xref: /netbsd-src/sys/dev/pci/if_sip.c (revision df0caa2637da0538ecdf6b878c4d08e684b43d8f)
1 /*	$NetBSD: if_sip.c,v 1.102 2005/05/02 15:34:32 yamt Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*-
40  * Copyright (c) 1999 Network Computer, Inc.
41  * All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of Network Computer, Inc. nor the names of its
52  *    contributors may be used to endorse or promote products derived
53  *    from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65  * POSSIBILITY OF SUCH DAMAGE.
66  */
67 
68 /*
69  * Device driver for the Silicon Integrated Systems SiS 900,
70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72  * controllers.
73  *
74  * Originally written to support the SiS 900 by Jason R. Thorpe for
75  * Network Computer, Inc.
76  *
77  * TODO:
78  *
79  *	- Reduce the Rx interrupt load.
80  */
81 
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.102 2005/05/02 15:34:32 yamt Exp $");
84 
85 #include "bpfilter.h"
86 #include "rnd.h"
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99 
100 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
101 
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105 
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110 
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114 
115 #include <machine/bus.h>
116 #include <machine/intr.h>
117 #include <machine/endian.h>
118 
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/mii_bitbang.h>
122 
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 #include <dev/pci/pcidevs.h>
126 
127 #include <dev/pci/if_sipreg.h>
128 
129 #ifdef DP83820		/* DP83820 Gigabit Ethernet */
130 #define	SIP_DECL(x)	__CONCAT(gsip_,x)
131 #else			/* SiS900 and DP83815 */
132 #define	SIP_DECL(x)	__CONCAT(sip_,x)
133 #endif
134 
135 #define	SIP_STR(x)	__STRING(SIP_DECL(x))
136 
137 /*
138  * Transmit descriptor list size.  This is arbitrary, but allocate
139  * enough descriptors for 128 pending transmissions, and 8 segments
140  * per packet (64 for DP83820 for jumbo frames).
141  *
142  * This MUST work out to a power of 2.
143  */
144 #ifdef DP83820
145 #define	SIP_NTXSEGS		64
146 #define	SIP_NTXSEGS_ALLOC	16
147 #else
148 #define	SIP_NTXSEGS		16
149 #define	SIP_NTXSEGS_ALLOC	8
150 #endif
151 
152 #define	SIP_TXQUEUELEN		256
153 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
154 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
155 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
156 
157 #if defined(DP83820)
158 #define	TX_DMAMAP_SIZE		ETHER_MAX_LEN_JUMBO
159 #else
160 #define	TX_DMAMAP_SIZE		MCLBYTES
161 #endif
162 
163 /*
164  * Receive descriptor list size.  We have one Rx buffer per incoming
165  * packet, so this logic is a little simpler.
166  *
167  * Actually, on the DP83820, we allow the packet to consume more than
168  * one buffer, in order to support jumbo Ethernet frames.  In that
169  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
170  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
171  * so we'd better be quick about handling receive interrupts.
172  */
173 #if defined(DP83820)
174 #define	SIP_NRXDESC		256
175 #else
176 #define	SIP_NRXDESC		128
177 #endif /* DP83820 */
178 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
179 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
180 
181 /*
182  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
183  * a single clump that maps to a single DMA segment to make several things
184  * easier.
185  */
186 struct sip_control_data {
187 	/*
188 	 * The transmit descriptors.
189 	 */
190 	struct sip_desc scd_txdescs[SIP_NTXDESC];
191 
192 	/*
193 	 * The receive descriptors.
194 	 */
195 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
196 };
197 
198 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
199 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
200 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
201 
202 /*
203  * Software state for transmit jobs.
204  */
205 struct sip_txsoft {
206 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
207 	bus_dmamap_t txs_dmamap;	/* our DMA map */
208 	int txs_firstdesc;		/* first descriptor in packet */
209 	int txs_lastdesc;		/* last descriptor in packet */
210 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
211 };
212 
213 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
214 
215 /*
216  * Software state for receive jobs.
217  */
218 struct sip_rxsoft {
219 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
220 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
221 };
222 
223 /*
224  * Software state per device.
225  */
226 struct sip_softc {
227 	struct device sc_dev;		/* generic device information */
228 	bus_space_tag_t sc_st;		/* bus space tag */
229 	bus_space_handle_t sc_sh;	/* bus space handle */
230 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
231 	struct ethercom sc_ethercom;	/* ethernet common data */
232 	void *sc_sdhook;		/* shutdown hook */
233 
234 	const struct sip_product *sc_model; /* which model are we? */
235 	int sc_rev;			/* chip revision */
236 
237 	void *sc_ih;			/* interrupt cookie */
238 
239 	struct mii_data sc_mii;		/* MII/media information */
240 
241 	struct callout sc_tick_ch;	/* tick callout */
242 
243 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
244 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
245 
246 	/*
247 	 * Software state for transmit and receive descriptors.
248 	 */
249 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
250 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
251 
252 	/*
253 	 * Control data structures.
254 	 */
255 	struct sip_control_data *sc_control_data;
256 #define	sc_txdescs	sc_control_data->scd_txdescs
257 #define	sc_rxdescs	sc_control_data->scd_rxdescs
258 
259 #ifdef SIP_EVENT_COUNTERS
260 	/*
261 	 * Event counters.
262 	 */
263 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
264 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
265 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
266 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
267 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
268 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
269 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
270 	struct evcnt sc_ev_rxpause;	/* PAUSE received */
271 #ifdef DP83820
272 	struct evcnt sc_ev_txpause;	/* PAUSE transmitted */
273 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
274 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
275 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
276 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
277 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
278 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
279 #endif /* DP83820 */
280 #endif /* SIP_EVENT_COUNTERS */
281 
282 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
283 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
284 	u_int32_t sc_imr;		/* prototype IMR register */
285 	u_int32_t sc_rfcr;		/* prototype RFCR register */
286 
287 	u_int32_t sc_cfg;		/* prototype CFG register */
288 
289 #ifdef DP83820
290 	u_int32_t sc_gpior;		/* prototype GPIOR register */
291 #endif /* DP83820 */
292 
293 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
294 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
295 
296 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
297 
298 	int	sc_flowflags;		/* 802.3x flow control flags */
299 #ifdef DP83820
300 	int	sc_rx_flow_thresh;	/* Rx FIFO threshold for flow control */
301 #else
302 	int	sc_paused;		/* paused indication */
303 #endif
304 
305 	int	sc_txfree;		/* number of free Tx descriptors */
306 	int	sc_txnext;		/* next ready Tx descriptor */
307 	int	sc_txwin;		/* Tx descriptors since last intr */
308 
309 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
310 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
311 
312 	short	sc_if_flags;
313 
314 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
315 #if defined(DP83820)
316 	int	sc_rxdiscard;
317 	int	sc_rxlen;
318 	struct mbuf *sc_rxhead;
319 	struct mbuf *sc_rxtail;
320 	struct mbuf **sc_rxtailp;
321 #endif /* DP83820 */
322 
323 #if NRND > 0
324 	rndsource_element_t rnd_source;	/* random source */
325 #endif
326 };
327 
328 #ifdef DP83820
329 #define	SIP_RXCHAIN_RESET(sc)						\
330 do {									\
331 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
332 	*(sc)->sc_rxtailp = NULL;					\
333 	(sc)->sc_rxlen = 0;						\
334 } while (/*CONSTCOND*/0)
335 
336 #define	SIP_RXCHAIN_LINK(sc, m)						\
337 do {									\
338 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
339 	(sc)->sc_rxtailp = &(m)->m_next;				\
340 } while (/*CONSTCOND*/0)
341 #endif /* DP83820 */
342 
343 #ifdef SIP_EVENT_COUNTERS
344 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
345 #else
346 #define	SIP_EVCNT_INCR(ev)	/* nothing */
347 #endif
348 
349 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
350 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
351 
352 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
353 do {									\
354 	int __x, __n;							\
355 									\
356 	__x = (x);							\
357 	__n = (n);							\
358 									\
359 	/* If it will wrap around, sync to the end of the ring. */	\
360 	if ((__x + __n) > SIP_NTXDESC) {				\
361 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
362 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
363 		    (SIP_NTXDESC - __x), (ops));			\
364 		__n -= (SIP_NTXDESC - __x);				\
365 		__x = 0;						\
366 	}								\
367 									\
368 	/* Now sync whatever is left. */				\
369 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
370 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
371 } while (0)
372 
373 #define	SIP_CDRXSYNC(sc, x, ops)					\
374 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
375 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
376 
377 #ifdef DP83820
378 #define	SIP_INIT_RXDESC_EXTSTS	__sipd->sipd_extsts = 0;
379 #define	SIP_RXBUF_LEN		(MCLBYTES - 8)
380 #else
381 #define	SIP_INIT_RXDESC_EXTSTS	/* nothing */
382 #define	SIP_RXBUF_LEN		(MCLBYTES - 1)	/* field width */
383 #endif
384 #define	SIP_INIT_RXDESC(sc, x)						\
385 do {									\
386 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
387 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
388 									\
389 	__sipd->sipd_link =						\
390 	    htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x))));		\
391 	__sipd->sipd_bufptr =						\
392 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr);		\
393 	__sipd->sipd_cmdsts = htole32(CMDSTS_INTR |			\
394 	    (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK));			\
395 	SIP_INIT_RXDESC_EXTSTS						\
396 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
397 } while (0)
398 
399 #define	SIP_CHIP_VERS(sc, v, p, r)					\
400 	((sc)->sc_model->sip_vendor == (v) &&				\
401 	 (sc)->sc_model->sip_product == (p) &&				\
402 	 (sc)->sc_rev == (r))
403 
404 #define	SIP_CHIP_MODEL(sc, v, p)					\
405 	((sc)->sc_model->sip_vendor == (v) &&				\
406 	 (sc)->sc_model->sip_product == (p))
407 
408 #if !defined(DP83820)
409 #define	SIP_SIS900_REV(sc, rev)						\
410 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
411 #endif
412 
413 #define SIP_TIMEOUT 1000
414 
415 static void	SIP_DECL(start)(struct ifnet *);
416 static void	SIP_DECL(watchdog)(struct ifnet *);
417 static int	SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
418 static int	SIP_DECL(init)(struct ifnet *);
419 static void	SIP_DECL(stop)(struct ifnet *, int);
420 
421 static void	SIP_DECL(shutdown)(void *);
422 
423 static void	SIP_DECL(reset)(struct sip_softc *);
424 static void	SIP_DECL(rxdrain)(struct sip_softc *);
425 static int	SIP_DECL(add_rxbuf)(struct sip_softc *, int);
426 static void	SIP_DECL(read_eeprom)(struct sip_softc *, int, int,
427 				      u_int16_t *);
428 static void	SIP_DECL(tick)(void *);
429 
430 #if !defined(DP83820)
431 static void	SIP_DECL(sis900_set_filter)(struct sip_softc *);
432 #endif /* ! DP83820 */
433 static void	SIP_DECL(dp83815_set_filter)(struct sip_softc *);
434 
435 #if defined(DP83820)
436 static void	SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
437 		    const struct pci_attach_args *, u_int8_t *);
438 #else
439 static void	SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc);
440 static void	SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
441 		    const struct pci_attach_args *, u_int8_t *);
442 static void	SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
443 		    const struct pci_attach_args *, u_int8_t *);
444 #endif /* DP83820 */
445 
446 static int	SIP_DECL(intr)(void *);
447 static void	SIP_DECL(txintr)(struct sip_softc *);
448 static void	SIP_DECL(rxintr)(struct sip_softc *);
449 
450 #if defined(DP83820)
451 static int	SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
452 static void	SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
453 static void	SIP_DECL(dp83820_mii_statchg)(struct device *);
454 #else
455 static int	SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
456 static void	SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
457 static void	SIP_DECL(sis900_mii_statchg)(struct device *);
458 
459 static int	SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
460 static void	SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
461 static void	SIP_DECL(dp83815_mii_statchg)(struct device *);
462 #endif /* DP83820 */
463 
464 static int	SIP_DECL(mediachange)(struct ifnet *);
465 static void	SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
466 
467 static int	SIP_DECL(match)(struct device *, struct cfdata *, void *);
468 static void	SIP_DECL(attach)(struct device *, struct device *, void *);
469 
470 int	SIP_DECL(copy_small) = 0;
471 
472 #ifdef DP83820
473 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
474     gsip_match, gsip_attach, NULL, NULL);
475 #else
476 CFATTACH_DECL(sip, sizeof(struct sip_softc),
477     sip_match, sip_attach, NULL, NULL);
478 #endif
479 
480 /*
481  * Descriptions of the variants of the SiS900.
482  */
483 struct sip_variant {
484 	int	(*sipv_mii_readreg)(struct device *, int, int);
485 	void	(*sipv_mii_writereg)(struct device *, int, int, int);
486 	void	(*sipv_mii_statchg)(struct device *);
487 	void	(*sipv_set_filter)(struct sip_softc *);
488 	void	(*sipv_read_macaddr)(struct sip_softc *,
489 		    const struct pci_attach_args *, u_int8_t *);
490 };
491 
492 static u_int32_t SIP_DECL(mii_bitbang_read)(struct device *);
493 static void	SIP_DECL(mii_bitbang_write)(struct device *, u_int32_t);
494 
495 static const struct mii_bitbang_ops SIP_DECL(mii_bitbang_ops) = {
496 	SIP_DECL(mii_bitbang_read),
497 	SIP_DECL(mii_bitbang_write),
498 	{
499 		EROMAR_MDIO,		/* MII_BIT_MDO */
500 		EROMAR_MDIO,		/* MII_BIT_MDI */
501 		EROMAR_MDC,		/* MII_BIT_MDC */
502 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
503 		0,			/* MII_BIT_DIR_PHY_HOST */
504 	}
505 };
506 
507 #if defined(DP83820)
508 static const struct sip_variant SIP_DECL(variant_dp83820) = {
509 	SIP_DECL(dp83820_mii_readreg),
510 	SIP_DECL(dp83820_mii_writereg),
511 	SIP_DECL(dp83820_mii_statchg),
512 	SIP_DECL(dp83815_set_filter),
513 	SIP_DECL(dp83820_read_macaddr),
514 };
515 #else
516 static const struct sip_variant SIP_DECL(variant_sis900) = {
517 	SIP_DECL(sis900_mii_readreg),
518 	SIP_DECL(sis900_mii_writereg),
519 	SIP_DECL(sis900_mii_statchg),
520 	SIP_DECL(sis900_set_filter),
521 	SIP_DECL(sis900_read_macaddr),
522 };
523 
524 static const struct sip_variant SIP_DECL(variant_dp83815) = {
525 	SIP_DECL(dp83815_mii_readreg),
526 	SIP_DECL(dp83815_mii_writereg),
527 	SIP_DECL(dp83815_mii_statchg),
528 	SIP_DECL(dp83815_set_filter),
529 	SIP_DECL(dp83815_read_macaddr),
530 };
531 #endif /* DP83820 */
532 
533 /*
534  * Devices supported by this driver.
