xref: /netbsd-src/sys/dev/pci/if_sip.c (revision e4d7c2e329d54c97e0c0bd3016bbe74f550c3d5e)
1 /*	$NetBSD: if_sip.c,v 1.7 2000/02/02 17:09:40 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999 Network Computer, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of Network Computer, Inc. nor the names of its
16  *    contributors may be used to endorse or promote products derived
17  *    from this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Device driver for the Silicon Integrated Systems SiS 900 and
34  * SiS 7016 10/100 PCI Ethernet controllers.
35  *
36  * Written by Jason R. Thorpe for Network Computer, Inc.
37  */
38 
39 #include "opt_inet.h"
40 #include "opt_ns.h"
41 #include "bpfilter.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/mbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/kernel.h>
48 #include <sys/socket.h>
49 #include <sys/ioctl.h>
50 #include <sys/errno.h>
51 #include <sys/device.h>
52 #include <sys/queue.h>
53 
54 #include <vm/vm.h>		/* for PAGE_SIZE */
55 
56 #include <net/if.h>
57 #include <net/if_dl.h>
58 #include <net/if_media.h>
59 #include <net/if_ether.h>
60 
61 #if NBPFILTER > 0
62 #include <net/bpf.h>
63 #endif
64 
65 #ifdef INET
66 #include <netinet/in.h>
67 #include <netinet/if_inarp.h>
68 #endif
69 
70 #ifdef NS
71 #include <netns/ns.h>
72 #include <netns/ns_if.h>
73 #endif
74 
75 #include <machine/bus.h>
76 #include <machine/intr.h>
77 
78 #include <dev/mii/miivar.h>
79 
80 #include <dev/pci/pcireg.h>
81 #include <dev/pci/pcivar.h>
82 #include <dev/pci/pcidevs.h>
83 
84 #include <dev/pci/if_sipreg.h>
85 
86 /*
87  * Devices supported by this driver.
88  */
89 const struct sip_product {
90 	pci_vendor_id_t		sip_vendor;
91 	pci_product_id_t	sip_product;
92 	const char		*sip_name;
93 } sip_products[] = {
94 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
95 	  "SiS 900 10/100 Ethernet" },
96 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
97 	  "SiS 7016 10/100 Ethernet" },
98 
99 	{ 0,			0,
100 	  NULL },
101 };
102 
103 /*
104  * Transmit descriptor list size.  This is arbitrary, but allocate
105  * enough descriptors for 64 pending transmissions, and 16 segments
106  * per packet.  This MUST work out to a power of 2.
107  */
108 #define	SIP_NTXSEGS		16
109 
110 #define	SIP_TXQUEUELEN		64
111 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS)
112 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
113 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
114 
115 /*
116  * Receive descriptor list size.  We have one Rx buffer per incoming
117  * packet, so this logic is a little simpler.
118  */
119 #define	SIP_NRXDESC		64
120 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
121 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
122 
123 /*
124  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
125  * a single clump that maps to a single DMA segment to make several things
126  * easier.
127  */
128 struct sip_control_data {
129 	/*
130 	 * The transmit descriptors.
131 	 */
132 	struct sip_desc scd_txdescs[SIP_NTXDESC];
133 
134 	/*
135 	 * The receive descriptors.
136 	 */
137 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
138 };
139 
140 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
141 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
142 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
143 
144 /*
145  * Software state for transmit jobs.
146  */
147 struct sip_txsoft {
148 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
149 	bus_dmamap_t txs_dmamap;	/* our DMA map */
150 	int txs_firstdesc;		/* first descriptor in packet */
151 	int txs_lastdesc;		/* last descriptor in packet */
152 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
153 };
154 
155 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
156 
157 /*
158  * Software state for receive jobs.
159  */
160 struct sip_rxsoft {
161 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
162 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
163 };
164 
165 /*
166  * Software state per device.
167  */
168 struct sip_softc {
169 	struct device sc_dev;		/* generic device information */
170 	bus_space_tag_t sc_st;		/* bus space tag */
171 	bus_space_handle_t sc_sh;	/* bus space handle */
172 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
173 	struct ethercom sc_ethercom;	/* ethernet common data */
174 	void *sc_sdhook;		/* shutdown hook */
175 	pci_product_id_t sc_model;	/* which model are we? */
176 
177 	void *sc_ih;			/* interrupt cookie */
178 
179 	struct mii_data sc_mii;		/* MII/media information */
180 
181 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
182 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
183 
184 	/*
185 	 * Software state for transmit and receive descriptors.
186 	 */
187 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
188 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
189 
190 	/*
191 	 * Control data structures.
192 	 */
193 	struct sip_control_data *sc_control_data;
194 #define	sc_txdescs	sc_control_data->scd_txdescs
195 #define	sc_rxdescs	sc_control_data->scd_rxdescs
196 
197 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
198 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
199 	u_int32_t sc_imr;		/* prototype IMR register */
200 	u_int32_t sc_rfcr;		/* prototype RFCR register */
201 
202 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
203 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
204 
205 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
206 
207 	int	sc_flags;		/* misc. flags; see below */
208 
209 	int	sc_txfree;		/* number of free Tx descriptors */
210 	int	sc_txnext;		/* next ready Tx descriptor */
211 
212 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
213 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
214 
215 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
216 };
217 
218 /* sc_flags */
219 #define	SIPF_PAUSED	0x00000001	/* paused (802.3x flow control) */
220 
221 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
222 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
223 
224 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
225 do {									\
226 	int __x, __n;							\
227 									\
228 	__x = (x);							\
229 	__n = (n);							\
230 									\
231 	/* If it will wrap around, sync to the end of the ring. */	\
232 	if ((__x + __n) > SIP_NTXDESC) {				\
233 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
234 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
235 		    (SIP_NTXDESC - __x), (ops));			\
236 		__n -= (SIP_NTXDESC - __x);				\
237 		__x = 0;						\
238 	}								\
239 									\
240 	/* Now sync whatever is left. */				\
241 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
242 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
243 } while (0)
244 
245 #define	SIP_CDRXSYNC(sc, x, ops)					\
246 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
247 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
248 
249 /*
250  * Note we rely on MCLBYTES being a power of two below.
