xref: /netbsd-src/sys/dev/pci/if_sip.c (revision e39ef1d61eee3ccba837ee281f1e098c864487aa)
1 /*	$NetBSD: if_sip.c,v 1.152 2011/12/12 02:44:14 jakllsch Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1999 Network Computer, Inc.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of Network Computer, Inc. nor the names of its
45  *    contributors may be used to endorse or promote products derived
46  *    from this software without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
49  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
50  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
51  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
52  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
53  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
54  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
55  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
56  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
57  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
58  * POSSIBILITY OF SUCH DAMAGE.
59  */
60 
61 /*
62  * Device driver for the Silicon Integrated Systems SiS 900,
63  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
64  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
65  * controllers.
66  *
67  * Originally written to support the SiS 900 by Jason R. Thorpe for
68  * Network Computer, Inc.
69  *
70  * TODO:
71  *
72  *	- Reduce the Rx interrupt load.
73  */
74 
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.152 2011/12/12 02:44:14 jakllsch Exp $");
77 
78 #include "rnd.h"
79 
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/mbuf.h>
84 #include <sys/malloc.h>
85 #include <sys/kernel.h>
86 #include <sys/socket.h>
87 #include <sys/ioctl.h>
88 #include <sys/errno.h>
89 #include <sys/device.h>
90 #include <sys/queue.h>
91 
92 #if NRND > 0
93 #include <sys/rnd.h>
94 #endif
95 
96 #include <net/if.h>
97 #include <net/if_dl.h>
98 #include <net/if_media.h>
99 #include <net/if_ether.h>
100 
101 #include <net/bpf.h>
102 
103 #include <sys/bus.h>
104 #include <sys/intr.h>
105 #include <machine/endian.h>
106 
107 #include <dev/mii/mii.h>
108 #include <dev/mii/miivar.h>
109 #include <dev/mii/mii_bitbang.h>
110 
111 #include <dev/pci/pcireg.h>
112 #include <dev/pci/pcivar.h>
113 #include <dev/pci/pcidevs.h>
114 
115 #include <dev/pci/if_sipreg.h>
116 
117 /*
118  * Transmit descriptor list size.  This is arbitrary, but allocate
119  * enough descriptors for 128 pending transmissions, and 8 segments
120  * per packet (64 for DP83820 for jumbo frames).
121  *
122  * This MUST work out to a power of 2.
123  */
124 #define	GSIP_NTXSEGS_ALLOC 16
125 #define	SIP_NTXSEGS_ALLOC 8
126 
127 #define	SIP_TXQUEUELEN		256
128 #define	MAX_SIP_NTXDESC	\
129     (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
130 
131 /*
132  * Receive descriptor list size.  We have one Rx buffer per incoming
133  * packet, so this logic is a little simpler.
134  *
135  * Actually, on the DP83820, we allow the packet to consume more than
136  * one buffer, in order to support jumbo Ethernet frames.  In that
137  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
138  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
139  * so we'd better be quick about handling receive interrupts.
140  */
141 #define	GSIP_NRXDESC		256
142 #define	SIP_NRXDESC		128
143 
144 #define	MAX_SIP_NRXDESC	MAX(GSIP_NRXDESC, SIP_NRXDESC)
145 
146 /*
147  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
148  * a single clump that maps to a single DMA segment to make several things
149  * easier.
150  */
151 struct sip_control_data {
152 	/*
153 	 * The transmit descriptors.
154 	 */
155 	struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
156 
157 	/*
158 	 * The receive descriptors.
159 	 */
160 	struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
161 };
162 
163 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
164 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
165 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
166 
167 /*
168  * Software state for transmit jobs.
169  */
170 struct sip_txsoft {
171 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
172 	bus_dmamap_t txs_dmamap;	/* our DMA map */
173 	int txs_firstdesc;		/* first descriptor in packet */
174 	int txs_lastdesc;		/* last descriptor in packet */
175 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
176 };
177 
178 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
179 
180 /*
181  * Software state for receive jobs.
182  */
183 struct sip_rxsoft {
184 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
185 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
186 };
187 
188 enum sip_attach_stage {
189 	  SIP_ATTACH_FIN = 0
190 	, SIP_ATTACH_CREATE_RXMAP
191 	, SIP_ATTACH_CREATE_TXMAP
192 	, SIP_ATTACH_LOAD_MAP
193 	, SIP_ATTACH_CREATE_MAP
194 	, SIP_ATTACH_MAP_MEM
195 	, SIP_ATTACH_ALLOC_MEM
196 	, SIP_ATTACH_INTR
197 	, SIP_ATTACH_MAP
198 };
199 
200 /*
201  * Software state per device.
202  */
203 struct sip_softc {
204 	device_t sc_dev;		/* generic device information */
205 	device_suspensor_t		sc_suspensor;
206 	pmf_qual_t			sc_qual;
207 
208 	bus_space_tag_t sc_st;		/* bus space tag */
209 	bus_space_handle_t sc_sh;	/* bus space handle */
210 	bus_size_t sc_sz;		/* bus space size */
211 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
212 	pci_chipset_tag_t sc_pc;
213 	bus_dma_segment_t sc_seg;
214 	struct ethercom sc_ethercom;	/* ethernet common data */
215 
216 	const struct sip_product *sc_model; /* which model are we? */
217 	int sc_gigabit;			/* 1: 83820, 0: other */
218 	int sc_rev;			/* chip revision */
219 
220 	void *sc_ih;			/* interrupt cookie */
221 
222 	struct mii_data sc_mii;		/* MII/media information */
223 
224 	callout_t sc_tick_ch;		/* tick callout */
225 
226 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
227 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
228 
229 	/*
230 	 * Software state for transmit and receive descriptors.
231 	 */
232 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
233 	struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
234 
235 	/*
236 	 * Control data structures.
237 	 */
238 	struct sip_control_data *sc_control_data;
239 #define	sc_txdescs	sc_control_data->scd_txdescs
240 #define	sc_rxdescs	sc_control_data->scd_rxdescs
241 
242 #ifdef SIP_EVENT_COUNTERS
243 	/*
244 	 * Event counters.
245 	 */
246 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
247 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
248 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
249 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
250 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
251 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
252 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
253 	struct evcnt sc_ev_rxpause;	/* PAUSE received */
254 	/* DP83820 only */
255 	struct evcnt sc_ev_txpause;	/* PAUSE transmitted */
256 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
257 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
258 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
259 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
260 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
261 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
262 #endif /* SIP_EVENT_COUNTERS */
263 
264 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
265 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
266 	u_int32_t sc_imr;		/* prototype IMR register */
267 	u_int32_t sc_rfcr;		/* prototype RFCR register */
268 
269 	u_int32_t sc_cfg;		/* prototype CFG register */
270 
271 	u_int32_t sc_gpior;		/* prototype GPIOR register */
272 
273 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
274 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
275 
276 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
277 
278 	int	sc_flowflags;		/* 802.3x flow control flags */
279 	int	sc_rx_flow_thresh;	/* Rx FIFO threshold for flow control */
280 	int	sc_paused;		/* paused indication */
281 
282 	int	sc_txfree;		/* number of free Tx descriptors */
283 	int	sc_txnext;		/* next ready Tx descriptor */
284 	int	sc_txwin;		/* Tx descriptors since last intr */
285 
286 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
287 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
288 
289 	/* values of interface state at last init */
290 	struct {
291 		/* if_capenable */
292 		uint64_t	if_capenable;
293 		/* ec_capenable */
294 		int		ec_capenable;
295 		/* VLAN_ATTACHED */
296 		int		is_vlan;
297 	}	sc_prev;
298 
299 	short	sc_if_flags;
300 
301 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
302 	int	sc_rxdiscard;
303 	int	sc_rxlen;
304 	struct mbuf *sc_rxhead;
305 	struct mbuf *sc_rxtail;
306 	struct mbuf **sc_rxtailp;
307 
308 	int sc_ntxdesc;
309 	int sc_ntxdesc_mask;
310 
311 	int sc_nrxdesc_mask;
312 
313 	const struct sip_parm {
314 		const struct sip_regs {
315 			int r_rxcfg;
316 			int r_txcfg;
317 		} p_regs;
318 
319 		const struct sip_bits {
320 			uint32_t b_txcfg_mxdma_8;
321 			uint32_t b_txcfg_mxdma_16;
322 			uint32_t b_txcfg_mxdma_32;
323 			uint32_t b_txcfg_mxdma_64;
324 			uint32_t b_txcfg_mxdma_128;
325 			uint32_t b_txcfg_mxdma_256;
326 			uint32_t b_txcfg_mxdma_512;
327 			uint32_t b_txcfg_flth_mask;
328 			uint32_t b_txcfg_drth_mask;
329 
330 			uint32_t b_rxcfg_mxdma_8;
331 			uint32_t b_rxcfg_mxdma_16;
332 			uint32_t b_rxcfg_mxdma_32;
333 			uint32_t b_rxcfg_mxdma_64;
334 			uint32_t b_rxcfg_mxdma_128;
335 			uint32_t b_rxcfg_mxdma_256;
336 			uint32_t b_rxcfg_mxdma_512;
337 
338 			uint32_t b_isr_txrcmp;
339 			uint32_t b_isr_rxrcmp;
340 			uint32_t b_isr_dperr;
341 			uint32_t b_isr_sserr;
342 			uint32_t b_isr_rmabt;
343 			uint32_t b_isr_rtabt;
344 
345 			uint32_t b_cmdsts_size_mask;
346 		} p_bits;
347 		int		p_filtmem;
348 		int		p_rxbuf_len;
349 		bus_size_t	p_tx_dmamap_size;
350 		int		p_ntxsegs;
351 		int		p_ntxsegs_alloc;
352 		int		p_nrxdesc;
353 	} *sc_parm;
354 
355 	void (*sc_rxintr)(struct sip_softc *);
356 
357 #if NRND > 0
358 	krndsource_t rnd_source;	/* random source */
359 #endif
360 };
361 
362 #define	sc_bits	sc_parm->p_bits
363 #define	sc_regs	sc_parm->p_regs
364 
365 static const struct sip_parm sip_parm = {
366 	  .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
367 	, .p_rxbuf_len = MCLBYTES - 1	/* field width */
368 	, .p_tx_dmamap_size = MCLBYTES
369 	, .p_ntxsegs = 16
370 	, .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
371 	, .p_nrxdesc = SIP_NRXDESC
372 	, .p_bits = {
373 		  .b_txcfg_mxdma_8	= 0x00200000	/*       8 bytes */
374 		, .b_txcfg_mxdma_16	= 0x00300000	/*      16 bytes */
375 		, .b_txcfg_mxdma_32	= 0x00400000	/*      32 bytes */
376 		, .b_txcfg_mxdma_64	= 0x00500000	/*      64 bytes */
377 		, .b_txcfg_mxdma_128	= 0x00600000	/*     128 bytes */
378 		, .b_txcfg_mxdma_256	= 0x00700000	/*     256 bytes */
379 		, .b_txcfg_mxdma_512	= 0x00000000	/*     512 bytes */
380 		, .b_txcfg_flth_mask	= 0x00003f00	/* Tx fill threshold */
381 		, .b_txcfg_drth_mask	= 0x0000003f	/* Tx drain threshold */
382 
383 		, .b_rxcfg_mxdma_8	= 0x00200000	/*       8 bytes */
384 		, .b_rxcfg_mxdma_16	= 0x00300000	/*      16 bytes */
385 		, .b_rxcfg_mxdma_32	= 0x00400000	/*      32 bytes */
386 		, .b_rxcfg_mxdma_64	= 0x00500000	/*      64 bytes */
387 		, .b_rxcfg_mxdma_128	= 0x00600000	/*     128 bytes */
388 		, .b_rxcfg_mxdma_256	= 0x00700000	/*     256 bytes */
389 		, .b_rxcfg_mxdma_512	= 0x00000000	/*     512 bytes */
390 
391 		, .b_isr_txrcmp	= 0x02000000	/* transmit reset complete */
392 		, .b_isr_rxrcmp	= 0x01000000	/* receive reset complete */
393 		, .b_isr_dperr	= 0x00800000	/* detected parity error */
394 		, .b_isr_sserr	= 0x00400000	/* signalled system error */
395 		, .b_isr_rmabt	= 0x00200000	/* received master abort */
396 		, .b_isr_rtabt	= 0x00100000	/* received target abort */
397 		, .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
398 	}
399 	, .p_regs = {
400 		.r_rxcfg = OTHER_SIP_RXCFG,
401 		.r_txcfg = OTHER_SIP_TXCFG
402 	}
403 }, gsip_parm = {
404 	  .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
405 	, .p_rxbuf_len = MCLBYTES - 8
406 	, .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
407 	, .p_ntxsegs = 64
408 	, .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
409 	, .p_nrxdesc = GSIP_NRXDESC
410 	, .p_bits = {
411 		  .b_txcfg_mxdma_8	= 0x00100000	/*       8 bytes */
412 		, .b_txcfg_mxdma_16	= 0x00200000	/*      16 bytes */
413 		, .b_txcfg_mxdma_32	= 0x00300000	/*      32 bytes */
414 		, .b_txcfg_mxdma_64	= 0x00400000	/*      64 bytes */
415 		, .b_txcfg_mxdma_128	= 0x00500000	/*     128 bytes */
416 		, .b_txcfg_mxdma_256	= 0x00600000	/*     256 bytes */
417 		, .b_txcfg_mxdma_512	= 0x00700000	/*     512 bytes */
418 		, .b_txcfg_flth_mask	= 0x0000ff00	/* Fx fill threshold */
419 		, .b_txcfg_drth_mask	= 0x000000ff	/* Tx drain threshold */
420 
421 		, .b_rxcfg_mxdma_8	= 0x00100000	/*       8 bytes */
422 		, .b_rxcfg_mxdma_16	= 0x00200000	/*      16 bytes */
423 		, .b_rxcfg_mxdma_32	= 0x00300000	/*      32 bytes */
424 		, .b_rxcfg_mxdma_64	= 0x00400000	/*      64 bytes */
425 		, .b_rxcfg_mxdma_128	= 0x00500000	/*     128 bytes */
426 		, .b_rxcfg_mxdma_256	= 0x00600000	/*     256 bytes */
427 		, .b_rxcfg_mxdma_512	= 0x00700000	/*     512 bytes */
428 
429 		, .b_isr_txrcmp	= 0x00400000	/* transmit reset complete */
430 		, .b_isr_rxrcmp	= 0x00200000	/* receive reset complete */
431 		, .b_isr_dperr	= 0x00100000	/* detected parity error */
432 		, .b_isr_sserr	= 0x00080000	/* signalled system error */
433 		, .b_isr_rmabt	= 0x00040000	/* received master abort */
434 		, .b_isr_rtabt	= 0x00020000	/* received target abort */
435 		, .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
436 	}
437 	, .p_regs = {
438 		.r_rxcfg = DP83820_SIP_RXCFG,
439 		.r_txcfg = DP83820_SIP_TXCFG
440 	}
441 };
442 
443 static inline int
