xref: /netbsd-src/sys/dev/pci/if_sip.c (revision da5f4674a3fc214be3572d358b66af40ab9401e7)
1 /*	$NetBSD: if_sip.c,v 1.80 2003/08/25 20:36:47 itojun Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*-
40  * Copyright (c) 1999 Network Computer, Inc.
41  * All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of Network Computer, Inc. nor the names of its
52  *    contributors may be used to endorse or promote products derived
53  *    from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65  * POSSIBILITY OF SUCH DAMAGE.
66  */
67 
68 /*
69  * Device driver for the Silicon Integrated Systems SiS 900,
70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72  * controllers.
73  *
74  * Originally written to support the SiS 900 by Jason R. Thorpe for
75  * Network Computer, Inc.
76  *
77  * TODO:
78  *
79  *	- Reduce the Rx interrupt load.
80  */
81 
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.80 2003/08/25 20:36:47 itojun Exp $");
84 
85 #include "bpfilter.h"
86 #include "rnd.h"
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99 
100 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
101 
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105 
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110 
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114 
115 #include <machine/bus.h>
116 #include <machine/intr.h>
117 #include <machine/endian.h>
118 
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #ifdef DP83820
122 #include <dev/mii/mii_bitbang.h>
123 #endif /* DP83820 */
124 
125 #include <dev/pci/pcireg.h>
126 #include <dev/pci/pcivar.h>
127 #include <dev/pci/pcidevs.h>
128 
129 #include <dev/pci/if_sipreg.h>
130 
131 #ifdef DP83820		/* DP83820 Gigabit Ethernet */
132 #define	SIP_DECL(x)	__CONCAT(gsip_,x)
133 #else			/* SiS900 and DP83815 */
134 #define	SIP_DECL(x)	__CONCAT(sip_,x)
135 #endif
136 
137 #define	SIP_STR(x)	__STRING(SIP_DECL(x))
138 
139 /*
140  * Transmit descriptor list size.  This is arbitrary, but allocate
141  * enough descriptors for 128 pending transmissions, and 8 segments
142  * per packet.  This MUST work out to a power of 2.
143  */
144 #define	SIP_NTXSEGS		16
145 #define	SIP_NTXSEGS_ALLOC	8
146 
147 #define	SIP_TXQUEUELEN		256
148 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
149 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
150 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
151 
152 #if defined(DP83020)
153 #define	TX_DMAMAP_SIZE		ETHER_MAX_LEN_JUMBO
154 #else
155 #define	TX_DMAMAP_SIZE		MCLBYTES
156 #endif
157 
158 /*
159  * Receive descriptor list size.  We have one Rx buffer per incoming
160  * packet, so this logic is a little simpler.
161  *
162  * Actually, on the DP83820, we allow the packet to consume more than
163  * one buffer, in order to support jumbo Ethernet frames.  In that
164  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
165  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
166  * so we'd better be quick about handling receive interrupts.
167  */
168 #if defined(DP83820)
169 #define	SIP_NRXDESC		256
170 #else
171 #define	SIP_NRXDESC		128
172 #endif /* DP83820 */
173 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
174 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
175 
176 /*
177  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
178  * a single clump that maps to a single DMA segment to make several things
179  * easier.
180  */
181 struct sip_control_data {
182 	/*
183 	 * The transmit descriptors.
184 	 */
185 	struct sip_desc scd_txdescs[SIP_NTXDESC];
186 
187 	/*
188 	 * The receive descriptors.
189 	 */
190 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
191 };
192 
193 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
194 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
195 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
196 
197 /*
198  * Software state for transmit jobs.
199  */
200 struct sip_txsoft {
201 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
202 	bus_dmamap_t txs_dmamap;	/* our DMA map */
203 	int txs_firstdesc;		/* first descriptor in packet */
204 	int txs_lastdesc;		/* last descriptor in packet */
205 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
206 };
207 
208 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
209 
210 /*
211  * Software state for receive jobs.
212  */
213 struct sip_rxsoft {
214 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
215 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
216 };
217 
218 /*
219  * Software state per device.
220  */
221 struct sip_softc {
222 	struct device sc_dev;		/* generic device information */
223 	bus_space_tag_t sc_st;		/* bus space tag */
224 	bus_space_handle_t sc_sh;	/* bus space handle */
225 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
226 	struct ethercom sc_ethercom;	/* ethernet common data */
227 	void *sc_sdhook;		/* shutdown hook */
228 
229 	const struct sip_product *sc_model; /* which model are we? */
230 	int sc_rev;			/* chip revision */
231 
232 	void *sc_ih;			/* interrupt cookie */
233 
234 	struct mii_data sc_mii;		/* MII/media information */
235 
236 	struct callout sc_tick_ch;	/* tick callout */
237 
238 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
239 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
240 
241 	/*
242 	 * Software state for transmit and receive descriptors.
243 	 */
244 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
245 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
246 
247 	/*
248 	 * Control data structures.
249 	 */
250 	struct sip_control_data *sc_control_data;
251 #define	sc_txdescs	sc_control_data->scd_txdescs
252 #define	sc_rxdescs	sc_control_data->scd_rxdescs
253 
254 #ifdef SIP_EVENT_COUNTERS
255 	/*
256 	 * Event counters.
257 	 */
258 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
259 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
260 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
261 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
262 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
263 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
264 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
265 #ifdef DP83820
266 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
267 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
268 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
269 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
270 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
271 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
272 #endif /* DP83820 */
273 #endif /* SIP_EVENT_COUNTERS */
274 
275 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
276 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
277 	u_int32_t sc_imr;		/* prototype IMR register */
278 	u_int32_t sc_rfcr;		/* prototype RFCR register */
279 
280 	u_int32_t sc_cfg;		/* prototype CFG register */
281 
282 #ifdef DP83820
283 	u_int32_t sc_gpior;		/* prototype GPIOR register */
284 #endif /* DP83820 */
285 
286 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
287 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
288 
289 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
290 
291 	int	sc_flags;		/* misc. flags; see below */
292 
293 	int	sc_txfree;		/* number of free Tx descriptors */
294 	int	sc_txnext;		/* next ready Tx descriptor */
295 	int	sc_txwin;		/* Tx descriptors since last intr */
296 
297 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
298 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
299 
300 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
301 #if defined(DP83820)
302 	int	sc_rxdiscard;
303 	int	sc_rxlen;
304 	struct mbuf *sc_rxhead;
305 	struct mbuf *sc_rxtail;
306 	struct mbuf **sc_rxtailp;
307 #endif /* DP83820 */
308 
309 #if NRND > 0
310 	rndsource_element_t rnd_source;	/* random source */
311 #endif
312 };
313 
314 /* sc_flags */
315 #define	SIPF_PAUSED	0x00000001	/* paused (802.3x flow control) */
316 
317 #ifdef DP83820
318 #define	SIP_RXCHAIN_RESET(sc)						\
319 do {									\
320 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
321 	*(sc)->sc_rxtailp = NULL;					\
322 	(sc)->sc_rxlen = 0;						\
323 } while (/*CONSTCOND*/0)
324 
325 #define	SIP_RXCHAIN_LINK(sc, m)						\
326 do {									\
327 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
328 	(sc)->sc_rxtailp = &(m)->m_next;				\
329 } while (/*CONSTCOND*/0)
330 #endif /* DP83820 */
331 
332 #ifdef SIP_EVENT_COUNTERS
333 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
334 #else
335 #define	SIP_EVCNT_INCR(ev)	/* nothing */
336 #endif
337 
338 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
339 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
340 
341 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
342 do {									\
343 	int __x, __n;							\
344 									\
345 	__x = (x);							\
346 	__n = (n);							\
347 									\
348 	/* If it will wrap around, sync to the end of the ring. */	\
349 	if ((__x + __n) > SIP_NTXDESC) {				\
350 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
351 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
352 		    (SIP_NTXDESC - __x), (ops));			\
353 		__n -= (SIP_NTXDESC - __x);				\
354 		__x = 0;						\
355 	}								\
356 									\
357 	/* Now sync whatever is left. */				\
358 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
359 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
360 } while (0)
361 
362 #define	SIP_CDRXSYNC(sc, x, ops)					\
363 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
364 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
365 
366 #ifdef DP83820
367 #define	SIP_INIT_RXDESC_EXTSTS	__sipd->sipd_extsts = 0;
368 #define	SIP_RXBUF_LEN		(MCLBYTES - 4)
369 #else
370 #define	SIP_INIT_RXDESC_EXTSTS	/* nothing */
371 #define	SIP_RXBUF_LEN		(MCLBYTES - 1)	/* field width */
372 #endif
373 #define	SIP_INIT_RXDESC(sc, x)						\
374 do {									\
375 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
376 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
377 									\
378 	__sipd->sipd_link =						\
379 	    htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x))));		\
380 	__sipd->sipd_bufptr =						\
381 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr);		\
382 	__sipd->sipd_cmdsts = htole32(CMDSTS_INTR |			\
383 	    (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK));			\
384 	SIP_INIT_RXDESC_EXTSTS						\
385 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
386 } while (0)
387 
388 #define	SIP_CHIP_VERS(sc, v, p, r)					\
389 	((sc)->sc_model->sip_vendor == (v) &&				\
390 	 (sc)->sc_model->sip_product == (p) &&				\
391 	 (sc)->sc_rev == (r))
392 
393 #define	SIP_CHIP_MODEL(sc, v, p)					\
394 	((sc)->sc_model->sip_vendor == (v) &&				\
395 	 (sc)->sc_model->sip_product == (p))
396 
397 #if !defined(DP83820)
398 #define	SIP_SIS900_REV(sc, rev)						\
399 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
400 #endif
401 
402 #define SIP_TIMEOUT 1000
403 
404 void	SIP_DECL(start)(struct ifnet *);
405 void	SIP_DECL(watchdog)(struct ifnet *);
406 int	SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
407 int	SIP_DECL(init)(struct ifnet *);
408 void	SIP_DECL(stop)(struct ifnet *, int);
409 
410 void	SIP_DECL(shutdown)(void *);
411 
412 void	SIP_DECL(reset)(struct sip_softc *);
413 void	SIP_DECL(rxdrain)(struct sip_softc *);
414 int	SIP_DECL(add_rxbuf)(struct sip_softc *, int);
415 void	SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
416 void	SIP_DECL(tick)(void *);
417 
418 #if !defined(DP83820)
419 void	SIP_DECL(sis900_set_filter)(struct sip_softc *);
420 #endif /* ! DP83820 */
421 void	SIP_DECL(dp83815_set_filter)(struct sip_softc *);
422 
423 #if defined(DP83820)
424 void	SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
425 	    const struct pci_attach_args *, u_int8_t *);
426 #else
427 void	SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
428 	    const struct pci_attach_args *, u_int8_t *);
429 void	SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
430 	    const struct pci_attach_args *, u_int8_t *);
431 #endif /* DP83820 */
432 
433 int	SIP_DECL(intr)(void *);
434 void	SIP_DECL(txintr)(struct sip_softc *);
435 void	SIP_DECL(rxintr)(struct sip_softc *);
436 
437 #if defined(DP83820)
438 int	SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
439 void	SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
440 void	SIP_DECL(dp83820_mii_statchg)(struct device *);
441 #else
442 int	SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
443 void	SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
444 void	SIP_DECL(sis900_mii_statchg)(struct device *);
445 
446 int	SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
447 void	SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
448 void	SIP_DECL(dp83815_mii_statchg)(struct device *);
449 #endif /* DP83820 */
450 
451 int	SIP_DECL(mediachange)(struct ifnet *);
452 void	SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
453 
454 int	SIP_DECL(match)(struct device *, struct cfdata *, void *);
455 void	SIP_DECL(attach)(struct device *, struct device *, void *);
456 
457 int	SIP_DECL(copy_small) = 0;
458 
459 #ifdef DP83820
460 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
461     gsip_match, gsip_attach, NULL, NULL);
462 #else
463 CFATTACH_DECL(sip, sizeof(struct sip_softc),
464     sip_match, sip_attach, NULL, NULL);
465 #endif
466 
467 /*
468  * Descriptions of the variants of the SiS900.