251  */
252 #define	SIP_INIT_RXDESC(sc, x)						\
253 do {									\
254 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
255 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
256 									\
257 	__sipd->sipd_link = SIP_CDRXADDR((sc), SIP_NEXTRX((x)));	\
258 	__sipd->sipd_bufptr = __rxs->rxs_dmamap->dm_segs[0].ds_addr;	\
259 	__sipd->sipd_cmdsts = CMDSTS_INTR |				\
260 	    ((MCLBYTES - 1) & CMDSTS_SIZE_MASK);			\
261 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
262 } while (0)
263 
264 void	sip_start __P((struct ifnet *));
265 void	sip_watchdog __P((struct ifnet *));
266 int	sip_ioctl __P((struct ifnet *, u_long, caddr_t));
267 
268 void	sip_shutdown __P((void *));
269 
270 void	sip_reset __P((struct sip_softc *));
271 int	sip_init __P((struct sip_softc *));
272 void	sip_stop __P((struct sip_softc *, int));
273 void	sip_rxdrain __P((struct sip_softc *));
274 int	sip_add_rxbuf __P((struct sip_softc *, int));
275 void	sip_read_eeprom __P((struct sip_softc *, int, int, u_int16_t *));
276 void	sip_set_filter __P((struct sip_softc *));
277 void	sip_tick __P((void *));
278 
279 int	sip_intr __P((void *));
280 void	sip_txintr __P((struct sip_softc *));
281 void	sip_rxintr __P((struct sip_softc *));
282 
283 int	sip_mii_readreg __P((struct device *, int, int));
284 void	sip_mii_writereg __P((struct device *, int, int, int));
285 void	sip_mii_statchg __P((struct device *));
286 
287 int	sip_mediachange __P((struct ifnet *));
288 void	sip_mediastatus __P((struct ifnet *, struct ifmediareq *));
289 
290 int	sip_match __P((struct device *, struct cfdata *, void *));
291 void	sip_attach __P((struct device *, struct device *, void *));
292 
293 int	sip_copy_small = 0;
294 
295 struct cfattach sip_ca = {
296 	sizeof(struct sip_softc), sip_match, sip_attach,
297 };
298 
299 const struct sip_product *sip_lookup __P((const struct pci_attach_args *));
300 
301 const struct sip_product *
302 sip_lookup(pa)
303 	const struct pci_attach_args *pa;
304 {
305 	const struct sip_product *sip;
306 
307 	for (sip = sip_products; sip->sip_name != NULL; sip++) {
308 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
309 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
310 			return (sip);
311 	}
312 	return (NULL);
313 }
314 
315 int
316 sip_match(parent, cf, aux)
317 	struct device *parent;
318 	struct cfdata *cf;
319 	void *aux;
320 {
321 	struct pci_attach_args *pa = aux;
322 
323 	if (sip_lookup(pa) != NULL)
324 		return (1);
325 
326 	return (0);
327 }
328 
329 void
330 sip_attach(parent, self, aux)
331 	struct device *parent, *self;
332 	void *aux;
333 {
334 	struct sip_softc *sc = (struct sip_softc *) self;
335 	struct pci_attach_args *pa = aux;
336 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
337 	pci_chipset_tag_t pc = pa->pa_pc;
338 	pci_intr_handle_t ih;
339 	const char *intrstr = NULL;
340 	bus_space_tag_t iot, memt;
341 	bus_space_handle_t ioh, memh;
342 	bus_dma_segment_t seg;
343 	int ioh_valid, memh_valid;
344 	int i, rseg, error;
345 	const struct sip_product *sip;
346 	pcireg_t pmode;
347 	u_int16_t enaddr[ETHER_ADDR_LEN / 2];
348 
349 	sip = sip_lookup(pa);
350 	if (sip == NULL) {
351 		printf("\n");
352 		panic("sip_attach: impossible");
353 	}
354 
355 	printf(": %s\n", sip->sip_name);
356 
357 	sc->sc_model = PCI_PRODUCT(pa->pa_id);
358 
359 	/*
360 	 * Map the device.
361 	 */
362 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
363 	    PCI_MAPREG_TYPE_IO, 0,
364 	    &iot, &ioh, NULL, NULL) == 0);
365 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
366 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
367 	    &memt, &memh, NULL, NULL) == 0);
368 
369 	if (memh_valid) {
370 		sc->sc_st = memt;
371 		sc->sc_sh = memh;
372 	} else if (ioh_valid) {
373 		sc->sc_st = iot;
374 		sc->sc_sh = ioh;
375 	} else {
376 		printf("%s: unable to map device registers\n",
377 		    sc->sc_dev.dv_xname);
378 		return;
379 	}
380 
381 	sc->sc_dmat = pa->pa_dmat;
382 
383 	/* Enable bus mastering. */
384 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
385 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
386 	    PCI_COMMAND_MASTER_ENABLE);
387 
388 	/* Get it out of power save mode if needed. */
389 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, 0, 0)) {
390 		pmode = pci_conf_read(pc, pa->pa_tag, SIP_PCI_CFGPMCSR) & 0x3;
391 		if (pmode == 3) {
392 			/*
393 			 * The card has lost all configuration data in
394 			 * this state, so punt.
395 			 */
396 			printf("%s: unable to wake up from power state D3\n",
397 			    sc->sc_dev.dv_xname);
398 			return;
399 		}
400 		if (pmode != 0) {
401 			printf("%s: waking up from power state D%d\n",
402 			    sc->sc_dev.dv_xname, pmode);
403 			pci_conf_write(pc, pa->pa_tag, SIP_PCI_CFGPMCSR, 0);
404 		}
405 	}
406 
407 	/*
408 	 * Map and establish our interrupt.
409 	 */
410 	if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
411 	    pa->pa_intrline, &ih)) {
412 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
413 		return;
414 	}
415 	intrstr = pci_intr_string(pc, ih);
416 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sip_intr, sc);
417 	if (sc->sc_ih == NULL) {
418 		printf("%s: unable to establish interrupt",
419 		    sc->sc_dev.dv_xname);
420 		if (intrstr != NULL)
421 			printf(" at %s", intrstr);
422 		printf("\n");
423 		return;
424 	}
425 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
426 
427 	SIMPLEQ_INIT(&sc->sc_txfreeq);
428 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
429 
430 	/*
431 	 * Allocate the control data structures, and create and load the
432 	 * DMA map for it.
433 	 */
434 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
435 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
436 	    0)) != 0) {
437 		printf("%s: unable to allocate control data, error = %d\n",
438 		    sc->sc_dev.dv_xname, error);
439 		goto fail_0;
440 	}
441 
442 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
443 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
444 	    BUS_DMA_COHERENT)) != 0) {
445 		printf("%s: unable to map control data, error = %d\n",
446 		    sc->sc_dev.dv_xname, error);
447 		goto fail_1;
448 	}
449 
450 	if ((error = bus_dmamap_create(sc->sc_dmat,
451 	    sizeof(struct sip_control_data), 1,
452 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
453 		printf("%s: unable to create control data DMA map, "
454 		    "error = %d\n", sc->sc_dev.dv_xname, error);
455 		goto fail_2;
456 	}
457 
458 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
459 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
460 	    0)) != 0) {
461 		printf("%s: unable to load control data DMA map, error = %d\n",
462 		    sc->sc_dev.dv_xname, error);
463 		goto fail_3;
464 	}
465 
466 	/*
467 	 * Create the transmit buffer DMA maps.
468 	 */
469 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
470 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
471 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
472 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
473 			printf("%s: unable to create tx DMA map %d, "
474 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
475 			goto fail_4;
476 		}
477 	}
478 
479 	/*
480 	 * Create the receive buffer DMA maps.
481 	 */
482 	for (i = 0; i < SIP_NRXDESC; i++) {
483 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
484 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
485 			printf("%s: unable to create rx DMA map %d, "
486 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
487 			goto fail_5;
488 		}
489 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
490 	}
491 
492 	/*
493 	 * Reset the chip to a known state.
494 	 */
495 	sip_reset(sc);
496 
497 	/*
498 	 * Read the Ethernet address from the EEPROM.
499 	 */
500 	sip_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
501 	    sizeof(enaddr) / sizeof(enaddr[0]), enaddr);
502 
503 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
504 	    ether_sprintf((u_int8_t *)enaddr));
505 
506 	/*
507 	 * Initialize our media structures and probe the MII.
508 	 */
509 	sc->sc_mii.mii_ifp = ifp;
510 	sc->sc_mii.mii_readreg = sip_mii_readreg;
511 	sc->sc_mii.mii_writereg = sip_mii_writereg;
512 	sc->sc_mii.mii_statchg = sip_mii_statchg;
513 	ifmedia_init(&sc->sc_mii.mii_media, 0, sip_mediachange,
514 	    sip_mediastatus);
515 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
516 	    MII_OFFSET_ANY, 0);
517 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
518 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
519 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
520 	} else
521 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
522 
523 	ifp = &sc->sc_ethercom.ec_if;
524 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
525 	ifp->if_softc = sc;
526 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
527 	ifp->if_ioctl = sip_ioctl;
528 	ifp->if_start = sip_start;
529 	ifp->if_watchdog = sip_watchdog;
530 
531 	/*
532 	 * Attach the interface.