444 sip_nexttx(const struct sip_softc *sc, int x)
445 {
446 	return (x + 1) & sc->sc_ntxdesc_mask;
447 }
448 
449 static inline int
450 sip_nextrx(const struct sip_softc *sc, int x)
451 {
452 	return (x + 1) & sc->sc_nrxdesc_mask;
453 }
454 
455 /* 83820 only */
456 static inline void
457 sip_rxchain_reset(struct sip_softc *sc)
458 {
459 	sc->sc_rxtailp = &sc->sc_rxhead;
460 	*sc->sc_rxtailp = NULL;
461 	sc->sc_rxlen = 0;
462 }
463 
464 /* 83820 only */
465 static inline void
466 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
467 {
468 	*sc->sc_rxtailp = sc->sc_rxtail = m;
469 	sc->sc_rxtailp = &m->m_next;
470 }
471 
472 #ifdef SIP_EVENT_COUNTERS
473 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
474 #else
475 #define	SIP_EVCNT_INCR(ev)	/* nothing */
476 #endif
477 
478 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
479 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
480 
481 static inline void
482 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
483 {
484 	int x, n;
485 
486 	x = x0;
487 	n = n0;
488 
489 	/* If it will wrap around, sync to the end of the ring. */
490 	if (x + n > sc->sc_ntxdesc) {
491 		bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
492 		    SIP_CDTXOFF(x), sizeof(struct sip_desc) *
493 		    (sc->sc_ntxdesc - x), ops);
494 		n -= (sc->sc_ntxdesc - x);
495 		x = 0;
496 	}
497 
498 	/* Now sync whatever is left. */
499 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
500 	    SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
501 }
502 
503 static inline void
504 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
505 {
506 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
507 	    SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
508 }
509 
510 #if 0
511 #ifdef DP83820
512 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
513 	u_int32_t	sipd_cmdsts;	/* command/status word */
514 #else
515 	u_int32_t	sipd_cmdsts;	/* command/status word */
516 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
517 #endif /* DP83820 */
518 #endif /* 0 */
519 
520 static inline volatile uint32_t *
521 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
522 {
523 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
524 }
525 
526 static inline volatile uint32_t *
527 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
528 {
529 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
530 }
531 
532 static inline void
533 sip_init_rxdesc(struct sip_softc *sc, int x)
534 {
535 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
536 	struct sip_desc *sipd = &sc->sc_rxdescs[x];
537 
538 	sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
539 	*sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
540 	*sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
541 	    (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
542 	sipd->sipd_extsts = 0;
543 	sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
544 }
545 
546 #define	SIP_CHIP_VERS(sc, v, p, r)					\
547 	((sc)->sc_model->sip_vendor == (v) &&				\
548 	 (sc)->sc_model->sip_product == (p) &&				\
549 	 (sc)->sc_rev == (r))
550 
551 #define	SIP_CHIP_MODEL(sc, v, p)					\
552 	((sc)->sc_model->sip_vendor == (v) &&				\
553 	 (sc)->sc_model->sip_product == (p))
554 
555 #define	SIP_SIS900_REV(sc, rev)						\
556 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
557 
558 #define SIP_TIMEOUT 1000
559 
560 static int	sip_ifflags_cb(struct ethercom *);
561 static void	sipcom_start(struct ifnet *);
562 static void	sipcom_watchdog(struct ifnet *);
563 static int	sipcom_ioctl(struct ifnet *, u_long, void *);
564 static int	sipcom_init(struct ifnet *);
565 static void	sipcom_stop(struct ifnet *, int);
566 
567 static bool	sipcom_reset(struct sip_softc *);
568 static void	sipcom_rxdrain(struct sip_softc *);
569 static int	sipcom_add_rxbuf(struct sip_softc *, int);
570 static void	sipcom_read_eeprom(struct sip_softc *, int, int,
571 				      u_int16_t *);
572 static void	sipcom_tick(void *);
573 
574 static void	sipcom_sis900_set_filter(struct sip_softc *);
575 static void	sipcom_dp83815_set_filter(struct sip_softc *);
576 
577 static void	sipcom_dp83820_read_macaddr(struct sip_softc *,
578 		    const struct pci_attach_args *, u_int8_t *);
579 static void	sipcom_sis900_eeprom_delay(struct sip_softc *sc);
580 static void	sipcom_sis900_read_macaddr(struct sip_softc *,
581 		    const struct pci_attach_args *, u_int8_t *);
582 static void	sipcom_dp83815_read_macaddr(struct sip_softc *,
583 		    const struct pci_attach_args *, u_int8_t *);
584 
585 static int	sipcom_intr(void *);
586 static void	sipcom_txintr(struct sip_softc *);
587 static void	sip_rxintr(struct sip_softc *);
588 static void	gsip_rxintr(struct sip_softc *);
589 
590 static int	sipcom_dp83820_mii_readreg(device_t, int, int);
591 static void	sipcom_dp83820_mii_writereg(device_t, int, int, int);
592 static void	sipcom_dp83820_mii_statchg(device_t);
593 
594 static int	sipcom_sis900_mii_readreg(device_t, int, int);
595 static void	sipcom_sis900_mii_writereg(device_t, int, int, int);
596 static void	sipcom_sis900_mii_statchg(device_t);
597 
598 static int	sipcom_dp83815_mii_readreg(device_t, int, int);
599 static void	sipcom_dp83815_mii_writereg(device_t, int, int, int);
600 static void	sipcom_dp83815_mii_statchg(device_t);
601 
602 static void	sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
603 
604 static int	sipcom_match(device_t, cfdata_t, void *);
605 static void	sipcom_attach(device_t, device_t, void *);
606 static void	sipcom_do_detach(device_t, enum sip_attach_stage);
607 static int	sipcom_detach(device_t, int);
608 static bool	sipcom_resume(device_t, const pmf_qual_t *);
609 static bool	sipcom_suspend(device_t, const pmf_qual_t *);
610 
611 int	gsip_copy_small = 0;
612 int	sip_copy_small = 0;
613 
614 CFATTACH_DECL3_NEW(gsip, sizeof(struct sip_softc),
615     sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
616     DVF_DETACH_SHUTDOWN);
617 CFATTACH_DECL3_NEW(sip, sizeof(struct sip_softc),
618     sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
619     DVF_DETACH_SHUTDOWN);
620 
621 /*
622  * Descriptions of the variants of the SiS900.
623  */
624 struct sip_variant {
625 	int	(*sipv_mii_readreg)(device_t, int, int);
626 	void	(*sipv_mii_writereg)(device_t, int, int, int);
627 	void	(*sipv_mii_statchg)(device_t);
628 	void	(*sipv_set_filter)(struct sip_softc *);
629 	void	(*sipv_read_macaddr)(struct sip_softc *,
630 		    const struct pci_attach_args *, u_int8_t *);
631 };
632 
633 static u_int32_t sipcom_mii_bitbang_read(device_t);
634 static void	sipcom_mii_bitbang_write(device_t, u_int32_t);
635 
636 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
637 	sipcom_mii_bitbang_read,
638 	sipcom_mii_bitbang_write,
639 	{
640 		EROMAR_MDIO,		/* MII_BIT_MDO */
641 		EROMAR_MDIO,		/* MII_BIT_MDI */
642 		EROMAR_MDC,		/* MII_BIT_MDC */
643 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
644 		0,			/* MII_BIT_DIR_PHY_HOST */
645 	}
646 };
647 
648 static const struct sip_variant sipcom_variant_dp83820 = {
649 	sipcom_dp83820_mii_readreg,
650 	sipcom_dp83820_mii_writereg,
651 	sipcom_dp83820_mii_statchg,
652 	sipcom_dp83815_set_filter,
653 	sipcom_dp83820_read_macaddr,
654 };
655 
656 static const struct sip_variant sipcom_variant_sis900 = {
657 	sipcom_sis900_mii_readreg,
658 	sipcom_sis900_mii_writereg,
659 	sipcom_sis900_mii_statchg,
660 	sipcom_sis900_set_filter,
661 	sipcom_sis900_read_macaddr,
662 };
663 
664 static const struct sip_variant sipcom_variant_dp83815 = {
665 	sipcom_dp83815_mii_readreg,
666 	sipcom_dp83815_mii_writereg,
667 	sipcom_dp83815_mii_statchg,
668 	sipcom_dp83815_set_filter,
669 	sipcom_dp83815_read_macaddr,
670 };
671 
672 
673 /*
674  * Devices supported by this driver.
675  */
676 static const struct sip_product {
677 	pci_vendor_id_t		sip_vendor;
678 	pci_product_id_t	sip_product;
679 	const char		*sip_name;
680 	const struct sip_variant *sip_variant;
681 	int			sip_gigabit;
682 } sipcom_products[] = {
683 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
684 	  "NatSemi DP83820 Gigabit Ethernet",
685 	  &sipcom_variant_dp83820, 1 },
686 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
687 	  "SiS 900 10/100 Ethernet",
688 	  &sipcom_variant_sis900, 0 },
689 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
690 	  "SiS 7016 10/100 Ethernet",
691 	  &sipcom_variant_sis900, 0 },
692 
693 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
694 	  "NatSemi DP83815 10/100 Ethernet",
695 	  &sipcom_variant_dp83815, 0 },
696 
697 	{ 0,			0,
698 	  NULL,
699 	  NULL, 0 },
700 };
701 
702 static const struct sip_product *
703 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
704 {
705 	const struct sip_product *sip;
706 
707 	for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
708 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
709 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
710 		    sip->sip_gigabit == gigabit)
711 			return sip;
712 	}
713 	return NULL;
714 }
715 
716 /*
717  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
718  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
719  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
720  * which means we try to use 64-bit data transfers on those cards if we
721  * happen to be plugged into a 32-bit slot.
722  *
723  * What we do is use this table of cards known to be 64-bit cards.  If
724  * you have a 64-bit card who's subsystem ID is not listed in this table,
725  * send the output of "pcictl dump ..." of the device to me so that your
726  * card will use the 64-bit data path when plugged into a 64-bit slot.
727  *
728  *	-- Jason R. Thorpe <thorpej@NetBSD.org>
729  *	   June 30, 2002
730  */
731 static int
732 sipcom_check_64bit(const struct pci_attach_args *pa)
733 {
734 	static const struct {
735 		pci_vendor_id_t c64_vendor;
736 		pci_product_id_t c64_product;
737 	} card64[] = {
738 		/* Asante GigaNIX */
739 		{ 0x128a,	0x0002 },
740 
741 		/* Accton EN1407-T, Planex GN-1000TE */
742 		{ 0x1113,	0x1407 },
743 
744 		/* Netgear GA-621 */
745 		{ 0x1385,	0x621a },
746 
747 		/* SMC EZ Card */
748 		{ 0x10b8,	0x9462 },
749 
750 		{ 0, 0}
751 	};
752 	pcireg_t subsys;
753 	int i;
754 
755 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
756 
757 	for (i = 0; card64[i].c64_vendor != 0; i++) {
758 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
759 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
760 			return (1);
761 	}
762 
763 	return (0);
764 }
765 
766 static int
767 sipcom_match(device_t parent, cfdata_t cf, void *aux)
768 {
769 	struct pci_attach_args *pa = aux;
770 
771 	if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
772 		return 1;
773 
774 	return 0;
775 }
776 
777 static void
778 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
779 {
780 	u_int32_t reg;
781 	int i;
782 
783 	/*
784 	 * Cause the chip to load configuration data from the EEPROM.
785 	 */
786 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
787 	for (i = 0; i < 10000; i++) {
788 		delay(10);
789 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
790 		    PTSCR_EELOAD_EN) == 0)
791 			break;
792 	}
793 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
794 	    PTSCR_EELOAD_EN) {
795 		printf("%s: timeout loading configuration from EEPROM\n",
796 		    device_xname(sc->sc_dev));
797 		return;
798 	}
799 
800 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
801 
802 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
803 	if (reg & CFG_PCI64_DET) {
804 		printf("%s: 64-bit PCI slot detected", device_xname(sc->sc_dev));
805 		/*
806 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
807 		 * data transfers.
808 		 *
809 		 * We can't use the DATA64_EN bit in the EEPROM, because
810 		 * vendors of 32-bit cards fail to clear that bit in many
811 		 * cases (yet the card still detects that it's in a 64-bit
812 		 * slot; go figure).
813 		 */
814 		if (sipcom_check_64bit(pa)) {
815 			sc->sc_cfg |= CFG_DATA64_EN;
816 			printf(", using 64-bit data transfers");
817 		}
818 		printf("\n");
819 	}
820 
821 	/*
822 	 * XXX Need some PCI flags indicating support for
823 	 * XXX 64-bit addressing.
824 	 */
825 #if 0
826 	if (reg & CFG_M64ADDR)
827 		sc->sc_cfg |= CFG_M64ADDR;
828 	if (reg & CFG_T64ADDR)
829 		sc->sc_cfg |= CFG_T64ADDR;
830 #endif
831 
832 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
833 		const char *sep = "";
834 		printf("%s: using ", device_xname(sc->sc_dev));
835 		if (reg & CFG_EXT_125) {
836 			sc->sc_cfg |= CFG_EXT_125;
837 			printf("%s125MHz clock", sep);
838 			sep = ", ";
839 		}
840 		if (reg & CFG_TBI_EN) {
841 			sc->sc_cfg |= CFG_TBI_EN;
842 			printf("%sten-bit interface", sep);
843 			sep = ", ";
844 		}
845 		printf("\n");
846 	}
847 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
848 	    (reg & CFG_MRM_DIS) != 0)
849 		sc->sc_cfg |= CFG_MRM_DIS;
850 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
851 	    (reg & CFG_MWI_DIS) != 0)
852 		sc->sc_cfg |= CFG_MWI_DIS;
853 
854 	/*
855 	 * Use the extended descriptor format on the DP83820.  This
856 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
857 	 * checksumming.
858 	 */
859 	sc->sc_cfg |= CFG_EXTSTS_EN;
860 }
861 
862 static int
863 sipcom_detach(device_t self, int flags)
864 {
865 	int s;
866 
867 	s = splnet();
868 	sipcom_do_detach(self, SIP_ATTACH_FIN);
869 	splx(s);
870 
871 	return 0;
872 }
873 
874 static void
875 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
876 {
877 	int i;
878 	struct sip_softc *sc = device_private(self);
879 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
880 
881 	/*
882 	 * Free any resources we've allocated during attach.
883 	 * Do this in reverse order and fall through.
884 	 */
885 	switch (stage) {
886 	case SIP_ATTACH_FIN:
887 		sipcom_stop(ifp, 1);
888 		pmf_device_deregister(self);
889 #ifdef SIP_EVENT_COUNTERS
890 		/*
891 		 * Attach event counters.
