xref: /netbsd-src/sys/dev/pci/if_sip.c (revision da9817918ec7e88db2912a2882967c7570a83f47)
1 /*	$NetBSD: if_sip.c,v 1.140 2009/05/05 21:34:13 dyoung Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1999 Network Computer, Inc.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of Network Computer, Inc. nor the names of its
45  *    contributors may be used to endorse or promote products derived
46  *    from this software without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
49  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
50  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
51  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
52  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
53  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
54  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
55  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
56  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
57  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
58  * POSSIBILITY OF SUCH DAMAGE.
59  */
60 
61 /*
62  * Device driver for the Silicon Integrated Systems SiS 900,
63  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
64  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
65  * controllers.
66  *
67  * Originally written to support the SiS 900 by Jason R. Thorpe for
68  * Network Computer, Inc.
69  *
70  * TODO:
71  *
72  *	- Reduce the Rx interrupt load.
73  */
74 
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.140 2009/05/05 21:34:13 dyoung Exp $");
77 
78 #include "bpfilter.h"
79 #include "rnd.h"
80 
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/callout.h>
84 #include <sys/mbuf.h>
85 #include <sys/malloc.h>
86 #include <sys/kernel.h>
87 #include <sys/socket.h>
88 #include <sys/ioctl.h>
89 #include <sys/errno.h>
90 #include <sys/device.h>
91 #include <sys/queue.h>
92 
93 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
94 
95 #if NRND > 0
96 #include <sys/rnd.h>
97 #endif
98 
99 #include <net/if.h>
100 #include <net/if_dl.h>
101 #include <net/if_media.h>
102 #include <net/if_ether.h>
103 
104 #if NBPFILTER > 0
105 #include <net/bpf.h>
106 #endif
107 
108 #include <sys/bus.h>
109 #include <sys/intr.h>
110 #include <machine/endian.h>
111 
112 #include <dev/mii/mii.h>
113 #include <dev/mii/miivar.h>
114 #include <dev/mii/mii_bitbang.h>
115 
116 #include <dev/pci/pcireg.h>
117 #include <dev/pci/pcivar.h>
118 #include <dev/pci/pcidevs.h>
119 
120 #include <dev/pci/if_sipreg.h>
121 
122 /*
123  * Transmit descriptor list size.  This is arbitrary, but allocate
124  * enough descriptors for 128 pending transmissions, and 8 segments
125  * per packet (64 for DP83820 for jumbo frames).
126  *
127  * This MUST work out to a power of 2.
128  */
129 #define	GSIP_NTXSEGS_ALLOC 16
130 #define	SIP_NTXSEGS_ALLOC 8
131 
132 #define	SIP_TXQUEUELEN		256
133 #define	MAX_SIP_NTXDESC	\
134     (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
135 
136 /*
137  * Receive descriptor list size.  We have one Rx buffer per incoming
138  * packet, so this logic is a little simpler.
139  *
140  * Actually, on the DP83820, we allow the packet to consume more than
141  * one buffer, in order to support jumbo Ethernet frames.  In that
142  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
143  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
144  * so we'd better be quick about handling receive interrupts.
145  */
146 #define	GSIP_NRXDESC		256
147 #define	SIP_NRXDESC		128
148 
149 #define	MAX_SIP_NRXDESC	MAX(GSIP_NRXDESC, SIP_NRXDESC)
150 
151 /*
152  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
153  * a single clump that maps to a single DMA segment to make several things
154  * easier.
155  */
156 struct sip_control_data {
157 	/*
158 	 * The transmit descriptors.
159 	 */
160 	struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
161 
162 	/*
163 	 * The receive descriptors.
164 	 */
165 	struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
166 };
167 
168 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
169 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
170 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
171 
172 /*
173  * Software state for transmit jobs.
174  */
175 struct sip_txsoft {
176 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
177 	bus_dmamap_t txs_dmamap;	/* our DMA map */
178 	int txs_firstdesc;		/* first descriptor in packet */
179 	int txs_lastdesc;		/* last descriptor in packet */
180 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
181 };
182 
183 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
184 
185 /*
186  * Software state for receive jobs.
187  */
188 struct sip_rxsoft {
189 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
190 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
191 };
192 
193 enum sip_attach_stage {
194 	  SIP_ATTACH_FIN = 0
195 	, SIP_ATTACH_CREATE_RXMAP
196 	, SIP_ATTACH_CREATE_TXMAP
197 	, SIP_ATTACH_LOAD_MAP
198 	, SIP_ATTACH_CREATE_MAP
199 	, SIP_ATTACH_MAP_MEM
200 	, SIP_ATTACH_ALLOC_MEM
201 	, SIP_ATTACH_INTR
202 	, SIP_ATTACH_MAP
203 };
204 
205 /*
206  * Software state per device.
207  */
208 struct sip_softc {
209 	device_t sc_dev;		/* generic device information */
210 	bus_space_tag_t sc_st;		/* bus space tag */
211 	bus_space_handle_t sc_sh;	/* bus space handle */
212 	bus_size_t sc_sz;		/* bus space size */
213 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
214 	pci_chipset_tag_t sc_pc;
215 	bus_dma_segment_t sc_seg;
216 	struct ethercom sc_ethercom;	/* ethernet common data */
217 
218 	const struct sip_product *sc_model; /* which model are we? */
219 	int sc_gigabit;			/* 1: 83820, 0: other */
220 	int sc_rev;			/* chip revision */
221 
222 	void *sc_ih;			/* interrupt cookie */
223 
224 	struct mii_data sc_mii;		/* MII/media information */
225 
226 	callout_t sc_tick_ch;		/* tick callout */
227 
228 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
229 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
230 
231 	/*
232 	 * Software state for transmit and receive descriptors.
233 	 */
234 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
235 	struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
236 
237 	/*
238 	 * Control data structures.
239 	 */
240 	struct sip_control_data *sc_control_data;
241 #define	sc_txdescs	sc_control_data->scd_txdescs
242 #define	sc_rxdescs	sc_control_data->scd_rxdescs
243 
244 #ifdef SIP_EVENT_COUNTERS
245 	/*
246 	 * Event counters.
247 	 */
248 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
249 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
250 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
251 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
252 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
253 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
254 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
255 	struct evcnt sc_ev_rxpause;	/* PAUSE received */
256 	/* DP83820 only */
257 	struct evcnt sc_ev_txpause;	/* PAUSE transmitted */
258 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
259 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
260 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
261 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
262 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
263 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
264 #endif /* SIP_EVENT_COUNTERS */
265 
266 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
267 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
268 	u_int32_t sc_imr;		/* prototype IMR register */
269 	u_int32_t sc_rfcr;		/* prototype RFCR register */
270 
271 	u_int32_t sc_cfg;		/* prototype CFG register */
272 
273 	u_int32_t sc_gpior;		/* prototype GPIOR register */
274 
275 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
276 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
277 
278 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
279 
280 	int	sc_flowflags;		/* 802.3x flow control flags */
281 	int	sc_rx_flow_thresh;	/* Rx FIFO threshold for flow control */
282 	int	sc_paused;		/* paused indication */
283 
284 	int	sc_txfree;		/* number of free Tx descriptors */
285 	int	sc_txnext;		/* next ready Tx descriptor */
286 	int	sc_txwin;		/* Tx descriptors since last intr */
287 
288 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
289 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
290 
291 	/* values of interface state at last init */
292 	struct {
293 		/* if_capenable */
294 		uint64_t	if_capenable;
295 		/* ec_capenable */
296 		int		ec_capenable;
297 		/* VLAN_ATTACHED */
298 		int		is_vlan;
299 	}	sc_prev;
300 
301 	short	sc_if_flags;
302 
303 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
304 	int	sc_rxdiscard;
305 	int	sc_rxlen;
306 	struct mbuf *sc_rxhead;
307 	struct mbuf *sc_rxtail;
308 	struct mbuf **sc_rxtailp;
309 
310 	int sc_ntxdesc;
311 	int sc_ntxdesc_mask;
312 
313 	int sc_nrxdesc_mask;
314 
315 	const struct sip_parm {
316 		const struct sip_regs {
317 			int r_rxcfg;
318 			int r_txcfg;
319 		} p_regs;
320 
321 		const struct sip_bits {
322 			uint32_t b_txcfg_mxdma_8;
323 			uint32_t b_txcfg_mxdma_16;
324 			uint32_t b_txcfg_mxdma_32;
325 			uint32_t b_txcfg_mxdma_64;
326 			uint32_t b_txcfg_mxdma_128;
327 			uint32_t b_txcfg_mxdma_256;
328 			uint32_t b_txcfg_mxdma_512;
329 			uint32_t b_txcfg_flth_mask;
330 			uint32_t b_txcfg_drth_mask;
331 
332 			uint32_t b_rxcfg_mxdma_8;
333 			uint32_t b_rxcfg_mxdma_16;
334 			uint32_t b_rxcfg_mxdma_32;
335 			uint32_t b_rxcfg_mxdma_64;
336 			uint32_t b_rxcfg_mxdma_128;
337 			uint32_t b_rxcfg_mxdma_256;
338 			uint32_t b_rxcfg_mxdma_512;
339 
340 			uint32_t b_isr_txrcmp;
341 			uint32_t b_isr_rxrcmp;
342 			uint32_t b_isr_dperr;
343 			uint32_t b_isr_sserr;
344 			uint32_t b_isr_rmabt;
345 			uint32_t b_isr_rtabt;
346 
347 			uint32_t b_cmdsts_size_mask;
348 		} p_bits;
349 		int		p_filtmem;
350 		int		p_rxbuf_len;
351 		bus_size_t	p_tx_dmamap_size;
352 		int		p_ntxsegs;
353 		int		p_ntxsegs_alloc;
354 		int		p_nrxdesc;
355 	} *sc_parm;
356 
357 	void (*sc_rxintr)(struct sip_softc *);
358 
359 #if NRND > 0
360 	rndsource_element_t rnd_source;	/* random source */
361 #endif
362 };
363 
364 #define	sc_bits	sc_parm->p_bits
365 #define	sc_regs	sc_parm->p_regs
366 
367 static const struct sip_parm sip_parm = {
368 	  .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
369 	, .p_rxbuf_len = MCLBYTES - 1	/* field width */
370 	, .p_tx_dmamap_size = MCLBYTES
371 	, .p_ntxsegs = 16
372 	, .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
373 	, .p_nrxdesc = SIP_NRXDESC
374 	, .p_bits = {
375 		  .b_txcfg_mxdma_8	= 0x00200000	/*       8 bytes */
376 		, .b_txcfg_mxdma_16	= 0x00300000	/*      16 bytes */
377 		, .b_txcfg_mxdma_32	= 0x00400000	/*      32 bytes */
378 		, .b_txcfg_mxdma_64	= 0x00500000	/*      64 bytes */
379 		, .b_txcfg_mxdma_128	= 0x00600000	/*     128 bytes */
380 		, .b_txcfg_mxdma_256	= 0x00700000	/*     256 bytes */
381 		, .b_txcfg_mxdma_512	= 0x00000000	/*     512 bytes */
382 		, .b_txcfg_flth_mask	= 0x00003f00	/* Tx fill threshold */
383 		, .b_txcfg_drth_mask	= 0x0000003f	/* Tx drain threshold */
384 
385 		, .b_rxcfg_mxdma_8	= 0x00200000	/*       8 bytes */
386 		, .b_rxcfg_mxdma_16	= 0x00300000	/*      16 bytes */
387 		, .b_rxcfg_mxdma_32	= 0x00400000	/*      32 bytes */
388 		, .b_rxcfg_mxdma_64	= 0x00500000	/*      64 bytes */
389 		, .b_rxcfg_mxdma_128	= 0x00600000	/*     128 bytes */
390 		, .b_rxcfg_mxdma_256	= 0x00700000	/*     256 bytes */
391 		, .b_rxcfg_mxdma_512	= 0x00000000	/*     512 bytes */
392 
393 		, .b_isr_txrcmp	= 0x02000000	/* transmit reset complete */
394 		, .b_isr_rxrcmp	= 0x01000000	/* receive reset complete */
395 		, .b_isr_dperr	= 0x00800000	/* detected parity error */
396 		, .b_isr_sserr	= 0x00400000	/* signalled system error */
397 		, .b_isr_rmabt	= 0x00200000	/* received master abort */
398 		, .b_isr_rtabt	= 0x00100000	/* received target abort */
399 		, .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
400 	}
401 	, .p_regs = {
402 		.r_rxcfg = OTHER_SIP_RXCFG,
403 		.r_txcfg = OTHER_SIP_TXCFG
404 	}
405 }, gsip_parm = {
406 	  .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
407 	, .p_rxbuf_len = MCLBYTES - 8
408 	, .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
409 	, .p_ntxsegs = 64
410 	, .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
411 	, .p_nrxdesc = GSIP_NRXDESC
412 	, .p_bits = {
413 		  .b_txcfg_mxdma_8	= 0x00100000	/*       8 bytes */
414 		, .b_txcfg_mxdma_16	= 0x00200000	/*      16 bytes */
415 		, .b_txcfg_mxdma_32	= 0x00300000	/*      32 bytes */
416 		, .b_txcfg_mxdma_64	= 0x00400000	/*      64 bytes */
417 		, .b_txcfg_mxdma_128	= 0x00500000	/*     128 bytes */
418 		, .b_txcfg_mxdma_256	= 0x00600000	/*     256 bytes */
419 		, .b_txcfg_mxdma_512	= 0x00700000	/*     512 bytes */
420 		, .b_txcfg_flth_mask	= 0x0000ff00	/* Fx fill threshold */
421 		, .b_txcfg_drth_mask	= 0x000000ff	/* Tx drain threshold */
422 
423 		, .b_rxcfg_mxdma_8	= 0x00100000	/*       8 bytes */
424 		, .b_rxcfg_mxdma_16	= 0x00200000	/*      16 bytes */
425 		, .b_rxcfg_mxdma_32	= 0x00300000	/*      32 bytes */
426 		, .b_rxcfg_mxdma_64	= 0x00400000	/*      64 bytes */
427 		, .b_rxcfg_mxdma_128	= 0x00500000	/*     128 bytes */
428 		, .b_rxcfg_mxdma_256	= 0x00600000	/*     256 bytes */
429 		, .b_rxcfg_mxdma_512	= 0x00700000	/*     512 bytes */
430 
431 		, .b_isr_txrcmp	= 0x00400000	/* transmit reset complete */
432 		, .b_isr_rxrcmp	= 0x00200000	/* receive reset complete */
433 		, .b_isr_dperr	= 0x00100000	/* detected parity error */
434 		, .b_isr_sserr	= 0x00080000	/* signalled system error */
435 		, .b_isr_rmabt	= 0x00040000	/* received master abort */
436 		, .b_isr_rtabt	= 0x00020000	/* received target abort */
437 		, .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
438 	}
439 	, .p_regs = {
440 		.r_rxcfg = DP83820_SIP_RXCFG,
441 		.r_txcfg = DP83820_SIP_TXCFG