533 	 */
534 	if_attach(ifp);
535 	ether_ifattach(ifp, (u_int8_t *)enaddr);
536 #if NBPFILTER > 0
537 	bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
538 	    sizeof(struct ether_header));
539 #endif
540 
541 	/*
542 	 * Make sure the interface is shutdown during reboot.
543 	 */
544 	sc->sc_sdhook = shutdownhook_establish(sip_shutdown, sc);
545 	if (sc->sc_sdhook == NULL)
546 		printf("%s: WARNING: unable to establish shutdown hook\n",
547 		    sc->sc_dev.dv_xname);
548 	return;
549 
550 	/*
551 	 * Free any resources we've allocated during the failed attach
552 	 * attempt.  Do this in reverse order and fall through.
553 	 */
554  fail_5:
555 	for (i = 0; i < SIP_NRXDESC; i++) {
556 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
557 			bus_dmamap_destroy(sc->sc_dmat,
558 			    sc->sc_rxsoft[i].rxs_dmamap);
559 	}
560  fail_4:
561 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
562 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
563 			bus_dmamap_destroy(sc->sc_dmat,
564 			    sc->sc_txsoft[i].txs_dmamap);
565 	}
566 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
567  fail_3:
568 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
569  fail_2:
570 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
571 	    sizeof(struct sip_control_data));
572  fail_1:
573 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
574  fail_0:
575 	return;
576 }
577 
578 /*
579  * sip_shutdown:
580  *
581  *	Make sure the interface is stopped at reboot time.
582  */
583 void
584 sip_shutdown(arg)
585 	void *arg;
586 {
587 	struct sip_softc *sc = arg;
588 
589 	sip_stop(sc, 1);
590 }
591 
592 /*
593  * sip_start:		[ifnet interface function]
594  *
595  *	Start packet transmission on the interface.
596  */
597 void
598 sip_start(ifp)
599 	struct ifnet *ifp;
600 {
601 	struct sip_softc *sc = ifp->if_softc;
602 	struct mbuf *m0, *m;
603 	struct sip_txsoft *txs;
604 	bus_dmamap_t dmamap;
605 	int error, firsttx, nexttx, lasttx, ofree, seg;
606 
607 	/*
608 	 * If we've been told to pause, don't transmit any more packets.
609 	 */
610 	if (sc->sc_flags & SIPF_PAUSED)
611 		ifp->if_flags |= IFF_OACTIVE;
612 
613 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
614 		return;
615 
616 	/*
617 	 * Remember the previous number of free descriptors and
618 	 * the first descriptor we'll use.
619 	 */
620 	ofree = sc->sc_txfree;
621 	firsttx = sc->sc_txnext;
622 
623 	/*
624 	 * Loop through the send queue, setting up transmit descriptors
625 	 * until we drain the queue, or use up all available transmit
626 	 * descriptors.
627 	 */
628 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
629 	       sc->sc_txfree != 0) {
630 		/*
631 		 * Grab a packet off the queue.
632 		 */
633 		IF_DEQUEUE(&ifp->if_snd, m0);
634 		if (m0 == NULL)
635 			break;
636 
637 		dmamap = txs->txs_dmamap;
638 
639 		/*
640 		 * Load the DMA map.  If this fails, the packet either
641 		 * didn't fit in the alloted number of segments, or we
642 		 * were short on resources.  In this case, we'll copy
643 		 * and try again.
644 		 */
645 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
646 		    BUS_DMA_NOWAIT) != 0) {
647 			MGETHDR(m, M_DONTWAIT, MT_DATA);
648 			if (m == NULL) {
649 				printf("%s: unable to allocate Tx mbuf\n",
650 				    sc->sc_dev.dv_xname);
651 				IF_PREPEND(&ifp->if_snd, m0);
652 				break;
653 			}
654 			if (m0->m_pkthdr.len > MHLEN) {
655 				MCLGET(m, M_DONTWAIT);
656 				if ((m->m_flags & M_EXT) == 0) {
657 					printf("%s: unable to allocate Tx "
658 					    "cluster\n", sc->sc_dev.dv_xname);
659 					m_freem(m);
660 					IF_PREPEND(&ifp->if_snd, m0);
661 					break;
662 				}
663 			}
664 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
665 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
666 			m_freem(m0);
667 			m0 = m;
668 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
669 			    m0, BUS_DMA_NOWAIT);
670 			if (error) {
671 				printf("%s: unable to load Tx buffer, "
672 				    "error = %d\n", sc->sc_dev.dv_xname, error);
673 				IF_PREPEND(&ifp->if_snd, m0);
674 				break;
675 			}
676 		}
677 
678 		/*
679 		 * Ensure we have enough descriptors free to describe
680 		 * the packet.
681 		 */
682 		if (dmamap->dm_nsegs > sc->sc_txfree) {
683 			/*
684 			 * Not enough free descriptors to transmit this
685 			 * packet.  We haven't committed anything yet,
686 			 * so just unload the DMA map, put the packet
687 			 * back on the queue, and punt.  Notify the upper
688 			 * layer that there are not more slots left.
689 			 *
690 			 * XXX We could allocate an mbuf and copy, but
691 			 * XXX is it worth it?
692 			 */
693 			ifp->if_flags |= IFF_OACTIVE;
694 			bus_dmamap_unload(sc->sc_dmat, dmamap);
695 			IF_PREPEND(&ifp->if_snd, m0);
696 			break;
697 		}
698 
699 		/*
700 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
701 		 */
702 
703 		/* Sync the DMA map. */
704 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
705 		    BUS_DMASYNC_PREWRITE);
706 
707 		/*
708 		 * Initialize the transmit descriptors.
709 		 */
710 		for (nexttx = sc->sc_txnext, seg = 0;
711 		     seg < dmamap->dm_nsegs;
712 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
713 			/*
714 			 * If this is the first descriptor we're
715 			 * enqueueing, don't set the OWN bit just
716 			 * yet.  That could cause a race condition.
717 			 * We'll do it below.
718 			 */
719 			sc->sc_txdescs[nexttx].sipd_bufptr =
720 			    dmamap->dm_segs[seg].ds_addr;
721 			sc->sc_txdescs[nexttx].sipd_cmdsts =
722 			    (nexttx == firsttx ? 0 : CMDSTS_OWN) |
723 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len;
724 			lasttx = nexttx;
725 		}
726 
727 		/* Clear the MORE bit on the last segment. */
728 		sc->sc_txdescs[lasttx].sipd_cmdsts &= ~CMDSTS_MORE;
729 
730 		/* Sync the descriptors we're using. */
731 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
732 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
733 
734 		/*
735 		 * Store a pointer to the packet so we can free it later,
736 		 * and remember what txdirty will be once the packet is
737 		 * done.
738 		 */
739 		txs->txs_mbuf = m0;
740 		txs->txs_firstdesc = sc->sc_txnext;
741 		txs->txs_lastdesc = lasttx;
742 
743 		/* Advance the tx pointer. */
744 		sc->sc_txfree -= dmamap->dm_nsegs;
745 		sc->sc_txnext = nexttx;
746 
747 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
748 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
749 
750 #if NBPFILTER > 0
751 		/*
752 		 * Pass the packet to any BPF listeners.
753 		 */
754 		if (ifp->if_bpf)
755 			bpf_mtap(ifp->if_bpf, m0);
756 #endif /* NBPFILTER > 0 */
757 	}
758 
759 	if (txs == NULL || sc->sc_txfree == 0) {
760 		/* No more slots left; notify upper layer. */
761 		ifp->if_flags |= IFF_OACTIVE;
762 	}
763 
764 	if (sc->sc_txfree != ofree) {
765 		/*
766 		 * Cause a descriptor interrupt to happen on the
767 		 * last packet we enqueued.