892 		 */
893 		evcnt_detach(&sc->sc_ev_txforceintr);
894 		evcnt_detach(&sc->sc_ev_txdstall);
895 		evcnt_detach(&sc->sc_ev_txsstall);
896 		evcnt_detach(&sc->sc_ev_hiberr);
897 		evcnt_detach(&sc->sc_ev_rxintr);
898 		evcnt_detach(&sc->sc_ev_txiintr);
899 		evcnt_detach(&sc->sc_ev_txdintr);
900 		if (!sc->sc_gigabit) {
901 			evcnt_detach(&sc->sc_ev_rxpause);
902 		} else {
903 			evcnt_detach(&sc->sc_ev_txudpsum);
904 			evcnt_detach(&sc->sc_ev_txtcpsum);
905 			evcnt_detach(&sc->sc_ev_txipsum);
906 			evcnt_detach(&sc->sc_ev_rxudpsum);
907 			evcnt_detach(&sc->sc_ev_rxtcpsum);
908 			evcnt_detach(&sc->sc_ev_rxipsum);
909 			evcnt_detach(&sc->sc_ev_txpause);
910 			evcnt_detach(&sc->sc_ev_rxpause);
911 		}
912 #endif /* SIP_EVENT_COUNTERS */
913 
914 #if NRND > 0
915 		rnd_detach_source(&sc->rnd_source);
916 #endif
917 
918 		ether_ifdetach(ifp);
919 		if_detach(ifp);
920 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
921 
922 		/*FALLTHROUGH*/
923 	case SIP_ATTACH_CREATE_RXMAP:
924 		for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
925 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
926 				bus_dmamap_destroy(sc->sc_dmat,
927 				    sc->sc_rxsoft[i].rxs_dmamap);
928 		}
929 		/*FALLTHROUGH*/
930 	case SIP_ATTACH_CREATE_TXMAP:
931 		for (i = 0; i < SIP_TXQUEUELEN; i++) {
932 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
933 				bus_dmamap_destroy(sc->sc_dmat,
934 				    sc->sc_txsoft[i].txs_dmamap);
935 		}
936 		/*FALLTHROUGH*/
937 	case SIP_ATTACH_LOAD_MAP:
938 		bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
939 		/*FALLTHROUGH*/
940 	case SIP_ATTACH_CREATE_MAP:
941 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
942 		/*FALLTHROUGH*/
943 	case SIP_ATTACH_MAP_MEM:
944 		bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
945 		    sizeof(struct sip_control_data));
946 		/*FALLTHROUGH*/
947 	case SIP_ATTACH_ALLOC_MEM:
948 		bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
949 		/* FALLTHROUGH*/
950 	case SIP_ATTACH_INTR:
951 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
952 		/* FALLTHROUGH*/
953 	case SIP_ATTACH_MAP:
954 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
955 		break;
956 	default:
957 		break;
958 	}
959 	return;
960 }
961 
962 static bool
963 sipcom_resume(device_t self, const pmf_qual_t *qual)
964 {
965 	struct sip_softc *sc = device_private(self);
966 
967 	return sipcom_reset(sc);
968 }
969 
970 static bool
971 sipcom_suspend(device_t self, const pmf_qual_t *qual)
972 {
973 	struct sip_softc *sc = device_private(self);
974 
975 	sipcom_rxdrain(sc);
976 	return true;
977 }
978 
979 static void
980 sipcom_attach(device_t parent, device_t self, void *aux)
981 {
982 	struct sip_softc *sc = device_private(self);
983 	struct pci_attach_args *pa = aux;
984 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
985 	pci_chipset_tag_t pc = pa->pa_pc;
986 	pci_intr_handle_t ih;
987 	const char *intrstr = NULL;
988 	bus_space_tag_t iot, memt;
989 	bus_space_handle_t ioh, memh;
990 	bus_size_t iosz, memsz;
991 	int ioh_valid, memh_valid;
992 	int i, rseg, error;
993 	const struct sip_product *sip;
994 	u_int8_t enaddr[ETHER_ADDR_LEN];
995 	pcireg_t csr;
996 	pcireg_t memtype;
997 	bus_size_t tx_dmamap_size;
998 	int ntxsegs_alloc;
999 	cfdata_t cf = device_cfdata(self);
1000 
1001 	callout_init(&sc->sc_tick_ch, 0);
1002 
1003 	sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
1004 	if (sip == NULL) {
1005 		printf("\n");
1006 		panic("%s: impossible", __func__);
1007 	}
1008 	sc->sc_dev = self;
1009 	sc->sc_gigabit = sip->sip_gigabit;
1010 	pmf_self_suspensor_init(self, &sc->sc_suspensor, &sc->sc_qual);
1011 	sc->sc_pc = pc;
1012 
1013 	if (sc->sc_gigabit) {
1014 		sc->sc_rxintr = gsip_rxintr;
1015 		sc->sc_parm = &gsip_parm;
1016 	} else {
1017 		sc->sc_rxintr = sip_rxintr;
1018 		sc->sc_parm = &sip_parm;
1019 	}
1020 	tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
1021 	ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
1022 	sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
1023 	sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
1024 	sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
1025 
1026 	sc->sc_rev = PCI_REVISION(pa->pa_class);
1027 
1028 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
1029 
1030 	sc->sc_model = sip;
1031 
1032 	/*
1033 	 * XXX Work-around broken PXE firmware on some boards.
1034 	 *
1035 	 * The DP83815 shares an address decoder with the MEM BAR
1036 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
1037 	 * so that memory mapped access works.
1038 	 */
1039 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
1040 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
1041 	    ~PCI_MAPREG_ROM_ENABLE);
1042 
1043 	/*
1044 	 * Map the device.
1045 	 */
1046 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
1047 	    PCI_MAPREG_TYPE_IO, 0,
1048 	    &iot, &ioh, NULL, &iosz) == 0);
1049 	if (sc->sc_gigabit) {
1050 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
1051 		switch (memtype) {
1052 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1053 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1054 			memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1055 			    memtype, 0, &memt, &memh, NULL, &memsz) == 0);
1056 			break;
1057 		default:
1058 			memh_valid = 0;
1059 		}
1060 	} else {
1061 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1062 		    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
1063 		    &memt, &memh, NULL, &memsz) == 0);
1064 	}
1065 
1066 	if (memh_valid) {
1067 		sc->sc_st = memt;
1068 		sc->sc_sh = memh;
1069 		sc->sc_sz = memsz;
1070 	} else if (ioh_valid) {
1071 		sc->sc_st = iot;
1072 		sc->sc_sh = ioh;
1073 		sc->sc_sz = iosz;
1074 	} else {
1075 		printf("%s: unable to map device registers\n",
1076 		    device_xname(sc->sc_dev));
1077 		return;
1078 	}
1079 
1080 	sc->sc_dmat = pa->pa_dmat;
1081 
1082 	/*
1083 	 * Make sure bus mastering is enabled.  Also make sure
1084 	 * Write/Invalidate is enabled if we're allowed to use it.
1085 	 */
1086 	csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1087 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
1088 		csr |= PCI_COMMAND_INVALIDATE_ENABLE;
1089 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
1090 	    csr | PCI_COMMAND_MASTER_ENABLE);
1091 
1092 	/* power up chip */
1093 	error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null);
1094 	if (error != 0 && error != EOPNOTSUPP) {
1095 		aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
1096 		return;
1097 	}
1098 
1099 	/*
1100 	 * Map and establish our interrupt.
1101 	 */
1102 	if (pci_intr_map(pa, &ih)) {
1103 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
1104 		return;
1105 	}
1106 	intrstr = pci_intr_string(pc, ih);
1107 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc);
1108 	if (sc->sc_ih == NULL) {
1109 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
1110 		if (intrstr != NULL)
1111 			aprint_error(" at %s", intrstr);
1112 		aprint_error("\n");
1113 		sipcom_do_detach(self, SIP_ATTACH_MAP);
1114 		return;
1115 	}
1116 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1117 
1118 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1119 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1120 
1121 	/*
1122 	 * Allocate the control data structures, and create and load the
1123 	 * DMA map for it.
1124 	 */
1125 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
1126 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
1127 	    &rseg, 0)) != 0) {
1128 		aprint_error_dev(sc->sc_dev, "unable to allocate control data, error = %d\n",
1129 		    error);
1130 		sipcom_do_detach(self, SIP_ATTACH_INTR);
1131 		return;
1132 	}
1133 
1134 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
1135 	    sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
1136 	    BUS_DMA_COHERENT)) != 0) {
1137 		aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n",
1138 		    error);
1139 		sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
1140 	}
1141 
1142 	if ((error = bus_dmamap_create(sc->sc_dmat,
1143 	    sizeof(struct sip_control_data), 1,
1144 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
1145 		aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, "
1146 		    "error = %d\n", error);
1147 		sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
1148 	}
1149 
1150 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1151 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
1152 	    0)) != 0) {
1153 		aprint_error_dev(sc->sc_dev, "unable to load control data DMA map, error = %d\n",
1154 		    error);
1155 		sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
1156 	}
1157 
1158 	/*
1159 	 * Create the transmit buffer DMA maps.
1160 	 */
1161 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
1162 		if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
1163 		    sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
1164 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1165 			aprint_error_dev(sc->sc_dev, "unable to create tx DMA map %d, "
1166 			    "error = %d\n", i, error);
1167 			sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1168 		}
1169 	}
1170 
1171 	/*
1172 	 * Create the receive buffer DMA maps.
1173 	 */
1174 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1175 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1176 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1177 			aprint_error_dev(sc->sc_dev, "unable to create rx DMA map %d, "
1178 			    "error = %d\n", i, error);
1179 			sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1180 		}
1181 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
1182 	}
1183 
1184 	/*
1185 	 * Reset the chip to a known state.
1186 	 */
1187 	sipcom_reset(sc);
1188 
1189 	/*
1190 	 * Read the Ethernet address from the EEPROM.  This might
1191 	 * also fetch other stuff from the EEPROM and stash it
1192 	 * in the softc.
1193 	 */
1194 	sc->sc_cfg = 0;
1195 	if (!sc->sc_gigabit) {
1196 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1197 		    SIP_SIS900_REV(sc,SIS_REV_900B))
1198 			sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1199 
1200 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1201 		    SIP_SIS900_REV(sc,SIS_REV_960) ||
1202 		    SIP_SIS900_REV(sc,SIS_REV_900B))
1203 			sc->sc_cfg |=
1204 			    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1205 			     CFG_EDBMASTEN);
1206 	}
1207 
1208 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1209 
1210 	printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
1211 	    ether_sprintf(enaddr));
1212 
1213 	/*
1214 	 * Initialize the configuration register: aggressive PCI
1215 	 * bus request algorithm, default backoff, default OW timer,
1216 	 * default parity error detection.
1217 	 *
1218 	 * NOTE: "Big endian mode" is useless on the SiS900 and
1219 	 * friends -- it affects packet data, not descriptors.
1220 	 */
1221 	if (sc->sc_gigabit)
1222 		sipcom_dp83820_attach(sc, pa);
1223 
1224 	/*
1225 	 * Initialize our media structures and probe the MII.
1226 	 */
1227 	sc->sc_mii.mii_ifp = ifp;
1228 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
1229 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
1230 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
1231 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
1232 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
1233 	    sipcom_mediastatus);
1234 
1235 	/*
1236 	 * XXX We cannot handle flow control on the DP83815.
1237 	 */
1238 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1239 		mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1240 			   MII_OFFSET_ANY, 0);
1241 	else
1242 		mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1243 			   MII_OFFSET_ANY, MIIF_DOPAUSE);
1244 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1245 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1246 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1247 	} else
1248 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1249 
1250 	ifp = &sc->sc_ethercom.ec_if;
1251 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1252 	ifp->if_softc = sc;
1253 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1254 	sc->sc_if_flags = ifp->if_flags;
1255 	ifp->if_ioctl = sipcom_ioctl;
1256 	ifp->if_start = sipcom_start;
1257 	ifp->if_watchdog = sipcom_watchdog;
1258 	ifp->if_init = sipcom_init;
1259 	ifp->if_stop = sipcom_stop;
1260 	IFQ_SET_READY(&ifp->if_snd);
1261 
1262 	/*
1263 	 * We can support 802.1Q VLAN-sized frames.
1264 	 */
1265 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1266 
1267 	if (sc->sc_gigabit) {
1268 		/*
1269 		 * And the DP83820 can do VLAN tagging in hardware, and
1270 		 * support the jumbo Ethernet MTU.
1271 		 */
1272 		sc->sc_ethercom.ec_capabilities |=
1273 		    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1274 
1275 		/*
1276 		 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1277 		 * in hardware.
1278 		 */
1279 		ifp->if_capabilities |=
1280 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1281 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1282 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1283 	}
1284 
1285 	/*
1286 	 * Attach the interface.
1287 	 */
1288 	if_attach(ifp);
1289 	ether_ifattach(ifp, enaddr);
1290 	ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb);
1291 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1292 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1293 	sc->sc_prev.if_capenable = ifp->if_capenable;
1294 #if NRND > 0
1295 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
1296 	    RND_TYPE_NET, 0);
1297 #endif
1298 
1299 	/*
1300 	 * The number of bytes that must be available in
1301 	 * the Tx FIFO before the bus master can DMA more
1302 	 * data into the FIFO.
1303 	 */
1304 	sc->sc_tx_fill_thresh = 64 / 32;
1305 
1306 	/*
1307 	 * Start at a drain threshold of 512 bytes.  We will
1308 	 * increase it if a DMA underrun occurs.
1309 	 *
1310 	 * XXX The minimum value of this variable should be
1311 	 * tuned.  We may be able to improve performance
1312 	 * by starting with a lower value.  That, however,
1313 	 * may trash the first few outgoing packets if the
1314 	 * PCI bus is saturated.
1315 	 */
1316 	if (sc->sc_gigabit)
1317 		sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1318 	else
1319 		sc->sc_tx_drain_thresh = 1504 / 32;
1320 
1321 	/*
1322 	 * Initialize the Rx FIFO drain threshold.
1323 	 *
1324 	 * This is in units of 8 bytes.
1325 	 *
1326 	 * We should never set this value lower than 2; 14 bytes are
1327 	 * required to filter the packet.
1328 	 */
1329 	sc->sc_rx_drain_thresh = 128 / 8;
1330 
1331 #ifdef SIP_EVENT_COUNTERS
1332 	/*
1333 	 * Attach event counters.
1334 	 */
1335 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1336 	    NULL, device_xname(sc->sc_dev), "txsstall");
1337 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1338 	    NULL, device_xname(sc->sc_dev), "txdstall");
1339 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1340 	    NULL, device_xname(sc->sc_dev), "txforceintr");
1341 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1342 	    NULL, device_xname(sc->sc_dev), "txdintr");
1343 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1344 	    NULL, device_xname(sc->sc_dev), "txiintr");
1345 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1346 	    NULL, device_xname(sc->sc_dev), "rxintr");
1347 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1348 	    NULL, device_xname(sc->sc_dev), "hiberr");
1349 	if (!sc->sc_gigabit) {
1350 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1351 		    NULL, device_xname(sc->sc_dev), "rxpause");
1352 	} else {
1353 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1354 		    NULL, device_xname(sc->sc_dev), "rxpause");
1355 		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1356 		    NULL, device_xname(sc->sc_dev), "txpause");
1357 		evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1358 		    NULL, device_xname(sc->sc_dev), "rxipsum");
1359 		evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1360 		    NULL, device_xname(sc->sc_dev), "rxtcpsum");
1361 		evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1362 		    NULL, device_xname(sc->sc_dev), "rxudpsum");
1363 		evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1364 		    NULL, device_xname(sc->sc_dev), "txipsum");
1365 		evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1366 		    NULL, device_xname(sc->sc_dev), "txtcpsum");
1367 		evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1368 		    NULL, device_xname(sc->sc_dev), "txudpsum");
1369 	}
1370 #endif /* SIP_EVENT_COUNTERS */
1371 
1372 	if (pmf_device_register(self, sipcom_suspend, sipcom_resume))
1373 		pmf_class_network_register(self, ifp);
1374 	else
1375 		aprint_error_dev(self, "couldn't establish power handler\n");
1376 }
1377 
1378 static inline void
1379 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1380     uint64_t capenable)
1381 {
1382 	struct m_tag *mtag;
1383 	u_int32_t extsts;
1384 #ifdef DEBUG
1385 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1386 #endif
1387 	/*
1388 	 * If VLANs are enabled and the packet has a VLAN tag, set
1389 	 * up the descriptor to encapsulate the packet for us.
1390 	 *
1391 	 * This apparently has to be on the last descriptor of
1392 	 * the packet.
1393 	 */
1394 
1395 	/*
1396 	 * Byte swapping is tricky. We need to provide the tag
1397 	 * in a network byte order. On a big-endian machine,
1398 	 * the byteorder is correct, but we need to swap it
1399 	 * anyway, because this will be undone by the outside
1400 	 * htole32(). That's why there must be an
1401 	 * unconditional swap instead of htons() inside.