442 	}
443 };
444 
445 static inline int
446 sip_nexttx(const struct sip_softc *sc, int x)
447 {
448 	return (x + 1) & sc->sc_ntxdesc_mask;
449 }
450 
451 static inline int
452 sip_nextrx(const struct sip_softc *sc, int x)
453 {
454 	return (x + 1) & sc->sc_nrxdesc_mask;
455 }
456 
457 /* 83820 only */
458 static inline void
459 sip_rxchain_reset(struct sip_softc *sc)
460 {
461 	sc->sc_rxtailp = &sc->sc_rxhead;
462 	*sc->sc_rxtailp = NULL;
463 	sc->sc_rxlen = 0;
464 }
465 
466 /* 83820 only */
467 static inline void
468 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
469 {
470 	*sc->sc_rxtailp = sc->sc_rxtail = m;
471 	sc->sc_rxtailp = &m->m_next;
472 }
473 
474 #ifdef SIP_EVENT_COUNTERS
475 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
476 #else
477 #define	SIP_EVCNT_INCR(ev)	/* nothing */
478 #endif
479 
480 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
481 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
482 
483 static inline void
484 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
485 {
486 	int x, n;
487 
488 	x = x0;
489 	n = n0;
490 
491 	/* If it will wrap around, sync to the end of the ring. */
492 	if (x + n > sc->sc_ntxdesc) {
493 		bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
494 		    SIP_CDTXOFF(x), sizeof(struct sip_desc) *
495 		    (sc->sc_ntxdesc - x), ops);
496 		n -= (sc->sc_ntxdesc - x);
497 		x = 0;
498 	}
499 
500 	/* Now sync whatever is left. */
501 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
502 	    SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
503 }
504 
505 static inline void
506 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
507 {
508 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
509 	    SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
510 }
511 
512 #if 0
513 #ifdef DP83820
514 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
515 	u_int32_t	sipd_cmdsts;	/* command/status word */
516 #else
517 	u_int32_t	sipd_cmdsts;	/* command/status word */
518 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
519 #endif /* DP83820 */
520 #endif /* 0 */
521 
522 static inline volatile uint32_t *
523 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
524 {
525 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
526 }
527 
528 static inline volatile uint32_t *
529 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
530 {
531 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
532 }
533 
534 static inline void
535 sip_init_rxdesc(struct sip_softc *sc, int x)
536 {
537 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
538 	struct sip_desc *sipd = &sc->sc_rxdescs[x];
539 
540 	sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
541 	*sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
542 	*sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
543 	    (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
544 	sipd->sipd_extsts = 0;
545 	sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
546 }
547 
548 #define	SIP_CHIP_VERS(sc, v, p, r)					\
549 	((sc)->sc_model->sip_vendor == (v) &&				\
550 	 (sc)->sc_model->sip_product == (p) &&				\
551 	 (sc)->sc_rev == (r))
552 
553 #define	SIP_CHIP_MODEL(sc, v, p)					\
554 	((sc)->sc_model->sip_vendor == (v) &&				\
555 	 (sc)->sc_model->sip_product == (p))
556 
557 #define	SIP_SIS900_REV(sc, rev)						\
558 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
559 
560 #define SIP_TIMEOUT 1000
561 
562 static int	sip_ifflags_cb(struct ethercom *);
563 static void	sipcom_start(struct ifnet *);
564 static void	sipcom_watchdog(struct ifnet *);
565 static int	sipcom_ioctl(struct ifnet *, u_long, void *);
566 static int	sipcom_init(struct ifnet *);
567 static void	sipcom_stop(struct ifnet *, int);
568 
569 static bool	sipcom_reset(struct sip_softc *);
570 static void	sipcom_rxdrain(struct sip_softc *);
571 static int	sipcom_add_rxbuf(struct sip_softc *, int);
572 static void	sipcom_read_eeprom(struct sip_softc *, int, int,
573 				      u_int16_t *);
574 static void	sipcom_tick(void *);
575 
576 static void	sipcom_sis900_set_filter(struct sip_softc *);
577 static void	sipcom_dp83815_set_filter(struct sip_softc *);
578 
579 static void	sipcom_dp83820_read_macaddr(struct sip_softc *,
580 		    const struct pci_attach_args *, u_int8_t *);
581 static void	sipcom_sis900_eeprom_delay(struct sip_softc *sc);
582 static void	sipcom_sis900_read_macaddr(struct sip_softc *,
583 		    const struct pci_attach_args *, u_int8_t *);
584 static void	sipcom_dp83815_read_macaddr(struct sip_softc *,
585 		    const struct pci_attach_args *, u_int8_t *);
586 
587 static int	sipcom_intr(void *);
588 static void	sipcom_txintr(struct sip_softc *);
589 static void	sip_rxintr(struct sip_softc *);
590 static void	gsip_rxintr(struct sip_softc *);
591 
592 static int	sipcom_dp83820_mii_readreg(device_t, int, int);
593 static void	sipcom_dp83820_mii_writereg(device_t, int, int, int);
594 static void	sipcom_dp83820_mii_statchg(device_t);
595 
596 static int	sipcom_sis900_mii_readreg(device_t, int, int);
597 static void	sipcom_sis900_mii_writereg(device_t, int, int, int);
598 static void	sipcom_sis900_mii_statchg(device_t);
599 
600 static int	sipcom_dp83815_mii_readreg(device_t, int, int);
601 static void	sipcom_dp83815_mii_writereg(device_t, int, int, int);
602 static void	sipcom_dp83815_mii_statchg(device_t);
603 
604 static void	sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
605 
606 static int	sipcom_match(device_t, cfdata_t, void *);
607 static void	sipcom_attach(device_t, device_t, void *);
608 static void	sipcom_do_detach(device_t, enum sip_attach_stage);
609 static int	sipcom_detach(device_t, int);
610 static bool	sipcom_resume(device_t PMF_FN_PROTO);
611 static bool	sipcom_suspend(device_t PMF_FN_PROTO);
612 
613 int	gsip_copy_small = 0;
614 int	sip_copy_small = 0;
615 
616 CFATTACH_DECL3_NEW(gsip, sizeof(struct sip_softc),
617     sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
618     DVF_DETACH_SHUTDOWN);
619 CFATTACH_DECL3_NEW(sip, sizeof(struct sip_softc),
620     sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
621     DVF_DETACH_SHUTDOWN);
622 
623 /*
624  * Descriptions of the variants of the SiS900.
625  */
626 struct sip_variant {
627 	int	(*sipv_mii_readreg)(device_t, int, int);
628 	void	(*sipv_mii_writereg)(device_t, int, int, int);
629 	void	(*sipv_mii_statchg)(device_t);
630 	void	(*sipv_set_filter)(struct sip_softc *);
631 	void	(*sipv_read_macaddr)(struct sip_softc *,
632 		    const struct pci_attach_args *, u_int8_t *);
633 };
634 
635 static u_int32_t sipcom_mii_bitbang_read(device_t);
636 static void	sipcom_mii_bitbang_write(device_t, u_int32_t);
637 
638 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
639 	sipcom_mii_bitbang_read,
640 	sipcom_mii_bitbang_write,
641 	{
642 		EROMAR_MDIO,		/* MII_BIT_MDO */
643 		EROMAR_MDIO,		/* MII_BIT_MDI */
644 		EROMAR_MDC,		/* MII_BIT_MDC */
645 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
646 		0,			/* MII_BIT_DIR_PHY_HOST */
647 	}
648 };
649 
650 static const struct sip_variant sipcom_variant_dp83820 = {
651 	sipcom_dp83820_mii_readreg,
652 	sipcom_dp83820_mii_writereg,
653 	sipcom_dp83820_mii_statchg,
654 	sipcom_dp83815_set_filter,
655 	sipcom_dp83820_read_macaddr,
656 };
657 
658 static const struct sip_variant sipcom_variant_sis900 = {
659 	sipcom_sis900_mii_readreg,
660 	sipcom_sis900_mii_writereg,
661 	sipcom_sis900_mii_statchg,
662 	sipcom_sis900_set_filter,
663 	sipcom_sis900_read_macaddr,
664 };
665 
666 static const struct sip_variant sipcom_variant_dp83815 = {
667 	sipcom_dp83815_mii_readreg,
668 	sipcom_dp83815_mii_writereg,
669 	sipcom_dp83815_mii_statchg,
670 	sipcom_dp83815_set_filter,
671 	sipcom_dp83815_read_macaddr,
672 };
673 
674 
675 /*
676  * Devices supported by this driver.
677  */
678 static const struct sip_product {
679 	pci_vendor_id_t		sip_vendor;
680 	pci_product_id_t	sip_product;
681 	const char		*sip_name;
682 	const struct sip_variant *sip_variant;
683 	int			sip_gigabit;
684 } sipcom_products[] = {
685 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
686 	  "NatSemi DP83820 Gigabit Ethernet",
687 	  &sipcom_variant_dp83820, 1 },
688 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
689 	  "SiS 900 10/100 Ethernet",
690 	  &sipcom_variant_sis900, 0 },
691 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
692 	  "SiS 7016 10/100 Ethernet",
693 	  &sipcom_variant_sis900, 0 },
694 
695 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
696 	  "NatSemi DP83815 10/100 Ethernet",
697 	  &sipcom_variant_dp83815, 0 },
698 
699 	{ 0,			0,
700 	  NULL,
701 	  NULL, 0 },
702 };
703 
704 static const struct sip_product *
705 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
706 {
707 	const struct sip_product *sip;
708 
709 	for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
710 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
711 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
712 		    sip->sip_gigabit == gigabit)
713 			return sip;
714 	}
715 	return NULL;
716 }
717 
718 /*
719  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
720  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
721  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
722  * which means we try to use 64-bit data transfers on those cards if we
723  * happen to be plugged into a 32-bit slot.
724  *
725  * What we do is use this table of cards known to be 64-bit cards.  If
726  * you have a 64-bit card who's subsystem ID is not listed in this table,
727  * send the output of "pcictl dump ..." of the device to me so that your
728  * card will use the 64-bit data path when plugged into a 64-bit slot.
729  *
730  *	-- Jason R. Thorpe <thorpej@NetBSD.org>
731  *	   June 30, 2002
732  */
733 static int
734 sipcom_check_64bit(const struct pci_attach_args *pa)
735 {
736 	static const struct {
737 		pci_vendor_id_t c64_vendor;
738 		pci_product_id_t c64_product;
739 	} card64[] = {
740 		/* Asante GigaNIX */
741 		{ 0x128a,	0x0002 },
742 
743 		/* Accton EN1407-T, Planex GN-1000TE */
744 		{ 0x1113,	0x1407 },
745 
746 		/* Netgear GA-621 */
747 		{ 0x1385,	0x621a },
748 
749 		/* SMC EZ Card */
750 		{ 0x10b8,	0x9462 },
751 
752 		{ 0, 0}
753 	};
754 	pcireg_t subsys;
755 	int i;
756 
757 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
758 
759 	for (i = 0; card64[i].c64_vendor != 0; i++) {
760 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
761 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
762 			return (1);
763 	}
764 
765 	return (0);
766 }
767 
768 static int
769 sipcom_match(device_t parent, cfdata_t cf, void *aux)
770 {
771 	struct pci_attach_args *pa = aux;
772 
773 	if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
774 		return 1;
775 
776 	return 0;
777 }
778 
779 static void
780 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
781 {
782 	u_int32_t reg;
783 	int i;
784 
785 	/*
786 	 * Cause the chip to load configuration data from the EEPROM.
787 	 */
788 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
789 	for (i = 0; i < 10000; i++) {
790 		delay(10);
791 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
792 		    PTSCR_EELOAD_EN) == 0)
793 			break;
794 	}
795 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
796 	    PTSCR_EELOAD_EN) {
797 		printf("%s: timeout loading configuration from EEPROM\n",
798 		    device_xname(sc->sc_dev));
799 		return;
800 	}
801 
802 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
803 
804 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
805 	if (reg & CFG_PCI64_DET) {
806 		printf("%s: 64-bit PCI slot detected", device_xname(sc->sc_dev));
807 		/*
808 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
809 		 * data transfers.
810 		 *
811 		 * We can't use the DATA64_EN bit in the EEPROM, because
812 		 * vendors of 32-bit cards fail to clear that bit in many
813 		 * cases (yet the card still detects that it's in a 64-bit
814 		 * slot; go figure).
815 		 */
816 		if (sipcom_check_64bit(pa)) {
817 			sc->sc_cfg |= CFG_DATA64_EN;
818 			printf(", using 64-bit data transfers");
819 		}
820 		printf("\n");
821 	}
822 
823 	/*
824 	 * XXX Need some PCI flags indicating support for
825 	 * XXX 64-bit addressing.
826 	 */
827 #if 0
828 	if (reg & CFG_M64ADDR)
829 		sc->sc_cfg |= CFG_M64ADDR;
830 	if (reg & CFG_T64ADDR)
831 		sc->sc_cfg |= CFG_T64ADDR;
832 #endif
833 
834 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
835 		const char *sep = "";
836 		printf("%s: using ", device_xname(sc->sc_dev));
837 		if (reg & CFG_EXT_125) {
838 			sc->sc_cfg |= CFG_EXT_125;
839 			printf("%s125MHz clock", sep);
840 			sep = ", ";
841 		}
842 		if (reg & CFG_TBI_EN) {
843 			sc->sc_cfg |= CFG_TBI_EN;
844 			printf("%sten-bit interface", sep);
845 			sep = ", ";
846 		}
847 		printf("\n");
848 	}
849 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
850 	    (reg & CFG_MRM_DIS) != 0)
851 		sc->sc_cfg |= CFG_MRM_DIS;
852 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
853 	    (reg & CFG_MWI_DIS) != 0)
854 		sc->sc_cfg |= CFG_MWI_DIS;
855 
856 	/*
857 	 * Use the extended descriptor format on the DP83820.  This
858 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
859 	 * checksumming.
860 	 */
861 	sc->sc_cfg |= CFG_EXTSTS_EN;
862 }
863 
864 static int
865 sipcom_detach(device_t self, int flags)
866 {
867 	int s;
868 
869 	s = splnet();
870 	sipcom_do_detach(self, SIP_ATTACH_FIN);
871 	splx(s);
872 
873 	return 0;
874 }
875 
876 static void
877 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
878 {
879 	int i;
880 	struct sip_softc *sc = device_private(self);
881 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
882 
883 	/*
884 	 * Free any resources we've allocated during attach.
885 	 * Do this in reverse order and fall through.
886 	 */
887 	switch (stage) {
888 	case SIP_ATTACH_FIN:
889 		sipcom_stop(ifp, 1);
890 		pmf_device_deregister(self);
891 #ifdef SIP_EVENT_COUNTERS
892 		/*
893 		 * Attach event counters.