768 		 */
769 		sc->sc_txdescs[lasttx].sipd_cmdsts |= CMDSTS_INTR;
770 		SIP_CDTXSYNC(sc, lasttx, 1,
771 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
772 
773 		/*
774 		 * The entire packet chain is set up.  Give the
775 		 * first descrptor to the chip now.
776 		 */
777 		sc->sc_txdescs[firsttx].sipd_cmdsts |= CMDSTS_OWN;
778 		SIP_CDTXSYNC(sc, firsttx, 1,
779 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
780 
781 		/* Start the transmit process. */
782 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
783 		     CR_TXE) == 0) {
784 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
785 			    SIP_CDTXADDR(sc, firsttx));
786 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
787 		}
788 
789 		/* Set a watchdog timer in case the chip flakes out. */
790 		ifp->if_timer = 5;
791 	}
792 }
793 
794 /*
795  * sip_watchdog:	[ifnet interface function]
796  *
797  *	Watchdog timer handler.
798  */
799 void
800 sip_watchdog(ifp)
801 	struct ifnet *ifp;
802 {
803 	struct sip_softc *sc = ifp->if_softc;
804 
805 	/*
806 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
807 	 * If we get a timeout, try and sweep up transmit descriptors.
808 	 * If we manage to sweep them all up, ignore the lack of
809 	 * interrupt.
810 	 */
811 	sip_txintr(sc);
812 
813 	if (sc->sc_txfree != SIP_NTXDESC) {
814 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
815 		ifp->if_oerrors++;
816 
817 		/* Reset the interface. */
818 		(void) sip_init(sc);
819 	} else if (ifp->if_flags & IFF_DEBUG)
820 		printf("%s: recovered from device timeout\n",
821 		    sc->sc_dev.dv_xname);
822 
823 	/* Try to get more packets going. */
824 	sip_start(ifp);
825 }
826 
827 /*
828  * sip_ioctl:		[ifnet interface function]
829  *
830  *	Handle control requests from the operator.
831  */
832 int
833 sip_ioctl(ifp, cmd, data)
834 	struct ifnet *ifp;
835 	u_long cmd;
836 	caddr_t data;
837 {
838 	struct sip_softc *sc = ifp->if_softc;
839 	struct ifreq *ifr = (struct ifreq *)data;
840 	struct ifaddr *ifa = (struct ifaddr *)data;
841 	int s, error = 0;
842 
843 	s = splnet();
844 
845 	switch (cmd) {
846 	case SIOCSIFADDR:
847 		ifp->if_flags |= IFF_UP;
848 
849 		switch (ifa->ifa_addr->sa_family) {
850 #ifdef INET
851 		case AF_INET:
852 			if ((error = sip_init(sc)) != 0)
853 				break;
854 			arp_ifinit(ifp, ifa);
855 			break;
856 #endif /* INET */
857 #ifdef NS
858 		case AF_NS:
859 		    {
860 			struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
861 
862 			if (ns_nullhost(*ina))
863 				ina->x_host = *(union ns_host *)
864 				    LLADDR(ifp->if_sadl);
865 			else
866 				memcpy(LLADDR(ifp->if_sadl),
867 				    ina->x_host.c_host, ifp->if_addrlen);
868 			error = sip_init(sc);
869 			break;
870 		    }
871 #endif /* NS */
872 		default:
873 			error = sip_init(sc);
874 			break;
875 		}
876 		break;
877 
878 	case SIOCSIFMTU:
879 		if (ifr->ifr_mtu > ETHERMTU)
880 			error = EINVAL;
881 		else
882 			ifp->if_mtu = ifr->ifr_mtu;
883 		break;
884 
885 	case SIOCSIFFLAGS:
886 		if ((ifp->if_flags & IFF_UP) == 0 &&
887 		    (ifp->if_flags & IFF_RUNNING) != 0) {
888 			/*
889 			 * If interface is marked down and it is running, then
890 			 * stop it.
891 			 */
892 			sip_stop(sc, 1);
893 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
894 			   (ifp->if_flags & IFF_RUNNING) == 0) {
895 			/*
896 			 * If interfase it marked up and it is stopped, then
897 			 * start it.
898 			 */
899 			error = sip_init(sc);
900 		} else if ((ifp->if_flags & IFF_UP) != 0) {
901 			/*
902 			 * Reset the interface to pick up changes in any other
903 			 * flags that affect the hardware state.
904 			 */
905 			error = sip_init(sc);
906 		}
907 		break;
908 
909 	case SIOCADDMULTI:
910 	case SIOCDELMULTI:
911 		error = (cmd == SIOCADDMULTI) ?
912 		    ether_addmulti(ifr, &sc->sc_ethercom) :
913 		    ether_delmulti(ifr, &sc->sc_ethercom);
914 
915 		if (error == ENETRESET) {
916 			/*
917 			 * Multicast list has changed; set the hardware filter
918 			 * accordingly.
919 			 */
920 			sip_set_filter(sc);
921 			error = 0;
922 		}
923 		break;
924 
925 	case SIOCSIFMEDIA:
926 	case SIOCGIFMEDIA:
927 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
928 		break;
929 
930 	default:
931 		error = EINVAL;
932 		break;
933 	}
934 
935 	/* Try to get more packets going. */
936 	sip_start(ifp);
937 
938 	splx(s);
939 	return (error);
940 }
941 
942 /*
943  * sip_intr:
944  *
945  *	Interrupt service routine.
946  */
947 int
948 sip_intr(arg)
949 	void *arg;
950 {
951 	struct sip_softc *sc = arg;
952 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
953 	u_int32_t isr;
954 	int handled = 0;
955 
956 	for (;;) {
957 		/* Reading clears interrupt. */
958 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
959 		if ((isr & sc->sc_imr) == 0)
960 			break;
961 
962 		handled = 1;
963 
964 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
965 			/* Grab any new packets. */
966 			sip_rxintr(sc);
967 
968 			if (isr & ISR_RXORN) {
969 				printf("%s: receive FIFO overrun\n",
970 				    sc->sc_dev.dv_xname);
971 
972 				/* XXX adjust rx_drain_thresh? */
973 			}
974 
975 			if (isr & ISR_RXIDLE) {
976 				printf("%s: receive ring overrun\n",
977 				    sc->sc_dev.dv_xname);
978 
979 				/* Get the receive process going again. */
980 				bus_space_write_4(sc->sc_st, sc->sc_sh,
981 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
982 				bus_space_write_4(sc->sc_st, sc->sc_sh,
983 				    SIP_CR, CR_RXE);
984 			}
985 		}
986 
987 		if (isr & (ISR_TXURN|ISR_TXDESC)) {
988 			/* Sweep up transmit descriptors. */
989 			sip_txintr(sc);
990 
991 			if (isr & ISR_TXURN) {
992 				u_int32_t thresh;
993 
994 				printf("%s: transmit FIFO underrun",
995 				    sc->sc_dev.dv_xname);
996 
997 				thresh = sc->sc_tx_drain_thresh + 1;
998 				if (thresh <= TXCFG_DRTH &&
999 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
1000 				     (sc->sc_tx_fill_thresh * 32))) {
1001 					printf("; increasing Tx drain "
1002 					    "threshold to %u bytes\n",
1003 					    thresh * 32);
1004 					sc->sc_tx_drain_thresh = thresh;
1005 					(void) sip_init(sc);
1006 				} else {
1007 					(void) sip_init(sc);
1008 					printf("\n");
1009 				}
1010 			}
1011 		}
1012 
1013 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1014 			if (isr & ISR_PAUSE_ST) {
1015 				sc->sc_flags |= SIPF_PAUSED;
1016 				ifp->if_flags |= IFF_OACTIVE;
1017 			}
1018 			if (isr & ISR_PAUSE_END) {
1019 				sc->sc_flags &= ~SIPF_PAUSED;
1020 				ifp->if_flags &= ~IFF_OACTIVE;
1021 			}
1022 		}
1023 
1024 		if (isr & ISR_HIBERR) {
1025 #define	PRINTERR(bit, str)						\
1026 			if (isr & (bit))				\
1027 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1028 			PRINTERR(ISR_DPERR, "parity error");
1029 			PRINTERR(ISR_SSERR, "system error");
1030 			PRINTERR(ISR_RMABT, "master abort");
1031 			PRINTERR(ISR_RTABT, "target abort");
1032 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1033 			(void) sip_init(sc);
1034 #undef PRINTERR
1035 		}
1036 	}
1037 
1038 	/* Try to get more packets going. */
1039 	sip_start(ifp);
1040 
1041 	return (handled);
1042 }
1043 
1044 /*
1045  * sip_txintr:
1046  *
1047  *	Helper; handle transmit interrupts.