1402 	 */
1403 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1404 		sc->sc_txdescs[lasttx].sipd_extsts |=
1405 		    htole32(EXTSTS_VPKT |
1406 				(bswap16(VLAN_TAG_VALUE(mtag)) &
1407 				 EXTSTS_VTCI));
1408 	}
1409 
1410 	/*
1411 	 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1412 	 * checksumming, set up the descriptor to do this work
1413 	 * for us.
1414 	 *
1415 	 * This apparently has to be on the first descriptor of
1416 	 * the packet.
1417 	 *
1418 	 * Byte-swap constants so the compiler can optimize.
1419 	 */
1420 	extsts = 0;
1421 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1422 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1423 		SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1424 		extsts |= htole32(EXTSTS_IPPKT);
1425 	}
1426 	if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1427 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1428 		SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1429 		extsts |= htole32(EXTSTS_TCPPKT);
1430 	} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1431 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1432 		SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1433 		extsts |= htole32(EXTSTS_UDPPKT);
1434 	}
1435 	sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1436 }
1437 
1438 /*
1439  * sip_start:		[ifnet interface function]
1440  *
1441  *	Start packet transmission on the interface.
1442  */
1443 static void
1444 sipcom_start(struct ifnet *ifp)
1445 {
1446 	struct sip_softc *sc = ifp->if_softc;
1447 	struct mbuf *m0;
1448 	struct mbuf *m;
1449 	struct sip_txsoft *txs;
1450 	bus_dmamap_t dmamap;
1451 	int error, nexttx, lasttx, seg;
1452 	int ofree = sc->sc_txfree;
1453 #if 0
1454 	int firsttx = sc->sc_txnext;
1455 #endif
1456 
1457 	/*
1458 	 * If we've been told to pause, don't transmit any more packets.
1459 	 */
1460 	if (!sc->sc_gigabit && sc->sc_paused)
1461 		ifp->if_flags |= IFF_OACTIVE;
1462 
1463 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1464 		return;
1465 
1466 	/*
1467 	 * Loop through the send queue, setting up transmit descriptors
1468 	 * until we drain the queue, or use up all available transmit
1469 	 * descriptors.
1470 	 */
1471 	for (;;) {
1472 		/* Get a work queue entry. */
1473 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1474 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1475 			break;
1476 		}
1477 
1478 		/*
1479 		 * Grab a packet off the queue.
1480 		 */
1481 		IFQ_POLL(&ifp->if_snd, m0);
1482 		if (m0 == NULL)
1483 			break;
1484 		m = NULL;
1485 
1486 		dmamap = txs->txs_dmamap;
1487 
1488 		/*
1489 		 * Load the DMA map.  If this fails, the packet either
1490 		 * didn't fit in the alloted number of segments, or we
1491 		 * were short on resources.
1492 		 */
1493 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1494 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1495 		/* In the non-gigabit case, we'll copy and try again. */
1496 		if (error != 0 && !sc->sc_gigabit) {
1497 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1498 			if (m == NULL) {
1499 				printf("%s: unable to allocate Tx mbuf\n",
1500 				    device_xname(sc->sc_dev));
1501 				break;
1502 			}
1503 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1504 			if (m0->m_pkthdr.len > MHLEN) {
1505 				MCLGET(m, M_DONTWAIT);
1506 				if ((m->m_flags & M_EXT) == 0) {
1507 					printf("%s: unable to allocate Tx "
1508 					    "cluster\n", device_xname(sc->sc_dev));
1509 					m_freem(m);
1510 					break;
1511 				}
1512 			}
1513 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1514 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1515 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1516 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1517 			if (error) {
1518 				printf("%s: unable to load Tx buffer, "
1519 				    "error = %d\n", device_xname(sc->sc_dev), error);
1520 				break;
1521 			}
1522 		} else if (error == EFBIG) {
1523 			/*
1524 			 * For the too-many-segments case, we simply
1525 			 * report an error and drop the packet,
1526 			 * since we can't sanely copy a jumbo packet
1527 			 * to a single buffer.
1528 			 */
1529 			printf("%s: Tx packet consumes too many "
1530 			    "DMA segments, dropping...\n", device_xname(sc->sc_dev));
1531 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1532 			m_freem(m0);
1533 			continue;
1534 		} else if (error != 0) {
1535 			/*
1536 			 * Short on resources, just stop for now.
1537 			 */
1538 			break;
1539 		}
1540 
1541 		/*
1542 		 * Ensure we have enough descriptors free to describe
1543 		 * the packet.  Note, we always reserve one descriptor
1544 		 * at the end of the ring as a termination point, to
1545 		 * prevent wrap-around.
1546 		 */
1547 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1548 			/*
1549 			 * Not enough free descriptors to transmit this
1550 			 * packet.  We haven't committed anything yet,
1551 			 * so just unload the DMA map, put the packet
1552 			 * back on the queue, and punt.  Notify the upper
1553 			 * layer that there are not more slots left.
1554 			 *
1555 			 * XXX We could allocate an mbuf and copy, but
1556 			 * XXX is it worth it?
1557 			 */
1558 			ifp->if_flags |= IFF_OACTIVE;
1559 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1560 			if (m != NULL)
1561 				m_freem(m);
1562 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1563 			break;
1564 		}
1565 
1566 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1567 		if (m != NULL) {
1568 			m_freem(m0);
1569 			m0 = m;
1570 		}
1571 
1572 		/*
1573 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1574 		 */
1575 
1576 		/* Sync the DMA map. */
1577 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1578 		    BUS_DMASYNC_PREWRITE);
1579 
1580 		/*
1581 		 * Initialize the transmit descriptors.
1582 		 */
1583 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1584 		     seg < dmamap->dm_nsegs;
1585 		     seg++, nexttx = sip_nexttx(sc, nexttx)) {
1586 			/*
1587 			 * If this is the first descriptor we're
1588 			 * enqueueing, don't set the OWN bit just
1589 			 * yet.  That could cause a race condition.
1590 			 * We'll do it below.
1591 			 */
1592 			*sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
1593 			    htole32(dmamap->dm_segs[seg].ds_addr);
1594 			*sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
1595 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1596 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1597 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
1598 			lasttx = nexttx;
1599 		}
1600 
1601 		/* Clear the MORE bit on the last segment. */
1602 		*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
1603 		    htole32(~CMDSTS_MORE);
1604 
1605 		/*
1606 		 * If we're in the interrupt delay window, delay the
1607 		 * interrupt.
1608 		 */
1609 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1610 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1611 			*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
1612 			    htole32(CMDSTS_INTR);
1613 			sc->sc_txwin = 0;
1614 		}
1615 
1616 		if (sc->sc_gigabit)
1617 			sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1618 
1619 		/* Sync the descriptors we're using. */
1620 		sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
1621 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1622 
1623 		/*
1624 		 * The entire packet is set up.  Give the first descrptor
1625 		 * to the chip now.
1626 		 */
1627 		*sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
1628 		    htole32(CMDSTS_OWN);
1629 		sip_cdtxsync(sc, sc->sc_txnext, 1,
1630 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1631 
1632 		/*
1633 		 * Store a pointer to the packet so we can free it later,
1634 		 * and remember what txdirty will be once the packet is
1635 		 * done.
1636 		 */
1637 		txs->txs_mbuf = m0;
1638 		txs->txs_firstdesc = sc->sc_txnext;
1639 		txs->txs_lastdesc = lasttx;
1640 
1641 		/* Advance the tx pointer. */
1642 		sc->sc_txfree -= dmamap->dm_nsegs;
1643 		sc->sc_txnext = nexttx;
1644 
1645 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1646 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1647 
1648 		/*
1649 		 * Pass the packet to any BPF listeners.
1650 		 */
1651 		bpf_mtap(ifp, m0);
1652 	}
1653 
1654 	if (txs == NULL || sc->sc_txfree == 0) {
1655 		/* No more slots left; notify upper layer. */
1656 		ifp->if_flags |= IFF_OACTIVE;
1657 	}
1658 
1659 	if (sc->sc_txfree != ofree) {
1660 		/*
1661 		 * Start the transmit process.  Note, the manual says
1662 		 * that if there are no pending transmissions in the
1663 		 * chip's internal queue (indicated by TXE being clear),
1664 		 * then the driver software must set the TXDP to the
1665 		 * first descriptor to be transmitted.  However, if we
1666 		 * do this, it causes serious performance degredation on
1667 		 * the DP83820 under load, not setting TXDP doesn't seem
1668 		 * to adversely affect the SiS 900 or DP83815.
1669 		 *
1670 		 * Well, I guess it wouldn't be the first time a manual
1671 		 * has lied -- and they could be speaking of the NULL-
1672 		 * terminated descriptor list case, rather than OWN-
1673 		 * terminated rings.
1674 		 */
1675 #if 0
1676 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1677 		     CR_TXE) == 0) {
1678 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1679 			    SIP_CDTXADDR(sc, firsttx));
1680 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1681 		}
1682 #else
1683 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1684 #endif
1685 
1686 		/* Set a watchdog timer in case the chip flakes out. */
1687 		/* Gigabit autonegotiation takes 5 seconds. */
1688 		ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1689 	}
1690 }
1691 
1692 /*
1693  * sip_watchdog:	[ifnet interface function]
1694  *
1695  *	Watchdog timer handler.
1696  */
1697 static void
1698 sipcom_watchdog(struct ifnet *ifp)
1699 {
1700 	struct sip_softc *sc = ifp->if_softc;
1701 
1702 	/*
1703 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1704 	 * If we get a timeout, try and sweep up transmit descriptors.
1705 	 * If we manage to sweep them all up, ignore the lack of
1706 	 * interrupt.
1707 	 */
1708 	sipcom_txintr(sc);
1709 
1710 	if (sc->sc_txfree != sc->sc_ntxdesc) {
1711 		printf("%s: device timeout\n", device_xname(sc->sc_dev));
1712 		ifp->if_oerrors++;
1713 
1714 		/* Reset the interface. */
1715 		(void) sipcom_init(ifp);
1716 	} else if (ifp->if_flags & IFF_DEBUG)
1717 		printf("%s: recovered from device timeout\n",
1718 		    device_xname(sc->sc_dev));
1719 
1720 	/* Try to get more packets going. */
1721 	sipcom_start(ifp);
1722 }
1723 
1724 /* If the interface is up and running, only modify the receive
1725  * filter when setting promiscuous or debug mode.  Otherwise fall
1726  * through to ether_ioctl, which will reset the chip.
1727  */
1728 static int
1729 sip_ifflags_cb(struct ethercom *ec)
1730 {
1731 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable			\
1732 			 == (sc)->sc_ethercom.ec_capenable)		\
1733 			&& ((sc)->sc_prev.is_vlan ==			\
1734 			    VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1735 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1736 	struct ifnet *ifp = &ec->ec_if;
1737 	struct sip_softc *sc = ifp->if_softc;
1738 	int change = ifp->if_flags ^ sc->sc_if_flags;
1739 
1740 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0 || !COMPARE_EC(sc) ||
1741 	    !COMPARE_IC(sc, ifp))
1742 		return ENETRESET;
1743 	/* Set up the receive filter. */
1744 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1745 	return 0;
1746 }
1747 
1748 /*
1749  * sip_ioctl:		[ifnet interface function]
1750  *
1751  *	Handle control requests from the operator.
1752  */
1753 static int
1754 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1755 {
1756 	struct sip_softc *sc = ifp->if_softc;
1757 	struct ifreq *ifr = (struct ifreq *)data;
1758 	int s, error;
1759 
1760 	s = splnet();
1761 
1762 	switch (cmd) {
1763 	case SIOCSIFMEDIA:
1764 		/* Flow control requires full-duplex mode. */
1765 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1766 		    (ifr->ifr_media & IFM_FDX) == 0)
1767 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
1768 
1769 		/* XXX */
1770 		if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1771 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1772 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1773 			if (sc->sc_gigabit &&
1774 			    (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1775 				/* We can do both TXPAUSE and RXPAUSE. */
1776 				ifr->ifr_media |=
1777 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1778 			} else if (ifr->ifr_media & IFM_FLOW) {
1779 				/*
1780 				 * Both TXPAUSE and RXPAUSE must be set.
1781 				 * (SiS900 and DP83815 don't have PAUSE_ASYM
1782 				 * feature.)
1783 				 *
1784 				 * XXX Can SiS900 and DP83815 send PAUSE?
1785 				 */
1786 				ifr->ifr_media |=
1787 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1788 			}
1789 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1790 		}
1791 		/*FALLTHROUGH*/
1792 	default:
1793 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1794 			break;
1795 
1796 		error = 0;
1797 
1798 		if (cmd == SIOCSIFCAP)
1799 			error = (*ifp->if_init)(ifp);
1800 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1801 			;
1802 		else if (ifp->if_flags & IFF_RUNNING) {
1803 			/*
1804 			 * Multicast list has changed; set the hardware filter
1805 			 * accordingly.
1806 			 */
1807 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1808 		}
1809 		break;
1810 	}
1811 
1812 	/* Try to get more packets going. */
1813 	sipcom_start(ifp);
1814 
1815 	sc->sc_if_flags = ifp->if_flags;
1816 	splx(s);
1817 	return (error);
1818 }
1819 
1820 /*
1821  * sip_intr:
1822  *
1823  *	Interrupt service routine.