894 		 */
895 		evcnt_detach(&sc->sc_ev_txforceintr);
896 		evcnt_detach(&sc->sc_ev_txdstall);
897 		evcnt_detach(&sc->sc_ev_txsstall);
898 		evcnt_detach(&sc->sc_ev_hiberr);
899 		evcnt_detach(&sc->sc_ev_rxintr);
900 		evcnt_detach(&sc->sc_ev_txiintr);
901 		evcnt_detach(&sc->sc_ev_txdintr);
902 		if (!sc->sc_gigabit) {
903 			evcnt_detach(&sc->sc_ev_rxpause);
904 		} else {
905 			evcnt_detach(&sc->sc_ev_txudpsum);
906 			evcnt_detach(&sc->sc_ev_txtcpsum);
907 			evcnt_detach(&sc->sc_ev_txipsum);
908 			evcnt_detach(&sc->sc_ev_rxudpsum);
909 			evcnt_detach(&sc->sc_ev_rxtcpsum);
910 			evcnt_detach(&sc->sc_ev_rxipsum);
911 			evcnt_detach(&sc->sc_ev_txpause);
912 			evcnt_detach(&sc->sc_ev_rxpause);
913 		}
914 #endif /* SIP_EVENT_COUNTERS */
915 
916 #if NRND > 0
917 		rnd_detach_source(&sc->rnd_source);
918 #endif
919 
920 		ether_ifdetach(ifp);
921 		if_detach(ifp);
922 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
923 
924 		/*FALLTHROUGH*/
925 	case SIP_ATTACH_CREATE_RXMAP:
926 		for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
927 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
928 				bus_dmamap_destroy(sc->sc_dmat,
929 				    sc->sc_rxsoft[i].rxs_dmamap);
930 		}
931 		/*FALLTHROUGH*/
932 	case SIP_ATTACH_CREATE_TXMAP:
933 		for (i = 0; i < SIP_TXQUEUELEN; i++) {
934 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
935 				bus_dmamap_destroy(sc->sc_dmat,
936 				    sc->sc_txsoft[i].txs_dmamap);
937 		}
938 		/*FALLTHROUGH*/
939 	case SIP_ATTACH_LOAD_MAP:
940 		bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
941 		/*FALLTHROUGH*/
942 	case SIP_ATTACH_CREATE_MAP:
943 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
944 		/*FALLTHROUGH*/
945 	case SIP_ATTACH_MAP_MEM:
946 		bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
947 		    sizeof(struct sip_control_data));
948 		/*FALLTHROUGH*/
949 	case SIP_ATTACH_ALLOC_MEM:
950 		bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
951 		/* FALLTHROUGH*/
952 	case SIP_ATTACH_INTR:
953 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
954 		/* FALLTHROUGH*/
955 	case SIP_ATTACH_MAP:
956 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
957 		break;
958 	default:
959 		break;
960 	}
961 	return;
962 }
963 
964 static bool
965 sipcom_resume(device_t self PMF_FN_ARGS)
966 {
967 	struct sip_softc *sc = device_private(self);
968 
969 	return sipcom_reset(sc);
970 }
971 
972 static bool
973 sipcom_suspend(device_t self PMF_FN_ARGS)
974 {
975 	struct sip_softc *sc = device_private(self);
976 
977 	sipcom_rxdrain(sc);
978 	return true;
979 }
980 
981 static void
982 sipcom_attach(device_t parent, device_t self, void *aux)
983 {
984 	struct sip_softc *sc = device_private(self);
985 	struct pci_attach_args *pa = aux;
986 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
987 	pci_chipset_tag_t pc = pa->pa_pc;
988 	pci_intr_handle_t ih;
989 	const char *intrstr = NULL;
990 	bus_space_tag_t iot, memt;
991 	bus_space_handle_t ioh, memh;
992 	bus_size_t iosz, memsz;
993 	int ioh_valid, memh_valid;
994 	int i, rseg, error;
995 	const struct sip_product *sip;
996 	u_int8_t enaddr[ETHER_ADDR_LEN];
997 	pcireg_t csr;
998 	pcireg_t memtype;
999 	bus_size_t tx_dmamap_size;
1000 	int ntxsegs_alloc;
1001 	cfdata_t cf = device_cfdata(self);
1002 
1003 	callout_init(&sc->sc_tick_ch, 0);
1004 
1005 	sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
1006 	if (sip == NULL) {
1007 		printf("\n");
1008 		panic("%s: impossible", __func__);
1009 	}
1010 	sc->sc_dev = self;
1011 	sc->sc_gigabit = sip->sip_gigabit;
1012 
1013 	sc->sc_pc = pc;
1014 
1015 	if (sc->sc_gigabit) {
1016 		sc->sc_rxintr = gsip_rxintr;
1017 		sc->sc_parm = &gsip_parm;
1018 	} else {
1019 		sc->sc_rxintr = sip_rxintr;
1020 		sc->sc_parm = &sip_parm;
1021 	}
1022 	tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
1023 	ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
1024 	sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
1025 	sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
1026 	sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
1027 
1028 	sc->sc_rev = PCI_REVISION(pa->pa_class);
1029 
1030 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
1031 
1032 	sc->sc_model = sip;
1033 
1034 	/*
1035 	 * XXX Work-around broken PXE firmware on some boards.
1036 	 *
1037 	 * The DP83815 shares an address decoder with the MEM BAR
1038 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
1039 	 * so that memory mapped access works.
1040 	 */
1041 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
1042 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
1043 	    ~PCI_MAPREG_ROM_ENABLE);
1044 
1045 	/*
1046 	 * Map the device.
1047 	 */
1048 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
1049 	    PCI_MAPREG_TYPE_IO, 0,
1050 	    &iot, &ioh, NULL, &iosz) == 0);
1051 	if (sc->sc_gigabit) {
1052 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
1053 		switch (memtype) {
1054 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1055 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1056 			memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1057 			    memtype, 0, &memt, &memh, NULL, &memsz) == 0);
1058 			break;
1059 		default:
1060 			memh_valid = 0;
1061 		}
1062 	} else {
1063 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1064 		    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
1065 		    &memt, &memh, NULL, &memsz) == 0);
1066 	}
1067 
1068 	if (memh_valid) {
1069 		sc->sc_st = memt;
1070 		sc->sc_sh = memh;
1071 		sc->sc_sz = memsz;
1072 	} else if (ioh_valid) {
1073 		sc->sc_st = iot;
1074 		sc->sc_sh = ioh;
1075 		sc->sc_sz = iosz;
1076 	} else {
1077 		printf("%s: unable to map device registers\n",
1078 		    device_xname(sc->sc_dev));
1079 		return;
1080 	}
1081 
1082 	sc->sc_dmat = pa->pa_dmat;
1083 
1084 	/*
1085 	 * Make sure bus mastering is enabled.  Also make sure
1086 	 * Write/Invalidate is enabled if we're allowed to use it.
1087 	 */
1088 	csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1089 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
1090 		csr |= PCI_COMMAND_INVALIDATE_ENABLE;
1091 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
1092 	    csr | PCI_COMMAND_MASTER_ENABLE);
1093 
1094 	/* power up chip */
1095 	error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null);
1096 	if (error != 0 && error != EOPNOTSUPP) {
1097 		aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
1098 		return;
1099 	}
1100 
1101 	/*
1102 	 * Map and establish our interrupt.
1103 	 */
1104 	if (pci_intr_map(pa, &ih)) {
1105 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
1106 		return;
1107 	}
1108 	intrstr = pci_intr_string(pc, ih);
1109 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc);
1110 	if (sc->sc_ih == NULL) {
1111 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
1112 		if (intrstr != NULL)
1113 			printf(" at %s", intrstr);
1114 		printf("\n");
1115 		return sipcom_do_detach(self, SIP_ATTACH_MAP);
1116 	}
1117 	printf("%s: interrupting at %s\n", device_xname(sc->sc_dev), intrstr);
1118 
1119 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1120 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1121 
1122 	/*
1123 	 * Allocate the control data structures, and create and load the
1124 	 * DMA map for it.
1125 	 */
1126 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
1127 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
1128 	    &rseg, 0)) != 0) {
1129 		aprint_error_dev(sc->sc_dev, "unable to allocate control data, error = %d\n",
1130 		    error);
1131 		return sipcom_do_detach(self, SIP_ATTACH_INTR);
1132 	}
1133 
1134 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
1135 	    sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
1136 	    BUS_DMA_COHERENT|BUS_DMA_NOCACHE)) != 0) {
1137 		aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n",
1138 		    error);
1139 		sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
1140 	}
1141 
1142 	if ((error = bus_dmamap_create(sc->sc_dmat,
1143 	    sizeof(struct sip_control_data), 1,
1144 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
1145 		aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, "
1146 		    "error = %d\n", error);
1147 		sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
1148 	}
1149 
1150 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1151 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
1152 	    0)) != 0) {
1153 		aprint_error_dev(sc->sc_dev, "unable to load control data DMA map, error = %d\n",
1154 		    error);
1155 		sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
1156 	}
1157 
1158 	/*
1159 	 * Create the transmit buffer DMA maps.
1160 	 */
1161 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
1162 		if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
1163 		    sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
1164 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1165 			aprint_error_dev(sc->sc_dev, "unable to create tx DMA map %d, "
1166 			    "error = %d\n", i, error);
1167 			sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1168 		}
1169 	}
1170 
1171 	/*
1172 	 * Create the receive buffer DMA maps.
1173 	 */
1174 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1175 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1176 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1177 			aprint_error_dev(sc->sc_dev, "unable to create rx DMA map %d, "
1178 			    "error = %d\n", i, error);
1179 			sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1180 		}
1181 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
1182 	}
1183 
1184 	/*
1185 	 * Reset the chip to a known state.
1186 	 */
1187 	sipcom_reset(sc);
1188 
1189 	/*
1190 	 * Read the Ethernet address from the EEPROM.  This might
1191 	 * also fetch other stuff from the EEPROM and stash it
1192 	 * in the softc.
1193 	 */
1194 	sc->sc_cfg = 0;
1195 	if (!sc->sc_gigabit) {
1196 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1197 		    SIP_SIS900_REV(sc,SIS_REV_900B))
1198 			sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1199 
1200 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1201 		    SIP_SIS900_REV(sc,SIS_REV_960) ||
1202 		    SIP_SIS900_REV(sc,SIS_REV_900B))
1203 			sc->sc_cfg |=
1204 			    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1205 			     CFG_EDBMASTEN);
1206 	}
1207 
1208 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1209 
1210 	printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
1211 	    ether_sprintf(enaddr));
1212 
1213 	/*
1214 	 * Initialize the configuration register: aggressive PCI
1215 	 * bus request algorithm, default backoff, default OW timer,
1216 	 * default parity error detection.
1217 	 *
1218 	 * NOTE: "Big endian mode" is useless on the SiS900 and
1219 	 * friends -- it affects packet data, not descriptors.
1220 	 */
1221 	if (sc->sc_gigabit)
1222 		sipcom_dp83820_attach(sc, pa);
1223 
1224 	/*
1225 	 * Initialize our media structures and probe the MII.
1226 	 */
1227 	sc->sc_mii.mii_ifp = ifp;
1228 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
1229 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
1230 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
1231 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
1232 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
1233 	    sipcom_mediastatus);
1234 
1235 	/*
1236 	 * XXX We cannot handle flow control on the DP83815.
1237 	 */
1238 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1239 		mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1240 			   MII_OFFSET_ANY, 0);
1241 	else
1242 		mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1243 			   MII_OFFSET_ANY, MIIF_DOPAUSE);
1244 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1245 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1246 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1247 	} else
1248 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1249 
1250 	ifp = &sc->sc_ethercom.ec_if;
1251 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1252 	ifp->if_softc = sc;
1253 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1254 	sc->sc_if_flags = ifp->if_flags;
1255 	ifp->if_ioctl = sipcom_ioctl;
1256 	ifp->if_start = sipcom_start;
1257 	ifp->if_watchdog = sipcom_watchdog;
1258 	ifp->if_init = sipcom_init;
1259 	ifp->if_stop = sipcom_stop;
1260 	IFQ_SET_READY(&ifp->if_snd);
1261 
1262 	/*
1263 	 * We can support 802.1Q VLAN-sized frames.
1264 	 */
1265 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1266 
1267 	if (sc->sc_gigabit) {
1268 		/*
1269 		 * And the DP83820 can do VLAN tagging in hardware, and
1270 		 * support the jumbo Ethernet MTU.
1271 		 */
1272 		sc->sc_ethercom.ec_capabilities |=
1273 		    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1274 
1275 		/*
1276 		 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1277 		 * in hardware.
1278 		 */
1279 		ifp->if_capabilities |=
1280 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1281 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1282 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1283 	}
1284 
1285 	/*
1286 	 * Attach the interface.
1287 	 */
1288 	if_attach(ifp);
1289 	ether_ifattach(ifp, enaddr);
1290 	ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb);
1291 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1292 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1293 	sc->sc_prev.if_capenable = ifp->if_capenable;
1294 #if NRND > 0
1295 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
1296 	    RND_TYPE_NET, 0);
1297 #endif
1298 
1299 	/*
1300 	 * The number of bytes that must be available in
1301 	 * the Tx FIFO before the bus master can DMA more
1302 	 * data into the FIFO.
1303 	 */
1304 	sc->sc_tx_fill_thresh = 64 / 32;
1305 
1306 	/*
1307 	 * Start at a drain threshold of 512 bytes.  We will
1308 	 * increase it if a DMA underrun occurs.
1309 	 *
1310 	 * XXX The minimum value of this variable should be
1311 	 * tuned.  We may be able to improve performance
1312 	 * by starting with a lower value.  That, however,
1313 	 * may trash the first few outgoing packets if the
1314 	 * PCI bus is saturated.
1315 	 */
1316 	if (sc->sc_gigabit)
1317 		sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1318 	else
1319 		sc->sc_tx_drain_thresh = 1504 / 32;
1320 
1321 	/*
1322 	 * Initialize the Rx FIFO drain threshold.
1323 	 *
1324 	 * This is in units of 8 bytes.
1325 	 *
1326 	 * We should never set this value lower than 2; 14 bytes are
1327 	 * required to filter the packet.
1328 	 */
1329 	sc->sc_rx_drain_thresh = 128 / 8;
1330 
1331 #ifdef SIP_EVENT_COUNTERS
1332 	/*
1333 	 * Attach event counters.
1334 	 */
1335 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1336 	    NULL, device_xname(sc->sc_dev), "txsstall");
1337 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1338 	    NULL, device_xname(sc->sc_dev), "txdstall");
1339 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1340 	    NULL, device_xname(sc->sc_dev), "txforceintr");
1341 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1342 	    NULL, device_xname(sc->sc_dev), "txdintr");
1343 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1344 	    NULL, device_xname(sc->sc_dev), "txiintr");
1345 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1346 	    NULL, device_xname(sc->sc_dev), "rxintr");
1347 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1348 	    NULL, device_xname(sc->sc_dev), "hiberr");
1349 	if (!sc->sc_gigabit) {
1350 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1351 		    NULL, device_xname(sc->sc_dev), "rxpause");
1352 	} else {
1353 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1354 		    NULL, device_xname(sc->sc_dev), "rxpause");
1355 		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1356 		    NULL, device_xname(sc->sc_dev), "txpause");
1357 		evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1358 		    NULL, device_xname(sc->sc_dev), "rxipsum");
1359 		evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1360 		    NULL, device_xname(sc->sc_dev), "rxtcpsum");
1361 		evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1362 		    NULL, device_xname(sc->sc_dev), "rxudpsum");
1363 		evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1364 		    NULL, device_xname(sc->sc_dev), "txipsum");
1365 		evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1366 		    NULL, device_xname(sc->sc_dev), "txtcpsum");
1367 		evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1368 		    NULL, device_xname(sc->sc_dev), "txudpsum");
1369 	}
1370 #endif /* SIP_EVENT_COUNTERS */
1371 
1372 	if (!pmf_device_register(self, sipcom_suspend, sipcom_resume))
1373 		aprint_error_dev(self, "couldn't establish power handler\n");
1374 	else
1375 		pmf_class_network_register(self, ifp);
1376 }
1377 
1378 static inline void
1379 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1380     uint64_t capenable)
1381 {
1382 	struct m_tag *mtag;
1383 	u_int32_t extsts;
1384 #ifdef DEBUG
1385 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1386 #endif
1387 	/*
1388 	 * If VLANs are enabled and the packet has a VLAN tag, set
1389 	 * up the descriptor to encapsulate the packet for us.
1390 	 *
1391 	 * This apparently has to be on the last descriptor of
1392 	 * the packet.
1393 	 */
1394 
1395 	/*
1396 	 * Byte swapping is tricky. We need to provide the tag
1397 	 * in a network byte order. On a big-endian machine,
1398 	 * the byteorder is correct, but we need to swap it
1399 	 * anyway, because this will be undone by the outside
1400 	 * htole32(). That's why there must be an
1401 	 * unconditional swap instead of htons() inside.
