1 /* $NetBSD: if_sip.c,v 1.163 2016/07/14 10:19:06 msaitoh Exp $ */ 2 3 /*- 4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /*- 33 * Copyright (c) 1999 Network Computer, Inc. 34 * All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. Neither the name of Network Computer, Inc. nor the names of its 45 * contributors may be used to endorse or promote products derived 46 * from this software without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS 49 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 50 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 51 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 52 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 53 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 54 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 55 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 56 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 57 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 58 * POSSIBILITY OF SUCH DAMAGE. 59 */ 60 61 /* 62 * Device driver for the Silicon Integrated Systems SiS 900, 63 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and 64 * National Semiconductor DP83820 10/100/1000 PCI Ethernet 65 * controllers. 66 * 67 * Originally written to support the SiS 900 by Jason R. Thorpe for 68 * Network Computer, Inc. 69 * 70 * TODO: 71 * 72 * - Reduce the Rx interrupt load. 73 */ 74 75 #include <sys/cdefs.h> 76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.163 2016/07/14 10:19:06 msaitoh Exp $"); 77 78 79 80 #include <sys/param.h> 81 #include <sys/systm.h> 82 #include <sys/callout.h> 83 #include <sys/mbuf.h> 84 #include <sys/malloc.h> 85 #include <sys/kernel.h> 86 #include <sys/socket.h> 87 #include <sys/ioctl.h> 88 #include <sys/errno.h> 89 #include <sys/device.h> 90 #include <sys/queue.h> 91 92 #include <sys/rndsource.h> 93 94 #include <net/if.h> 95 #include <net/if_dl.h> 96 #include <net/if_media.h> 97 #include <net/if_ether.h> 98 99 #include <net/bpf.h> 100 101 #include <sys/bus.h> 102 #include <sys/intr.h> 103 #include <machine/endian.h> 104 105 #include <dev/mii/mii.h> 106 #include <dev/mii/miivar.h> 107 #include <dev/mii/mii_bitbang.h> 108 109 #include <dev/pci/pcireg.h> 110 #include <dev/pci/pcivar.h> 111 #include <dev/pci/pcidevs.h> 112 113 #include <dev/pci/if_sipreg.h> 114 115 /* 116 * Transmit descriptor list size. This is arbitrary, but allocate 117 * enough descriptors for 128 pending transmissions, and 8 segments 118 * per packet (64 for DP83820 for jumbo frames). 119 * 120 * This MUST work out to a power of 2. 121 */ 122 #define GSIP_NTXSEGS_ALLOC 16 123 #define SIP_NTXSEGS_ALLOC 8 124 125 #define SIP_TXQUEUELEN 256 126 #define MAX_SIP_NTXDESC \ 127 (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC)) 128 129 /* 130 * Receive descriptor list size. We have one Rx buffer per incoming 131 * packet, so this logic is a little simpler. 132 * 133 * Actually, on the DP83820, we allow the packet to consume more than 134 * one buffer, in order to support jumbo Ethernet frames. In that 135 * case, a packet may consume up to 5 buffers (assuming a 2048 byte 136 * mbuf cluster). 256 receive buffers is only 51 maximum size packets, 137 * so we'd better be quick about handling receive interrupts. 138 */ 139 #define GSIP_NRXDESC 256 140 #define SIP_NRXDESC 128 141 142 #define MAX_SIP_NRXDESC MAX(GSIP_NRXDESC, SIP_NRXDESC) 143 144 /* 145 * Control structures are DMA'd to the SiS900 chip. We allocate them in 146 * a single clump that maps to a single DMA segment to make several things 147 * easier. 148 */ 149 struct sip_control_data { 150 /* 151 * The transmit descriptors. 152 */ 153 struct sip_desc scd_txdescs[MAX_SIP_NTXDESC]; 154 155 /* 156 * The receive descriptors. 157 */ 158 struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC]; 159 }; 160 161 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x) 162 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)]) 163 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)]) 164 165 /* 166 * Software state for transmit jobs. 167 */ 168 struct sip_txsoft { 169 struct mbuf *txs_mbuf; /* head of our mbuf chain */ 170 bus_dmamap_t txs_dmamap; /* our DMA map */ 171 int txs_firstdesc; /* first descriptor in packet */ 172 int txs_lastdesc; /* last descriptor in packet */ 173 SIMPLEQ_ENTRY(sip_txsoft) txs_q; 174 }; 175 176 SIMPLEQ_HEAD(sip_txsq, sip_txsoft); 177 178 /* 179 * Software state for receive jobs. 180 */ 181 struct sip_rxsoft { 182 struct mbuf *rxs_mbuf; /* head of our mbuf chain */ 183 bus_dmamap_t rxs_dmamap; /* our DMA map */ 184 }; 185 186 enum sip_attach_stage { 187 SIP_ATTACH_FIN = 0 188 , SIP_ATTACH_CREATE_RXMAP 189 , SIP_ATTACH_CREATE_TXMAP 190 , SIP_ATTACH_LOAD_MAP 191 , SIP_ATTACH_CREATE_MAP 192 , SIP_ATTACH_MAP_MEM 193 , SIP_ATTACH_ALLOC_MEM 194 , SIP_ATTACH_INTR 195 , SIP_ATTACH_MAP 196 }; 197 198 /* 199 * Software state per device. 200 */ 201 struct sip_softc { 202 device_t sc_dev; /* generic device information */ 203 device_suspensor_t sc_suspensor; 204 pmf_qual_t sc_qual; 205 206 bus_space_tag_t sc_st; /* bus space tag */ 207 bus_space_handle_t sc_sh; /* bus space handle */ 208 bus_size_t sc_sz; /* bus space size */ 209 bus_dma_tag_t sc_dmat; /* bus DMA tag */ 210 pci_chipset_tag_t sc_pc; 211 bus_dma_segment_t sc_seg; 212 struct ethercom sc_ethercom; /* ethernet common data */ 213 214 const struct sip_product *sc_model; /* which model are we? */ 215 int sc_gigabit; /* 1: 83820, 0: other */ 216 int sc_rev; /* chip revision */ 217 218 void *sc_ih; /* interrupt cookie */ 219 220 struct mii_data sc_mii; /* MII/media information */ 221 222 callout_t sc_tick_ch; /* tick callout */ 223 224 bus_dmamap_t sc_cddmamap; /* control data DMA map */ 225 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr 226 227 /* 228 * Software state for transmit and receive descriptors. 229 */ 230 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN]; 231 struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC]; 232 233 /* 234 * Control data structures. 235 */ 236 struct sip_control_data *sc_control_data; 237 #define sc_txdescs sc_control_data->scd_txdescs 238 #define sc_rxdescs sc_control_data->scd_rxdescs 239 240 #ifdef SIP_EVENT_COUNTERS 241 /* 242 * Event counters. 243 */ 244 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */ 245 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */ 246 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */ 247 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */ 248 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */ 249 struct evcnt sc_ev_rxintr; /* Rx interrupts */ 250 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */ 251 struct evcnt sc_ev_rxpause; /* PAUSE received */ 252 /* DP83820 only */ 253 struct evcnt sc_ev_txpause; /* PAUSE transmitted */ 254 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */ 255 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */ 256 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */ 257 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */ 258 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */ 259 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */ 260 #endif /* SIP_EVENT_COUNTERS */ 261 262 u_int32_t sc_txcfg; /* prototype TXCFG register */ 263 u_int32_t sc_rxcfg; /* prototype RXCFG register */ 264 u_int32_t sc_imr; /* prototype IMR register */ 265 u_int32_t sc_rfcr; /* prototype RFCR register */ 266 267 u_int32_t sc_cfg; /* prototype CFG register */ 268 269 u_int32_t sc_gpior; /* prototype GPIOR register */ 270 271 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */ 272 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */ 273 274 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */ 275 276 int sc_flowflags; /* 802.3x flow control flags */ 277 int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */ 278 int sc_paused; /* paused indication */ 279 280 int sc_txfree; /* number of free Tx descriptors */ 281 int sc_txnext; /* next ready Tx descriptor */ 282 int sc_txwin; /* Tx descriptors since last intr */ 283 284 struct sip_txsq sc_txfreeq; /* free Tx descsofts */ 285 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */ 286 287 /* values of interface state at last init */ 288 struct { 289 /* if_capenable */ 290 uint64_t if_capenable; 291 /* ec_capenable */ 292 int ec_capenable; 293 /* VLAN_ATTACHED */ 294 int is_vlan; 295 } sc_prev; 296 297 short sc_if_flags; 298 299 int sc_rxptr; /* next ready Rx descriptor/descsoft */ 300 int sc_rxdiscard; 301 int sc_rxlen; 302 struct mbuf *sc_rxhead; 303 struct mbuf *sc_rxtail; 304 struct mbuf **sc_rxtailp; 305 306 int sc_ntxdesc; 307 int sc_ntxdesc_mask; 308 309 int sc_nrxdesc_mask; 310 311 const struct sip_parm { 312 const struct sip_regs { 313 int r_rxcfg; 314 int r_txcfg; 315 } p_regs; 316 317 const struct sip_bits { 318 uint32_t b_txcfg_mxdma_8; 319 uint32_t b_txcfg_mxdma_16; 320 uint32_t b_txcfg_mxdma_32; 321 uint32_t b_txcfg_mxdma_64; 322 uint32_t b_txcfg_mxdma_128; 323 uint32_t b_txcfg_mxdma_256; 324 uint32_t b_txcfg_mxdma_512; 325 uint32_t b_txcfg_flth_mask; 326 uint32_t b_txcfg_drth_mask; 327 328 uint32_t b_rxcfg_mxdma_8; 329 uint32_t b_rxcfg_mxdma_16; 330 uint32_t b_rxcfg_mxdma_32; 331 uint32_t b_rxcfg_mxdma_64; 332 uint32_t b_rxcfg_mxdma_128; 333 uint32_t b_rxcfg_mxdma_256; 334 uint32_t b_rxcfg_mxdma_512; 335 336 uint32_t b_isr_txrcmp; 337 uint32_t b_isr_rxrcmp; 338 uint32_t b_isr_dperr; 339 uint32_t b_isr_sserr; 340 uint32_t b_isr_rmabt; 341 uint32_t b_isr_rtabt; 342 343 uint32_t b_cmdsts_size_mask; 344 } p_bits; 345 int p_filtmem; 346 int p_rxbuf_len; 347 bus_size_t p_tx_dmamap_size; 348 int p_ntxsegs; 349 int p_ntxsegs_alloc; 350 int p_nrxdesc; 351 } *sc_parm; 352 353 void (*sc_rxintr)(struct sip_softc *); 354 355 krndsource_t rnd_source; /* random source */ 356 }; 357 358 #define sc_bits sc_parm->p_bits 359 #define sc_regs sc_parm->p_regs 360 361 static const struct sip_parm sip_parm = { 362 .