1048  */
1049 void
1050 sip_txintr(sc)
1051 	struct sip_softc *sc;
1052 {
1053 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1054 	struct sip_txsoft *txs;
1055 	u_int32_t cmdsts;
1056 
1057 	if ((sc->sc_flags & SIPF_PAUSED) == 0)
1058 		ifp->if_flags &= ~IFF_OACTIVE;
1059 
1060 	/*
1061 	 * Go through our Tx list and free mbufs for those
1062 	 * frames which have been transmitted.
1063 	 */
1064 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1065 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1066 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1067 
1068 		cmdsts = sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts;
1069 		if (cmdsts & CMDSTS_OWN)
1070 			break;
1071 
1072 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1073 
1074 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1075 
1076 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1077 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1078 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1079 		m_freem(txs->txs_mbuf);
1080 		txs->txs_mbuf = NULL;
1081 
1082 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1083 
1084 		/*
1085 		 * Check for errors and collisions.
1086 		 */
1087 		if (cmdsts &
1088 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1089 			if (ifp->if_flags & IFF_DEBUG) {
1090 				if (CMDSTS_Tx_ED)
1091 					printf("%s: excessive deferral\n",
1092 					    sc->sc_dev.dv_xname);
1093 				if (CMDSTS_Tx_EC) {
1094 					printf("%s: excessive collisions\n",
1095 					    sc->sc_dev.dv_xname);
1096 					ifp->if_collisions += 16;
1097 				}
1098 			}
1099 		} else {
1100 			/* Packet was transmitted successfully. */
1101 			ifp->if_opackets++;
1102 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1103 		}
1104 	}
1105 
1106 	/*
1107 	 * If there are no more pending transmissions, cancel the watchdog
1108 	 * timer.
1109 	 */
1110 	if (txs == NULL)
1111 		ifp->if_timer = 0;
1112 }
1113 
1114 /*
1115  * sip_rxintr:
1116  *
1117  *	Helper; handle receive interrupts.
1118  */
1119 void
1120 sip_rxintr(sc)
1121 	struct sip_softc *sc;
1122 {
1123 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1124 	struct ether_header *eh;
1125 	struct sip_rxsoft *rxs;
1126 	struct mbuf *m;
1127 	u_int32_t cmdsts;
1128 	int i, len;
1129 
1130 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1131 		rxs = &sc->sc_rxsoft[i];
1132 
1133 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1134 
1135 		cmdsts = sc->sc_rxdescs[i].sipd_cmdsts;
1136 
1137 		/*
1138 		 * NOTE: OWN is set if owned by _consumer_.  We're the
1139 		 * consumer of the receive ring, so if the bit is clear,
1140 		 * we have processed all of the packets.
1141 		 */
1142 		if ((cmdsts & CMDSTS_OWN) == 0) {
1143 			/*
1144 			 * We have processed all of the receive buffers.
1145 			 */
1146 			break;
1147 		}
1148 
1149 		/*
1150 		 * If any collisions were seen on the wire, count one.
1151 		 */
1152 		if (cmdsts & CMDSTS_Rx_COL)
1153 			ifp->if_collisions++;
1154 
1155 		/*
1156 		 * If an error occurred, update stats, clear the status
1157 		 * word, and leave the packet buffer in place.  It will
1158 		 * simply be reused the next time the ring comes around.
1159 		 */
1160 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_LONG|CMDSTS_Rx_RUNT|
1161 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1162 			ifp->if_ierrors++;
1163 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1164 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
1165 				/* Receive overrun handled elsewhere. */
1166 				printf("%s: receive descriptor error\n",
1167 				    sc->sc_dev.dv_xname);
1168 			}
1169 #define	PRINTERR(bit, str)						\
1170 			if (cmdsts & (bit))				\
1171 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1172 			PRINTERR(CMDSTS_Rx_LONG, "packet too long");
1173 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1174 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1175 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1176 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1177 #undef PRINTERR
1178 			SIP_INIT_RXDESC(sc, i);
1179 			continue;
1180 		}
1181 
1182 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1183 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1184 
1185 		/*
1186 		 * No errors; receive the packet.  Note, the SiS 900
1187 		 * includes the CRC with every packet; trim it.
1188 		 */
1189 		len = CMDSTS_SIZE(cmdsts) - ETHER_CRC_LEN;
1190 
1191 #ifdef __NO_STRICT_ALIGNMENT
1192 		/*
1193 		 * If the packet is small enough to fit in a
1194 		 * single header mbuf, allocate one and copy
1195 		 * the data into it.  This greatly reduces
1196 		 * memory consumption when we receive lots
1197 		 * of small packets.
1198 		 *
1199 		 * Otherwise, we add a new buffer to the receive
1200 		 * chain.  If this fails, we drop the packet and
1201 		 * recycle the old buffer.
1202 		 */
1203 		if (sip_copy_small != 0 && len <= MHLEN) {
1204 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1205 			if (m == NULL)
1206 				goto dropit;
1207 			memcpy(mtod(m, caddr_t),
1208 			    mtod(rxs->rxs_mbuf, caddr_t), len);
1209 			SIP_INIT_RXDESC(sc, i);
1210 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1211 			    rxs->rxs_dmamap->dm_mapsize,
1212 			    BUS_DMASYNC_PREREAD);
1213 		} else {
1214 			m = rxs->rxs_mbuf;
1215 			if (sip_add_rxbuf(sc, i) != 0) {
1216  dropit:
1217 				ifp->if_ierrors++;
1218 				SIP_INIT_RXDESC(sc, i);
1219 				bus_dmamap_sync(sc->sc_dmat,
1220 				    rxs->rxs_dmamap, 0,
1221 				    rxs->rxs_dmamap->dm_mapsize,
1222 				    BUS_DMASYNC_PREREAD);
1223 				continue;
1224 			}
1225 		}
1226 #else
1227 		/*
1228 		 * The SiS 900's receive buffers must be 4-byte aligned.
1229 		 * But this means that the data after the Ethernet header
1230 		 * is misaligned.  We must allocate a new buffer and
1231 		 * copy the data, shifted forward 2 bytes.
1232 		 */
1233 		MGETHDR(m, M_DONTWAIT, MT_DATA);
1234 		if (m == NULL) {
1235  dropit:
1236 			ifp->if_ierrors++;
1237 			SIP_INIT_RXDESC(sc, i);
1238 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1239 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1240 			continue;
1241 		}
1242 		if (len > (MHLEN - 2)) {
1243 			MCLGET(m, M_DONTWAIT);
1244 			if ((m->m_flags & M_EXT) == 0) {
1245 				m_freem(m);
1246 				goto dropit;
1247 			}
1248 		}
1249 		m->m_data += 2;
1250 
1251 		/*
1252 		 * Note that we use clusters for incoming frames, so the
1253 		 * buffer is virtually contiguous.
