xref: /netbsd-src/sys/dev/pci/if_sip.c (revision de1dfb1250df962f1ff3a011772cf58e605aed11)
1 /*	$NetBSD: if_sip.c,v 1.95 2004/08/21 22:48:18 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*-
40  * Copyright (c) 1999 Network Computer, Inc.
41  * All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of Network Computer, Inc. nor the names of its
52  *    contributors may be used to endorse or promote products derived
53  *    from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65  * POSSIBILITY OF SUCH DAMAGE.
66  */
67 
68 /*
69  * Device driver for the Silicon Integrated Systems SiS 900,
70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72  * controllers.
73  *
74  * Originally written to support the SiS 900 by Jason R. Thorpe for
75  * Network Computer, Inc.
76  *
77  * TODO:
78  *
79  *	- Reduce the Rx interrupt load.
80  */
81 
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.95 2004/08/21 22:48:18 thorpej Exp $");
84 
85 #include "bpfilter.h"
86 #include "rnd.h"
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99 
100 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
101 
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105 
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110 
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114 
115 #include <machine/bus.h>
116 #include <machine/intr.h>
117 #include <machine/endian.h>
118 
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/mii_bitbang.h>
122 
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 #include <dev/pci/pcidevs.h>
126 
127 #include <dev/pci/if_sipreg.h>
128 
129 #ifdef DP83820		/* DP83820 Gigabit Ethernet */
130 #define	SIP_DECL(x)	__CONCAT(gsip_,x)
131 #else			/* SiS900 and DP83815 */
132 #define	SIP_DECL(x)	__CONCAT(sip_,x)
133 #endif
134 
135 #define	SIP_STR(x)	__STRING(SIP_DECL(x))
136 
137 /*
138  * Transmit descriptor list size.  This is arbitrary, but allocate
139  * enough descriptors for 128 pending transmissions, and 8 segments
140  * per packet (64 for DP83820 for jumbo frames).
141  *
142  * This MUST work out to a power of 2.
143  */
144 #ifdef DP83820
145 #define	SIP_NTXSEGS		64
146 #define	SIP_NTXSEGS_ALLOC	16
147 #else
148 #define	SIP_NTXSEGS		16
149 #define	SIP_NTXSEGS_ALLOC	8
150 #endif
151 
152 #define	SIP_TXQUEUELEN		256
153 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
154 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
155 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
156 
157 #if defined(DP83820)
158 #define	TX_DMAMAP_SIZE		ETHER_MAX_LEN_JUMBO
159 #else
160 #define	TX_DMAMAP_SIZE		MCLBYTES
161 #endif
162 
163 /*
164  * Receive descriptor list size.  We have one Rx buffer per incoming
165  * packet, so this logic is a little simpler.
166  *
167  * Actually, on the DP83820, we allow the packet to consume more than
168  * one buffer, in order to support jumbo Ethernet frames.  In that
169  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
170  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
171  * so we'd better be quick about handling receive interrupts.
172  */
173 #if defined(DP83820)
174 #define	SIP_NRXDESC		256
175 #else
176 #define	SIP_NRXDESC		128
177 #endif /* DP83820 */
178 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
179 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
180 
181 /*
182  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
183  * a single clump that maps to a single DMA segment to make several things
184  * easier.
185  */
186 struct sip_control_data {
187 	/*
188 	 * The transmit descriptors.
189 	 */
190 	struct sip_desc scd_txdescs[SIP_NTXDESC];
191 
192 	/*
193 	 * The receive descriptors.
194 	 */
195 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
196 };
197 
198 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
199 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
200 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
201 
202 /*
203  * Software state for transmit jobs.
204  */
205 struct sip_txsoft {
206 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
207 	bus_dmamap_t txs_dmamap;	/* our DMA map */
208 	int txs_firstdesc;		/* first descriptor in packet */
209 	int txs_lastdesc;		/* last descriptor in packet */
210 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
211 };
212 
213 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
214 
215 /*
216  * Software state for receive jobs.
217  */
218 struct sip_rxsoft {
219 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
220 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
221 };
222 
223 /*
224  * Software state per device.
225  */
226 struct sip_softc {
227 	struct device sc_dev;		/* generic device information */
228 	bus_space_tag_t sc_st;		/* bus space tag */
229 	bus_space_handle_t sc_sh;	/* bus space handle */
230 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
231 	struct ethercom sc_ethercom;	/* ethernet common data */
232 	void *sc_sdhook;		/* shutdown hook */
233 
234 	const struct sip_product *sc_model; /* which model are we? */
235 	int sc_rev;			/* chip revision */
236 
237 	void *sc_ih;			/* interrupt cookie */
238 
239 	struct mii_data sc_mii;		/* MII/media information */
240 
241 	struct callout sc_tick_ch;	/* tick callout */
242 
243 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
244 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
245 
246 	/*
247 	 * Software state for transmit and receive descriptors.
248 	 */
249 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
250 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
251 
252 	/*
253 	 * Control data structures.
254 	 */
255 	struct sip_control_data *sc_control_data;
256 #define	sc_txdescs	sc_control_data->scd_txdescs
257 #define	sc_rxdescs	sc_control_data->scd_rxdescs
258 
259 #ifdef SIP_EVENT_COUNTERS
260 	/*
261 	 * Event counters.
262 	 */
263 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
264 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
265 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
266 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
267 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
268 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
269 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
270 	struct evcnt sc_ev_rxpause;	/* PAUSE received */
271 #ifdef DP83820
272 	struct evcnt sc_ev_txpause;	/* PAUSE transmitted */
273 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
274 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
275 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
276 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
277 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
278 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
279 #endif /* DP83820 */
280 #endif /* SIP_EVENT_COUNTERS */
281 
282 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
283 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
284 	u_int32_t sc_imr;		/* prototype IMR register */
285 	u_int32_t sc_rfcr;		/* prototype RFCR register */
286 
287 	u_int32_t sc_cfg;		/* prototype CFG register */
288 
289 #ifdef DP83820
290 	u_int32_t sc_gpior;		/* prototype GPIOR register */
291 #endif /* DP83820 */
292 
293 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
294 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
295 
296 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
297 
298 	int	sc_flowflags;		/* 802.3x flow control flags */
299 #ifdef DP83820
300 	int	sc_rx_flow_thresh;	/* Rx FIFO threshold for flow control */
301 #else
302 	int	sc_paused;		/* paused indication */
303 #endif
304 
305 	int	sc_txfree;		/* number of free Tx descriptors */
306 	int	sc_txnext;		/* next ready Tx descriptor */
307 	int	sc_txwin;		/* Tx descriptors since last intr */
308 
309 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
310 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
311 
312 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
313 #if defined(DP83820)
314 	int	sc_rxdiscard;
315 	int	sc_rxlen;
316 	struct mbuf *sc_rxhead;
317 	struct mbuf *sc_rxtail;
318 	struct mbuf **sc_rxtailp;
319 #endif /* DP83820 */
320 
321 #if NRND > 0
322 	rndsource_element_t rnd_source;	/* random source */
323 #endif
324 };
325 
326 #ifdef DP83820
327 #define	SIP_RXCHAIN_RESET(sc)						\
328 do {									\
329 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
330 	*(sc)->sc_rxtailp = NULL;					\
331 	(sc)->sc_rxlen = 0;						\
332 } while (/*CONSTCOND*/0)
333 
334 #define	SIP_RXCHAIN_LINK(sc, m)						\
335 do {									\
336 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
337 	(sc)->sc_rxtailp = &(m)->m_next;				\
338 } while (/*CONSTCOND*/0)
339 #endif /* DP83820 */
340 
341 #ifdef SIP_EVENT_COUNTERS
342 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
343 #else
344 #define	SIP_EVCNT_INCR(ev)	/* nothing */
345 #endif
346 
347 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
348 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
349 
350 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
351 do {									\
352 	int __x, __n;							\
353 									\
354 	__x = (x);							\
355 	__n = (n);							\
356 									\
357 	/* If it will wrap around, sync to the end of the ring. */	\
358 	if ((__x + __n) > SIP_NTXDESC) {				\
359 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
360 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
361 		    (SIP_NTXDESC - __x), (ops));			\
362 		__n -= (SIP_NTXDESC - __x);				\
363 		__x = 0;						\
364 	}								\
365 									\
366 	/* Now sync whatever is left. */				\
367 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
368 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
369 } while (0)
370 
371 #define	SIP_CDRXSYNC(sc, x, ops)					\
372 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
373 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
374 
375 #ifdef DP83820
376 #define	SIP_INIT_RXDESC_EXTSTS	__sipd->sipd_extsts = 0;
377 #define	SIP_RXBUF_LEN		(MCLBYTES - 8)
378 #else
379 #define	SIP_INIT_RXDESC_EXTSTS	/* nothing */
380 #define	SIP_RXBUF_LEN		(MCLBYTES - 1)	/* field width */
381 #endif
382 #define	SIP_INIT_RXDESC(sc, x)						\
383 do {									\
384 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
385 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
386 									\
387 	__sipd->sipd_link =						\
388 	    htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x))));		\
389 	__sipd->sipd_bufptr =						\
390 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr);		\
391 	__sipd->sipd_cmdsts = htole32(CMDSTS_INTR |			\
392 	    (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK));			\
393 	SIP_INIT_RXDESC_EXTSTS						\
394 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
395 } while (0)
396 
397 #define	SIP_CHIP_VERS(sc, v, p, r)					\
398 	((sc)->sc_model->sip_vendor == (v) &&				\
399 	 (sc)->sc_model->sip_product == (p) &&				\
400 	 (sc)->sc_rev == (r))
401 
402 #define	SIP_CHIP_MODEL(sc, v, p)					\
403 	((sc)->sc_model->sip_vendor == (v) &&				\
404 	 (sc)->sc_model->sip_product == (p))
405 
406 #if !defined(DP83820)
407 #define	SIP_SIS900_REV(sc, rev)						\
408 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
409 #endif
410 
411 #define SIP_TIMEOUT 1000
412 
413 static void	SIP_DECL(start)(struct ifnet *);
414 static void	SIP_DECL(watchdog)(struct ifnet *);
415 static int	SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
416 static int	SIP_DECL(init)(struct ifnet *);
417 static void	SIP_DECL(stop)(struct ifnet *, int);
418 
419 static void	SIP_DECL(shutdown)(void *);
420 
421 static void	SIP_DECL(reset)(struct sip_softc *);
422 static void	SIP_DECL(rxdrain)(struct sip_softc *);
423 static int	SIP_DECL(add_rxbuf)(struct sip_softc *, int);
424 static void	SIP_DECL(read_eeprom)(struct sip_softc *, int, int,
425 				      u_int16_t *);
426 static void	SIP_DECL(tick)(void *);
427 
428 #if !defined(DP83820)
429 static void	SIP_DECL(sis900_set_filter)(struct sip_softc *);
430 #endif /* ! DP83820 */
431 static void	SIP_DECL(dp83815_set_filter)(struct sip_softc *);
432 
433 #if defined(DP83820)
434 static void	SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
435 		    const struct pci_attach_args *, u_int8_t *);
436 #else
437 static void	SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc);
438 static void	SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
439 		    const struct pci_attach_args *, u_int8_t *);
440 static void	SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
441 		    const struct pci_attach_args *, u_int8_t *);
442 #endif /* DP83820 */
443 
444 static int	SIP_DECL(intr)(void *);
445 static void	SIP_DECL(txintr)(struct sip_softc *);
446 static void	SIP_DECL(rxintr)(struct sip_softc *);
447 
448 #if defined(DP83820)
449 static int	SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
450 static void	SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
451 static void	SIP_DECL(dp83820_mii_statchg)(struct device *);
452 #else
453 static int	SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
454 static void	SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
455 static void	SIP_DECL(sis900_mii_statchg)(struct device *);
456 
457 static int	SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
458 static void	SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
459 static void	SIP_DECL(dp83815_mii_statchg)(struct device *);
460 #endif /* DP83820 */
461 
462 static int	SIP_DECL(mediachange)(struct ifnet *);
463 static void	SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
464 
465 static int	SIP_DECL(match)(struct device *, struct cfdata *, void *);
466 static void	SIP_DECL(attach)(struct device *, struct device *, void *);
467 
468 int	SIP_DECL(copy_small) = 0;
469 
470 #ifdef DP83820
471 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
472     gsip_match, gsip_attach, NULL, NULL);
473 #else
474 CFATTACH_DECL(sip, sizeof(struct sip_softc),
475     sip_match, sip_attach, NULL, NULL);
476 #endif
477 
478 /*
479  * Descriptions of the variants of the SiS900.
480  */
481 struct sip_variant {
482 	int	(*sipv_mii_readreg)(struct device *, int, int);
483 	void	(*sipv_mii_writereg)(struct device *, int, int, int);
484 	void	(*sipv_mii_statchg)(struct device *);
485 	void	(*sipv_set_filter)(struct sip_softc *);
486 	void	(*sipv_read_macaddr)(struct sip_softc *,
487 		    const struct pci_attach_args *, u_int8_t *);
488 };
489 
490 static u_int32_t SIP_DECL(mii_bitbang_read)(struct device *);
491 static void	SIP_DECL(mii_bitbang_write)(struct device *, u_int32_t);
492 
493 static const struct mii_bitbang_ops SIP_DECL(mii_bitbang_ops) = {
494 	SIP_DECL(mii_bitbang_read),
495 	SIP_DECL(mii_bitbang_write),
496 	{
497 		EROMAR_MDIO,		/* MII_BIT_MDO */
498 		EROMAR_MDIO,		/* MII_BIT_MDI */
499 		EROMAR_MDC,		/* MII_BIT_MDC */
500 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
501 		0,			/* MII_BIT_DIR_PHY_HOST */
502 	}
503 };
504 
505 #if defined(DP83820)
506 static const struct sip_variant SIP_DECL(variant_dp83820) = {
507 	SIP_DECL(dp83820_mii_readreg),
508 	SIP_DECL(dp83820_mii_writereg),
509 	SIP_DECL(dp83820_mii_statchg),
510 	SIP_DECL(dp83815_set_filter),
511 	SIP_DECL(dp83820_read_macaddr),
512 };
513 #else
514 static const struct sip_variant SIP_DECL(variant_sis900) = {
515 	SIP_DECL(sis900_mii_readreg),
516 	SIP_DECL(sis900_mii_writereg),
517 	SIP_DECL(sis900_mii_statchg),
518 	SIP_DECL(sis900_set_filter),
519 	SIP_DECL(sis900_read_macaddr),
520 };
521 
522 static const struct sip_variant SIP_DECL(variant_dp83815) = {
523 	SIP_DECL(dp83815_mii_readreg),
524 	SIP_DECL(dp83815_mii_writereg),
525 	SIP_DECL(dp83815_mii_statchg),
526 	SIP_DECL(dp83815_set_filter),
527 	SIP_DECL(dp83815_read_macaddr),
528 };
529 #endif /* DP83820 */
530 
531 /*
532  * Devices supported by this driver.