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM 363 , .p_rxbuf_len = MCLBYTES - 1 /* field width */ 364 , .p_tx_dmamap_size = MCLBYTES 365 , .p_ntxsegs = 16 366 , .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC 367 , .p_nrxdesc = SIP_NRXDESC 368 , .p_bits = { 369 .b_txcfg_mxdma_8 = 0x00200000 /* 8 bytes */ 370 , .b_txcfg_mxdma_16 = 0x00300000 /* 16 bytes */ 371 , .b_txcfg_mxdma_32 = 0x00400000 /* 32 bytes */ 372 , .b_txcfg_mxdma_64 = 0x00500000 /* 64 bytes */ 373 , .b_txcfg_mxdma_128 = 0x00600000 /* 128 bytes */ 374 , .b_txcfg_mxdma_256 = 0x00700000 /* 256 bytes */ 375 , .b_txcfg_mxdma_512 = 0x00000000 /* 512 bytes */ 376 , .b_txcfg_flth_mask = 0x00003f00 /* Tx fill threshold */ 377 , .b_txcfg_drth_mask = 0x0000003f /* Tx drain threshold */ 378 379 , .b_rxcfg_mxdma_8 = 0x00200000 /* 8 bytes */ 380 , .b_rxcfg_mxdma_16 = 0x00300000 /* 16 bytes */ 381 , .b_rxcfg_mxdma_32 = 0x00400000 /* 32 bytes */ 382 , .b_rxcfg_mxdma_64 = 0x00500000 /* 64 bytes */ 383 , .b_rxcfg_mxdma_128 = 0x00600000 /* 128 bytes */ 384 , .b_rxcfg_mxdma_256 = 0x00700000 /* 256 bytes */ 385 , .b_rxcfg_mxdma_512 = 0x00000000 /* 512 bytes */ 386 387 , .b_isr_txrcmp = 0x02000000 /* transmit reset complete */ 388 , .b_isr_rxrcmp = 0x01000000 /* receive reset complete */ 389 , .b_isr_dperr = 0x00800000 /* detected parity error */ 390 , .b_isr_sserr = 0x00400000 /* signalled system error */ 391 , .b_isr_rmabt = 0x00200000 /* received master abort */ 392 , .b_isr_rtabt = 0x00100000 /* received target abort */ 393 , .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK 394 } 395 , .p_regs = { 396 .r_rxcfg = OTHER_SIP_RXCFG, 397 .r_txcfg = OTHER_SIP_TXCFG 398 } 399 }, gsip_parm = { 400 .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM 401 , .p_rxbuf_len = MCLBYTES - 8 402 , .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO 403 , .p_ntxsegs = 64 404 , .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC 405 , .p_nrxdesc = GSIP_NRXDESC 406 , .p_bits = { 407 .b_txcfg_mxdma_8 = 0x00100000 /* 8 bytes */ 408 , .b_txcfg_mxdma_16 = 0x00200000 /* 16 bytes */ 409 , .b_txcfg_mxdma_32 = 0x00300000 /* 32 bytes */ 410 , .b_txcfg_mxdma_64 = 0x00400000 /* 64 bytes */ 411 , .b_txcfg_mxdma_128 = 0x00500000 /* 128 bytes */ 412 , .b_txcfg_mxdma_256 = 0x00600000 /* 256 bytes */ 413 , .b_txcfg_mxdma_512 = 0x00700000 /* 512 bytes */ 414 , .b_txcfg_flth_mask = 0x0000ff00 /* Fx fill threshold */ 415 , .b_txcfg_drth_mask = 0x000000ff /* Tx drain threshold */ 416 417 , .b_rxcfg_mxdma_8 = 0x00100000 /* 8 bytes */ 418 , .b_rxcfg_mxdma_16 = 0x00200000 /* 16 bytes */ 419 , .b_rxcfg_mxdma_32 = 0x00300000 /* 32 bytes */ 420 , .b_rxcfg_mxdma_64 = 0x00400000 /* 64 bytes */ 421 , .b_rxcfg_mxdma_128 = 0x00500000 /* 128 bytes */ 422 , .b_rxcfg_mxdma_256 = 0x00600000 /* 256 bytes */ 423 , .b_rxcfg_mxdma_512 = 0x00700000 /* 512 bytes */ 424 425 , .b_isr_txrcmp = 0x00400000 /* transmit reset complete */ 426 , .b_isr_rxrcmp = 0x00200000 /* receive reset complete */ 427 , .b_isr_dperr = 0x00100000 /* detected parity error */ 428 , .b_isr_sserr = 0x00080000 /* signalled system error */ 429 , .b_isr_rmabt = 0x00040000 /* received master abort */ 430 , .b_isr_rtabt = 0x00020000 /* received target abort */ 431 , .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK 432 } 433 , .p_regs = { 434 .r_rxcfg = DP83820_SIP_RXCFG, 435 .r_txcfg = DP83820_SIP_TXCFG 436 } 437 }; 438 439 static inline int 440 sip_nexttx(const struct sip_softc *sc, int x) 441 { 442 return (x + 1) & sc->sc_ntxdesc_mask; 443 } 444 445 static inline int 446 sip_nextrx(const struct sip_softc *sc, int x) 447 { 448 return (x + 1) & sc->sc_nrxdesc_mask; 449 } 450 451 /* 83820 only */ 452 static inline void 453 sip_rxchain_reset(struct sip_softc *sc) 454 { 455 sc->sc_rxtailp = &sc->sc_rxhead; 456 *sc->sc_rxtailp = NULL; 457 sc->sc_rxlen = 0; 458 } 459 460 /* 83820 only */ 461 static inline void 462 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m) 463 { 464 *sc->sc_rxtailp = sc->sc_rxtail = m; 465 sc->sc_rxtailp = &m->m_next; 466 } 467 468 #ifdef SIP_EVENT_COUNTERS 469 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++ 470 #else 471 #define SIP_EVCNT_INCR(ev) /* nothing */ 472 #endif 473 474 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x))) 475 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x))) 476 477 static inline void 478 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops) 479 { 480 int x, n; 481 482 x = x0; 483 n = n0; 484 485 /* If it will wrap around, sync to the end of the ring. */ 486 if (x + n > sc->sc_ntxdesc) { 487 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap, 488 SIP_CDTXOFF(x), sizeof(struct sip_desc) * 489 (sc->sc_ntxdesc - x), ops); 490 n -= (sc->sc_ntxdesc - x); 491 x = 0; 492 } 493 494 /* Now sync whatever is left. */ 495 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap, 496 SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops); 497 } 498 499 static inline void 500 sip_cdrxsync(struct sip_softc *sc, int x, int ops) 501 { 502 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap, 503 SIP_CDRXOFF(x), sizeof(struct sip_desc), ops); 504 } 505 506 #if 0 507 #ifdef DP83820 508 u_int32_t sipd_bufptr; /* pointer to DMA segment */ 509 u_int32_t sipd_cmdsts; /* command/status word */ 510 #else 511 u_int32_t sipd_cmdsts; /* command/status word */ 512 u_int32_t sipd_bufptr; /* pointer to DMA segment */ 513 #endif /* DP83820 */ 514 #endif /* 0 */ 515 516 static inline volatile uint32_t * 517 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd) 518 { 519 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0]; 520 } 521 522 static inline volatile uint32_t * 523 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd) 524 { 525 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1]; 526 } 527 528 static inline void 529 sip_init_rxdesc(struct sip_softc *sc, int x) 530 { 531 struct sip_rxsoft *rxs = &sc->sc_rxsoft[x]; 532 struct sip_desc *sipd = &sc->sc_rxdescs[x]; 533 534 sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x))); 535 *sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr); 536 *sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR | 537 (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask)); 538 sipd->sipd_extsts = 0; 539 sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 540 } 541 542 #define SIP_CHIP_VERS(sc, v, p, r) \ 543 ((sc)->sc_model->sip_vendor == (v) && \ 544 (sc)->sc_model->sip_product == (p) && \ 545 (sc)->sc_rev == (r)) 546 547 #define SIP_CHIP_MODEL(sc, v, p) \ 548 ((sc)->sc_model->sip_vendor == (v) && \ 549 (sc)->sc_model->sip_product == (p)) 550 551 #define SIP_SIS900_REV(sc, rev) \ 552 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev)) 553 554 #define SIP_TIMEOUT 1000 555 556 static int sip_ifflags_cb(struct ethercom *); 557 static void sipcom_start(struct ifnet *); 558 static void sipcom_watchdog(struct ifnet *); 559 static int sipcom_ioctl(struct ifnet *, u_long, void *); 560 static int sipcom_init(struct ifnet *); 561 static void sipcom_stop(struct ifnet *, int); 562 563 static bool sipcom_reset(struct sip_softc *); 564 static void sipcom_rxdrain(struct sip_softc *); 565 static int sipcom_add_rxbuf(struct sip_softc *, int); 566 static void sipcom_read_eeprom(struct sip_softc *, int, int, 567 u_int16_t *); 568 static void sipcom_tick(void *); 569 570 static void sipcom_sis900_set_filter(struct sip_softc *); 571 static void sipcom_dp83815_set_filter(struct sip_softc *); 572 573 static void sipcom_dp83820_read_macaddr(struct sip_softc *, 574 const struct pci_attach_args *, u_int8_t *); 575 static void sipcom_sis900_eeprom_delay(struct sip_softc *sc); 576 static void sipcom_sis900_read_macaddr(struct sip_softc *, 577 const struct pci_attach_args *, u_int8_t *); 578 static void sipcom_dp83815_read_macaddr(struct sip_softc *, 579 const struct pci_attach_args *, u_int8_t *); 580 581 static int sipcom_intr(void *); 582 static void sipcom_txintr(struct sip_softc *); 583 static void sip_rxintr(struct sip_softc *); 584 static void gsip_rxintr(struct sip_softc *); 585 586 static int sipcom_dp83820_mii_readreg(device_t, int, int); 587 static void sipcom_dp83820_mii_writereg(device_t, int, int, int); 588 static void sipcom_dp83820_mii_statchg(struct ifnet *); 589 590 static int sipcom_sis900_mii_readreg(device_t, int, int); 591 static void sipcom_sis900_mii_writereg(device_t, int, int, int); 592 static void sipcom_sis900_mii_statchg(struct ifnet *); 593 594 static int sipcom_dp83815_mii_readreg(device_t, int, int); 595 static void sipcom_dp83815_mii_writereg(device_t, int, int, int); 596 static void sipcom_dp83815_mii_statchg(struct ifnet *); 597 598 static void sipcom_mediastatus(struct ifnet *, struct ifmediareq *); 599 600 static int sipcom_match(device_t, cfdata_t, void *); 601 static void sipcom_attach(device_t, device_t, void *); 602 static void sipcom_do_detach(device_t, enum sip_attach_stage); 603 static int sipcom_detach(device_t, int); 604 static bool sipcom_resume(device_t, const pmf_qual_t *); 605 static bool sipcom_suspend(device_t, const pmf_qual_t *); 606 607 int gsip_copy_small = 0; 608 int sip_copy_small = 0; 609 610 CFATTACH_DECL3_NEW(gsip, sizeof(struct sip_softc), 611 sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL, 612 DVF_DETACH_SHUTDOWN); 613 CFATTACH_DECL3_NEW(sip, sizeof(struct sip_softc), 614 sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL, 615 DVF_DETACH_SHUTDOWN); 616 617 /* 618 * Descriptions of the variants of the SiS900. 