1402 	 */
1403 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1404 		sc->sc_txdescs[lasttx].sipd_extsts |=
1405 		    htole32(EXTSTS_VPKT |
1406 				(bswap16(VLAN_TAG_VALUE(mtag)) &
1407 				 EXTSTS_VTCI));
1408 	}
1409 
1410 	/*
1411 	 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1412 	 * checksumming, set up the descriptor to do this work
1413 	 * for us.
1414 	 *
1415 	 * This apparently has to be on the first descriptor of
1416 	 * the packet.
1417 	 *
1418 	 * Byte-swap constants so the compiler can optimize.
1419 	 */
1420 	extsts = 0;
1421 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1422 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1423 		SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1424 		extsts |= htole32(EXTSTS_IPPKT);
1425 	}
1426 	if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1427 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1428 		SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1429 		extsts |= htole32(EXTSTS_TCPPKT);
1430 	} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1431 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1432 		SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1433 		extsts |= htole32(EXTSTS_UDPPKT);
1434 	}
1435 	sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1436 }
1437 
1438 /*
1439  * sip_start:		[ifnet interface function]
1440  *
1441  *	Start packet transmission on the interface.
1442  */
1443 static void
1444 sipcom_start(struct ifnet *ifp)
1445 {
1446 	struct sip_softc *sc = ifp->if_softc;
1447 	struct mbuf *m0;
1448 	struct mbuf *m;
1449 	struct sip_txsoft *txs;
1450 	bus_dmamap_t dmamap;
1451 	int error, nexttx, lasttx, seg;
1452 	int ofree = sc->sc_txfree;
1453 #if 0
1454 	int firsttx = sc->sc_txnext;
1455 #endif
1456 
1457 	/*
1458 	 * If we've been told to pause, don't transmit any more packets.
1459 	 */
1460 	if (!sc->sc_gigabit && sc->sc_paused)
1461 		ifp->if_flags |= IFF_OACTIVE;
1462 
1463 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1464 		return;
1465 
1466 	/*
1467 	 * Loop through the send queue, setting up transmit descriptors
1468 	 * until we drain the queue, or use up all available transmit
1469 	 * descriptors.
1470 	 */
1471 	for (;;) {
1472 		/* Get a work queue entry. */
1473 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1474 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1475 			break;
1476 		}
1477 
1478 		/*
1479 		 * Grab a packet off the queue.
1480 		 */
1481 		IFQ_POLL(&ifp->if_snd, m0);
1482 		if (m0 == NULL)
1483 			break;
1484 		m = NULL;
1485 
1486 		dmamap = txs->txs_dmamap;
1487 
1488 		/*
1489 		 * Load the DMA map.  If this fails, the packet either
1490 		 * didn't fit in the alloted number of segments, or we
1491 		 * were short on resources.
1492 		 */
1493 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1494 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1495 		/* In the non-gigabit case, we'll copy and try again. */
1496 		if (error != 0 && !sc->sc_gigabit) {
1497 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1498 			if (m == NULL) {
1499 				printf("%s: unable to allocate Tx mbuf\n",
1500 				    device_xname(sc->sc_dev));
1501 				break;
1502 			}
1503 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1504 			if (m0->m_pkthdr.len > MHLEN) {
1505 				MCLGET(m, M_DONTWAIT);
1506 				if ((m->m_flags & M_EXT) == 0) {
1507 					printf("%s: unable to allocate Tx "
1508 					    "cluster\n", device_xname(sc->sc_dev));
1509 					m_freem(m);
1510 					break;
1511 				}
1512 			}
1513 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1514 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1515 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1516 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1517 			if (error) {
1518 				printf("%s: unable to load Tx buffer, "
1519 				    "error = %d\n", device_xname(sc->sc_dev), error);
1520 				break;
1521 			}
1522 		} else if (error == EFBIG) {
1523 			/*
1524 			 * For the too-many-segments case, we simply
1525 			 * report an error and drop the packet,
1526 			 * since we can't sanely copy a jumbo packet
1527 			 * to a single buffer.
1528 			 */
1529 			printf("%s: Tx packet consumes too many "
1530 			    "DMA segments, dropping...\n", device_xname(sc->sc_dev));
1531 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1532 			m_freem(m0);
1533 			continue;
1534 		} else if (error != 0) {
1535 			/*
1536 			 * Short on resources, just stop for now.
1537 			 */
1538 			break;
1539 		}
1540 
1541 		/*
1542 		 * Ensure we have enough descriptors free to describe
1543 		 * the packet.  Note, we always reserve one descriptor
1544 		 * at the end of the ring as a termination point, to
1545 		 * prevent wrap-around.
1546 		 */
1547 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1548 			/*
1549 			 * Not enough free descriptors to transmit this
1550 			 * packet.  We haven't committed anything yet,
1551 			 * so just unload the DMA map, put the packet
1552 			 * back on the queue, and punt.  Notify the upper
1553 			 * layer that there are not more slots left.
1554 			 *
1555 			 * XXX We could allocate an mbuf and copy, but
1556 			 * XXX is it worth it?
1557 			 */
1558 			ifp->if_flags |= IFF_OACTIVE;
1559 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1560 			if (m != NULL)
1561 				m_freem(m);
1562 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1563 			break;
1564 		}
1565 
1566 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1567 		if (m != NULL) {
1568 			m_freem(m0);
1569 			m0 = m;
1570 		}
1571 
1572 		/*
1573 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1574 		 */
1575 
1576 		/* Sync the DMA map. */
1577 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1578 		    BUS_DMASYNC_PREWRITE);
1579 
1580 		/*
1581 		 * Initialize the transmit descriptors.
1582 		 */
1583 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1584 		     seg < dmamap->dm_nsegs;
1585 		     seg++, nexttx = sip_nexttx(sc, nexttx)) {
1586 			/*
1587 			 * If this is the first descriptor we're
1588 			 * enqueueing, don't set the OWN bit just
1589 			 * yet.  That could cause a race condition.
1590 			 * We'll do it below.
1591 			 */
1592 			*sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
1593 			    htole32(dmamap->dm_segs[seg].ds_addr);
1594 			*sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
1595 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1596 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1597 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
1598 			lasttx = nexttx;
1599 		}
1600 
1601 		/* Clear the MORE bit on the last segment. */
1602 		*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
1603 		    htole32(~CMDSTS_MORE);
1604 
1605 		/*
1606 		 * If we're in the interrupt delay window, delay the
1607 		 * interrupt.
1608 		 */
1609 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1610 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1611 			*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
1612 			    htole32(CMDSTS_INTR);
1613 			sc->sc_txwin = 0;
1614 		}
1615 
1616 		if (sc->sc_gigabit)
1617 			sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1618 
1619 		/* Sync the descriptors we're using. */
1620 		sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
1621 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1622 
1623 		/*
1624 		 * The entire packet is set up.  Give the first descrptor
1625 		 * to the chip now.
1626 		 */
1627 		*sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
1628 		    htole32(CMDSTS_OWN);
1629 		sip_cdtxsync(sc, sc->sc_txnext, 1,
1630 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1631 
1632 		/*
1633 		 * Store a pointer to the packet so we can free it later,
1634 		 * and remember what txdirty will be once the packet is
1635 		 * done.
1636 		 */
1637 		txs->txs_mbuf = m0;
1638 		txs->txs_firstdesc = sc->sc_txnext;
1639 		txs->txs_lastdesc = lasttx;
1640 
1641 		/* Advance the tx pointer. */
1642 		sc->sc_txfree -= dmamap->dm_nsegs;
1643 		sc->sc_txnext = nexttx;
1644 
1645 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1646 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1647 
1648 #if NBPFILTER > 0
1649 		/*
1650 		 * Pass the packet to any BPF listeners.
1651 		 */
1652 		if (ifp->if_bpf)
1653 			bpf_mtap(ifp->if_bpf, m0);
1654 #endif /* NBPFILTER > 0 */
1655 	}
1656 
1657 	if (txs == NULL || sc->sc_txfree == 0) {
1658 		/* No more slots left; notify upper layer. */
1659 		ifp->if_flags |= IFF_OACTIVE;
1660 	}
1661 
1662 	if (sc->sc_txfree != ofree) {
1663 		/*
1664 		 * Start the transmit process.  Note, the manual says
1665 		 * that if there are no pending transmissions in the
1666 		 * chip's internal queue (indicated by TXE being clear),
1667 		 * then the driver software must set the TXDP to the
1668 		 * first descriptor to be transmitted.  However, if we
1669 		 * do this, it causes serious performance degredation on
1670 		 * the DP83820 under load, not setting TXDP doesn't seem
1671 		 * to adversely affect the SiS 900 or DP83815.
1672 		 *
1673 		 * Well, I guess it wouldn't be the first time a manual
1674 		 * has lied -- and they could be speaking of the NULL-
1675 		 * terminated descriptor list case, rather than OWN-
1676 		 * terminated rings.
1677 		 */
1678 #if 0
1679 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1680 		     CR_TXE) == 0) {
1681 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1682 			    SIP_CDTXADDR(sc, firsttx));
1683 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1684 		}
1685 #else
1686 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1687 #endif
1688 
1689 		/* Set a watchdog timer in case the chip flakes out. */
1690 		/* Gigabit autonegotiation takes 5 seconds. */
1691 		ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1692 	}
1693 }
1694 
1695 /*
1696  * sip_watchdog:	[ifnet interface function]
1697  *
1698  *	Watchdog timer handler.
1699  */
1700 static void
1701 sipcom_watchdog(struct ifnet *ifp)
1702 {
1703 	struct sip_softc *sc = ifp->if_softc;
1704 
1705 	/*
1706 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1707 	 * If we get a timeout, try and sweep up transmit descriptors.
1708 	 * If we manage to sweep them all up, ignore the lack of
1709 	 * interrupt.
1710 	 */
1711 	sipcom_txintr(sc);
1712 
1713 	if (sc->sc_txfree != sc->sc_ntxdesc) {
1714 		printf("%s: device timeout\n", device_xname(sc->sc_dev));
1715 		ifp->if_oerrors++;
1716 
1717 		/* Reset the interface. */
1718 		(void) sipcom_init(ifp);
1719 	} else if (ifp->if_flags & IFF_DEBUG)
1720 		printf("%s: recovered from device timeout\n",
1721 		    device_xname(sc->sc_dev));
1722 
1723 	/* Try to get more packets going. */
1724 	sipcom_start(ifp);
1725 }
1726 
1727 /* If the interface is up and running, only modify the receive
1728  * filter when setting promiscuous or debug mode.  Otherwise fall
1729  * through to ether_ioctl, which will reset the chip.
1730  */
1731 static int
1732 sip_ifflags_cb(struct ethercom *ec)
1733 {
1734 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable			\
1735 			 == (sc)->sc_ethercom.ec_capenable)		\
1736 			&& ((sc)->sc_prev.is_vlan ==			\
1737 			    VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1738 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1739 	struct ifnet *ifp = &ec->ec_if;
1740 	struct sip_softc *sc = ifp->if_softc;
1741 	int change = ifp->if_flags ^ sc->sc_if_flags;
1742 
1743 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0 || !COMPARE_EC(sc) ||
1744 	    !COMPARE_IC(sc, ifp))
1745 		return ENETRESET;
1746 	/* Set up the receive filter. */
1747 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1748 	return 0;
1749 }
1750 
1751 /*
1752  * sip_ioctl:		[ifnet interface function]
1753  *
1754  *	Handle control requests from the operator.
1755  */
1756 static int
1757 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1758 {
1759 	struct sip_softc *sc = ifp->if_softc;
1760 	struct ifreq *ifr = (struct ifreq *)data;
1761 	int s, error;
1762 
1763 	s = splnet();
1764 
1765 	switch (cmd) {
1766 	case SIOCSIFMEDIA:
1767 		/* Flow control requires full-duplex mode. */
1768 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1769 		    (ifr->ifr_media & IFM_FDX) == 0)
1770 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
1771 
1772 		/* XXX */
1773 		if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1774 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1775 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1776 			if (sc->sc_gigabit &&
1777 			    (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1778 				/* We can do both TXPAUSE and RXPAUSE. */
1779 				ifr->ifr_media |=
1780 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1781 			} else if (ifr->ifr_media & IFM_FLOW) {
1782 				/*
1783 				 * Both TXPAUSE and RXPAUSE must be set.
1784 				 * (SiS900 and DP83815 don't have PAUSE_ASYM
1785 				 * feature.)
1786 				 *
1787 				 * XXX Can SiS900 and DP83815 send PAUSE?
1788 				 */
1789 				ifr->ifr_media |=
1790 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1791 			}
1792 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1793 		}
1794 		/*FALLTHROUGH*/
1795 	default:
1796 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1797 			break;
1798 
1799 		error = 0;
1800 
1801 		if (cmd == SIOCSIFCAP)
1802 			error = (*ifp->if_init)(ifp);
1803 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1804 			;
1805 		else if (ifp->if_flags & IFF_RUNNING) {
1806 			/*
1807 			 * Multicast list has changed; set the hardware filter
1808 			 * accordingly.
1809 			 */
1810 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1811 		}
1812 		break;
1813 	}
1814 
1815 	/* Try to get more packets going. */
1816 	sipcom_start(ifp);
1817 
1818 	sc->sc_if_flags = ifp->if_flags;
1819 	splx(s);
1820 	return (error);
1821 }
1822 
1823 /*
1824  * sip_intr:
1825  *
1826  *	Interrupt service routine.
1827  */
1828 static int
1829 sipcom_intr(void *arg)
1830 {
1831 	struct sip_softc *sc = arg;
1832 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1833 	u_int32_t isr;
1834 	int handled = 0;
1835 
1836 	if (!device_is_active(sc->sc_dev))
1837 		return 0;
1838 
1839 	/* Disable interrupts. */
1840 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1841 
1842 	for (;;) {
1843 		/* Reading clears interrupt. */
1844 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1845 		if ((isr & sc->sc_imr) == 0)
1846 			break;
1847 
1848 #if NRND > 0
1849 		if (RND_ENABLED(&sc->rnd_source))
1850 			rnd_add_uint32(&sc->rnd_source, isr);
1851 #endif
1852 
1853 		handled = 1;
1854 
1855 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1856 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1857 
1858 			/* Grab any new packets. */
1859 			(*sc->sc_rxintr)(sc);
1860 
1861 			if (isr & ISR_RXORN) {
1862 				printf("%s: receive FIFO overrun\n",
1863 				    device_xname(sc->sc_dev));
1864 
1865 				/* XXX adjust rx_drain_thresh? */
1866 			}
1867 
1868 			if (isr & ISR_RXIDLE) {
1869 				printf("%s: receive ring overrun\n",
1870 				    device_xname(sc->sc_dev));
1871 
1872 				/* Get the receive process going again. */
1873 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1874 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1875 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1876 				    SIP_CR, CR_RXE);
1877 			}
1878 		}
1879 
1880 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1881 #ifdef SIP_EVENT_COUNTERS
1882 			if (isr & ISR_TXDESC)
1883 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1884 			else if (isr & ISR_TXIDLE)
1885 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1886 #endif
1887 
1888 			/* Sweep up transmit descriptors. */
1889 			sipcom_txintr(sc);
1890 
1891 			if (isr & ISR_TXURN) {
1892 				u_int32_t thresh;
1893 				int txfifo_size = (sc->sc_gigabit)
1894 				    ? DP83820_SIP_TXFIFO_SIZE
1895 				    : OTHER_SIP_TXFIFO_SIZE;
1896 
1897 				printf("%s: transmit FIFO underrun",
1898 				    device_xname(sc->sc_dev));
1899 				thresh = sc->sc_tx_drain_thresh + 1;
1900 				if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
1901 				&& (thresh * 32) <= (txfifo_size -
1902 				     (sc->sc_tx_fill_thresh * 32))) {
1903 					printf("; increasing Tx drain "
1904 					    "threshold to %u bytes\n",
1905 					    thresh * 32);
1906 					sc->sc_tx_drain_thresh = thresh;
1907 					(void) sipcom_init(ifp);
1908 				} else {
1909 					(void) sipcom_init(ifp);
1910 					printf("\n");
1911 				}
1912 			}
1913 		}
1914 
1915 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1916 			if (isr & ISR_PAUSE_ST) {
1917 				sc->sc_paused = 1;
1918 				SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1919 				ifp->if_flags |= IFF_OACTIVE;
1920 			}
1921 			if (isr & ISR_PAUSE_END) {
1922 				sc->sc_paused = 0;
1923 				ifp->if_flags &= ~IFF_OACTIVE;
1924 			}
1925 		}
1926 
1927 		if (isr & ISR_HIBERR) {
1928 			int want_init = 0;
1929 
1930 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1931 
1932 #define	PRINTERR(bit, str)						\
1933 			do {						\
1934 				if ((isr & (bit)) != 0) {		\
1935 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
1936 						printf("%s: %s\n",	\
1937 						    device_xname(sc->sc_dev), str); \
1938 					want_init = 1;			\
1939 				}					\
1940 			} while (/*CONSTCOND*/0)
1941 
1942 			PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
1943 			PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
1944 			PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
1945 			PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
1946 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1947 			/*
1948 			 * Ignore:
1949 			 *	Tx reset complete
1950 			 *	Rx reset complete
1951 			 */
1952 			if (want_init)
1953 				(void) sipcom_init(ifp);
1954 #undef PRINTERR
1955 		}
1956 	}
1957 
1958 	/* Re-enable interrupts. */
1959 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1960 
1961 	/* Try to get more packets going. */
1962 	sipcom_start(ifp);
1963 
1964 	return (handled);
1965 }
1966 
1967 /*
1968  * sip_txintr:
1969  *
1970  *	Helper; handle transmit interrupts.