535  */
536 static const struct sip_product {
537 	pci_vendor_id_t		sip_vendor;
538 	pci_product_id_t	sip_product;
539 	const char		*sip_name;
540 	const struct sip_variant *sip_variant;
541 } SIP_DECL(products)[] = {
542 #if defined(DP83820)
543 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
544 	  "NatSemi DP83820 Gigabit Ethernet",
545 	  &SIP_DECL(variant_dp83820) },
546 #else
547 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
548 	  "SiS 900 10/100 Ethernet",
549 	  &SIP_DECL(variant_sis900) },
550 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
551 	  "SiS 7016 10/100 Ethernet",
552 	  &SIP_DECL(variant_sis900) },
553 
554 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
555 	  "NatSemi DP83815 10/100 Ethernet",
556 	  &SIP_DECL(variant_dp83815) },
557 #endif /* DP83820 */
558 
559 	{ 0,			0,
560 	  NULL,
561 	  NULL },
562 };
563 
564 static const struct sip_product *
565 SIP_DECL(lookup)(const struct pci_attach_args *pa)
566 {
567 	const struct sip_product *sip;
568 
569 	for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
570 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
571 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
572 			return (sip);
573 	}
574 	return (NULL);
575 }
576 
577 #ifdef DP83820
578 /*
579  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
580  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
581  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
582  * which means we try to use 64-bit data transfers on those cards if we
583  * happen to be plugged into a 32-bit slot.
584  *
585  * What we do is use this table of cards known to be 64-bit cards.  If
586  * you have a 64-bit card who's subsystem ID is not listed in this table,
587  * send the output of "pcictl dump ..." of the device to me so that your
588  * card will use the 64-bit data path when plugged into a 64-bit slot.
589  *
590  *	-- Jason R. Thorpe <thorpej@NetBSD.org>
591  *	   June 30, 2002
592  */
593 static int
594 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
595 {
596 	static const struct {
597 		pci_vendor_id_t c64_vendor;
598 		pci_product_id_t c64_product;
599 	} card64[] = {
600 		/* Asante GigaNIX */
601 		{ 0x128a,	0x0002 },
602 
603 		/* Accton EN1407-T, Planex GN-1000TE */
604 		{ 0x1113,	0x1407 },
605 
606 		/* Netgear GA-621 */
607 		{ 0x1385,	0x621a },
608 
609 		/* SMC EZ Card */
610 		{ 0x10b8,	0x9462 },
611 
612 		{ 0, 0}
613 	};
614 	pcireg_t subsys;
615 	int i;
616 
617 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
618 
619 	for (i = 0; card64[i].c64_vendor != 0; i++) {
620 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
621 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
622 			return (1);
623 	}
624 
625 	return (0);
626 }
627 #endif /* DP83820 */
628 
629 static int
630 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
631 {
632 	struct pci_attach_args *pa = aux;
633 
634 	if (SIP_DECL(lookup)(pa) != NULL)
635 		return (1);
636 
637 	return (0);
638 }
639 
640 static void
641 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
642 {
643 	struct sip_softc *sc = (struct sip_softc *) self;
644 	struct pci_attach_args *pa = aux;
645 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
646 	pci_chipset_tag_t pc = pa->pa_pc;
647 	pci_intr_handle_t ih;
648 	const char *intrstr = NULL;
649 	bus_space_tag_t iot, memt;
650 	bus_space_handle_t ioh, memh;
651 	bus_dma_segment_t seg;
652 	int ioh_valid, memh_valid;
653 	int i, rseg, error;
654 	const struct sip_product *sip;
655 	pcireg_t pmode;
656 	u_int8_t enaddr[ETHER_ADDR_LEN];
657 	int pmreg;
658 #ifdef DP83820
659 	pcireg_t memtype;
660 	u_int32_t reg;
661 #endif /* DP83820 */
662 
663 	callout_init(&sc->sc_tick_ch);
664 
665 	sip = SIP_DECL(lookup)(pa);
666 	if (sip == NULL) {
667 		printf("\n");
668 		panic(SIP_STR(attach) ": impossible");
669 	}
670 	sc->sc_rev = PCI_REVISION(pa->pa_class);
671 
672 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
673 
674 	sc->sc_model = sip;
675 
676 	/*
677 	 * XXX Work-around broken PXE firmware on some boards.
678 	 *
679 	 * The DP83815 shares an address decoder with the MEM BAR
680 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
681 	 * so that memory mapped access works.
682 	 */
683 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
684 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
685 	    ~PCI_MAPREG_ROM_ENABLE);
686 
687 	/*
688 	 * Map the device.
689 	 */
690 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
691 	    PCI_MAPREG_TYPE_IO, 0,
692 	    &iot, &ioh, NULL, NULL) == 0);
693 #ifdef DP83820
694 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
695 	switch (memtype) {
696 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
697 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
698 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
699 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
700 		break;
701 	default:
702 		memh_valid = 0;
703 	}
704 #else
705 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
706 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
707 	    &memt, &memh, NULL, NULL) == 0);
708 #endif /* DP83820 */
709 
710 	if (memh_valid) {
711 		sc->sc_st = memt;
712 		sc->sc_sh = memh;
713 	} else if (ioh_valid) {
714 		sc->sc_st = iot;
715 		sc->sc_sh = ioh;
716 	} else {
717 		printf("%s: unable to map device registers\n",
718 		    sc->sc_dev.dv_xname);
719 		return;
720 	}
721 
722 	sc->sc_dmat = pa->pa_dmat;
723 
724 	/*
725 	 * Make sure bus mastering is enabled.  Also make sure
726 	 * Write/Invalidate is enabled if we're allowed to use it.
727 	 */
728 	pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
729 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
730 		pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
731 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
732 	    pmreg | PCI_COMMAND_MASTER_ENABLE);
733 
734 	/* Get it out of power save mode if needed. */
735 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
736 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
737 		    PCI_PMCSR_STATE_MASK;
738 		if (pmode == PCI_PMCSR_STATE_D3) {
739 			/*
740 			 * The card has lost all configuration data in
741 			 * this state, so punt.
742 			 */
743 			printf("%s: unable to wake up from power state D3\n",
744 			    sc->sc_dev.dv_xname);
745 			return;
746 		}
747 		if (pmode != PCI_PMCSR_STATE_D0) {
748 			printf("%s: waking up from power state D%d\n",
749 			    sc->sc_dev.dv_xname, pmode);
750 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
751 			    PCI_PMCSR_STATE_D0);
752 		}
753 	}
754 
755 	/*
756 	 * Map and establish our interrupt.
757 	 */
758 	if (pci_intr_map(pa, &ih)) {
759 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
760 		return;
761 	}
762 	intrstr = pci_intr_string(pc, ih);
763 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
764 	if (sc->sc_ih == NULL) {
765 		printf("%s: unable to establish interrupt",
766 		    sc->sc_dev.dv_xname);
767 		if (intrstr != NULL)
768 			printf(" at %s", intrstr);
769 		printf("\n");
770 		return;
771 	}
772 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
773 
774 	SIMPLEQ_INIT(&sc->sc_txfreeq);
775 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
776 
777 	/*
778 	 * Allocate the control data structures, and create and load the
779 	 * DMA map for it.
780 	 */
781 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
782 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
783 	    0)) != 0) {
784 		printf("%s: unable to allocate control data, error = %d\n",
785 		    sc->sc_dev.dv_xname, error);
786 		goto fail_0;
787 	}
788 
789 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
790 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
791 	    BUS_DMA_COHERENT)) != 0) {
792 		printf("%s: unable to map control data, error = %d\n",
793 		    sc->sc_dev.dv_xname, error);
794 		goto fail_1;
795 	}
796 
797 	if ((error = bus_dmamap_create(sc->sc_dmat,
798 	    sizeof(struct sip_control_data), 1,
799 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
800 		printf("%s: unable to create control data DMA map, "
801 		    "error = %d\n", sc->sc_dev.dv_xname, error);
802 		goto fail_2;
803 	}
804 
805 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
806 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
807 	    0)) != 0) {
808 		printf("%s: unable to load control data DMA map, error = %d\n",
809 		    sc->sc_dev.dv_xname, error);
810 		goto fail_3;
811 	}
812 
813 	/*
814 	 * Create the transmit buffer DMA maps.
815 	 */
816 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
817 		if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
818 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
819 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
820 			printf("%s: unable to create tx DMA map %d, "
821 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
822 			goto fail_4;
823 		}
824 	}
825 
826 	/*
827 	 * Create the receive buffer DMA maps.
828 	 */
829 	for (i = 0; i < SIP_NRXDESC; i++) {
830 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
831 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
832 			printf("%s: unable to create rx DMA map %d, "
833 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
834 			goto fail_5;
835 		}
836 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
837 	}
838 
839 	/*
840 	 * Reset the chip to a known state.
841 	 */
842 	SIP_DECL(reset)(sc);
843 
844 	/*
845 	 * Read the Ethernet address from the EEPROM.  This might
846 	 * also fetch other stuff from the EEPROM and stash it
847 	 * in the softc.
848 	 */
849 	sc->sc_cfg = 0;
850 #if !defined(DP83820)
851 	if (SIP_SIS900_REV(sc,SIS_REV_635) ||
852 	    SIP_SIS900_REV(sc,SIS_REV_900B))
853 		sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
854 
855 	if (SIP_SIS900_REV(sc,SIS_REV_635) ||
856 	    SIP_SIS900_REV(sc,SIS_REV_960) ||
857 	    SIP_SIS900_REV(sc,SIS_REV_900B))
858 		sc->sc_cfg |= (bus_space_read_4(sc->sc_st, sc->sc_sh,
859 						SIP_CFG) & CFG_EDBMASTEN);
860 #endif
861 
862 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
863 
864 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
865 	    ether_sprintf(enaddr));
866 
867 	/*
868 	 * Initialize the configuration register: aggressive PCI
869 	 * bus request algorithm, default backoff, default OW timer,
870 	 * default parity error detection.
871 	 *
872 	 * NOTE: "Big endian mode" is useless on the SiS900 and
873 	 * friends -- it affects packet data, not descriptors.
874 	 */
875 #ifdef DP83820
876 	/*
877 	 * Cause the chip to load configuration data from the EEPROM.
878 	 */
879 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
880 	for (i = 0; i < 10000; i++) {
881 		delay(10);
882 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
883 		    PTSCR_EELOAD_EN) == 0)
884 			break;
885 	}
886 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
887 	    PTSCR_EELOAD_EN) {
888 		printf("%s: timeout loading configuration from EEPROM\n",
889 		    sc->sc_dev.dv_xname);
890 		return;
891 	}
892 
893 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
894 
895 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
896 	if (reg & CFG_PCI64_DET) {
897 		printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
898 		/*
899 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
900 		 * data transfers.
901 		 *
902 		 * We can't use the DATA64_EN bit in the EEPROM, because
903 		 * vendors of 32-bit cards fail to clear that bit in many
904 		 * cases (yet the card still detects that it's in a 64-bit
905 		 * slot; go figure).
906 		 */
907 		if (SIP_DECL(check_64bit)(pa)) {
908 			sc->sc_cfg |= CFG_DATA64_EN;
909 			printf(", using 64-bit data transfers");
910 		}
911 		printf("\n");
912 	}
913 
914 	/*
915 	 * XXX Need some PCI flags indicating support for
916 	 * XXX 64-bit addressing.
917 	 */
918 #if 0
919 	if (reg & CFG_M64ADDR)
920 		sc->sc_cfg |= CFG_M64ADDR;
921 	if (reg & CFG_T64ADDR)
922 		sc->sc_cfg |= CFG_T64ADDR;
923 #endif
924 
925 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
926 		const char *sep = "";
927 		printf("%s: using ", sc->sc_dev.dv_xname);
928 		if (reg & CFG_EXT_125) {
929 			sc->sc_cfg |= CFG_EXT_125;
930 			printf("%s125MHz clock", sep);
931 			sep = ", ";
932 		}
933 		if (reg & CFG_TBI_EN) {
934 			sc->sc_cfg |= CFG_TBI_EN;
935 			printf("%sten-bit interface", sep);
936 			sep = ", ";
937 		}
938 		printf("\n");
939 	}
940 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
941 	    (reg & CFG_MRM_DIS) != 0)
942 		sc->sc_cfg |= CFG_MRM_DIS;
943 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
944 	    (reg & CFG_MWI_DIS) != 0)
945 		sc->sc_cfg |= CFG_MWI_DIS;
946 
947 	/*
948 	 * Use the extended descriptor format on the DP83820.  This
949 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
950 	 * checksumming.
951 	 */
952 	sc->sc_cfg |= CFG_EXTSTS_EN;
953 #endif /* DP83820 */
954 
955 	/*
956 	 * Initialize our media structures and probe the MII.
957 	 */
958 	sc->sc_mii.mii_ifp = ifp;
959 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
960 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
961 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
962 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, SIP_DECL(mediachange),
963 	    SIP_DECL(mediastatus));
964 
965 	/*
966 	 * XXX We cannot handle flow control on the DP83815.