533  */
534 static const struct sip_product {
535 	pci_vendor_id_t		sip_vendor;
536 	pci_product_id_t	sip_product;
537 	const char		*sip_name;
538 	const struct sip_variant *sip_variant;
539 } SIP_DECL(products)[] = {
540 #if defined(DP83820)
541 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
542 	  "NatSemi DP83820 Gigabit Ethernet",
543 	  &SIP_DECL(variant_dp83820) },
544 #else
545 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
546 	  "SiS 900 10/100 Ethernet",
547 	  &SIP_DECL(variant_sis900) },
548 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
549 	  "SiS 7016 10/100 Ethernet",
550 	  &SIP_DECL(variant_sis900) },
551 
552 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
553 	  "NatSemi DP83815 10/100 Ethernet",
554 	  &SIP_DECL(variant_dp83815) },
555 #endif /* DP83820 */
556 
557 	{ 0,			0,
558 	  NULL,
559 	  NULL },
560 };
561 
562 static const struct sip_product *
563 SIP_DECL(lookup)(const struct pci_attach_args *pa)
564 {
565 	const struct sip_product *sip;
566 
567 	for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
568 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
569 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
570 			return (sip);
571 	}
572 	return (NULL);
573 }
574 
575 #ifdef DP83820
576 /*
577  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
578  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
579  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
580  * which means we try to use 64-bit data transfers on those cards if we
581  * happen to be plugged into a 32-bit slot.
582  *
583  * What we do is use this table of cards known to be 64-bit cards.  If
584  * you have a 64-bit card who's subsystem ID is not listed in this table,
585  * send the output of "pcictl dump ..." of the device to me so that your
586  * card will use the 64-bit data path when plugged into a 64-bit slot.
587  *
588  *	-- Jason R. Thorpe <thorpej@NetBSD.org>
589  *	   June 30, 2002
590  */
591 static int
592 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
593 {
594 	static const struct {
595 		pci_vendor_id_t c64_vendor;
596 		pci_product_id_t c64_product;
597 	} card64[] = {
598 		/* Asante GigaNIX */
599 		{ 0x128a,	0x0002 },
600 
601 		/* Accton EN1407-T, Planex GN-1000TE */
602 		{ 0x1113,	0x1407 },
603 
604 		/* Netgear GA-621 */
605 		{ 0x1385,	0x621a },
606 
607 		/* SMC EZ Card */
608 		{ 0x10b8,	0x9462 },
609 
610 		{ 0, 0}
611 	};
612 	pcireg_t subsys;
613 	int i;
614 
615 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
616 
617 	for (i = 0; card64[i].c64_vendor != 0; i++) {
618 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
619 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
620 			return (1);
621 	}
622 
623 	return (0);
624 }
625 #endif /* DP83820 */
626 
627 static int
628 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
629 {
630 	struct pci_attach_args *pa = aux;
631 
632 	if (SIP_DECL(lookup)(pa) != NULL)
633 		return (1);
634 
635 	return (0);
636 }
637 
638 static void
639 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
640 {
641 	struct sip_softc *sc = (struct sip_softc *) self;
642 	struct pci_attach_args *pa = aux;
643 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
644 	pci_chipset_tag_t pc = pa->pa_pc;
645 	pci_intr_handle_t ih;
646 	const char *intrstr = NULL;
647 	bus_space_tag_t iot, memt;
648 	bus_space_handle_t ioh, memh;
649 	bus_dma_segment_t seg;
650 	int ioh_valid, memh_valid;
651 	int i, rseg, error;
652 	const struct sip_product *sip;
653 	pcireg_t pmode;
654 	u_int8_t enaddr[ETHER_ADDR_LEN];
655 	int pmreg;
656 #ifdef DP83820
657 	pcireg_t memtype;
658 	u_int32_t reg;
659 #endif /* DP83820 */
660 
661 	callout_init(&sc->sc_tick_ch);
662 
663 	sip = SIP_DECL(lookup)(pa);
664 	if (sip == NULL) {
665 		printf("\n");
666 		panic(SIP_STR(attach) ": impossible");
667 	}
668 	sc->sc_rev = PCI_REVISION(pa->pa_class);
669 
670 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
671 
672 	sc->sc_model = sip;
673 
674 	/*
675 	 * XXX Work-around broken PXE firmware on some boards.
676 	 *
677 	 * The DP83815 shares an address decoder with the MEM BAR
678 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
679 	 * so that memory mapped access works.
680 	 */
681 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
682 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
683 	    ~PCI_MAPREG_ROM_ENABLE);
684 
685 	/*
686 	 * Map the device.
687 	 */
688 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
689 	    PCI_MAPREG_TYPE_IO, 0,
690 	    &iot, &ioh, NULL, NULL) == 0);
691 #ifdef DP83820
692 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
693 	switch (memtype) {
694 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
695 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
696 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
697 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
698 		break;
699 	default:
700 		memh_valid = 0;
701 	}
702 #else
703 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
704 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
705 	    &memt, &memh, NULL, NULL) == 0);
706 #endif /* DP83820 */
707 
708 	if (memh_valid) {
709 		sc->sc_st = memt;
710 		sc->sc_sh = memh;
711 	} else if (ioh_valid) {
712 		sc->sc_st = iot;
713 		sc->sc_sh = ioh;
714 	} else {
715 		printf("%s: unable to map device registers\n",
716 		    sc->sc_dev.dv_xname);
717 		return;
718 	}
719 
720 	sc->sc_dmat = pa->pa_dmat;
721 
722 	/*
723 	 * Make sure bus mastering is enabled.  Also make sure
724 	 * Write/Invalidate is enabled if we're allowed to use it.
725 	 */
726 	pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
727 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
728 		pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
729 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
730 	    pmreg | PCI_COMMAND_MASTER_ENABLE);
731 
732 	/* Get it out of power save mode if needed. */
733 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
734 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
735 		    PCI_PMCSR_STATE_MASK;
736 		if (pmode == PCI_PMCSR_STATE_D3) {
737 			/*
738 			 * The card has lost all configuration data in
739 			 * this state, so punt.
740 			 */
741 			printf("%s: unable to wake up from power state D3\n",
742 			    sc->sc_dev.dv_xname);
743 			return;
744 		}
745 		if (pmode != PCI_PMCSR_STATE_D0) {
746 			printf("%s: waking up from power state D%d\n",
747 			    sc->sc_dev.dv_xname, pmode);
748 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
749 			    PCI_PMCSR_STATE_D0);
750 		}
751 	}
752 
753 	/*
754 	 * Map and establish our interrupt.
755 	 */
756 	if (pci_intr_map(pa, &ih)) {
757 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
758 		return;
759 	}
760 	intrstr = pci_intr_string(pc, ih);
761 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
762 	if (sc->sc_ih == NULL) {
763 		printf("%s: unable to establish interrupt",
764 		    sc->sc_dev.dv_xname);
765 		if (intrstr != NULL)
766 			printf(" at %s", intrstr);
767 		printf("\n");
768 		return;
769 	}
770 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
771 
772 	SIMPLEQ_INIT(&sc->sc_txfreeq);
773 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
774 
775 	/*
776 	 * Allocate the control data structures, and create and load the
777 	 * DMA map for it.
778 	 */
779 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
780 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
781 	    0)) != 0) {
782 		printf("%s: unable to allocate control data, error = %d\n",
783 		    sc->sc_dev.dv_xname, error);
784 		goto fail_0;
785 	}
786 
787 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
788 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
789 	    BUS_DMA_COHERENT)) != 0) {
790 		printf("%s: unable to map control data, error = %d\n",
791 		    sc->sc_dev.dv_xname, error);
792 		goto fail_1;
793 	}
794 
795 	if ((error = bus_dmamap_create(sc->sc_dmat,
796 	    sizeof(struct sip_control_data), 1,
797 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
798 		printf("%s: unable to create control data DMA map, "
799 		    "error = %d\n", sc->sc_dev.dv_xname, error);
800 		goto fail_2;
801 	}
802 
803 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
804 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
805 	    0)) != 0) {
806 		printf("%s: unable to load control data DMA map, error = %d\n",
807 		    sc->sc_dev.dv_xname, error);
808 		goto fail_3;
809 	}
810 
811 	/*
812 	 * Create the transmit buffer DMA maps.
813 	 */
814 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
815 		if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
816 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
817 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
818 			printf("%s: unable to create tx DMA map %d, "
819 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
820 			goto fail_4;
821 		}
822 	}
823 
824 	/*
825 	 * Create the receive buffer DMA maps.
826 	 */
827 	for (i = 0; i < SIP_NRXDESC; i++) {
828 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
829 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
830 			printf("%s: unable to create rx DMA map %d, "
831 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
832 			goto fail_5;
833 		}
834 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
835 	}
836 
837 	/*
838 	 * Reset the chip to a known state.
839 	 */
840 	SIP_DECL(reset)(sc);
841 
842 	/*
843 	 * Read the Ethernet address from the EEPROM.  This might
844 	 * also fetch other stuff from the EEPROM and stash it
845 	 * in the softc.
846 	 */
847 	sc->sc_cfg = 0;
848 #if !defined(DP83820)
849 	if (SIP_SIS900_REV(sc,SIS_REV_635) ||
850 	    SIP_SIS900_REV(sc,SIS_REV_900B))
851 		sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
852 
853 	if (SIP_SIS900_REV(sc,SIS_REV_635) ||
854 	    SIP_SIS900_REV(sc,SIS_REV_960) ||
855 	    SIP_SIS900_REV(sc,SIS_REV_900B))
856 		sc->sc_cfg |= (bus_space_read_4(sc->sc_st, sc->sc_sh,
857 						SIP_CFG) & CFG_EDBMASTEN);
858 #endif
859 
860 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
861 
862 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
863 	    ether_sprintf(enaddr));
864 
865 	/*
866 	 * Initialize the configuration register: aggressive PCI
867 	 * bus request algorithm, default backoff, default OW timer,
868 	 * default parity error detection.
869 	 *
870 	 * NOTE: "Big endian mode" is useless on the SiS900 and
871 	 * friends -- it affects packet data, not descriptors.
872 	 */
873 #ifdef DP83820
874 	/*
875 	 * Cause the chip to load configuration data from the EEPROM.
876 	 */
877 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
878 	for (i = 0; i < 10000; i++) {
879 		delay(10);
880 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
881 		    PTSCR_EELOAD_EN) == 0)
882 			break;
883 	}
884 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
885 	    PTSCR_EELOAD_EN) {
886 		printf("%s: timeout loading configuration from EEPROM\n",
887 		    sc->sc_dev.dv_xname);
888 		return;
889 	}
890 
891 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
892 
893 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
894 	if (reg & CFG_PCI64_DET) {
895 		printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
896 		/*
897 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
898 		 * data transfers.
899 		 *
900 		 * We can't use the DATA64_EN bit in the EEPROM, because
901 		 * vendors of 32-bit cards fail to clear that bit in many
902 		 * cases (yet the card still detects that it's in a 64-bit
903 		 * slot; go figure).
904 		 */
905 		if (SIP_DECL(check_64bit)(pa)) {
906 			sc->sc_cfg |= CFG_DATA64_EN;
907 			printf(", using 64-bit data transfers");
908 		}
909 		printf("\n");
910 	}
911 
912 	/*
913 	 * XXX Need some PCI flags indicating support for
914 	 * XXX 64-bit addressing.
915 	 */
916 #if 0
917 	if (reg & CFG_M64ADDR)
918 		sc->sc_cfg |= CFG_M64ADDR;
919 	if (reg & CFG_T64ADDR)
920 		sc->sc_cfg |= CFG_T64ADDR;
921 #endif
922 
923 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
924 		const char *sep = "";
925 		printf("%s: using ", sc->sc_dev.dv_xname);
926 		if (reg & CFG_EXT_125) {
927 			sc->sc_cfg |= CFG_EXT_125;
928 			printf("%s125MHz clock", sep);
929 			sep = ", ";
930 		}
931 		if (reg & CFG_TBI_EN) {
932 			sc->sc_cfg |= CFG_TBI_EN;
933 			printf("%sten-bit interface", sep);
934 			sep = ", ";
935 		}
936 		printf("\n");
937 	}
938 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
939 	    (reg & CFG_MRM_DIS) != 0)
940 		sc->sc_cfg |= CFG_MRM_DIS;
941 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
942 	    (reg & CFG_MWI_DIS) != 0)
943 		sc->sc_cfg |= CFG_MWI_DIS;
944 
945 	/*
946 	 * Use the extended descriptor format on the DP83820.  This
947 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
948 	 * checksumming.
949 	 */
950 	sc->sc_cfg |= CFG_EXTSTS_EN;
951 #endif /* DP83820 */
952 
953 	/*
954 	 * Initialize our media structures and probe the MII.
955 	 */
956 	sc->sc_mii.mii_ifp = ifp;
957 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
958 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
959 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
960 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, SIP_DECL(mediachange),
961 	    SIP_DECL(mediastatus));
962 
963 	/*
964 	 * XXX We cannot handle flow control on the DP83815.
