
3791 #define	SIS_SET_EROMAR(x, y)						     \
3792 		bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	     \
3793 		    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3794 
3795 #define	SIS_CLR_EROMAR(x, y)						     \
3796 		bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	     \
3797 		    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3798 
3799 			int waittime, i;
3800 
3801 			/* Allow to read EEPROM from LAN. It is shared
3802 			 * between a 1394 controller and the NIC and each
3803 			 * time we access it, we need to set SIS_EECMD_REQ.
3804 			 */
3805 			SIS_SET_EROMAR(sc, EROMAR_REQ);
3806 
3807 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3808 				/* Force EEPROM to idle state. */
3809 
3810 				/*
3811 				 * XXX-cube This is ugly.
3812 				 * I'll look for docs about it.
3813 				 */
3814 				SIS_SET_EROMAR(sc, EROMAR_EECS);
3815 				sipcom_sis900_eeprom_delay(sc);
3816 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3817 					SIS_SET_EROMAR(sc, EROMAR_EESK);
3818 					sipcom_sis900_eeprom_delay(sc);
3819 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
3820 					sipcom_sis900_eeprom_delay(sc);
3821 				}
3822 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
3823 				sipcom_sis900_eeprom_delay(sc);
3824 				bus_space_write_4(sc->sc_st, sc->sc_sh,
3825 				    SIP_EROMAR, 0);
3826 
3827 				if (bus_space_read_4(sc->sc_st, sc->sc_sh,
3828 				    SIP_EROMAR) & EROMAR_GNT) {
3829 					sipcom_read_eeprom(sc,
3830 					    SIP_EEPROM_ETHERNET_ID0 >> 1,
3831 					    sizeof(myea) / sizeof(myea[0]),
3832 					    myea);
3833 					break;
3834 				}
3835 				DELAY(1);
3836 			}
3837 
3838 			/*
3839 			 * Set SIS_EECTL_CLK to high, so a other master
3840 			 * can operate on the i2c bus.
3841 			 */
3842 			SIS_SET_EROMAR(sc, EROMAR_EESK);
3843 
3844 			/* Refuse EEPROM access by LAN */
3845 			SIS_SET_EROMAR(sc, EROMAR_DONE);
3846 		} break;
3847 
3848 	default:
3849 		sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3850 		    sizeof(myea) / sizeof(myea[0]), myea);
3851 	}
3852 
3853 	enaddr[0] = myea[0] & 0xff;
3854 	enaddr[1] = myea[0] >> 8;
3855 	enaddr[2] = myea[1] & 0xff;
3856 	enaddr[3] = myea[1] >> 8;
3857 	enaddr[4] = myea[2] & 0xff;
3858 	enaddr[5] = myea[2] >> 8;
3859 }
3860 
3861 /* Table and macro to bit-reverse an octet. */
3862 static const uint8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3863 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3864 
3865 static void
3866 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3867     const struct pci_attach_args *pa, uint8_t *enaddr)
3868 {
3869 	uint16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3870 	uint8_t cksum, *e, match;
3871 	int i;
3872 
3873 	sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3874 	    sizeof(eeprom_data[0]), eeprom_data);
3875 
3876 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3877 	match = ~(match - 1);
3878 
3879 	cksum = 0x55;
3880 	e = (uint8_t *)eeprom_data;
3881 	for (i = 0; i < SIP_DP83815_EEPROM_CHECKSUM; i++)
3882 		cksum += *e++;
3883 
3884 	if (cksum != match)
3885 		printf("%s: Checksum (%x) mismatch (%x)",
3886 		    device_xname(sc->sc_dev), cksum, match);
3887 
3888 	/*
3889 	 * Unrolled because it makes slightly more sense this way.
3890 	 * The DP83815 stores the MAC address in bit 0 of word 6
3891 	 * through bit 15 of word 8.
3892 	 */
3893 	ea = &eeprom_data[6];
3894 	enaddr[0] = ((*ea & 0x1) << 7);
3895 	ea++;
3896 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
3897 	enaddr[1] = ((*ea & 0x1FE) >> 1);
3898 	enaddr[2] = ((*ea & 0x1) << 7);
3899 	ea++;
3900 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
3901 	enaddr[3] = ((*ea & 0x1FE) >> 1);
3902 	enaddr[4] = ((*ea & 0x1) << 7);
3903 	ea++;
3904 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
3905 	enaddr[5] = ((*ea & 0x1FE) >> 1);
3906 
3907 	/*
3908 	 * In case that's not weird enough, we also need to reverse
3909 	 * the bits in each byte.  This all actually makes more sense
3910 	 * if you think about the EEPROM storage as an array of bits
3911 	 * being shifted into bytes, but that's not how we're looking
3912 	 * at it here...
3913 	 */
3914 	for (i = 0; i < 6 ;i++)
3915 		enaddr[i] = bbr(enaddr[i]);
3916 }
3917 
3918 /*
3919  * sip_mediastatus:	[ifmedia interface function]
3920  *
3921  *	Get the current interface media status.
3922  */
3923 static void
3924 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3925 {
3926 	struct sip_softc *sc = ifp->if_softc;
3927 
3928 	if (!device_is_active(sc->sc_dev)) {
3929 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
3930 		ifmr->ifm_status = 0;
3931 		return;
3932 	}
3933 	ether_mediastatus(ifp, ifmr);
3934 	ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
3935 			   sc->sc_flowflags;
3936 }
3937