619 */ 620 struct sip_variant { 621 int (*sipv_mii_readreg)(device_t, int, int); 622 void (*sipv_mii_writereg)(device_t, int, int, int); 623 void (*sipv_mii_statchg)(struct ifnet *); 624 void (*sipv_set_filter)(struct sip_softc *); 625 void (*sipv_read_macaddr)(struct sip_softc *, 626 const struct pci_attach_args *, u_int8_t *); 627 }; 628 629 static u_int32_t sipcom_mii_bitbang_read(device_t); 630 static void sipcom_mii_bitbang_write(device_t, u_int32_t); 631 632 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = { 633 sipcom_mii_bitbang_read, 634 sipcom_mii_bitbang_write, 635 { 636 EROMAR_MDIO, /* MII_BIT_MDO */ 637 EROMAR_MDIO, /* MII_BIT_MDI */ 638 EROMAR_MDC, /* MII_BIT_MDC */ 639 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */ 640 0, /* MII_BIT_DIR_PHY_HOST */ 641 } 642 }; 643 644 static const struct sip_variant sipcom_variant_dp83820 = { 645 sipcom_dp83820_mii_readreg, 646 sipcom_dp83820_mii_writereg, 647 sipcom_dp83820_mii_statchg, 648 sipcom_dp83815_set_filter, 649 sipcom_dp83820_read_macaddr, 650 }; 651 652 static const struct sip_variant sipcom_variant_sis900 = { 653 sipcom_sis900_mii_readreg, 654 sipcom_sis900_mii_writereg, 655 sipcom_sis900_mii_statchg, 656 sipcom_sis900_set_filter, 657 sipcom_sis900_read_macaddr, 658 }; 659 660 static const struct sip_variant sipcom_variant_dp83815 = { 661 sipcom_dp83815_mii_readreg, 662 sipcom_dp83815_mii_writereg, 663 sipcom_dp83815_mii_statchg, 664 sipcom_dp83815_set_filter, 665 sipcom_dp83815_read_macaddr, 666 }; 667 668 669 /* 670 * Devices supported by this driver. 671 */ 672 static const struct sip_product { 673 pci_vendor_id_t sip_vendor; 674 pci_product_id_t sip_product; 675 const char *sip_name; 676 const struct sip_variant *sip_variant; 677 int sip_gigabit; 678 } sipcom_products[] = { 679 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820, 680 "NatSemi DP83820 Gigabit Ethernet", 681 &sipcom_variant_dp83820, 1 }, 682 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, 683 "SiS 900 10/100 Ethernet", 684 &sipcom_variant_sis900, 0 }, 685 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016, 686 "SiS 7016 10/100 Ethernet", 687 &sipcom_variant_sis900, 0 }, 688 689 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815, 690 "NatSemi DP83815 10/100 Ethernet", 691 &sipcom_variant_dp83815, 0 }, 692 693 { 0, 0, 694 NULL, 695 NULL, 0 }, 696 }; 697 698 static const struct sip_product * 699 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit) 700 { 701 const struct sip_product *sip; 702 703 for (sip = sipcom_products; sip->sip_name != NULL; sip++) { 704 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor && 705 PCI_PRODUCT(pa->pa_id) == sip->sip_product && 706 sip->sip_gigabit == gigabit) 707 return sip; 708 } 709 return NULL; 710 } 711 712 /* 713 * I really hate stupid hardware vendors. There's a bit in the EEPROM 714 * which indicates if the card can do 64-bit data transfers. Unfortunately, 715 * several vendors of 32-bit cards fail to clear this bit in the EEPROM, 716 * which means we try to use 64-bit data transfers on those cards if we 717 * happen to be plugged into a 32-bit slot. 718 * 719 * What we do is use this table of cards known to be 64-bit cards. If 720 * you have a 64-bit card who's subsystem ID is not listed in this table, 721 * send the output of "pcictl dump ..." of the device to me so that your 722 * card will use the 64-bit data path when plugged into a 64-bit slot. 723 * 724 * -- Jason R. Thorpe <thorpej@NetBSD.org> 725 * June 30, 2002 726 */ 727 static int 728 sipcom_check_64bit(const struct pci_attach_args *pa) 729 { 730 static const struct { 731 pci_vendor_id_t c64_vendor; 732 pci_product_id_t c64_product; 733 } card64[] = { 734 /* Asante GigaNIX */ 735 { 0x128a, 0x0002 }, 736 737 /* Accton EN1407-T, Planex GN-1000TE */ 738 { 0x1113, 0x1407 }, 739 740 /* Netgear GA621 */ 741 { 0x1385, 0x621a }, 742 743 /* Netgear GA622 */ 744 { 0x1385, 0x622a }, 745 746 /* SMC EZ Card 1000 (9462TX) */ 747 { 0x10b8, 0x9462 }, 748 749 { 0, 0} 750 }; 751 pcireg_t subsys; 752 int i; 753 754 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG); 755 756 for (i = 0; card64[i].c64_vendor != 0; i++) { 757 if (PCI_VENDOR(subsys) == card64[i].c64_vendor && 758 PCI_PRODUCT(subsys) == card64[i].c64_product) 759 return (1); 760 } 761 762 return (0); 763 } 764 765 static int 766 sipcom_match(device_t parent, cfdata_t cf, void *aux) 767 { 768 struct pci_attach_args *pa = aux; 769 770 if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL) 771 return 1; 772 773 return 0; 774 } 775 776 static void 777 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa) 778 { 779 u_int32_t reg; 780 int i; 781 782 /* 783 * Cause the chip to load configuration data from the EEPROM. 784 */ 785 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN); 786 for (i = 0; i < 10000; i++) { 787 delay(10); 788 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) & 789 PTSCR_EELOAD_EN) == 0) 790 break; 791 } 792 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) & 793 PTSCR_EELOAD_EN) { 794 printf("%s: timeout loading configuration from EEPROM\n", 795 device_xname(sc->sc_dev)); 796 return; 797 } 798 799 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR); 800 801 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG); 802 if (reg & CFG_PCI64_DET) { 803 printf("%s: 64-bit PCI slot detected", device_xname(sc->sc_dev)); 804 /* 805 * Check to see if this card is 64-bit. If so, enable 64-bit 806 * data transfers. 807 * 808 * We can't use the DATA64_EN bit in the EEPROM, because 809 * vendors of 32-bit cards fail to clear that bit in many 810 * cases (yet the card still detects that it's in a 64-bit 811 * slot; go figure). 812 */ 813 if (sipcom_check_64bit(pa)) { 814 sc->sc_cfg |= CFG_DATA64_EN; 815 printf(", using 64-bit data transfers"); 816 } 817 printf("\n"); 818 } 819 820 /* 821 * XXX Need some PCI flags indicating support for 822 * XXX 64-bit addressing. 823 */ 824 #if 0 825 if (reg & CFG_M64ADDR) 826 sc->sc_cfg |= CFG_M64ADDR; 827 if (reg & CFG_T64ADDR) 828 sc->sc_cfg |= CFG_T64ADDR; 829 #endif 830 831 if (reg & (CFG_TBI_EN|CFG_EXT_125)) { 832 const char *sep = ""; 833 printf("%s: using ", device_xname(sc->sc_dev)); 834 if (reg & CFG_EXT_125) { 835 sc->sc_cfg |= CFG_EXT_125; 836 printf("%s125MHz clock", sep); 837 sep = ", "; 838 } 839 if (reg & CFG_TBI_EN) { 840 sc->sc_cfg |= CFG_TBI_EN; 841 printf("%sten-bit interface", sep); 842 sep = ", "; 843 } 844 printf("\n"); 845 } 846 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 || 847 (reg & CFG_MRM_DIS) != 0) 848 sc->sc_cfg |= CFG_MRM_DIS; 849 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 || 850 (reg & CFG_MWI_DIS) != 0) 851 sc->sc_cfg |= CFG_MWI_DIS; 852 853 /* 854 * Use the extended descriptor format on the DP83820. This 855 * gives us an interface to VLAN tagging and IPv4/TCP/UDP 856 * checksumming. 857 */ 858 sc->sc_cfg |= CFG_EXTSTS_EN; 859 } 860 861 static int 862 sipcom_detach(device_t self, int flags) 863 { 864 int s; 865 866 s = splnet(); 867 sipcom_do_detach(self, SIP_ATTACH_FIN); 868 splx(s); 869 870 return 0; 871 } 872 873 static void 874 sipcom_do_detach(device_t self, enum sip_attach_stage stage) 875 { 876 int i; 877 struct sip_softc *sc = device_private(self); 878 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 879 880 /* 881 * Free any resources we've allocated during attach. 882 * Do this in reverse order and fall through. 883 */ 884 switch (stage) { 885 case SIP_ATTACH_FIN: 886 sipcom_stop(ifp, 1); 887 pmf_device_deregister(self); 888 #ifdef SIP_EVENT_COUNTERS 889 /* 890 * Attach event counters. 