965 	 */
966 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
967 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
968 			   MII_OFFSET_ANY, 0);
969 	else
970 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
971 			   MII_OFFSET_ANY, MIIF_DOPAUSE);
972 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
973 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
974 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
975 	} else
976 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
977 
978 	ifp = &sc->sc_ethercom.ec_if;
979 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
980 	ifp->if_softc = sc;
981 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
982 	ifp->if_ioctl = SIP_DECL(ioctl);
983 	ifp->if_start = SIP_DECL(start);
984 	ifp->if_watchdog = SIP_DECL(watchdog);
985 	ifp->if_init = SIP_DECL(init);
986 	ifp->if_stop = SIP_DECL(stop);
987 	IFQ_SET_READY(&ifp->if_snd);
988 
989 	/*
990 	 * We can support 802.1Q VLAN-sized frames.
991 	 */
992 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
993 
994 #ifdef DP83820
995 	/*
996 	 * And the DP83820 can do VLAN tagging in hardware, and
997 	 * support the jumbo Ethernet MTU.
998 	 */
999 	sc->sc_ethercom.ec_capabilities |=
1000 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1001 
1002 	/*
1003 	 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1004 	 * in hardware.
1005 	 */
1006 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
1007 	    IFCAP_CSUM_UDPv4;
1008 #endif /* DP83820 */
1009 
1010 	/*
1011 	 * Attach the interface.
1012 	 */
1013 	if_attach(ifp);
1014 	ether_ifattach(ifp, enaddr);
1015 #if NRND > 0
1016 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1017 	    RND_TYPE_NET, 0);
1018 #endif
1019 
1020 	/*
1021 	 * The number of bytes that must be available in
1022 	 * the Tx FIFO before the bus master can DMA more
1023 	 * data into the FIFO.
1024 	 */
1025 	sc->sc_tx_fill_thresh = 64 / 32;
1026 
1027 	/*
1028 	 * Start at a drain threshold of 512 bytes.  We will
1029 	 * increase it if a DMA underrun occurs.
1030 	 *
1031 	 * XXX The minimum value of this variable should be
1032 	 * tuned.  We may be able to improve performance
1033 	 * by starting with a lower value.  That, however,
1034 	 * may trash the first few outgoing packets if the
1035 	 * PCI bus is saturated.
1036 	 */
1037 #ifdef DP83820
1038 	sc->sc_tx_drain_thresh = 6400 / 32;	/* from FreeBSD nge(4) */
1039 #else
1040 	sc->sc_tx_drain_thresh = 1504 / 32;
1041 #endif
1042 
1043 	/*
1044 	 * Initialize the Rx FIFO drain threshold.
1045 	 *
1046 	 * This is in units of 8 bytes.
1047 	 *
1048 	 * We should never set this value lower than 2; 14 bytes are
1049 	 * required to filter the packet.
1050 	 */
1051 	sc->sc_rx_drain_thresh = 128 / 8;
1052 
1053 #ifdef SIP_EVENT_COUNTERS
1054 	/*
1055 	 * Attach event counters.
1056 	 */
1057 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1058 	    NULL, sc->sc_dev.dv_xname, "txsstall");
1059 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1060 	    NULL, sc->sc_dev.dv_xname, "txdstall");
1061 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1062 	    NULL, sc->sc_dev.dv_xname, "txforceintr");
1063 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1064 	    NULL, sc->sc_dev.dv_xname, "txdintr");
1065 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1066 	    NULL, sc->sc_dev.dv_xname, "txiintr");
1067 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1068 	    NULL, sc->sc_dev.dv_xname, "rxintr");
1069 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1070 	    NULL, sc->sc_dev.dv_xname, "hiberr");
1071 #ifndef DP83820
1072 	evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1073 	    NULL, sc->sc_dev.dv_xname, "rxpause");
1074 #endif /* !DP83820 */
1075 #ifdef DP83820
1076 	evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1077 	    NULL, sc->sc_dev.dv_xname, "rxpause");
1078 	evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1079 	    NULL, sc->sc_dev.dv_xname, "txpause");
1080 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1081 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
1082 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1083 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
1084 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1085 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
1086 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1087 	    NULL, sc->sc_dev.dv_xname, "txipsum");
1088 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1089 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
1090 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1091 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
1092 #endif /* DP83820 */
1093 #endif /* SIP_EVENT_COUNTERS */
1094 
1095 	/*
1096 	 * Make sure the interface is shutdown during reboot.
1097 	 */
1098 	sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
1099 	if (sc->sc_sdhook == NULL)
1100 		printf("%s: WARNING: unable to establish shutdown hook\n",
1101 		    sc->sc_dev.dv_xname);
1102 	return;
1103 
1104 	/*
1105 	 * Free any resources we've allocated during the failed attach
1106 	 * attempt.  Do this in reverse order and fall through.
1107 	 */
1108  fail_5:
1109 	for (i = 0; i < SIP_NRXDESC; i++) {
1110 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1111 			bus_dmamap_destroy(sc->sc_dmat,
1112 			    sc->sc_rxsoft[i].rxs_dmamap);
1113 	}
1114  fail_4:
1115 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
1116 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
1117 			bus_dmamap_destroy(sc->sc_dmat,
1118 			    sc->sc_txsoft[i].txs_dmamap);
1119 	}
1120 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1121  fail_3:
1122 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1123  fail_2:
1124 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1125 	    sizeof(struct sip_control_data));
1126  fail_1:
1127 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1128  fail_0:
1129 	return;
1130 }
1131 
1132 /*
1133  * sip_shutdown:
1134  *
1135  *	Make sure the interface is stopped at reboot time.
1136  */
1137 static void
1138 SIP_DECL(shutdown)(void *arg)
1139 {
1140 	struct sip_softc *sc = arg;
1141 
1142 	SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
1143 }
1144 
1145 /*
1146  * sip_start:		[ifnet interface function]
1147  *
1148  *	Start packet transmission on the interface.
1149  */
1150 static void
1151 SIP_DECL(start)(struct ifnet *ifp)
1152 {
1153 	struct sip_softc *sc = ifp->if_softc;
1154 	struct mbuf *m0;
1155 #ifndef DP83820
1156 	struct mbuf *m;
1157 #endif
1158 	struct sip_txsoft *txs;
1159 	bus_dmamap_t dmamap;
1160 	int error, nexttx, lasttx, seg;
1161 	int ofree = sc->sc_txfree;
1162 #if 0
1163 	int firsttx = sc->sc_txnext;
1164 #endif
1165 #ifdef DP83820
1166 	struct m_tag *mtag;
1167 	u_int32_t extsts;
1168 #endif
1169 
1170 #ifndef DP83820
1171 	/*
1172 	 * If we've been told to pause, don't transmit any more packets.
1173 	 */
1174 	if (sc->sc_paused)
1175 		ifp->if_flags |= IFF_OACTIVE;
1176 #endif
1177 
1178 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1179 		return;
1180 
1181 	/*
1182 	 * Loop through the send queue, setting up transmit descriptors
1183 	 * until we drain the queue, or use up all available transmit
1184 	 * descriptors.
1185 	 */
1186 	for (;;) {
1187 		/* Get a work queue entry. */
1188 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1189 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1190 			break;
1191 		}
1192 
1193 		/*
1194 		 * Grab a packet off the queue.
1195 		 */
1196 		IFQ_POLL(&ifp->if_snd, m0);
1197 		if (m0 == NULL)
1198 			break;
1199 #ifndef DP83820
1200 		m = NULL;
1201 #endif
1202 
1203 		dmamap = txs->txs_dmamap;
1204 
1205 #ifdef DP83820
1206 		/*
1207 		 * Load the DMA map.  If this fails, the packet either
1208 		 * didn't fit in the allotted number of segments, or we
1209 		 * were short on resources.  For the too-many-segments
1210 		 * case, we simply report an error and drop the packet,
1211 		 * since we can't sanely copy a jumbo packet to a single
1212 		 * buffer.
1213 		 */
1214 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1215 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1216 		if (error) {
1217 			if (error == EFBIG) {
1218 				printf("%s: Tx packet consumes too many "
1219 				    "DMA segments, dropping...\n",
1220 				    sc->sc_dev.dv_xname);
1221 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1222 				m_freem(m0);
1223 				continue;
1224 			}
1225 			/*
1226 			 * Short on resources, just stop for now.
1227 			 */
1228 			break;
1229 		}
1230 #else /* DP83820 */
1231 		/*
1232 		 * Load the DMA map.  If this fails, the packet either
1233 		 * didn't fit in the alloted number of segments, or we
1234 		 * were short on resources.  In this case, we'll copy
1235 		 * and try again.
1236 		 */
1237 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1238 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1239 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1240 			if (m == NULL) {
1241 				printf("%s: unable to allocate Tx mbuf\n",
1242 				    sc->sc_dev.dv_xname);
1243 				break;
1244 			}
1245 			if (m0->m_pkthdr.len > MHLEN) {
1246 				MCLGET(m, M_DONTWAIT);
1247 				if ((m->m_flags & M_EXT) == 0) {
1248 					printf("%s: unable to allocate Tx "
1249 					    "cluster\n", sc->sc_dev.dv_xname);
1250 					m_freem(m);
1251 					break;
1252 				}
1253 			}
1254 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1255 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1256 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1257 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1258 			if (error) {
1259 				printf("%s: unable to load Tx buffer, "
1260 				    "error = %d\n", sc->sc_dev.dv_xname, error);
1261 				break;
1262 			}
1263 		}
1264 #endif /* DP83820 */
1265 
1266 		/*
1267 		 * Ensure we have enough descriptors free to describe
1268 		 * the packet.  Note, we always reserve one descriptor
1269 		 * at the end of the ring as a termination point, to
1270 		 * prevent wrap-around.
1271 		 */
1272 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1273 			/*
1274 			 * Not enough free descriptors to transmit this
1275 			 * packet.  We haven't committed anything yet,
1276 			 * so just unload the DMA map, put the packet
1277 			 * back on the queue, and punt.  Notify the upper
1278 			 * layer that there are not more slots left.
1279 			 *
1280 			 * XXX We could allocate an mbuf and copy, but
1281 			 * XXX is it worth it?
1282 			 */
1283 			ifp->if_flags |= IFF_OACTIVE;
1284 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1285 #ifndef DP83820
1286 			if (m != NULL)
1287 				m_freem(m);
1288 #endif
1289 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1290 			break;
1291 		}
1292 
1293 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1294 #ifndef DP83820
1295 		if (m != NULL) {
1296 			m_freem(m0);
1297 			m0 = m;
1298 		}
1299 #endif
1300 
1301 		/*
1302 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1303 		 */
1304 
1305 		/* Sync the DMA map. */
1306 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1307 		    BUS_DMASYNC_PREWRITE);
1308 
1309 		/*
1310 		 * Initialize the transmit descriptors.
1311 		 */
1312 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1313 		     seg < dmamap->dm_nsegs;
1314 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
1315 			/*
1316 			 * If this is the first descriptor we're
1317 			 * enqueueing, don't set the OWN bit just
1318 			 * yet.  That could cause a race condition.
1319 			 * We'll do it below.
1320 			 */
1321 			sc->sc_txdescs[nexttx].sipd_bufptr =
1322 			    htole32(dmamap->dm_segs[seg].ds_addr);
1323 			sc->sc_txdescs[nexttx].sipd_cmdsts =
1324 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1325 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1326 #ifdef DP83820
1327 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
1328 #endif /* DP83820 */
1329 			lasttx = nexttx;
1330 		}
1331 
1332 		/* Clear the MORE bit on the last segment. */
1333 		sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1334 
1335 		/*
1336 		 * If we're in the interrupt delay window, delay the
1337 		 * interrupt.
1338 		 */
1339 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1340 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1341 			sc->sc_txdescs[lasttx].sipd_cmdsts |=
1342 			    htole32(CMDSTS_INTR);
1343 			sc->sc_txwin = 0;
1344 		}
1345 
1346 #ifdef DP83820
1347 		/*
1348 		 * If VLANs are enabled and the packet has a VLAN tag, set
1349 		 * up the descriptor to encapsulate the packet for us.
1350 		 *
1351 		 * This apparently has to be on the last descriptor of
1352 		 * the packet.
1353 		 */
1354 		if (sc->sc_ethercom.ec_nvlans != 0 &&
1355 		    (mtag = m_tag_find(m0, PACKET_TAG_VLAN, NULL)) != NULL) {
1356 			sc->sc_txdescs[lasttx].sipd_extsts |=
1357 			    htole32(EXTSTS_VPKT |
1358 				    (*(u_int *)(mtag + 1) & EXTSTS_VTCI));
1359 		}
1360 
1361 		/*
1362 		 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1363 		 * checksumming, set up the descriptor to do this work
1364 		 * for us.
1365 		 *
1366 		 * This apparently has to be on the first descriptor of
1367 		 * the packet.
1368 		 *
1369 		 * Byte-swap constants so the compiler can optimize.
1370 		 */
1371 		extsts = 0;
1372 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1373 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
1374 			SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1375 			extsts |= htole32(EXTSTS_IPPKT);
1376 		}
1377 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1378 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
1379 			SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1380 			extsts |= htole32(EXTSTS_TCPPKT);
1381 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1382 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
1383 			SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1384 			extsts |= htole32(EXTSTS_UDPPKT);
1385 		}
1386 		sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1387 #endif /* DP83820 */
1388 
1389 		/* Sync the descriptors we're using. */
1390 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1391 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1392 
1393 		/*
1394 		 * The entire packet is set up.  Give the first descrptor
1395 		 * to the chip now.
1396 		 */
1397 		sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
1398 		    htole32(CMDSTS_OWN);
1399 		SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
1400 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1401 
1402 		/*
1403 		 * Store a pointer to the packet so we can free it later,
1404 		 * and remember what txdirty will be once the packet is
1405 		 * done.
1406 		 */
1407 		txs->txs_mbuf = m0;
1408 		txs->txs_firstdesc = sc->sc_txnext;
1409 		txs->txs_lastdesc = lasttx;
1410 
1411 		/* Advance the tx pointer. */
1412 		sc->sc_txfree -= dmamap->dm_nsegs;
1413 		sc->sc_txnext = nexttx;
1414 
1415 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1416 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1417 
1418 #if NBPFILTER > 0
1419 		/*
1420 		 * Pass the packet to any BPF listeners.