469  */
470 struct sip_variant {
471 	int	(*sipv_mii_readreg)(struct device *, int, int);
472 	void	(*sipv_mii_writereg)(struct device *, int, int, int);
473 	void	(*sipv_mii_statchg)(struct device *);
474 	void	(*sipv_set_filter)(struct sip_softc *);
475 	void	(*sipv_read_macaddr)(struct sip_softc *,
476 		    const struct pci_attach_args *, u_int8_t *);
477 };
478 
479 #if defined(DP83820)
480 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
481 void	SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
482 
483 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
484 	SIP_DECL(dp83820_mii_bitbang_read),
485 	SIP_DECL(dp83820_mii_bitbang_write),
486 	{
487 		EROMAR_MDIO,		/* MII_BIT_MDO */
488 		EROMAR_MDIO,		/* MII_BIT_MDI */
489 		EROMAR_MDC,		/* MII_BIT_MDC */
490 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
491 		0,			/* MII_BIT_DIR_PHY_HOST */
492 	}
493 };
494 #endif /* DP83820 */
495 
496 #if defined(DP83820)
497 const struct sip_variant SIP_DECL(variant_dp83820) = {
498 	SIP_DECL(dp83820_mii_readreg),
499 	SIP_DECL(dp83820_mii_writereg),
500 	SIP_DECL(dp83820_mii_statchg),
501 	SIP_DECL(dp83815_set_filter),
502 	SIP_DECL(dp83820_read_macaddr),
503 };
504 #else
505 const struct sip_variant SIP_DECL(variant_sis900) = {
506 	SIP_DECL(sis900_mii_readreg),
507 	SIP_DECL(sis900_mii_writereg),
508 	SIP_DECL(sis900_mii_statchg),
509 	SIP_DECL(sis900_set_filter),
510 	SIP_DECL(sis900_read_macaddr),
511 };
512 
513 const struct sip_variant SIP_DECL(variant_dp83815) = {
514 	SIP_DECL(dp83815_mii_readreg),
515 	SIP_DECL(dp83815_mii_writereg),
516 	SIP_DECL(dp83815_mii_statchg),
517 	SIP_DECL(dp83815_set_filter),
518 	SIP_DECL(dp83815_read_macaddr),
519 };
520 #endif /* DP83820 */
521 
522 /*
523  * Devices supported by this driver.
524  */
525 const struct sip_product {
526 	pci_vendor_id_t		sip_vendor;
527 	pci_product_id_t	sip_product;
528 	const char		*sip_name;
529 	const struct sip_variant *sip_variant;
530 } SIP_DECL(products)[] = {
531 #if defined(DP83820)
532 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
533 	  "NatSemi DP83820 Gigabit Ethernet",
534 	  &SIP_DECL(variant_dp83820) },
535 #else
536 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
537 	  "SiS 900 10/100 Ethernet",
538 	  &SIP_DECL(variant_sis900) },
539 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
540 	  "SiS 7016 10/100 Ethernet",
541 	  &SIP_DECL(variant_sis900) },
542 
543 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
544 	  "NatSemi DP83815 10/100 Ethernet",
545 	  &SIP_DECL(variant_dp83815) },
546 #endif /* DP83820 */
547 
548 	{ 0,			0,
549 	  NULL,
550 	  NULL },
551 };
552 
553 static const struct sip_product *
554 SIP_DECL(lookup)(const struct pci_attach_args *pa)
555 {
556 	const struct sip_product *sip;
557 
558 	for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
559 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
560 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
561 			return (sip);
562 	}
563 	return (NULL);
564 }
565 
566 #ifdef DP83820
567 /*
568  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
569  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
570  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
571  * which means we try to use 64-bit data transfers on those cards if we
572  * happen to be plugged into a 32-bit slot.
573  *
574  * What we do is use this table of cards known to be 64-bit cards.  If
575  * you have a 64-bit card who's subsystem ID is not listed in this table,
576  * send the output of "pcictl dump ..." of the device to me so that your
577  * card will use the 64-bit data path when plugged into a 64-bit slot.
578  *
579  *	-- Jason R. Thorpe <thorpej@netbsd.org>
580  *	   June 30, 2002
581  */
582 static int
583 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
584 {
585 	static const struct {
586 		pci_vendor_id_t c64_vendor;
587 		pci_product_id_t c64_product;
588 	} card64[] = {
589 		/* Asante GigaNIX */
590 		{ 0x128a,	0x0002 },
591 
592 		/* Accton EN1407-T, Planex GN-1000TE */
593 		{ 0x1113,	0x1407 },
594 
595 		/* Netgear GA-621 */
596 		{ 0x1385,	0x621a },
597 
598 		/* SMC EZ Card */
599 		{ 0x10b8,	0x9462 },
600 
601 		{ 0, 0}
602 	};
603 	pcireg_t subsys;
604 	int i;
605 
606 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
607 
608 	for (i = 0; card64[i].c64_vendor != 0; i++) {
609 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
610 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
611 			return (1);
612 	}
613 
614 	return (0);
615 }
616 #endif /* DP83820 */
617 
618 int
619 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
620 {
621 	struct pci_attach_args *pa = aux;
622 
623 	if (SIP_DECL(lookup)(pa) != NULL)
624 		return (1);
625 
626 	return (0);
627 }
628 
629 void
630 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
631 {
632 	struct sip_softc *sc = (struct sip_softc *) self;
633 	struct pci_attach_args *pa = aux;
634 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
635 	pci_chipset_tag_t pc = pa->pa_pc;
636 	pci_intr_handle_t ih;
637 	const char *intrstr = NULL;
638 	bus_space_tag_t iot, memt;
639 	bus_space_handle_t ioh, memh;
640 	bus_dma_segment_t seg;
641 	int ioh_valid, memh_valid;
642 	int i, rseg, error;
643 	const struct sip_product *sip;
644 	pcireg_t pmode;
645 	u_int8_t enaddr[ETHER_ADDR_LEN];
646 	int pmreg;
647 #ifdef DP83820
648 	pcireg_t memtype;
649 	u_int32_t reg;
650 #endif /* DP83820 */
651 
652 	callout_init(&sc->sc_tick_ch);
653 
654 	sip = SIP_DECL(lookup)(pa);
655 	if (sip == NULL) {
656 		printf("\n");
657 		panic(SIP_STR(attach) ": impossible");
658 	}
659 	sc->sc_rev = PCI_REVISION(pa->pa_class);
660 
661 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
662 
663 	sc->sc_model = sip;
664 
665 	/*
666 	 * XXX Work-around broken PXE firmware on some boards.
667 	 *
668 	 * The DP83815 shares an address decoder with the MEM BAR
669 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
670 	 * so that memory mapped access works.
671 	 */
672 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
673 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
674 	    ~PCI_MAPREG_ROM_ENABLE);
675 
676 	/*
677 	 * Map the device.
678 	 */
679 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
680 	    PCI_MAPREG_TYPE_IO, 0,
681 	    &iot, &ioh, NULL, NULL) == 0);
682 #ifdef DP83820
683 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
684 	switch (memtype) {
685 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
686 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
687 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
688 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
689 		break;
690 	default:
691 		memh_valid = 0;
692 	}
693 #else
694 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
695 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
696 	    &memt, &memh, NULL, NULL) == 0);
697 #endif /* DP83820 */
698 
699 	if (memh_valid) {
700 		sc->sc_st = memt;
701 		sc->sc_sh = memh;
702 	} else if (ioh_valid) {
703 		sc->sc_st = iot;
704 		sc->sc_sh = ioh;
705 	} else {
706 		printf("%s: unable to map device registers\n",
707 		    sc->sc_dev.dv_xname);
708 		return;
709 	}
710 
711 	sc->sc_dmat = pa->pa_dmat;
712 
713 	/*
714 	 * Make sure bus mastering is enabled.  Also make sure
715 	 * Write/Invalidate is enabled if we're allowed to use it.
716 	 */
717 	pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
718 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
719 		pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
720 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
721 	    pmreg | PCI_COMMAND_MASTER_ENABLE);
722 
723 	/* Get it out of power save mode if needed. */
724 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
725 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
726 		    PCI_PMCSR_STATE_MASK;
727 		if (pmode == PCI_PMCSR_STATE_D3) {
728 			/*
729 			 * The card has lost all configuration data in
730 			 * this state, so punt.
731 			 */
732 			printf("%s: unable to wake up from power state D3\n",
733 			    sc->sc_dev.dv_xname);
734 			return;
735 		}
736 		if (pmode != PCI_PMCSR_STATE_D0) {
737 			printf("%s: waking up from power state D%d\n",
738 			    sc->sc_dev.dv_xname, pmode);
739 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
740 			    PCI_PMCSR_STATE_D0);
741 		}
742 	}
743 
744 	/*
745 	 * Map and establish our interrupt.
746 	 */
747 	if (pci_intr_map(pa, &ih)) {
748 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
749 		return;
750 	}
751 	intrstr = pci_intr_string(pc, ih);
752 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
753 	if (sc->sc_ih == NULL) {
754 		printf("%s: unable to establish interrupt",
755 		    sc->sc_dev.dv_xname);
756 		if (intrstr != NULL)
757 			printf(" at %s", intrstr);
758 		printf("\n");
759 		return;
760 	}
761 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
762 
763 	SIMPLEQ_INIT(&sc->sc_txfreeq);
764 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
765 
766 	/*
767 	 * Allocate the control data structures, and create and load the
768 	 * DMA map for it.
769 	 */
770 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
771 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
772 	    0)) != 0) {
773 		printf("%s: unable to allocate control data, error = %d\n",
774 		    sc->sc_dev.dv_xname, error);
775 		goto fail_0;
776 	}
777 
778 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
779 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
780 	    BUS_DMA_COHERENT)) != 0) {
781 		printf("%s: unable to map control data, error = %d\n",
782 		    sc->sc_dev.dv_xname, error);
783 		goto fail_1;
784 	}
785 
786 	if ((error = bus_dmamap_create(sc->sc_dmat,
787 	    sizeof(struct sip_control_data), 1,
788 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
789 		printf("%s: unable to create control data DMA map, "
790 		    "error = %d\n", sc->sc_dev.dv_xname, error);
791 		goto fail_2;
792 	}
793 
794 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
795 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
796 	    0)) != 0) {
797 		printf("%s: unable to load control data DMA map, error = %d\n",
798 		    sc->sc_dev.dv_xname, error);
799 		goto fail_3;
800 	}
801 
802 	/*
803 	 * Create the transmit buffer DMA maps.
804 	 */
805 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
806 		if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
807 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
808 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
809 			printf("%s: unable to create tx DMA map %d, "
810 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
811 			goto fail_4;
812 		}
813 	}
814 
815 	/*
816 	 * Create the receive buffer DMA maps.
817 	 */
818 	for (i = 0; i < SIP_NRXDESC; i++) {
819 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
820 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
821 			printf("%s: unable to create rx DMA map %d, "
822 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
823 			goto fail_5;
824 		}
825 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
826 	}
827 
828 	/*
829 	 * Reset the chip to a known state.
830 	 */
831 	SIP_DECL(reset)(sc);
832 
833 	/*
834 	 * Read the Ethernet address from the EEPROM.  This might
835 	 * also fetch other stuff from the EEPROM and stash it
836 	 * in the softc.
837 	 */
838 	sc->sc_cfg = 0;
839 #if !defined(DP83820)
840 	if (SIP_SIS900_REV(sc,SIS_REV_635) ||
841 	    SIP_SIS900_REV(sc,SIS_REV_900B))
842 		sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
843 #endif
844 
845 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
846 
847 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
848 	    ether_sprintf(enaddr));
849 
850 	/*
851 	 * Initialize the configuration register: aggressive PCI
852 	 * bus request algorithm, default backoff, default OW timer,
853 	 * default parity error detection.
854 	 *
855 	 * NOTE: "Big endian mode" is useless on the SiS900 and
856 	 * friends -- it affects packet data, not descriptors.
857 	 */
858 #ifdef DP83820
859 	/*
860 	 * Cause the chip to load configuration data from the EEPROM.
861 	 */
862 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
863 	for (i = 0; i < 10000; i++) {
864 		delay(10);
865 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
866 		    PTSCR_EELOAD_EN) == 0)
867 			break;
868 	}
869 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
870 	    PTSCR_EELOAD_EN) {
871 		printf("%s: timeout loading configuration from EEPROM\n",
872 		    sc->sc_dev.dv_xname);
873 		return;
874 	}
875 
876 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
877 
878 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
879 	if (reg & CFG_PCI64_DET) {
880 		printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
881 		/*
882 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
883 		 * data transfers.
884 		 *
885 		 * We can't use the DATA64_EN bit in the EEPROM, because
886 		 * vendors of 32-bit cards fail to clear that bit in many
887 		 * cases (yet the card still detects that it's in a 64-bit
888 		 * slot; go figure).
889 		 */
890 		if (SIP_DECL(check_64bit)(pa)) {
891 			sc->sc_cfg |= CFG_DATA64_EN;
892 			printf(", using 64-bit data transfers");
893 		}
894 		printf("\n");
895 	}
896 
897 	/*
898 	 * XXX Need some PCI flags indicating support for
899 	 * XXX 64-bit addressing.
900 	 */
901 #if 0
902 	if (reg & CFG_M64ADDR)
903 		sc->sc_cfg |= CFG_M64ADDR;
904 	if (reg & CFG_T64ADDR)
905 		sc->sc_cfg |= CFG_T64ADDR;
906 #endif
907 
908 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
909 		const char *sep = "";
910 		printf("%s: using ", sc->sc_dev.dv_xname);
911 		if (reg & CFG_EXT_125) {
912 			sc->sc_cfg |= CFG_EXT_125;
913 			printf("%s125MHz clock", sep);
914 			sep = ", ";
915 		}
916 		if (reg & CFG_TBI_EN) {
917 			sc->sc_cfg |= CFG_TBI_EN;
918 			printf("%sten-bit interface", sep);
919 			sep = ", ";
920 		}
921 		printf("\n");
922 	}
923 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
924 	    (reg & CFG_MRM_DIS) != 0)
925 		sc->sc_cfg |= CFG_MRM_DIS;
926 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
927 	    (reg & CFG_MWI_DIS) != 0)
928 		sc->sc_cfg |= CFG_MWI_DIS;
929 
930 	/*
931 	 * Use the extended descriptor format on the DP83820.  This
932 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
933 	 * checksumming.