967 	 */
968 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
969 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
970 			   MII_OFFSET_ANY, 0);
971 	else
972 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
973 			   MII_OFFSET_ANY, MIIF_DOPAUSE);
974 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
975 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
976 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
977 	} else
978 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
979 
980 	ifp = &sc->sc_ethercom.ec_if;
981 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
982 	ifp->if_softc = sc;
983 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
984 	sc->sc_if_flags = ifp->if_flags;
985 	ifp->if_ioctl = SIP_DECL(ioctl);
986 	ifp->if_start = SIP_DECL(start);
987 	ifp->if_watchdog = SIP_DECL(watchdog);
988 	ifp->if_init = SIP_DECL(init);
989 	ifp->if_stop = SIP_DECL(stop);
990 	IFQ_SET_READY(&ifp->if_snd);
991 
992 	/*
993 	 * We can support 802.1Q VLAN-sized frames.
994 	 */
995 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
996 
997 #ifdef DP83820
998 	/*
999 	 * And the DP83820 can do VLAN tagging in hardware, and
1000 	 * support the jumbo Ethernet MTU.
1001 	 */
1002 	sc->sc_ethercom.ec_capabilities |=
1003 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1004 
1005 	/*
1006 	 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1007 	 * in hardware.
1008 	 */
1009 	ifp->if_capabilities |=
1010 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1011 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1012 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1013 #endif /* DP83820 */
1014 
1015 	/*
1016 	 * Attach the interface.
1017 	 */
1018 	if_attach(ifp);
1019 	ether_ifattach(ifp, enaddr);
1020 #if NRND > 0
1021 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1022 	    RND_TYPE_NET, 0);
1023 #endif
1024 
1025 	/*
1026 	 * The number of bytes that must be available in
1027 	 * the Tx FIFO before the bus master can DMA more
1028 	 * data into the FIFO.
1029 	 */
1030 	sc->sc_tx_fill_thresh = 64 / 32;
1031 
1032 	/*
1033 	 * Start at a drain threshold of 512 bytes.  We will
1034 	 * increase it if a DMA underrun occurs.
1035 	 *
1036 	 * XXX The minimum value of this variable should be
1037 	 * tuned.  We may be able to improve performance
1038 	 * by starting with a lower value.  That, however,
1039 	 * may trash the first few outgoing packets if the
1040 	 * PCI bus is saturated.
1041 	 */
1042 #ifdef DP83820
1043 	sc->sc_tx_drain_thresh = 6400 / 32;	/* from FreeBSD nge(4) */
1044 #else
1045 	sc->sc_tx_drain_thresh = 1504 / 32;
1046 #endif
1047 
1048 	/*
1049 	 * Initialize the Rx FIFO drain threshold.
1050 	 *
1051 	 * This is in units of 8 bytes.
1052 	 *
1053 	 * We should never set this value lower than 2; 14 bytes are
1054 	 * required to filter the packet.
1055 	 */
1056 	sc->sc_rx_drain_thresh = 128 / 8;
1057 
1058 #ifdef SIP_EVENT_COUNTERS
1059 	/*
1060 	 * Attach event counters.
1061 	 */
1062 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1063 	    NULL, sc->sc_dev.dv_xname, "txsstall");
1064 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1065 	    NULL, sc->sc_dev.dv_xname, "txdstall");
1066 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1067 	    NULL, sc->sc_dev.dv_xname, "txforceintr");
1068 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1069 	    NULL, sc->sc_dev.dv_xname, "txdintr");
1070 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1071 	    NULL, sc->sc_dev.dv_xname, "txiintr");
1072 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1073 	    NULL, sc->sc_dev.dv_xname, "rxintr");
1074 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1075 	    NULL, sc->sc_dev.dv_xname, "hiberr");
1076 #ifndef DP83820
1077 	evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1078 	    NULL, sc->sc_dev.dv_xname, "rxpause");
1079 #endif /* !DP83820 */
1080 #ifdef DP83820
1081 	evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1082 	    NULL, sc->sc_dev.dv_xname, "rxpause");
1083 	evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1084 	    NULL, sc->sc_dev.dv_xname, "txpause");
1085 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1086 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
1087 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1088 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
1089 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1090 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
1091 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1092 	    NULL, sc->sc_dev.dv_xname, "txipsum");
1093 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1094 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
1095 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1096 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
1097 #endif /* DP83820 */
1098 #endif /* SIP_EVENT_COUNTERS */
1099 
1100 	/*
1101 	 * Make sure the interface is shutdown during reboot.
1102 	 */
1103 	sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
1104 	if (sc->sc_sdhook == NULL)
1105 		printf("%s: WARNING: unable to establish shutdown hook\n",
1106 		    sc->sc_dev.dv_xname);
1107 	return;
1108 
1109 	/*
1110 	 * Free any resources we've allocated during the failed attach
1111 	 * attempt.  Do this in reverse order and fall through.
1112 	 */
1113  fail_5:
1114 	for (i = 0; i < SIP_NRXDESC; i++) {
1115 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1116 			bus_dmamap_destroy(sc->sc_dmat,
1117 			    sc->sc_rxsoft[i].rxs_dmamap);
1118 	}
1119  fail_4:
1120 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
1121 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
1122 			bus_dmamap_destroy(sc->sc_dmat,
1123 			    sc->sc_txsoft[i].txs_dmamap);
1124 	}
1125 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1126  fail_3:
1127 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1128  fail_2:
1129 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1130 	    sizeof(struct sip_control_data));
1131  fail_1:
1132 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1133  fail_0:
1134 	return;
1135 }
1136 
1137 /*
1138  * sip_shutdown:
1139  *
1140  *	Make sure the interface is stopped at reboot time.
1141  */
1142 static void
1143 SIP_DECL(shutdown)(void *arg)
1144 {
1145 	struct sip_softc *sc = arg;
1146 
1147 	SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
1148 }
1149 
1150 /*
1151  * sip_start:		[ifnet interface function]
1152  *
1153  *	Start packet transmission on the interface.
1154  */
1155 static void
1156 SIP_DECL(start)(struct ifnet *ifp)
1157 {
1158 	struct sip_softc *sc = ifp->if_softc;
1159 	struct mbuf *m0;
1160 #ifndef DP83820
1161 	struct mbuf *m;
1162 #endif
1163 	struct sip_txsoft *txs;
1164 	bus_dmamap_t dmamap;
1165 	int error, nexttx, lasttx, seg;
1166 	int ofree = sc->sc_txfree;
1167 #if 0
1168 	int firsttx = sc->sc_txnext;
1169 #endif
1170 #ifdef DP83820
1171 	struct m_tag *mtag;
1172 	u_int32_t extsts;
1173 #endif
1174 
1175 #ifndef DP83820
1176 	/*
1177 	 * If we've been told to pause, don't transmit any more packets.
1178 	 */
1179 	if (sc->sc_paused)
1180 		ifp->if_flags |= IFF_OACTIVE;
1181 #endif
1182 
1183 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1184 		return;
1185 
1186 	/*
1187 	 * Loop through the send queue, setting up transmit descriptors
1188 	 * until we drain the queue, or use up all available transmit
1189 	 * descriptors.
1190 	 */
1191 	for (;;) {
1192 		/* Get a work queue entry. */
1193 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1194 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1195 			break;
1196 		}
1197 
1198 		/*
1199 		 * Grab a packet off the queue.
1200 		 */
1201 		IFQ_POLL(&ifp->if_snd, m0);
1202 		if (m0 == NULL)
1203 			break;
1204 #ifndef DP83820
1205 		m = NULL;
1206 #endif
1207 
1208 		dmamap = txs->txs_dmamap;
1209 
1210 #ifdef DP83820
1211 		/*
1212 		 * Load the DMA map.  If this fails, the packet either
1213 		 * didn't fit in the allotted number of segments, or we
1214 		 * were short on resources.  For the too-many-segments
1215 		 * case, we simply report an error and drop the packet,
1216 		 * since we can't sanely copy a jumbo packet to a single
1217 		 * buffer.
1218 		 */
1219 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1220 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1221 		if (error) {
1222 			if (error == EFBIG) {
1223 				printf("%s: Tx packet consumes too many "
1224 				    "DMA segments, dropping...\n",
1225 				    sc->sc_dev.dv_xname);
1226 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1227 				m_freem(m0);
1228 				continue;
1229 			}
1230 			/*
1231 			 * Short on resources, just stop for now.
1232 			 */
1233 			break;
1234 		}
1235 #else /* DP83820 */
1236 		/*
1237 		 * Load the DMA map.  If this fails, the packet either
1238 		 * didn't fit in the alloted number of segments, or we
1239 		 * were short on resources.  In this case, we'll copy
1240 		 * and try again.
1241 		 */
1242 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1243 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1244 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1245 			if (m == NULL) {
1246 				printf("%s: unable to allocate Tx mbuf\n",
1247 				    sc->sc_dev.dv_xname);
1248 				break;
1249 			}
1250 			if (m0->m_pkthdr.len > MHLEN) {
1251 				MCLGET(m, M_DONTWAIT);
1252 				if ((m->m_flags & M_EXT) == 0) {
1253 					printf("%s: unable to allocate Tx "
1254 					    "cluster\n", sc->sc_dev.dv_xname);
1255 					m_freem(m);
1256 					break;
1257 				}
1258 			}
1259 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1260 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1261 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1262 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1263 			if (error) {
1264 				printf("%s: unable to load Tx buffer, "
1265 				    "error = %d\n", sc->sc_dev.dv_xname, error);
1266 				break;
1267 			}
1268 		}
1269 #endif /* DP83820 */
1270 
1271 		/*
1272 		 * Ensure we have enough descriptors free to describe
1273 		 * the packet.  Note, we always reserve one descriptor
1274 		 * at the end of the ring as a termination point, to
1275 		 * prevent wrap-around.
1276 		 */
1277 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1278 			/*
1279 			 * Not enough free descriptors to transmit this
1280 			 * packet.  We haven't committed anything yet,
1281 			 * so just unload the DMA map, put the packet
1282 			 * back on the queue, and punt.  Notify the upper
1283 			 * layer that there are not more slots left.
1284 			 *
1285 			 * XXX We could allocate an mbuf and copy, but
1286 			 * XXX is it worth it?
1287 			 */
1288 			ifp->if_flags |= IFF_OACTIVE;
1289 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1290 #ifndef DP83820
1291 			if (m != NULL)
1292 				m_freem(m);
1293 #endif
1294 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1295 			break;
1296 		}
1297 
1298 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1299 #ifndef DP83820
1300 		if (m != NULL) {
1301 			m_freem(m0);
1302 			m0 = m;
1303 		}
1304 #endif
1305 
1306 		/*
1307 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1308 		 */
1309 
1310 		/* Sync the DMA map. */
1311 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1312 		    BUS_DMASYNC_PREWRITE);
1313 
1314 		/*
1315 		 * Initialize the transmit descriptors.
1316 		 */
1317 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1318 		     seg < dmamap->dm_nsegs;
1319 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
1320 			/*
1321 			 * If this is the first descriptor we're
1322 			 * enqueueing, don't set the OWN bit just
1323 			 * yet.  That could cause a race condition.
1324 			 * We'll do it below.
1325 			 */
1326 			sc->sc_txdescs[nexttx].sipd_bufptr =
1327 			    htole32(dmamap->dm_segs[seg].ds_addr);
1328 			sc->sc_txdescs[nexttx].sipd_cmdsts =
1329 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1330 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1331 #ifdef DP83820
1332 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
1333 #endif /* DP83820 */
1334 			lasttx = nexttx;
1335 		}
1336 
1337 		/* Clear the MORE bit on the last segment. */
1338 		sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1339 
1340 		/*
1341 		 * If we're in the interrupt delay window, delay the
1342 		 * interrupt.
1343 		 */
1344 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1345 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1346 			sc->sc_txdescs[lasttx].sipd_cmdsts |=
1347 			    htole32(CMDSTS_INTR);
1348 			sc->sc_txwin = 0;
1349 		}
1350 
1351 #ifdef DP83820
1352 		/*
1353 		 * If VLANs are enabled and the packet has a VLAN tag, set
1354 		 * up the descriptor to encapsulate the packet for us.
1355 		 *
1356 		 * This apparently has to be on the last descriptor of
1357 		 * the packet.
1358 		 */
1359 		if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1360 			sc->sc_txdescs[lasttx].sipd_extsts |=
1361 			    htole32(EXTSTS_VPKT |
1362 				    (VLAN_TAG_VALUE(mtag) & EXTSTS_VTCI));
1363 		}
1364 
1365 		/*
1366 		 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1367 		 * checksumming, set up the descriptor to do this work
1368 		 * for us.
1369 		 *
1370 		 * This apparently has to be on the first descriptor of
1371 		 * the packet.
1372 		 *
1373 		 * Byte-swap constants so the compiler can optimize.
1374 		 */
1375 		extsts = 0;
1376 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1377 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1378 			SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1379 			extsts |= htole32(EXTSTS_IPPKT);
1380 		}
1381 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1382 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1383 			SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1384 			extsts |= htole32(EXTSTS_TCPPKT);
1385 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1386 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1387 			SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1388 			extsts |= htole32(EXTSTS_UDPPKT);
1389 		}
1390 		sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1391 #endif /* DP83820 */
1392 
1393 		/* Sync the descriptors we're using. */
1394 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1395 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1396 
1397 		/*
1398 		 * The entire packet is set up.  Give the first descrptor
1399 		 * to the chip now.
1400 		 */
1401 		sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
1402 		    htole32(CMDSTS_OWN);
1403 		SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
1404 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1405 
1406 		/*
1407 		 * Store a pointer to the packet so we can free it later,
1408 		 * and remember what txdirty will be once the packet is
1409 		 * done.
1410 		 */
1411 		txs->txs_mbuf = m0;
1412 		txs->txs_firstdesc = sc->sc_txnext;
1413 		txs->txs_lastdesc = lasttx;
1414 
1415 		/* Advance the tx pointer. */
1416 		sc->sc_txfree -= dmamap->dm_nsegs;
1417 		sc->sc_txnext = nexttx;
1418 
1419 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1420 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1421 
1422 #if NBPFILTER > 0
1423 		/*
1424 		 * Pass the packet to any BPF listeners.