1421 		 */
1422 		if (ifp->if_bpf)
1423 			bpf_mtap(ifp->if_bpf, m0);
1424 #endif /* NBPFILTER > 0 */
1425 	}
1426 
1427 	if (txs == NULL || sc->sc_txfree == 0) {
1428 		/* No more slots left; notify upper layer. */
1429 		ifp->if_flags |= IFF_OACTIVE;
1430 	}
1431 
1432 	if (sc->sc_txfree != ofree) {
1433 		/*
1434 		 * Start the transmit process.  Note, the manual says
1435 		 * that if there are no pending transmissions in the
1436 		 * chip's internal queue (indicated by TXE being clear),
1437 		 * then the driver software must set the TXDP to the
1438 		 * first descriptor to be transmitted.  However, if we
1439 		 * do this, it causes serious performance degredation on
1440 		 * the DP83820 under load, not setting TXDP doesn't seem
1441 		 * to adversely affect the SiS 900 or DP83815.
1442 		 *
1443 		 * Well, I guess it wouldn't be the first time a manual
1444 		 * has lied -- and they could be speaking of the NULL-
1445 		 * terminated descriptor list case, rather than OWN-
1446 		 * terminated rings.
1447 		 */
1448 #if 0
1449 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1450 		     CR_TXE) == 0) {
1451 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1452 			    SIP_CDTXADDR(sc, firsttx));
1453 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1454 		}
1455 #else
1456 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1457 #endif
1458 
1459 		/* Set a watchdog timer in case the chip flakes out. */
1460 #ifdef DP83820
1461 		/* Gigabit autonegotiation takes 5 seconds. */
1462 		ifp->if_timer = 10;
1463 #else
1464 		ifp->if_timer = 5;
1465 #endif
1466 	}
1467 }
1468 
1469 /*
1470  * sip_watchdog:	[ifnet interface function]
1471  *
1472  *	Watchdog timer handler.
1473  */
1474 static void
1475 SIP_DECL(watchdog)(struct ifnet *ifp)
1476 {
1477 	struct sip_softc *sc = ifp->if_softc;
1478 
1479 	/*
1480 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1481 	 * If we get a timeout, try and sweep up transmit descriptors.
1482 	 * If we manage to sweep them all up, ignore the lack of
1483 	 * interrupt.
1484 	 */
1485 	SIP_DECL(txintr)(sc);
1486 
1487 	if (sc->sc_txfree != SIP_NTXDESC) {
1488 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1489 		ifp->if_oerrors++;
1490 
1491 		/* Reset the interface. */
1492 		(void) SIP_DECL(init)(ifp);
1493 	} else if (ifp->if_flags & IFF_DEBUG)
1494 		printf("%s: recovered from device timeout\n",
1495 		    sc->sc_dev.dv_xname);
1496 
1497 	/* Try to get more packets going. */
1498 	SIP_DECL(start)(ifp);
1499 }
1500 
1501 /*
1502  * sip_ioctl:		[ifnet interface function]
1503  *
1504  *	Handle control requests from the operator.
1505  */
1506 static int
1507 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1508 {
1509 	struct sip_softc *sc = ifp->if_softc;
1510 	struct ifreq *ifr = (struct ifreq *)data;
1511 	int s, error;
1512 
1513 	s = splnet();
1514 
1515 	switch (cmd) {
1516 	case SIOCSIFMEDIA:
1517 		/* Flow control requires full-duplex mode. */
1518 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1519 		    (ifr->ifr_media & IFM_FDX) == 0)
1520 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
1521 #ifdef DP83820
1522 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1523 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1524 				/* We can do both TXPAUSE and RXPAUSE. */
1525 				ifr->ifr_media |=
1526 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1527 			}
1528 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1529 		}
1530 #else
1531 		/* XXX */
1532 		if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1533 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1534 
1535 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1536 			if (ifr->ifr_media & IFM_FLOW) {
1537 				/*
1538 				 * Both TXPAUSE and RXPAUSE must be set.
1539 				 * (SiS900 and DP83815 don't have PAUSE_ASYM
1540 				 * feature.)
1541 				 *
1542 				 * XXX Can SiS900 and DP83815 send PAUSE?
1543 				 */
1544 				ifr->ifr_media |=
1545 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1546 			}
1547 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1548 		}
1549 #endif
1550 		/* FALLTHROUGH */
1551 	case SIOCGIFMEDIA:
1552 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1553 		break;
1554 
1555 	default:
1556 		error = ether_ioctl(ifp, cmd, data);
1557 		if (error == ENETRESET) {
1558 			/*
1559 			 * Multicast list has changed; set the hardware filter
1560 			 * accordingly.
1561 			 */
1562 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1563 			error = 0;
1564 		}
1565 		break;
1566 	}
1567 
1568 	/* Try to get more packets going. */
1569 	SIP_DECL(start)(ifp);
1570 
1571 	splx(s);
1572 	return (error);
1573 }
1574 
1575 /*
1576  * sip_intr:
1577  *
1578  *	Interrupt service routine.
1579  */
1580 static int
1581 SIP_DECL(intr)(void *arg)
1582 {
1583 	struct sip_softc *sc = arg;
1584 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1585 	u_int32_t isr;
1586 	int handled = 0;
1587 
1588 	/* Disable interrupts. */
1589 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1590 
1591 	for (;;) {
1592 		/* Reading clears interrupt. */
1593 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1594 		if ((isr & sc->sc_imr) == 0)
1595 			break;
1596 
1597 #if NRND > 0
1598 		if (RND_ENABLED(&sc->rnd_source))
1599 			rnd_add_uint32(&sc->rnd_source, isr);
1600 #endif
1601 
1602 		handled = 1;
1603 
1604 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1605 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1606 
1607 			/* Grab any new packets. */
1608 			SIP_DECL(rxintr)(sc);
1609 
1610 			if (isr & ISR_RXORN) {
1611 				printf("%s: receive FIFO overrun\n",
1612 				    sc->sc_dev.dv_xname);
1613 
1614 				/* XXX adjust rx_drain_thresh? */
1615 			}
1616 
1617 			if (isr & ISR_RXIDLE) {
1618 				printf("%s: receive ring overrun\n",
1619 				    sc->sc_dev.dv_xname);
1620 
1621 				/* Get the receive process going again. */
1622 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1623 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1624 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1625 				    SIP_CR, CR_RXE);
1626 			}
1627 		}
1628 
1629 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1630 #ifdef SIP_EVENT_COUNTERS
1631 			if (isr & ISR_TXDESC)
1632 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1633 			else if (isr & ISR_TXIDLE)
1634 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1635 #endif
1636 
1637 			/* Sweep up transmit descriptors. */
1638 			SIP_DECL(txintr)(sc);
1639 
1640 			if (isr & ISR_TXURN) {
1641 				u_int32_t thresh;
1642 
1643 				printf("%s: transmit FIFO underrun",
1644 				    sc->sc_dev.dv_xname);
1645 
1646 				thresh = sc->sc_tx_drain_thresh + 1;
1647 				if (thresh <= TXCFG_DRTH &&
1648 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
1649 				     (sc->sc_tx_fill_thresh * 32))) {
1650 					printf("; increasing Tx drain "
1651 					    "threshold to %u bytes\n",
1652 					    thresh * 32);
1653 					sc->sc_tx_drain_thresh = thresh;
1654 					(void) SIP_DECL(init)(ifp);
1655 				} else {
1656 					(void) SIP_DECL(init)(ifp);
1657 					printf("\n");
1658 				}
1659 			}
1660 		}
1661 
1662 #if !defined(DP83820)
1663 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1664 			if (isr & ISR_PAUSE_ST) {
1665 				sc->sc_paused = 1;
1666 				SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1667 				ifp->if_flags |= IFF_OACTIVE;
1668 			}
1669 			if (isr & ISR_PAUSE_END) {
1670 				sc->sc_paused = 0;
1671 				ifp->if_flags &= ~IFF_OACTIVE;
1672 			}
1673 		}
1674 #endif /* ! DP83820 */
1675 
1676 		if (isr & ISR_HIBERR) {
1677 			int want_init = 0;
1678 
1679 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1680 
1681 #define	PRINTERR(bit, str)						\
1682 			do {						\
1683 				if ((isr & (bit)) != 0) {		\
1684 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
1685 						printf("%s: %s\n",	\
1686 						    sc->sc_dev.dv_xname, str); \
1687 					want_init = 1;			\
1688 				}					\
1689 			} while (/*CONSTCOND*/0)
1690 
1691 			PRINTERR(ISR_DPERR, "parity error");
1692 			PRINTERR(ISR_SSERR, "system error");
1693 			PRINTERR(ISR_RMABT, "master abort");
1694 			PRINTERR(ISR_RTABT, "target abort");
1695 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1696 			/*
1697 			 * Ignore:
1698 			 *	Tx reset complete
1699 			 *	Rx reset complete
1700 			 */
1701 			if (want_init)
1702 				(void) SIP_DECL(init)(ifp);
1703 #undef PRINTERR
1704 		}
1705 	}
1706 
1707 	/* Re-enable interrupts. */
1708 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1709 
1710 	/* Try to get more packets going. */
1711 	SIP_DECL(start)(ifp);
1712 
1713 	return (handled);
1714 }
1715 
1716 /*
1717  * sip_txintr:
1718  *
1719  *	Helper; handle transmit interrupts.
1720  */
1721 static void
1722 SIP_DECL(txintr)(struct sip_softc *sc)
1723 {
1724 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1725 	struct sip_txsoft *txs;
1726 	u_int32_t cmdsts;
1727 
1728 #ifndef DP83820
1729 	if (sc->sc_paused == 0)
1730 #endif
1731 		ifp->if_flags &= ~IFF_OACTIVE;
1732 
1733 	/*
1734 	 * Go through our Tx list and free mbufs for those
1735 	 * frames which have been transmitted.
1736 	 */
1737 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1738 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1739 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1740 
1741 		cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1742 		if (cmdsts & CMDSTS_OWN)
1743 			break;
1744 
1745 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1746 
1747 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1748 
1749 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1750 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1751 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1752 		m_freem(txs->txs_mbuf);
1753 		txs->txs_mbuf = NULL;
1754 
1755 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1756 
1757 		/*
1758 		 * Check for errors and collisions.
1759 		 */
1760 		if (cmdsts &
1761 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1762 			ifp->if_oerrors++;
1763 			if (cmdsts & CMDSTS_Tx_EC)
1764 				ifp->if_collisions += 16;
1765 			if (ifp->if_flags & IFF_DEBUG) {
1766 				if (cmdsts & CMDSTS_Tx_ED)
1767 					printf("%s: excessive deferral\n",
1768 					    sc->sc_dev.dv_xname);
1769 				if (cmdsts & CMDSTS_Tx_EC)
1770 					printf("%s: excessive collisions\n",
1771 					    sc->sc_dev.dv_xname);
1772 			}
1773 		} else {
1774 			/* Packet was transmitted successfully. */
1775 			ifp->if_opackets++;
1776 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1777 		}
1778 	}
1779 
1780 	/*
1781 	 * If there are no more pending transmissions, cancel the watchdog
1782 	 * timer.
1783 	 */
1784 	if (txs == NULL) {
1785 		ifp->if_timer = 0;
1786 		sc->sc_txwin = 0;
1787 	}
1788 }
1789 
1790 #if defined(DP83820)
1791 /*
1792  * sip_rxintr:
1793  *
1794  *	Helper; handle receive interrupts.
1795  */
1796 static void
1797 SIP_DECL(rxintr)(struct sip_softc *sc)
1798 {
1799 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1800 	struct sip_rxsoft *rxs;
1801 	struct mbuf *m, *tailm;
1802 	u_int32_t cmdsts, extsts;
1803 	int i, len, frame_len;
1804 
1805 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1806 		rxs = &sc->sc_rxsoft[i];
1807 
1808 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1809 
1810 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1811 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1812 
1813 		/*
1814 		 * NOTE: OWN is set if owned by _consumer_.  We're the
1815 		 * consumer of the receive ring, so if the bit is clear,
1816 		 * we have processed all of the packets.
1817 		 */
1818 		if ((cmdsts & CMDSTS_OWN) == 0) {
1819 			/*
1820 			 * We have processed all of the receive buffers.
1821 			 */
1822 			break;
1823 		}
1824 
1825 		if (__predict_false(sc->sc_rxdiscard)) {
1826 			SIP_INIT_RXDESC(sc, i);
1827 			if ((cmdsts & CMDSTS_MORE) == 0) {
1828 				/* Reset our state. */
1829 				sc->sc_rxdiscard = 0;
1830 			}
1831 			continue;
1832 		}
1833 
1834 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1835 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1836 
1837 		m = rxs->rxs_mbuf;
1838 
1839 		/*
1840 		 * Add a new receive buffer to the ring.
1841 		 */
1842 		if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1843 			/*
1844 			 * Failed, throw away what we've done so
1845 			 * far, and discard the rest of the packet.
1846 			 */
1847 			ifp->if_ierrors++;
1848 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1849 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1850 			SIP_INIT_RXDESC(sc, i);
1851 			if (cmdsts & CMDSTS_MORE)
1852 				sc->sc_rxdiscard = 1;
1853 			if (sc->sc_rxhead != NULL)
1854 				m_freem(sc->sc_rxhead);
1855 			SIP_RXCHAIN_RESET(sc);
1856 			continue;
1857 		}
1858 
1859 		SIP_RXCHAIN_LINK(sc, m);
1860 
1861 		/*
1862 		 * If this is not the end of the packet, keep
1863 		 * looking.
1864 		 */
1865 		if (cmdsts & CMDSTS_MORE) {
1866 			sc->sc_rxlen += m->m_len;
1867 			continue;
1868 		}
1869 
1870 		/*
1871 		 * Okay, we have the entire packet now...
1872 		 */
1873 		*sc->sc_rxtailp = NULL;
1874 		m = sc->sc_rxhead;
1875 		tailm = sc->sc_rxtail;
1876 		frame_len = sc->sc_rxlen;
1877 
1878 		SIP_RXCHAIN_RESET(sc);
1879 
1880 		/*
1881 		 * If an error occurred, update stats and drop the packet.