1971  */
1972 static void
1973 sipcom_txintr(struct sip_softc *sc)
1974 {
1975 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1976 	struct sip_txsoft *txs;
1977 	u_int32_t cmdsts;
1978 
1979 	if (sc->sc_paused == 0)
1980 		ifp->if_flags &= ~IFF_OACTIVE;
1981 
1982 	/*
1983 	 * Go through our Tx list and free mbufs for those
1984 	 * frames which have been transmitted.
1985 	 */
1986 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1987 		sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1988 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1989 
1990 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
1991 		if (cmdsts & CMDSTS_OWN)
1992 			break;
1993 
1994 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1995 
1996 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1997 
1998 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1999 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2000 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2001 		m_freem(txs->txs_mbuf);
2002 		txs->txs_mbuf = NULL;
2003 
2004 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2005 
2006 		/*
2007 		 * Check for errors and collisions.
2008 		 */
2009 		if (cmdsts &
2010 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
2011 			ifp->if_oerrors++;
2012 			if (cmdsts & CMDSTS_Tx_EC)
2013 				ifp->if_collisions += 16;
2014 			if (ifp->if_flags & IFF_DEBUG) {
2015 				if (cmdsts & CMDSTS_Tx_ED)
2016 					printf("%s: excessive deferral\n",
2017 					    device_xname(sc->sc_dev));
2018 				if (cmdsts & CMDSTS_Tx_EC)
2019 					printf("%s: excessive collisions\n",
2020 					    device_xname(sc->sc_dev));
2021 			}
2022 		} else {
2023 			/* Packet was transmitted successfully. */
2024 			ifp->if_opackets++;
2025 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
2026 		}
2027 	}
2028 
2029 	/*
2030 	 * If there are no more pending transmissions, cancel the watchdog
2031 	 * timer.
2032 	 */
2033 	if (txs == NULL) {
2034 		ifp->if_timer = 0;
2035 		sc->sc_txwin = 0;
2036 	}
2037 }
2038 
2039 /*
2040  * gsip_rxintr:
2041  *
2042  *	Helper; handle receive interrupts on gigabit parts.
2043  */
2044 static void
2045 gsip_rxintr(struct sip_softc *sc)
2046 {
2047 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2048 	struct sip_rxsoft *rxs;
2049 	struct mbuf *m;
2050 	u_int32_t cmdsts, extsts;
2051 	int i, len;
2052 
2053 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2054 		rxs = &sc->sc_rxsoft[i];
2055 
2056 		sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2057 
2058 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2059 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
2060 		len = CMDSTS_SIZE(sc, cmdsts);
2061 
2062 		/*
2063 		 * NOTE: OWN is set if owned by _consumer_.  We're the
2064 		 * consumer of the receive ring, so if the bit is clear,
2065 		 * we have processed all of the packets.
2066 		 */
2067 		if ((cmdsts & CMDSTS_OWN) == 0) {
2068 			/*
2069 			 * We have processed all of the receive buffers.
2070 			 */
2071 			break;
2072 		}
2073 
2074 		if (__predict_false(sc->sc_rxdiscard)) {
2075 			sip_init_rxdesc(sc, i);
2076 			if ((cmdsts & CMDSTS_MORE) == 0) {
2077 				/* Reset our state. */
2078 				sc->sc_rxdiscard = 0;
2079 			}
2080 			continue;
2081 		}
2082 
2083 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2084 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2085 
2086 		m = rxs->rxs_mbuf;
2087 
2088 		/*
2089 		 * Add a new receive buffer to the ring.
2090 		 */
2091 		if (sipcom_add_rxbuf(sc, i) != 0) {
2092 			/*
2093 			 * Failed, throw away what we've done so
2094 			 * far, and discard the rest of the packet.
2095 			 */
2096 			ifp->if_ierrors++;
2097 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2098 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2099 			sip_init_rxdesc(sc, i);
2100 			if (cmdsts & CMDSTS_MORE)
2101 				sc->sc_rxdiscard = 1;
2102 			if (sc->sc_rxhead != NULL)
2103 				m_freem(sc->sc_rxhead);
2104 			sip_rxchain_reset(sc);
2105 			continue;
2106 		}
2107 
2108 		sip_rxchain_link(sc, m);
2109 
2110 		m->m_len = len;
2111 
2112 		/*
2113 		 * If this is not the end of the packet, keep
2114 		 * looking.
2115 		 */
2116 		if (cmdsts & CMDSTS_MORE) {
2117 			sc->sc_rxlen += len;
2118 			continue;
2119 		}
2120 
2121 		/*
2122 		 * Okay, we have the entire packet now.  The chip includes
2123 		 * the FCS, so we need to trim it.
2124 		 */
2125 		m->m_len -= ETHER_CRC_LEN;
2126 
2127 		*sc->sc_rxtailp = NULL;
2128 		len = m->m_len + sc->sc_rxlen;
2129 		m = sc->sc_rxhead;
2130 
2131 		sip_rxchain_reset(sc);
2132 
2133 		/*
2134 		 * If an error occurred, update stats and drop the packet.
2135 		 */
2136 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2137 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2138 			ifp->if_ierrors++;
2139 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2140 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
2141 				/* Receive overrun handled elsewhere. */
2142 				printf("%s: receive descriptor error\n",
2143 				    device_xname(sc->sc_dev));
2144 			}
2145 #define	PRINTERR(bit, str)						\
2146 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
2147 			    (cmdsts & (bit)) != 0)			\
2148 				printf("%s: %s\n", device_xname(sc->sc_dev), str)
2149 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2150 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2151 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2152 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2153 #undef PRINTERR
2154 			m_freem(m);
2155 			continue;
2156 		}
2157 
2158 		/*
2159 		 * If the packet is small enough to fit in a
2160 		 * single header mbuf, allocate one and copy
2161 		 * the data into it.  This greatly reduces
2162 		 * memory consumption when we receive lots
2163 		 * of small packets.
2164 		 */
2165 		if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
2166 			struct mbuf *nm;
2167 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
2168 			if (nm == NULL) {
2169 				ifp->if_ierrors++;
2170 				m_freem(m);
2171 				continue;
2172 			}
2173 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2174 			nm->m_data += 2;
2175 			nm->m_pkthdr.len = nm->m_len = len;
2176 			m_copydata(m, 0, len, mtod(nm, void *));
2177 			m_freem(m);
2178 			m = nm;
2179 		}
2180 #ifndef __NO_STRICT_ALIGNMENT
2181 		else {
2182 			/*
2183 			 * The DP83820's receive buffers must be 4-byte
2184 			 * aligned.  But this means that the data after
2185 			 * the Ethernet header is misaligned.  To compensate,
2186 			 * we have artificially shortened the buffer size
2187 			 * in the descriptor, and we do an overlapping copy
2188 			 * of the data two bytes further in (in the first
2189 			 * buffer of the chain only).
2190 			 */
2191 			memmove(mtod(m, char *) + 2, mtod(m, void *),
2192 			    m->m_len);
2193 			m->m_data += 2;
2194 		}
2195 #endif /* ! __NO_STRICT_ALIGNMENT */
2196 
2197 		/*
2198 		 * If VLANs are enabled, VLAN packets have been unwrapped
2199 		 * for us.  Associate the tag with the packet.
2200 		 */
2201 
2202 		/*
2203 		 * Again, byte swapping is tricky. Hardware provided
2204 		 * the tag in the network byte order, but extsts was
2205 		 * passed through le32toh() in the meantime. On a
2206 		 * big-endian machine, we need to swap it again. On a
2207 		 * little-endian machine, we need to convert from the
2208 		 * network to host byte order. This means that we must
2209 		 * swap it in any case, so unconditional swap instead
2210 		 * of htons() is used.
2211 		 */
2212 		if ((extsts & EXTSTS_VPKT) != 0) {
2213 			VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
2214 			    continue);
2215 		}
2216 
2217 		/*
2218 		 * Set the incoming checksum information for the
2219 		 * packet.
2220 		 */
2221 		if ((extsts & EXTSTS_IPPKT) != 0) {
2222 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2223 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2224 			if (extsts & EXTSTS_Rx_IPERR)
2225 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2226 			if (extsts & EXTSTS_TCPPKT) {
2227 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2228 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2229 				if (extsts & EXTSTS_Rx_TCPERR)
2230 					m->m_pkthdr.csum_flags |=
2231 					    M_CSUM_TCP_UDP_BAD;
2232 			} else if (extsts & EXTSTS_UDPPKT) {
2233 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2234 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2235 				if (extsts & EXTSTS_Rx_UDPERR)
2236 					m->m_pkthdr.csum_flags |=
2237 					    M_CSUM_TCP_UDP_BAD;
2238 			}
2239 		}
2240 
2241 		ifp->if_ipackets++;
2242 		m->m_pkthdr.rcvif = ifp;
2243 		m->m_pkthdr.len = len;
2244 
2245 #if NBPFILTER > 0
2246 		/*
2247 		 * Pass this up to any BPF listeners, but only
2248 		 * pass if up the stack if it's for us.
2249 		 */
2250 		if (ifp->if_bpf)
2251 			bpf_mtap(ifp->if_bpf, m);
2252 #endif /* NBPFILTER > 0 */
2253 
2254 		/* Pass it on. */
2255 		(*ifp->if_input)(ifp, m);
2256 	}
2257 
2258 	/* Update the receive pointer. */
2259 	sc->sc_rxptr = i;
2260 }
2261 
2262 /*
2263  * sip_rxintr:
2264  *
2265  *	Helper; handle receive interrupts on 10/100 parts.
2266  */
2267 static void
2268 sip_rxintr(struct sip_softc *sc)
2269 {
2270 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2271 	struct sip_rxsoft *rxs;
2272 	struct mbuf *m;
2273 	u_int32_t cmdsts;
2274 	int i, len;
2275 
2276 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2277 		rxs = &sc->sc_rxsoft[i];
2278 
2279 		sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2280 
2281 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2282 
2283 		/*
2284 		 * NOTE: OWN is set if owned by _consumer_.  We're the
2285 		 * consumer of the receive ring, so if the bit is clear,
2286 		 * we have processed all of the packets.
2287 		 */
2288 		if ((cmdsts & CMDSTS_OWN) == 0) {
2289 			/*
2290 			 * We have processed all of the receive buffers.
2291 			 */
2292 			break;
2293 		}
2294 
2295 		/*
2296 		 * If any collisions were seen on the wire, count one.
2297 		 */
2298 		if (cmdsts & CMDSTS_Rx_COL)
2299 			ifp->if_collisions++;
2300 
2301 		/*
2302 		 * If an error occurred, update stats, clear the status
2303 		 * word, and leave the packet buffer in place.  It will
2304 		 * simply be reused the next time the ring comes around.
2305 		 */
2306 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2307 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2308 			ifp->if_ierrors++;
2309 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2310 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
2311 				/* Receive overrun handled elsewhere. */
2312 				printf("%s: receive descriptor error\n",
2313 				    device_xname(sc->sc_dev));
2314 			}
2315 #define	PRINTERR(bit, str)						\
2316 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
2317 			    (cmdsts & (bit)) != 0)			\
2318 				printf("%s: %s\n", device_xname(sc->sc_dev), str)
2319 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2320 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2321 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2322 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2323 #undef PRINTERR
2324 			sip_init_rxdesc(sc, i);
2325 			continue;
2326 		}
2327 
2328 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2329 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2330 
2331 		/*
2332 		 * No errors; receive the packet.  Note, the SiS 900
2333 		 * includes the CRC with every packet.
2334 		 */
2335 		len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
2336 
2337 #ifdef __NO_STRICT_ALIGNMENT
2338 		/*
2339 		 * If the packet is small enough to fit in a
2340 		 * single header mbuf, allocate one and copy
2341 		 * the data into it.  This greatly reduces
2342 		 * memory consumption when we receive lots
2343 		 * of small packets.
2344 		 *
2345 		 * Otherwise, we add a new buffer to the receive
2346 		 * chain.  If this fails, we drop the packet and
2347 		 * recycle the old buffer.
2348 		 */
2349 		if (sip_copy_small != 0 && len <= MHLEN) {
2350 			MGETHDR(m, M_DONTWAIT, MT_DATA);
2351 			if (m == NULL)
2352 				goto dropit;
2353 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2354 			memcpy(mtod(m, void *),
2355 			    mtod(rxs->rxs_mbuf, void *), len);
2356 			sip_init_rxdesc(sc, i);
2357 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2358 			    rxs->rxs_dmamap->dm_mapsize,
2359 			    BUS_DMASYNC_PREREAD);
2360 		} else {
2361 			m = rxs->rxs_mbuf;
2362 			if (sipcom_add_rxbuf(sc, i) != 0) {
2363  dropit:
2364 				ifp->if_ierrors++;
2365 				sip_init_rxdesc(sc, i);
2366 				bus_dmamap_sync(sc->sc_dmat,
2367 				    rxs->rxs_dmamap, 0,
2368 				    rxs->rxs_dmamap->dm_mapsize,
2369 				    BUS_DMASYNC_PREREAD);
2370 				continue;
2371 			}
2372 		}
2373 #else
2374 		/*
2375 		 * The SiS 900's receive buffers must be 4-byte aligned.
2376 		 * But this means that the data after the Ethernet header
2377 		 * is misaligned.  We must allocate a new buffer and
2378 		 * copy the data, shifted forward 2 bytes.