1425 		 */
1426 		if (ifp->if_bpf)
1427 			bpf_mtap(ifp->if_bpf, m0);
1428 #endif /* NBPFILTER > 0 */
1429 	}
1430 
1431 	if (txs == NULL || sc->sc_txfree == 0) {
1432 		/* No more slots left; notify upper layer. */
1433 		ifp->if_flags |= IFF_OACTIVE;
1434 	}
1435 
1436 	if (sc->sc_txfree != ofree) {
1437 		/*
1438 		 * Start the transmit process.  Note, the manual says
1439 		 * that if there are no pending transmissions in the
1440 		 * chip's internal queue (indicated by TXE being clear),
1441 		 * then the driver software must set the TXDP to the
1442 		 * first descriptor to be transmitted.  However, if we
1443 		 * do this, it causes serious performance degredation on
1444 		 * the DP83820 under load, not setting TXDP doesn't seem
1445 		 * to adversely affect the SiS 900 or DP83815.
1446 		 *
1447 		 * Well, I guess it wouldn't be the first time a manual
1448 		 * has lied -- and they could be speaking of the NULL-
1449 		 * terminated descriptor list case, rather than OWN-
1450 		 * terminated rings.
1451 		 */
1452 #if 0
1453 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1454 		     CR_TXE) == 0) {
1455 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1456 			    SIP_CDTXADDR(sc, firsttx));
1457 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1458 		}
1459 #else
1460 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1461 #endif
1462 
1463 		/* Set a watchdog timer in case the chip flakes out. */
1464 #ifdef DP83820
1465 		/* Gigabit autonegotiation takes 5 seconds. */
1466 		ifp->if_timer = 10;
1467 #else
1468 		ifp->if_timer = 5;
1469 #endif
1470 	}
1471 }
1472 
1473 /*
1474  * sip_watchdog:	[ifnet interface function]
1475  *
1476  *	Watchdog timer handler.
1477  */
1478 static void
1479 SIP_DECL(watchdog)(struct ifnet *ifp)
1480 {
1481 	struct sip_softc *sc = ifp->if_softc;
1482 
1483 	/*
1484 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1485 	 * If we get a timeout, try and sweep up transmit descriptors.
1486 	 * If we manage to sweep them all up, ignore the lack of
1487 	 * interrupt.
1488 	 */
1489 	SIP_DECL(txintr)(sc);
1490 
1491 	if (sc->sc_txfree != SIP_NTXDESC) {
1492 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1493 		ifp->if_oerrors++;
1494 
1495 		/* Reset the interface. */
1496 		(void) SIP_DECL(init)(ifp);
1497 	} else if (ifp->if_flags & IFF_DEBUG)
1498 		printf("%s: recovered from device timeout\n",
1499 		    sc->sc_dev.dv_xname);
1500 
1501 	/* Try to get more packets going. */
1502 	SIP_DECL(start)(ifp);
1503 }
1504 
1505 /*
1506  * sip_ioctl:		[ifnet interface function]
1507  *
1508  *	Handle control requests from the operator.
1509  */
1510 static int
1511 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1512 {
1513 	struct sip_softc *sc = ifp->if_softc;
1514 	struct ifreq *ifr = (struct ifreq *)data;
1515 	int s, error;
1516 
1517 	s = splnet();
1518 
1519 	switch (cmd) {
1520 	case SIOCSIFMEDIA:
1521 		/* Flow control requires full-duplex mode. */
1522 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1523 		    (ifr->ifr_media & IFM_FDX) == 0)
1524 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
1525 #ifdef DP83820
1526 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1527 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1528 				/* We can do both TXPAUSE and RXPAUSE. */
1529 				ifr->ifr_media |=
1530 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1531 			}
1532 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1533 		}
1534 #else
1535 		/* XXX */
1536 		if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1537 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1538 
1539 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1540 			if (ifr->ifr_media & IFM_FLOW) {
1541 				/*
1542 				 * Both TXPAUSE and RXPAUSE must be set.
1543 				 * (SiS900 and DP83815 don't have PAUSE_ASYM
1544 				 * feature.)
1545 				 *
1546 				 * XXX Can SiS900 and DP83815 send PAUSE?
1547 				 */
1548 				ifr->ifr_media |=
1549 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1550 			}
1551 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1552 		}
1553 #endif
1554 		/* FALLTHROUGH */
1555 	case SIOCGIFMEDIA:
1556 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1557 		break;
1558 	case SIOCSIFFLAGS:
1559 		/* If the interface is up and running, only modify the receive
1560 		 * filter when setting promiscuous or debug mode.  Otherwise
1561 		 * fall through to ether_ioctl, which will reset the chip.
1562 		 */
1563 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
1564 		if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
1565 		    == (IFF_UP|IFF_RUNNING))
1566 		    && ((ifp->if_flags & (~RESETIGN))
1567 		    == (sc->sc_if_flags & (~RESETIGN)))) {
1568 			/* Set up the receive filter. */
1569 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1570 			error = 0;
1571 			break;
1572 #undef RESETIGN
1573 		}
1574 		/* FALLTHROUGH */
1575 	default:
1576 		error = ether_ioctl(ifp, cmd, data);
1577 		if (error == ENETRESET) {
1578 			/*
1579 			 * Multicast list has changed; set the hardware filter
1580 			 * accordingly.
1581 			 */
1582 			if (ifp->if_flags & IFF_RUNNING)
1583 			    (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1584 			error = 0;
1585 		}
1586 		break;
1587 	}
1588 
1589 	/* Try to get more packets going. */
1590 	SIP_DECL(start)(ifp);
1591 
1592 	sc->sc_if_flags = ifp->if_flags;
1593 	splx(s);
1594 	return (error);
1595 }
1596 
1597 /*
1598  * sip_intr:
1599  *
1600  *	Interrupt service routine.
1601  */
1602 static int
1603 SIP_DECL(intr)(void *arg)
1604 {
1605 	struct sip_softc *sc = arg;
1606 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1607 	u_int32_t isr;
1608 	int handled = 0;
1609 
1610 	/* Disable interrupts. */
1611 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1612 
1613 	for (;;) {
1614 		/* Reading clears interrupt. */
1615 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1616 		if ((isr & sc->sc_imr) == 0)
1617 			break;
1618 
1619 #if NRND > 0
1620 		if (RND_ENABLED(&sc->rnd_source))
1621 			rnd_add_uint32(&sc->rnd_source, isr);
1622 #endif
1623 
1624 		handled = 1;
1625 
1626 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1627 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1628 
1629 			/* Grab any new packets. */
1630 			SIP_DECL(rxintr)(sc);
1631 
1632 			if (isr & ISR_RXORN) {
1633 				printf("%s: receive FIFO overrun\n",
1634 				    sc->sc_dev.dv_xname);
1635 
1636 				/* XXX adjust rx_drain_thresh? */
1637 			}
1638 
1639 			if (isr & ISR_RXIDLE) {
1640 				printf("%s: receive ring overrun\n",
1641 				    sc->sc_dev.dv_xname);
1642 
1643 				/* Get the receive process going again. */
1644 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1645 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1646 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1647 				    SIP_CR, CR_RXE);
1648 			}
1649 		}
1650 
1651 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1652 #ifdef SIP_EVENT_COUNTERS
1653 			if (isr & ISR_TXDESC)
1654 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1655 			else if (isr & ISR_TXIDLE)
1656 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1657 #endif
1658 
1659 			/* Sweep up transmit descriptors. */
1660 			SIP_DECL(txintr)(sc);
1661 
1662 			if (isr & ISR_TXURN) {
1663 				u_int32_t thresh;
1664 
1665 				printf("%s: transmit FIFO underrun",
1666 				    sc->sc_dev.dv_xname);
1667 
1668 				thresh = sc->sc_tx_drain_thresh + 1;
1669 				if (thresh <= TXCFG_DRTH &&
1670 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
1671 				     (sc->sc_tx_fill_thresh * 32))) {
1672 					printf("; increasing Tx drain "
1673 					    "threshold to %u bytes\n",
1674 					    thresh * 32);
1675 					sc->sc_tx_drain_thresh = thresh;
1676 					(void) SIP_DECL(init)(ifp);
1677 				} else {
1678 					(void) SIP_DECL(init)(ifp);
1679 					printf("\n");
1680 				}
1681 			}
1682 		}
1683 
1684 #if !defined(DP83820)
1685 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1686 			if (isr & ISR_PAUSE_ST) {
1687 				sc->sc_paused = 1;
1688 				SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1689 				ifp->if_flags |= IFF_OACTIVE;
1690 			}
1691 			if (isr & ISR_PAUSE_END) {
1692 				sc->sc_paused = 0;
1693 				ifp->if_flags &= ~IFF_OACTIVE;
1694 			}
1695 		}
1696 #endif /* ! DP83820 */
1697 
1698 		if (isr & ISR_HIBERR) {
1699 			int want_init = 0;
1700 
1701 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1702 
1703 #define	PRINTERR(bit, str)						\
1704 			do {						\
1705 				if ((isr & (bit)) != 0) {		\
1706 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
1707 						printf("%s: %s\n",	\
1708 						    sc->sc_dev.dv_xname, str); \
1709 					want_init = 1;			\
1710 				}					\
1711 			} while (/*CONSTCOND*/0)
1712 
1713 			PRINTERR(ISR_DPERR, "parity error");
1714 			PRINTERR(ISR_SSERR, "system error");
1715 			PRINTERR(ISR_RMABT, "master abort");
1716 			PRINTERR(ISR_RTABT, "target abort");
1717 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1718 			/*
1719 			 * Ignore:
1720 			 *	Tx reset complete
1721 			 *	Rx reset complete
1722 			 */
1723 			if (want_init)
1724 				(void) SIP_DECL(init)(ifp);
1725 #undef PRINTERR
1726 		}
1727 	}
1728 
1729 	/* Re-enable interrupts. */
1730 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1731 
1732 	/* Try to get more packets going. */
1733 	SIP_DECL(start)(ifp);
1734 
1735 	return (handled);
1736 }
1737 
1738 /*
1739  * sip_txintr:
1740  *
1741  *	Helper; handle transmit interrupts.
1742  */
1743 static void
1744 SIP_DECL(txintr)(struct sip_softc *sc)
1745 {
1746 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1747 	struct sip_txsoft *txs;
1748 	u_int32_t cmdsts;
1749 
1750 #ifndef DP83820
1751 	if (sc->sc_paused == 0)
1752 #endif
1753 		ifp->if_flags &= ~IFF_OACTIVE;
1754 
1755 	/*
1756 	 * Go through our Tx list and free mbufs for those
1757 	 * frames which have been transmitted.
1758 	 */
1759 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1760 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1761 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1762 
1763 		cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1764 		if (cmdsts & CMDSTS_OWN)
1765 			break;
1766 
1767 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1768 
1769 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1770 
1771 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1772 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1773 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1774 		m_freem(txs->txs_mbuf);
1775 		txs->txs_mbuf = NULL;
1776 
1777 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1778 
1779 		/*
1780 		 * Check for errors and collisions.
1781 		 */
1782 		if (cmdsts &
1783 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1784 			ifp->if_oerrors++;
1785 			if (cmdsts & CMDSTS_Tx_EC)
1786 				ifp->if_collisions += 16;
1787 			if (ifp->if_flags & IFF_DEBUG) {
1788 				if (cmdsts & CMDSTS_Tx_ED)
1789 					printf("%s: excessive deferral\n",
1790 					    sc->sc_dev.dv_xname);
1791 				if (cmdsts & CMDSTS_Tx_EC)
1792 					printf("%s: excessive collisions\n",
1793 					    sc->sc_dev.dv_xname);
1794 			}
1795 		} else {
1796 			/* Packet was transmitted successfully. */
1797 			ifp->if_opackets++;
1798 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1799 		}
1800 	}
1801 
1802 	/*
1803 	 * If there are no more pending transmissions, cancel the watchdog
1804 	 * timer.
1805 	 */
1806 	if (txs == NULL) {
1807 		ifp->if_timer = 0;
1808 		sc->sc_txwin = 0;
1809 	}
1810 }
1811 
1812 #if defined(DP83820)
1813 /*
1814  * sip_rxintr:
1815  *
1816  *	Helper; handle receive interrupts.
1817  */
1818 static void
1819 SIP_DECL(rxintr)(struct sip_softc *sc)
1820 {
1821 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1822 	struct sip_rxsoft *rxs;
1823 	struct mbuf *m;
1824 	u_int32_t cmdsts, extsts;
1825 	int i, len;
1826 
1827 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1828 		rxs = &sc->sc_rxsoft[i];
1829 
1830 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1831 
1832 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1833 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1834 		len = CMDSTS_SIZE(cmdsts);
1835 
1836 		/*
1837 		 * NOTE: OWN is set if owned by _consumer_.  We're the
1838 		 * consumer of the receive ring, so if the bit is clear,
1839 		 * we have processed all of the packets.
1840 		 */
1841 		if ((cmdsts & CMDSTS_OWN) == 0) {
1842 			/*
1843 			 * We have processed all of the receive buffers.
1844 			 */
1845 			break;
1846 		}
1847 
1848 		if (__predict_false(sc->sc_rxdiscard)) {
1849 			SIP_INIT_RXDESC(sc, i);
1850 			if ((cmdsts & CMDSTS_MORE) == 0) {
1851 				/* Reset our state. */
1852 				sc->sc_rxdiscard = 0;
1853 			}
1854 			continue;
1855 		}
1856 
1857 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1858 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1859 
1860 		m = rxs->rxs_mbuf;
1861 
1862 		/*
1863 		 * Add a new receive buffer to the ring.
1864 		 */
1865 		if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1866 			/*
1867 			 * Failed, throw away what we've done so
1868 			 * far, and discard the rest of the packet.
1869 			 */
1870 			ifp->if_ierrors++;
1871 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1872 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1873 			SIP_INIT_RXDESC(sc, i);
1874 			if (cmdsts & CMDSTS_MORE)
1875 				sc->sc_rxdiscard = 1;
1876 			if (sc->sc_rxhead != NULL)
1877 				m_freem(sc->sc_rxhead);
1878 			SIP_RXCHAIN_RESET(sc);
1879 			continue;
1880 		}
1881 
1882 		SIP_RXCHAIN_LINK(sc, m);
1883 
1884 		m->m_len = len;
1885 
1886 		/*
1887 		 * If this is not the end of the packet, keep
1888 		 * looking.