1882 		 */
1883 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1884 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1885 			ifp->if_ierrors++;
1886 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1887 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
1888 				/* Receive overrun handled elsewhere. */
1889 				printf("%s: receive descriptor error\n",
1890 				    sc->sc_dev.dv_xname);
1891 			}
1892 #define	PRINTERR(bit, str)						\
1893 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
1894 			    (cmdsts & (bit)) != 0)			\
1895 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1896 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1897 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1898 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1899 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1900 #undef PRINTERR
1901 			m_freem(m);
1902 			continue;
1903 		}
1904 
1905 		/*
1906 		 * No errors.
1907 		 *
1908 		 * Note, the DP83820 includes the CRC with
1909 		 * every packet.
1910 		 */
1911 		len = CMDSTS_SIZE(cmdsts);
1912 		frame_len += len;
1913 		tailm->m_len = len;
1914 
1915 		/*
1916 		 * If the packet is small enough to fit in a
1917 		 * single header mbuf, allocate one and copy
1918 		 * the data into it.  This greatly reduces
1919 		 * memory consumption when we receive lots
1920 		 * of small packets.
1921 		 */
1922 		if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1923 			struct mbuf *nm;
1924 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
1925 			if (nm == NULL) {
1926 				ifp->if_ierrors++;
1927 				m_freem(m);
1928 				continue;
1929 			}
1930 			nm->m_data += 2;
1931 			nm->m_pkthdr.len = nm->m_len = len;
1932 			m_copydata(m, 0, len, mtod(nm, caddr_t));
1933 			m_freem(m);
1934 			m = nm;
1935 		}
1936 #ifndef __NO_STRICT_ALIGNMENT
1937 		else {
1938 			/*
1939 			 * The DP83820's receive buffers must be 4-byte
1940 			 * aligned.  But this means that the data after
1941 			 * the Ethernet header is misaligned.  To compensate,
1942 			 * we have artificially shortened the buffer size
1943 			 * in the descriptor, and we do an overlapping copy
1944 			 * of the data two bytes further in (in the first
1945 			 * buffer of the chain only).
1946 			 */
1947 			memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1948 			    m->m_len);
1949 			m->m_data += 2;
1950 		}
1951 #endif /* ! __NO_STRICT_ALIGNMENT */
1952 
1953 		/*
1954 		 * If VLANs are enabled, VLAN packets have been unwrapped
1955 		 * for us.  Associate the tag with the packet.
1956 		 */
1957 		if (sc->sc_ethercom.ec_nvlans != 0 &&
1958 		    (extsts & EXTSTS_VPKT) != 0) {
1959 			struct m_tag *vtag;
1960 
1961 			vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
1962 			    M_NOWAIT);
1963 			if (vtag == NULL) {
1964 				ifp->if_ierrors++;
1965 				printf("%s: unable to allocate VLAN tag\n",
1966 				    sc->sc_dev.dv_xname);
1967 				m_freem(m);
1968 				continue;
1969 			}
1970 
1971 			*(u_int *)(vtag + 1) = ntohs(extsts & EXTSTS_VTCI);
1972 		}
1973 
1974 		/*
1975 		 * Set the incoming checksum information for the
1976 		 * packet.
1977 		 */
1978 		if ((extsts & EXTSTS_IPPKT) != 0) {
1979 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1980 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1981 			if (extsts & EXTSTS_Rx_IPERR)
1982 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1983 			if (extsts & EXTSTS_TCPPKT) {
1984 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1985 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1986 				if (extsts & EXTSTS_Rx_TCPERR)
1987 					m->m_pkthdr.csum_flags |=
1988 					    M_CSUM_TCP_UDP_BAD;
1989 			} else if (extsts & EXTSTS_UDPPKT) {
1990 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1991 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1992 				if (extsts & EXTSTS_Rx_UDPERR)
1993 					m->m_pkthdr.csum_flags |=
1994 					    M_CSUM_TCP_UDP_BAD;
1995 			}
1996 		}
1997 
1998 		ifp->if_ipackets++;
1999 		m->m_flags |= M_HASFCS;
2000 		m->m_pkthdr.rcvif = ifp;
2001 		m->m_pkthdr.len = frame_len;
2002 
2003 #if NBPFILTER > 0
2004 		/*
2005 		 * Pass this up to any BPF listeners, but only
2006 		 * pass if up the stack if it's for us.
2007 		 */
2008 		if (ifp->if_bpf)
2009 			bpf_mtap(ifp->if_bpf, m);
2010 #endif /* NBPFILTER > 0 */
2011 
2012 		/* Pass it on. */
2013 		(*ifp->if_input)(ifp, m);
2014 	}
2015 
2016 	/* Update the receive pointer. */
2017 	sc->sc_rxptr = i;
2018 }
2019 #else /* ! DP83820 */
2020 /*
2021  * sip_rxintr:
2022  *
2023  *	Helper; handle receive interrupts.
2024  */
2025 static void
2026 SIP_DECL(rxintr)(struct sip_softc *sc)
2027 {
2028 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2029 	struct sip_rxsoft *rxs;
2030 	struct mbuf *m;
2031 	u_int32_t cmdsts;
2032 	int i, len;
2033 
2034 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
2035 		rxs = &sc->sc_rxsoft[i];
2036 
2037 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2038 
2039 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
2040 
2041 		/*
2042 		 * NOTE: OWN is set if owned by _consumer_.  We're the
2043 		 * consumer of the receive ring, so if the bit is clear,
2044 		 * we have processed all of the packets.
2045 		 */
2046 		if ((cmdsts & CMDSTS_OWN) == 0) {
2047 			/*
2048 			 * We have processed all of the receive buffers.
2049 			 */
2050 			break;
2051 		}
2052 
2053 		/*
2054 		 * If any collisions were seen on the wire, count one.
2055 		 */
2056 		if (cmdsts & CMDSTS_Rx_COL)
2057 			ifp->if_collisions++;
2058 
2059 		/*
2060 		 * If an error occurred, update stats, clear the status
2061 		 * word, and leave the packet buffer in place.  It will
2062 		 * simply be reused the next time the ring comes around.
2063 		 */
2064 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2065 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2066 			ifp->if_ierrors++;
2067 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2068 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
2069 				/* Receive overrun handled elsewhere. */
2070 				printf("%s: receive descriptor error\n",
2071 				    sc->sc_dev.dv_xname);
2072 			}
2073 #define	PRINTERR(bit, str)						\
2074 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
2075 			    (cmdsts & (bit)) != 0)			\
2076 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
2077 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2078 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2079 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2080 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2081 #undef PRINTERR
2082 			SIP_INIT_RXDESC(sc, i);
2083 			continue;
2084 		}
2085 
2086 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2087 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2088 
2089 		/*
2090 		 * No errors; receive the packet.  Note, the SiS 900
2091 		 * includes the CRC with every packet.
2092 		 */
2093 		len = CMDSTS_SIZE(cmdsts);
2094 
2095 #ifdef __NO_STRICT_ALIGNMENT
2096 		/*
2097 		 * If the packet is small enough to fit in a
2098 		 * single header mbuf, allocate one and copy
2099 		 * the data into it.  This greatly reduces
2100 		 * memory consumption when we receive lots
2101 		 * of small packets.
2102 		 *
2103 		 * Otherwise, we add a new buffer to the receive
2104 		 * chain.  If this fails, we drop the packet and
2105 		 * recycle the old buffer.
2106 		 */
2107 		if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
2108 			MGETHDR(m, M_DONTWAIT, MT_DATA);
2109 			if (m == NULL)
2110 				goto dropit;
2111 			memcpy(mtod(m, caddr_t),
2112 			    mtod(rxs->rxs_mbuf, caddr_t), len);
2113 			SIP_INIT_RXDESC(sc, i);
2114 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2115 			    rxs->rxs_dmamap->dm_mapsize,
2116 			    BUS_DMASYNC_PREREAD);
2117 		} else {
2118 			m = rxs->rxs_mbuf;
2119 			if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
2120  dropit:
2121 				ifp->if_ierrors++;
2122 				SIP_INIT_RXDESC(sc, i);
2123 				bus_dmamap_sync(sc->sc_dmat,
2124 				    rxs->rxs_dmamap, 0,
2125 				    rxs->rxs_dmamap->dm_mapsize,
2126 				    BUS_DMASYNC_PREREAD);
2127 				continue;
2128 			}
2129 		}
2130 #else
2131 		/*
2132 		 * The SiS 900's receive buffers must be 4-byte aligned.
2133 		 * But this means that the data after the Ethernet header
2134 		 * is misaligned.  We must allocate a new buffer and
2135 		 * copy the data, shifted forward 2 bytes.
2136 		 */
2137 		MGETHDR(m, M_DONTWAIT, MT_DATA);
2138 		if (m == NULL) {
2139  dropit:
2140 			ifp->if_ierrors++;
2141 			SIP_INIT_RXDESC(sc, i);
2142 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2143 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2144 			continue;
2145 		}
2146 		if (len > (MHLEN - 2)) {
2147 			MCLGET(m, M_DONTWAIT);
2148 			if ((m->m_flags & M_EXT) == 0) {
2149 				m_freem(m);
2150 				goto dropit;
2151 			}
2152 		}
2153 		m->m_data += 2;
2154 
2155 		/*
2156 		 * Note that we use clusters for incoming frames, so the
2157 		 * buffer is virtually contiguous.
2158 		 */
2159 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
2160 
2161 		/* Allow the receive descriptor to continue using its mbuf. */
2162 		SIP_INIT_RXDESC(sc, i);
2163 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2164 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2165 #endif /* __NO_STRICT_ALIGNMENT */
2166 
2167 		ifp->if_ipackets++;
2168 		m->m_flags |= M_HASFCS;
2169 		m->m_pkthdr.rcvif = ifp;
2170 		m->m_pkthdr.len = m->m_len = len;
2171 
2172 #if NBPFILTER > 0
2173 		/*
2174 		 * Pass this up to any BPF listeners, but only
2175 		 * pass if up the stack if it's for us.
2176 		 */
2177 		if (ifp->if_bpf)
2178 			bpf_mtap(ifp->if_bpf, m);
2179 #endif /* NBPFILTER > 0 */
2180 
2181 		/* Pass it on. */
2182 		(*ifp->if_input)(ifp, m);
2183 	}
2184 
2185 	/* Update the receive pointer. */
2186 	sc->sc_rxptr = i;
2187 }
2188 #endif /* DP83820 */
2189 
2190 /*
2191  * sip_tick:
2192  *
2193  *	One second timer, used to tick the MII.
2194  */
2195 static void
2196 SIP_DECL(tick)(void *arg)
2197 {
2198 	struct sip_softc *sc = arg;
2199 	int s;
2200 
2201 	s = splnet();
2202 #ifdef DP83820
2203 #ifdef SIP_EVENT_COUNTERS
2204 	/* Read PAUSE related counts from MIB registers. */
2205 	sc->sc_ev_rxpause.ev_count +=
2206 	    bus_space_read_4(sc->sc_st, sc->sc_sh,
2207 			     SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2208 	sc->sc_ev_txpause.ev_count +=
2209 	    bus_space_read_4(sc->sc_st, sc->sc_sh,
2210 			     SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2211 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2212 #endif /* SIP_EVENT_COUNTERS */
2213 #endif /* DP83820 */
2214 	mii_tick(&sc->sc_mii);
2215 	splx(s);
2216 
2217 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2218 }
2219 
2220 /*
2221  * sip_reset:
2222  *
2223  *	Perform a soft reset on the SiS 900.
2224  */
2225 static void
2226 SIP_DECL(reset)(struct sip_softc *sc)
2227 {
2228 	bus_space_tag_t st = sc->sc_st;
2229 	bus_space_handle_t sh = sc->sc_sh;
2230 	int i;
2231 
2232 	bus_space_write_4(st, sh, SIP_IER, 0);
2233 	bus_space_write_4(st, sh, SIP_IMR, 0);
2234 	bus_space_write_4(st, sh, SIP_RFCR, 0);
2235 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
2236 
2237 	for (i = 0; i < SIP_TIMEOUT; i++) {
2238 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2239 			break;
2240 		delay(2);
2241 	}
2242 
2243 	if (i == SIP_TIMEOUT)
2244 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2245 
2246 	delay(1000);
2247 
2248 #ifdef DP83820
2249 	/*
2250 	 * Set the general purpose I/O bits.  Do it here in case we
2251 	 * need to have GPIO set up to talk to the media interface.
2252 	 */
2253 	bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2254 	delay(1000);
2255 #endif /* DP83820 */
2256 }
2257 
2258 /*
2259  * sip_init:		[ ifnet interface function ]
2260  *
2261  *	Initialize the interface.  Must be called at splnet().
2262  */
2263 static int
2264 SIP_DECL(init)(struct ifnet *ifp)
2265 {
2266 	struct sip_softc *sc = ifp->if_softc;
2267 	bus_space_tag_t st = sc->sc_st;
2268 	bus_space_handle_t sh = sc->sc_sh;
2269 	struct sip_txsoft *txs;
2270 	struct sip_rxsoft *rxs;
2271 	struct sip_desc *sipd;
2272 #if defined(DP83820)
2273 	u_int32_t reg;
2274 #endif
2275 	int i, error = 0;
2276 
2277 	/*
2278 	 * Cancel any pending I/O.
2279 	 */
2280 	SIP_DECL(stop)(ifp, 0);
2281 
2282 	/*
2283 	 * Reset the chip to a known state.
2284 	 */
2285 	SIP_DECL(reset)(sc);
2286 
2287 #if !defined(DP83820)
2288 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2289 		/*
2290 		 * DP83815 manual, page 78:
2291 		 *    4.4 Recommended Registers Configuration
2292 		 *    For optimum performance of the DP83815, version noted
2293 		 *    as DP83815CVNG (SRR = 203h), the listed register
2294 		 *    modifications must be followed in sequence...
2295 		 *
2296 		 * It's not clear if this should be 302h or 203h because that
2297 		 * chip name is listed as SRR 302h in the description of the
2298 		 * SRR register.  However, my revision 302h DP83815 on the
2299 		 * Netgear FA311 purchased in 02/2001 needs these settings
2300 		 * to avoid tons of errors in AcceptPerfectMatch (non-
2301 		 * IFF_PROMISC) mode.  I do not know if other revisions need
2302 		 * this set or not.  [briggs -- 09 March 2001]
2303 		 *
2304 		 * Note that only the low-order 12 bits of 0xe4 are documented
2305 		 * and that this sets reserved bits in that register.