934 	 */
935 	sc->sc_cfg |= CFG_EXTSTS_EN;
936 #endif /* DP83820 */
937 
938 	/*
939 	 * Initialize our media structures and probe the MII.
940 	 */
941 	sc->sc_mii.mii_ifp = ifp;
942 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
943 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
944 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
945 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, SIP_DECL(mediachange),
946 	    SIP_DECL(mediastatus));
947 
948 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
949 	    MII_OFFSET_ANY, 0);
950 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
951 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
952 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
953 	} else
954 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
955 
956 	ifp = &sc->sc_ethercom.ec_if;
957 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
958 	ifp->if_softc = sc;
959 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
960 	ifp->if_ioctl = SIP_DECL(ioctl);
961 	ifp->if_start = SIP_DECL(start);
962 	ifp->if_watchdog = SIP_DECL(watchdog);
963 	ifp->if_init = SIP_DECL(init);
964 	ifp->if_stop = SIP_DECL(stop);
965 	IFQ_SET_READY(&ifp->if_snd);
966 
967 	/*
968 	 * We can support 802.1Q VLAN-sized frames.
969 	 */
970 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
971 
972 #ifdef DP83820
973 	/*
974 	 * And the DP83820 can do VLAN tagging in hardware, and
975 	 * support the jumbo Ethernet MTU.
976 	 */
977 	sc->sc_ethercom.ec_capabilities |=
978 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
979 
980 	/*
981 	 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
982 	 * in hardware.
983 	 */
984 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
985 	    IFCAP_CSUM_UDPv4;
986 #endif /* DP83820 */
987 
988 	/*
989 	 * Attach the interface.
990 	 */
991 	if_attach(ifp);
992 	ether_ifattach(ifp, enaddr);
993 #if NRND > 0
994 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
995 	    RND_TYPE_NET, 0);
996 #endif
997 
998 	/*
999 	 * The number of bytes that must be available in
1000 	 * the Tx FIFO before the bus master can DMA more
1001 	 * data into the FIFO.
1002 	 */
1003 	sc->sc_tx_fill_thresh = 64 / 32;
1004 
1005 	/*
1006 	 * Start at a drain threshold of 512 bytes.  We will
1007 	 * increase it if a DMA underrun occurs.
1008 	 *
1009 	 * XXX The minimum value of this variable should be
1010 	 * tuned.  We may be able to improve performance
1011 	 * by starting with a lower value.  That, however,
1012 	 * may trash the first few outgoing packets if the
1013 	 * PCI bus is saturated.
1014 	 */
1015 	sc->sc_tx_drain_thresh = 1504 / 32;
1016 
1017 	/*
1018 	 * Initialize the Rx FIFO drain threshold.
1019 	 *
1020 	 * This is in units of 8 bytes.
1021 	 *
1022 	 * We should never set this value lower than 2; 14 bytes are
1023 	 * required to filter the packet.
1024 	 */
1025 	sc->sc_rx_drain_thresh = 128 / 8;
1026 
1027 #ifdef SIP_EVENT_COUNTERS
1028 	/*
1029 	 * Attach event counters.
1030 	 */
1031 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1032 	    NULL, sc->sc_dev.dv_xname, "txsstall");
1033 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1034 	    NULL, sc->sc_dev.dv_xname, "txdstall");
1035 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1036 	    NULL, sc->sc_dev.dv_xname, "txforceintr");
1037 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1038 	    NULL, sc->sc_dev.dv_xname, "txdintr");
1039 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1040 	    NULL, sc->sc_dev.dv_xname, "txiintr");
1041 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1042 	    NULL, sc->sc_dev.dv_xname, "rxintr");
1043 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1044 	    NULL, sc->sc_dev.dv_xname, "hiberr");
1045 #ifdef DP83820
1046 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1047 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
1048 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1049 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
1050 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1051 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
1052 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1053 	    NULL, sc->sc_dev.dv_xname, "txipsum");
1054 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1055 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
1056 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1057 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
1058 #endif /* DP83820 */
1059 #endif /* SIP_EVENT_COUNTERS */
1060 
1061 	/*
1062 	 * Make sure the interface is shutdown during reboot.
1063 	 */
1064 	sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
1065 	if (sc->sc_sdhook == NULL)
1066 		printf("%s: WARNING: unable to establish shutdown hook\n",
1067 		    sc->sc_dev.dv_xname);
1068 	return;
1069 
1070 	/*
1071 	 * Free any resources we've allocated during the failed attach
1072 	 * attempt.  Do this in reverse order and fall through.
1073 	 */
1074  fail_5:
1075 	for (i = 0; i < SIP_NRXDESC; i++) {
1076 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1077 			bus_dmamap_destroy(sc->sc_dmat,
1078 			    sc->sc_rxsoft[i].rxs_dmamap);
1079 	}
1080  fail_4:
1081 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
1082 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
1083 			bus_dmamap_destroy(sc->sc_dmat,
1084 			    sc->sc_txsoft[i].txs_dmamap);
1085 	}
1086 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1087  fail_3:
1088 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1089  fail_2:
1090 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1091 	    sizeof(struct sip_control_data));
1092  fail_1:
1093 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1094  fail_0:
1095 	return;
1096 }
1097 
1098 /*
1099  * sip_shutdown:
1100  *
1101  *	Make sure the interface is stopped at reboot time.
1102  */
1103 void
1104 SIP_DECL(shutdown)(void *arg)
1105 {
1106 	struct sip_softc *sc = arg;
1107 
1108 	SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
1109 }
1110 
1111 /*
1112  * sip_start:		[ifnet interface function]
1113  *
1114  *	Start packet transmission on the interface.
1115  */
1116 void
1117 SIP_DECL(start)(struct ifnet *ifp)
1118 {
1119 	struct sip_softc *sc = ifp->if_softc;
1120 	struct mbuf *m0, *m;
1121 	struct sip_txsoft *txs;
1122 	bus_dmamap_t dmamap;
1123 	int error, nexttx, lasttx, seg;
1124 	int ofree = sc->sc_txfree;
1125 #if 0
1126 	int firsttx = sc->sc_txnext;
1127 #endif
1128 #ifdef DP83820
1129 	struct m_tag *mtag;
1130 	u_int32_t extsts;
1131 #endif
1132 
1133 	/*
1134 	 * If we've been told to pause, don't transmit any more packets.
1135 	 */
1136 	if (sc->sc_flags & SIPF_PAUSED)
1137 		ifp->if_flags |= IFF_OACTIVE;
1138 
1139 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1140 		return;
1141 
1142 	/*
1143 	 * Loop through the send queue, setting up transmit descriptors
1144 	 * until we drain the queue, or use up all available transmit
1145 	 * descriptors.
1146 	 */
1147 	for (;;) {
1148 		/* Get a work queue entry. */
1149 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1150 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1151 			break;
1152 		}
1153 
1154 		/*
1155 		 * Grab a packet off the queue.
1156 		 */
1157 		IFQ_POLL(&ifp->if_snd, m0);
1158 		if (m0 == NULL)
1159 			break;
1160 #ifndef DP83820
1161 		m = NULL;
1162 #endif
1163 
1164 		dmamap = txs->txs_dmamap;
1165 
1166 #ifdef DP83820
1167 		/*
1168 		 * Load the DMA map.  If this fails, the packet either
1169 		 * didn't fit in the allotted number of segments, or we
1170 		 * were short on resources.  For the too-many-segments
1171 		 * case, we simply report an error and drop the packet,
1172 		 * since we can't sanely copy a jumbo packet to a single
1173 		 * buffer.
1174 		 */
1175 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1176 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1177 		if (error) {
1178 			if (error == EFBIG) {
1179 				printf("%s: Tx packet consumes too many "
1180 				    "DMA segments, dropping...\n",
1181 				    sc->sc_dev.dv_xname);
1182 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1183 				m_freem(m0);
1184 				continue;
1185 			}
1186 			/*
1187 			 * Short on resources, just stop for now.
1188 			 */
1189 			break;
1190 		}
1191 #else /* DP83820 */
1192 		/*
1193 		 * Load the DMA map.  If this fails, the packet either
1194 		 * didn't fit in the alloted number of segments, or we
1195 		 * were short on resources.  In this case, we'll copy
1196 		 * and try again.
1197 		 */
1198 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1199 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1200 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1201 			if (m == NULL) {
1202 				printf("%s: unable to allocate Tx mbuf\n",
1203 				    sc->sc_dev.dv_xname);
1204 				break;
1205 			}
1206 			if (m0->m_pkthdr.len > MHLEN) {
1207 				MCLGET(m, M_DONTWAIT);
1208 				if ((m->m_flags & M_EXT) == 0) {
1209 					printf("%s: unable to allocate Tx "
1210 					    "cluster\n", sc->sc_dev.dv_xname);
1211 					m_freem(m);
1212 					break;
1213 				}
1214 			}
1215 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1216 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1217 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1218 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1219 			if (error) {
1220 				printf("%s: unable to load Tx buffer, "
1221 				    "error = %d\n", sc->sc_dev.dv_xname, error);
1222 				break;
1223 			}
1224 		}
1225 #endif /* DP83820 */
1226 
1227 		/*
1228 		 * Ensure we have enough descriptors free to describe
1229 		 * the packet.  Note, we always reserve one descriptor
1230 		 * at the end of the ring as a termination point, to
1231 		 * prevent wrap-around.
1232 		 */
1233 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1234 			/*
1235 			 * Not enough free descriptors to transmit this
1236 			 * packet.  We haven't committed anything yet,
1237 			 * so just unload the DMA map, put the packet
1238 			 * back on the queue, and punt.  Notify the upper
1239 			 * layer that there are not more slots left.
1240 			 *
1241 			 * XXX We could allocate an mbuf and copy, but
1242 			 * XXX is it worth it?
1243 			 */
1244 			ifp->if_flags |= IFF_OACTIVE;
1245 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1246 #ifndef DP83820
1247 			if (m != NULL)
1248 				m_freem(m);
1249 #endif
1250 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1251 			break;
1252 		}
1253 
1254 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1255 #ifndef DP83820
1256 		if (m != NULL) {
1257 			m_freem(m0);
1258 			m0 = m;
1259 		}
1260 #endif
1261 
1262 		/*
1263 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1264 		 */
1265 
1266 		/* Sync the DMA map. */
1267 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1268 		    BUS_DMASYNC_PREWRITE);
1269 
1270 		/*
1271 		 * Initialize the transmit descriptors.
1272 		 */
1273 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1274 		     seg < dmamap->dm_nsegs;
1275 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
1276 			/*
1277 			 * If this is the first descriptor we're
1278 			 * enqueueing, don't set the OWN bit just
1279 			 * yet.  That could cause a race condition.
1280 			 * We'll do it below.
1281 			 */
1282 			sc->sc_txdescs[nexttx].sipd_bufptr =
1283 			    htole32(dmamap->dm_segs[seg].ds_addr);
1284 			sc->sc_txdescs[nexttx].sipd_cmdsts =
1285 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1286 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1287 #ifdef DP83820
1288 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
1289 #endif /* DP83820 */
1290 			lasttx = nexttx;
1291 		}
1292 
1293 		/* Clear the MORE bit on the last segment. */
1294 		sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1295 
1296 		/*
1297 		 * If we're in the interrupt delay window, delay the
1298 		 * interrupt.
1299 		 */
1300 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1301 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1302 			sc->sc_txdescs[lasttx].sipd_cmdsts |=
1303 			    htole32(CMDSTS_INTR);
1304 			sc->sc_txwin = 0;
1305 		}
1306 
1307 #ifdef DP83820
1308 		/*
1309 		 * If VLANs are enabled and the packet has a VLAN tag, set
1310 		 * up the descriptor to encapsulate the packet for us.
1311 		 *
1312 		 * This apparently has to be on the last descriptor of
1313 		 * the packet.
1314 		 */
1315 		if (sc->sc_ethercom.ec_nvlans != 0 &&
1316 		    (mtag = m_tag_find(m0, PACKET_TAG_VLAN, NULL)) != NULL) {
1317 			sc->sc_txdescs[lasttx].sipd_extsts |=
1318 			    htole32(EXTSTS_VPKT |
1319 				    htons(*mtod(m, int *) & EXTSTS_VTCI));
1320 		}
1321 
1322 		/*
1323 		 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1324 		 * checksumming, set up the descriptor to do this work
1325 		 * for us.
1326 		 *
1327 		 * This apparently has to be on the first descriptor of
1328 		 * the packet.