1889 		 */
1890 		if (cmdsts & CMDSTS_MORE) {
1891 			sc->sc_rxlen += len;
1892 			continue;
1893 		}
1894 
1895 		/*
1896 		 * Okay, we have the entire packet now.  The chip includes
1897 		 * the FCS, so we need to trim it.
1898 		 */
1899 		m->m_len -= ETHER_CRC_LEN;
1900 
1901 		*sc->sc_rxtailp = NULL;
1902 		m = sc->sc_rxhead;
1903 		len = m->m_len + sc->sc_rxlen;
1904 
1905 		SIP_RXCHAIN_RESET(sc);
1906 
1907 		/*
1908 		 * If an error occurred, update stats and drop the packet.
1909 		 */
1910 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1911 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1912 			ifp->if_ierrors++;
1913 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1914 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
1915 				/* Receive overrun handled elsewhere. */
1916 				printf("%s: receive descriptor error\n",
1917 				    sc->sc_dev.dv_xname);
1918 			}
1919 #define	PRINTERR(bit, str)						\
1920 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
1921 			    (cmdsts & (bit)) != 0)			\
1922 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1923 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1924 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1925 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1926 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1927 #undef PRINTERR
1928 			m_freem(m);
1929 			continue;
1930 		}
1931 
1932 		/*
1933 		 * If the packet is small enough to fit in a
1934 		 * single header mbuf, allocate one and copy
1935 		 * the data into it.  This greatly reduces
1936 		 * memory consumption when we receive lots
1937 		 * of small packets.
1938 		 */
1939 		if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1940 			struct mbuf *nm;
1941 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
1942 			if (nm == NULL) {
1943 				ifp->if_ierrors++;
1944 				m_freem(m);
1945 				continue;
1946 			}
1947 			nm->m_data += 2;
1948 			nm->m_pkthdr.len = nm->m_len = len;
1949 			m_copydata(m, 0, len, mtod(nm, caddr_t));
1950 			m_freem(m);
1951 			m = nm;
1952 		}
1953 #ifndef __NO_STRICT_ALIGNMENT
1954 		else {
1955 			/*
1956 			 * The DP83820's receive buffers must be 4-byte
1957 			 * aligned.  But this means that the data after
1958 			 * the Ethernet header is misaligned.  To compensate,
1959 			 * we have artificially shortened the buffer size
1960 			 * in the descriptor, and we do an overlapping copy
1961 			 * of the data two bytes further in (in the first
1962 			 * buffer of the chain only).
1963 			 */
1964 			memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1965 			    m->m_len);
1966 			m->m_data += 2;
1967 		}
1968 #endif /* ! __NO_STRICT_ALIGNMENT */
1969 
1970 		/*
1971 		 * If VLANs are enabled, VLAN packets have been unwrapped
1972 		 * for us.  Associate the tag with the packet.
1973 		 */
1974 		if ((extsts & EXTSTS_VPKT) != 0) {
1975 			VLAN_INPUT_TAG(ifp, m, ntohs(extsts & EXTSTS_VTCI),
1976 			    continue);
1977 		}
1978 
1979 		/*
1980 		 * Set the incoming checksum information for the
1981 		 * packet.
1982 		 */
1983 		if ((extsts & EXTSTS_IPPKT) != 0) {
1984 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1985 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1986 			if (extsts & EXTSTS_Rx_IPERR)
1987 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1988 			if (extsts & EXTSTS_TCPPKT) {
1989 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1990 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1991 				if (extsts & EXTSTS_Rx_TCPERR)
1992 					m->m_pkthdr.csum_flags |=
1993 					    M_CSUM_TCP_UDP_BAD;
1994 			} else if (extsts & EXTSTS_UDPPKT) {
1995 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1996 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1997 				if (extsts & EXTSTS_Rx_UDPERR)
1998 					m->m_pkthdr.csum_flags |=
1999 					    M_CSUM_TCP_UDP_BAD;
2000 			}
2001 		}
2002 
2003 		ifp->if_ipackets++;
2004 		m->m_pkthdr.rcvif = ifp;
2005 		m->m_pkthdr.len = len;
2006 
2007 #if NBPFILTER > 0
2008 		/*
2009 		 * Pass this up to any BPF listeners, but only
2010 		 * pass if up the stack if it's for us.
2011 		 */
2012 		if (ifp->if_bpf)
2013 			bpf_mtap(ifp->if_bpf, m);
2014 #endif /* NBPFILTER > 0 */
2015 
2016 		/* Pass it on. */
2017 		(*ifp->if_input)(ifp, m);
2018 	}
2019 
2020 	/* Update the receive pointer. */
2021 	sc->sc_rxptr = i;
2022 }
2023 #else /* ! DP83820 */
2024 /*
2025  * sip_rxintr:
2026  *
2027  *	Helper; handle receive interrupts.
2028  */
2029 static void
2030 SIP_DECL(rxintr)(struct sip_softc *sc)
2031 {
2032 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2033 	struct sip_rxsoft *rxs;
2034 	struct mbuf *m;
2035 	u_int32_t cmdsts;
2036 	int i, len;
2037 
2038 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
2039 		rxs = &sc->sc_rxsoft[i];
2040 
2041 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2042 
2043 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
2044 
2045 		/*
2046 		 * NOTE: OWN is set if owned by _consumer_.  We're the
2047 		 * consumer of the receive ring, so if the bit is clear,
2048 		 * we have processed all of the packets.
2049 		 */
2050 		if ((cmdsts & CMDSTS_OWN) == 0) {
2051 			/*
2052 			 * We have processed all of the receive buffers.
2053 			 */
2054 			break;
2055 		}
2056 
2057 		/*
2058 		 * If any collisions were seen on the wire, count one.
2059 		 */
2060 		if (cmdsts & CMDSTS_Rx_COL)
2061 			ifp->if_collisions++;
2062 
2063 		/*
2064 		 * If an error occurred, update stats, clear the status
2065 		 * word, and leave the packet buffer in place.  It will
2066 		 * simply be reused the next time the ring comes around.
2067 		 */
2068 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2069 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2070 			ifp->if_ierrors++;
2071 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2072 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
2073 				/* Receive overrun handled elsewhere. */
2074 				printf("%s: receive descriptor error\n",
2075 				    sc->sc_dev.dv_xname);
2076 			}
2077 #define	PRINTERR(bit, str)						\
2078 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
2079 			    (cmdsts & (bit)) != 0)			\
2080 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
2081 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2082 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2083 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2084 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2085 #undef PRINTERR
2086 			SIP_INIT_RXDESC(sc, i);
2087 			continue;
2088 		}
2089 
2090 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2091 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2092 
2093 		/*
2094 		 * No errors; receive the packet.  Note, the SiS 900
2095 		 * includes the CRC with every packet.
2096 		 */
2097 		len = CMDSTS_SIZE(cmdsts) - ETHER_CRC_LEN;
2098 
2099 #ifdef __NO_STRICT_ALIGNMENT
2100 		/*
2101 		 * If the packet is small enough to fit in a
2102 		 * single header mbuf, allocate one and copy
2103 		 * the data into it.  This greatly reduces
2104 		 * memory consumption when we receive lots
2105 		 * of small packets.
2106 		 *
2107 		 * Otherwise, we add a new buffer to the receive
2108 		 * chain.  If this fails, we drop the packet and
2109 		 * recycle the old buffer.
2110 		 */
2111 		if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
2112 			MGETHDR(m, M_DONTWAIT, MT_DATA);
2113 			if (m == NULL)
2114 				goto dropit;
2115 			memcpy(mtod(m, caddr_t),
2116 			    mtod(rxs->rxs_mbuf, caddr_t), len);
2117 			SIP_INIT_RXDESC(sc, i);
2118 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2119 			    rxs->rxs_dmamap->dm_mapsize,
2120 			    BUS_DMASYNC_PREREAD);
2121 		} else {
2122 			m = rxs->rxs_mbuf;
2123 			if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
2124  dropit:
2125 				ifp->if_ierrors++;
2126 				SIP_INIT_RXDESC(sc, i);
2127 				bus_dmamap_sync(sc->sc_dmat,
2128 				    rxs->rxs_dmamap, 0,
2129 				    rxs->rxs_dmamap->dm_mapsize,
2130 				    BUS_DMASYNC_PREREAD);
2131 				continue;
2132 			}
2133 		}
2134 #else
2135 		/*
2136 		 * The SiS 900's receive buffers must be 4-byte aligned.
2137 		 * But this means that the data after the Ethernet header
2138 		 * is misaligned.  We must allocate a new buffer and
2139 		 * copy the data, shifted forward 2 bytes.
2140 		 */
2141 		MGETHDR(m, M_DONTWAIT, MT_DATA);
2142 		if (m == NULL) {
2143  dropit:
2144 			ifp->if_ierrors++;
2145 			SIP_INIT_RXDESC(sc, i);
2146 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2147 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2148 			continue;
2149 		}
2150 		if (len > (MHLEN - 2)) {
2151 			MCLGET(m, M_DONTWAIT);
2152 			if ((m->m_flags & M_EXT) == 0) {
2153 				m_freem(m);
2154 				goto dropit;
2155 			}
2156 		}
2157 		m->m_data += 2;
2158 
2159 		/*
2160 		 * Note that we use clusters for incoming frames, so the
2161 		 * buffer is virtually contiguous.
2162 		 */
2163 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
2164 
2165 		/* Allow the receive descriptor to continue using its mbuf. */
2166 		SIP_INIT_RXDESC(sc, i);
2167 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2168 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2169 #endif /* __NO_STRICT_ALIGNMENT */
2170 
2171 		ifp->if_ipackets++;
2172 		m->m_pkthdr.rcvif = ifp;
2173 		m->m_pkthdr.len = m->m_len = len;
2174 
2175 #if NBPFILTER > 0
2176 		/*
2177 		 * Pass this up to any BPF listeners, but only
2178 		 * pass if up the stack if it's for us.
2179 		 */
2180 		if (ifp->if_bpf)
2181 			bpf_mtap(ifp->if_bpf, m);
2182 #endif /* NBPFILTER > 0 */
2183 
2184 		/* Pass it on. */
2185 		(*ifp->if_input)(ifp, m);
2186 	}
2187 
2188 	/* Update the receive pointer. */
2189 	sc->sc_rxptr = i;
2190 }
2191 #endif /* DP83820 */
2192 
2193 /*
2194  * sip_tick:
2195  *
2196  *	One second timer, used to tick the MII.
2197  */
2198 static void
2199 SIP_DECL(tick)(void *arg)
2200 {
2201 	struct sip_softc *sc = arg;
2202 	int s;
2203 
2204 	s = splnet();
2205 #ifdef DP83820
2206 #ifdef SIP_EVENT_COUNTERS
2207 	/* Read PAUSE related counts from MIB registers. */
2208 	sc->sc_ev_rxpause.ev_count +=
2209 	    bus_space_read_4(sc->sc_st, sc->sc_sh,
2210 			     SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2211 	sc->sc_ev_txpause.ev_count +=
2212 	    bus_space_read_4(sc->sc_st, sc->sc_sh,
2213 			     SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2214 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2215 #endif /* SIP_EVENT_COUNTERS */
2216 #endif /* DP83820 */
2217 	mii_tick(&sc->sc_mii);
2218 	splx(s);
2219 
2220 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2221 }
2222 
2223 /*
2224  * sip_reset:
2225  *
2226  *	Perform a soft reset on the SiS 900.
2227  */
2228 static void
2229 SIP_DECL(reset)(struct sip_softc *sc)
2230 {
2231 	bus_space_tag_t st = sc->sc_st;
2232 	bus_space_handle_t sh = sc->sc_sh;
2233 	int i;
2234 
2235 	bus_space_write_4(st, sh, SIP_IER, 0);
2236 	bus_space_write_4(st, sh, SIP_IMR, 0);
2237 	bus_space_write_4(st, sh, SIP_RFCR, 0);
2238 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
2239 
2240 	for (i = 0; i < SIP_TIMEOUT; i++) {
2241 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2242 			break;
2243 		delay(2);
2244 	}
2245 
2246 	if (i == SIP_TIMEOUT)
2247 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2248 
2249 	delay(1000);
2250 
2251 #ifdef DP83820
2252 	/*
2253 	 * Set the general purpose I/O bits.  Do it here in case we
2254 	 * need to have GPIO set up to talk to the media interface.
2255 	 */
2256 	bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2257 	delay(1000);
2258 #endif /* DP83820 */
2259 }
2260 
2261 /*
2262  * sip_init:		[ ifnet interface function ]
2263  *
2264  *	Initialize the interface.  Must be called at splnet().
2265  */
2266 static int
2267 SIP_DECL(init)(struct ifnet *ifp)
2268 {
2269 	struct sip_softc *sc = ifp->if_softc;
2270 	bus_space_tag_t st = sc->sc_st;
2271 	bus_space_handle_t sh = sc->sc_sh;
2272 	struct sip_txsoft *txs;
2273 	struct sip_rxsoft *rxs;
2274 	struct sip_desc *sipd;
2275 #if defined(DP83820)
2276 	u_int32_t reg;
2277 #endif
2278 	int i, error = 0;
2279 
2280 	/*
2281 	 * Cancel any pending I/O.
2282 	 */
2283 	SIP_DECL(stop)(ifp, 0);
2284 
2285 	/*
2286 	 * Reset the chip to a known state.
2287 	 */
2288 	SIP_DECL(reset)(sc);
2289 
2290 #if !defined(DP83820)
2291 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2292 		/*
2293 		 * DP83815 manual, page 78:
2294 		 *    4.4 Recommended Registers Configuration
2295 		 *    For optimum performance of the DP83815, version noted
2296 		 *    as DP83815CVNG (SRR = 203h), the listed register
2297 		 *    modifications must be followed in sequence...
2298 		 *
2299 		 * It's not clear if this should be 302h or 203h because that
2300 		 * chip name is listed as SRR 302h in the description of the
2301 		 * SRR register.  However, my revision 302h DP83815 on the
2302 		 * Netgear FA311 purchased in 02/2001 needs these settings
2303 		 * to avoid tons of errors in AcceptPerfectMatch (non-
2304 		 * IFF_PROMISC) mode.  I do not know if other revisions need
2305 		 * this set or not.  [briggs -- 09 March 2001]
2306 		 *
2307 		 * Note that only the low-order 12 bits of 0xe4 are documented
2308 		 * and that this sets reserved bits in that register.