891 */ 892 evcnt_detach(&sc->sc_ev_txforceintr); 893 evcnt_detach(&sc->sc_ev_txdstall); 894 evcnt_detach(&sc->sc_ev_txsstall); 895 evcnt_detach(&sc->sc_ev_hiberr); 896 evcnt_detach(&sc->sc_ev_rxintr); 897 evcnt_detach(&sc->sc_ev_txiintr); 898 evcnt_detach(&sc->sc_ev_txdintr); 899 if (!sc->sc_gigabit) { 900 evcnt_detach(&sc->sc_ev_rxpause); 901 } else { 902 evcnt_detach(&sc->sc_ev_txudpsum); 903 evcnt_detach(&sc->sc_ev_txtcpsum); 904 evcnt_detach(&sc->sc_ev_txipsum); 905 evcnt_detach(&sc->sc_ev_rxudpsum); 906 evcnt_detach(&sc->sc_ev_rxtcpsum); 907 evcnt_detach(&sc->sc_ev_rxipsum); 908 evcnt_detach(&sc->sc_ev_txpause); 909 evcnt_detach(&sc->sc_ev_rxpause); 910 } 911 #endif /* SIP_EVENT_COUNTERS */ 912 913 rnd_detach_source(&sc->rnd_source); 914 915 ether_ifdetach(ifp); 916 if_detach(ifp); 917 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY); 918 919 /*FALLTHROUGH*/ 920 case SIP_ATTACH_CREATE_RXMAP: 921 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) { 922 if (sc->sc_rxsoft[i].rxs_dmamap != NULL) 923 bus_dmamap_destroy(sc->sc_dmat, 924 sc->sc_rxsoft[i].rxs_dmamap); 925 } 926 /*FALLTHROUGH*/ 927 case SIP_ATTACH_CREATE_TXMAP: 928 for (i = 0; i < SIP_TXQUEUELEN; i++) { 929 if (sc->sc_txsoft[i].txs_dmamap != NULL) 930 bus_dmamap_destroy(sc->sc_dmat, 931 sc->sc_txsoft[i].txs_dmamap); 932 } 933 /*FALLTHROUGH*/ 934 case SIP_ATTACH_LOAD_MAP: 935 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap); 936 /*FALLTHROUGH*/ 937 case SIP_ATTACH_CREATE_MAP: 938 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap); 939 /*FALLTHROUGH*/ 940 case SIP_ATTACH_MAP_MEM: 941 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data, 942 sizeof(struct sip_control_data)); 943 /*FALLTHROUGH*/ 944 case SIP_ATTACH_ALLOC_MEM: 945 bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1); 946 /* FALLTHROUGH*/ 947 case SIP_ATTACH_INTR: 948 pci_intr_disestablish(sc->sc_pc, sc->sc_ih); 949 /* FALLTHROUGH*/ 950 case SIP_ATTACH_MAP: 951 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz); 952 break; 953 default: 954 break; 955 } 956 return; 957 } 958 959 static bool 960 sipcom_resume(device_t self, const pmf_qual_t *qual) 961 { 962 struct sip_softc *sc = device_private(self); 963 964 return sipcom_reset(sc); 965 } 966 967 static bool 968 sipcom_suspend(device_t self, const pmf_qual_t *qual) 969 { 970 struct sip_softc *sc = device_private(self); 971 972 sipcom_rxdrain(sc); 973 return true; 974 } 975 976 static void 977 sipcom_attach(device_t parent, device_t self, void *aux) 978 { 979 struct sip_softc *sc = device_private(self); 980 struct pci_attach_args *pa = aux; 981 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 982 pci_chipset_tag_t pc = pa->pa_pc; 983 pci_intr_handle_t ih; 984 const char *intrstr = NULL; 985 bus_space_tag_t iot, memt; 986 bus_space_handle_t ioh, memh; 987 bus_size_t iosz, memsz; 988 int ioh_valid, memh_valid; 989 int i, rseg, error; 990 const struct sip_product *sip; 991 u_int8_t enaddr[ETHER_ADDR_LEN]; 992 pcireg_t csr; 993 pcireg_t memtype; 994 bus_size_t tx_dmamap_size; 995 int ntxsegs_alloc; 996 cfdata_t cf = device_cfdata(self); 997 char intrbuf[PCI_INTRSTR_LEN]; 998 999 callout_init(&sc->sc_tick_ch, 0); 1000 1001 sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0); 1002 if (sip == NULL) { 1003 aprint_error("\n"); 1004 panic("%s: impossible", __func__); 1005 } 1006 sc->sc_dev = self; 1007 sc->sc_gigabit = sip->sip_gigabit; 1008 pmf_self_suspensor_init(self, &sc->sc_suspensor, &sc->sc_qual); 1009 sc->sc_pc = pc; 1010 1011 if (sc->sc_gigabit) { 1012 sc->sc_rxintr = gsip_rxintr; 1013 sc->sc_parm = &gsip_parm; 1014 } else { 1015 sc->sc_rxintr = sip_rxintr; 1016 sc->sc_parm = &sip_parm; 1017 } 1018 tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size; 1019 ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc; 1020 sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc; 1021 sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1; 1022 sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1; 1023 1024 sc->sc_rev = PCI_REVISION(pa->pa_class); 1025 1026 aprint_naive("\n"); 1027 aprint_normal(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev); 1028 1029 sc->sc_model = sip; 1030 1031 /* 1032 * XXX Work-around broken PXE firmware on some boards. 1033 * 1034 * The DP83815 shares an address decoder with the MEM BAR 1035 * and the ROM BAR. Make sure the ROM BAR is disabled, 1036 * so that memory mapped access works. 1037 */ 1038 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, 1039 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) & 1040 ~PCI_MAPREG_ROM_ENABLE); 1041 1042 /* 1043 * Map the device. 1044 */ 1045 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA, 1046 PCI_MAPREG_TYPE_IO, 0, 1047 &iot, &ioh, NULL, &iosz) == 0); 1048 if (sc->sc_gigabit) { 1049 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA); 1050 switch (memtype) { 1051 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT: 1052 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT: 1053 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA, 1054 memtype, 0, &memt, &memh, NULL, &memsz) == 0); 1055 break; 1056 default: 1057 memh_valid = 0; 1058 } 1059 } else { 1060 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA, 1061 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0, 1062 &memt, &memh, NULL, &memsz) == 0); 1063 } 1064 1065 if (memh_valid) { 1066 sc->sc_st = memt; 1067 sc->sc_sh = memh; 1068 sc->sc_sz = memsz; 1069 } else if (ioh_valid) { 1070 sc->sc_st = iot; 1071 sc->sc_sh = ioh; 1072 sc->sc_sz = iosz; 1073 } else { 1074 aprint_error_dev(self, "unable to map device registers\n"); 1075 return; 1076 } 1077 1078 sc->sc_dmat = pa->pa_dmat; 1079 1080 /* 1081 * Make sure bus mastering is enabled. Also make sure 1082 * Write/Invalidate is enabled if we're allowed to use it. 1083 */ 1084 csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 1085 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY) 1086 csr |= PCI_COMMAND_INVALIDATE_ENABLE; 1087 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, 1088 csr | PCI_COMMAND_MASTER_ENABLE); 1089 1090 /* power up chip */ 1091 error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null); 1092 if (error != 0 && error != EOPNOTSUPP) { 1093 aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error); 1094 return; 1095 } 1096 1097 /* 1098 * Map and establish our interrupt. 1099 */ 1100 if (pci_intr_map(pa, &ih)) { 1101 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n"); 1102 return; 1103 } 1104 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf)); 1105 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc); 1106 if (sc->sc_ih == NULL) { 1107 aprint_error_dev(sc->sc_dev, "unable to establish interrupt"); 1108 if (intrstr != NULL) 1109 aprint_error(" at %s", intrstr); 1110 aprint_error("\n"); 1111 sipcom_do_detach(self, SIP_ATTACH_MAP); 1112 return; 1113 } 1114 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr); 1115 1116 SIMPLEQ_INIT(&sc->sc_txfreeq); 1117 SIMPLEQ_INIT(&sc->sc_txdirtyq); 1118 1119 /* 1120 * Allocate the control data structures, and create and load the 1121 * DMA map for it. 1122 */ 1123 if ((error = bus_dmamem_alloc(sc->sc_dmat, 1124 sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1, 1125 &rseg, 0)) != 0) { 1126 aprint_error_dev(sc->sc_dev, 1127 "unable to allocate control data, error = %d\n", error); 1128 sipcom_do_detach(self, SIP_ATTACH_INTR); 1129 return; 1130 } 1131 1132 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg, 1133 sizeof(struct sip_control_data), (void **)&sc->sc_control_data, 1134 BUS_DMA_COHERENT)) != 0) { 1135 aprint_error_dev(sc->sc_dev, 1136 "unable to map control data, error = %d\n", error); 1137 sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM); 1138 } 1139 1140 if ((error = bus_dmamap_create(sc->sc_dmat, 1141 sizeof(struct sip_control_data), 1, 1142 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) { 1143 aprint_error_dev(self, "unable to create control data DMA map" 1144 ", error = %d\n", error); 1145 sipcom_do_detach(self, SIP_ATTACH_MAP_MEM); 1146 } 1147 1148 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap, 1149 sc->sc_control_data, sizeof(struct sip_control_data), NULL, 1150 0)) != 0) { 1151 aprint_error_dev(self, "unable to load control data DMA map" 1152 ", error = %d\n", error); 1153 sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP); 1154 } 1155 1156 /* 1157 * Create the transmit buffer DMA maps. 1158 */ 1159 for (i = 0; i < SIP_TXQUEUELEN; i++) { 1160 if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size, 1161 sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0, 1162 &sc->sc_txsoft[i].txs_dmamap)) != 0) { 1163 aprint_error_dev(self, "unable to create tx DMA map %d" 1164 ", error = %d\n", i, error); 1165 sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP); 1166 } 1167 } 1168 1169 /* 1170 * Create the receive buffer DMA maps. 1171 */ 1172 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) { 1173 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, 1174 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) { 1175 aprint_error_dev(self, "unable to create rx DMA map %d" 1176 ", error = %d\n", i, error); 1177 sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP); 1178 } 1179 sc->sc_rxsoft[i].rxs_mbuf = NULL; 1180 } 1181 1182 /* 1183 * Reset the chip to a known state. 