2306 		 */
2307 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
2308 
2309 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
2310 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
2311 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
2312 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
2313 
2314 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
2315 	}
2316 #endif /* ! DP83820 */
2317 
2318 	/*
2319 	 * Initialize the transmit descriptor ring.
2320 	 */
2321 	for (i = 0; i < SIP_NTXDESC; i++) {
2322 		sipd = &sc->sc_txdescs[i];
2323 		memset(sipd, 0, sizeof(struct sip_desc));
2324 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2325 	}
2326 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2327 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2328 	sc->sc_txfree = SIP_NTXDESC;
2329 	sc->sc_txnext = 0;
2330 	sc->sc_txwin = 0;
2331 
2332 	/*
2333 	 * Initialize the transmit job descriptors.
2334 	 */
2335 	SIMPLEQ_INIT(&sc->sc_txfreeq);
2336 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
2337 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
2338 		txs = &sc->sc_txsoft[i];
2339 		txs->txs_mbuf = NULL;
2340 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2341 	}
2342 
2343 	/*
2344 	 * Initialize the receive descriptor and receive job
2345 	 * descriptor rings.
2346 	 */
2347 	for (i = 0; i < SIP_NRXDESC; i++) {
2348 		rxs = &sc->sc_rxsoft[i];
2349 		if (rxs->rxs_mbuf == NULL) {
2350 			if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2351 				printf("%s: unable to allocate or map rx "
2352 				    "buffer %d, error = %d\n",
2353 				    sc->sc_dev.dv_xname, i, error);
2354 				/*
2355 				 * XXX Should attempt to run with fewer receive
2356 				 * XXX buffers instead of just failing.
2357 				 */
2358 				SIP_DECL(rxdrain)(sc);
2359 				goto out;
2360 			}
2361 		} else
2362 			SIP_INIT_RXDESC(sc, i);
2363 	}
2364 	sc->sc_rxptr = 0;
2365 #ifdef DP83820
2366 	sc->sc_rxdiscard = 0;
2367 	SIP_RXCHAIN_RESET(sc);
2368 #endif /* DP83820 */
2369 
2370 	/*
2371 	 * Set the configuration register; it's already initialized
2372 	 * in sip_attach().
2373 	 */
2374 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2375 
2376 	/*
2377 	 * Initialize the prototype TXCFG register.
2378 	 */
2379 #if defined(DP83820)
2380 	sc->sc_txcfg = TXCFG_MXDMA_512;
2381 	sc->sc_rxcfg = RXCFG_MXDMA_512;
2382 #else
2383 	if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2384 	     SIP_SIS900_REV(sc, SIS_REV_960) ||
2385 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2386 	    (sc->sc_cfg & CFG_EDBMASTEN)) {
2387 		sc->sc_txcfg = TXCFG_MXDMA_64;
2388 		sc->sc_rxcfg = RXCFG_MXDMA_64;
2389 	} else {
2390 		sc->sc_txcfg = TXCFG_MXDMA_512;
2391 		sc->sc_rxcfg = RXCFG_MXDMA_512;
2392 	}
2393 #endif /* DP83820 */
2394 
2395 	sc->sc_txcfg |= TXCFG_ATP |
2396 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2397 	    sc->sc_tx_drain_thresh;
2398 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2399 
2400 	/*
2401 	 * Initialize the receive drain threshold if we have never
2402 	 * done so.
2403 	 */
2404 	if (sc->sc_rx_drain_thresh == 0) {
2405 		/*
2406 		 * XXX This value should be tuned.  This is set to the
2407 		 * maximum of 248 bytes, and we may be able to improve
2408 		 * performance by decreasing it (although we should never
2409 		 * set this value lower than 2; 14 bytes are required to
2410 		 * filter the packet).
2411 		 */
2412 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2413 	}
2414 
2415 	/*
2416 	 * Initialize the prototype RXCFG register.
2417 	 */
2418 	sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2419 #ifdef DP83820
2420 	/*
2421 	 * Accept long packets (including FCS) so we can handle
2422 	 * 802.1q-tagged frames and jumbo frames properly.
2423 	 */
2424 	if (ifp->if_mtu > ETHERMTU ||
2425 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2426 		sc->sc_rxcfg |= RXCFG_ALP;
2427 
2428 	/*
2429 	 * Checksum offloading is disabled if the user selects an MTU
2430 	 * larger than 8109.  (FreeBSD says 8152, but there is emperical
2431 	 * evidence that >8109 does not work on some boards, such as the
2432 	 * Planex GN-1000TE).
2433 	 */
2434 	if (ifp->if_mtu > 8109 &&
2435 	    (ifp->if_capenable &
2436 	     (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))) {
2437 		printf("%s: Checksum offloading does not work if MTU > 8109 - "
2438 		       "disabled.\n", sc->sc_dev.dv_xname);
2439 		ifp->if_capenable &= ~(IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|
2440 				       IFCAP_CSUM_UDPv4);
2441 		ifp->if_csum_flags_tx = 0;
2442 		ifp->if_csum_flags_rx = 0;
2443 	}
2444 #else
2445 	/*
2446 	 * Accept packets >1518 bytes (including FCS) so we can handle
2447 	 * 802.1q-tagged frames properly.
2448 	 */
2449 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2450 		sc->sc_rxcfg |= RXCFG_ALP;
2451 #endif
2452 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2453 
2454 #ifdef DP83820
2455 	/*
2456 	 * Initialize the VLAN/IP receive control register.
2457 	 * We enable checksum computation on all incoming
2458 	 * packets, and do not reject packets w/ bad checksums.
2459 	 */
2460 	reg = 0;
2461 	if (ifp->if_capenable &
2462 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2463 		reg |= VRCR_IPEN;
2464 	if (sc->sc_ethercom.ec_nvlans != 0)
2465 		reg |= VRCR_VTDEN|VRCR_VTREN;
2466 	bus_space_write_4(st, sh, SIP_VRCR, reg);
2467 
2468 	/*
2469 	 * Initialize the VLAN/IP transmit control register.
2470 	 * We enable outgoing checksum computation on a
2471 	 * per-packet basis.
2472 	 */
2473 	reg = 0;
2474 	if (ifp->if_capenable &
2475 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2476 		reg |= VTCR_PPCHK;
2477 	if (sc->sc_ethercom.ec_nvlans != 0)
2478 		reg |= VTCR_VPPTI;
2479 	bus_space_write_4(st, sh, SIP_VTCR, reg);
2480 
2481 	/*
2482 	 * If we're using VLANs, initialize the VLAN data register.
2483 	 * To understand why we bswap the VLAN Ethertype, see section
2484 	 * 4.2.36 of the DP83820 manual.
2485 	 */
2486 	if (sc->sc_ethercom.ec_nvlans != 0)
2487 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2488 #endif /* DP83820 */
2489 
2490 	/*
2491 	 * Give the transmit and receive rings to the chip.
2492 	 */
2493 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2494 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2495 
2496 	/*
2497 	 * Initialize the interrupt mask.
2498 	 */
2499 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2500 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2501 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2502 
2503 	/* Set up the receive filter. */
2504 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2505 
2506 #ifdef DP83820
2507 	/*
2508 	 * Tune sc_rx_flow_thresh.
2509 	 * XXX "More than 8KB" is too short for jumbo frames.
2510 	 * XXX TODO: Threshold value should be user-settable.
2511 	 */
2512 	sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2513 				 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2514 				 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2515 #endif
2516 
2517 	/*
2518 	 * Set the current media.  Do this after initializing the prototype
2519 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2520 	 * control.
2521 	 */
2522 	mii_mediachg(&sc->sc_mii);
2523 
2524 #ifdef DP83820
2525 	/*
2526 	 * Set the interrupt hold-off timer to 100us.
2527 	 */
2528 	bus_space_write_4(st, sh, SIP_IHR, 0x01);
2529 #endif
2530 
2531 	/*
2532 	 * Enable interrupts.
2533 	 */
2534 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
2535 
2536 	/*
2537 	 * Start the transmit and receive processes.
2538 	 */
2539 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2540 
2541 	/*
2542 	 * Start the one second MII clock.
2543 	 */
2544 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2545 
2546 	/*
2547 	 * ...all done!
2548 	 */
2549 	ifp->if_flags |= IFF_RUNNING;
2550 	ifp->if_flags &= ~IFF_OACTIVE;
2551 
2552  out:
2553 	if (error)
2554 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2555 	return (error);
2556 }
2557 
2558 /*
2559  * sip_drain:
2560  *
2561  *	Drain the receive queue.
2562  */
2563 static void
2564 SIP_DECL(rxdrain)(struct sip_softc *sc)
2565 {
2566 	struct sip_rxsoft *rxs;
2567 	int i;
2568 
2569 	for (i = 0; i < SIP_NRXDESC; i++) {
2570 		rxs = &sc->sc_rxsoft[i];
2571 		if (rxs->rxs_mbuf != NULL) {
2572 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2573 			m_freem(rxs->rxs_mbuf);
2574 			rxs->rxs_mbuf = NULL;
2575 		}
2576 	}
2577 }
2578 
2579 /*
2580  * sip_stop:		[ ifnet interface function ]
2581  *
2582  *	Stop transmission on the interface.
2583  */
2584 static void
2585 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2586 {
2587 	struct sip_softc *sc = ifp->if_softc;
2588 	bus_space_tag_t st = sc->sc_st;
2589 	bus_space_handle_t sh = sc->sc_sh;
2590 	struct sip_txsoft *txs;
2591 	u_int32_t cmdsts = 0;		/* DEBUG */
2592 
2593 	/*
2594 	 * Stop the one second clock.
2595 	 */
2596 	callout_stop(&sc->sc_tick_ch);
2597 
2598 	/* Down the MII. */
2599 	mii_down(&sc->sc_mii);
2600 
2601 	/*
2602 	 * Disable interrupts.
2603 	 */
2604 	bus_space_write_4(st, sh, SIP_IER, 0);
2605 
2606 	/*
2607 	 * Stop receiver and transmitter.
2608 	 */
2609 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2610 
2611 	/*
2612 	 * Release any queued transmit buffers.
2613 	 */
2614 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2615 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2616 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2617 		    (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2618 		     CMDSTS_INTR) == 0)
2619 			printf("%s: sip_stop: last descriptor does not "
2620 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
2621 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2622 #ifdef DIAGNOSTIC
2623 		if (txs->txs_mbuf == NULL) {
2624 			printf("%s: dirty txsoft with no mbuf chain\n",
2625 			    sc->sc_dev.dv_xname);
2626 			panic("sip_stop");
2627 		}
2628 #endif
2629 		cmdsts |=		/* DEBUG */
2630 		    le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2631 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2632 		m_freem(txs->txs_mbuf);
2633 		txs->txs_mbuf = NULL;
2634 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2635 	}
2636 
2637 	if (disable)
2638 		SIP_DECL(rxdrain)(sc);
2639 
2640 	/*
2641 	 * Mark the interface down and cancel the watchdog timer.
2642 	 */
2643 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2644 	ifp->if_timer = 0;
2645 
2646 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2647 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2648 		printf("%s: sip_stop: no INTR bits set in dirty tx "
2649 		    "descriptors\n", sc->sc_dev.dv_xname);
2650 }
2651 
2652 /*
2653  * sip_read_eeprom:
2654  *
2655  *	Read data from the serial EEPROM.
2656  */
2657 static void
2658 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2659     u_int16_t *data)
2660 {
2661 	bus_space_tag_t st = sc->sc_st;
2662 	bus_space_handle_t sh = sc->sc_sh;
2663 	u_int16_t reg;
2664 	int i, x;
2665 
2666 	for (i = 0; i < wordcnt; i++) {
2667 		/* Send CHIP SELECT. */
2668 		reg = EROMAR_EECS;
2669 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
2670 
2671 		/* Shift in the READ opcode. */
2672 		for (x = 3; x > 0; x--) {
2673 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2674 				reg |= EROMAR_EEDI;
2675 			else
2676 				reg &= ~EROMAR_EEDI;
2677 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2678 			bus_space_write_4(st, sh, SIP_EROMAR,
2679 			    reg | EROMAR_EESK);
2680 			delay(4);
2681 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2682 			delay(4);
2683 		}
2684 
2685 		/* Shift in address. */
2686 		for (x = 6; x > 0; x--) {
2687 			if ((word + i) & (1 << (x - 1)))
2688 				reg |= EROMAR_EEDI;
2689 			else
2690 				reg &= ~EROMAR_EEDI;
2691 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2692 			bus_space_write_4(st, sh, SIP_EROMAR,
2693 			    reg | EROMAR_EESK);
2694 			delay(4);
2695 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2696 			delay(4);
2697 		}
2698 
2699 		/* Shift out data. */
2700 		reg = EROMAR_EECS;
2701 		data[i] = 0;
2702 		for (x = 16; x > 0; x--) {
2703 			bus_space_write_4(st, sh, SIP_EROMAR,
2704 			    reg | EROMAR_EESK);
2705 			delay(4);
2706 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2707 				data[i] |= (1 << (x - 1));
2708 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2709 			delay(4);
2710 		}
2711 
2712 		/* Clear CHIP SELECT. */
2713 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
2714 		delay(4);
2715 	}
2716 }
2717 
2718 /*
2719  * sip_add_rxbuf:
2720  *
2721  *	Add a receive buffer to the indicated descriptor.
2722  */
2723 static int
2724 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2725 {
2726 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2727 	struct mbuf *m;
2728 	int error;
2729 
2730 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2731 	if (m == NULL)
2732 		return (ENOBUFS);
2733 
2734 	MCLGET(m, M_DONTWAIT);
2735 	if ((m->m_flags & M_EXT) == 0) {
2736 		m_freem(m);
2737 		return (ENOBUFS);
2738 	}
2739 
2740 #if defined(DP83820)
2741 	m->m_len = SIP_RXBUF_LEN;
2742 #endif /* DP83820 */
2743 
2744 	if (rxs->rxs_mbuf != NULL)
2745 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2746 
2747 	rxs->rxs_mbuf = m;
2748 
2749 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2750 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2751 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2752 	if (error) {
2753 		printf("%s: can't load rx DMA map %d, error = %d\n",
2754 		    sc->sc_dev.dv_xname, idx, error);
2755 		panic("sip_add_rxbuf");		/* XXX */
2756 	}
2757 
2758 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2759 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2760 
2761 	SIP_INIT_RXDESC(sc, idx);
2762 
2763 	return (0);
2764 }
2765 
2766 #if !defined(DP83820)
2767 /*
2768  * sip_sis900_set_filter:
2769  *
2770  *	Set up the receive filter.