2309 		 */
2310 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
2311 
2312 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
2313 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
2314 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
2315 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
2316 
2317 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
2318 	}
2319 #endif /* ! DP83820 */
2320 
2321 	/*
2322 	 * Initialize the transmit descriptor ring.
2323 	 */
2324 	for (i = 0; i < SIP_NTXDESC; i++) {
2325 		sipd = &sc->sc_txdescs[i];
2326 		memset(sipd, 0, sizeof(struct sip_desc));
2327 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2328 	}
2329 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2330 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2331 	sc->sc_txfree = SIP_NTXDESC;
2332 	sc->sc_txnext = 0;
2333 	sc->sc_txwin = 0;
2334 
2335 	/*
2336 	 * Initialize the transmit job descriptors.
2337 	 */
2338 	SIMPLEQ_INIT(&sc->sc_txfreeq);
2339 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
2340 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
2341 		txs = &sc->sc_txsoft[i];
2342 		txs->txs_mbuf = NULL;
2343 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2344 	}
2345 
2346 	/*
2347 	 * Initialize the receive descriptor and receive job
2348 	 * descriptor rings.
2349 	 */
2350 	for (i = 0; i < SIP_NRXDESC; i++) {
2351 		rxs = &sc->sc_rxsoft[i];
2352 		if (rxs->rxs_mbuf == NULL) {
2353 			if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2354 				printf("%s: unable to allocate or map rx "
2355 				    "buffer %d, error = %d\n",
2356 				    sc->sc_dev.dv_xname, i, error);
2357 				/*
2358 				 * XXX Should attempt to run with fewer receive
2359 				 * XXX buffers instead of just failing.
2360 				 */
2361 				SIP_DECL(rxdrain)(sc);
2362 				goto out;
2363 			}
2364 		} else
2365 			SIP_INIT_RXDESC(sc, i);
2366 	}
2367 	sc->sc_rxptr = 0;
2368 #ifdef DP83820
2369 	sc->sc_rxdiscard = 0;
2370 	SIP_RXCHAIN_RESET(sc);
2371 #endif /* DP83820 */
2372 
2373 	/*
2374 	 * Set the configuration register; it's already initialized
2375 	 * in sip_attach().
2376 	 */
2377 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2378 
2379 	/*
2380 	 * Initialize the prototype TXCFG register.
2381 	 */
2382 #if defined(DP83820)
2383 	sc->sc_txcfg = TXCFG_MXDMA_512;
2384 	sc->sc_rxcfg = RXCFG_MXDMA_512;
2385 #else
2386 	if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2387 	     SIP_SIS900_REV(sc, SIS_REV_960) ||
2388 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2389 	    (sc->sc_cfg & CFG_EDBMASTEN)) {
2390 		sc->sc_txcfg = TXCFG_MXDMA_64;
2391 		sc->sc_rxcfg = RXCFG_MXDMA_64;
2392 	} else {
2393 		sc->sc_txcfg = TXCFG_MXDMA_512;
2394 		sc->sc_rxcfg = RXCFG_MXDMA_512;
2395 	}
2396 #endif /* DP83820 */
2397 
2398 	sc->sc_txcfg |= TXCFG_ATP |
2399 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2400 	    sc->sc_tx_drain_thresh;
2401 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2402 
2403 	/*
2404 	 * Initialize the receive drain threshold if we have never
2405 	 * done so.
2406 	 */
2407 	if (sc->sc_rx_drain_thresh == 0) {
2408 		/*
2409 		 * XXX This value should be tuned.  This is set to the
2410 		 * maximum of 248 bytes, and we may be able to improve
2411 		 * performance by decreasing it (although we should never
2412 		 * set this value lower than 2; 14 bytes are required to
2413 		 * filter the packet).
2414 		 */
2415 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2416 	}
2417 
2418 	/*
2419 	 * Initialize the prototype RXCFG register.
2420 	 */
2421 	sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2422 #ifdef DP83820
2423 	/*
2424 	 * Accept long packets (including FCS) so we can handle
2425 	 * 802.1q-tagged frames and jumbo frames properly.
2426 	 */
2427 	if (ifp->if_mtu > ETHERMTU ||
2428 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2429 		sc->sc_rxcfg |= RXCFG_ALP;
2430 
2431 	/*
2432 	 * Checksum offloading is disabled if the user selects an MTU
2433 	 * larger than 8109.  (FreeBSD says 8152, but there is emperical
2434 	 * evidence that >8109 does not work on some boards, such as the
2435 	 * Planex GN-1000TE).
2436 	 */
2437 	if (ifp->if_mtu > 8109 &&
2438 	    (ifp->if_capenable &
2439 	     (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2440 	      IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2441 	      IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
2442 		printf("%s: Checksum offloading does not work if MTU > 8109 - "
2443 		       "disabled.\n", sc->sc_dev.dv_xname);
2444 		ifp->if_capenable &=
2445 		    ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2446 		     IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2447 		     IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
2448 		ifp->if_csum_flags_tx = 0;
2449 		ifp->if_csum_flags_rx = 0;
2450 	}
2451 #else
2452 	/*
2453 	 * Accept packets >1518 bytes (including FCS) so we can handle
2454 	 * 802.1q-tagged frames properly.
2455 	 */
2456 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2457 		sc->sc_rxcfg |= RXCFG_ALP;
2458 #endif
2459 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2460 
2461 #ifdef DP83820
2462 	/*
2463 	 * Initialize the VLAN/IP receive control register.
2464 	 * We enable checksum computation on all incoming
2465 	 * packets, and do not reject packets w/ bad checksums.
2466 	 */
2467 	reg = 0;
2468 	if (ifp->if_capenable &
2469 	    (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
2470 		reg |= VRCR_IPEN;
2471 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2472 		reg |= VRCR_VTDEN|VRCR_VTREN;
2473 	bus_space_write_4(st, sh, SIP_VRCR, reg);
2474 
2475 	/*
2476 	 * Initialize the VLAN/IP transmit control register.
2477 	 * We enable outgoing checksum computation on a
2478 	 * per-packet basis.
2479 	 */
2480 	reg = 0;
2481 	if (ifp->if_capenable &
2482 	    (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2483 		reg |= VTCR_PPCHK;
2484 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2485 		reg |= VTCR_VPPTI;
2486 	bus_space_write_4(st, sh, SIP_VTCR, reg);
2487 
2488 	/*
2489 	 * If we're using VLANs, initialize the VLAN data register.
2490 	 * To understand why we bswap the VLAN Ethertype, see section
2491 	 * 4.2.36 of the DP83820 manual.
2492 	 */
2493 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2494 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2495 #endif /* DP83820 */
2496 
2497 	/*
2498 	 * Give the transmit and receive rings to the chip.
2499 	 */
2500 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2501 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2502 
2503 	/*
2504 	 * Initialize the interrupt mask.
2505 	 */
2506 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2507 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2508 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2509 
2510 	/* Set up the receive filter. */
2511 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2512 
2513 #ifdef DP83820
2514 	/*
2515 	 * Tune sc_rx_flow_thresh.
2516 	 * XXX "More than 8KB" is too short for jumbo frames.
2517 	 * XXX TODO: Threshold value should be user-settable.
2518 	 */
2519 	sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2520 				 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2521 				 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2522 #endif
2523 
2524 	/*
2525 	 * Set the current media.  Do this after initializing the prototype
2526 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2527 	 * control.
2528 	 */
2529 	mii_mediachg(&sc->sc_mii);
2530 
2531 #ifdef DP83820
2532 	/*
2533 	 * Set the interrupt hold-off timer to 100us.
2534 	 */
2535 	bus_space_write_4(st, sh, SIP_IHR, 0x01);
2536 #endif
2537 
2538 	/*
2539 	 * Enable interrupts.
2540 	 */
2541 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
2542 
2543 	/*
2544 	 * Start the transmit and receive processes.
2545 	 */
2546 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2547 
2548 	/*
2549 	 * Start the one second MII clock.
2550 	 */
2551 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2552 
2553 	/*
2554 	 * ...all done!
2555 	 */
2556 	ifp->if_flags |= IFF_RUNNING;
2557 	ifp->if_flags &= ~IFF_OACTIVE;
2558 	sc->sc_if_flags = ifp->if_flags;
2559 
2560  out:
2561 	if (error)
2562 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2563 	return (error);
2564 }
2565 
2566 /*
2567  * sip_drain:
2568  *
2569  *	Drain the receive queue.
2570  */
2571 static void
2572 SIP_DECL(rxdrain)(struct sip_softc *sc)
2573 {
2574 	struct sip_rxsoft *rxs;
2575 	int i;
2576 
2577 	for (i = 0; i < SIP_NRXDESC; i++) {
2578 		rxs = &sc->sc_rxsoft[i];
2579 		if (rxs->rxs_mbuf != NULL) {
2580 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2581 			m_freem(rxs->rxs_mbuf);
2582 			rxs->rxs_mbuf = NULL;
2583 		}
2584 	}
2585 }
2586 
2587 /*
2588  * sip_stop:		[ ifnet interface function ]
2589  *
2590  *	Stop transmission on the interface.
2591  */
2592 static void
2593 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2594 {
2595 	struct sip_softc *sc = ifp->if_softc;
2596 	bus_space_tag_t st = sc->sc_st;
2597 	bus_space_handle_t sh = sc->sc_sh;
2598 	struct sip_txsoft *txs;
2599 	u_int32_t cmdsts = 0;		/* DEBUG */
2600 
2601 	/*
2602 	 * Stop the one second clock.
2603 	 */
2604 	callout_stop(&sc->sc_tick_ch);
2605 
2606 	/* Down the MII. */
2607 	mii_down(&sc->sc_mii);
2608 
2609 	/*
2610 	 * Disable interrupts.
2611 	 */
2612 	bus_space_write_4(st, sh, SIP_IER, 0);
2613 
2614 	/*
2615 	 * Stop receiver and transmitter.
2616 	 */
2617 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2618 
2619 	/*
2620 	 * Release any queued transmit buffers.
2621 	 */
2622 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2623 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2624 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2625 		    (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2626 		     CMDSTS_INTR) == 0)
2627 			printf("%s: sip_stop: last descriptor does not "
2628 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
2629 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2630 #ifdef DIAGNOSTIC
2631 		if (txs->txs_mbuf == NULL) {
2632 			printf("%s: dirty txsoft with no mbuf chain\n",
2633 			    sc->sc_dev.dv_xname);
2634 			panic("sip_stop");
2635 		}
2636 #endif
2637 		cmdsts |=		/* DEBUG */
2638 		    le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2639 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2640 		m_freem(txs->txs_mbuf);
2641 		txs->txs_mbuf = NULL;
2642 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2643 	}
2644 
2645 	if (disable)
2646 		SIP_DECL(rxdrain)(sc);
2647 
2648 	/*
2649 	 * Mark the interface down and cancel the watchdog timer.
2650 	 */
2651 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2652 	ifp->if_timer = 0;
2653 
2654 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2655 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2656 		printf("%s: sip_stop: no INTR bits set in dirty tx "
2657 		    "descriptors\n", sc->sc_dev.dv_xname);
2658 }
2659 
2660 /*
2661  * sip_read_eeprom:
2662  *
2663  *	Read data from the serial EEPROM.
2664  */
2665 static void
2666 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2667     u_int16_t *data)
2668 {
2669 	bus_space_tag_t st = sc->sc_st;
2670 	bus_space_handle_t sh = sc->sc_sh;
2671 	u_int16_t reg;
2672 	int i, x;
2673 
2674 	for (i = 0; i < wordcnt; i++) {
2675 		/* Send CHIP SELECT. */
2676 		reg = EROMAR_EECS;
2677 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
2678 
2679 		/* Shift in the READ opcode. */
2680 		for (x = 3; x > 0; x--) {
2681 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2682 				reg |= EROMAR_EEDI;
2683 			else
2684 				reg &= ~EROMAR_EEDI;
2685 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2686 			bus_space_write_4(st, sh, SIP_EROMAR,
2687 			    reg | EROMAR_EESK);
2688 			delay(4);
2689 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2690 			delay(4);
2691 		}
2692 
2693 		/* Shift in address. */
2694 		for (x = 6; x > 0; x--) {
2695 			if ((word + i) & (1 << (x - 1)))
2696 				reg |= EROMAR_EEDI;
2697 			else
2698 				reg &= ~EROMAR_EEDI;
2699 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2700 			bus_space_write_4(st, sh, SIP_EROMAR,
2701 			    reg | EROMAR_EESK);
2702 			delay(4);
2703 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2704 			delay(4);
2705 		}
2706 
2707 		/* Shift out data. */
2708 		reg = EROMAR_EECS;
2709 		data[i] = 0;
2710 		for (x = 16; x > 0; x--) {
2711 			bus_space_write_4(st, sh, SIP_EROMAR,
2712 			    reg | EROMAR_EESK);
2713 			delay(4);
2714 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2715 				data[i] |= (1 << (x - 1));
2716 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2717 			delay(4);
2718 		}
2719 
2720 		/* Clear CHIP SELECT. */
2721 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
2722 		delay(4);
2723 	}
2724 }
2725 
2726 /*
2727  * sip_add_rxbuf:
2728  *
2729  *	Add a receive buffer to the indicated descriptor.
2730  */
2731 static int
2732 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2733 {
2734 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2735 	struct mbuf *m;
2736 	int error;
2737 
2738 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2739 	if (m == NULL)
2740 		return (ENOBUFS);
2741 
2742 	MCLGET(m, M_DONTWAIT);
2743 	if ((m->m_flags & M_EXT) == 0) {
2744 		m_freem(m);
2745 		return (ENOBUFS);
2746 	}
2747 
2748 #if defined(DP83820)
2749 	m->m_len = SIP_RXBUF_LEN;
2750 #endif /* DP83820 */
2751 
2752 	if (rxs->rxs_mbuf != NULL)
2753 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2754 
2755 	rxs->rxs_mbuf = m;
2756 
2757 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2758 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2759 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2760 	if (error) {
2761 		printf("%s: can't load rx DMA map %d, error = %d\n",
2762 		    sc->sc_dev.dv_xname, idx, error);
2763 		panic("sip_add_rxbuf");		/* XXX */
2764 	}
2765 
2766 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2767 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2768 
2769 	SIP_INIT_RXDESC(sc, idx);
2770 
2771 	return (0);
2772 }
2773 
2774 #if !defined(DP83820)
2775 /*
2776  * sip_sis900_set_filter:
2777  *
2778  *	Set up the receive filter.