2379 		 */
2380 		MGETHDR(m, M_DONTWAIT, MT_DATA);
2381 		if (m == NULL) {
2382  dropit:
2383 			ifp->if_ierrors++;
2384 			sip_init_rxdesc(sc, i);
2385 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2386 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2387 			continue;
2388 		}
2389 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2390 		if (len > (MHLEN - 2)) {
2391 			MCLGET(m, M_DONTWAIT);
2392 			if ((m->m_flags & M_EXT) == 0) {
2393 				m_freem(m);
2394 				goto dropit;
2395 			}
2396 		}
2397 		m->m_data += 2;
2398 
2399 		/*
2400 		 * Note that we use clusters for incoming frames, so the
2401 		 * buffer is virtually contiguous.
2402 		 */
2403 		memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2404 
2405 		/* Allow the receive descriptor to continue using its mbuf. */
2406 		sip_init_rxdesc(sc, i);
2407 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2408 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2409 #endif /* __NO_STRICT_ALIGNMENT */
2410 
2411 		ifp->if_ipackets++;
2412 		m->m_pkthdr.rcvif = ifp;
2413 		m->m_pkthdr.len = m->m_len = len;
2414 
2415 #if NBPFILTER > 0
2416 		/*
2417 		 * Pass this up to any BPF listeners, but only
2418 		 * pass if up the stack if it's for us.
2419 		 */
2420 		if (ifp->if_bpf)
2421 			bpf_mtap(ifp->if_bpf, m);
2422 #endif /* NBPFILTER > 0 */
2423 
2424 		/* Pass it on. */
2425 		(*ifp->if_input)(ifp, m);
2426 	}
2427 
2428 	/* Update the receive pointer. */
2429 	sc->sc_rxptr = i;
2430 }
2431 
2432 /*
2433  * sip_tick:
2434  *
2435  *	One second timer, used to tick the MII.
2436  */
2437 static void
2438 sipcom_tick(void *arg)
2439 {
2440 	struct sip_softc *sc = arg;
2441 	int s;
2442 
2443 	s = splnet();
2444 #ifdef SIP_EVENT_COUNTERS
2445 	if (sc->sc_gigabit) {
2446 		/* Read PAUSE related counts from MIB registers. */
2447 		sc->sc_ev_rxpause.ev_count +=
2448 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
2449 				     SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2450 		sc->sc_ev_txpause.ev_count +=
2451 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
2452 				     SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2453 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2454 	}
2455 #endif /* SIP_EVENT_COUNTERS */
2456 	mii_tick(&sc->sc_mii);
2457 	splx(s);
2458 
2459 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2460 }
2461 
2462 /*
2463  * sip_reset:
2464  *
2465  *	Perform a soft reset on the SiS 900.
2466  */
2467 static bool
2468 sipcom_reset(struct sip_softc *sc)
2469 {
2470 	bus_space_tag_t st = sc->sc_st;
2471 	bus_space_handle_t sh = sc->sc_sh;
2472 	int i;
2473 
2474 	bus_space_write_4(st, sh, SIP_IER, 0);
2475 	bus_space_write_4(st, sh, SIP_IMR, 0);
2476 	bus_space_write_4(st, sh, SIP_RFCR, 0);
2477 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
2478 
2479 	for (i = 0; i < SIP_TIMEOUT; i++) {
2480 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2481 			break;
2482 		delay(2);
2483 	}
2484 
2485 	if (i == SIP_TIMEOUT) {
2486 		printf("%s: reset failed to complete\n", device_xname(sc->sc_dev));
2487 		return false;
2488 	}
2489 
2490 	delay(1000);
2491 
2492 	if (sc->sc_gigabit) {
2493 		/*
2494 		 * Set the general purpose I/O bits.  Do it here in case we
2495 		 * need to have GPIO set up to talk to the media interface.
2496 		 */
2497 		bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2498 		delay(1000);
2499 	}
2500 	return true;
2501 }
2502 
2503 static void
2504 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2505 {
2506 	u_int32_t reg;
2507 	bus_space_tag_t st = sc->sc_st;
2508 	bus_space_handle_t sh = sc->sc_sh;
2509 	/*
2510 	 * Initialize the VLAN/IP receive control register.
2511 	 * We enable checksum computation on all incoming
2512 	 * packets, and do not reject packets w/ bad checksums.
2513 	 */
2514 	reg = 0;
2515 	if (capenable &
2516 	    (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
2517 		reg |= VRCR_IPEN;
2518 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2519 		reg |= VRCR_VTDEN|VRCR_VTREN;
2520 	bus_space_write_4(st, sh, SIP_VRCR, reg);
2521 
2522 	/*
2523 	 * Initialize the VLAN/IP transmit control register.
2524 	 * We enable outgoing checksum computation on a
2525 	 * per-packet basis.
2526 	 */
2527 	reg = 0;
2528 	if (capenable &
2529 	    (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2530 		reg |= VTCR_PPCHK;
2531 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2532 		reg |= VTCR_VPPTI;
2533 	bus_space_write_4(st, sh, SIP_VTCR, reg);
2534 
2535 	/*
2536 	 * If we're using VLANs, initialize the VLAN data register.
2537 	 * To understand why we bswap the VLAN Ethertype, see section
2538 	 * 4.2.36 of the DP83820 manual.
2539 	 */
2540 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2541 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2542 }
2543 
2544 /*
2545  * sip_init:		[ ifnet interface function ]
2546  *
2547  *	Initialize the interface.  Must be called at splnet().
2548  */
2549 static int
2550 sipcom_init(struct ifnet *ifp)
2551 {
2552 	struct sip_softc *sc = ifp->if_softc;
2553 	bus_space_tag_t st = sc->sc_st;
2554 	bus_space_handle_t sh = sc->sc_sh;
2555 	struct sip_txsoft *txs;
2556 	struct sip_rxsoft *rxs;
2557 	struct sip_desc *sipd;
2558 	int i, error = 0;
2559 
2560 	if (device_is_active(sc->sc_dev)) {
2561 		/*
2562 		 * Cancel any pending I/O.
2563 		 */
2564 		sipcom_stop(ifp, 0);
2565 	} else if (!pmf_device_resume_self(sc->sc_dev))
2566 		return 0;
2567 
2568 	/*
2569 	 * Reset the chip to a known state.
2570 	 */
2571 	if (!sipcom_reset(sc))
2572 		return EBUSY;
2573 
2574 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2575 		/*
2576 		 * DP83815 manual, page 78:
2577 		 *    4.4 Recommended Registers Configuration
2578 		 *    For optimum performance of the DP83815, version noted
2579 		 *    as DP83815CVNG (SRR = 203h), the listed register
2580 		 *    modifications must be followed in sequence...
2581 		 *
2582 		 * It's not clear if this should be 302h or 203h because that
2583 		 * chip name is listed as SRR 302h in the description of the
2584 		 * SRR register.  However, my revision 302h DP83815 on the
2585 		 * Netgear FA311 purchased in 02/2001 needs these settings
2586 		 * to avoid tons of errors in AcceptPerfectMatch (non-
2587 		 * IFF_PROMISC) mode.  I do not know if other revisions need
2588 		 * this set or not.  [briggs -- 09 March 2001]
2589 		 *
2590 		 * Note that only the low-order 12 bits of 0xe4 are documented
2591 		 * and that this sets reserved bits in that register.
2592 		 */
2593 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
2594 
2595 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
2596 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
2597 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
2598 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
2599 
2600 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
2601 	}
2602 
2603 	/*
2604 	 * Initialize the transmit descriptor ring.
2605 	 */
2606 	for (i = 0; i < sc->sc_ntxdesc; i++) {
2607 		sipd = &sc->sc_txdescs[i];
2608 		memset(sipd, 0, sizeof(struct sip_desc));
2609 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
2610 	}
2611 	sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
2612 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2613 	sc->sc_txfree = sc->sc_ntxdesc;
2614 	sc->sc_txnext = 0;
2615 	sc->sc_txwin = 0;
2616 
2617 	/*
2618 	 * Initialize the transmit job descriptors.
2619 	 */
2620 	SIMPLEQ_INIT(&sc->sc_txfreeq);
2621 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
2622 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
2623 		txs = &sc->sc_txsoft[i];
2624 		txs->txs_mbuf = NULL;
2625 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2626 	}
2627 
2628 	/*
2629 	 * Initialize the receive descriptor and receive job
2630 	 * descriptor rings.
2631 	 */
2632 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2633 		rxs = &sc->sc_rxsoft[i];
2634 		if (rxs->rxs_mbuf == NULL) {
2635 			if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
2636 				printf("%s: unable to allocate or map rx "
2637 				    "buffer %d, error = %d\n",
2638 				    device_xname(sc->sc_dev), i, error);
2639 				/*
2640 				 * XXX Should attempt to run with fewer receive
2641 				 * XXX buffers instead of just failing.
2642 				 */
2643 				sipcom_rxdrain(sc);
2644 				goto out;
2645 			}
2646 		} else
2647 			sip_init_rxdesc(sc, i);
2648 	}
2649 	sc->sc_rxptr = 0;
2650 	sc->sc_rxdiscard = 0;
2651 	sip_rxchain_reset(sc);
2652 
2653 	/*
2654 	 * Set the configuration register; it's already initialized
2655 	 * in sip_attach().
2656 	 */
2657 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2658 
2659 	/*
2660 	 * Initialize the prototype TXCFG register.
2661 	 */
2662 	if (sc->sc_gigabit) {
2663 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2664 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2665 	} else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2666 	     SIP_SIS900_REV(sc, SIS_REV_960) ||
2667 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2668 	    (sc->sc_cfg & CFG_EDBMASTEN)) {
2669 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
2670 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
2671 	} else {
2672 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2673 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2674 	}
2675 
2676 	sc->sc_txcfg |= TXCFG_ATP |
2677 	    __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
2678 	    sc->sc_tx_drain_thresh;
2679 	bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
2680 
2681 	/*
2682 	 * Initialize the receive drain threshold if we have never
2683 	 * done so.
2684 	 */
2685 	if (sc->sc_rx_drain_thresh == 0) {
2686 		/*
2687 		 * XXX This value should be tuned.  This is set to the
2688 		 * maximum of 248 bytes, and we may be able to improve
2689 		 * performance by decreasing it (although we should never
2690 		 * set this value lower than 2; 14 bytes are required to
2691 		 * filter the packet).
2692 		 */
2693 		sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
2694 	}
2695 
2696 	/*
2697 	 * Initialize the prototype RXCFG register.
2698 	 */
2699 	sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
2700 	/*
2701 	 * Accept long packets (including FCS) so we can handle
2702 	 * 802.1q-tagged frames and jumbo frames properly.
2703 	 */
2704 	if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2705 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2706 		sc->sc_rxcfg |= RXCFG_ALP;
2707 
2708 	/*
2709 	 * Checksum offloading is disabled if the user selects an MTU
2710 	 * larger than 8109.  (FreeBSD says 8152, but there is emperical
2711 	 * evidence that >8109 does not work on some boards, such as the
2712 	 * Planex GN-1000TE).
2713 	 */
2714 	if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2715 	    (ifp->if_capenable &
2716 	     (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2717 	      IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2718 	      IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
2719 		printf("%s: Checksum offloading does not work if MTU > 8109 - "
2720 		       "disabled.\n", device_xname(sc->sc_dev));
2721 		ifp->if_capenable &=
2722 		    ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2723 		     IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2724 		     IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
2725 		ifp->if_csum_flags_tx = 0;
2726 		ifp->if_csum_flags_rx = 0;
2727 	}
2728 
2729 	bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
2730 
2731 	if (sc->sc_gigabit)
2732 		sipcom_dp83820_init(sc, ifp->if_capenable);
2733 
2734 	/*
2735 	 * Give the transmit and receive rings to the chip.
2736 	 */
2737 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2738 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2739 
2740 	/*
2741 	 * Initialize the interrupt mask.
2742 	 */
2743 	sc->sc_imr = sc->sc_bits.b_isr_dperr |
2744 	             sc->sc_bits.b_isr_sserr |
2745 		     sc->sc_bits.b_isr_rmabt |
2746 		     sc->sc_bits.b_isr_rtabt | ISR_RXSOVR |
2747 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2748 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2749 
2750 	/* Set up the receive filter. */
2751 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2752 
2753 	/*
2754 	 * Tune sc_rx_flow_thresh.
2755 	 * XXX "More than 8KB" is too short for jumbo frames.
2756 	 * XXX TODO: Threshold value should be user-settable.
2757 	 */
2758 	sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2759 				 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2760 				 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2761 
2762 	/*
2763 	 * Set the current media.  Do this after initializing the prototype
2764 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2765 	 * control.
2766 	 */
2767 	if ((error = ether_mediachange(ifp)) != 0)
2768 		goto out;
2769 
2770 	/*
2771 	 * Set the interrupt hold-off timer to 100us.
2772 	 */
2773 	if (sc->sc_gigabit)
2774 		bus_space_write_4(st, sh, SIP_IHR, 0x01);
2775 
2776 	/*
2777 	 * Enable interrupts.
2778 	 */
2779 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
2780 
2781 	/*
2782 	 * Start the transmit and receive processes.
2783 	 */
2784 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2785 
2786 	/*
2787 	 * Start the one second MII clock.
2788 	 */
2789 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2790 
2791 	/*
2792 	 * ...all done!
2793 	 */
2794 	ifp->if_flags |= IFF_RUNNING;
2795 	ifp->if_flags &= ~IFF_OACTIVE;
2796 	sc->sc_if_flags = ifp->if_flags;
2797 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2798 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2799 	sc->sc_prev.if_capenable = ifp->if_capenable;
2800 
2801  out:
2802 	if (error)
2803 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
2804 	return (error);
2805 }
2806 
2807 /*
2808  * sip_drain:
2809  *
2810  *	Drain the receive queue.
2811  */
2812 static void
2813 sipcom_rxdrain(struct sip_softc *sc)
2814 {
2815 	struct sip_rxsoft *rxs;
2816 	int i;
2817 
2818 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2819 		rxs = &sc->sc_rxsoft[i];
2820 		if (rxs->rxs_mbuf != NULL) {
2821 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2822 			m_freem(rxs->rxs_mbuf);
2823 			rxs->rxs_mbuf = NULL;
2824 		}
2825 	}
2826 }
2827 
2828 /*
2829  * sip_stop:		[ ifnet interface function ]
2830  *
2831  *	Stop transmission on the interface.
2832  */
2833 static void
2834 sipcom_stop(struct ifnet *ifp, int disable)
2835 {
2836 	struct sip_softc *sc = ifp->if_softc;
2837 	bus_space_tag_t st = sc->sc_st;
2838 	bus_space_handle_t sh = sc->sc_sh;
2839 	struct sip_txsoft *txs;
2840 	u_int32_t cmdsts = 0;		/* DEBUG */
2841 
2842 	/*
2843 	 * Stop the one second clock.
2844 	 */
2845 	callout_stop(&sc->sc_tick_ch);
2846 
2847 	/* Down the MII. */
2848 	mii_down(&sc->sc_mii);
2849 
2850 	if (device_is_active(sc->sc_dev)) {
2851 		/*
2852 		 * Disable interrupts.
2853 		 */
2854 		bus_space_write_4(st, sh, SIP_IER, 0);
2855 
2856 		/*
2857 		 * Stop receiver and transmitter.
2858 		 */
2859 		bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2860 	}
2861 
2862 	/*
2863 	 * Release any queued transmit buffers.