1824  */
1825 static int
1826 sipcom_intr(void *arg)
1827 {
1828 	struct sip_softc *sc = arg;
1829 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1830 	u_int32_t isr;
1831 	int handled = 0;
1832 
1833 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
1834 		return 0;
1835 
1836 	/* Disable interrupts. */
1837 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1838 
1839 	for (;;) {
1840 		/* Reading clears interrupt. */
1841 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1842 		if ((isr & sc->sc_imr) == 0)
1843 			break;
1844 
1845 #if NRND > 0
1846 		if (RND_ENABLED(&sc->rnd_source))
1847 			rnd_add_uint32(&sc->rnd_source, isr);
1848 #endif
1849 
1850 		handled = 1;
1851 
1852 		if ((ifp->if_flags & IFF_RUNNING) == 0)
1853 			break;
1854 
1855 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1856 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1857 
1858 			/* Grab any new packets. */
1859 			(*sc->sc_rxintr)(sc);
1860 
1861 			if (isr & ISR_RXORN) {
1862 				printf("%s: receive FIFO overrun\n",
1863 				    device_xname(sc->sc_dev));
1864 
1865 				/* XXX adjust rx_drain_thresh? */
1866 			}
1867 
1868 			if (isr & ISR_RXIDLE) {
1869 				printf("%s: receive ring overrun\n",
1870 				    device_xname(sc->sc_dev));
1871 
1872 				/* Get the receive process going again. */
1873 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1874 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1875 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1876 				    SIP_CR, CR_RXE);
1877 			}
1878 		}
1879 
1880 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1881 #ifdef SIP_EVENT_COUNTERS
1882 			if (isr & ISR_TXDESC)
1883 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1884 			else if (isr & ISR_TXIDLE)
1885 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1886 #endif
1887 
1888 			/* Sweep up transmit descriptors. */
1889 			sipcom_txintr(sc);
1890 
1891 			if (isr & ISR_TXURN) {
1892 				u_int32_t thresh;
1893 				int txfifo_size = (sc->sc_gigabit)
1894 				    ? DP83820_SIP_TXFIFO_SIZE
1895 				    : OTHER_SIP_TXFIFO_SIZE;
1896 
1897 				printf("%s: transmit FIFO underrun",
1898 				    device_xname(sc->sc_dev));
1899 				thresh = sc->sc_tx_drain_thresh + 1;
1900 				if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
1901 				&& (thresh * 32) <= (txfifo_size -
1902 				     (sc->sc_tx_fill_thresh * 32))) {
1903 					printf("; increasing Tx drain "
1904 					    "threshold to %u bytes\n",
1905 					    thresh * 32);
1906 					sc->sc_tx_drain_thresh = thresh;
1907 					(void) sipcom_init(ifp);
1908 				} else {
1909 					(void) sipcom_init(ifp);
1910 					printf("\n");
1911 				}
1912 			}
1913 		}
1914 
1915 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1916 			if (isr & ISR_PAUSE_ST) {
1917 				sc->sc_paused = 1;
1918 				SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1919 				ifp->if_flags |= IFF_OACTIVE;
1920 			}
1921 			if (isr & ISR_PAUSE_END) {
1922 				sc->sc_paused = 0;
1923 				ifp->if_flags &= ~IFF_OACTIVE;
1924 			}
1925 		}
1926 
1927 		if (isr & ISR_HIBERR) {
1928 			int want_init = 0;
1929 
1930 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1931 
1932 #define	PRINTERR(bit, str)						\
1933 			do {						\
1934 				if ((isr & (bit)) != 0) {		\
1935 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
1936 						printf("%s: %s\n",	\
1937 						    device_xname(sc->sc_dev), str); \
1938 					want_init = 1;			\
1939 				}					\
1940 			} while (/*CONSTCOND*/0)
1941 
1942 			PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
1943 			PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
1944 			PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
1945 			PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
1946 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1947 			/*
1948 			 * Ignore:
1949 			 *	Tx reset complete
1950 			 *	Rx reset complete
1951 			 */
1952 			if (want_init)
1953 				(void) sipcom_init(ifp);
1954 #undef PRINTERR
1955 		}
1956 	}
1957 
1958 	/* Re-enable interrupts. */
1959 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1960 
1961 	/* Try to get more packets going. */
1962 	sipcom_start(ifp);
1963 
1964 	return (handled);
1965 }
1966 
1967 /*
1968  * sip_txintr:
1969  *
1970  *	Helper; handle transmit interrupts.
1971  */
1972 static void
1973 sipcom_txintr(struct sip_softc *sc)
1974 {
1975 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1976 	struct sip_txsoft *txs;
1977 	u_int32_t cmdsts;
1978 
1979 	if (sc->sc_paused == 0)
1980 		ifp->if_flags &= ~IFF_OACTIVE;
1981 
1982 	/*
1983 	 * Go through our Tx list and free mbufs for those
1984 	 * frames which have been transmitted.
1985 	 */
1986 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1987 		sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1988 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1989 
1990 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
1991 		if (cmdsts & CMDSTS_OWN)
1992 			break;
1993 
1994 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1995 
1996 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1997 
1998 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1999 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2000 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2001 		m_freem(txs->txs_mbuf);
2002 		txs->txs_mbuf = NULL;
2003 
2004 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2005 
2006 		/*
2007 		 * Check for errors and collisions.
2008 		 */
2009 		if (cmdsts &
2010 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
2011 			ifp->if_oerrors++;
2012 			if (cmdsts & CMDSTS_Tx_EC)
2013 				ifp->if_collisions += 16;
2014 			if (ifp->if_flags & IFF_DEBUG) {
2015 				if (cmdsts & CMDSTS_Tx_ED)
2016 					printf("%s: excessive deferral\n",
2017 					    device_xname(sc->sc_dev));
2018 				if (cmdsts & CMDSTS_Tx_EC)
2019 					printf("%s: excessive collisions\n",
2020 					    device_xname(sc->sc_dev));
2021 			}
2022 		} else {
2023 			/* Packet was transmitted successfully. */
2024 			ifp->if_opackets++;
2025 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
2026 		}
2027 	}
2028 
2029 	/*
2030 	 * If there are no more pending transmissions, cancel the watchdog
2031 	 * timer.
2032 	 */
2033 	if (txs == NULL) {
2034 		ifp->if_timer = 0;
2035 		sc->sc_txwin = 0;
2036 	}
2037 }
2038 
2039 /*
2040  * gsip_rxintr:
2041  *
2042  *	Helper; handle receive interrupts on gigabit parts.
2043  */
2044 static void
2045 gsip_rxintr(struct sip_softc *sc)
2046 {
2047 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2048 	struct sip_rxsoft *rxs;
2049 	struct mbuf *m;
2050 	u_int32_t cmdsts, extsts;
2051 	int i, len;
2052 
2053 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2054 		rxs = &sc->sc_rxsoft[i];
2055 
2056 		sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2057 
2058 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2059 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
2060 		len = CMDSTS_SIZE(sc, cmdsts);
2061 
2062 		/*
2063 		 * NOTE: OWN is set if owned by _consumer_.  We're the
2064 		 * consumer of the receive ring, so if the bit is clear,
2065 		 * we have processed all of the packets.
2066 		 */
2067 		if ((cmdsts & CMDSTS_OWN) == 0) {
2068 			/*
2069 			 * We have processed all of the receive buffers.
2070 			 */
2071 			break;
2072 		}
2073 
2074 		if (__predict_false(sc->sc_rxdiscard)) {
2075 			sip_init_rxdesc(sc, i);
2076 			if ((cmdsts & CMDSTS_MORE) == 0) {
2077 				/* Reset our state. */
2078 				sc->sc_rxdiscard = 0;
2079 			}
2080 			continue;
2081 		}
2082 
2083 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2084 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2085 
2086 		m = rxs->rxs_mbuf;
2087 
2088 		/*
2089 		 * Add a new receive buffer to the ring.
2090 		 */
2091 		if (sipcom_add_rxbuf(sc, i) != 0) {
2092 			/*
2093 			 * Failed, throw away what we've done so
2094 			 * far, and discard the rest of the packet.
2095 			 */
2096 			ifp->if_ierrors++;
2097 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2098 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2099 			sip_init_rxdesc(sc, i);
2100 			if (cmdsts & CMDSTS_MORE)
2101 				sc->sc_rxdiscard = 1;
2102 			if (sc->sc_rxhead != NULL)
2103 				m_freem(sc->sc_rxhead);
2104 			sip_rxchain_reset(sc);
2105 			continue;
2106 		}
2107 
2108 		sip_rxchain_link(sc, m);
2109 
2110 		m->m_len = len;
2111 
2112 		/*
2113 		 * If this is not the end of the packet, keep
2114 		 * looking.
2115 		 */
2116 		if (cmdsts & CMDSTS_MORE) {
2117 			sc->sc_rxlen += len;
2118 			continue;
2119 		}
2120 
2121 		/*
2122 		 * Okay, we have the entire packet now.  The chip includes
2123 		 * the FCS, so we need to trim it.
2124 		 */
2125 		m->m_len -= ETHER_CRC_LEN;
2126 
2127 		*sc->sc_rxtailp = NULL;
2128 		len = m->m_len + sc->sc_rxlen;
2129 		m = sc->sc_rxhead;
2130 
2131 		sip_rxchain_reset(sc);
2132 
2133 		/*
2134 		 * If an error occurred, update stats and drop the packet.
2135 		 */
2136 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2137 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2138 			ifp->if_ierrors++;
2139 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2140 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
2141 				/* Receive overrun handled elsewhere. */
2142 				printf("%s: receive descriptor error\n",
2143 				    device_xname(sc->sc_dev));
2144 			}
2145 #define	PRINTERR(bit, str)						\
2146 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
2147 			    (cmdsts & (bit)) != 0)			\
2148 				printf("%s: %s\n", device_xname(sc->sc_dev), str)
2149 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2150 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2151 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2152 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2153 #undef PRINTERR
2154 			m_freem(m);
2155 			continue;
2156 		}
2157 
2158 		/*
2159 		 * If the packet is small enough to fit in a
2160 		 * single header mbuf, allocate one and copy
2161 		 * the data into it.  This greatly reduces
2162 		 * memory consumption when we receive lots
2163 		 * of small packets.
2164 		 */
2165 		if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
2166 			struct mbuf *nm;
2167 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
2168 			if (nm == NULL) {
2169 				ifp->if_ierrors++;
2170 				m_freem(m);
2171 				continue;
2172 			}
2173 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2174 			nm->m_data += 2;
2175 			nm->m_pkthdr.len = nm->m_len = len;
2176 			m_copydata(m, 0, len, mtod(nm, void *));
2177 			m_freem(m);
2178 			m = nm;
2179 		}
2180 #ifndef __NO_STRICT_ALIGNMENT
2181 		else {
2182 			/*
2183 			 * The DP83820's receive buffers must be 4-byte
2184 			 * aligned.  But this means that the data after
2185 			 * the Ethernet header is misaligned.  To compensate,
2186 			 * we have artificially shortened the buffer size
2187 			 * in the descriptor, and we do an overlapping copy
2188 			 * of the data two bytes further in (in the first
2189 			 * buffer of the chain only).
2190 			 */
2191 			memmove(mtod(m, char *) + 2, mtod(m, void *),
2192 			    m->m_len);
2193 			m->m_data += 2;
2194 		}
2195 #endif /* ! __NO_STRICT_ALIGNMENT */
2196 
2197 		/*
2198 		 * If VLANs are enabled, VLAN packets have been unwrapped
2199 		 * for us.  Associate the tag with the packet.
2200 		 */
2201 
2202 		/*
2203 		 * Again, byte swapping is tricky. Hardware provided
2204 		 * the tag in the network byte order, but extsts was
2205 		 * passed through le32toh() in the meantime. On a
2206 		 * big-endian machine, we need to swap it again. On a
2207 		 * little-endian machine, we need to convert from the
2208 		 * network to host byte order. This means that we must
2209 		 * swap it in any case, so unconditional swap instead
2210 		 * of htons() is used.
2211 		 */
2212 		if ((extsts & EXTSTS_VPKT) != 0) {
2213 			VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
2214 			    continue);
2215 		}
2216 
2217 		/*
2218 		 * Set the incoming checksum information for the
2219 		 * packet.
2220 		 */
2221 		if ((extsts & EXTSTS_IPPKT) != 0) {
2222 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2223 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2224 			if (extsts & EXTSTS_Rx_IPERR)
2225 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2226 			if (extsts & EXTSTS_TCPPKT) {
2227 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2228 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2229 				if (extsts & EXTSTS_Rx_TCPERR)
2230 					m->m_pkthdr.csum_flags |=
2231 					    M_CSUM_TCP_UDP_BAD;
2232 			} else if (extsts & EXTSTS_UDPPKT) {
2233 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2234 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2235 				if (extsts & EXTSTS_Rx_UDPERR)
2236 					m->m_pkthdr.csum_flags |=
2237 					    M_CSUM_TCP_UDP_BAD;
2238 			}
2239 		}
2240 
2241 		ifp->if_ipackets++;
2242 		m->m_pkthdr.rcvif = ifp;
2243 		m->m_pkthdr.len = len;
2244 
2245 		/*
2246 		 * Pass this up to any BPF listeners, but only
2247 		 * pass if up the stack if it's for us.
2248 		 */
2249 		bpf_mtap(ifp, m);
2250 
2251 		/* Pass it on. */
2252 		(*ifp->if_input)(ifp, m);
2253 	}
2254 
2255 	/* Update the receive pointer. */
2256 	sc->sc_rxptr = i;
2257 }
2258 
2259 /*
2260  * sip_rxintr:
2261  *
2262  *	Helper; handle receive interrupts on 10/100 parts.
2263  */
2264 static void
2265 sip_rxintr(struct sip_softc *sc)
2266 {
2267 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2268 	struct sip_rxsoft *rxs;
2269 	struct mbuf *m;
2270 	u_int32_t cmdsts;
2271 	int i, len;
2272 
2273 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2274 		rxs = &sc->sc_rxsoft[i];
2275 
2276 		sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2277 
2278 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2279 
2280 		/*
2281 		 * NOTE: OWN is set if owned by _consumer_.  We're the
2282 		 * consumer of the receive ring, so if the bit is clear,
2283 		 * we have processed all of the packets.
2284 		 */
2285 		if ((cmdsts & CMDSTS_OWN) == 0) {
2286 			/*
2287 			 * We have processed all of the receive buffers.
2288 			 */
2289 			break;
2290 		}
2291 
2292 		/*
2293 		 * If any collisions were seen on the wire, count one.
2294 		 */
2295 		if (cmdsts & CMDSTS_Rx_COL)
2296 			ifp->if_collisions++;
2297 
2298 		/*
2299 		 * If an error occurred, update stats, clear the status
2300 		 * word, and leave the packet buffer in place.  It will
2301 		 * simply be reused the next time the ring comes around.
2302 		 */
2303 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2304 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2305 			ifp->if_ierrors++;
2306 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2307 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
2308 				/* Receive overrun handled elsewhere. */
2309 				printf("%s: receive descriptor error\n",
2310 				    device_xname(sc->sc_dev));
2311 			}
2312 #define	PRINTERR(bit, str)						\
2313 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
2314 			    (cmdsts & (bit)) != 0)			\
2315 				printf("%s: %s\n", device_xname(sc->sc_dev), str)
2316 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2317 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2318 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2319 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2320 #undef PRINTERR
2321 			sip_init_rxdesc(sc, i);
2322 			continue;
2323 		}
2324 
2325 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2326 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2327 
2328 		/*
2329 		 * No errors; receive the packet.  Note, the SiS 900
2330 		 * includes the CRC with every packet.
2331 		 */
2332 		len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
2333 
2334 #ifdef __NO_STRICT_ALIGNMENT
2335 		/*
2336 		 * If the packet is small enough to fit in a
2337 		 * single header mbuf, allocate one and copy
2338 		 * the data into it.  This greatly reduces
2339 		 * memory consumption when we receive lots
2340 		 * of small packets.
2341 		 *
2342 		 * Otherwise, we add a new buffer to the receive
2343 		 * chain.  If this fails, we drop the packet and
2344 		 * recycle the old buffer.
2345 		 */
2346 		if (sip_copy_small != 0 && len <= MHLEN) {
2347 			MGETHDR(m, M_DONTWAIT, MT_DATA);
2348 			if (m == NULL)
2349 				goto dropit;
2350 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2351 			memcpy(mtod(m, void *),
2352 			    mtod(rxs->rxs_mbuf, void *), len);
2353 			sip_init_rxdesc(sc, i);
2354 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2355 			    rxs->rxs_dmamap->dm_mapsize,
2356 			    BUS_DMASYNC_PREREAD);
2357 		} else {
2358 			m = rxs->rxs_mbuf;
2359 			if (sipcom_add_rxbuf(sc, i) != 0) {
2360  dropit:
2361 				ifp->if_ierrors++;
2362 				sip_init_rxdesc(sc, i);
2363 				bus_dmamap_sync(sc->sc_dmat,
2364 				    rxs->rxs_dmamap, 0,
2365 				    rxs->rxs_dmamap->dm_mapsize,
2366 				    BUS_DMASYNC_PREREAD);
2367 				continue;
2368 			}
2369 		}
2370 #else
2371 		/*
2372 		 * The SiS 900's receive buffers must be 4-byte aligned.
2373 		 * But this means that the data after the Ethernet header
2374 		 * is misaligned.  We must allocate a new buffer and
2375 		 * copy the data, shifted forward 2 bytes.