2779  */
2780 static void
2781 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2782 {
2783 	bus_space_tag_t st = sc->sc_st;
2784 	bus_space_handle_t sh = sc->sc_sh;
2785 	struct ethercom *ec = &sc->sc_ethercom;
2786 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2787 	struct ether_multi *enm;
2788 	u_int8_t *cp;
2789 	struct ether_multistep step;
2790 	u_int32_t crc, mchash[16];
2791 
2792 	/*
2793 	 * Initialize the prototype RFCR.
2794 	 */
2795 	sc->sc_rfcr = RFCR_RFEN;
2796 	if (ifp->if_flags & IFF_BROADCAST)
2797 		sc->sc_rfcr |= RFCR_AAB;
2798 	if (ifp->if_flags & IFF_PROMISC) {
2799 		sc->sc_rfcr |= RFCR_AAP;
2800 		goto allmulti;
2801 	}
2802 
2803 	/*
2804 	 * Set up the multicast address filter by passing all multicast
2805 	 * addresses through a CRC generator, and then using the high-order
2806 	 * 6 bits as an index into the 128 bit multicast hash table (only
2807 	 * the lower 16 bits of each 32 bit multicast hash register are
2808 	 * valid).  The high order bits select the register, while the
2809 	 * rest of the bits select the bit within the register.
2810 	 */
2811 
2812 	memset(mchash, 0, sizeof(mchash));
2813 
2814 	/*
2815 	 * SiS900 (at least SiS963) requires us to register the address of
2816 	 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
2817 	 */
2818 	crc = 0x0ed423f9;
2819 
2820 	if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2821 	    SIP_SIS900_REV(sc, SIS_REV_960) ||
2822 	    SIP_SIS900_REV(sc, SIS_REV_900B)) {
2823 		/* Just want the 8 most significant bits. */
2824 		crc >>= 24;
2825 	} else {
2826 		/* Just want the 7 most significant bits. */
2827 		crc >>= 25;
2828 	}
2829 
2830 	/* Set the corresponding bit in the hash table. */
2831 	mchash[crc >> 4] |= 1 << (crc & 0xf);
2832 
2833 	ETHER_FIRST_MULTI(step, ec, enm);
2834 	while (enm != NULL) {
2835 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2836 			/*
2837 			 * We must listen to a range of multicast addresses.
2838 			 * For now, just accept all multicasts, rather than
2839 			 * trying to set only those filter bits needed to match
2840 			 * the range.  (At this time, the only use of address
2841 			 * ranges is for IP multicast routing, for which the
2842 			 * range is big enough to require all bits set.)
2843 			 */
2844 			goto allmulti;
2845 		}
2846 
2847 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2848 
2849 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2850 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
2851 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
2852 			/* Just want the 8 most significant bits. */
2853 			crc >>= 24;
2854 		} else {
2855 			/* Just want the 7 most significant bits. */
2856 			crc >>= 25;
2857 		}
2858 
2859 		/* Set the corresponding bit in the hash table. */
2860 		mchash[crc >> 4] |= 1 << (crc & 0xf);
2861 
2862 		ETHER_NEXT_MULTI(step, enm);
2863 	}
2864 
2865 	ifp->if_flags &= ~IFF_ALLMULTI;
2866 	goto setit;
2867 
2868  allmulti:
2869 	ifp->if_flags |= IFF_ALLMULTI;
2870 	sc->sc_rfcr |= RFCR_AAM;
2871 
2872  setit:
2873 #define	FILTER_EMIT(addr, data)						\
2874 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
2875 	delay(1);							\
2876 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
2877 	delay(1)
2878 
2879 	/*
2880 	 * Disable receive filter, and program the node address.
2881 	 */
2882 	cp = LLADDR(ifp->if_sadl);
2883 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2884 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2885 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2886 
2887 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2888 		/*
2889 		 * Program the multicast hash table.
2890 		 */
2891 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2892 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2893 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2894 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2895 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2896 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2897 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2898 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2899 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2900 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
2901 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
2902 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2903 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2904 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2905 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2906 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2907 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2908 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2909 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2910 		}
2911 	}
2912 #undef FILTER_EMIT
2913 
2914 	/*
2915 	 * Re-enable the receiver filter.
2916 	 */
2917 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2918 }
2919 #endif /* ! DP83820 */
2920 
2921 /*
2922  * sip_dp83815_set_filter:
2923  *
2924  *	Set up the receive filter.
2925  */
2926 static void
2927 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2928 {
2929 	bus_space_tag_t st = sc->sc_st;
2930 	bus_space_handle_t sh = sc->sc_sh;
2931 	struct ethercom *ec = &sc->sc_ethercom;
2932 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2933 	struct ether_multi *enm;
2934 	u_int8_t *cp;
2935 	struct ether_multistep step;
2936 	u_int32_t crc, hash, slot, bit;
2937 #ifdef DP83820
2938 #define	MCHASH_NWORDS	128
2939 #else
2940 #define	MCHASH_NWORDS	32
2941 #endif /* DP83820 */
2942 	u_int16_t mchash[MCHASH_NWORDS];
2943 	int i;
2944 
2945 	/*
2946 	 * Initialize the prototype RFCR.
2947 	 * Enable the receive filter, and accept on
2948 	 *    Perfect (destination address) Match
2949 	 * If IFF_BROADCAST, also accept all broadcast packets.
2950 	 * If IFF_PROMISC, accept all unicast packets (and later, set
2951 	 *    IFF_ALLMULTI and accept all multicast, too).
2952 	 */
2953 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2954 	if (ifp->if_flags & IFF_BROADCAST)
2955 		sc->sc_rfcr |= RFCR_AAB;
2956 	if (ifp->if_flags & IFF_PROMISC) {
2957 		sc->sc_rfcr |= RFCR_AAP;
2958 		goto allmulti;
2959 	}
2960 
2961 #ifdef DP83820
2962 	/*
2963 	 * Set up the DP83820 multicast address filter by passing all multicast
2964 	 * addresses through a CRC generator, and then using the high-order
2965 	 * 11 bits as an index into the 2048 bit multicast hash table.  The
2966 	 * high-order 7 bits select the slot, while the low-order 4 bits
2967 	 * select the bit within the slot.  Note that only the low 16-bits
2968 	 * of each filter word are used, and there are 128 filter words.
2969 	 */
2970 #else
2971 	/*
2972 	 * Set up the DP83815 multicast address filter by passing all multicast
2973 	 * addresses through a CRC generator, and then using the high-order
2974 	 * 9 bits as an index into the 512 bit multicast hash table.  The
2975 	 * high-order 5 bits select the slot, while the low-order 4 bits
2976 	 * select the bit within the slot.  Note that only the low 16-bits
2977 	 * of each filter word are used, and there are 32 filter words.
2978 	 */
2979 #endif /* DP83820 */
2980 
2981 	memset(mchash, 0, sizeof(mchash));
2982 
2983 	ifp->if_flags &= ~IFF_ALLMULTI;
2984 	ETHER_FIRST_MULTI(step, ec, enm);
2985 	if (enm == NULL)
2986 		goto setit;
2987 	while (enm != NULL) {
2988 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2989 			/*
2990 			 * We must listen to a range of multicast addresses.
2991 			 * For now, just accept all multicasts, rather than
2992 			 * trying to set only those filter bits needed to match
2993 			 * the range.  (At this time, the only use of address
2994 			 * ranges is for IP multicast routing, for which the
2995 			 * range is big enough to require all bits set.)
2996 			 */
2997 			goto allmulti;
2998 		}
2999 
3000 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3001 
3002 #ifdef DP83820
3003 		/* Just want the 11 most significant bits. */
3004 		hash = crc >> 21;
3005 #else
3006 		/* Just want the 9 most significant bits. */
3007 		hash = crc >> 23;
3008 #endif /* DP83820 */
3009 
3010 		slot = hash >> 4;
3011 		bit = hash & 0xf;
3012 
3013 		/* Set the corresponding bit in the hash table. */
3014 		mchash[slot] |= 1 << bit;
3015 
3016 		ETHER_NEXT_MULTI(step, enm);
3017 	}
3018 	sc->sc_rfcr |= RFCR_MHEN;
3019 	goto setit;
3020 
3021  allmulti:
3022 	ifp->if_flags |= IFF_ALLMULTI;
3023 	sc->sc_rfcr |= RFCR_AAM;
3024 
3025  setit:
3026 #define	FILTER_EMIT(addr, data)						\
3027 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
3028 	delay(1);							\
3029 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
3030 	delay(1)
3031 
3032 	/*
3033 	 * Disable receive filter, and program the node address.
3034 	 */
3035 	cp = LLADDR(ifp->if_sadl);
3036 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3037 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3038 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3039 
3040 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3041 		/*
3042 		 * Program the multicast hash table.
3043 		 */
3044 		for (i = 0; i < MCHASH_NWORDS; i++) {
3045 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
3046 			    mchash[i]);
3047 		}
3048 	}
3049 #undef FILTER_EMIT
3050 #undef MCHASH_NWORDS
3051 
3052 	/*
3053 	 * Re-enable the receiver filter.
3054 	 */
3055 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3056 }
3057 
3058 #if defined(DP83820)
3059 /*
3060  * sip_dp83820_mii_readreg:	[mii interface function]
3061  *
3062  *	Read a PHY register on the MII of the DP83820.
3063  */
3064 static int
3065 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
3066 {
3067 	struct sip_softc *sc = (void *) self;
3068 
3069 	if (sc->sc_cfg & CFG_TBI_EN) {
3070 		bus_addr_t tbireg;
3071 		int rv;
3072 
3073 		if (phy != 0)
3074 			return (0);
3075 
3076 		switch (reg) {
3077 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3078 		case MII_BMSR:		tbireg = SIP_TBISR; break;
3079 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3080 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3081 		case MII_ANER:		tbireg = SIP_TANER; break;
3082 		case MII_EXTSR:
3083 			/*
3084 			 * Don't even bother reading the TESR register.
3085 			 * The manual documents that the device has
3086 			 * 1000baseX full/half capability, but the
3087 			 * register itself seems read back 0 on some
3088 			 * boards.  Just hard-code the result.
3089 			 */
3090 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3091 
3092 		default:
3093 			return (0);
3094 		}
3095 
3096 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3097 		if (tbireg == SIP_TBISR) {
3098 			/* LINK and ACOMP are switched! */
3099 			int val = rv;
3100 
3101 			rv = 0;
3102 			if (val & TBISR_MR_LINK_STATUS)
3103 				rv |= BMSR_LINK;
3104 			if (val & TBISR_MR_AN_COMPLETE)
3105 				rv |= BMSR_ACOMP;
3106 
3107 			/*
3108 			 * The manual claims this register reads back 0
3109 			 * on hard and soft reset.  But we want to let
3110 			 * the gentbi driver know that we support auto-
3111 			 * negotiation, so hard-code this bit in the
3112 			 * result.
3113 			 */
3114 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
3115 		}
3116 
3117 		return (rv);
3118 	}
3119 
3120 	return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
3121 	    phy, reg));
3122 }
3123 
3124 /*
3125  * sip_dp83820_mii_writereg:	[mii interface function]
3126  *
3127  *	Write a PHY register on the MII of the DP83820.
3128  */
3129 static void
3130 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
3131 {
3132 	struct sip_softc *sc = (void *) self;
3133 
3134 	if (sc->sc_cfg & CFG_TBI_EN) {
3135 		bus_addr_t tbireg;
3136 
3137 		if (phy != 0)
3138 			return;
3139 
3140 		switch (reg) {
3141 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3142 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3143 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3144 		default:
3145 			return;
3146 		}
3147 
3148 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3149 		return;
3150 	}
3151 
3152 	mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
3153 	    phy, reg, val);
3154 }
3155 
3156 /*
3157  * sip_dp83820_mii_statchg:	[mii interface function]
3158  *
3159  *	Callback from MII layer when media changes.
3160  */
3161 static void
3162 SIP_DECL(dp83820_mii_statchg)(struct device *self)
3163 {
3164 	struct sip_softc *sc = (struct sip_softc *) self;
3165 	struct mii_data *mii = &sc->sc_mii;
3166 	u_int32_t cfg, pcr;
3167 
3168 	/*
3169 	 * Get flow control negotiation result.
3170 	 */
3171 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3172 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3173 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3174 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3175 	}
3176 
3177 	/*
3178 	 * Update TXCFG for full-duplex operation.
3179 	 */
3180 	if ((mii->mii_media_active & IFM_FDX) != 0)
3181 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3182 	else
3183 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3184 
3185 	/*
3186 	 * Update RXCFG for full-duplex or loopback.
3187 	 */
3188 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3189 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3190 		sc->sc_rxcfg |= RXCFG_ATX;
3191 	else
3192 		sc->sc_rxcfg &= ~RXCFG_ATX;
3193 
3194 	/*
3195 	 * Update CFG for MII/GMII.
3196 	 */
3197 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3198 		cfg = sc->sc_cfg | CFG_MODE_1000;
3199 	else
3200 		cfg = sc->sc_cfg;
3201 
3202 	/*
3203 	 * 802.3x flow control.
3204 	 */
3205 	pcr = 0;
3206 	if (sc->sc_flowflags & IFM_FLOW) {
3207 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3208 			pcr |= sc->sc_rx_flow_thresh;
3209 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3210 			pcr |= PCR_PSEN | PCR_PS_MCAST;
3211 	}
3212 
3213 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3214 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3215 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3216 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3217 }
3218 #endif /* ! DP83820 */
3219 
3220 /*
3221  * sip_mii_bitbang_read: [mii bit-bang interface function]
3222  *
3223  *	Read the MII serial port for the MII bit-bang module.