2864 	 */
2865 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2866 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2867 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2868 		    (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
2869 		     CMDSTS_INTR) == 0)
2870 			printf("%s: sip_stop: last descriptor does not "
2871 			    "have INTR bit set\n", device_xname(sc->sc_dev));
2872 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2873 #ifdef DIAGNOSTIC
2874 		if (txs->txs_mbuf == NULL) {
2875 			printf("%s: dirty txsoft with no mbuf chain\n",
2876 			    device_xname(sc->sc_dev));
2877 			panic("sip_stop");
2878 		}
2879 #endif
2880 		cmdsts |=		/* DEBUG */
2881 		    le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
2882 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2883 		m_freem(txs->txs_mbuf);
2884 		txs->txs_mbuf = NULL;
2885 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2886 	}
2887 
2888 	/*
2889 	 * Mark the interface down and cancel the watchdog timer.
2890 	 */
2891 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2892 	ifp->if_timer = 0;
2893 
2894 	if (disable)
2895 		pmf_device_suspend_self(sc->sc_dev);
2896 
2897 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2898 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2899 		printf("%s: sip_stop: no INTR bits set in dirty tx "
2900 		    "descriptors\n", device_xname(sc->sc_dev));
2901 }
2902 
2903 /*
2904  * sip_read_eeprom:
2905  *
2906  *	Read data from the serial EEPROM.
2907  */
2908 static void
2909 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2910     u_int16_t *data)
2911 {
2912 	bus_space_tag_t st = sc->sc_st;
2913 	bus_space_handle_t sh = sc->sc_sh;
2914 	u_int16_t reg;
2915 	int i, x;
2916 
2917 	for (i = 0; i < wordcnt; i++) {
2918 		/* Send CHIP SELECT. */
2919 		reg = EROMAR_EECS;
2920 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
2921 
2922 		/* Shift in the READ opcode. */
2923 		for (x = 3; x > 0; x--) {
2924 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2925 				reg |= EROMAR_EEDI;
2926 			else
2927 				reg &= ~EROMAR_EEDI;
2928 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2929 			bus_space_write_4(st, sh, SIP_EROMAR,
2930 			    reg | EROMAR_EESK);
2931 			delay(4);
2932 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2933 			delay(4);
2934 		}
2935 
2936 		/* Shift in address. */
2937 		for (x = 6; x > 0; x--) {
2938 			if ((word + i) & (1 << (x - 1)))
2939 				reg |= EROMAR_EEDI;
2940 			else
2941 				reg &= ~EROMAR_EEDI;
2942 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2943 			bus_space_write_4(st, sh, SIP_EROMAR,
2944 			    reg | EROMAR_EESK);
2945 			delay(4);
2946 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2947 			delay(4);
2948 		}
2949 
2950 		/* Shift out data. */
2951 		reg = EROMAR_EECS;
2952 		data[i] = 0;
2953 		for (x = 16; x > 0; x--) {
2954 			bus_space_write_4(st, sh, SIP_EROMAR,
2955 			    reg | EROMAR_EESK);
2956 			delay(4);
2957 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2958 				data[i] |= (1 << (x - 1));
2959 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2960 			delay(4);
2961 		}
2962 
2963 		/* Clear CHIP SELECT. */
2964 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
2965 		delay(4);
2966 	}
2967 }
2968 
2969 /*
2970  * sipcom_add_rxbuf:
2971  *
2972  *	Add a receive buffer to the indicated descriptor.
2973  */
2974 static int
2975 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
2976 {
2977 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2978 	struct mbuf *m;
2979 	int error;
2980 
2981 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2982 	if (m == NULL)
2983 		return (ENOBUFS);
2984 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2985 
2986 	MCLGET(m, M_DONTWAIT);
2987 	if ((m->m_flags & M_EXT) == 0) {
2988 		m_freem(m);
2989 		return (ENOBUFS);
2990 	}
2991 
2992 	/* XXX I don't believe this is necessary. --dyoung */
2993 	if (sc->sc_gigabit)
2994 		m->m_len = sc->sc_parm->p_rxbuf_len;
2995 
2996 	if (rxs->rxs_mbuf != NULL)
2997 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2998 
2999 	rxs->rxs_mbuf = m;
3000 
3001 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
3002 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
3003 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
3004 	if (error) {
3005 		printf("%s: can't load rx DMA map %d, error = %d\n",
3006 		    device_xname(sc->sc_dev), idx, error);
3007 		panic("%s", __func__);		/* XXX */
3008 	}
3009 
3010 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3011 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3012 
3013 	sip_init_rxdesc(sc, idx);
3014 
3015 	return (0);
3016 }
3017 
3018 /*
3019  * sip_sis900_set_filter:
3020  *
3021  *	Set up the receive filter.
3022  */
3023 static void
3024 sipcom_sis900_set_filter(struct sip_softc *sc)
3025 {
3026 	bus_space_tag_t st = sc->sc_st;
3027 	bus_space_handle_t sh = sc->sc_sh;
3028 	struct ethercom *ec = &sc->sc_ethercom;
3029 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3030 	struct ether_multi *enm;
3031 	const u_int8_t *cp;
3032 	struct ether_multistep step;
3033 	u_int32_t crc, mchash[16];
3034 
3035 	/*
3036 	 * Initialize the prototype RFCR.
3037 	 */
3038 	sc->sc_rfcr = RFCR_RFEN;
3039 	if (ifp->if_flags & IFF_BROADCAST)
3040 		sc->sc_rfcr |= RFCR_AAB;
3041 	if (ifp->if_flags & IFF_PROMISC) {
3042 		sc->sc_rfcr |= RFCR_AAP;
3043 		goto allmulti;
3044 	}
3045 
3046 	/*
3047 	 * Set up the multicast address filter by passing all multicast
3048 	 * addresses through a CRC generator, and then using the high-order
3049 	 * 6 bits as an index into the 128 bit multicast hash table (only
3050 	 * the lower 16 bits of each 32 bit multicast hash register are
3051 	 * valid).  The high order bits select the register, while the
3052 	 * rest of the bits select the bit within the register.
3053 	 */
3054 
3055 	memset(mchash, 0, sizeof(mchash));
3056 
3057 	/*
3058 	 * SiS900 (at least SiS963) requires us to register the address of
3059 	 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3060 	 */
3061 	crc = 0x0ed423f9;
3062 
3063 	if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3064 	    SIP_SIS900_REV(sc, SIS_REV_960) ||
3065 	    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3066 		/* Just want the 8 most significant bits. */
3067 		crc >>= 24;
3068 	} else {
3069 		/* Just want the 7 most significant bits. */
3070 		crc >>= 25;
3071 	}
3072 
3073 	/* Set the corresponding bit in the hash table. */
3074 	mchash[crc >> 4] |= 1 << (crc & 0xf);
3075 
3076 	ETHER_FIRST_MULTI(step, ec, enm);
3077 	while (enm != NULL) {
3078 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3079 			/*
3080 			 * We must listen to a range of multicast addresses.
3081 			 * For now, just accept all multicasts, rather than
3082 			 * trying to set only those filter bits needed to match
3083 			 * the range.  (At this time, the only use of address
3084 			 * ranges is for IP multicast routing, for which the
3085 			 * range is big enough to require all bits set.)
3086 			 */
3087 			goto allmulti;
3088 		}
3089 
3090 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3091 
3092 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3093 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
3094 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3095 			/* Just want the 8 most significant bits. */
3096 			crc >>= 24;
3097 		} else {
3098 			/* Just want the 7 most significant bits. */
3099 			crc >>= 25;
3100 		}
3101 
3102 		/* Set the corresponding bit in the hash table. */
3103 		mchash[crc >> 4] |= 1 << (crc & 0xf);
3104 
3105 		ETHER_NEXT_MULTI(step, enm);
3106 	}
3107 
3108 	ifp->if_flags &= ~IFF_ALLMULTI;
3109 	goto setit;
3110 
3111  allmulti:
3112 	ifp->if_flags |= IFF_ALLMULTI;
3113 	sc->sc_rfcr |= RFCR_AAM;
3114 
3115  setit:
3116 #define	FILTER_EMIT(addr, data)						\
3117 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
3118 	delay(1);							\
3119 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
3120 	delay(1)
3121 
3122 	/*
3123 	 * Disable receive filter, and program the node address.
3124 	 */
3125 	cp = CLLADDR(ifp->if_sadl);
3126 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
3127 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
3128 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
3129 
3130 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3131 		/*
3132 		 * Program the multicast hash table.
3133 		 */
3134 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
3135 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
3136 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
3137 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
3138 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
3139 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
3140 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
3141 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
3142 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3143 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
3144 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3145 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
3146 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
3147 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
3148 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
3149 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
3150 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
3151 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
3152 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
3153 		}
3154 	}
3155 #undef FILTER_EMIT
3156 
3157 	/*
3158 	 * Re-enable the receiver filter.
3159 	 */
3160 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3161 }
3162 
3163 /*
3164  * sip_dp83815_set_filter:
3165  *
3166  *	Set up the receive filter.
3167  */
3168 static void
3169 sipcom_dp83815_set_filter(struct sip_softc *sc)
3170 {
3171 	bus_space_tag_t st = sc->sc_st;
3172 	bus_space_handle_t sh = sc->sc_sh;
3173 	struct ethercom *ec = &sc->sc_ethercom;
3174 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3175 	struct ether_multi *enm;
3176 	const u_int8_t *cp;
3177 	struct ether_multistep step;
3178 	u_int32_t crc, hash, slot, bit;
3179 #define	MCHASH_NWORDS_83820	128
3180 #define	MCHASH_NWORDS_83815	32
3181 #define	MCHASH_NWORDS	MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3182 	u_int16_t mchash[MCHASH_NWORDS];
3183 	int i;
3184 
3185 	/*
3186 	 * Initialize the prototype RFCR.
3187 	 * Enable the receive filter, and accept on
3188 	 *    Perfect (destination address) Match
3189 	 * If IFF_BROADCAST, also accept all broadcast packets.
3190 	 * If IFF_PROMISC, accept all unicast packets (and later, set
3191 	 *    IFF_ALLMULTI and accept all multicast, too).
3192 	 */
3193 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3194 	if (ifp->if_flags & IFF_BROADCAST)
3195 		sc->sc_rfcr |= RFCR_AAB;
3196 	if (ifp->if_flags & IFF_PROMISC) {
3197 		sc->sc_rfcr |= RFCR_AAP;
3198 		goto allmulti;
3199 	}
3200 
3201 	/*
3202          * Set up the DP83820/DP83815 multicast address filter by
3203          * passing all multicast addresses through a CRC generator,
3204          * and then using the high-order 11/9 bits as an index into
3205          * the 2048/512 bit multicast hash table.  The high-order
3206          * 7/5 bits select the slot, while the low-order 4 bits
3207          * select the bit within the slot.  Note that only the low
3208          * 16-bits of each filter word are used, and there are
3209          * 128/32 filter words.
3210 	 */
3211 
3212 	memset(mchash, 0, sizeof(mchash));
3213 
3214 	ifp->if_flags &= ~IFF_ALLMULTI;
3215 	ETHER_FIRST_MULTI(step, ec, enm);
3216 	if (enm == NULL)
3217 		goto setit;
3218 	while (enm != NULL) {
3219 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3220 			/*
3221 			 * We must listen to a range of multicast addresses.
3222 			 * For now, just accept all multicasts, rather than
3223 			 * trying to set only those filter bits needed to match
3224 			 * the range.  (At this time, the only use of address
3225 			 * ranges is for IP multicast routing, for which the
3226 			 * range is big enough to require all bits set.)
3227 			 */
3228 			goto allmulti;
3229 		}
3230 
3231 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3232 
3233 		if (sc->sc_gigabit) {
3234 			/* Just want the 11 most significant bits. */
3235 			hash = crc >> 21;
3236 		} else {
3237 			/* Just want the 9 most significant bits. */
3238 			hash = crc >> 23;
3239 		}
3240 
3241 		slot = hash >> 4;
3242 		bit = hash & 0xf;
3243 
3244 		/* Set the corresponding bit in the hash table. */
3245 		mchash[slot] |= 1 << bit;
3246 
3247 		ETHER_NEXT_MULTI(step, enm);
3248 	}
3249 	sc->sc_rfcr |= RFCR_MHEN;
3250 	goto setit;
3251 
3252  allmulti:
3253 	ifp->if_flags |= IFF_ALLMULTI;
3254 	sc->sc_rfcr |= RFCR_AAM;
3255 
3256  setit:
3257 #define	FILTER_EMIT(addr, data)						\
3258 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
3259 	delay(1);							\
3260 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
3261 	delay(1)
3262 
3263 	/*
3264 	 * Disable receive filter, and program the node address.
3265 	 */
3266 	cp = CLLADDR(ifp->if_sadl);
3267 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3268 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3269 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3270 
3271 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3272 		int nwords =
3273 		    sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3274 		/*
3275 		 * Program the multicast hash table.
3276 		 */
3277 		for (i = 0; i < nwords; i++) {
3278 			FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
3279 		}
3280 	}
3281 #undef FILTER_EMIT
3282 #undef MCHASH_NWORDS
3283 #undef MCHASH_NWORDS_83815
3284 #undef MCHASH_NWORDS_83820
3285 
3286 	/*
3287 	 * Re-enable the receiver filter.
3288 	 */
3289 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3290 }
3291 
3292 /*
3293  * sip_dp83820_mii_readreg:	[mii interface function]
3294  *
3295  *	Read a PHY register on the MII of the DP83820.
3296  */
3297 static int
3298 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg)
3299 {
3300 	struct sip_softc *sc = device_private(self);
3301 
3302 	if (sc->sc_cfg & CFG_TBI_EN) {
3303 		bus_addr_t tbireg;
3304 		int rv;
3305 
3306 		if (phy != 0)
3307 			return (0);
3308 
3309 		switch (reg) {
3310 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3311 		case MII_BMSR:		tbireg = SIP_TBISR; break;
3312 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3313 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3314 		case MII_ANER:		tbireg = SIP_TANER; break;
3315 		case MII_EXTSR:
3316 			/*
3317 			 * Don't even bother reading the TESR register.
3318 			 * The manual documents that the device has
3319 			 * 1000baseX full/half capability, but the
3320 			 * register itself seems read back 0 on some
3321 			 * boards.  Just hard-code the result.
3322 			 */
3323 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3324 
3325 		default:
3326 			return (0);
3327 		}
3328 
3329 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3330 		if (tbireg == SIP_TBISR) {
3331 			/* LINK and ACOMP are switched! */
3332 			int val = rv;
3333 
3334 			rv = 0;
3335 			if (val & TBISR_MR_LINK_STATUS)
3336 				rv |= BMSR_LINK;
3337 			if (val & TBISR_MR_AN_COMPLETE)
3338 				rv |= BMSR_ACOMP;
3339 
3340 			/*
3341 			 * The manual claims this register reads back 0
3342 			 * on hard and soft reset.  But we want to let
3343 			 * the gentbi driver know that we support auto-
3344 			 * negotiation, so hard-code this bit in the
3345 			 * result.
3346 			 */
3347 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
3348 		}
3349 
3350 		return (rv);
3351 	}
3352 
3353 	return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
3354 }
3355 
3356 /*
3357  * sip_dp83820_mii_writereg:	[mii interface function]
3358  *
3359  *	Write a PHY register on the MII of the DP83820.
3360  */
3361 static void
3362 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, int val)
3363 {
3364 	struct sip_softc *sc = device_private(self);
3365 
3366 	if (sc->sc_cfg & CFG_TBI_EN) {
3367 		bus_addr_t tbireg;
3368 
3369 		if (phy != 0)
3370 			return;
3371 
3372 		switch (reg) {
3373 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3374 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3375 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3376 		default:
3377 			return;
3378 		}
3379 
3380 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3381 		return;
3382 	}
3383 
3384 	mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
3385 }
3386 
3387 /*
3388  * sip_dp83820_mii_statchg:	[mii interface function]
3389  *
3390  *	Callback from MII layer when media changes.