2376 		 */
2377 		MGETHDR(m, M_DONTWAIT, MT_DATA);
2378 		if (m == NULL) {
2379  dropit:
2380 			ifp->if_ierrors++;
2381 			sip_init_rxdesc(sc, i);
2382 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2383 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2384 			continue;
2385 		}
2386 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2387 		if (len > (MHLEN - 2)) {
2388 			MCLGET(m, M_DONTWAIT);
2389 			if ((m->m_flags & M_EXT) == 0) {
2390 				m_freem(m);
2391 				goto dropit;
2392 			}
2393 		}
2394 		m->m_data += 2;
2395 
2396 		/*
2397 		 * Note that we use clusters for incoming frames, so the
2398 		 * buffer is virtually contiguous.
2399 		 */
2400 		memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2401 
2402 		/* Allow the receive descriptor to continue using its mbuf. */
2403 		sip_init_rxdesc(sc, i);
2404 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2405 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2406 #endif /* __NO_STRICT_ALIGNMENT */
2407 
2408 		ifp->if_ipackets++;
2409 		m->m_pkthdr.rcvif = ifp;
2410 		m->m_pkthdr.len = m->m_len = len;
2411 
2412 		/*
2413 		 * Pass this up to any BPF listeners, but only
2414 		 * pass if up the stack if it's for us.
2415 		 */
2416 		bpf_mtap(ifp, m);
2417 
2418 		/* Pass it on. */
2419 		(*ifp->if_input)(ifp, m);
2420 	}
2421 
2422 	/* Update the receive pointer. */
2423 	sc->sc_rxptr = i;
2424 }
2425 
2426 /*
2427  * sip_tick:
2428  *
2429  *	One second timer, used to tick the MII.
2430  */
2431 static void
2432 sipcom_tick(void *arg)
2433 {
2434 	struct sip_softc *sc = arg;
2435 	int s;
2436 
2437 	s = splnet();
2438 #ifdef SIP_EVENT_COUNTERS
2439 	if (sc->sc_gigabit) {
2440 		/* Read PAUSE related counts from MIB registers. */
2441 		sc->sc_ev_rxpause.ev_count +=
2442 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
2443 				     SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2444 		sc->sc_ev_txpause.ev_count +=
2445 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
2446 				     SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2447 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2448 	}
2449 #endif /* SIP_EVENT_COUNTERS */
2450 	mii_tick(&sc->sc_mii);
2451 	splx(s);
2452 
2453 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2454 }
2455 
2456 /*
2457  * sip_reset:
2458  *
2459  *	Perform a soft reset on the SiS 900.
2460  */
2461 static bool
2462 sipcom_reset(struct sip_softc *sc)
2463 {
2464 	bus_space_tag_t st = sc->sc_st;
2465 	bus_space_handle_t sh = sc->sc_sh;
2466 	int i;
2467 
2468 	bus_space_write_4(st, sh, SIP_IER, 0);
2469 	bus_space_write_4(st, sh, SIP_IMR, 0);
2470 	bus_space_write_4(st, sh, SIP_RFCR, 0);
2471 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
2472 
2473 	for (i = 0; i < SIP_TIMEOUT; i++) {
2474 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2475 			break;
2476 		delay(2);
2477 	}
2478 
2479 	if (i == SIP_TIMEOUT) {
2480 		printf("%s: reset failed to complete\n", device_xname(sc->sc_dev));
2481 		return false;
2482 	}
2483 
2484 	delay(1000);
2485 
2486 	if (sc->sc_gigabit) {
2487 		/*
2488 		 * Set the general purpose I/O bits.  Do it here in case we
2489 		 * need to have GPIO set up to talk to the media interface.
2490 		 */
2491 		bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2492 		delay(1000);
2493 	}
2494 	return true;
2495 }
2496 
2497 static void
2498 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2499 {
2500 	u_int32_t reg;
2501 	bus_space_tag_t st = sc->sc_st;
2502 	bus_space_handle_t sh = sc->sc_sh;
2503 	/*
2504 	 * Initialize the VLAN/IP receive control register.
2505 	 * We enable checksum computation on all incoming
2506 	 * packets, and do not reject packets w/ bad checksums.
2507 	 */
2508 	reg = 0;
2509 	if (capenable &
2510 	    (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
2511 		reg |= VRCR_IPEN;
2512 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2513 		reg |= VRCR_VTDEN|VRCR_VTREN;
2514 	bus_space_write_4(st, sh, SIP_VRCR, reg);
2515 
2516 	/*
2517 	 * Initialize the VLAN/IP transmit control register.
2518 	 * We enable outgoing checksum computation on a
2519 	 * per-packet basis.
2520 	 */
2521 	reg = 0;
2522 	if (capenable &
2523 	    (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2524 		reg |= VTCR_PPCHK;
2525 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2526 		reg |= VTCR_VPPTI;
2527 	bus_space_write_4(st, sh, SIP_VTCR, reg);
2528 
2529 	/*
2530 	 * If we're using VLANs, initialize the VLAN data register.
2531 	 * To understand why we bswap the VLAN Ethertype, see section
2532 	 * 4.2.36 of the DP83820 manual.
2533 	 */
2534 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2535 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2536 }
2537 
2538 /*
2539  * sip_init:		[ ifnet interface function ]
2540  *
2541  *	Initialize the interface.  Must be called at splnet().
2542  */
2543 static int
2544 sipcom_init(struct ifnet *ifp)
2545 {
2546 	struct sip_softc *sc = ifp->if_softc;
2547 	bus_space_tag_t st = sc->sc_st;
2548 	bus_space_handle_t sh = sc->sc_sh;
2549 	struct sip_txsoft *txs;
2550 	struct sip_rxsoft *rxs;
2551 	struct sip_desc *sipd;
2552 	int i, error = 0;
2553 
2554 	if (device_is_active(sc->sc_dev)) {
2555 		/*
2556 		 * Cancel any pending I/O.
2557 		 */
2558 		sipcom_stop(ifp, 0);
2559 	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
2560 	           !device_is_active(sc->sc_dev))
2561 		return 0;
2562 
2563 	/*
2564 	 * Reset the chip to a known state.
2565 	 */
2566 	if (!sipcom_reset(sc))
2567 		return EBUSY;
2568 
2569 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2570 		/*
2571 		 * DP83815 manual, page 78:
2572 		 *    4.4 Recommended Registers Configuration
2573 		 *    For optimum performance of the DP83815, version noted
2574 		 *    as DP83815CVNG (SRR = 203h), the listed register
2575 		 *    modifications must be followed in sequence...
2576 		 *
2577 		 * It's not clear if this should be 302h or 203h because that
2578 		 * chip name is listed as SRR 302h in the description of the
2579 		 * SRR register.  However, my revision 302h DP83815 on the
2580 		 * Netgear FA311 purchased in 02/2001 needs these settings
2581 		 * to avoid tons of errors in AcceptPerfectMatch (non-
2582 		 * IFF_PROMISC) mode.  I do not know if other revisions need
2583 		 * this set or not.  [briggs -- 09 March 2001]
2584 		 *
2585 		 * Note that only the low-order 12 bits of 0xe4 are documented
2586 		 * and that this sets reserved bits in that register.
2587 		 */
2588 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
2589 
2590 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
2591 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
2592 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
2593 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
2594 
2595 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
2596 	}
2597 
2598 	/*
2599 	 * Initialize the transmit descriptor ring.
2600 	 */
2601 	for (i = 0; i < sc->sc_ntxdesc; i++) {
2602 		sipd = &sc->sc_txdescs[i];
2603 		memset(sipd, 0, sizeof(struct sip_desc));
2604 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
2605 	}
2606 	sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
2607 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2608 	sc->sc_txfree = sc->sc_ntxdesc;
2609 	sc->sc_txnext = 0;
2610 	sc->sc_txwin = 0;
2611 
2612 	/*
2613 	 * Initialize the transmit job descriptors.
2614 	 */
2615 	SIMPLEQ_INIT(&sc->sc_txfreeq);
2616 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
2617 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
2618 		txs = &sc->sc_txsoft[i];
2619 		txs->txs_mbuf = NULL;
2620 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2621 	}
2622 
2623 	/*
2624 	 * Initialize the receive descriptor and receive job
2625 	 * descriptor rings.
2626 	 */
2627 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2628 		rxs = &sc->sc_rxsoft[i];
2629 		if (rxs->rxs_mbuf == NULL) {
2630 			if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
2631 				printf("%s: unable to allocate or map rx "
2632 				    "buffer %d, error = %d\n",
2633 				    device_xname(sc->sc_dev), i, error);
2634 				/*
2635 				 * XXX Should attempt to run with fewer receive
2636 				 * XXX buffers instead of just failing.
2637 				 */
2638 				sipcom_rxdrain(sc);
2639 				goto out;
2640 			}
2641 		} else
2642 			sip_init_rxdesc(sc, i);
2643 	}
2644 	sc->sc_rxptr = 0;
2645 	sc->sc_rxdiscard = 0;
2646 	sip_rxchain_reset(sc);
2647 
2648 	/*
2649 	 * Set the configuration register; it's already initialized
2650 	 * in sip_attach().
2651 	 */
2652 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2653 
2654 	/*
2655 	 * Initialize the prototype TXCFG register.
2656 	 */
2657 	if (sc->sc_gigabit) {
2658 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2659 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2660 	} else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2661 	     SIP_SIS900_REV(sc, SIS_REV_960) ||
2662 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2663 	    (sc->sc_cfg & CFG_EDBMASTEN)) {
2664 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
2665 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
2666 	} else {
2667 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2668 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2669 	}
2670 
2671 	sc->sc_txcfg |= TXCFG_ATP |
2672 	    __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
2673 	    sc->sc_tx_drain_thresh;
2674 	bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
2675 
2676 	/*
2677 	 * Initialize the receive drain threshold if we have never
2678 	 * done so.
2679 	 */
2680 	if (sc->sc_rx_drain_thresh == 0) {
2681 		/*
2682 		 * XXX This value should be tuned.  This is set to the
2683 		 * maximum of 248 bytes, and we may be able to improve
2684 		 * performance by decreasing it (although we should never
2685 		 * set this value lower than 2; 14 bytes are required to
2686 		 * filter the packet).
2687 		 */
2688 		sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
2689 	}
2690 
2691 	/*
2692 	 * Initialize the prototype RXCFG register.
2693 	 */
2694 	sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
2695 	/*
2696 	 * Accept long packets (including FCS) so we can handle
2697 	 * 802.1q-tagged frames and jumbo frames properly.
2698 	 */
2699 	if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2700 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2701 		sc->sc_rxcfg |= RXCFG_ALP;
2702 
2703 	/*
2704 	 * Checksum offloading is disabled if the user selects an MTU
2705 	 * larger than 8109.  (FreeBSD says 8152, but there is emperical
2706 	 * evidence that >8109 does not work on some boards, such as the
2707 	 * Planex GN-1000TE).
2708 	 */
2709 	if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2710 	    (ifp->if_capenable &
2711 	     (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2712 	      IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2713 	      IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
2714 		printf("%s: Checksum offloading does not work if MTU > 8109 - "
2715 		       "disabled.\n", device_xname(sc->sc_dev));
2716 		ifp->if_capenable &=
2717 		    ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2718 		     IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2719 		     IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
2720 		ifp->if_csum_flags_tx = 0;
2721 		ifp->if_csum_flags_rx = 0;
2722 	}
2723 
2724 	bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
2725 
2726 	if (sc->sc_gigabit)
2727 		sipcom_dp83820_init(sc, ifp->if_capenable);
2728 
2729 	/*
2730 	 * Give the transmit and receive rings to the chip.
2731 	 */
2732 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2733 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2734 
2735 	/*
2736 	 * Initialize the interrupt mask.
2737 	 */
2738 	sc->sc_imr = sc->sc_bits.b_isr_dperr |
2739 	             sc->sc_bits.b_isr_sserr |
2740 		     sc->sc_bits.b_isr_rmabt |
2741 		     sc->sc_bits.b_isr_rtabt | ISR_RXSOVR |
2742 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2743 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2744 
2745 	/* Set up the receive filter. */
2746 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2747 
2748 	/*
2749 	 * Tune sc_rx_flow_thresh.
2750 	 * XXX "More than 8KB" is too short for jumbo frames.
2751 	 * XXX TODO: Threshold value should be user-settable.
2752 	 */
2753 	sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2754 				 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2755 				 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2756 
2757 	/*
2758 	 * Set the current media.  Do this after initializing the prototype
2759 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2760 	 * control.
2761 	 */
2762 	if ((error = ether_mediachange(ifp)) != 0)
2763 		goto out;
2764 
2765 	/*
2766 	 * Set the interrupt hold-off timer to 100us.
2767 	 */
2768 	if (sc->sc_gigabit)
2769 		bus_space_write_4(st, sh, SIP_IHR, 0x01);
2770 
2771 	/*
2772 	 * Enable interrupts.
2773 	 */
2774 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
2775 
2776 	/*
2777 	 * Start the transmit and receive processes.
2778 	 */
2779 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2780 
2781 	/*
2782 	 * Start the one second MII clock.
2783 	 */
2784 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2785 
2786 	/*
2787 	 * ...all done!
2788 	 */
2789 	ifp->if_flags |= IFF_RUNNING;
2790 	ifp->if_flags &= ~IFF_OACTIVE;
2791 	sc->sc_if_flags = ifp->if_flags;
2792 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2793 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2794 	sc->sc_prev.if_capenable = ifp->if_capenable;
2795 
2796  out:
2797 	if (error)
2798 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
2799 	return (error);
2800 }
2801 
2802 /*
2803  * sip_drain:
2804  *
2805  *	Drain the receive queue.
2806  */
2807 static void
2808 sipcom_rxdrain(struct sip_softc *sc)
2809 {
2810 	struct sip_rxsoft *rxs;
2811 	int i;
2812 
2813 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2814 		rxs = &sc->sc_rxsoft[i];
2815 		if (rxs->rxs_mbuf != NULL) {
2816 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2817 			m_freem(rxs->rxs_mbuf);
2818 			rxs->rxs_mbuf = NULL;
2819 		}
2820 	}
2821 }
2822 
2823 /*
2824  * sip_stop:		[ ifnet interface function ]
2825  *
2826  *	Stop transmission on the interface.
2827  */
2828 static void
2829 sipcom_stop(struct ifnet *ifp, int disable)
2830 {
2831 	struct sip_softc *sc = ifp->if_softc;
2832 	bus_space_tag_t st = sc->sc_st;
2833 	bus_space_handle_t sh = sc->sc_sh;
2834 	struct sip_txsoft *txs;
2835 	u_int32_t cmdsts = 0;		/* DEBUG */
2836 
2837 	/*
2838 	 * Stop the one second clock.
2839 	 */
2840 	callout_stop(&sc->sc_tick_ch);
2841 
2842 	/* Down the MII. */
2843 	mii_down(&sc->sc_mii);
2844 
2845 	if (device_is_active(sc->sc_dev)) {
2846 		/*
2847 		 * Disable interrupts.
2848 		 */
2849 		bus_space_write_4(st, sh, SIP_IER, 0);
2850 
2851 		/*
2852 		 * Stop receiver and transmitter.
2853 		 */
2854 		bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2855 	}
2856 
2857 	/*
2858 	 * Release any queued transmit buffers.