1329 		 *
1330 		 * Byte-swap constants so the compiler can optimize.
1331 		 */
1332 		extsts = 0;
1333 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1334 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
1335 			SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1336 			extsts |= htole32(EXTSTS_IPPKT);
1337 		}
1338 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1339 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
1340 			SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1341 			extsts |= htole32(EXTSTS_TCPPKT);
1342 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1343 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
1344 			SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1345 			extsts |= htole32(EXTSTS_UDPPKT);
1346 		}
1347 		sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1348 #endif /* DP83820 */
1349 
1350 		/* Sync the descriptors we're using. */
1351 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1352 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1353 
1354 		/*
1355 		 * The entire packet is set up.  Give the first descrptor
1356 		 * to the chip now.
1357 		 */
1358 		sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
1359 		    htole32(CMDSTS_OWN);
1360 		SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
1361 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1362 
1363 		/*
1364 		 * Store a pointer to the packet so we can free it later,
1365 		 * and remember what txdirty will be once the packet is
1366 		 * done.
1367 		 */
1368 		txs->txs_mbuf = m0;
1369 		txs->txs_firstdesc = sc->sc_txnext;
1370 		txs->txs_lastdesc = lasttx;
1371 
1372 		/* Advance the tx pointer. */
1373 		sc->sc_txfree -= dmamap->dm_nsegs;
1374 		sc->sc_txnext = nexttx;
1375 
1376 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1377 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1378 
1379 #if NBPFILTER > 0
1380 		/*
1381 		 * Pass the packet to any BPF listeners.
1382 		 */
1383 		if (ifp->if_bpf)
1384 			bpf_mtap(ifp->if_bpf, m0);
1385 #endif /* NBPFILTER > 0 */
1386 	}
1387 
1388 	if (txs == NULL || sc->sc_txfree == 0) {
1389 		/* No more slots left; notify upper layer. */
1390 		ifp->if_flags |= IFF_OACTIVE;
1391 	}
1392 
1393 	if (sc->sc_txfree != ofree) {
1394 		/*
1395 		 * Start the transmit process.  Note, the manual says
1396 		 * that if there are no pending transmissions in the
1397 		 * chip's internal queue (indicated by TXE being clear),
1398 		 * then the driver software must set the TXDP to the
1399 		 * first descriptor to be transmitted.  However, if we
1400 		 * do this, it causes serious performance degredation on
1401 		 * the DP83820 under load, not setting TXDP doesn't seem
1402 		 * to adversely affect the SiS 900 or DP83815.
1403 		 *
1404 		 * Well, I guess it wouldn't be the first time a manual
1405 		 * has lied -- and they could be speaking of the NULL-
1406 		 * terminated descriptor list case, rather than OWN-
1407 		 * terminated rings.
1408 		 */
1409 #if 0
1410 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1411 		     CR_TXE) == 0) {
1412 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1413 			    SIP_CDTXADDR(sc, firsttx));
1414 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1415 		}
1416 #else
1417 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1418 #endif
1419 
1420 		/* Set a watchdog timer in case the chip flakes out. */
1421 		ifp->if_timer = 5;
1422 	}
1423 }
1424 
1425 /*
1426  * sip_watchdog:	[ifnet interface function]
1427  *
1428  *	Watchdog timer handler.
1429  */
1430 void
1431 SIP_DECL(watchdog)(struct ifnet *ifp)
1432 {
1433 	struct sip_softc *sc = ifp->if_softc;
1434 
1435 	/*
1436 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1437 	 * If we get a timeout, try and sweep up transmit descriptors.
1438 	 * If we manage to sweep them all up, ignore the lack of
1439 	 * interrupt.
1440 	 */
1441 	SIP_DECL(txintr)(sc);
1442 
1443 	if (sc->sc_txfree != SIP_NTXDESC) {
1444 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1445 		ifp->if_oerrors++;
1446 
1447 		/* Reset the interface. */
1448 		(void) SIP_DECL(init)(ifp);
1449 	} else if (ifp->if_flags & IFF_DEBUG)
1450 		printf("%s: recovered from device timeout\n",
1451 		    sc->sc_dev.dv_xname);
1452 
1453 	/* Try to get more packets going. */
1454 	SIP_DECL(start)(ifp);
1455 }
1456 
1457 /*
1458  * sip_ioctl:		[ifnet interface function]
1459  *
1460  *	Handle control requests from the operator.
1461  */
1462 int
1463 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1464 {
1465 	struct sip_softc *sc = ifp->if_softc;
1466 	struct ifreq *ifr = (struct ifreq *)data;
1467 	int s, error;
1468 
1469 	s = splnet();
1470 
1471 	switch (cmd) {
1472 	case SIOCSIFMEDIA:
1473 	case SIOCGIFMEDIA:
1474 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1475 		break;
1476 
1477 	default:
1478 		error = ether_ioctl(ifp, cmd, data);
1479 		if (error == ENETRESET) {
1480 			/*
1481 			 * Multicast list has changed; set the hardware filter
1482 			 * accordingly.
1483 			 */
1484 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1485 			error = 0;
1486 		}
1487 		break;
1488 	}
1489 
1490 	/* Try to get more packets going. */
1491 	SIP_DECL(start)(ifp);
1492 
1493 	splx(s);
1494 	return (error);
1495 }
1496 
1497 /*
1498  * sip_intr:
1499  *
1500  *	Interrupt service routine.
1501  */
1502 int
1503 SIP_DECL(intr)(void *arg)
1504 {
1505 	struct sip_softc *sc = arg;
1506 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1507 	u_int32_t isr;
1508 	int handled = 0;
1509 
1510 	for (;;) {
1511 		/* Reading clears interrupt. */
1512 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1513 		if ((isr & sc->sc_imr) == 0)
1514 			break;
1515 
1516 #if NRND > 0
1517 		if (RND_ENABLED(&sc->rnd_source))
1518 			rnd_add_uint32(&sc->rnd_source, isr);
1519 #endif
1520 
1521 		handled = 1;
1522 
1523 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1524 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1525 
1526 			/* Grab any new packets. */
1527 			SIP_DECL(rxintr)(sc);
1528 
1529 			if (isr & ISR_RXORN) {
1530 				printf("%s: receive FIFO overrun\n",
1531 				    sc->sc_dev.dv_xname);
1532 
1533 				/* XXX adjust rx_drain_thresh? */
1534 			}
1535 
1536 			if (isr & ISR_RXIDLE) {
1537 				printf("%s: receive ring overrun\n",
1538 				    sc->sc_dev.dv_xname);
1539 
1540 				/* Get the receive process going again. */
1541 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1542 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1543 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1544 				    SIP_CR, CR_RXE);
1545 			}
1546 		}
1547 
1548 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1549 #ifdef SIP_EVENT_COUNTERS
1550 			if (isr & ISR_TXDESC)
1551 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1552 			else if (isr & ISR_TXIDLE)
1553 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1554 #endif
1555 
1556 			/* Sweep up transmit descriptors. */
1557 			SIP_DECL(txintr)(sc);
1558 
1559 			if (isr & ISR_TXURN) {
1560 				u_int32_t thresh;
1561 
1562 				printf("%s: transmit FIFO underrun",
1563 				    sc->sc_dev.dv_xname);
1564 
1565 				thresh = sc->sc_tx_drain_thresh + 1;
1566 				if (thresh <= TXCFG_DRTH &&
1567 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
1568 				     (sc->sc_tx_fill_thresh * 32))) {
1569 					printf("; increasing Tx drain "
1570 					    "threshold to %u bytes\n",
1571 					    thresh * 32);
1572 					sc->sc_tx_drain_thresh = thresh;
1573 					(void) SIP_DECL(init)(ifp);
1574 				} else {
1575 					(void) SIP_DECL(init)(ifp);
1576 					printf("\n");
1577 				}
1578 			}
1579 		}
1580 
1581 #if !defined(DP83820)
1582 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1583 			if (isr & ISR_PAUSE_ST) {
1584 				sc->sc_flags |= SIPF_PAUSED;
1585 				ifp->if_flags |= IFF_OACTIVE;
1586 			}
1587 			if (isr & ISR_PAUSE_END) {
1588 				sc->sc_flags &= ~SIPF_PAUSED;
1589 				ifp->if_flags &= ~IFF_OACTIVE;
1590 			}
1591 		}
1592 #endif /* ! DP83820 */
1593 
1594 		if (isr & ISR_HIBERR) {
1595 			int want_init = 0;
1596 
1597 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1598 
1599 #define	PRINTERR(bit, str)						\
1600 			do {						\
1601 				if ((isr & (bit)) != 0) {		\
1602 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
1603 						printf("%s: %s\n",	\
1604 						    sc->sc_dev.dv_xname, str); \
1605 					want_init = 1;			\
1606 				}					\
1607 			} while (/*CONSTCOND*/0)
1608 
1609 			PRINTERR(ISR_DPERR, "parity error");
1610 			PRINTERR(ISR_SSERR, "system error");
1611 			PRINTERR(ISR_RMABT, "master abort");
1612 			PRINTERR(ISR_RTABT, "target abort");
1613 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1614 			/*
1615 			 * Ignore:
1616 			 *	Tx reset complete
1617 			 *	Rx reset complete
1618 			 */
1619 			if (want_init)
1620 				(void) SIP_DECL(init)(ifp);
1621 #undef PRINTERR
1622 		}
1623 	}
1624 
1625 	/* Try to get more packets going. */
1626 	SIP_DECL(start)(ifp);
1627 
1628 	return (handled);
1629 }
1630 
1631 /*
1632  * sip_txintr:
1633  *
1634  *	Helper; handle transmit interrupts.
1635  */
1636 void
1637 SIP_DECL(txintr)(struct sip_softc *sc)
1638 {
1639 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1640 	struct sip_txsoft *txs;
1641 	u_int32_t cmdsts;
1642 
1643 	if ((sc->sc_flags & SIPF_PAUSED) == 0)
1644 		ifp->if_flags &= ~IFF_OACTIVE;
1645 
1646 	/*
1647 	 * Go through our Tx list and free mbufs for those
1648 	 * frames which have been transmitted.
1649 	 */
1650 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1651 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1652 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1653 
1654 		cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1655 		if (cmdsts & CMDSTS_OWN)
1656 			break;
1657 
1658 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1659 
1660 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1661 
1662 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1663 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1664 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1665 		m_freem(txs->txs_mbuf);
1666 		txs->txs_mbuf = NULL;
1667 
1668 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1669 
1670 		/*
1671 		 * Check for errors and collisions.
1672 		 */
1673 		if (cmdsts &
1674 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1675 			ifp->if_oerrors++;
1676 			if (cmdsts & CMDSTS_Tx_EC)
1677 				ifp->if_collisions += 16;
1678 			if (ifp->if_flags & IFF_DEBUG) {
1679 				if (cmdsts & CMDSTS_Tx_ED)
1680 					printf("%s: excessive deferral\n",
1681 					    sc->sc_dev.dv_xname);
1682 				if (cmdsts & CMDSTS_Tx_EC)
1683 					printf("%s: excessive collisions\n",
1684 					    sc->sc_dev.dv_xname);
1685 			}
1686 		} else {
1687 			/* Packet was transmitted successfully. */
1688 			ifp->if_opackets++;
1689 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1690 		}
1691 	}
1692 
1693 	/*
1694 	 * If there are no more pending transmissions, cancel the watchdog
1695 	 * timer.
1696 	 */
1697 	if (txs == NULL) {
1698 		ifp->if_timer = 0;
1699 		sc->sc_txwin = 0;
1700 	}
1701 }
1702 
1703 #if defined(DP83820)
1704 /*
1705  * sip_rxintr:
1706  *
1707  *	Helper; handle receive interrupts.
1708  */
1709 void
1710 SIP_DECL(rxintr)(struct sip_softc *sc)
1711 {
1712 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1713 	struct sip_rxsoft *rxs;
1714 	struct mbuf *m, *tailm;
1715 	u_int32_t cmdsts, extsts;
1716 	int i, len;
1717 
1718 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1719 		rxs = &sc->sc_rxsoft[i];
1720 
1721 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1722 
1723 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1724 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1725 
1726 		/*
1727 		 * NOTE: OWN is set if owned by _consumer_.  We're the
1728 		 * consumer of the receive ring, so if the bit is clear,
1729 		 * we have processed all of the packets.
1730 		 */
1731 		if ((cmdsts & CMDSTS_OWN) == 0) {
1732 			/*
1733 			 * We have processed all of the receive buffers.
1734 			 */
1735 			break;
1736 		}
1737 
1738 		if (__predict_false(sc->sc_rxdiscard)) {
1739 			SIP_INIT_RXDESC(sc, i);
1740 			if ((cmdsts & CMDSTS_MORE) == 0) {
1741 				/* Reset our state. */
1742 				sc->sc_rxdiscard = 0;
1743 			}
1744 			continue;
1745 		}
1746 
1747 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1748 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1749 
1750 		m = rxs->rxs_mbuf;
1751 
1752 		/*
1753 		 * Add a new receive buffer to the ring.