3391  */
3392 static void
3393 sipcom_dp83820_mii_statchg(device_t self)
3394 {
3395 	struct sip_softc *sc = device_private(self);
3396 	struct mii_data *mii = &sc->sc_mii;
3397 	u_int32_t cfg, pcr;
3398 
3399 	/*
3400 	 * Get flow control negotiation result.
3401 	 */
3402 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3403 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3404 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3405 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3406 	}
3407 
3408 	/*
3409 	 * Update TXCFG for full-duplex operation.
3410 	 */
3411 	if ((mii->mii_media_active & IFM_FDX) != 0)
3412 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3413 	else
3414 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3415 
3416 	/*
3417 	 * Update RXCFG for full-duplex or loopback.
3418 	 */
3419 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3420 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3421 		sc->sc_rxcfg |= RXCFG_ATX;
3422 	else
3423 		sc->sc_rxcfg &= ~RXCFG_ATX;
3424 
3425 	/*
3426 	 * Update CFG for MII/GMII.
3427 	 */
3428 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3429 		cfg = sc->sc_cfg | CFG_MODE_1000;
3430 	else
3431 		cfg = sc->sc_cfg;
3432 
3433 	/*
3434 	 * 802.3x flow control.
3435 	 */
3436 	pcr = 0;
3437 	if (sc->sc_flowflags & IFM_FLOW) {
3438 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3439 			pcr |= sc->sc_rx_flow_thresh;
3440 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3441 			pcr |= PCR_PSEN | PCR_PS_MCAST;
3442 	}
3443 
3444 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3445 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3446 	    sc->sc_txcfg);
3447 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3448 	    sc->sc_rxcfg);
3449 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3450 }
3451 
3452 /*
3453  * sip_mii_bitbang_read: [mii bit-bang interface function]
3454  *
3455  *	Read the MII serial port for the MII bit-bang module.
3456  */
3457 static u_int32_t
3458 sipcom_mii_bitbang_read(device_t self)
3459 {
3460 	struct sip_softc *sc = device_private(self);
3461 
3462 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3463 }
3464 
3465 /*
3466  * sip_mii_bitbang_write: [mii big-bang interface function]
3467  *
3468  *	Write the MII serial port for the MII bit-bang module.
3469  */
3470 static void
3471 sipcom_mii_bitbang_write(device_t self, u_int32_t val)
3472 {
3473 	struct sip_softc *sc = device_private(self);
3474 
3475 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3476 }
3477 
3478 /*
3479  * sip_sis900_mii_readreg:	[mii interface function]
3480  *
3481  *	Read a PHY register on the MII.
3482  */
3483 static int
3484 sipcom_sis900_mii_readreg(device_t self, int phy, int reg)
3485 {
3486 	struct sip_softc *sc = device_private(self);
3487 	u_int32_t enphy;
3488 
3489 	/*
3490 	 * The PHY of recent SiS chipsets is accessed through bitbang
3491 	 * operations.
3492 	 */
3493 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3494 		return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3495 		    phy, reg);
3496 
3497 #ifndef SIS900_MII_RESTRICT
3498 	/*
3499 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3500 	 * MII address 0.
3501 	 */
3502 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3503 		return (0);
3504 #endif
3505 
3506 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3507 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3508 	    ENPHY_RWCMD | ENPHY_ACCESS);
3509 	do {
3510 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3511 	} while (enphy & ENPHY_ACCESS);
3512 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3513 }
3514 
3515 /*
3516  * sip_sis900_mii_writereg:	[mii interface function]
3517  *
3518  *	Write a PHY register on the MII.
3519  */
3520 static void
3521 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, int val)
3522 {
3523 	struct sip_softc *sc = device_private(self);
3524 	u_int32_t enphy;
3525 
3526 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3527 		mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3528 		    phy, reg, val);
3529 		return;
3530 	}
3531 
3532 #ifndef SIS900_MII_RESTRICT
3533 	/*
3534 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3535 	 * MII address 0.
3536 	 */
3537 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3538 		return;
3539 #endif
3540 
3541 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3542 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3543 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3544 	do {
3545 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3546 	} while (enphy & ENPHY_ACCESS);
3547 }
3548 
3549 /*
3550  * sip_sis900_mii_statchg:	[mii interface function]
3551  *
3552  *	Callback from MII layer when media changes.
3553  */
3554 static void
3555 sipcom_sis900_mii_statchg(device_t self)
3556 {
3557 	struct sip_softc *sc = device_private(self);
3558 	struct mii_data *mii = &sc->sc_mii;
3559 	u_int32_t flowctl;
3560 
3561 	/*
3562 	 * Get flow control negotiation result.
3563 	 */
3564 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3565 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3566 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3567 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3568 	}
3569 
3570 	/*
3571 	 * Update TXCFG for full-duplex operation.
3572 	 */
3573 	if ((mii->mii_media_active & IFM_FDX) != 0)
3574 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3575 	else
3576 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3577 
3578 	/*
3579 	 * Update RXCFG for full-duplex or loopback.
3580 	 */
3581 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3582 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3583 		sc->sc_rxcfg |= RXCFG_ATX;
3584 	else
3585 		sc->sc_rxcfg &= ~RXCFG_ATX;
3586 
3587 	/*
3588 	 * Update IMR for use of 802.3x flow control.
3589 	 */
3590 	if (sc->sc_flowflags & IFM_FLOW) {
3591 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3592 		flowctl = FLOWCTL_FLOWEN;
3593 	} else {
3594 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3595 		flowctl = 0;
3596 	}
3597 
3598 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3599 	    sc->sc_txcfg);
3600 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3601 	    sc->sc_rxcfg);
3602 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3603 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3604 }
3605 
3606 /*
3607  * sip_dp83815_mii_readreg:	[mii interface function]
3608  *
3609  *	Read a PHY register on the MII.
3610  */
3611 static int
3612 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg)
3613 {
3614 	struct sip_softc *sc = device_private(self);
3615 	u_int32_t val;
3616 
3617 	/*
3618 	 * The DP83815 only has an internal PHY.  Only allow
3619 	 * MII address 0.
3620 	 */
3621 	if (phy != 0)
3622 		return (0);
3623 
3624 	/*
3625 	 * Apparently, after a reset, the DP83815 can take a while
3626 	 * to respond.  During this recovery period, the BMSR returns
3627 	 * a value of 0.  Catch this -- it's not supposed to happen
3628 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3629 	 * PHY to come back to life.
3630 	 *
3631 	 * This works out because the BMSR is the first register
3632 	 * read during the PHY probe process.
3633 	 */
3634 	do {
3635 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3636 	} while (reg == MII_BMSR && val == 0);
3637 
3638 	return (val & 0xffff);
3639 }
3640 
3641 /*
3642  * sip_dp83815_mii_writereg:	[mii interface function]
3643  *
3644  *	Write a PHY register to the MII.
3645  */
3646 static void
3647 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, int val)
3648 {
3649 	struct sip_softc *sc = device_private(self);
3650 
3651 	/*
3652 	 * The DP83815 only has an internal PHY.  Only allow
3653 	 * MII address 0.
3654 	 */
3655 	if (phy != 0)
3656 		return;
3657 
3658 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3659 }
3660 
3661 /*
3662  * sip_dp83815_mii_statchg:	[mii interface function]
3663  *
3664  *	Callback from MII layer when media changes.
3665  */
3666 static void
3667 sipcom_dp83815_mii_statchg(device_t self)
3668 {
3669 	struct sip_softc *sc = device_private(self);
3670 
3671 	/*
3672 	 * Update TXCFG for full-duplex operation.
3673 	 */
3674 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3675 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3676 	else
3677 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3678 
3679 	/*
3680 	 * Update RXCFG for full-duplex or loopback.
3681 	 */
3682 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3683 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3684 		sc->sc_rxcfg |= RXCFG_ATX;
3685 	else
3686 		sc->sc_rxcfg &= ~RXCFG_ATX;
3687 
3688 	/*
3689 	 * XXX 802.3x flow control.
3690 	 */
3691 
3692 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3693 	    sc->sc_txcfg);
3694 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3695 	    sc->sc_rxcfg);
3696 
3697 	/*
3698 	 * Some DP83815s experience problems when used with short
3699 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
3700 	 * sequence adjusts the DSP's signal attenuation to fix the
3701 	 * problem.
3702 	 */
3703 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3704 		uint32_t reg;
3705 
3706 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3707 
3708 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3709 		reg &= 0x0fff;
3710 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3711 		delay(100);
3712 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3713 		reg &= 0x00ff;
3714 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3715 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3716 			    0x00e8);
3717 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3718 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3719 			    reg | 0x20);
3720 		}
3721 
3722 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3723 	}
3724 }
3725 
3726 static void
3727 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3728     const struct pci_attach_args *pa, u_int8_t *enaddr)
3729 {
3730 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3731 	u_int8_t cksum, *e, match;
3732 	int i;
3733 
3734 	/*
3735 	 * EEPROM data format for the DP83820 can be found in
3736 	 * the DP83820 manual, section 4.2.4.
3737 	 */
3738 
3739 	sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3740 
3741 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3742 	match = ~(match - 1);
3743 
3744 	cksum = 0x55;
3745 	e = (u_int8_t *) eeprom_data;
3746 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3747 		cksum += *e++;
3748 
3749 	if (cksum != match)
3750 		printf("%s: Checksum (%x) mismatch (%x)",
3751 		    device_xname(sc->sc_dev), cksum, match);
3752 
3753 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3754 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3755 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3756 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3757 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3758 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3759 }
3760 
3761 static void
3762 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3763 {
3764 	int i;
3765 
3766 	/*
3767 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
3768 	 * a reason, but I don't know it.
3769 	 */
3770 	for (i = 0; i < 10; i++)
3771 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3772 }
3773 
3774 static void
3775 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3776     const struct pci_attach_args *pa, u_int8_t *enaddr)
3777 {
3778 	u_int16_t myea[ETHER_ADDR_LEN / 2];
3779 
3780 	switch (sc->sc_rev) {
3781 	case SIS_REV_630S:
3782 	case SIS_REV_630E:
3783 	case SIS_REV_630EA1:
3784 	case SIS_REV_630ET:
3785 	case SIS_REV_635:
3786 		/*
3787 		 * The MAC address for the on-board Ethernet of
3788 		 * the SiS 630 chipset is in the NVRAM.  Kick
3789 		 * the chip into re-loading it from NVRAM, and
3790 		 * read the MAC address out of the filter registers.
3791 		 */
3792 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3793 
3794 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3795 		    RFCR_RFADDR_NODE0);
3796 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3797 		    0xffff;
3798 
3799 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3800 		    RFCR_RFADDR_NODE2);
3801 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3802 		    0xffff;
3803 
3804 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3805 		    RFCR_RFADDR_NODE4);
3806 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3807 		    0xffff;
3808 		break;
3809 
3810 	case SIS_REV_960:
3811 		{
3812 #define	SIS_SET_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3813 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3814 
3815 #define	SIS_CLR_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3816 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3817 
3818 			int waittime, i;
3819 
3820 			/* Allow to read EEPROM from LAN. It is shared
3821 			 * between a 1394 controller and the NIC and each
3822 			 * time we access it, we need to set SIS_EECMD_REQ.
3823 			 */
3824 			SIS_SET_EROMAR(sc, EROMAR_REQ);
3825 
3826 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3827 				/* Force EEPROM to idle state. */
3828 
3829 				/*
3830 				 * XXX-cube This is ugly.  I'll look for docs about it.
3831 				 */
3832 				SIS_SET_EROMAR(sc, EROMAR_EECS);
3833 				sipcom_sis900_eeprom_delay(sc);
3834 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3835 					SIS_SET_EROMAR(sc, EROMAR_EESK);
3836 					sipcom_sis900_eeprom_delay(sc);
3837 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
3838 					sipcom_sis900_eeprom_delay(sc);
3839 				}
3840 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
3841 				sipcom_sis900_eeprom_delay(sc);
3842 				bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3843 
3844 				if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3845 					sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3846 					    sizeof(myea) / sizeof(myea[0]), myea);
3847 					break;
3848 				}
3849 				DELAY(1);
3850 			}
3851 
3852 			/*
3853 			 * Set SIS_EECTL_CLK to high, so a other master
3854 			 * can operate on the i2c bus.
3855 			 */
3856 			SIS_SET_EROMAR(sc, EROMAR_EESK);
3857 
3858 			/* Refuse EEPROM access by LAN */
3859 			SIS_SET_EROMAR(sc, EROMAR_DONE);
3860 		} break;
3861 
3862 	default:
3863 		sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3864 		    sizeof(myea) / sizeof(myea[0]), myea);
3865 	}
3866 
3867 	enaddr[0] = myea[0] & 0xff;
3868 	enaddr[1] = myea[0] >> 8;
3869 	enaddr[2] = myea[1] & 0xff;
3870 	enaddr[3] = myea[1] >> 8;
3871 	enaddr[4] = myea[2] & 0xff;
3872 	enaddr[5] = myea[2] >> 8;
3873 }
3874 
3875 /* Table and macro to bit-reverse an octet. */
3876 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3877 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3878 
3879 static void
3880 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3881     const struct pci_attach_args *pa, u_int8_t *enaddr)
3882 {
3883 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3884 	u_int8_t cksum, *e, match;
3885 	int i;
3886 
3887 	sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3888 	    sizeof(eeprom_data[0]), eeprom_data);
3889 
3890 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3891 	match = ~(match - 1);
3892 
3893 	cksum = 0x55;
3894 	e = (u_int8_t *) eeprom_data;
3895 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3896 		cksum += *e++;
3897 	}
3898 	if (cksum != match) {
3899 		printf("%s: Checksum (%x) mismatch (%x)",
3900 		    device_xname(sc->sc_dev), cksum, match);
3901 	}
3902 
3903 	/*
3904 	 * Unrolled because it makes slightly more sense this way.
3905 	 * The DP83815 stores the MAC address in bit 0 of word 6
3906 	 * through bit 15 of word 8.
3907 	 */
3908 	ea = &eeprom_data[6];
3909 	enaddr[0] = ((*ea & 0x1) << 7);
3910 	ea++;
3911 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
3912 	enaddr[1] = ((*ea & 0x1FE) >> 1);
3913 	enaddr[2] = ((*ea & 0x1) << 7);
3914 	ea++;
3915 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
3916 	enaddr[3] = ((*ea & 0x1FE) >> 1);
3917 	enaddr[4] = ((*ea & 0x1) << 7);
3918 	ea++;
3919 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
3920 	enaddr[5] = ((*ea & 0x1FE) >> 1);
3921 
3922 	/*
3923 	 * In case that's not weird enough, we also need to reverse
3924 	 * the bits in each byte.  This all actually makes more sense
3925 	 * if you think about the EEPROM storage as an array of bits
3926 	 * being shifted into bytes, but that's not how we're looking
3927 	 * at it here...
3928 	 */
3929 	for (i = 0; i < 6 ;i++)
3930 		enaddr[i] = bbr(enaddr[i]);
3931 }
3932 
3933 /*
3934  * sip_mediastatus:	[ifmedia interface function]
3935  *
3936  *	Get the current interface media status.
3937  */
3938 static void
3939 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3940 {
3941 	struct sip_softc *sc = ifp->if_softc;
3942 
3943 	if (!device_is_active(sc->sc_dev)) {
3944 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
3945 		ifmr->ifm_status = 0;
3946 		return;
3947 	}
3948 	ether_mediastatus(ifp, ifmr);
3949 	ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
3950 			   sc->sc_flowflags;
3951 }
3952