2859 	 */
2860 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2861 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2862 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2863 		    (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
2864 		     CMDSTS_INTR) == 0)
2865 			printf("%s: sip_stop: last descriptor does not "
2866 			    "have INTR bit set\n", device_xname(sc->sc_dev));
2867 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2868 #ifdef DIAGNOSTIC
2869 		if (txs->txs_mbuf == NULL) {
2870 			printf("%s: dirty txsoft with no mbuf chain\n",
2871 			    device_xname(sc->sc_dev));
2872 			panic("sip_stop");
2873 		}
2874 #endif
2875 		cmdsts |=		/* DEBUG */
2876 		    le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
2877 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2878 		m_freem(txs->txs_mbuf);
2879 		txs->txs_mbuf = NULL;
2880 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2881 	}
2882 
2883 	/*
2884 	 * Mark the interface down and cancel the watchdog timer.
2885 	 */
2886 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2887 	ifp->if_timer = 0;
2888 
2889 	if (disable)
2890 		pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
2891 
2892 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2893 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2894 		printf("%s: sip_stop: no INTR bits set in dirty tx "
2895 		    "descriptors\n", device_xname(sc->sc_dev));
2896 }
2897 
2898 /*
2899  * sip_read_eeprom:
2900  *
2901  *	Read data from the serial EEPROM.
2902  */
2903 static void
2904 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2905     u_int16_t *data)
2906 {
2907 	bus_space_tag_t st = sc->sc_st;
2908 	bus_space_handle_t sh = sc->sc_sh;
2909 	u_int16_t reg;
2910 	int i, x;
2911 
2912 	for (i = 0; i < wordcnt; i++) {
2913 		/* Send CHIP SELECT. */
2914 		reg = EROMAR_EECS;
2915 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
2916 
2917 		/* Shift in the READ opcode. */
2918 		for (x = 3; x > 0; x--) {
2919 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2920 				reg |= EROMAR_EEDI;
2921 			else
2922 				reg &= ~EROMAR_EEDI;
2923 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2924 			bus_space_write_4(st, sh, SIP_EROMAR,
2925 			    reg | EROMAR_EESK);
2926 			delay(4);
2927 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2928 			delay(4);
2929 		}
2930 
2931 		/* Shift in address. */
2932 		for (x = 6; x > 0; x--) {
2933 			if ((word + i) & (1 << (x - 1)))
2934 				reg |= EROMAR_EEDI;
2935 			else
2936 				reg &= ~EROMAR_EEDI;
2937 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2938 			bus_space_write_4(st, sh, SIP_EROMAR,
2939 			    reg | EROMAR_EESK);
2940 			delay(4);
2941 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2942 			delay(4);
2943 		}
2944 
2945 		/* Shift out data. */
2946 		reg = EROMAR_EECS;
2947 		data[i] = 0;
2948 		for (x = 16; x > 0; x--) {
2949 			bus_space_write_4(st, sh, SIP_EROMAR,
2950 			    reg | EROMAR_EESK);
2951 			delay(4);
2952 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2953 				data[i] |= (1 << (x - 1));
2954 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2955 			delay(4);
2956 		}
2957 
2958 		/* Clear CHIP SELECT. */
2959 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
2960 		delay(4);
2961 	}
2962 }
2963 
2964 /*
2965  * sipcom_add_rxbuf:
2966  *
2967  *	Add a receive buffer to the indicated descriptor.
2968  */
2969 static int
2970 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
2971 {
2972 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2973 	struct mbuf *m;
2974 	int error;
2975 
2976 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2977 	if (m == NULL)
2978 		return (ENOBUFS);
2979 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2980 
2981 	MCLGET(m, M_DONTWAIT);
2982 	if ((m->m_flags & M_EXT) == 0) {
2983 		m_freem(m);
2984 		return (ENOBUFS);
2985 	}
2986 
2987 	/* XXX I don't believe this is necessary. --dyoung */
2988 	if (sc->sc_gigabit)
2989 		m->m_len = sc->sc_parm->p_rxbuf_len;
2990 
2991 	if (rxs->rxs_mbuf != NULL)
2992 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2993 
2994 	rxs->rxs_mbuf = m;
2995 
2996 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2997 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2998 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2999 	if (error) {
3000 		printf("%s: can't load rx DMA map %d, error = %d\n",
3001 		    device_xname(sc->sc_dev), idx, error);
3002 		panic("%s", __func__);		/* XXX */
3003 	}
3004 
3005 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3006 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3007 
3008 	sip_init_rxdesc(sc, idx);
3009 
3010 	return (0);
3011 }
3012 
3013 /*
3014  * sip_sis900_set_filter:
3015  *
3016  *	Set up the receive filter.
3017  */
3018 static void
3019 sipcom_sis900_set_filter(struct sip_softc *sc)
3020 {
3021 	bus_space_tag_t st = sc->sc_st;
3022 	bus_space_handle_t sh = sc->sc_sh;
3023 	struct ethercom *ec = &sc->sc_ethercom;
3024 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3025 	struct ether_multi *enm;
3026 	const u_int8_t *cp;
3027 	struct ether_multistep step;
3028 	u_int32_t crc, mchash[16];
3029 
3030 	/*
3031 	 * Initialize the prototype RFCR.
3032 	 */
3033 	sc->sc_rfcr = RFCR_RFEN;
3034 	if (ifp->if_flags & IFF_BROADCAST)
3035 		sc->sc_rfcr |= RFCR_AAB;
3036 	if (ifp->if_flags & IFF_PROMISC) {
3037 		sc->sc_rfcr |= RFCR_AAP;
3038 		goto allmulti;
3039 	}
3040 
3041 	/*
3042 	 * Set up the multicast address filter by passing all multicast
3043 	 * addresses through a CRC generator, and then using the high-order
3044 	 * 6 bits as an index into the 128 bit multicast hash table (only
3045 	 * the lower 16 bits of each 32 bit multicast hash register are
3046 	 * valid).  The high order bits select the register, while the
3047 	 * rest of the bits select the bit within the register.
3048 	 */
3049 
3050 	memset(mchash, 0, sizeof(mchash));
3051 
3052 	/*
3053 	 * SiS900 (at least SiS963) requires us to register the address of
3054 	 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3055 	 */
3056 	crc = 0x0ed423f9;
3057 
3058 	if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3059 	    SIP_SIS900_REV(sc, SIS_REV_960) ||
3060 	    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3061 		/* Just want the 8 most significant bits. */
3062 		crc >>= 24;
3063 	} else {
3064 		/* Just want the 7 most significant bits. */
3065 		crc >>= 25;
3066 	}
3067 
3068 	/* Set the corresponding bit in the hash table. */
3069 	mchash[crc >> 4] |= 1 << (crc & 0xf);
3070 
3071 	ETHER_FIRST_MULTI(step, ec, enm);
3072 	while (enm != NULL) {
3073 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3074 			/*
3075 			 * We must listen to a range of multicast addresses.
3076 			 * For now, just accept all multicasts, rather than
3077 			 * trying to set only those filter bits needed to match
3078 			 * the range.  (At this time, the only use of address
3079 			 * ranges is for IP multicast routing, for which the
3080 			 * range is big enough to require all bits set.)
3081 			 */
3082 			goto allmulti;
3083 		}
3084 
3085 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3086 
3087 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3088 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
3089 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3090 			/* Just want the 8 most significant bits. */
3091 			crc >>= 24;
3092 		} else {
3093 			/* Just want the 7 most significant bits. */
3094 			crc >>= 25;
3095 		}
3096 
3097 		/* Set the corresponding bit in the hash table. */
3098 		mchash[crc >> 4] |= 1 << (crc & 0xf);
3099 
3100 		ETHER_NEXT_MULTI(step, enm);
3101 	}
3102 
3103 	ifp->if_flags &= ~IFF_ALLMULTI;
3104 	goto setit;
3105 
3106  allmulti:
3107 	ifp->if_flags |= IFF_ALLMULTI;
3108 	sc->sc_rfcr |= RFCR_AAM;
3109 
3110  setit:
3111 #define	FILTER_EMIT(addr, data)						\
3112 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
3113 	delay(1);							\
3114 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
3115 	delay(1)
3116 
3117 	/*
3118 	 * Disable receive filter, and program the node address.
3119 	 */
3120 	cp = CLLADDR(ifp->if_sadl);
3121 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
3122 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
3123 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
3124 
3125 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3126 		/*
3127 		 * Program the multicast hash table.
3128 		 */
3129 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
3130 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
3131 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
3132 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
3133 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
3134 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
3135 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
3136 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
3137 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3138 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
3139 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3140 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
3141 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
3142 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
3143 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
3144 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
3145 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
3146 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
3147 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
3148 		}
3149 	}
3150 #undef FILTER_EMIT
3151 
3152 	/*
3153 	 * Re-enable the receiver filter.
3154 	 */
3155 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3156 }
3157 
3158 /*
3159  * sip_dp83815_set_filter:
3160  *
3161  *	Set up the receive filter.
3162  */
3163 static void
3164 sipcom_dp83815_set_filter(struct sip_softc *sc)
3165 {
3166 	bus_space_tag_t st = sc->sc_st;
3167 	bus_space_handle_t sh = sc->sc_sh;
3168 	struct ethercom *ec = &sc->sc_ethercom;
3169 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3170 	struct ether_multi *enm;
3171 	const u_int8_t *cp;
3172 	struct ether_multistep step;
3173 	u_int32_t crc, hash, slot, bit;
3174 #define	MCHASH_NWORDS_83820	128
3175 #define	MCHASH_NWORDS_83815	32
3176 #define	MCHASH_NWORDS	MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3177 	u_int16_t mchash[MCHASH_NWORDS];
3178 	int i;
3179 
3180 	/*
3181 	 * Initialize the prototype RFCR.
3182 	 * Enable the receive filter, and accept on
3183 	 *    Perfect (destination address) Match
3184 	 * If IFF_BROADCAST, also accept all broadcast packets.
3185 	 * If IFF_PROMISC, accept all unicast packets (and later, set
3186 	 *    IFF_ALLMULTI and accept all multicast, too).
3187 	 */
3188 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3189 	if (ifp->if_flags & IFF_BROADCAST)
3190 		sc->sc_rfcr |= RFCR_AAB;
3191 	if (ifp->if_flags & IFF_PROMISC) {
3192 		sc->sc_rfcr |= RFCR_AAP;
3193 		goto allmulti;
3194 	}
3195 
3196 	/*
3197          * Set up the DP83820/DP83815 multicast address filter by
3198          * passing all multicast addresses through a CRC generator,
3199          * and then using the high-order 11/9 bits as an index into
3200          * the 2048/512 bit multicast hash table.  The high-order
3201          * 7/5 bits select the slot, while the low-order 4 bits
3202          * select the bit within the slot.  Note that only the low
3203          * 16-bits of each filter word are used, and there are
3204          * 128/32 filter words.
3205 	 */
3206 
3207 	memset(mchash, 0, sizeof(mchash));
3208 
3209 	ifp->if_flags &= ~IFF_ALLMULTI;
3210 	ETHER_FIRST_MULTI(step, ec, enm);
3211 	if (enm == NULL)
3212 		goto setit;
3213 	while (enm != NULL) {
3214 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3215 			/*
3216 			 * We must listen to a range of multicast addresses.
3217 			 * For now, just accept all multicasts, rather than
3218 			 * trying to set only those filter bits needed to match
3219 			 * the range.  (At this time, the only use of address
3220 			 * ranges is for IP multicast routing, for which the
3221 			 * range is big enough to require all bits set.)
3222 			 */
3223 			goto allmulti;
3224 		}
3225 
3226 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3227 
3228 		if (sc->sc_gigabit) {
3229 			/* Just want the 11 most significant bits. */
3230 			hash = crc >> 21;
3231 		} else {
3232 			/* Just want the 9 most significant bits. */
3233 			hash = crc >> 23;
3234 		}
3235 
3236 		slot = hash >> 4;
3237 		bit = hash & 0xf;
3238 
3239 		/* Set the corresponding bit in the hash table. */
3240 		mchash[slot] |= 1 << bit;
3241 
3242 		ETHER_NEXT_MULTI(step, enm);
3243 	}
3244 	sc->sc_rfcr |= RFCR_MHEN;
3245 	goto setit;
3246 
3247  allmulti:
3248 	ifp->if_flags |= IFF_ALLMULTI;
3249 	sc->sc_rfcr |= RFCR_AAM;
3250 
3251  setit:
3252 #define	FILTER_EMIT(addr, data)						\
3253 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
3254 	delay(1);							\
3255 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
3256 	delay(1)
3257 
3258 	/*
3259 	 * Disable receive filter, and program the node address.
3260 	 */
3261 	cp = CLLADDR(ifp->if_sadl);
3262 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3263 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3264 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3265 
3266 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3267 		int nwords =
3268 		    sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3269 		/*
3270 		 * Program the multicast hash table.
3271 		 */
3272 		for (i = 0; i < nwords; i++) {
3273 			FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
3274 		}
3275 	}
3276 #undef FILTER_EMIT
3277 #undef MCHASH_NWORDS
3278 #undef MCHASH_NWORDS_83815
3279 #undef MCHASH_NWORDS_83820
3280 
3281 	/*
3282 	 * Re-enable the receiver filter.
3283 	 */
3284 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3285 }
3286 
3287 /*
3288  * sip_dp83820_mii_readreg:	[mii interface function]
3289  *
3290  *	Read a PHY register on the MII of the DP83820.
3291  */
3292 static int
3293 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg)
3294 {
3295 	struct sip_softc *sc = device_private(self);
3296 
3297 	if (sc->sc_cfg & CFG_TBI_EN) {
3298 		bus_addr_t tbireg;
3299 		int rv;
3300 
3301 		if (phy != 0)
3302 			return (0);
3303 
3304 		switch (reg) {
3305 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3306 		case MII_BMSR:		tbireg = SIP_TBISR; break;
3307 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3308 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3309 		case MII_ANER:		tbireg = SIP_TANER; break;
3310 		case MII_EXTSR:
3311 			/*
3312 			 * Don't even bother reading the TESR register.
3313 			 * The manual documents that the device has
3314 			 * 1000baseX full/half capability, but the
3315 			 * register itself seems read back 0 on some
3316 			 * boards.  Just hard-code the result.
3317 			 */
3318 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3319 
3320 		default:
3321 			return (0);
3322 		}
3323 
3324 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3325 		if (tbireg == SIP_TBISR) {
3326 			/* LINK and ACOMP are switched! */
3327 			int val = rv;
3328 
3329 			rv = 0;
3330 			if (val & TBISR_MR_LINK_STATUS)
3331 				rv |= BMSR_LINK;
3332 			if (val & TBISR_MR_AN_COMPLETE)
3333 				rv |= BMSR_ACOMP;
3334 
3335 			/*
3336 			 * The manual claims this register reads back 0
3337 			 * on hard and soft reset.  But we want to let
3338 			 * the gentbi driver know that we support auto-
3339 			 * negotiation, so hard-code this bit in the
3340 			 * result.
3341 			 */
3342 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
3343 		}
3344 
3345 		return (rv);
3346 	}
3347 
3348 	return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
3349 }
3350 
3351 /*
3352  * sip_dp83820_mii_writereg:	[mii interface function]
3353  *
3354  *	Write a PHY register on the MII of the DP83820.
3355  */
3356 static void
3357 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, int val)
3358 {
3359 	struct sip_softc *sc = device_private(self);
3360 
3361 	if (sc->sc_cfg & CFG_TBI_EN) {
3362 		bus_addr_t tbireg;
3363 
3364 		if (phy != 0)
3365 			return;
3366 
3367 		switch (reg) {
3368 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3369 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3370 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3371 		default:
3372 			return;
3373 		}
3374 
3375 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3376 		return;
3377 	}
3378 
3379 	mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
3380 }
3381 
3382 /*
3383  * sip_dp83820_mii_statchg:	[mii interface function]
3384  *
3385  *	Callback from MII layer when media changes.