1184 */ 1185 sipcom_reset(sc); 1186 1187 /* 1188 * Read the Ethernet address from the EEPROM. This might 1189 * also fetch other stuff from the EEPROM and stash it 1190 * in the softc. 1191 */ 1192 sc->sc_cfg = 0; 1193 if (!sc->sc_gigabit) { 1194 if (SIP_SIS900_REV(sc,SIS_REV_635) || 1195 SIP_SIS900_REV(sc,SIS_REV_900B)) 1196 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT); 1197 1198 if (SIP_SIS900_REV(sc,SIS_REV_635) || 1199 SIP_SIS900_REV(sc,SIS_REV_960) || 1200 SIP_SIS900_REV(sc,SIS_REV_900B)) 1201 sc->sc_cfg |= 1202 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & 1203 CFG_EDBMASTEN); 1204 } 1205 1206 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr); 1207 1208 aprint_normal_dev(self, "Ethernet address %s\n",ether_sprintf(enaddr)); 1209 1210 /* 1211 * Initialize the configuration register: aggressive PCI 1212 * bus request algorithm, default backoff, default OW timer, 1213 * default parity error detection. 1214 * 1215 * NOTE: "Big endian mode" is useless on the SiS900 and 1216 * friends -- it affects packet data, not descriptors. 1217 */ 1218 if (sc->sc_gigabit) 1219 sipcom_dp83820_attach(sc, pa); 1220 1221 /* 1222 * Initialize our media structures and probe the MII. 1223 */ 1224 sc->sc_mii.mii_ifp = ifp; 1225 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg; 1226 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg; 1227 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg; 1228 sc->sc_ethercom.ec_mii = &sc->sc_mii; 1229 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange, 1230 sipcom_mediastatus); 1231 1232 /* 1233 * XXX We cannot handle flow control on the DP83815. 1234 */ 1235 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) 1236 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, 1237 MII_OFFSET_ANY, 0); 1238 else 1239 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, 1240 MII_OFFSET_ANY, MIIF_DOPAUSE); 1241 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { 1242 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL); 1243 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE); 1244 } else 1245 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); 1246 1247 ifp = &sc->sc_ethercom.ec_if; 1248 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 1249 ifp->if_softc = sc; 1250 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1251 sc->sc_if_flags = ifp->if_flags; 1252 ifp->if_ioctl = sipcom_ioctl; 1253 ifp->if_start = sipcom_start; 1254 ifp->if_watchdog = sipcom_watchdog; 1255 ifp->if_init = sipcom_init; 1256 ifp->if_stop = sipcom_stop; 1257 IFQ_SET_READY(&ifp->if_snd); 1258 1259 /* 1260 * We can support 802.1Q VLAN-sized frames. 1261 */ 1262 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU; 1263 1264 if (sc->sc_gigabit) { 1265 /* 1266 * And the DP83820 can do VLAN tagging in hardware, and 1267 * support the jumbo Ethernet MTU. 1268 */ 1269 sc->sc_ethercom.ec_capabilities |= 1270 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU; 1271 1272 /* 1273 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums 1274 * in hardware. 1275 */ 1276 ifp->if_capabilities |= 1277 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx | 1278 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx | 1279 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx; 1280 } 1281 1282 /* 1283 * Attach the interface. 1284 */ 1285 if_attach(ifp); 1286 ether_ifattach(ifp, enaddr); 1287 ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb); 1288 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable; 1289 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom); 1290 sc->sc_prev.if_capenable = ifp->if_capenable; 1291 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev), 1292 RND_TYPE_NET, RND_FLAG_DEFAULT); 1293 1294 /* 1295 * The number of bytes that must be available in 1296 * the Tx FIFO before the bus master can DMA more 1297 * data into the FIFO. 1298 */ 1299 sc->sc_tx_fill_thresh = 64 / 32; 1300 1301 /* 1302 * Start at a drain threshold of 512 bytes. We will 1303 * increase it if a DMA underrun occurs. 1304 * 1305 * XXX The minimum value of this variable should be 1306 * tuned. We may be able to improve performance 1307 * by starting with a lower value. That, however, 1308 * may trash the first few outgoing packets if the 1309 * PCI bus is saturated. 1310 */ 1311 if (sc->sc_gigabit) 1312 sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */ 1313 else 1314 sc->sc_tx_drain_thresh = 1504 / 32; 1315 1316 /* 1317 * Initialize the Rx FIFO drain threshold. 1318 * 1319 * This is in units of 8 bytes. 1320 * 1321 * We should never set this value lower than 2; 14 bytes are 1322 * required to filter the packet. 1323 */ 1324 sc->sc_rx_drain_thresh = 128 / 8; 1325 1326 #ifdef SIP_EVENT_COUNTERS 1327 /* 1328 * Attach event counters. 1329 */ 1330 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC, 1331 NULL, device_xname(sc->sc_dev), "txsstall"); 1332 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC, 1333 NULL, device_xname(sc->sc_dev), "txdstall"); 1334 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR, 1335 NULL, device_xname(sc->sc_dev), "txforceintr"); 1336 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR, 1337 NULL, device_xname(sc->sc_dev), "txdintr"); 1338 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR, 1339 NULL, device_xname(sc->sc_dev), "txiintr"); 1340 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR, 1341 NULL, device_xname(sc->sc_dev), "rxintr"); 1342 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR, 1343 NULL, device_xname(sc->sc_dev), "hiberr"); 1344 if (!sc->sc_gigabit) { 1345 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR, 1346 NULL, device_xname(sc->sc_dev), "rxpause"); 1347 } else { 1348 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC, 1349 NULL, device_xname(sc->sc_dev), "rxpause"); 1350 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC, 1351 NULL, device_xname(sc->sc_dev), "txpause"); 1352 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC, 1353 NULL, device_xname(sc->sc_dev), "rxipsum"); 1354 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC, 1355 NULL, device_xname(sc->sc_dev), "rxtcpsum"); 1356 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC, 1357 NULL, device_xname(sc->sc_dev), "rxudpsum"); 1358 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC, 1359 NULL, device_xname(sc->sc_dev), "txipsum"); 1360 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC, 1361 NULL, device_xname(sc->sc_dev), "txtcpsum"); 1362 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC, 1363 NULL, device_xname(sc->sc_dev), "txudpsum"); 1364 } 1365 #endif /* SIP_EVENT_COUNTERS */ 1366 1367 if (pmf_device_register(self, sipcom_suspend, sipcom_resume)) 1368 pmf_class_network_register(self, ifp); 1369 else 1370 aprint_error_dev(self, "couldn't establish power handler\n"); 1371 } 1372 1373 static inline void 1374 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0, 1375 uint64_t capenable) 1376 { 1377 struct m_tag *mtag; 1378 u_int32_t extsts; 1379 #ifdef DEBUG 1380 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1381 #endif 1382 /* 1383 * If VLANs are enabled and the packet has a VLAN tag, set 1384 * up the descriptor to encapsulate the packet for us. 1385 * 1386 * This apparently has to be on the last descriptor of 1387 * the packet. 1388 */ 1389 1390 /* 1391 * Byte swapping is tricky. We need to provide the tag 1392 * in a network byte order. On a big-endian machine, 1393 * the byteorder is correct, but we need to swap it 1394 * anyway, because this will be undone by the outside 1395 * htole32(). That's why there must be an 1396 * unconditional swap instead of htons() inside. 1397 */ 1398 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) { 1399 sc->sc_txdescs[lasttx].sipd_extsts |= 1400 htole32(EXTSTS_VPKT | 1401 (bswap16(VLAN_TAG_VALUE(mtag)) & 1402 EXTSTS_VTCI)); 1403 } 1404 1405 /* 1406 * If the upper-layer has requested IPv4/TCPv4/UDPv4 1407 * checksumming, set up the descriptor to do this work 1408 * for us. 1409 * 1410 * This apparently has to be on the first descriptor of 1411 * the packet. 1412 * 1413 * Byte-swap constants so the compiler can optimize. 1414 */ 1415 extsts = 0; 1416 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) { 1417 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx); 1418 SIP_EVCNT_INCR(&sc->sc_ev_txipsum); 1419 extsts |= htole32(EXTSTS_IPPKT); 1420 } 1421 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) { 1422 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx); 1423 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum); 1424 extsts |= htole32(EXTSTS_TCPPKT); 1425 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) { 1426 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx); 1427 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum); 1428 extsts |= htole32(EXTSTS_UDPPKT); 1429 } 1430 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts; 1431 } 1432 1433 /* 1434 * sip_start: [ifnet interface function] 1435 * 1436 * Start packet transmission on the interface. 