1254 		 */
1255 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
1256 
1257 		/* Allow the receive descriptor to continue using its mbuf. */
1258 		SIP_INIT_RXDESC(sc, i);
1259 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1260 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1261 #endif /* __NO_STRICT_ALIGNMENT */
1262 
1263 		ifp->if_ipackets++;
1264 		eh = mtod(m, struct ether_header *);
1265 		m->m_pkthdr.rcvif = ifp;
1266 		m->m_pkthdr.len = m->m_len = len;
1267 
1268 #if NBPFILTER > 0
1269 		/*
1270 		 * Pass this up to any BPF listeners, but only
1271 		 * pass if up the stack if it's for us.
1272 		 */
1273 		if (ifp->if_bpf) {
1274 			bpf_mtap(ifp->if_bpf, m);
1275 			if ((ifp->if_flags & IFF_PROMISC) != 0 &&
1276 			    (cmdsts & CMDSTS_Rx_DEST) == CMDSTS_Rx_DEST_REJ) {
1277 				m_freem(m);
1278 				continue;
1279 			}
1280 		}
1281 #endif /* NBPFILTER > 0 */
1282 
1283 		/* Pass it on. */
1284 		(*ifp->if_input)(ifp, m);
1285 	}
1286 
1287 	/* Update the receive pointer. */
1288 	sc->sc_rxptr = i;
1289 }
1290 
1291 /*
1292  * sip_tick:
1293  *
1294  *	One second timer, used to tick the MII.
1295  */
1296 void
1297 sip_tick(arg)
1298 	void *arg;
1299 {
1300 	struct sip_softc *sc = arg;
1301 	int s;
1302 
1303 	s = splnet();
1304 	mii_tick(&sc->sc_mii);
1305 	splx(s);
1306 
1307 	timeout(sip_tick, sc, hz);
1308 }
1309 
1310 /*
1311  * sip_reset:
1312  *
1313  *	Perform a soft reset on the SiS 900.
1314  */
1315 void
1316 sip_reset(sc)
1317 	struct sip_softc *sc;
1318 {
1319 	bus_space_tag_t st = sc->sc_st;
1320 	bus_space_handle_t sh = sc->sc_sh;
1321 	int i;
1322 
1323 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
1324 
1325 	for (i = 0; i < 1000; i++) {
1326 		if ((bus_space_read_4(st, sh, SIP_ISR) &
1327 		     (ISR_TXRCMP|ISR_RXRCMP)) == (ISR_TXRCMP|ISR_RXRCMP))
1328 			return;
1329 		delay(2);
1330 	}
1331 
1332 	printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1333 }
1334 
1335 /*
1336  * sip_init:
1337  *
1338  *	Initialize the interface.  Must be called at splnet().
1339  */
1340 int
1341 sip_init(sc)
1342 	struct sip_softc *sc;
1343 {
1344 	bus_space_tag_t st = sc->sc_st;
1345 	bus_space_handle_t sh = sc->sc_sh;
1346 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1347 	struct sip_txsoft *txs;
1348 	struct sip_rxsoft *rxs;
1349 	struct sip_desc *sipd;
1350 	u_int32_t cfg;
1351 	int i, error = 0;
1352 
1353 	/*
1354 	 * Cancel any pending I/O.
1355 	 */
1356 	sip_stop(sc, 0);
1357 
1358 	/*
1359 	 * Reset the chip to a known state.
1360 	 */
1361 	sip_reset(sc);
1362 
1363 	/*
1364 	 * Initialize the transmit descriptor ring.
1365 	 */
1366 	for (i = 0; i < SIP_NTXDESC; i++) {
1367 		sipd = &sc->sc_txdescs[i];
1368 		memset(sipd, 0, sizeof(struct sip_desc));
1369 		sipd->sipd_link = SIP_CDTXADDR(sc, SIP_NEXTTX(i));
1370 	}
1371 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
1372 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1373 	sc->sc_txfree = SIP_NTXDESC;
1374 	sc->sc_txnext = 0;
1375 
1376 	/*
1377 	 * Initialize the transmit job descriptors.
1378 	 */
1379 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1380 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1381 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
1382 		txs = &sc->sc_txsoft[i];
1383 		txs->txs_mbuf = NULL;
1384 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1385 	}
1386 
1387 	/*
1388 	 * Initialize the receive descriptor and receive job
1389 	 * descriptor rings.
1390 	 */
1391 	for (i = 0; i < SIP_NRXDESC; i++) {
1392 		rxs = &sc->sc_rxsoft[i];
1393 		if (rxs->rxs_mbuf == NULL) {
1394 			if ((error = sip_add_rxbuf(sc, i)) != 0) {
1395 				printf("%s: unable to allocate or map rx "
1396 				    "buffer %d, error = %d\n",
1397 				    sc->sc_dev.dv_xname, i, error);
1398 				/*
1399 				 * XXX Should attempt to run with fewer receive
1400 				 * XXX buffers instead of just failing.
1401 				 */
1402 				sip_rxdrain(sc);
1403 				goto out;
1404 			}
1405 		}
1406 	}
1407 	sc->sc_rxptr = 0;
1408 
1409 	/*
1410 	 * Initialize the configuration register: aggressive PCI
1411 	 * bus request algorithm, default backoff, default OW timer,
1412 	 * default parity error detection.
1413 	 */
1414 	cfg = 0;
1415 #if BYTE_ORDER == BIG_ENDIAN
1416 	/*
1417 	 * ...descriptors in big-endian mode.
1418 	 */
1419 	cfg |= CFG_BEM;
1420 #endif
1421 	bus_space_write_4(st, sh, SIP_CFG, cfg);
1422 
1423 	/*
1424 	 * Initialize the transmit fill and drain thresholds if
1425 	 * we have never done so.
1426 	 */
1427 	if (sc->sc_tx_fill_thresh == 0) {
1428 		/*
1429 		 * XXX This value should be tuned.  This is the
1430 		 * minimum (32 bytes), and we may be able to
1431 		 * improve performance by increasing it.
1432 		 */
1433 		sc->sc_tx_fill_thresh = 1;
1434 	}
1435 	if (sc->sc_tx_drain_thresh == 0) {
1436 		/*
1437 		 * Start at a drain threshold of 128 bytes.  We will
1438 		 * increase it if a DMA underrun occurs.
1439 		 *
1440 		 * XXX The minimum value of this variable should be
1441 		 * tuned.  We may be able to improve performance
1442 		 * by starting with a lower value.  That, however,
1443 		 * may trash the first few outgoing packets if the
1444 		 * PCI bus is saturated.
1445 		 */
1446 		sc->sc_tx_drain_thresh = 4;
1447 	}
1448 
1449 	/*
1450 	 * Initialize the prototype TXCFG register.
1451 	 */
1452 	sc->sc_txcfg = TXCFG_ATP | TXCFG_MXDMA_512 |
1453 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
1454 	    sc->sc_tx_drain_thresh;
1455 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
1456 
1457 	/*
1458 	 * Initialize the receive drain threshold if we have never
1459 	 * done so.
1460 	 */
1461 	if (sc->sc_rx_drain_thresh == 0) {
1462 		/*
1463 		 * XXX This value should be tuned.  This is set to the
1464 		 * maximum of 248 bytes, and we may be able to improve
1465 		 * performance by decreasing it (although we should never
1466 		 * set this value lower than 2; 14 bytes are required to
1467 		 * filter the packet).