3386  */
3387 static void
3388 sipcom_dp83820_mii_statchg(device_t self)
3389 {
3390 	struct sip_softc *sc = device_private(self);
3391 	struct mii_data *mii = &sc->sc_mii;
3392 	u_int32_t cfg, pcr;
3393 
3394 	/*
3395 	 * Get flow control negotiation result.
3396 	 */
3397 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3398 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3399 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3400 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3401 	}
3402 
3403 	/*
3404 	 * Update TXCFG for full-duplex operation.
3405 	 */
3406 	if ((mii->mii_media_active & IFM_FDX) != 0)
3407 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3408 	else
3409 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3410 
3411 	/*
3412 	 * Update RXCFG for full-duplex or loopback.
3413 	 */
3414 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3415 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3416 		sc->sc_rxcfg |= RXCFG_ATX;
3417 	else
3418 		sc->sc_rxcfg &= ~RXCFG_ATX;
3419 
3420 	/*
3421 	 * Update CFG for MII/GMII.
3422 	 */
3423 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3424 		cfg = sc->sc_cfg | CFG_MODE_1000;
3425 	else
3426 		cfg = sc->sc_cfg;
3427 
3428 	/*
3429 	 * 802.3x flow control.
3430 	 */
3431 	pcr = 0;
3432 	if (sc->sc_flowflags & IFM_FLOW) {
3433 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3434 			pcr |= sc->sc_rx_flow_thresh;
3435 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3436 			pcr |= PCR_PSEN | PCR_PS_MCAST;
3437 	}
3438 
3439 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3440 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3441 	    sc->sc_txcfg);
3442 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3443 	    sc->sc_rxcfg);
3444 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3445 }
3446 
3447 /*
3448  * sip_mii_bitbang_read: [mii bit-bang interface function]
3449  *
3450  *	Read the MII serial port for the MII bit-bang module.
3451  */
3452 static u_int32_t
3453 sipcom_mii_bitbang_read(device_t self)
3454 {
3455 	struct sip_softc *sc = device_private(self);
3456 
3457 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3458 }
3459 
3460 /*
3461  * sip_mii_bitbang_write: [mii big-bang interface function]
3462  *
3463  *	Write the MII serial port for the MII bit-bang module.
3464  */
3465 static void
3466 sipcom_mii_bitbang_write(device_t self, u_int32_t val)
3467 {
3468 	struct sip_softc *sc = device_private(self);
3469 
3470 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3471 }
3472 
3473 /*
3474  * sip_sis900_mii_readreg:	[mii interface function]
3475  *
3476  *	Read a PHY register on the MII.
3477  */
3478 static int
3479 sipcom_sis900_mii_readreg(device_t self, int phy, int reg)
3480 {
3481 	struct sip_softc *sc = device_private(self);
3482 	u_int32_t enphy;
3483 
3484 	/*
3485 	 * The PHY of recent SiS chipsets is accessed through bitbang
3486 	 * operations.
3487 	 */
3488 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3489 		return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3490 		    phy, reg);
3491 
3492 #ifndef SIS900_MII_RESTRICT
3493 	/*
3494 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3495 	 * MII address 0.
3496 	 */
3497 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3498 		return (0);
3499 #endif
3500 
3501 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3502 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3503 	    ENPHY_RWCMD | ENPHY_ACCESS);
3504 	do {
3505 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3506 	} while (enphy & ENPHY_ACCESS);
3507 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3508 }
3509 
3510 /*
3511  * sip_sis900_mii_writereg:	[mii interface function]
3512  *
3513  *	Write a PHY register on the MII.
3514  */
3515 static void
3516 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, int val)
3517 {
3518 	struct sip_softc *sc = device_private(self);
3519 	u_int32_t enphy;
3520 
3521 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3522 		mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3523 		    phy, reg, val);
3524 		return;
3525 	}
3526 
3527 #ifndef SIS900_MII_RESTRICT
3528 	/*
3529 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3530 	 * MII address 0.
3531 	 */
3532 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3533 		return;
3534 #endif
3535 
3536 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3537 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3538 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3539 	do {
3540 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3541 	} while (enphy & ENPHY_ACCESS);
3542 }
3543 
3544 /*
3545  * sip_sis900_mii_statchg:	[mii interface function]
3546  *
3547  *	Callback from MII layer when media changes.
3548  */
3549 static void
3550 sipcom_sis900_mii_statchg(device_t self)
3551 {
3552 	struct sip_softc *sc = device_private(self);
3553 	struct mii_data *mii = &sc->sc_mii;
3554 	u_int32_t flowctl;
3555 
3556 	/*
3557 	 * Get flow control negotiation result.
3558 	 */
3559 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3560 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3561 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3562 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3563 	}
3564 
3565 	/*
3566 	 * Update TXCFG for full-duplex operation.
3567 	 */
3568 	if ((mii->mii_media_active & IFM_FDX) != 0)
3569 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3570 	else
3571 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3572 
3573 	/*
3574 	 * Update RXCFG for full-duplex or loopback.
3575 	 */
3576 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3577 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3578 		sc->sc_rxcfg |= RXCFG_ATX;
3579 	else
3580 		sc->sc_rxcfg &= ~RXCFG_ATX;
3581 
3582 	/*
3583 	 * Update IMR for use of 802.3x flow control.
3584 	 */
3585 	if (sc->sc_flowflags & IFM_FLOW) {
3586 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3587 		flowctl = FLOWCTL_FLOWEN;
3588 	} else {
3589 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3590 		flowctl = 0;
3591 	}
3592 
3593 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3594 	    sc->sc_txcfg);
3595 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3596 	    sc->sc_rxcfg);
3597 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3598 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3599 }
3600 
3601 /*
3602  * sip_dp83815_mii_readreg:	[mii interface function]
3603  *
3604  *	Read a PHY register on the MII.
3605  */
3606 static int
3607 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg)
3608 {
3609 	struct sip_softc *sc = device_private(self);
3610 	u_int32_t val;
3611 
3612 	/*
3613 	 * The DP83815 only has an internal PHY.  Only allow
3614 	 * MII address 0.
3615 	 */
3616 	if (phy != 0)
3617 		return (0);
3618 
3619 	/*
3620 	 * Apparently, after a reset, the DP83815 can take a while
3621 	 * to respond.  During this recovery period, the BMSR returns
3622 	 * a value of 0.  Catch this -- it's not supposed to happen
3623 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3624 	 * PHY to come back to life.
3625 	 *
3626 	 * This works out because the BMSR is the first register
3627 	 * read during the PHY probe process.
3628 	 */
3629 	do {
3630 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3631 	} while (reg == MII_BMSR && val == 0);
3632 
3633 	return (val & 0xffff);
3634 }
3635 
3636 /*
3637  * sip_dp83815_mii_writereg:	[mii interface function]
3638  *
3639  *	Write a PHY register to the MII.
3640  */
3641 static void
3642 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, int val)
3643 {
3644 	struct sip_softc *sc = device_private(self);
3645 
3646 	/*
3647 	 * The DP83815 only has an internal PHY.  Only allow
3648 	 * MII address 0.
3649 	 */
3650 	if (phy != 0)
3651 		return;
3652 
3653 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3654 }
3655 
3656 /*
3657  * sip_dp83815_mii_statchg:	[mii interface function]
3658  *
3659  *	Callback from MII layer when media changes.
3660  */
3661 static void
3662 sipcom_dp83815_mii_statchg(device_t self)
3663 {
3664 	struct sip_softc *sc = device_private(self);
3665 
3666 	/*
3667 	 * Update TXCFG for full-duplex operation.
3668 	 */
3669 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3670 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3671 	else
3672 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3673 
3674 	/*
3675 	 * Update RXCFG for full-duplex or loopback.
3676 	 */
3677 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3678 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3679 		sc->sc_rxcfg |= RXCFG_ATX;
3680 	else
3681 		sc->sc_rxcfg &= ~RXCFG_ATX;
3682 
3683 	/*
3684 	 * XXX 802.3x flow control.
3685 	 */
3686 
3687 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3688 	    sc->sc_txcfg);
3689 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3690 	    sc->sc_rxcfg);
3691 
3692 	/*
3693 	 * Some DP83815s experience problems when used with short
3694 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
3695 	 * sequence adjusts the DSP's signal attenuation to fix the
3696 	 * problem.
3697 	 */
3698 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3699 		uint32_t reg;
3700 
3701 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3702 
3703 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3704 		reg &= 0x0fff;
3705 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3706 		delay(100);
3707 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3708 		reg &= 0x00ff;
3709 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3710 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3711 			    0x00e8);
3712 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3713 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3714 			    reg | 0x20);
3715 		}
3716 
3717 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3718 	}
3719 }
3720 
3721 static void
3722 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3723     const struct pci_attach_args *pa, u_int8_t *enaddr)
3724 {
3725 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3726 	u_int8_t cksum, *e, match;
3727 	int i;
3728 
3729 	/*
3730 	 * EEPROM data format for the DP83820 can be found in
3731 	 * the DP83820 manual, section 4.2.4.
3732 	 */
3733 
3734 	sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3735 
3736 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3737 	match = ~(match - 1);
3738 
3739 	cksum = 0x55;
3740 	e = (u_int8_t *) eeprom_data;
3741 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3742 		cksum += *e++;
3743 
3744 	if (cksum != match)
3745 		printf("%s: Checksum (%x) mismatch (%x)",
3746 		    device_xname(sc->sc_dev), cksum, match);
3747 
3748 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3749 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3750 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3751 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3752 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3753 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3754 }
3755 
3756 static void
3757 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3758 {
3759 	int i;
3760 
3761 	/*
3762 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
3763 	 * a reason, but I don't know it.
3764 	 */
3765 	for (i = 0; i < 10; i++)
3766 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3767 }
3768 
3769 static void
3770 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3771     const struct pci_attach_args *pa, u_int8_t *enaddr)
3772 {
3773 	u_int16_t myea[ETHER_ADDR_LEN / 2];
3774 
3775 	switch (sc->sc_rev) {
3776 	case SIS_REV_630S:
3777 	case SIS_REV_630E:
3778 	case SIS_REV_630EA1:
3779 	case SIS_REV_630ET:
3780 	case SIS_REV_635:
3781 		/*
3782 		 * The MAC address for the on-board Ethernet of
3783 		 * the SiS 630 chipset is in the NVRAM.  Kick
3784 		 * the chip into re-loading it from NVRAM, and
3785 		 * read the MAC address out of the filter registers.
3786 		 */
3787 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3788 
3789 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3790 		    RFCR_RFADDR_NODE0);
3791 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3792 		    0xffff;
3793 
3794 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3795 		    RFCR_RFADDR_NODE2);
3796 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3797 		    0xffff;
3798 
3799 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3800 		    RFCR_RFADDR_NODE4);
3801 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3802 		    0xffff;
3803 		break;
3804 
3805 	case SIS_REV_960:
3806 		{
3807 #define	SIS_SET_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3808 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3809 
3810 #define	SIS_CLR_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3811 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3812 
3813 			int waittime, i;
3814 
3815 			/* Allow to read EEPROM from LAN. It is shared
3816 			 * between a 1394 controller and the NIC and each
3817 			 * time we access it, we need to set SIS_EECMD_REQ.
3818 			 */
3819 			SIS_SET_EROMAR(sc, EROMAR_REQ);
3820 
3821 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3822 				/* Force EEPROM to idle state. */
3823 
3824 				/*
3825 				 * XXX-cube This is ugly.  I'll look for docs about it.
3826 				 */
3827 				SIS_SET_EROMAR(sc, EROMAR_EECS);
3828 				sipcom_sis900_eeprom_delay(sc);
3829 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3830 					SIS_SET_EROMAR(sc, EROMAR_EESK);
3831 					sipcom_sis900_eeprom_delay(sc);
3832 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
3833 					sipcom_sis900_eeprom_delay(sc);
3834 				}
3835 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
3836 				sipcom_sis900_eeprom_delay(sc);
3837 				bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3838 
3839 				if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3840 					sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3841 					    sizeof(myea) / sizeof(myea[0]), myea);
3842 					break;
3843 				}
3844 				DELAY(1);
3845 			}
3846 
3847 			/*
3848 			 * Set SIS_EECTL_CLK to high, so a other master
3849 			 * can operate on the i2c bus.
3850 			 */
3851 			SIS_SET_EROMAR(sc, EROMAR_EESK);
3852 
3853 			/* Refuse EEPROM access by LAN */
3854 			SIS_SET_EROMAR(sc, EROMAR_DONE);
3855 		} break;
3856 
3857 	default:
3858 		sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3859 		    sizeof(myea) / sizeof(myea[0]), myea);
3860 	}
3861 
3862 	enaddr[0] = myea[0] & 0xff;
3863 	enaddr[1] = myea[0] >> 8;
3864 	enaddr[2] = myea[1] & 0xff;
3865 	enaddr[3] = myea[1] >> 8;
3866 	enaddr[4] = myea[2] & 0xff;
3867 	enaddr[5] = myea[2] >> 8;
3868 }
3869 
3870 /* Table and macro to bit-reverse an octet. */
3871 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3872 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3873 
3874 static void
3875 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3876     const struct pci_attach_args *pa, u_int8_t *enaddr)
3877 {
3878 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3879 	u_int8_t cksum, *e, match;
3880 	int i;
3881 
3882 	sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3883 	    sizeof(eeprom_data[0]), eeprom_data);
3884 
3885 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3886 	match = ~(match - 1);
3887 
3888 	cksum = 0x55;
3889 	e = (u_int8_t *) eeprom_data;
3890 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3891 		cksum += *e++;
3892 	}
3893 	if (cksum != match) {
3894 		printf("%s: Checksum (%x) mismatch (%x)",
3895 		    device_xname(sc->sc_dev), cksum, match);
3896 	}
3897 
3898 	/*
3899 	 * Unrolled because it makes slightly more sense this way.
3900 	 * The DP83815 stores the MAC address in bit 0 of word 6
3901 	 * through bit 15 of word 8.
3902 	 */
3903 	ea = &eeprom_data[6];
3904 	enaddr[0] = ((*ea & 0x1) << 7);
3905 	ea++;
3906 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
3907 	enaddr[1] = ((*ea & 0x1FE) >> 1);
3908 	enaddr[2] = ((*ea & 0x1) << 7);
3909 	ea++;
3910 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
3911 	enaddr[3] = ((*ea & 0x1FE) >> 1);
3912 	enaddr[4] = ((*ea & 0x1) << 7);
3913 	ea++;
3914 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
3915 	enaddr[5] = ((*ea & 0x1FE) >> 1);
3916 
3917 	/*
3918 	 * In case that's not weird enough, we also need to reverse
3919 	 * the bits in each byte.  This all actually makes more sense
3920 	 * if you think about the EEPROM storage as an array of bits
3921 	 * being shifted into bytes, but that's not how we're looking
3922 	 * at it here...
3923 	 */
3924 	for (i = 0; i < 6 ;i++)
3925 		enaddr[i] = bbr(enaddr[i]);
3926 }
3927 
3928 /*
3929  * sip_mediastatus:	[ifmedia interface function]
3930  *
3931  *	Get the current interface media status.
3932  */
3933 static void
3934 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3935 {
3936 	struct sip_softc *sc = ifp->if_softc;
3937 
3938 	if (!device_is_active(sc->sc_dev)) {
3939 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
3940 		ifmr->ifm_status = 0;
3941 		return;
3942 	}
3943 	ether_mediastatus(ifp, ifmr);
3944 	ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
3945 			   sc->sc_flowflags;
3946 }
3947