1437 */ 1438 static void 1439 sipcom_start(struct ifnet *ifp) 1440 { 1441 struct sip_softc *sc = ifp->if_softc; 1442 struct mbuf *m0; 1443 struct mbuf *m; 1444 struct sip_txsoft *txs; 1445 bus_dmamap_t dmamap; 1446 int error, nexttx, lasttx, seg; 1447 int ofree = sc->sc_txfree; 1448 #if 0 1449 int firsttx = sc->sc_txnext; 1450 #endif 1451 1452 /* 1453 * If we've been told to pause, don't transmit any more packets. 1454 */ 1455 if (!sc->sc_gigabit && sc->sc_paused) 1456 ifp->if_flags |= IFF_OACTIVE; 1457 1458 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) 1459 return; 1460 1461 /* 1462 * Loop through the send queue, setting up transmit descriptors 1463 * until we drain the queue, or use up all available transmit 1464 * descriptors. 1465 */ 1466 for (;;) { 1467 /* Get a work queue entry. */ 1468 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) { 1469 SIP_EVCNT_INCR(&sc->sc_ev_txsstall); 1470 break; 1471 } 1472 1473 /* 1474 * Grab a packet off the queue. 1475 */ 1476 IFQ_POLL(&ifp->if_snd, m0); 1477 if (m0 == NULL) 1478 break; 1479 m = NULL; 1480 1481 dmamap = txs->txs_dmamap; 1482 1483 /* 1484 * Load the DMA map. If this fails, the packet either 1485 * didn't fit in the alloted number of segments, or we 1486 * were short on resources. 1487 */ 1488 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0, 1489 BUS_DMA_WRITE|BUS_DMA_NOWAIT); 1490 /* In the non-gigabit case, we'll copy and try again. */ 1491 if (error != 0 && !sc->sc_gigabit) { 1492 MGETHDR(m, M_DONTWAIT, MT_DATA); 1493 if (m == NULL) { 1494 printf("%s: unable to allocate Tx mbuf\n", 1495 device_xname(sc->sc_dev)); 1496 break; 1497 } 1498 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner); 1499 if (m0->m_pkthdr.len > MHLEN) { 1500 MCLGET(m, M_DONTWAIT); 1501 if ((m->m_flags & M_EXT) == 0) { 1502 printf("%s: unable to allocate Tx " 1503 "cluster\n", 1504 device_xname(sc->sc_dev)); 1505 m_freem(m); 1506 break; 1507 } 1508 } 1509 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *)); 1510 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len; 1511 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, 1512 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT); 1513 if (error) { 1514 printf("%s: unable to load Tx buffer, error = " 1515 "%d\n", device_xname(sc->sc_dev), error); 1516 break; 1517 } 1518 } else if (error == EFBIG) { 1519 /* 1520 * For the too-many-segments case, we simply 1521 * report an error and drop the packet, 1522 * since we can't sanely copy a jumbo packet 1523 * to a single buffer. 1524 */ 1525 printf("%s: Tx packet consumes too many DMA segments, " 1526 "dropping...\n", device_xname(sc->sc_dev)); 1527 IFQ_DEQUEUE(&ifp->if_snd, m0); 1528 m_freem(m0); 1529 continue; 1530 } else if (error != 0) { 1531 /* 1532 * Short on resources, just stop for now. 1533 */ 1534 break; 1535 } 1536 1537 /* 1538 * Ensure we have enough descriptors free to describe 1539 * the packet. Note, we always reserve one descriptor 1540 * at the end of the ring as a termination point, to 1541 * prevent wrap-around. 1542 */ 1543 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) { 1544 /* 1545 * Not enough free descriptors to transmit this 1546 * packet. We haven't committed anything yet, 1547 * so just unload the DMA map, put the packet 1548 * back on the queue, and punt. Notify the upper 1549 * layer that there are not more slots left. 1550 * 1551 * XXX We could allocate an mbuf and copy, but 1552 * XXX is it worth it? 1553 */ 1554 ifp->if_flags |= IFF_OACTIVE; 1555 bus_dmamap_unload(sc->sc_dmat, dmamap); 1556 if (m != NULL) 1557 m_freem(m); 1558 SIP_EVCNT_INCR(&sc->sc_ev_txdstall); 1559 break; 1560 } 1561 1562 IFQ_DEQUEUE(&ifp->if_snd, m0); 1563 if (m != NULL) { 1564 m_freem(m0); 1565 m0 = m; 1566 } 1567 1568 /* 1569 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. 1570 */ 1571 1572 /* Sync the DMA map. */ 1573 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, 1574 BUS_DMASYNC_PREWRITE); 1575 1576 /* 1577 * Initialize the transmit descriptors. 1578 */ 1579 for (nexttx = lasttx = sc->sc_txnext, seg = 0; 1580 seg < dmamap->dm_nsegs; 1581 seg++, nexttx = sip_nexttx(sc, nexttx)) { 1582 /* 1583 * If this is the first descriptor we're 1584 * enqueueing, don't set the OWN bit just 1585 * yet. That could cause a race condition. 1586 * We'll do it below. 1587 */ 1588 *sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) = 1589 htole32(dmamap->dm_segs[seg].ds_addr); 1590 *sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) = 1591 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) | 1592 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len); 1593 sc->sc_txdescs[nexttx].sipd_extsts = 0; 1594 lasttx = nexttx; 1595 } 1596 1597 /* Clear the MORE bit on the last segment. */ 1598 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &= 1599 htole32(~CMDSTS_MORE); 1600 1601 /* 1602 * If we're in the interrupt delay window, delay the 1603 * interrupt. 1604 */ 1605 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) { 1606 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr); 1607 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |= 1608 htole32(CMDSTS_INTR); 1609 sc->sc_txwin = 0; 1610 } 1611 1612 if (sc->sc_gigabit) 1613 sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable); 1614 1615 /* Sync the descriptors we're using. */ 1616 sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs, 1617 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1618 1619 /* 1620 * The entire packet is set up. Give the first descrptor 1621 * to the chip now. 1622 */ 1623 *sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |= 1624 htole32(CMDSTS_OWN); 1625 sip_cdtxsync(sc, sc->sc_txnext, 1, 1626 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1627 1628 /* 1629 * Store a pointer to the packet so we can free it later, 1630 * and remember what txdirty will be once the packet is 1631 * done. 1632 */ 1633 txs->txs_mbuf = m0; 1634 txs->txs_firstdesc = sc->sc_txnext; 1635 txs->txs_lastdesc = lasttx; 1636 1637 /* Advance the tx pointer. */ 1638 sc->sc_txfree -= dmamap->dm_nsegs; 1639 sc->sc_txnext = nexttx; 1640 1641 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q); 1642 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q); 1643 1644 /* 1645 * Pass the packet to any BPF listeners. 1646 */ 1647 bpf_mtap(ifp, m0); 1648 } 1649 1650 if (txs == NULL || sc->sc_txfree == 0) { 1651 /* No more slots left; notify upper layer. */ 1652 ifp->if_flags |= IFF_OACTIVE; 1653 } 1654 1655 if (sc->sc_txfree != ofree) { 1656 /* 1657 * Start the transmit process. Note, the manual says 1658 * that if there are no pending transmissions in the 1659 * chip's internal queue (indicated by TXE being clear), 1660 * then the driver software must set the TXDP to the 1661 * first descriptor to be transmitted. However, if we 1662 * do this, it causes serious performance degredation on 1663 * the DP83820 under load, not setting TXDP doesn't seem 1664 * to adversely affect the SiS 900 or DP83815. 1665 * 1666 * Well, I guess it wouldn't be the first time a manual 1667 * has lied -- and they could be speaking of the NULL- 1668 * terminated descriptor list case, rather than OWN- 1669 * terminated rings. 1670 */ 1671 #if 0 1672 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) & 1673 CR_TXE) == 0) { 1674 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP, 1675 SIP_CDTXADDR(sc, firsttx)); 1676 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE); 1677 } 1678 #else 1679 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE); 1680 #endif 1681 1682 /* Set a watchdog timer in case the chip flakes out. */ 1683 /* Gigabit autonegotiation takes 5 seconds. */ 1684 ifp->if_timer = (sc->sc_gigabit) ? 10 : 5; 1685 } 1686 } 1687 1688 /* 1689 * sip_watchdog: [ifnet interface function] 1690 * 1691 * Watchdog timer handler. 1692 */ 1693 static void 1694 sipcom_watchdog(struct ifnet *ifp) 1695 { 1696 struct sip_softc *sc = ifp->if_softc; 1697 1698 /* 1699 * The chip seems to ignore the CMDSTS_INTR bit sometimes! 1700 * If we get a timeout, try and sweep up transmit descriptors. 1701 * If we manage to sweep them all up, ignore the lack of 1702 * interrupt. 1703 */ 1704 sipcom_txintr(sc); 1705 1706 if (sc->sc_txfree != sc->sc_ntxdesc) { 1707 printf("%s: device timeout\n", device_xname(sc->sc_dev)); 1708 ifp->if_oerrors++; 1709 1710 /* Reset the interface. */ 1711 (void) sipcom_init(ifp); 1712 } else if (ifp->if_flags & IFF_DEBUG) 1713 printf("%s: recovered from device timeout\n", 1714 device_xname(sc->sc_dev)); 1715 1716 /* Try to get more packets going. */ 1717 sipcom_start(ifp); 1718 } 1719 1720 /* If the interface is up and running, only modify the receive 1721 * filter when setting promiscuous or debug mode. Otherwise fall 1722 * through to ether_ioctl, which will reset the chip. 1723 */ 1724 static int 1725 sip_ifflags_cb(struct ethercom *ec) 1726 { 1727 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable \ 1728 == (sc)->sc_ethercom.ec_capenable) \ 1729 && ((sc)->sc_prev.is_vlan == \ 1730 VLAN_ATTACHED(&(sc)->sc_ethercom) )) 1731 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable) 1732 struct ifnet *ifp = &ec->ec_if; 1733 struct sip_softc *sc = ifp->if_softc; 1734 int change = ifp->if_flags ^ sc->sc_if_flags; 1735 1736 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0 || !COMPARE_EC(sc) || 1737 !COMPARE_IC(sc, ifp)) 1738 return ENETRESET; 1739 /* Set up the receive filter. */ 1740 (*sc->sc_model->sip_variant->sipv_set_filter)(sc); 1741 return 0; 1742 } 1743 1744 /* 1745 * sip_ioctl: [ifnet interface function] 1746 * 1747 * Handle control requests from the operator. 