1468 		 */
1469 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
1470 	}
1471 
1472 	/*
1473 	 * Initialize the prototype RXCFG register.
1474 	 */
1475 	sc->sc_rxcfg = RXCFG_MXDMA_512 |
1476 	    (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
1477 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
1478 
1479 	/* Set up the receive filter. */
1480 	sip_set_filter(sc);
1481 
1482 	/*
1483 	 * Give the transmit and receive rings to the chip.
1484 	 */
1485 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
1486 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1487 
1488 	/*
1489 	 * Initialize the interrupt mask.
1490 	 */
1491 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
1492 	    ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
1493 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
1494 
1495 	/*
1496 	 * Set the current media.  Do this after initializing the prototype
1497 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
1498 	 * control.
1499 	 */
1500 	mii_mediachg(&sc->sc_mii);
1501 
1502 	/*
1503 	 * Enable interrupts.
1504 	 */
1505 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
1506 
1507 	/*
1508 	 * Start the transmit and receive processes.
1509 	 */
1510 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
1511 
1512 	/*
1513 	 * Start the one second MII clock.
1514 	 */
1515 	timeout(sip_tick, sc, hz);
1516 
1517 	/*
1518 	 * ...all done!
1519 	 */
1520 	ifp->if_flags |= IFF_RUNNING;
1521 	ifp->if_flags &= ~IFF_OACTIVE;
1522 
1523  out:
1524 	if (error)
1525 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1526 	return (error);
1527 }
1528 
1529 /*
1530  * sip_drain:
1531  *
1532  *	Drain the receive queue.
1533  */
1534 void
1535 sip_rxdrain(sc)
1536 	struct sip_softc *sc;
1537 {
1538 	struct sip_rxsoft *rxs;
1539 	int i;
1540 
1541 	for (i = 0; i < SIP_NRXDESC; i++) {
1542 		rxs = &sc->sc_rxsoft[i];
1543 		if (rxs->rxs_mbuf != NULL) {
1544 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1545 			m_freem(rxs->rxs_mbuf);
1546 			rxs->rxs_mbuf = NULL;
1547 		}
1548 	}
1549 }
1550 
1551 /*
1552  * sip_stop:
1553  *
1554  *	Stop transmission on the interface.
1555  */
1556 void
1557 sip_stop(sc, drain)
1558 	struct sip_softc *sc;
1559 {
1560 	bus_space_tag_t st = sc->sc_st;
1561 	bus_space_handle_t sh = sc->sc_sh;
1562 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1563 	struct sip_txsoft *txs;
1564 	u_int32_t cmdsts = 0;		/* DEBUG */
1565 
1566 	/*
1567 	 * Stop the one second clock.
1568 	 */
1569 	untimeout(sip_tick, sc);
1570 
1571 	/* Down the MII. */
1572 	mii_down(&sc->sc_mii);
1573 
1574 	/*
1575 	 * Disable interrupts.
1576 	 */
1577 	bus_space_write_4(st, sh, SIP_IER, 0);
1578 
1579 	/*
1580 	 * Stop receiver and transmitter.
1581 	 */
1582 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
1583 
1584 	/*
1585 	 * Release any queued transmit buffers.
1586 	 */
1587 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1588 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
1589 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
1590 		    (sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts &
1591 		     CMDSTS_INTR) == 0)
1592 			printf("%s: sip_stop: last descriptor does not "
1593 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
1594 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1595 #ifdef DIAGNOSTIC
1596 		if (txs->txs_mbuf == NULL) {
1597 			printf("%s: dirty txsoft with no mbuf chain\n",
1598 			    sc->sc_dev.dv_xname);
1599 			panic("sip_stop");
1600 		}
1601 #endif
1602 		cmdsts |=		/* DEBUG */
1603 		    sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts;
1604 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1605 		m_freem(txs->txs_mbuf);
1606 		txs->txs_mbuf = NULL;
1607 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1608 	}
1609 
1610 	if (drain) {
1611 		/*
1612 		 * Release the receive buffers.
1613 		 */
1614 		sip_rxdrain(sc);
1615 	}
1616 
1617 	/*
1618 	 * Mark the interface down and cancel the watchdog timer.
1619 	 */
1620 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1621 	ifp->if_timer = 0;
1622 
1623 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
1624 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
1625 		printf("%s: sip_stop: no INTR bits set in dirty tx "
1626 		    "descriptors\n", sc->sc_dev.dv_xname);
1627 }
1628 
1629 /*
1630  * sip_read_eeprom:
1631  *
1632  *	Read data from the serial EEPROM.
1633  */
1634 void
1635 sip_read_eeprom(sc, word, wordcnt, data)
1636 	struct sip_softc *sc;
1637 	int word, wordcnt;
1638 	u_int16_t *data;
1639 {
1640 	bus_space_tag_t st = sc->sc_st;
1641 	bus_space_handle_t sh = sc->sc_sh;
1642 	u_int16_t reg;
1643 	int i, x;
1644 
1645 	for (i = 0; i < wordcnt; i++) {
1646 		/* Send CHIP SELECT. */
1647 		reg = EROMAR_EECS;
1648 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
1649 
1650 		/* Shift in the READ opcode. */
1651 		for (x = 3; x > 0; x--) {
1652 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
1653 				reg |= EROMAR_EEDI;
1654 			else
1655 				reg &= ~EROMAR_EEDI;
1656 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
1657 			bus_space_write_4(st, sh, SIP_EROMAR,
1658 			    reg | EROMAR_EESK);
1659 			delay(4);
1660 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
1661 			delay(4);
1662 		}
1663 
1664 		/* Shift in address. */
1665 		for (x = 6; x > 0; x--) {
1666 			if ((word + i) & (1 << (x - 1)))
1667 				reg |= EROMAR_EEDI;
1668 			else
1669 				reg &= ~EROMAR_EEDI;
1670 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
1671 			bus_space_write_4(st, sh, SIP_EROMAR,
1672 			    reg | EROMAR_EESK);
1673 			delay(4);
1674 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
1675 			delay(4);
1676 		}
1677 
1678 		/* Shift out data. */
1679 		reg = EROMAR_EECS;
1680 		data[i] = 0;
1681 		for (x = 16; x > 0; x--) {
1682 			bus_space_write_4(st, sh, SIP_EROMAR,
1683 			    reg | EROMAR_EESK);
1684 			delay(4);
1685 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
1686 				data[i] |= (1 << (x - 1));
1687 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
1688 		}
1689 
1690 		/* Clear CHIP SELECT. */
1691 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
1692 		delay(4);
1693 	}
1694 }
1695 
1696 /*
1697  * sip_add_rxbuf:
1698  *
1699  *	Add a receive buffer to the indicated descriptor.
1700  */
1701 int
1702 sip_add_rxbuf(sc, idx)
1703 	struct sip_softc *sc;
1704 	int idx;
1705 {
1706 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
1707 	struct mbuf *m;
1708 	int error;
1709 
1710 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1711 	if (m == NULL)
1712 		return (ENOBUFS);
1713 
1714 	MCLGET(m, M_DONTWAIT);
1715 	if ((m->m_flags & M_EXT) == 0) {
1716 		m_freem(m);
1717 		return (ENOBUFS);
1718 	}
1719 
1720 	if (rxs->rxs_mbuf != NULL)
1721 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1722 
1723 	rxs->rxs_mbuf = m;
1724 
1725 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1726 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1727 	if (error) {
1728 		printf("%s: can't load rx DMA map %d, error = %d\n",
1729 		    sc->sc_dev.dv_xname, idx, error);
1730 		panic("sip_add_rxbuf");		/* XXX */
1731 	}
1732 
1733 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1734 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1735 
1736 	SIP_INIT_RXDESC(sc, idx);
1737 
1738 	return (0);
1739 }
1740 
1741 /*
1742  * sip_set_filter:
1743  *
1744  *	Set up the receive filter.