1754 		 */
1755 		if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1756 			/*
1757 			 * Failed, throw away what we've done so
1758 			 * far, and discard the rest of the packet.
1759 			 */
1760 			ifp->if_ierrors++;
1761 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1762 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1763 			SIP_INIT_RXDESC(sc, i);
1764 			if (cmdsts & CMDSTS_MORE)
1765 				sc->sc_rxdiscard = 1;
1766 			if (sc->sc_rxhead != NULL)
1767 				m_freem(sc->sc_rxhead);
1768 			SIP_RXCHAIN_RESET(sc);
1769 			continue;
1770 		}
1771 
1772 		SIP_RXCHAIN_LINK(sc, m);
1773 
1774 		/*
1775 		 * If this is not the end of the packet, keep
1776 		 * looking.
1777 		 */
1778 		if (cmdsts & CMDSTS_MORE) {
1779 			sc->sc_rxlen += m->m_len;
1780 			continue;
1781 		}
1782 
1783 		/*
1784 		 * Okay, we have the entire packet now...
1785 		 */
1786 		*sc->sc_rxtailp = NULL;
1787 		m = sc->sc_rxhead;
1788 		tailm = sc->sc_rxtail;
1789 
1790 		SIP_RXCHAIN_RESET(sc);
1791 
1792 		/*
1793 		 * If an error occurred, update stats and drop the packet.
1794 		 */
1795 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1796 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1797 			ifp->if_ierrors++;
1798 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1799 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
1800 				/* Receive overrun handled elsewhere. */
1801 				printf("%s: receive descriptor error\n",
1802 				    sc->sc_dev.dv_xname);
1803 			}
1804 #define	PRINTERR(bit, str)						\
1805 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
1806 			    (cmdsts & (bit)) != 0)			\
1807 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1808 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1809 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1810 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1811 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1812 #undef PRINTERR
1813 			m_freem(m);
1814 			continue;
1815 		}
1816 
1817 		/*
1818 		 * No errors.
1819 		 *
1820 		 * Note, the DP83820 includes the CRC with
1821 		 * every packet.
1822 		 */
1823 		len = CMDSTS_SIZE(cmdsts);
1824 		tailm->m_len = len - sc->sc_rxlen;
1825 
1826 		/*
1827 		 * If the packet is small enough to fit in a
1828 		 * single header mbuf, allocate one and copy
1829 		 * the data into it.  This greatly reduces
1830 		 * memory consumption when we receive lots
1831 		 * of small packets.
1832 		 */
1833 		if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1834 			struct mbuf *nm;
1835 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
1836 			if (nm == NULL) {
1837 				ifp->if_ierrors++;
1838 				m_freem(m);
1839 				continue;
1840 			}
1841 			nm->m_data += 2;
1842 			nm->m_pkthdr.len = nm->m_len = len;
1843 			m_copydata(m, 0, len, mtod(nm, caddr_t));
1844 			m_freem(m);
1845 			m = nm;
1846 		}
1847 #ifndef __NO_STRICT_ALIGNMENT
1848 		else {
1849 			/*
1850 			 * The DP83820's receive buffers must be 4-byte
1851 			 * aligned.  But this means that the data after
1852 			 * the Ethernet header is misaligned.  To compensate,
1853 			 * we have artificially shortened the buffer size
1854 			 * in the descriptor, and we do an overlapping copy
1855 			 * of the data two bytes further in (in the first
1856 			 * buffer of the chain only).
1857 			 */
1858 			memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1859 			    m->m_len);
1860 			m->m_data += 2;
1861 		}
1862 #endif /* ! __NO_STRICT_ALIGNMENT */
1863 
1864 		/*
1865 		 * If VLANs are enabled, VLAN packets have been unwrapped
1866 		 * for us.  Associate the tag with the packet.
1867 		 */
1868 		if (sc->sc_ethercom.ec_nvlans != 0 &&
1869 		    (extsts & EXTSTS_VPKT) != 0) {
1870 			struct m_tag *vtag;
1871 
1872 			vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
1873 			    M_NOWAIT);
1874 			if (vtag == NULL) {
1875 				ifp->if_ierrors++;
1876 				printf("%s: unable to allocate VLAN tag\n",
1877 				    sc->sc_dev.dv_xname);
1878 				m_freem(m);
1879 				continue;
1880 			}
1881 
1882 			*(u_int *)(vtag + 1) = ntohs(extsts & EXTSTS_VTCI);
1883 		}
1884 
1885 		/*
1886 		 * Set the incoming checksum information for the
1887 		 * packet.
1888 		 */
1889 		if ((extsts & EXTSTS_IPPKT) != 0) {
1890 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1891 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1892 			if (extsts & EXTSTS_Rx_IPERR)
1893 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1894 			if (extsts & EXTSTS_TCPPKT) {
1895 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1896 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1897 				if (extsts & EXTSTS_Rx_TCPERR)
1898 					m->m_pkthdr.csum_flags |=
1899 					    M_CSUM_TCP_UDP_BAD;
1900 			} else if (extsts & EXTSTS_UDPPKT) {
1901 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1902 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1903 				if (extsts & EXTSTS_Rx_UDPERR)
1904 					m->m_pkthdr.csum_flags |=
1905 					    M_CSUM_TCP_UDP_BAD;
1906 			}
1907 		}
1908 
1909 		ifp->if_ipackets++;
1910 		m->m_flags |= M_HASFCS;
1911 		m->m_pkthdr.rcvif = ifp;
1912 		m->m_pkthdr.len = len;
1913 
1914 #if NBPFILTER > 0
1915 		/*
1916 		 * Pass this up to any BPF listeners, but only
1917 		 * pass if up the stack if it's for us.
1918 		 */
1919 		if (ifp->if_bpf)
1920 			bpf_mtap(ifp->if_bpf, m);
1921 #endif /* NBPFILTER > 0 */
1922 
1923 		/* Pass it on. */
1924 		(*ifp->if_input)(ifp, m);
1925 	}
1926 
1927 	/* Update the receive pointer. */
1928 	sc->sc_rxptr = i;
1929 }
1930 #else /* ! DP83820 */
1931 /*
1932  * sip_rxintr:
1933  *
1934  *	Helper; handle receive interrupts.
1935  */
1936 void
1937 SIP_DECL(rxintr)(struct sip_softc *sc)
1938 {
1939 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1940 	struct sip_rxsoft *rxs;
1941 	struct mbuf *m;
1942 	u_int32_t cmdsts;
1943 	int i, len;
1944 
1945 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1946 		rxs = &sc->sc_rxsoft[i];
1947 
1948 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1949 
1950 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1951 
1952 		/*
1953 		 * NOTE: OWN is set if owned by _consumer_.  We're the
1954 		 * consumer of the receive ring, so if the bit is clear,
1955 		 * we have processed all of the packets.
1956 		 */
1957 		if ((cmdsts & CMDSTS_OWN) == 0) {
1958 			/*
1959 			 * We have processed all of the receive buffers.
1960 			 */
1961 			break;
1962 		}
1963 
1964 		/*
1965 		 * If any collisions were seen on the wire, count one.
1966 		 */
1967 		if (cmdsts & CMDSTS_Rx_COL)
1968 			ifp->if_collisions++;
1969 
1970 		/*
1971 		 * If an error occurred, update stats, clear the status
1972 		 * word, and leave the packet buffer in place.  It will
1973 		 * simply be reused the next time the ring comes around.
1974 		 */
1975 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1976 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1977 			ifp->if_ierrors++;
1978 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1979 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
1980 				/* Receive overrun handled elsewhere. */
1981 				printf("%s: receive descriptor error\n",
1982 				    sc->sc_dev.dv_xname);
1983 			}
1984 #define	PRINTERR(bit, str)						\
1985 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
1986 			    (cmdsts & (bit)) != 0)			\
1987 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1988 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1989 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1990 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1991 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1992 #undef PRINTERR
1993 			SIP_INIT_RXDESC(sc, i);
1994 			continue;
1995 		}
1996 
1997 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1998 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1999 
2000 		/*
2001 		 * No errors; receive the packet.  Note, the SiS 900
2002 		 * includes the CRC with every packet.
2003 		 */
2004 		len = CMDSTS_SIZE(cmdsts);
2005 
2006 #ifdef __NO_STRICT_ALIGNMENT
2007 		/*
2008 		 * If the packet is small enough to fit in a
2009 		 * single header mbuf, allocate one and copy
2010 		 * the data into it.  This greatly reduces
2011 		 * memory consumption when we receive lots
2012 		 * of small packets.
2013 		 *
2014 		 * Otherwise, we add a new buffer to the receive
2015 		 * chain.  If this fails, we drop the packet and
2016 		 * recycle the old buffer.
2017 		 */
2018 		if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
2019 			MGETHDR(m, M_DONTWAIT, MT_DATA);
2020 			if (m == NULL)
2021 				goto dropit;
2022 			memcpy(mtod(m, caddr_t),
2023 			    mtod(rxs->rxs_mbuf, caddr_t), len);
2024 			SIP_INIT_RXDESC(sc, i);
2025 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2026 			    rxs->rxs_dmamap->dm_mapsize,
2027 			    BUS_DMASYNC_PREREAD);
2028 		} else {
2029 			m = rxs->rxs_mbuf;
2030 			if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
2031  dropit:
2032 				ifp->if_ierrors++;
2033 				SIP_INIT_RXDESC(sc, i);
2034 				bus_dmamap_sync(sc->sc_dmat,
2035 				    rxs->rxs_dmamap, 0,
2036 				    rxs->rxs_dmamap->dm_mapsize,
2037 				    BUS_DMASYNC_PREREAD);
2038 				continue;
2039 			}
2040 		}
2041 #else
2042 		/*
2043 		 * The SiS 900's receive buffers must be 4-byte aligned.
2044 		 * But this means that the data after the Ethernet header
2045 		 * is misaligned.  We must allocate a new buffer and
2046 		 * copy the data, shifted forward 2 bytes.
2047 		 */
2048 		MGETHDR(m, M_DONTWAIT, MT_DATA);
2049 		if (m == NULL) {
2050  dropit:
2051 			ifp->if_ierrors++;
2052 			SIP_INIT_RXDESC(sc, i);
2053 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2054 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2055 			continue;
2056 		}
2057 		if (len > (MHLEN - 2)) {
2058 			MCLGET(m, M_DONTWAIT);
2059 			if ((m->m_flags & M_EXT) == 0) {
2060 				m_freem(m);
2061 				goto dropit;
2062 			}
2063 		}
2064 		m->m_data += 2;
2065 
2066 		/*
2067 		 * Note that we use clusters for incoming frames, so the
2068 		 * buffer is virtually contiguous.
2069 		 */
2070 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
2071 
2072 		/* Allow the receive descriptor to continue using its mbuf. */
2073 		SIP_INIT_RXDESC(sc, i);
2074 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2075 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2076 #endif /* __NO_STRICT_ALIGNMENT */
2077 
2078 		ifp->if_ipackets++;
2079 		m->m_flags |= M_HASFCS;
2080 		m->m_pkthdr.rcvif = ifp;
2081 		m->m_pkthdr.len = m->m_len = len;
2082 
2083 #if NBPFILTER > 0
2084 		/*
2085 		 * Pass this up to any BPF listeners, but only
2086 		 * pass if up the stack if it's for us.
2087 		 */
2088 		if (ifp->if_bpf)
2089 			bpf_mtap(ifp->if_bpf, m);
2090 #endif /* NBPFILTER > 0 */
2091 
2092 		/* Pass it on. */
2093 		(*ifp->if_input)(ifp, m);
2094 	}
2095 
2096 	/* Update the receive pointer. */
2097 	sc->sc_rxptr = i;
2098 }
2099 #endif /* DP83820 */
2100 
2101 /*
2102  * sip_tick:
2103  *
2104  *	One second timer, used to tick the MII.
2105  */
2106 void
2107 SIP_DECL(tick)(void *arg)
2108 {
2109 	struct sip_softc *sc = arg;
2110 	int s;
2111 
2112 	s = splnet();
2113 	mii_tick(&sc->sc_mii);
2114 	splx(s);
2115 
2116 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2117 }
2118 
2119 /*
2120  * sip_reset:
2121  *
2122  *	Perform a soft reset on the SiS 900.
2123  */
2124 void
2125 SIP_DECL(reset)(struct sip_softc *sc)
2126 {
2127 	bus_space_tag_t st = sc->sc_st;
2128 	bus_space_handle_t sh = sc->sc_sh;
2129 	int i;
2130 
2131 	bus_space_write_4(st, sh, SIP_IER, 0);
2132 	bus_space_write_4(st, sh, SIP_IMR, 0);
2133 	bus_space_write_4(st, sh, SIP_RFCR, 0);
2134 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
2135 
2136 	for (i = 0; i < SIP_TIMEOUT; i++) {
2137 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2138 			break;
2139 		delay(2);
2140 	}
2141 
2142 	if (i == SIP_TIMEOUT)
2143 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2144 
2145 	delay(1000);
2146 
2147 #ifdef DP83820
2148 	/*
2149 	 * Set the general purpose I/O bits.  Do it here in case we
2150 	 * need to have GPIO set up to talk to the media interface.