1748 */ 1749 static int 1750 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1751 { 1752 struct sip_softc *sc = ifp->if_softc; 1753 struct ifreq *ifr = (struct ifreq *)data; 1754 int s, error; 1755 1756 s = splnet(); 1757 1758 switch (cmd) { 1759 case SIOCSIFMEDIA: 1760 /* Flow control requires full-duplex mode. */ 1761 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO || 1762 (ifr->ifr_media & IFM_FDX) == 0) 1763 ifr->ifr_media &= ~IFM_ETH_FMASK; 1764 1765 /* XXX */ 1766 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) 1767 ifr->ifr_media &= ~IFM_ETH_FMASK; 1768 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) { 1769 if (sc->sc_gigabit && 1770 (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) { 1771 /* We can do both TXPAUSE and RXPAUSE. */ 1772 ifr->ifr_media |= 1773 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE; 1774 } else if (ifr->ifr_media & IFM_FLOW) { 1775 /* 1776 * Both TXPAUSE and RXPAUSE must be set. 1777 * (SiS900 and DP83815 don't have PAUSE_ASYM 1778 * feature.) 1779 * 1780 * XXX Can SiS900 and DP83815 send PAUSE? 1781 */ 1782 ifr->ifr_media |= 1783 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE; 1784 } 1785 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK; 1786 } 1787 /*FALLTHROUGH*/ 1788 default: 1789 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET) 1790 break; 1791 1792 error = 0; 1793 1794 if (cmd == SIOCSIFCAP) 1795 error = (*ifp->if_init)(ifp); 1796 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI) 1797 ; 1798 else if (ifp->if_flags & IFF_RUNNING) { 1799 /* 1800 * Multicast list has changed; set the hardware filter 1801 * accordingly. 1802 */ 1803 (*sc->sc_model->sip_variant->sipv_set_filter)(sc); 1804 } 1805 break; 1806 } 1807 1808 /* Try to get more packets going. */ 1809 sipcom_start(ifp); 1810 1811 sc->sc_if_flags = ifp->if_flags; 1812 splx(s); 1813 return (error); 1814 } 1815 1816 /* 1817 * sip_intr: 1818 * 1819 * Interrupt service routine. 1820 */ 1821 static int 1822 sipcom_intr(void *arg) 1823 { 1824 struct sip_softc *sc = arg; 1825 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1826 u_int32_t isr; 1827 int handled = 0; 1828 1829 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) 1830 return 0; 1831 1832 /* Disable interrupts. */ 1833 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0); 1834 1835 for (;;) { 1836 /* Reading clears interrupt. */ 1837 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR); 1838 if ((isr & sc->sc_imr) == 0) 1839 break; 1840 1841 rnd_add_uint32(&sc->rnd_source, isr); 1842 1843 handled = 1; 1844 1845 if ((ifp->if_flags & IFF_RUNNING) == 0) 1846 break; 1847 1848 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) { 1849 SIP_EVCNT_INCR(&sc->sc_ev_rxintr); 1850 1851 /* Grab any new packets. */ 1852 (*sc->sc_rxintr)(sc); 1853 1854 if (isr & ISR_RXORN) { 1855 printf("%s: receive FIFO overrun\n", 1856 device_xname(sc->sc_dev)); 1857 1858 /* XXX adjust rx_drain_thresh? */ 1859 } 1860 1861 if (isr & ISR_RXIDLE) { 1862 printf("%s: receive ring overrun\n", 1863 device_xname(sc->sc_dev)); 1864 1865 /* Get the receive process going again. */ 1866 bus_space_write_4(sc->sc_st, sc->sc_sh, 1867 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr)); 1868 bus_space_write_4(sc->sc_st, sc->sc_sh, 1869 SIP_CR, CR_RXE); 1870 } 1871 } 1872 1873 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) { 1874 #ifdef SIP_EVENT_COUNTERS 1875 if (isr & ISR_TXDESC) 1876 SIP_EVCNT_INCR(&sc->sc_ev_txdintr); 1877 else if (isr & ISR_TXIDLE) 1878 SIP_EVCNT_INCR(&sc->sc_ev_txiintr); 1879 #endif 1880 1881 /* Sweep up transmit descriptors. */ 1882 sipcom_txintr(sc); 1883 1884 if (isr & ISR_TXURN) { 1885 u_int32_t thresh; 1886 int txfifo_size = (sc->sc_gigabit) 1887 ? DP83820_SIP_TXFIFO_SIZE 1888 : OTHER_SIP_TXFIFO_SIZE; 1889 1890 printf("%s: transmit FIFO underrun", 1891 device_xname(sc->sc_dev)); 1892 thresh = sc->sc_tx_drain_thresh + 1; 1893 if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask) 1894 && (thresh * 32) <= (txfifo_size - 1895 (sc->sc_tx_fill_thresh * 32))) { 1896 printf("; increasing Tx drain " 1897 "threshold to %u bytes\n", 1898 thresh * 32); 1899 sc->sc_tx_drain_thresh = thresh; 1900 (void) sipcom_init(ifp); 1901 } else { 1902 (void) sipcom_init(ifp); 1903 printf("\n"); 1904 } 1905 } 1906 } 1907 1908 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) { 1909 if (isr & ISR_PAUSE_ST) { 1910 sc->sc_paused = 1; 1911 SIP_EVCNT_INCR(&sc->sc_ev_rxpause); 1912 ifp->if_flags |= IFF_OACTIVE; 1913 } 1914 if (isr & ISR_PAUSE_END) { 1915 sc->sc_paused = 0; 1916 ifp->if_flags &= ~IFF_OACTIVE; 1917 } 1918 } 1919 1920 if (isr & ISR_HIBERR) { 1921 int want_init = 0; 1922 1923 SIP_EVCNT_INCR(&sc->sc_ev_hiberr); 1924 1925 #define PRINTERR(bit, str) \ 1926 do { \ 1927 if ((isr & (bit)) != 0) { \ 1928 if ((ifp->if_flags & IFF_DEBUG) != 0) \ 1929 printf("%s: %s\n", \ 1930 device_xname(sc->sc_dev), str); \ 1931 want_init = 1; \ 1932 } \ 1933 } while (/*CONSTCOND*/0) 1934 1935 PRINTERR(sc->sc_bits.b_isr_dperr, "parity error"); 1936 PRINTERR(sc->sc_bits.b_isr_sserr, "system error"); 1937 PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort"); 1938 PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort"); 1939 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun"); 1940 /* 1941 * Ignore: 1942 * Tx reset complete 1943 * Rx reset complete 1944 */ 1945 if (want_init) 1946 (void) sipcom_init(ifp); 1947 #undef PRINTERR 1948 } 1949 } 1950 1951 /* Re-enable interrupts. */ 1952 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE); 1953 1954 /* Try to get more packets going. */ 1955 sipcom_start(ifp); 1956 1957 return (handled); 1958 } 1959 1960 /* 1961 * sip_txintr: 1962 * 1963 * Helper; handle transmit interrupts. 1964 */ 1965 static void 1966 sipcom_txintr(struct sip_softc *sc) 1967 { 1968 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1969 struct sip_txsoft *txs; 1970 u_int32_t cmdsts; 1971 1972 if (sc->sc_paused == 0) 1973 ifp->if_flags &= ~IFF_OACTIVE; 1974 1975 /* 1976 * Go through our Tx list and free mbufs for those 1977 * frames which have been transmitted. 1978 */ 1979 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) { 1980 sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs, 1981 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1982 1983 cmdsts = le32toh(*sipd_cmdsts(sc, 1984 &sc->sc_txdescs[txs->txs_lastdesc])); 1985 if (cmdsts & CMDSTS_OWN) 1986 break; 1987 1988 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); 1989 1990 sc->sc_txfree += txs->txs_dmamap->dm_nsegs; 1991 1992 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 1993 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1994 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); 1995 m_freem(txs->txs_mbuf); 1996 txs->txs_mbuf = NULL; 1997 1998 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 1999 2000 /* 2001 * Check for errors and collisions. 2002 */ 2003 if (cmdsts & 2004 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) { 2005 ifp->if_oerrors++; 2006 if (cmdsts & CMDSTS_Tx_EC) 2007 ifp->if_collisions += 16; 2008 if (ifp->if_flags & IFF_DEBUG) { 2009 if (cmdsts & CMDSTS_Tx_ED) 2010 printf("%s: excessive deferral\n", 2011 device_xname(sc->sc_dev)); 2012 if (cmdsts & CMDSTS_Tx_EC) 2013 printf("%s: excessive collisions\n", 2014 device_xname(sc->sc_dev)); 2015 } 2016 } else { 2017 /* Packet was transmitted successfully. */ 2018 ifp->if_opackets++; 2019 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts); 2020 } 2021 } 2022 2023 /* 2024 * If there are no more pending transmissions, cancel the watchdog 2025 * timer. 2026 */ 2027 if (txs == NULL) { 2028 ifp->if_timer = 0; 2029 sc->sc_txwin = 0; 2030 } 2031 } 2032 2033 /* 2034 * gsip_rxintr: 2035 * 2036 * Helper; handle receive interrupts on gigabit parts. 2037 */ 2038 static void 2039 gsip_rxintr(struct sip_softc *sc) 2040 { 2041 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2042 struct sip_rxsoft *rxs; 2043 struct mbuf *m; 2044 u_int32_t cmdsts, extsts; 2045 int i, len; 2046 2047 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) { 2048 rxs = &sc->sc_rxsoft[i]; 2049 2050 sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 2051 2052 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i])); 2053 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts); 2054 len = CMDSTS_SIZE(sc, cmdsts); 2055 2056 /* 2057 * NOTE: OWN is set if owned by _consumer_. We're the 2058 * consumer of the receive ring, so if the bit is clear, 2059 * we have processed all of the packets. 2060 */ 2061 if ((cmdsts & CMDSTS_OWN) == 0) { 2062 /* 2063 * We have processed all of the receive buffers. 