1745  */
1746 void
1747 sip_set_filter(sc)
1748 	struct sip_softc *sc;
1749 {
1750 	bus_space_tag_t st = sc->sc_st;
1751 	bus_space_handle_t sh = sc->sc_sh;
1752 	struct ethercom *ec = &sc->sc_ethercom;
1753 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1754 	struct ether_multi *enm;
1755 	struct ether_multistep step;
1756 	u_int8_t *cp;
1757 	u_int32_t crc, mchash[8];
1758 	int len;
1759 	static const u_int32_t crctab[] = {
1760 		0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
1761 		0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
1762 		0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
1763 		0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
1764 	};
1765 
1766 	/*
1767 	 * Initialize the prototype RFCR.
1768 	 */
1769 	sc->sc_rfcr = RFCR_RFEN;
1770 	if (ifp->if_flags & IFF_BROADCAST)
1771 		sc->sc_rfcr |= RFCR_AAB;
1772 	if (ifp->if_flags & IFF_PROMISC) {
1773 		sc->sc_rfcr |= RFCR_AAP;
1774 		goto allmulti;
1775 	}
1776 
1777 	/*
1778 	 * Set up the multicast address filter by passing all multicast
1779 	 * addresses through a CRC generator, and then using the high-order
1780 	 * 6 bits as an index into the 128 bit multicast hash table (only
1781 	 * the lower 16 bits of each 32 bit multicast hash register are
1782 	 * valid).  The high order bits select the register, while the
1783 	 * rest of the bits select the bit within the register.
1784 	 */
1785 
1786 	memset(mchash, 0, sizeof(mchash));
1787 
1788 	ETHER_FIRST_MULTI(step, ec, enm);
1789 	while (enm != NULL) {
1790 		if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1791 			/*
1792 			 * We must listen to a range of multicast addresses.
1793 			 * For now, just accept all multicasts, rather than
1794 			 * trying to set only those filter bits needed to match
1795 			 * the range.  (At this time, the only use of address
1796 			 * ranges is for IP multicast routing, for which the
1797 			 * range is big enough to require all bits set.)
1798 			 */
1799 			goto allmulti;
1800 		}
1801 
1802 		cp = enm->enm_addrlo;
1803 		crc = 0xffffffff;
1804 		for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1805 			crc ^= *cp++;
1806 			crc = (crc >> 4) ^ crctab[crc & 0xf];
1807 			crc = (crc >> 4) ^ crctab[crc & 0xf];
1808 		}
1809 		/* Just want the 7 most significant bits. */
1810 		crc >>= 25;
1811 
1812 		/* Set the corresponding bit in the hash table. */
1813 		mchash[crc >> 4] |= 1 << (crc & 0xf);
1814 
1815 		ETHER_NEXT_MULTI(step, enm);
1816 	}
1817 
1818 	ifp->if_flags &= ~IFF_ALLMULTI;
1819 	goto setit;
1820 
1821  allmulti:
1822 	ifp->if_flags |= IFF_ALLMULTI;
1823 	sc->sc_rfcr |= RFCR_AAM;
1824 
1825  setit:
1826 #define	FILTER_EMIT(addr, data)						\
1827 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
1828 	bus_space_write_4(st, sh, SIP_RFDR, (data))
1829 
1830 	/*
1831 	 * Disable receive filter, and program the node address.
1832 	 */
1833 	cp = LLADDR(ifp->if_sadl);
1834 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
1835 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
1836 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
1837 
1838 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1839 		/*
1840 		 * Program the multicast hash table.
1841 		 */
1842 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
1843 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
1844 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
1845 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
1846 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
1847 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
1848 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
1849 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
1850 	}
1851 #undef FILTER_EMIT
1852 
1853 	/*
1854 	 * Re-enable the receiver filter.
1855 	 */
1856 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
1857 }
1858 
1859 /*
1860  * sip_mii_readreg:	[mii interface function]
1861  *
1862  *	Read a PHY register on the MII.
1863  */
1864 int
1865 sip_mii_readreg(self, phy, reg)
1866 	struct device *self;
1867 	int phy, reg;
1868 {
1869 	struct sip_softc *sc = (struct sip_softc *) self;
1870 	u_int32_t enphy;
1871 
1872 	/*
1873 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
1874 	 * MII address 0.
1875 	 */
1876 	if (sc->sc_model == PCI_PRODUCT_SIS_900 && phy != 0)
1877 		return (0);
1878 
1879 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
1880 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
1881 	    ENPHY_RWCMD | ENPHY_ACCESS);
1882 	do {
1883 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
1884 	} while (enphy & ENPHY_ACCESS);
1885 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
1886 }
1887 
1888 /*
1889  * sip_mii_writereg:	[mii interface function]
1890  *
1891  *	Write a PHY register on the MII.
1892  */
1893 void
1894 sip_mii_writereg(self, phy, reg, val)
1895 	struct device *self;
1896 	int phy, reg, val;
1897 {
1898 	struct sip_softc *sc = (struct sip_softc *) self;
1899 	u_int32_t enphy;
1900 
1901 	/*
1902 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
1903 	 * MII address 0.
1904 	 */
1905 	if (sc->sc_model == PCI_PRODUCT_SIS_900 && phy != 0)
1906 		return;
1907 
1908 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
1909 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
1910 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
1911 	do {
1912 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
1913 	} while (enphy & ENPHY_ACCESS);
1914 }
1915 
1916 /*
1917  * sip_mii_statchg:	[mii interface function]
1918  *
1919  *	Callback from MII layer when media changes.
1920  */
1921 void
1922 sip_mii_statchg(self)
1923 	struct device *self;
1924 {
1925 	struct sip_softc *sc = (struct sip_softc *) self;
1926 	u_int32_t flowctl;
1927 
1928 	/*
1929 	 * Update TXCFG for full-duplex operation.
1930 	 */
1931 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
1932 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
1933 	else
1934 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
1935 
1936 	/*
1937 	 * Update RXCFG for full-duplex or loopback.
1938 	 */
1939 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
1940 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
1941 		sc->sc_rxcfg |= RXCFG_ATX;
1942 	else
1943 		sc->sc_rxcfg &= ~RXCFG_ATX;
1944 
1945 	/*
1946 	 * Update IMR for use of 802.3x flow control.
1947 	 */
1948 	if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
1949 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
1950 		flowctl = FLOWCTL_FLOWEN;
1951 	} else {
1952 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
1953 		flowctl = 0;
1954 	}
1955 
1956 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
1957 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
1958 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
1959 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
1960 
1961 	/* XXX Update ifp->if_baudrate */
1962 }
1963 
1964 /*
1965  * sip_mediastatus:	[ifmedia interface function]
1966  *
1967  *	Get the current interface media status.
1968  */
1969 void
1970 sip_mediastatus(ifp, ifmr)
1971 	struct ifnet *ifp;
1972 	struct ifmediareq *ifmr;
1973 {
1974 	struct sip_softc *sc = ifp->if_softc;
1975 
1976 	mii_pollstat(&sc->sc_mii);
1977 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1978 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1979 }
1980 
1981 /*
1982  * sip_mediachange:	[ifmedia interface function]
1983  *
1984  *	Set hardware to newly-selected media.
1985  */
1986 int
1987 sip_mediachange(ifp)
1988 	struct ifnet *ifp;
1989 {
1990 	struct sip_softc *sc = ifp->if_softc;
1991 
1992 	if (ifp->if_flags & IFF_UP)
1993 		mii_mediachg(&sc->sc_mii);
1994 	return (0);
1995 }
1996