2771  */
2772 static void
2773 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2774 {
2775 	bus_space_tag_t st = sc->sc_st;
2776 	bus_space_handle_t sh = sc->sc_sh;
2777 	struct ethercom *ec = &sc->sc_ethercom;
2778 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2779 	struct ether_multi *enm;
2780 	u_int8_t *cp;
2781 	struct ether_multistep step;
2782 	u_int32_t crc, mchash[16];
2783 
2784 	/*
2785 	 * Initialize the prototype RFCR.
2786 	 */
2787 	sc->sc_rfcr = RFCR_RFEN;
2788 	if (ifp->if_flags & IFF_BROADCAST)
2789 		sc->sc_rfcr |= RFCR_AAB;
2790 	if (ifp->if_flags & IFF_PROMISC) {
2791 		sc->sc_rfcr |= RFCR_AAP;
2792 		goto allmulti;
2793 	}
2794 
2795 	/*
2796 	 * Set up the multicast address filter by passing all multicast
2797 	 * addresses through a CRC generator, and then using the high-order
2798 	 * 6 bits as an index into the 128 bit multicast hash table (only
2799 	 * the lower 16 bits of each 32 bit multicast hash register are
2800 	 * valid).  The high order bits select the register, while the
2801 	 * rest of the bits select the bit within the register.
2802 	 */
2803 
2804 	memset(mchash, 0, sizeof(mchash));
2805 
2806 	/*
2807 	 * SiS900 (at least SiS963) requires us to register the address of
2808 	 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
2809 	 */
2810 	crc = 0x0ed423f9;
2811 
2812 	if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2813 	    SIP_SIS900_REV(sc, SIS_REV_960) ||
2814 	    SIP_SIS900_REV(sc, SIS_REV_900B)) {
2815 		/* Just want the 8 most significant bits. */
2816 		crc >>= 24;
2817 	} else {
2818 		/* Just want the 7 most significant bits. */
2819 		crc >>= 25;
2820 	}
2821 
2822 	/* Set the corresponding bit in the hash table. */
2823 	mchash[crc >> 4] |= 1 << (crc & 0xf);
2824 
2825 	ETHER_FIRST_MULTI(step, ec, enm);
2826 	while (enm != NULL) {
2827 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2828 			/*
2829 			 * We must listen to a range of multicast addresses.
2830 			 * For now, just accept all multicasts, rather than
2831 			 * trying to set only those filter bits needed to match
2832 			 * the range.  (At this time, the only use of address
2833 			 * ranges is for IP multicast routing, for which the
2834 			 * range is big enough to require all bits set.)
2835 			 */
2836 			goto allmulti;
2837 		}
2838 
2839 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2840 
2841 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2842 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
2843 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
2844 			/* Just want the 8 most significant bits. */
2845 			crc >>= 24;
2846 		} else {
2847 			/* Just want the 7 most significant bits. */
2848 			crc >>= 25;
2849 		}
2850 
2851 		/* Set the corresponding bit in the hash table. */
2852 		mchash[crc >> 4] |= 1 << (crc & 0xf);
2853 
2854 		ETHER_NEXT_MULTI(step, enm);
2855 	}
2856 
2857 	ifp->if_flags &= ~IFF_ALLMULTI;
2858 	goto setit;
2859 
2860  allmulti:
2861 	ifp->if_flags |= IFF_ALLMULTI;
2862 	sc->sc_rfcr |= RFCR_AAM;
2863 
2864  setit:
2865 #define	FILTER_EMIT(addr, data)						\
2866 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
2867 	delay(1);							\
2868 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
2869 	delay(1)
2870 
2871 	/*
2872 	 * Disable receive filter, and program the node address.
2873 	 */
2874 	cp = LLADDR(ifp->if_sadl);
2875 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2876 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2877 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2878 
2879 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2880 		/*
2881 		 * Program the multicast hash table.
2882 		 */
2883 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2884 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2885 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2886 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2887 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2888 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2889 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2890 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2891 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2892 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
2893 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
2894 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2895 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2896 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2897 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2898 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2899 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2900 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2901 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2902 		}
2903 	}
2904 #undef FILTER_EMIT
2905 
2906 	/*
2907 	 * Re-enable the receiver filter.
2908 	 */
2909 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2910 }
2911 #endif /* ! DP83820 */
2912 
2913 /*
2914  * sip_dp83815_set_filter:
2915  *
2916  *	Set up the receive filter.
2917  */
2918 static void
2919 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2920 {
2921 	bus_space_tag_t st = sc->sc_st;
2922 	bus_space_handle_t sh = sc->sc_sh;
2923 	struct ethercom *ec = &sc->sc_ethercom;
2924 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2925 	struct ether_multi *enm;
2926 	u_int8_t *cp;
2927 	struct ether_multistep step;
2928 	u_int32_t crc, hash, slot, bit;
2929 #ifdef DP83820
2930 #define	MCHASH_NWORDS	128
2931 #else
2932 #define	MCHASH_NWORDS	32
2933 #endif /* DP83820 */
2934 	u_int16_t mchash[MCHASH_NWORDS];
2935 	int i;
2936 
2937 	/*
2938 	 * Initialize the prototype RFCR.
2939 	 * Enable the receive filter, and accept on
2940 	 *    Perfect (destination address) Match
2941 	 * If IFF_BROADCAST, also accept all broadcast packets.
2942 	 * If IFF_PROMISC, accept all unicast packets (and later, set
2943 	 *    IFF_ALLMULTI and accept all multicast, too).
2944 	 */
2945 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2946 	if (ifp->if_flags & IFF_BROADCAST)
2947 		sc->sc_rfcr |= RFCR_AAB;
2948 	if (ifp->if_flags & IFF_PROMISC) {
2949 		sc->sc_rfcr |= RFCR_AAP;
2950 		goto allmulti;
2951 	}
2952 
2953 #ifdef DP83820
2954 	/*
2955 	 * Set up the DP83820 multicast address filter by passing all multicast
2956 	 * addresses through a CRC generator, and then using the high-order
2957 	 * 11 bits as an index into the 2048 bit multicast hash table.  The
2958 	 * high-order 7 bits select the slot, while the low-order 4 bits
2959 	 * select the bit within the slot.  Note that only the low 16-bits
2960 	 * of each filter word are used, and there are 128 filter words.
2961 	 */
2962 #else
2963 	/*
2964 	 * Set up the DP83815 multicast address filter by passing all multicast
2965 	 * addresses through a CRC generator, and then using the high-order
2966 	 * 9 bits as an index into the 512 bit multicast hash table.  The
2967 	 * high-order 5 bits select the slot, while the low-order 4 bits
2968 	 * select the bit within the slot.  Note that only the low 16-bits
2969 	 * of each filter word are used, and there are 32 filter words.
2970 	 */
2971 #endif /* DP83820 */
2972 
2973 	memset(mchash, 0, sizeof(mchash));
2974 
2975 	ifp->if_flags &= ~IFF_ALLMULTI;
2976 	ETHER_FIRST_MULTI(step, ec, enm);
2977 	if (enm == NULL)
2978 		goto setit;
2979 	while (enm != NULL) {
2980 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2981 			/*
2982 			 * We must listen to a range of multicast addresses.
2983 			 * For now, just accept all multicasts, rather than
2984 			 * trying to set only those filter bits needed to match
2985 			 * the range.  (At this time, the only use of address
2986 			 * ranges is for IP multicast routing, for which the
2987 			 * range is big enough to require all bits set.)
2988 			 */
2989 			goto allmulti;
2990 		}
2991 
2992 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2993 
2994 #ifdef DP83820
2995 		/* Just want the 11 most significant bits. */
2996 		hash = crc >> 21;
2997 #else
2998 		/* Just want the 9 most significant bits. */
2999 		hash = crc >> 23;
3000 #endif /* DP83820 */
3001 
3002 		slot = hash >> 4;
3003 		bit = hash & 0xf;
3004 
3005 		/* Set the corresponding bit in the hash table. */
3006 		mchash[slot] |= 1 << bit;
3007 
3008 		ETHER_NEXT_MULTI(step, enm);
3009 	}
3010 	sc->sc_rfcr |= RFCR_MHEN;
3011 	goto setit;
3012 
3013  allmulti:
3014 	ifp->if_flags |= IFF_ALLMULTI;
3015 	sc->sc_rfcr |= RFCR_AAM;
3016 
3017  setit:
3018 #define	FILTER_EMIT(addr, data)						\
3019 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
3020 	delay(1);							\
3021 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
3022 	delay(1)
3023 
3024 	/*
3025 	 * Disable receive filter, and program the node address.
3026 	 */
3027 	cp = LLADDR(ifp->if_sadl);
3028 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3029 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3030 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3031 
3032 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3033 		/*
3034 		 * Program the multicast hash table.
3035 		 */
3036 		for (i = 0; i < MCHASH_NWORDS; i++) {
3037 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
3038 			    mchash[i]);
3039 		}
3040 	}
3041 #undef FILTER_EMIT
3042 #undef MCHASH_NWORDS
3043 
3044 	/*
3045 	 * Re-enable the receiver filter.
3046 	 */
3047 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3048 }
3049 
3050 #if defined(DP83820)
3051 /*
3052  * sip_dp83820_mii_readreg:	[mii interface function]
3053  *
3054  *	Read a PHY register on the MII of the DP83820.
3055  */
3056 static int
3057 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
3058 {
3059 	struct sip_softc *sc = (void *) self;
3060 
3061 	if (sc->sc_cfg & CFG_TBI_EN) {
3062 		bus_addr_t tbireg;
3063 		int rv;
3064 
3065 		if (phy != 0)
3066 			return (0);
3067 
3068 		switch (reg) {
3069 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3070 		case MII_BMSR:		tbireg = SIP_TBISR; break;
3071 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3072 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3073 		case MII_ANER:		tbireg = SIP_TANER; break;
3074 		case MII_EXTSR:
3075 			/*
3076 			 * Don't even bother reading the TESR register.
3077 			 * The manual documents that the device has
3078 			 * 1000baseX full/half capability, but the
3079 			 * register itself seems read back 0 on some
3080 			 * boards.  Just hard-code the result.
3081 			 */
3082 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3083 
3084 		default:
3085 			return (0);
3086 		}
3087 
3088 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3089 		if (tbireg == SIP_TBISR) {
3090 			/* LINK and ACOMP are switched! */
3091 			int val = rv;
3092 
3093 			rv = 0;
3094 			if (val & TBISR_MR_LINK_STATUS)
3095 				rv |= BMSR_LINK;
3096 			if (val & TBISR_MR_AN_COMPLETE)
3097 				rv |= BMSR_ACOMP;
3098 
3099 			/*
3100 			 * The manual claims this register reads back 0
3101 			 * on hard and soft reset.  But we want to let
3102 			 * the gentbi driver know that we support auto-
3103 			 * negotiation, so hard-code this bit in the
3104 			 * result.
3105 			 */
3106 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
3107 		}
3108 
3109 		return (rv);
3110 	}
3111 
3112 	return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
3113 	    phy, reg));
3114 }
3115 
3116 /*
3117  * sip_dp83820_mii_writereg:	[mii interface function]
3118  *
3119  *	Write a PHY register on the MII of the DP83820.
3120  */
3121 static void
3122 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
3123 {
3124 	struct sip_softc *sc = (void *) self;
3125 
3126 	if (sc->sc_cfg & CFG_TBI_EN) {
3127 		bus_addr_t tbireg;
3128 
3129 		if (phy != 0)
3130 			return;
3131 
3132 		switch (reg) {
3133 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3134 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3135 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3136 		default:
3137 			return;
3138 		}
3139 
3140 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3141 		return;
3142 	}
3143 
3144 	mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
3145 	    phy, reg, val);
3146 }
3147 
3148 /*
3149  * sip_dp83820_mii_statchg:	[mii interface function]
3150  *
3151  *	Callback from MII layer when media changes.
3152  */
3153 static void
3154 SIP_DECL(dp83820_mii_statchg)(struct device *self)
3155 {
3156 	struct sip_softc *sc = (struct sip_softc *) self;
3157 	struct mii_data *mii = &sc->sc_mii;
3158 	u_int32_t cfg, pcr;
3159 
3160 	/*
3161 	 * Get flow control negotiation result.
3162 	 */
3163 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3164 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3165 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3166 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3167 	}
3168 
3169 	/*
3170 	 * Update TXCFG for full-duplex operation.
3171 	 */
3172 	if ((mii->mii_media_active & IFM_FDX) != 0)
3173 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3174 	else
3175 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3176 
3177 	/*
3178 	 * Update RXCFG for full-duplex or loopback.
3179 	 */
3180 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3181 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3182 		sc->sc_rxcfg |= RXCFG_ATX;
3183 	else
3184 		sc->sc_rxcfg &= ~RXCFG_ATX;
3185 
3186 	/*
3187 	 * Update CFG for MII/GMII.
3188 	 */
3189 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3190 		cfg = sc->sc_cfg | CFG_MODE_1000;
3191 	else
3192 		cfg = sc->sc_cfg;
3193 
3194 	/*
3195 	 * 802.3x flow control.
3196 	 */
3197 	pcr = 0;
3198 	if (sc->sc_flowflags & IFM_FLOW) {
3199 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3200 			pcr |= sc->sc_rx_flow_thresh;
3201 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3202 			pcr |= PCR_PSEN | PCR_PS_MCAST;
3203 	}
3204 
3205 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3206 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3207 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3208 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3209 }
3210 #endif /* ! DP83820 */
3211 
3212 /*
3213  * sip_mii_bitbang_read: [mii bit-bang interface function]
3214  *
3215  *	Read the MII serial port for the MII bit-bang module.