2151 	 */
2152 	bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2153 	delay(1000);
2154 #endif /* DP83820 */
2155 }
2156 
2157 /*
2158  * sip_init:		[ ifnet interface function ]
2159  *
2160  *	Initialize the interface.  Must be called at splnet().
2161  */
2162 int
2163 SIP_DECL(init)(struct ifnet *ifp)
2164 {
2165 	struct sip_softc *sc = ifp->if_softc;
2166 	bus_space_tag_t st = sc->sc_st;
2167 	bus_space_handle_t sh = sc->sc_sh;
2168 	struct sip_txsoft *txs;
2169 	struct sip_rxsoft *rxs;
2170 	struct sip_desc *sipd;
2171 #if defined(DP83820)
2172 	u_int32_t reg;
2173 #endif
2174 	int i, error = 0;
2175 
2176 	/*
2177 	 * Cancel any pending I/O.
2178 	 */
2179 	SIP_DECL(stop)(ifp, 0);
2180 
2181 	/*
2182 	 * Reset the chip to a known state.
2183 	 */
2184 	SIP_DECL(reset)(sc);
2185 
2186 #if !defined(DP83820)
2187 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2188 		/*
2189 		 * DP83815 manual, page 78:
2190 		 *    4.4 Recommended Registers Configuration
2191 		 *    For optimum performance of the DP83815, version noted
2192 		 *    as DP83815CVNG (SRR = 203h), the listed register
2193 		 *    modifications must be followed in sequence...
2194 		 *
2195 		 * It's not clear if this should be 302h or 203h because that
2196 		 * chip name is listed as SRR 302h in the description of the
2197 		 * SRR register.  However, my revision 302h DP83815 on the
2198 		 * Netgear FA311 purchased in 02/2001 needs these settings
2199 		 * to avoid tons of errors in AcceptPerfectMatch (non-
2200 		 * IFF_PROMISC) mode.  I do not know if other revisions need
2201 		 * this set or not.  [briggs -- 09 March 2001]
2202 		 *
2203 		 * Note that only the low-order 12 bits of 0xe4 are documented
2204 		 * and that this sets reserved bits in that register.
2205 		 */
2206 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
2207 
2208 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
2209 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
2210 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
2211 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
2212 
2213 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
2214 	}
2215 #endif /* ! DP83820 */
2216 
2217 	/*
2218 	 * Initialize the transmit descriptor ring.
2219 	 */
2220 	for (i = 0; i < SIP_NTXDESC; i++) {
2221 		sipd = &sc->sc_txdescs[i];
2222 		memset(sipd, 0, sizeof(struct sip_desc));
2223 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2224 	}
2225 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2226 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2227 	sc->sc_txfree = SIP_NTXDESC;
2228 	sc->sc_txnext = 0;
2229 	sc->sc_txwin = 0;
2230 
2231 	/*
2232 	 * Initialize the transmit job descriptors.
2233 	 */
2234 	SIMPLEQ_INIT(&sc->sc_txfreeq);
2235 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
2236 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
2237 		txs = &sc->sc_txsoft[i];
2238 		txs->txs_mbuf = NULL;
2239 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2240 	}
2241 
2242 	/*
2243 	 * Initialize the receive descriptor and receive job
2244 	 * descriptor rings.
2245 	 */
2246 	for (i = 0; i < SIP_NRXDESC; i++) {
2247 		rxs = &sc->sc_rxsoft[i];
2248 		if (rxs->rxs_mbuf == NULL) {
2249 			if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2250 				printf("%s: unable to allocate or map rx "
2251 				    "buffer %d, error = %d\n",
2252 				    sc->sc_dev.dv_xname, i, error);
2253 				/*
2254 				 * XXX Should attempt to run with fewer receive
2255 				 * XXX buffers instead of just failing.
2256 				 */
2257 				SIP_DECL(rxdrain)(sc);
2258 				goto out;
2259 			}
2260 		} else
2261 			SIP_INIT_RXDESC(sc, i);
2262 	}
2263 	sc->sc_rxptr = 0;
2264 #ifdef DP83820
2265 	sc->sc_rxdiscard = 0;
2266 	SIP_RXCHAIN_RESET(sc);
2267 #endif /* DP83820 */
2268 
2269 	/*
2270 	 * Set the configuration register; it's already initialized
2271 	 * in sip_attach().
2272 	 */
2273 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2274 
2275 	/*
2276 	 * Initialize the prototype TXCFG register.
2277 	 */
2278 #if defined(DP83820)
2279 	sc->sc_txcfg = TXCFG_MXDMA_512;
2280 	sc->sc_rxcfg = RXCFG_MXDMA_512;
2281 #else
2282 	if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2283 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2284 	    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & CFG_EDBMASTEN)) {
2285 		sc->sc_txcfg = TXCFG_MXDMA_64;
2286 		sc->sc_rxcfg = RXCFG_MXDMA_64;
2287 	} else {
2288 		sc->sc_txcfg = TXCFG_MXDMA_512;
2289 		sc->sc_rxcfg = RXCFG_MXDMA_512;
2290 	}
2291 #endif /* DP83820 */
2292 
2293 	sc->sc_txcfg |= TXCFG_ATP |
2294 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2295 	    sc->sc_tx_drain_thresh;
2296 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2297 
2298 	/*
2299 	 * Initialize the receive drain threshold if we have never
2300 	 * done so.
2301 	 */
2302 	if (sc->sc_rx_drain_thresh == 0) {
2303 		/*
2304 		 * XXX This value should be tuned.  This is set to the
2305 		 * maximum of 248 bytes, and we may be able to improve
2306 		 * performance by decreasing it (although we should never
2307 		 * set this value lower than 2; 14 bytes are required to
2308 		 * filter the packet).
2309 		 */
2310 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2311 	}
2312 
2313 	/*
2314 	 * Initialize the prototype RXCFG register.
2315 	 */
2316 	sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2317 #ifndef DP83820
2318 	/*
2319 	 * Accept packets >1518 bytes (including FCS) so we can handle
2320 	 * 802.1q-tagged frames properly.
2321 	 */
2322 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2323 		sc->sc_rxcfg |= RXCFG_ALP;
2324 #endif
2325 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2326 
2327 #ifdef DP83820
2328 	/*
2329 	 * Initialize the VLAN/IP receive control register.
2330 	 * We enable checksum computation on all incoming
2331 	 * packets, and do not reject packets w/ bad checksums.
2332 	 */
2333 	reg = 0;
2334 	if (ifp->if_capenable &
2335 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2336 		reg |= VRCR_IPEN;
2337 	if (sc->sc_ethercom.ec_nvlans != 0)
2338 		reg |= VRCR_VTDEN|VRCR_VTREN;
2339 	bus_space_write_4(st, sh, SIP_VRCR, reg);
2340 
2341 	/*
2342 	 * Initialize the VLAN/IP transmit control register.
2343 	 * We enable outgoing checksum computation on a
2344 	 * per-packet basis.
2345 	 */
2346 	reg = 0;
2347 	if (ifp->if_capenable &
2348 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2349 		reg |= VTCR_PPCHK;
2350 	if (sc->sc_ethercom.ec_nvlans != 0)
2351 		reg |= VTCR_VPPTI;
2352 	bus_space_write_4(st, sh, SIP_VTCR, reg);
2353 
2354 	/*
2355 	 * If we're using VLANs, initialize the VLAN data register.
2356 	 * To understand why we bswap the VLAN Ethertype, see section
2357 	 * 4.2.36 of the DP83820 manual.
2358 	 */
2359 	if (sc->sc_ethercom.ec_nvlans != 0)
2360 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2361 #endif /* DP83820 */
2362 
2363 	/*
2364 	 * Give the transmit and receive rings to the chip.
2365 	 */
2366 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2367 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2368 
2369 	/*
2370 	 * Initialize the interrupt mask.
2371 	 */
2372 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2373 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2374 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2375 
2376 	/* Set up the receive filter. */
2377 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2378 
2379 	/*
2380 	 * Set the current media.  Do this after initializing the prototype
2381 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2382 	 * control.
2383 	 */
2384 	mii_mediachg(&sc->sc_mii);
2385 
2386 	/*
2387 	 * Enable interrupts.
2388 	 */
2389 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
2390 
2391 	/*
2392 	 * Start the transmit and receive processes.
2393 	 */
2394 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2395 
2396 	/*
2397 	 * Start the one second MII clock.
2398 	 */
2399 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2400 
2401 	/*
2402 	 * ...all done!
2403 	 */
2404 	ifp->if_flags |= IFF_RUNNING;
2405 	ifp->if_flags &= ~IFF_OACTIVE;
2406 
2407  out:
2408 	if (error)
2409 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2410 	return (error);
2411 }
2412 
2413 /*
2414  * sip_drain:
2415  *
2416  *	Drain the receive queue.
2417  */
2418 void
2419 SIP_DECL(rxdrain)(struct sip_softc *sc)
2420 {
2421 	struct sip_rxsoft *rxs;
2422 	int i;
2423 
2424 	for (i = 0; i < SIP_NRXDESC; i++) {
2425 		rxs = &sc->sc_rxsoft[i];
2426 		if (rxs->rxs_mbuf != NULL) {
2427 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2428 			m_freem(rxs->rxs_mbuf);
2429 			rxs->rxs_mbuf = NULL;
2430 		}
2431 	}
2432 }
2433 
2434 /*
2435  * sip_stop:		[ ifnet interface function ]
2436  *
2437  *	Stop transmission on the interface.
2438  */
2439 void
2440 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2441 {
2442 	struct sip_softc *sc = ifp->if_softc;
2443 	bus_space_tag_t st = sc->sc_st;
2444 	bus_space_handle_t sh = sc->sc_sh;
2445 	struct sip_txsoft *txs;
2446 	u_int32_t cmdsts = 0;		/* DEBUG */
2447 
2448 	/*
2449 	 * Stop the one second clock.
2450 	 */
2451 	callout_stop(&sc->sc_tick_ch);
2452 
2453 	/* Down the MII. */
2454 	mii_down(&sc->sc_mii);
2455 
2456 	/*
2457 	 * Disable interrupts.
2458 	 */
2459 	bus_space_write_4(st, sh, SIP_IER, 0);
2460 
2461 	/*
2462 	 * Stop receiver and transmitter.
2463 	 */
2464 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2465 
2466 	/*
2467 	 * Release any queued transmit buffers.
2468 	 */
2469 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2470 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2471 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2472 		    (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2473 		     CMDSTS_INTR) == 0)
2474 			printf("%s: sip_stop: last descriptor does not "
2475 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
2476 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2477 #ifdef DIAGNOSTIC
2478 		if (txs->txs_mbuf == NULL) {
2479 			printf("%s: dirty txsoft with no mbuf chain\n",
2480 			    sc->sc_dev.dv_xname);
2481 			panic("sip_stop");
2482 		}
2483 #endif
2484 		cmdsts |=		/* DEBUG */
2485 		    le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2486 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2487 		m_freem(txs->txs_mbuf);
2488 		txs->txs_mbuf = NULL;
2489 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2490 	}
2491 
2492 	if (disable)
2493 		SIP_DECL(rxdrain)(sc);
2494 
2495 	/*
2496 	 * Mark the interface down and cancel the watchdog timer.
2497 	 */
2498 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2499 	ifp->if_timer = 0;
2500 
2501 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2502 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2503 		printf("%s: sip_stop: no INTR bits set in dirty tx "
2504 		    "descriptors\n", sc->sc_dev.dv_xname);
2505 }
2506 
2507 /*
2508  * sip_read_eeprom:
2509  *
2510  *	Read data from the serial EEPROM.
2511  */
2512 void
2513 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2514     u_int16_t *data)
2515 {
2516 	bus_space_tag_t st = sc->sc_st;
2517 	bus_space_handle_t sh = sc->sc_sh;
2518 	u_int16_t reg;
2519 	int i, x;
2520 
2521 	for (i = 0; i < wordcnt; i++) {
2522 		/* Send CHIP SELECT. */
2523 		reg = EROMAR_EECS;
2524 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
2525 
2526 		/* Shift in the READ opcode. */
2527 		for (x = 3; x > 0; x--) {
2528 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2529 				reg |= EROMAR_EEDI;
2530 			else
2531 				reg &= ~EROMAR_EEDI;
2532 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2533 			bus_space_write_4(st, sh, SIP_EROMAR,
2534 			    reg | EROMAR_EESK);
2535 			delay(4);
2536 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2537 			delay(4);
2538 		}
2539 
2540 		/* Shift in address. */
2541 		for (x = 6; x > 0; x--) {
2542 			if ((word + i) & (1 << (x - 1)))
2543 				reg |= EROMAR_EEDI;
2544 			else
2545 				reg &= ~EROMAR_EEDI;
2546 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2547 			bus_space_write_4(st, sh, SIP_EROMAR,
2548 			    reg | EROMAR_EESK);
2549 			delay(4);
2550 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2551 			delay(4);
2552 		}
2553 
2554 		/* Shift out data. */
2555 		reg = EROMAR_EECS;
2556 		data[i] = 0;
2557 		for (x = 16; x > 0; x--) {
2558 			bus_space_write_4(st, sh, SIP_EROMAR,
2559 			    reg | EROMAR_EESK);
2560 			delay(4);
2561 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2562 				data[i] |= (1 << (x - 1));
2563 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2564 			delay(4);
2565 		}
2566 
2567 		/* Clear CHIP SELECT. */
2568 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
2569 		delay(4);
2570 	}
2571 }
2572 
2573 /*
2574  * sip_add_rxbuf:
2575  *
2576  *	Add a receive buffer to the indicated descriptor.