3224  */
3225 static u_int32_t
3226 SIP_DECL(mii_bitbang_read)(struct device *self)
3227 {
3228 	struct sip_softc *sc = (void *) self;
3229 
3230 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3231 }
3232 
3233 /*
3234  * sip_mii_bitbang_write: [mii big-bang interface function]
3235  *
3236  *	Write the MII serial port for the MII bit-bang module.
3237  */
3238 static void
3239 SIP_DECL(mii_bitbang_write)(struct device *self, u_int32_t val)
3240 {
3241 	struct sip_softc *sc = (void *) self;
3242 
3243 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3244 }
3245 
3246 #ifndef DP83820
3247 /*
3248  * sip_sis900_mii_readreg:	[mii interface function]
3249  *
3250  *	Read a PHY register on the MII.
3251  */
3252 static int
3253 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
3254 {
3255 	struct sip_softc *sc = (struct sip_softc *) self;
3256 	u_int32_t enphy;
3257 
3258 	/*
3259 	 * The PHY of recent SiS chipsets is accessed through bitbang
3260 	 * operations.
3261 	 */
3262 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3263 		return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
3264 		    phy, reg));
3265 
3266 #ifndef SIS900_MII_RESTRICT
3267 	/*
3268 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3269 	 * MII address 0.
3270 	 */
3271 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3272 		return (0);
3273 #endif
3274 
3275 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3276 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3277 	    ENPHY_RWCMD | ENPHY_ACCESS);
3278 	do {
3279 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3280 	} while (enphy & ENPHY_ACCESS);
3281 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3282 }
3283 
3284 /*
3285  * sip_sis900_mii_writereg:	[mii interface function]
3286  *
3287  *	Write a PHY register on the MII.
3288  */
3289 static void
3290 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
3291 {
3292 	struct sip_softc *sc = (struct sip_softc *) self;
3293 	u_int32_t enphy;
3294 
3295 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3296 		mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
3297 		    phy, reg, val);
3298 		return;
3299 	}
3300 
3301 #ifndef SIS900_MII_RESTRICT
3302 	/*
3303 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3304 	 * MII address 0.
3305 	 */
3306 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3307 		return;
3308 #endif
3309 
3310 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3311 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3312 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3313 	do {
3314 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3315 	} while (enphy & ENPHY_ACCESS);
3316 }
3317 
3318 /*
3319  * sip_sis900_mii_statchg:	[mii interface function]
3320  *
3321  *	Callback from MII layer when media changes.
3322  */
3323 static void
3324 SIP_DECL(sis900_mii_statchg)(struct device *self)
3325 {
3326 	struct sip_softc *sc = (struct sip_softc *) self;
3327 	struct mii_data *mii = &sc->sc_mii;
3328 	u_int32_t flowctl;
3329 
3330 	/*
3331 	 * Get flow control negotiation result.
3332 	 */
3333 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3334 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3335 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3336 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3337 	}
3338 
3339 	/*
3340 	 * Update TXCFG for full-duplex operation.
3341 	 */
3342 	if ((mii->mii_media_active & IFM_FDX) != 0)
3343 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3344 	else
3345 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3346 
3347 	/*
3348 	 * Update RXCFG for full-duplex or loopback.
3349 	 */
3350 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3351 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3352 		sc->sc_rxcfg |= RXCFG_ATX;
3353 	else
3354 		sc->sc_rxcfg &= ~RXCFG_ATX;
3355 
3356 	/*
3357 	 * Update IMR for use of 802.3x flow control.
3358 	 */
3359 	if (sc->sc_flowflags & IFM_FLOW) {
3360 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3361 		flowctl = FLOWCTL_FLOWEN;
3362 	} else {
3363 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3364 		flowctl = 0;
3365 	}
3366 
3367 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3368 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3369 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3370 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3371 }
3372 
3373 /*
3374  * sip_dp83815_mii_readreg:	[mii interface function]
3375  *
3376  *	Read a PHY register on the MII.
3377  */
3378 static int
3379 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
3380 {
3381 	struct sip_softc *sc = (struct sip_softc *) self;
3382 	u_int32_t val;
3383 
3384 	/*
3385 	 * The DP83815 only has an internal PHY.  Only allow
3386 	 * MII address 0.
3387 	 */
3388 	if (phy != 0)
3389 		return (0);
3390 
3391 	/*
3392 	 * Apparently, after a reset, the DP83815 can take a while
3393 	 * to respond.  During this recovery period, the BMSR returns
3394 	 * a value of 0.  Catch this -- it's not supposed to happen
3395 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3396 	 * PHY to come back to life.
3397 	 *
3398 	 * This works out because the BMSR is the first register
3399 	 * read during the PHY probe process.
3400 	 */
3401 	do {
3402 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3403 	} while (reg == MII_BMSR && val == 0);
3404 
3405 	return (val & 0xffff);
3406 }
3407 
3408 /*
3409  * sip_dp83815_mii_writereg:	[mii interface function]
3410  *
3411  *	Write a PHY register to the MII.
3412  */
3413 static void
3414 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
3415 {
3416 	struct sip_softc *sc = (struct sip_softc *) self;
3417 
3418 	/*
3419 	 * The DP83815 only has an internal PHY.  Only allow
3420 	 * MII address 0.
3421 	 */
3422 	if (phy != 0)
3423 		return;
3424 
3425 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3426 }
3427 
3428 /*
3429  * sip_dp83815_mii_statchg:	[mii interface function]
3430  *
3431  *	Callback from MII layer when media changes.
3432  */
3433 static void
3434 SIP_DECL(dp83815_mii_statchg)(struct device *self)
3435 {
3436 	struct sip_softc *sc = (struct sip_softc *) self;
3437 
3438 	/*
3439 	 * Update TXCFG for full-duplex operation.
3440 	 */
3441 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3442 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3443 	else
3444 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3445 
3446 	/*
3447 	 * Update RXCFG for full-duplex or loopback.
3448 	 */
3449 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3450 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3451 		sc->sc_rxcfg |= RXCFG_ATX;
3452 	else
3453 		sc->sc_rxcfg &= ~RXCFG_ATX;
3454 
3455 	/*
3456 	 * XXX 802.3x flow control.
3457 	 */
3458 
3459 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3460 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3461 
3462 	/*
3463 	 * Some DP83815s experience problems when used with short
3464 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
3465 	 * sequence adjusts the DSP's signal attenuation to fix the
3466 	 * problem.
3467 	 */
3468 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3469 		uint32_t reg;
3470 
3471 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3472 
3473 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3474 		reg &= 0x0fff;
3475 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3476 		delay(100);
3477 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3478 		reg &= 0x00ff;
3479 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3480 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3481 			    0x00e8);
3482 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3483 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3484 			    reg | 0x20);
3485 		}
3486 
3487 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3488 	}
3489 }
3490 #endif /* DP83820 */
3491 
3492 #if defined(DP83820)
3493 static void
3494 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
3495     const struct pci_attach_args *pa, u_int8_t *enaddr)
3496 {
3497 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3498 	u_int8_t cksum, *e, match;
3499 	int i;
3500 
3501 	/*
3502 	 * EEPROM data format for the DP83820 can be found in
3503 	 * the DP83820 manual, section 4.2.4.
3504 	 */
3505 
3506 	SIP_DECL(read_eeprom)(sc, 0,
3507 	    sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
3508 
3509 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3510 	match = ~(match - 1);
3511 
3512 	cksum = 0x55;
3513 	e = (u_int8_t *) eeprom_data;
3514 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3515 		cksum += *e++;
3516 
3517 	if (cksum != match)
3518 		printf("%s: Checksum (%x) mismatch (%x)",
3519 		    sc->sc_dev.dv_xname, cksum, match);
3520 
3521 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3522 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3523 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3524 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3525 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3526 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3527 }
3528 #else /* ! DP83820 */
3529 static void
3530 SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc)
3531 {
3532 	int i;
3533 
3534 	/*
3535 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
3536 	 * a reason, but I don't know it.
3537 	 */
3538 	for (i = 0; i < 10; i++)
3539 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3540 }
3541 
3542 static void
3543 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
3544     const struct pci_attach_args *pa, u_int8_t *enaddr)
3545 {
3546 	u_int16_t myea[ETHER_ADDR_LEN / 2];
3547 
3548 	switch (sc->sc_rev) {
3549 	case SIS_REV_630S:
3550 	case SIS_REV_630E:
3551 	case SIS_REV_630EA1:
3552 	case SIS_REV_630ET:
3553 	case SIS_REV_635:
3554 		/*
3555 		 * The MAC address for the on-board Ethernet of
3556 		 * the SiS 630 chipset is in the NVRAM.  Kick
3557 		 * the chip into re-loading it from NVRAM, and
3558 		 * read the MAC address out of the filter registers.
3559 		 */
3560 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3561 
3562 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3563 		    RFCR_RFADDR_NODE0);
3564 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3565 		    0xffff;
3566 
3567 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3568 		    RFCR_RFADDR_NODE2);
3569 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3570 		    0xffff;
3571 
3572 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3573 		    RFCR_RFADDR_NODE4);
3574 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3575 		    0xffff;
3576 		break;
3577 
3578 	case SIS_REV_960:
3579 		{
3580 #define	SIS_SET_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3581 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3582 
3583 #define	SIS_CLR_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3584 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3585 
3586 			int waittime, i;
3587 
3588 			/* Allow to read EEPROM from LAN. It is shared
3589 			 * between a 1394 controller and the NIC and each
3590 			 * time we access it, we need to set SIS_EECMD_REQ.
3591 			 */
3592 			SIS_SET_EROMAR(sc, EROMAR_REQ);
3593 
3594 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3595 				/* Force EEPROM to idle state. */
3596 
3597 				/*
3598 				 * XXX-cube This is ugly.  I'll look for docs about it.
3599 				 */
3600 				SIS_SET_EROMAR(sc, EROMAR_EECS);
3601 				SIP_DECL(sis900_eeprom_delay)(sc);
3602 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3603 					SIS_SET_EROMAR(sc, EROMAR_EESK);
3604 					SIP_DECL(sis900_eeprom_delay)(sc);
3605 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
3606 					SIP_DECL(sis900_eeprom_delay)(sc);
3607 				}
3608 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
3609 				SIP_DECL(sis900_eeprom_delay)(sc);
3610 				bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3611 
3612 				if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3613 					SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3614 					    sizeof(myea) / sizeof(myea[0]), myea);
3615 					break;
3616 				}
3617 				DELAY(1);
3618 			}
3619 
3620 			/*
3621 			 * Set SIS_EECTL_CLK to high, so a other master
3622 			 * can operate on the i2c bus.
3623 			 */
3624 			SIS_SET_EROMAR(sc, EROMAR_EESK);
3625 
3626 			/* Refuse EEPROM access by LAN */
3627 			SIS_SET_EROMAR(sc, EROMAR_DONE);
3628 		} break;
3629 
3630 	default:
3631 		SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3632 		    sizeof(myea) / sizeof(myea[0]), myea);
3633 	}
3634 
3635 	enaddr[0] = myea[0] & 0xff;
3636 	enaddr[1] = myea[0] >> 8;
3637 	enaddr[2] = myea[1] & 0xff;
3638 	enaddr[3] = myea[1] >> 8;
3639 	enaddr[4] = myea[2] & 0xff;
3640 	enaddr[5] = myea[2] >> 8;
3641 }
3642 
3643 /* Table and macro to bit-reverse an octet. */
3644 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3645 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3646 
3647 static void
3648 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3649     const struct pci_attach_args *pa, u_int8_t *enaddr)
3650 {
3651 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3652 	u_int8_t cksum, *e, match;
3653 	int i;
3654 
3655 	SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3656 	    sizeof(eeprom_data[0]), eeprom_data);
3657 
3658 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3659 	match = ~(match - 1);
3660 
3661 	cksum = 0x55;
3662 	e = (u_int8_t *) eeprom_data;
3663 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3664 		cksum += *e++;
3665 	}
3666 	if (cksum != match) {
3667 		printf("%s: Checksum (%x) mismatch (%x)",
3668 		    sc->sc_dev.dv_xname, cksum, match);
3669 	}
3670 
3671 	/*
3672 	 * Unrolled because it makes slightly more sense this way.
3673 	 * The DP83815 stores the MAC address in bit 0 of word 6
3674 	 * through bit 15 of word 8.
3675 	 */
3676 	ea = &eeprom_data[6];
3677 	enaddr[0] = ((*ea & 0x1) << 7);
3678 	ea++;
3679 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
3680 	enaddr[1] = ((*ea & 0x1FE) >> 1);
3681 	enaddr[2] = ((*ea & 0x1) << 7);
3682 	ea++;
3683 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
3684 	enaddr[3] = ((*ea & 0x1FE) >> 1);
3685 	enaddr[4] = ((*ea & 0x1) << 7);
3686 	ea++;
3687 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
3688 	enaddr[5] = ((*ea & 0x1FE) >> 1);
3689 
3690 	/*
3691 	 * In case that's not weird enough, we also need to reverse
3692 	 * the bits in each byte.  This all actually makes more sense
3693 	 * if you think about the EEPROM storage as an array of bits
3694 	 * being shifted into bytes, but that's not how we're looking
3695 	 * at it here...
3696 	 */
3697 	for (i = 0; i < 6 ;i++)
3698 		enaddr[i] = bbr(enaddr[i]);
3699 }
3700 #endif /* DP83820 */
3701 
3702 /*
3703  * sip_mediastatus:	[ifmedia interface function]
3704  *
3705  *	Get the current interface media status.
3706  */
3707 static void
3708 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3709 {
3710 	struct sip_softc *sc = ifp->if_softc;
3711 
3712 	mii_pollstat(&sc->sc_mii);
3713 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
3714 	ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3715 			   sc->sc_flowflags;
3716 }
3717 
3718 /*
3719  * sip_mediachange:	[ifmedia interface function]
3720  *
3721  *	Set hardware to newly-selected media.
3722  */
3723 static int
3724 SIP_DECL(mediachange)(struct ifnet *ifp)
3725 {
3726 	struct sip_softc *sc = ifp->if_softc;
3727 
3728 	if (ifp->if_flags & IFF_UP)
3729 		mii_mediachg(&sc->sc_mii);
3730 	return (0);
3731 }
3732