3216  */
3217 static u_int32_t
3218 SIP_DECL(mii_bitbang_read)(struct device *self)
3219 {
3220 	struct sip_softc *sc = (void *) self;
3221 
3222 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3223 }
3224 
3225 /*
3226  * sip_mii_bitbang_write: [mii big-bang interface function]
3227  *
3228  *	Write the MII serial port for the MII bit-bang module.
3229  */
3230 static void
3231 SIP_DECL(mii_bitbang_write)(struct device *self, u_int32_t val)
3232 {
3233 	struct sip_softc *sc = (void *) self;
3234 
3235 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3236 }
3237 
3238 #ifndef DP83820
3239 /*
3240  * sip_sis900_mii_readreg:	[mii interface function]
3241  *
3242  *	Read a PHY register on the MII.
3243  */
3244 static int
3245 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
3246 {
3247 	struct sip_softc *sc = (struct sip_softc *) self;
3248 	u_int32_t enphy;
3249 
3250 	/*
3251 	 * The PHY of recent SiS chipsets is accessed through bitbang
3252 	 * operations.
3253 	 */
3254 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3255 		return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
3256 		    phy, reg));
3257 
3258 #ifndef SIS900_MII_RESTRICT
3259 	/*
3260 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3261 	 * MII address 0.
3262 	 */
3263 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3264 		return (0);
3265 #endif
3266 
3267 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3268 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3269 	    ENPHY_RWCMD | ENPHY_ACCESS);
3270 	do {
3271 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3272 	} while (enphy & ENPHY_ACCESS);
3273 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3274 }
3275 
3276 /*
3277  * sip_sis900_mii_writereg:	[mii interface function]
3278  *
3279  *	Write a PHY register on the MII.
3280  */
3281 static void
3282 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
3283 {
3284 	struct sip_softc *sc = (struct sip_softc *) self;
3285 	u_int32_t enphy;
3286 
3287 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3288 		mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
3289 		    phy, reg, val);
3290 		return;
3291 	}
3292 
3293 #ifndef SIS900_MII_RESTRICT
3294 	/*
3295 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3296 	 * MII address 0.
3297 	 */
3298 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3299 		return;
3300 #endif
3301 
3302 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3303 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3304 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3305 	do {
3306 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3307 	} while (enphy & ENPHY_ACCESS);
3308 }
3309 
3310 /*
3311  * sip_sis900_mii_statchg:	[mii interface function]
3312  *
3313  *	Callback from MII layer when media changes.
3314  */
3315 static void
3316 SIP_DECL(sis900_mii_statchg)(struct device *self)
3317 {
3318 	struct sip_softc *sc = (struct sip_softc *) self;
3319 	struct mii_data *mii = &sc->sc_mii;
3320 	u_int32_t flowctl;
3321 
3322 	/*
3323 	 * Get flow control negotiation result.
3324 	 */
3325 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3326 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3327 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3328 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3329 	}
3330 
3331 	/*
3332 	 * Update TXCFG for full-duplex operation.
3333 	 */
3334 	if ((mii->mii_media_active & IFM_FDX) != 0)
3335 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3336 	else
3337 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3338 
3339 	/*
3340 	 * Update RXCFG for full-duplex or loopback.
3341 	 */
3342 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3343 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3344 		sc->sc_rxcfg |= RXCFG_ATX;
3345 	else
3346 		sc->sc_rxcfg &= ~RXCFG_ATX;
3347 
3348 	/*
3349 	 * Update IMR for use of 802.3x flow control.
3350 	 */
3351 	if (sc->sc_flowflags & IFM_FLOW) {
3352 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3353 		flowctl = FLOWCTL_FLOWEN;
3354 	} else {
3355 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3356 		flowctl = 0;
3357 	}
3358 
3359 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3360 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3361 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3362 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3363 }
3364 
3365 /*
3366  * sip_dp83815_mii_readreg:	[mii interface function]
3367  *
3368  *	Read a PHY register on the MII.
3369  */
3370 static int
3371 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
3372 {
3373 	struct sip_softc *sc = (struct sip_softc *) self;
3374 	u_int32_t val;
3375 
3376 	/*
3377 	 * The DP83815 only has an internal PHY.  Only allow
3378 	 * MII address 0.
3379 	 */
3380 	if (phy != 0)
3381 		return (0);
3382 
3383 	/*
3384 	 * Apparently, after a reset, the DP83815 can take a while
3385 	 * to respond.  During this recovery period, the BMSR returns
3386 	 * a value of 0.  Catch this -- it's not supposed to happen
3387 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3388 	 * PHY to come back to life.
3389 	 *
3390 	 * This works out because the BMSR is the first register
3391 	 * read during the PHY probe process.
3392 	 */
3393 	do {
3394 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3395 	} while (reg == MII_BMSR && val == 0);
3396 
3397 	return (val & 0xffff);
3398 }
3399 
3400 /*
3401  * sip_dp83815_mii_writereg:	[mii interface function]
3402  *
3403  *	Write a PHY register to the MII.
3404  */
3405 static void
3406 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
3407 {
3408 	struct sip_softc *sc = (struct sip_softc *) self;
3409 
3410 	/*
3411 	 * The DP83815 only has an internal PHY.  Only allow
3412 	 * MII address 0.
3413 	 */
3414 	if (phy != 0)
3415 		return;
3416 
3417 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3418 }
3419 
3420 /*
3421  * sip_dp83815_mii_statchg:	[mii interface function]
3422  *
3423  *	Callback from MII layer when media changes.
3424  */
3425 static void
3426 SIP_DECL(dp83815_mii_statchg)(struct device *self)
3427 {
3428 	struct sip_softc *sc = (struct sip_softc *) self;
3429 
3430 	/*
3431 	 * Update TXCFG for full-duplex operation.
3432 	 */
3433 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3434 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3435 	else
3436 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3437 
3438 	/*
3439 	 * Update RXCFG for full-duplex or loopback.
3440 	 */
3441 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3442 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3443 		sc->sc_rxcfg |= RXCFG_ATX;
3444 	else
3445 		sc->sc_rxcfg &= ~RXCFG_ATX;
3446 
3447 	/*
3448 	 * XXX 802.3x flow control.
3449 	 */
3450 
3451 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3452 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3453 
3454 	/*
3455 	 * Some DP83815s experience problems when used with short
3456 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
3457 	 * sequence adjusts the DSP's signal attenuation to fix the
3458 	 * problem.
3459 	 */
3460 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3461 		uint32_t reg;
3462 
3463 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3464 
3465 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3466 		reg &= 0x0fff;
3467 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3468 		delay(100);
3469 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3470 		reg &= 0x00ff;
3471 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3472 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3473 			    0x00e8);
3474 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3475 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3476 			    reg | 0x20);
3477 		}
3478 
3479 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3480 	}
3481 }
3482 #endif /* DP83820 */
3483 
3484 #if defined(DP83820)
3485 static void
3486 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
3487     const struct pci_attach_args *pa, u_int8_t *enaddr)
3488 {
3489 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3490 	u_int8_t cksum, *e, match;
3491 	int i;
3492 
3493 	/*
3494 	 * EEPROM data format for the DP83820 can be found in
3495 	 * the DP83820 manual, section 4.2.4.
3496 	 */
3497 
3498 	SIP_DECL(read_eeprom)(sc, 0,
3499 	    sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
3500 
3501 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3502 	match = ~(match - 1);
3503 
3504 	cksum = 0x55;
3505 	e = (u_int8_t *) eeprom_data;
3506 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3507 		cksum += *e++;
3508 
3509 	if (cksum != match)
3510 		printf("%s: Checksum (%x) mismatch (%x)",
3511 		    sc->sc_dev.dv_xname, cksum, match);
3512 
3513 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3514 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3515 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3516 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3517 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3518 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3519 }
3520 #else /* ! DP83820 */
3521 static void
3522 SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc)
3523 {
3524 	int i;
3525 
3526 	/*
3527 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
3528 	 * a reason, but I don't know it.
3529 	 */
3530 	for (i = 0; i < 10; i++)
3531 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3532 }
3533 
3534 static void
3535 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
3536     const struct pci_attach_args *pa, u_int8_t *enaddr)
3537 {
3538 	u_int16_t myea[ETHER_ADDR_LEN / 2];
3539 
3540 	switch (sc->sc_rev) {
3541 	case SIS_REV_630S:
3542 	case SIS_REV_630E:
3543 	case SIS_REV_630EA1:
3544 	case SIS_REV_630ET:
3545 	case SIS_REV_635:
3546 		/*
3547 		 * The MAC address for the on-board Ethernet of
3548 		 * the SiS 630 chipset is in the NVRAM.  Kick
3549 		 * the chip into re-loading it from NVRAM, and
3550 		 * read the MAC address out of the filter registers.
3551 		 */
3552 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3553 
3554 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3555 		    RFCR_RFADDR_NODE0);
3556 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3557 		    0xffff;
3558 
3559 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3560 		    RFCR_RFADDR_NODE2);
3561 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3562 		    0xffff;
3563 
3564 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3565 		    RFCR_RFADDR_NODE4);
3566 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3567 		    0xffff;
3568 		break;
3569 
3570 	case SIS_REV_960:
3571 		{
3572 #define	SIS_SET_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3573 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3574 
3575 #define	SIS_CLR_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3576 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3577 
3578 			int waittime, i;
3579 
3580 			/* Allow to read EEPROM from LAN. It is shared
3581 			 * between a 1394 controller and the NIC and each
3582 			 * time we access it, we need to set SIS_EECMD_REQ.
3583 			 */
3584 			SIS_SET_EROMAR(sc, EROMAR_REQ);
3585 
3586 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3587 				/* Force EEPROM to idle state. */
3588 
3589 				/*
3590 				 * XXX-cube This is ugly.  I'll look for docs about it.
3591 				 */
3592 				SIS_SET_EROMAR(sc, EROMAR_EECS);
3593 				SIP_DECL(sis900_eeprom_delay)(sc);
3594 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3595 					SIS_SET_EROMAR(sc, EROMAR_EESK);
3596 					SIP_DECL(sis900_eeprom_delay)(sc);
3597 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
3598 					SIP_DECL(sis900_eeprom_delay)(sc);
3599 				}
3600 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
3601 				SIP_DECL(sis900_eeprom_delay)(sc);
3602 				bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3603 
3604 				if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3605 					SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3606 					    sizeof(myea) / sizeof(myea[0]), myea);
3607 					break;
3608 				}
3609 				DELAY(1);
3610 			}
3611 
3612 			/*
3613 			 * Set SIS_EECTL_CLK to high, so a other master
3614 			 * can operate on the i2c bus.
3615 			 */
3616 			SIS_SET_EROMAR(sc, EROMAR_EESK);
3617 
3618 			/* Refuse EEPROM access by LAN */
3619 			SIS_SET_EROMAR(sc, EROMAR_DONE);
3620 		} break;
3621 
3622 	default:
3623 		SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3624 		    sizeof(myea) / sizeof(myea[0]), myea);
3625 	}
3626 
3627 	enaddr[0] = myea[0] & 0xff;
3628 	enaddr[1] = myea[0] >> 8;
3629 	enaddr[2] = myea[1] & 0xff;
3630 	enaddr[3] = myea[1] >> 8;
3631 	enaddr[4] = myea[2] & 0xff;
3632 	enaddr[5] = myea[2] >> 8;
3633 }
3634 
3635 /* Table and macro to bit-reverse an octet. */
3636 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3637 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3638 
3639 static void
3640 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3641     const struct pci_attach_args *pa, u_int8_t *enaddr)
3642 {
3643 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3644 	u_int8_t cksum, *e, match;
3645 	int i;
3646 
3647 	SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3648 	    sizeof(eeprom_data[0]), eeprom_data);
3649 
3650 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3651 	match = ~(match - 1);
3652 
3653 	cksum = 0x55;
3654 	e = (u_int8_t *) eeprom_data;
3655 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3656 		cksum += *e++;
3657 	}
3658 	if (cksum != match) {
3659 		printf("%s: Checksum (%x) mismatch (%x)",
3660 		    sc->sc_dev.dv_xname, cksum, match);
3661 	}
3662 
3663 	/*
3664 	 * Unrolled because it makes slightly more sense this way.
3665 	 * The DP83815 stores the MAC address in bit 0 of word 6
3666 	 * through bit 15 of word 8.
3667 	 */
3668 	ea = &eeprom_data[6];
3669 	enaddr[0] = ((*ea & 0x1) << 7);
3670 	ea++;
3671 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
3672 	enaddr[1] = ((*ea & 0x1FE) >> 1);
3673 	enaddr[2] = ((*ea & 0x1) << 7);
3674 	ea++;
3675 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
3676 	enaddr[3] = ((*ea & 0x1FE) >> 1);
3677 	enaddr[4] = ((*ea & 0x1) << 7);
3678 	ea++;
3679 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
3680 	enaddr[5] = ((*ea & 0x1FE) >> 1);
3681 
3682 	/*
3683 	 * In case that's not weird enough, we also need to reverse
3684 	 * the bits in each byte.  This all actually makes more sense
3685 	 * if you think about the EEPROM storage as an array of bits
3686 	 * being shifted into bytes, but that's not how we're looking
3687 	 * at it here...
3688 	 */
3689 	for (i = 0; i < 6 ;i++)
3690 		enaddr[i] = bbr(enaddr[i]);
3691 }
3692 #endif /* DP83820 */
3693 
3694 /*
3695  * sip_mediastatus:	[ifmedia interface function]
3696  *
3697  *	Get the current interface media status.
3698  */
3699 static void
3700 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3701 {
3702 	struct sip_softc *sc = ifp->if_softc;
3703 
3704 	mii_pollstat(&sc->sc_mii);
3705 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
3706 	ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3707 			   sc->sc_flowflags;
3708 }
3709 
3710 /*
3711  * sip_mediachange:	[ifmedia interface function]
3712  *
3713  *	Set hardware to newly-selected media.
3714  */
3715 static int
3716 SIP_DECL(mediachange)(struct ifnet *ifp)
3717 {
3718 	struct sip_softc *sc = ifp->if_softc;
3719 
3720 	if (ifp->if_flags & IFF_UP)
3721 		mii_mediachg(&sc->sc_mii);
3722 	return (0);
3723 }
3724