2577  */
2578 int
2579 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2580 {
2581 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2582 	struct mbuf *m;
2583 	int error;
2584 
2585 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2586 	if (m == NULL)
2587 		return (ENOBUFS);
2588 
2589 	MCLGET(m, M_DONTWAIT);
2590 	if ((m->m_flags & M_EXT) == 0) {
2591 		m_freem(m);
2592 		return (ENOBUFS);
2593 	}
2594 
2595 #if defined(DP83820)
2596 	m->m_len = SIP_RXBUF_LEN;
2597 #endif /* DP83820 */
2598 
2599 	if (rxs->rxs_mbuf != NULL)
2600 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2601 
2602 	rxs->rxs_mbuf = m;
2603 
2604 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2605 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2606 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2607 	if (error) {
2608 		printf("%s: can't load rx DMA map %d, error = %d\n",
2609 		    sc->sc_dev.dv_xname, idx, error);
2610 		panic("sip_add_rxbuf");		/* XXX */
2611 	}
2612 
2613 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2614 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2615 
2616 	SIP_INIT_RXDESC(sc, idx);
2617 
2618 	return (0);
2619 }
2620 
2621 #if !defined(DP83820)
2622 /*
2623  * sip_sis900_set_filter:
2624  *
2625  *	Set up the receive filter.
2626  */
2627 void
2628 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2629 {
2630 	bus_space_tag_t st = sc->sc_st;
2631 	bus_space_handle_t sh = sc->sc_sh;
2632 	struct ethercom *ec = &sc->sc_ethercom;
2633 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2634 	struct ether_multi *enm;
2635 	u_int8_t *cp;
2636 	struct ether_multistep step;
2637 	u_int32_t crc, mchash[16];
2638 
2639 	/*
2640 	 * Initialize the prototype RFCR.
2641 	 */
2642 	sc->sc_rfcr = RFCR_RFEN;
2643 	if (ifp->if_flags & IFF_BROADCAST)
2644 		sc->sc_rfcr |= RFCR_AAB;
2645 	if (ifp->if_flags & IFF_PROMISC) {
2646 		sc->sc_rfcr |= RFCR_AAP;
2647 		goto allmulti;
2648 	}
2649 
2650 	/*
2651 	 * Set up the multicast address filter by passing all multicast
2652 	 * addresses through a CRC generator, and then using the high-order
2653 	 * 6 bits as an index into the 128 bit multicast hash table (only
2654 	 * the lower 16 bits of each 32 bit multicast hash register are
2655 	 * valid).  The high order bits select the register, while the
2656 	 * rest of the bits select the bit within the register.
2657 	 */
2658 
2659 	memset(mchash, 0, sizeof(mchash));
2660 
2661 	ETHER_FIRST_MULTI(step, ec, enm);
2662 	while (enm != NULL) {
2663 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2664 			/*
2665 			 * We must listen to a range of multicast addresses.
2666 			 * For now, just accept all multicasts, rather than
2667 			 * trying to set only those filter bits needed to match
2668 			 * the range.  (At this time, the only use of address
2669 			 * ranges is for IP multicast routing, for which the
2670 			 * range is big enough to require all bits set.)
2671 			 */
2672 			goto allmulti;
2673 		}
2674 
2675 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2676 
2677 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2678 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
2679 			/* Just want the 8 most significant bits. */
2680 			crc >>= 24;
2681 		} else {
2682 			/* Just want the 7 most significant bits. */
2683 			crc >>= 25;
2684 		}
2685 
2686 		/* Set the corresponding bit in the hash table. */
2687 		mchash[crc >> 4] |= 1 << (crc & 0xf);
2688 
2689 		ETHER_NEXT_MULTI(step, enm);
2690 	}
2691 
2692 	ifp->if_flags &= ~IFF_ALLMULTI;
2693 	goto setit;
2694 
2695  allmulti:
2696 	ifp->if_flags |= IFF_ALLMULTI;
2697 	sc->sc_rfcr |= RFCR_AAM;
2698 
2699  setit:
2700 #define	FILTER_EMIT(addr, data)						\
2701 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
2702 	delay(1);							\
2703 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
2704 	delay(1)
2705 
2706 	/*
2707 	 * Disable receive filter, and program the node address.
2708 	 */
2709 	cp = LLADDR(ifp->if_sadl);
2710 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2711 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2712 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2713 
2714 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2715 		/*
2716 		 * Program the multicast hash table.
2717 		 */
2718 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2719 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2720 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2721 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2722 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2723 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2724 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2725 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2726 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2727 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
2728 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2729 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2730 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2731 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2732 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2733 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2734 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2735 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2736 		}
2737 	}
2738 #undef FILTER_EMIT
2739 
2740 	/*
2741 	 * Re-enable the receiver filter.
2742 	 */
2743 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2744 }
2745 #endif /* ! DP83820 */
2746 
2747 /*
2748  * sip_dp83815_set_filter:
2749  *
2750  *	Set up the receive filter.
2751  */
2752 void
2753 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2754 {
2755 	bus_space_tag_t st = sc->sc_st;
2756 	bus_space_handle_t sh = sc->sc_sh;
2757 	struct ethercom *ec = &sc->sc_ethercom;
2758 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2759 	struct ether_multi *enm;
2760 	u_int8_t *cp;
2761 	struct ether_multistep step;
2762 	u_int32_t crc, hash, slot, bit;
2763 #ifdef DP83820
2764 #define	MCHASH_NWORDS	128
2765 #else
2766 #define	MCHASH_NWORDS	32
2767 #endif /* DP83820 */
2768 	u_int16_t mchash[MCHASH_NWORDS];
2769 	int i;
2770 
2771 	/*
2772 	 * Initialize the prototype RFCR.
2773 	 * Enable the receive filter, and accept on
2774 	 *    Perfect (destination address) Match
2775 	 * If IFF_BROADCAST, also accept all broadcast packets.
2776 	 * If IFF_PROMISC, accept all unicast packets (and later, set
2777 	 *    IFF_ALLMULTI and accept all multicast, too).
2778 	 */
2779 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2780 	if (ifp->if_flags & IFF_BROADCAST)
2781 		sc->sc_rfcr |= RFCR_AAB;
2782 	if (ifp->if_flags & IFF_PROMISC) {
2783 		sc->sc_rfcr |= RFCR_AAP;
2784 		goto allmulti;
2785 	}
2786 
2787 #ifdef DP83820
2788 	/*
2789 	 * Set up the DP83820 multicast address filter by passing all multicast
2790 	 * addresses through a CRC generator, and then using the high-order
2791 	 * 11 bits as an index into the 2048 bit multicast hash table.  The
2792 	 * high-order 7 bits select the slot, while the low-order 4 bits
2793 	 * select the bit within the slot.  Note that only the low 16-bits
2794 	 * of each filter word are used, and there are 128 filter words.
2795 	 */
2796 #else
2797 	/*
2798 	 * Set up the DP83815 multicast address filter by passing all multicast
2799 	 * addresses through a CRC generator, and then using the high-order
2800 	 * 9 bits as an index into the 512 bit multicast hash table.  The
2801 	 * high-order 5 bits select the slot, while the low-order 4 bits
2802 	 * select the bit within the slot.  Note that only the low 16-bits
2803 	 * of each filter word are used, and there are 32 filter words.
2804 	 */
2805 #endif /* DP83820 */
2806 
2807 	memset(mchash, 0, sizeof(mchash));
2808 
2809 	ifp->if_flags &= ~IFF_ALLMULTI;
2810 	ETHER_FIRST_MULTI(step, ec, enm);
2811 	if (enm == NULL)
2812 		goto setit;
2813 	while (enm != NULL) {
2814 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2815 			/*
2816 			 * We must listen to a range of multicast addresses.
2817 			 * For now, just accept all multicasts, rather than
2818 			 * trying to set only those filter bits needed to match
2819 			 * the range.  (At this time, the only use of address
2820 			 * ranges is for IP multicast routing, for which the
2821 			 * range is big enough to require all bits set.)
2822 			 */
2823 			goto allmulti;
2824 		}
2825 
2826 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2827 
2828 #ifdef DP83820
2829 		/* Just want the 11 most significant bits. */
2830 		hash = crc >> 21;
2831 #else
2832 		/* Just want the 9 most significant bits. */
2833 		hash = crc >> 23;
2834 #endif /* DP83820 */
2835 
2836 		slot = hash >> 4;
2837 		bit = hash & 0xf;
2838 
2839 		/* Set the corresponding bit in the hash table. */
2840 		mchash[slot] |= 1 << bit;
2841 
2842 		ETHER_NEXT_MULTI(step, enm);
2843 	}
2844 	sc->sc_rfcr |= RFCR_MHEN;
2845 	goto setit;
2846 
2847  allmulti:
2848 	ifp->if_flags |= IFF_ALLMULTI;
2849 	sc->sc_rfcr |= RFCR_AAM;
2850 
2851  setit:
2852 #define	FILTER_EMIT(addr, data)						\
2853 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
2854 	delay(1);							\
2855 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
2856 	delay(1)
2857 
2858 	/*
2859 	 * Disable receive filter, and program the node address.
2860 	 */
2861 	cp = LLADDR(ifp->if_sadl);
2862 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
2863 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
2864 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
2865 
2866 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2867 		/*
2868 		 * Program the multicast hash table.
2869 		 */
2870 		for (i = 0; i < MCHASH_NWORDS; i++) {
2871 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
2872 			    mchash[i]);
2873 		}
2874 	}
2875 #undef FILTER_EMIT
2876 #undef MCHASH_NWORDS
2877 
2878 	/*
2879 	 * Re-enable the receiver filter.
2880 	 */
2881 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2882 }
2883 
2884 #if defined(DP83820)
2885 /*
2886  * sip_dp83820_mii_readreg:	[mii interface function]
2887  *
2888  *	Read a PHY register on the MII of the DP83820.
2889  */
2890 int
2891 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
2892 {
2893 	struct sip_softc *sc = (void *) self;
2894 
2895 	if (sc->sc_cfg & CFG_TBI_EN) {
2896 		bus_addr_t tbireg;
2897 		int rv;
2898 
2899 		if (phy != 0)
2900 			return (0);
2901 
2902 		switch (reg) {
2903 		case MII_BMCR:		tbireg = SIP_TBICR; break;
2904 		case MII_BMSR:		tbireg = SIP_TBISR; break;
2905 		case MII_ANAR:		tbireg = SIP_TANAR; break;
2906 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
2907 		case MII_ANER:		tbireg = SIP_TANER; break;
2908 		case MII_EXTSR:
2909 			/*
2910 			 * Don't even bother reading the TESR register.
2911 			 * The manual documents that the device has
2912 			 * 1000baseX full/half capability, but the
2913 			 * register itself seems read back 0 on some
2914 			 * boards.  Just hard-code the result.
2915 			 */
2916 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
2917 
2918 		default:
2919 			return (0);
2920 		}
2921 
2922 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
2923 		if (tbireg == SIP_TBISR) {
2924 			/* LINK and ACOMP are switched! */
2925 			int val = rv;
2926 
2927 			rv = 0;
2928 			if (val & TBISR_MR_LINK_STATUS)
2929 				rv |= BMSR_LINK;
2930 			if (val & TBISR_MR_AN_COMPLETE)
2931 				rv |= BMSR_ACOMP;
2932 
2933 			/*
2934 			 * The manual claims this register reads back 0
2935 			 * on hard and soft reset.  But we want to let
2936 			 * the gentbi driver know that we support auto-
2937 			 * negotiation, so hard-code this bit in the
2938 			 * result.
2939 			 */
2940 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
2941 		}
2942 
2943 		return (rv);
2944 	}
2945 
2946 	return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2947 	    phy, reg));
2948 }
2949 
2950 /*
2951  * sip_dp83820_mii_writereg:	[mii interface function]
2952  *
2953  *	Write a PHY register on the MII of the DP83820.
2954  */
2955 void
2956 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
2957 {
2958 	struct sip_softc *sc = (void *) self;
2959 
2960 	if (sc->sc_cfg & CFG_TBI_EN) {
2961 		bus_addr_t tbireg;
2962 
2963 		if (phy != 0)
2964 			return;
2965 
2966 		switch (reg) {
2967 		case MII_BMCR:		tbireg = SIP_TBICR; break;
2968 		case MII_ANAR:		tbireg = SIP_TANAR; break;
2969 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
2970 		default:
2971 			return;
2972 		}
2973 
2974 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
2975 		return;
2976 	}
2977 
2978 	mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2979 	    phy, reg, val);
2980 }
2981 
2982 /*
2983  * sip_dp83815_mii_statchg:	[mii interface function]
2984  *
2985  *	Callback from MII layer when media changes.
2986  */
2987 void
2988 SIP_DECL(dp83820_mii_statchg)(struct device *self)
2989 {
2990 	struct sip_softc *sc = (struct sip_softc *) self;
2991 	u_int32_t cfg;
2992 
2993 	/*
2994 	 * Update TXCFG for full-duplex operation.
2995 	 */
2996 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2997 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2998 	else
2999 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3000 
3001 	/*
3002 	 * Update RXCFG for full-duplex or loopback.
3003 	 */
3004 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3005 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3006 		sc->sc_rxcfg |= RXCFG_ATX;
3007 	else
3008 		sc->sc_rxcfg &= ~RXCFG_ATX;
3009 
3010 	/*
3011 	 * Update CFG for MII/GMII.
3012 	 */
3013 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3014 		cfg = sc->sc_cfg | CFG_MODE_1000;
3015 	else
3016 		cfg = sc->sc_cfg;
3017 
3018 	/*
3019 	 * XXX 802.3x flow control.
3020 	 */
3021 
3022 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3023 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3024 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3025 }
3026 
3027 /*
3028  * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
3029  *
3030  *	Read the MII serial port for the MII bit-bang module.
3031  */
3032 u_int32_t
3033 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
3034 {
3035 	struct sip_softc *sc = (void *) self;
3036 
3037 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3038 }
3039 
3040 /*
3041  * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
3042  *
3043  *	Write the MII serial port for the MII bit-bang module.
3044  */
3045 void
3046 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
3047 {
3048 	struct sip_softc *sc = (void *) self;
3049 
3050 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3051 }
3052 #else /* ! DP83820 */
3053 /*
3054  * sip_sis900_mii_readreg:	[mii interface function]
3055  *
3056  *	Read a PHY register on the MII.
3057  */
3058 int
3059 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
3060 {
3061 	struct sip_softc *sc = (struct sip_softc *) self;
3062 	u_int32_t enphy;
3063 
3064 	/*
3065 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3066 	 * MII address 0.
3067 	 */
3068 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
3069 	    sc->sc_rev < SIS_REV_635 && phy != 0)
3070 		return (0);
3071 
3072 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3073 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3074 	    ENPHY_RWCMD | ENPHY_ACCESS);
3075 	do {
3076 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3077 	} while (enphy & ENPHY_ACCESS);
3078 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3079 }
3080 
3081 /*
3082  * sip_sis900_mii_writereg:	[mii interface function]
3083  *
3084  *	Write a PHY register on the MII.
3085  */
3086 void
3087 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
3088 {
3089 	struct sip_softc *sc = (struct sip_softc *) self;
3090 	u_int32_t enphy;
3091 
3092 	/*
3093 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3094 	 * MII address 0.
3095 	 */
3096 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
3097 	    sc->sc_rev < SIS_REV_635 && phy != 0)
3098 		return;
3099 
3100 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3101 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3102 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3103 	do {
3104 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3105 	} while (enphy & ENPHY_ACCESS);
3106 }
3107 
3108 /*
3109  * sip_sis900_mii_statchg:	[mii interface function]
3110  *
3111  *	Callback from MII layer when media changes.
3112  */
3113 void
3114 SIP_DECL(sis900_mii_statchg)(struct device *self)
3115 {
3116 	struct sip_softc *sc = (struct sip_softc *) self;
3117 	u_int32_t flowctl;
3118 
3119 	/*
3120 	 * Update TXCFG for full-duplex operation.
3121 	 */
3122 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3123 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3124 	else
3125 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3126 
3127 	/*
3128 	 * Update RXCFG for full-duplex or loopback.
3129 	 */
3130 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3131 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3132 		sc->sc_rxcfg |= RXCFG_ATX;
3133 	else
3134 		sc->sc_rxcfg &= ~RXCFG_ATX;
3135 
3136 	/*
3137 	 * Update IMR for use of 802.3x flow control.
3138 	 */
3139 	if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
3140 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3141 		flowctl = FLOWCTL_FLOWEN;
3142 	} else {
3143 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3144 		flowctl = 0;
3145 	}
3146 
3147 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3148 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3149 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3150 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3151 }
3152 
3153 /*
3154  * sip_dp83815_mii_readreg:	[mii interface function]
3155  *
3156  *	Read a PHY register on the MII.
3157  */
3158 int
3159 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
3160 {
3161 	struct sip_softc *sc = (struct sip_softc *) self;
3162 	u_int32_t val;
3163 
3164 	/*
3165 	 * The DP83815 only has an internal PHY.  Only allow
3166 	 * MII address 0.
3167 	 */
3168 	if (phy != 0)
3169 		return (0);
3170 
3171 	/*
3172 	 * Apparently, after a reset, the DP83815 can take a while
3173 	 * to respond.  During this recovery period, the BMSR returns
3174 	 * a value of 0.  Catch this -- it's not supposed to happen
3175 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3176 	 * PHY to come back to life.
3177 	 *
3178 	 * This works out because the BMSR is the first register
3179 	 * read during the PHY probe process.
3180 	 */
3181 	do {
3182 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3183 	} while (reg == MII_BMSR && val == 0);
3184 
3185 	return (val & 0xffff);
3186 }
3187 
3188 /*
3189  * sip_dp83815_mii_writereg:	[mii interface function]
3190  *
3191  *	Write a PHY register to the MII.
3192  */
3193 void
3194 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
3195 {
3196 	struct sip_softc *sc = (struct sip_softc *) self;
3197 
3198 	/*
3199 	 * The DP83815 only has an internal PHY.  Only allow
3200 	 * MII address 0.
3201 	 */
3202 	if (phy != 0)
3203 		return;
3204 
3205 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3206 }
3207 
3208 /*
3209  * sip_dp83815_mii_statchg:	[mii interface function]
3210  *
3211  *	Callback from MII layer when media changes.
3212  */
3213 void
3214 SIP_DECL(dp83815_mii_statchg)(struct device *self)
3215 {
3216 	struct sip_softc *sc = (struct sip_softc *) self;
3217 
3218 	/*
3219 	 * Update TXCFG for full-duplex operation.
3220 	 */
3221 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3222 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3223 	else
3224 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3225 
3226 	/*
3227 	 * Update RXCFG for full-duplex or loopback.
3228 	 */
3229 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3230 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3231 		sc->sc_rxcfg |= RXCFG_ATX;
3232 	else
3233 		sc->sc_rxcfg &= ~RXCFG_ATX;
3234 
3235 	/*
3236 	 * XXX 802.3x flow control.
3237 	 */
3238 
3239 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3240 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3241 
3242 	/*
3243 	 * Some DP83815s experience problems when used with short
3244 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
3245 	 * sequence adjusts the DSP's signal attenuation to fix the
3246 	 * problem.
3247 	 */
3248 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3249 		uint32_t reg;
3250 
3251 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3252 
3253 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3254 		reg &= 0x0fff;
3255 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3256 		delay(100);
3257 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3258 		reg &= 0x00ff;
3259 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3260 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3261 			    0x00e8);
3262 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3263 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3264 			    reg | 0x20);
3265 		}
3266 
3267 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3268 	}
3269 }
3270 #endif /* DP83820 */
3271 
3272 #if defined(DP83820)
3273 void
3274 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
3275     const struct pci_attach_args *pa, u_int8_t *enaddr)
3276 {
3277 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3278 	u_int8_t cksum, *e, match;
3279 	int i;
3280 
3281 	/*
3282 	 * EEPROM data format for the DP83820 can be found in
3283 	 * the DP83820 manual, section 4.2.4.
3284 	 */
3285 
3286 	SIP_DECL(read_eeprom)(sc, 0,
3287 	    sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
3288 
3289 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3290 	match = ~(match - 1);
3291 
3292 	cksum = 0x55;
3293 	e = (u_int8_t *) eeprom_data;
3294 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3295 		cksum += *e++;
3296 
3297 	if (cksum != match)
3298 		printf("%s: Checksum (%x) mismatch (%x)",
3299 		    sc->sc_dev.dv_xname, cksum, match);
3300 
3301 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3302 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3303 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3304 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3305 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3306 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3307 }
3308 #else /* ! DP83820 */
3309 void
3310 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
3311     const struct pci_attach_args *pa, u_int8_t *enaddr)
3312 {
3313 	u_int16_t myea[ETHER_ADDR_LEN / 2];
3314 
3315 	switch (sc->sc_rev) {
3316 	case SIS_REV_630S:
3317 	case SIS_REV_630E:
3318 	case SIS_REV_630EA1:
3319 	case SIS_REV_630ET:
3320 	case SIS_REV_635:
3321 		/*
3322 		 * The MAC address for the on-board Ethernet of
3323 		 * the SiS 630 chipset is in the NVRAM.  Kick
3324 		 * the chip into re-loading it from NVRAM, and
3325 		 * read the MAC address out of the filter registers.
3326 		 */
3327 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3328 
3329 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3330 		    RFCR_RFADDR_NODE0);
3331 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3332 		    0xffff;
3333 
3334 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3335 		    RFCR_RFADDR_NODE2);
3336 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3337 		    0xffff;
3338 
3339 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3340 		    RFCR_RFADDR_NODE4);
3341 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3342 		    0xffff;
3343 		break;
3344 
3345 	default:
3346 		SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3347 		    sizeof(myea) / sizeof(myea[0]), myea);
3348 	}
3349 
3350 	enaddr[0] = myea[0] & 0xff;
3351 	enaddr[1] = myea[0] >> 8;
3352 	enaddr[2] = myea[1] & 0xff;
3353 	enaddr[3] = myea[1] >> 8;
3354 	enaddr[4] = myea[2] & 0xff;
3355 	enaddr[5] = myea[2] >> 8;
3356 }
3357 
3358 /* Table and macro to bit-reverse an octet. */
3359 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3360 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3361 
3362 void
3363 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3364     const struct pci_attach_args *pa, u_int8_t *enaddr)
3365 {
3366 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3367 	u_int8_t cksum, *e, match;
3368 	int i;
3369 
3370 	SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3371 	    sizeof(eeprom_data[0]), eeprom_data);
3372 
3373 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3374 	match = ~(match - 1);
3375 
3376 	cksum = 0x55;
3377 	e = (u_int8_t *) eeprom_data;
3378 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3379 		cksum += *e++;
3380 	}
3381 	if (cksum != match) {
3382 		printf("%s: Checksum (%x) mismatch (%x)",
3383 		    sc->sc_dev.dv_xname, cksum, match);
3384 	}
3385 
3386 	/*
3387 	 * Unrolled because it makes slightly more sense this way.
3388 	 * The DP83815 stores the MAC address in bit 0 of word 6
3389 	 * through bit 15 of word 8.
3390 	 */
3391 	ea = &eeprom_data[6];
3392 	enaddr[0] = ((*ea & 0x1) << 7);
3393 	ea++;
3394 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
3395 	enaddr[1] = ((*ea & 0x1FE) >> 1);
3396 	enaddr[2] = ((*ea & 0x1) << 7);
3397 	ea++;
3398 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
3399 	enaddr[3] = ((*ea & 0x1FE) >> 1);
3400 	enaddr[4] = ((*ea & 0x1) << 7);
3401 	ea++;
3402 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
3403 	enaddr[5] = ((*ea & 0x1FE) >> 1);
3404 
3405 	/*
3406 	 * In case that's not weird enough, we also need to reverse
3407 	 * the bits in each byte.  This all actually makes more sense
3408 	 * if you think about the EEPROM storage as an array of bits
3409 	 * being shifted into bytes, but that's not how we're looking
3410 	 * at it here...
3411 	 */
3412 	for (i = 0; i < 6 ;i++)
3413 		enaddr[i] = bbr(enaddr[i]);
3414 }
3415 #endif /* DP83820 */
3416 
3417 /*
3418  * sip_mediastatus:	[ifmedia interface function]
3419  *
3420  *	Get the current interface media status.
3421  */
3422 void
3423 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3424 {
3425 	struct sip_softc *sc = ifp->if_softc;
3426 
3427 	mii_pollstat(&sc->sc_mii);
3428 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
3429 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
3430 }
3431 
3432 /*
3433  * sip_mediachange:	[ifmedia interface function]
3434  *
3435  *	Set hardware to newly-selected media.
3436  */
3437 int
3438 SIP_DECL(mediachange)(struct ifnet *ifp)
3439 {
3440 	struct sip_softc *sc = ifp->if_softc;
3441 
3442 	if (ifp->if_flags & IFF_UP)
3443 		mii_mediachg(&sc->sc_mii);
3444 	return (0);
3445 }
3446