2064 */ 2065 break; 2066 } 2067 2068 if (__predict_false(sc->sc_rxdiscard)) { 2069 sip_init_rxdesc(sc, i); 2070 if ((cmdsts & CMDSTS_MORE) == 0) { 2071 /* Reset our state. */ 2072 sc->sc_rxdiscard = 0; 2073 } 2074 continue; 2075 } 2076 2077 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 2078 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 2079 2080 m = rxs->rxs_mbuf; 2081 2082 /* 2083 * Add a new receive buffer to the ring. 2084 */ 2085 if (sipcom_add_rxbuf(sc, i) != 0) { 2086 /* 2087 * Failed, throw away what we've done so 2088 * far, and discard the rest of the packet. 2089 */ 2090 ifp->if_ierrors++; 2091 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 2092 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 2093 sip_init_rxdesc(sc, i); 2094 if (cmdsts & CMDSTS_MORE) 2095 sc->sc_rxdiscard = 1; 2096 if (sc->sc_rxhead != NULL) 2097 m_freem(sc->sc_rxhead); 2098 sip_rxchain_reset(sc); 2099 continue; 2100 } 2101 2102 sip_rxchain_link(sc, m); 2103 2104 m->m_len = len; 2105 2106 /* 2107 * If this is not the end of the packet, keep 2108 * looking. 2109 */ 2110 if (cmdsts & CMDSTS_MORE) { 2111 sc->sc_rxlen += len; 2112 continue; 2113 } 2114 2115 /* 2116 * Okay, we have the entire packet now. The chip includes 2117 * the FCS, so we need to trim it. 2118 */ 2119 m->m_len -= ETHER_CRC_LEN; 2120 2121 *sc->sc_rxtailp = NULL; 2122 len = m->m_len + sc->sc_rxlen; 2123 m = sc->sc_rxhead; 2124 2125 sip_rxchain_reset(sc); 2126 2127 /* 2128 * If an error occurred, update stats and drop the packet. 2129 */ 2130 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT| 2131 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) { 2132 ifp->if_ierrors++; 2133 if ((cmdsts & CMDSTS_Rx_RXA) != 0 && 2134 (cmdsts & CMDSTS_Rx_RXO) == 0) { 2135 /* Receive overrun handled elsewhere. */ 2136 printf("%s: receive descriptor error\n", 2137 device_xname(sc->sc_dev)); 2138 } 2139 #define PRINTERR(bit, str) \ 2140 if ((ifp->if_flags & IFF_DEBUG) != 0 && \ 2141 (cmdsts & (bit)) != 0) \ 2142 printf("%s: %s\n", device_xname(sc->sc_dev), str) 2143 PRINTERR(CMDSTS_Rx_RUNT, "runt packet"); 2144 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error"); 2145 PRINTERR(CMDSTS_Rx_CRCE, "CRC error"); 2146 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error"); 2147 #undef PRINTERR 2148 m_freem(m); 2149 continue; 2150 } 2151 2152 /* 2153 * If the packet is small enough to fit in a 2154 * single header mbuf, allocate one and copy 2155 * the data into it. This greatly reduces 2156 * memory consumption when we receive lots 2157 * of small packets. 2158 */ 2159 if (gsip_copy_small != 0 && len <= (MHLEN - 2)) { 2160 struct mbuf *nm; 2161 MGETHDR(nm, M_DONTWAIT, MT_DATA); 2162 if (nm == NULL) { 2163 ifp->if_ierrors++; 2164 m_freem(m); 2165 continue; 2166 } 2167 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner); 2168 nm->m_data += 2; 2169 nm->m_pkthdr.len = nm->m_len = len; 2170 m_copydata(m, 0, len, mtod(nm, void *)); 2171 m_freem(m); 2172 m = nm; 2173 } 2174 #ifndef __NO_STRICT_ALIGNMENT 2175 else { 2176 /* 2177 * The DP83820's receive buffers must be 4-byte 2178 * aligned. But this means that the data after 2179 * the Ethernet header is misaligned. To compensate, 2180 * we have artificially shortened the buffer size 2181 * in the descriptor, and we do an overlapping copy 2182 * of the data two bytes further in (in the first 2183 * buffer of the chain only). 2184 */ 2185 memmove(mtod(m, char *) + 2, mtod(m, void *), 2186 m->m_len); 2187 m->m_data += 2; 2188 } 2189 #endif /* ! __NO_STRICT_ALIGNMENT */ 2190 2191 /* 2192 * If VLANs are enabled, VLAN packets have been unwrapped 2193 * for us. Associate the tag with the packet. 2194 */ 2195 2196 /* 2197 * Again, byte swapping is tricky. Hardware provided 2198 * the tag in the network byte order, but extsts was 2199 * passed through le32toh() in the meantime. On a 2200 * big-endian machine, we need to swap it again. On a 2201 * little-endian machine, we need to convert from the 2202 * network to host byte order. This means that we must 2203 * swap it in any case, so unconditional swap instead 2204 * of htons() is used. 2205 */ 2206 if ((extsts & EXTSTS_VPKT) != 0) { 2207 VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI), 2208 continue); 2209 } 2210 2211 /* 2212 * Set the incoming checksum information for the 2213 * packet. 2214 */ 2215 if ((extsts & EXTSTS_IPPKT) != 0) { 2216 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum); 2217 m->m_pkthdr.csum_flags |= M_CSUM_IPv4; 2218 if (extsts & EXTSTS_Rx_IPERR) 2219 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD; 2220 if (extsts & EXTSTS_TCPPKT) { 2221 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum); 2222 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4; 2223 if (extsts & EXTSTS_Rx_TCPERR) 2224 m->m_pkthdr.csum_flags |= 2225 M_CSUM_TCP_UDP_BAD; 2226 } else if (extsts & EXTSTS_UDPPKT) { 2227 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum); 2228 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4; 2229 if (extsts & EXTSTS_Rx_UDPERR) 2230 m->m_pkthdr.csum_flags |= 2231 M_CSUM_TCP_UDP_BAD; 2232 } 2233 } 2234 2235 ifp->if_ipackets++; 2236 m_set_rcvif(m, ifp); 2237 m->m_pkthdr.len = len; 2238 2239 /* 2240 * Pass this up to any BPF listeners, but only 2241 * pass if up the stack if it's for us. 2242 */ 2243 bpf_mtap(ifp, m); 2244 2245 /* Pass it on. */ 2246 if_percpuq_enqueue(ifp->if_percpuq, m); 2247 } 2248 2249 /* Update the receive pointer. */ 2250 sc->sc_rxptr = i; 2251 } 2252 2253 /* 2254 * sip_rxintr: 2255 * 2256 * Helper; handle receive interrupts on 10/100 parts. 2257 */ 2258 static void 2259 sip_rxintr(struct sip_softc *sc) 2260 { 2261 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2262 struct sip_rxsoft *rxs; 2263 struct mbuf *m; 2264 u_int32_t cmdsts; 2265 int i, len; 2266 2267 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) { 2268 rxs = &sc->sc_rxsoft[i]; 2269 2270 sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 2271 2272 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i])); 2273 2274 /* 2275 * NOTE: OWN is set if owned by _consumer_. We're the 2276 * consumer of the receive ring, so if the bit is clear, 2277 * we have processed all of the packets. 2278 */ 2279 if ((cmdsts & CMDSTS_OWN) == 0) { 2280 /* 2281 * We have processed all of the receive buffers. 2282 */ 2283 break; 2284 } 2285 2286 /* 2287 * If any collisions were seen on the wire, count one. 2288 */ 2289 if (cmdsts & CMDSTS_Rx_COL) 2290 ifp->if_collisions++; 2291 2292 /* 2293 * If an error occurred, update stats, clear the status 2294 * word, and leave the packet buffer in place. It will 2295 * simply be reused the next time the ring comes around. 2296 */ 2297 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT| 2298 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) { 2299 ifp->if_ierrors++; 2300 if ((cmdsts & CMDSTS_Rx_RXA) != 0 && 2301 (cmdsts & CMDSTS_Rx_RXO) == 0) { 2302 /* Receive overrun handled elsewhere. */ 2303 printf("%s: receive descriptor error\n", 2304 device_xname(sc->sc_dev)); 2305 } 2306 #define PRINTERR(bit, str) \ 2307 if ((ifp->if_flags & IFF_DEBUG) != 0 && \ 2308 (cmdsts & (bit)) != 0) \ 2309 printf("%s: %s\n", device_xname(sc->sc_dev), str) 2310 PRINTERR(CMDSTS_Rx_RUNT, "runt packet"); 2311 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error"); 2312 PRINTERR(CMDSTS_Rx_CRCE, "CRC error"); 2313 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error"); 2314 #undef PRINTERR 2315 sip_init_rxdesc(sc, i); 2316 continue; 2317 } 2318 2319 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 2320 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 2321 2322 /* 2323 * No errors; receive the packet. Note, the SiS 900 2324 * includes the CRC with every packet. 2325 */ 2326 len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN; 2327 2328 #ifdef __NO_STRICT_ALIGNMENT 2329 /* 2330 * If the packet is small enough to fit in a 2331 * single header mbuf, allocate one and copy 2332 * the data into it. This greatly reduces 2333 * memory consumption when we receive lots 2334 * of small packets. 2335 * 2336 * Otherwise, we add a new buffer to the receive 2337 * chain. If this fails, we drop the packet and 2338 * recycle the old buffer. 2339 */ 2340 if (sip_copy_small != 0 && len <= MHLEN) { 2341 MGETHDR(m, M_DONTWAIT, MT_DATA); 2342 if (m == NULL) 2343 goto dropit; 2344 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner); 2345 memcpy(mtod(m, void *), 2346 mtod(rxs->rxs_mbuf, void *), len); 2347 sip_init_rxdesc(sc, i); 2348 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 2349 rxs->rxs_dmamap->dm_mapsize, 2350 BUS_DMASYNC_PREREAD); 2351 } else { 2352 m = rxs->rxs_mbuf; 2353 if (sipcom_add_rxbuf(sc, i) != 0) { 2354 dropit: 2355 ifp->if_ierrors++; 2356 sip_init_rxdesc(sc, i); 2357 bus_dmamap_sync(sc->sc_dmat, 2358 rxs->rxs_dmamap, 0, 2359 rxs->rxs_dmamap->dm_mapsize, 2360 BUS_DMASYNC_PREREAD); 2361 continue; 2362 } 2363 } 2364 #else 2365 /* 2366 * The SiS 900's receive buffers must be 4-byte aligned. 2367 * But this means that the data after the Ethernet header 2368 * is misaligned. We must allocate a new buffer and 2369 * copy the data, shifted forward 2 bytes. 2370 */ 2371 MGETHDR(m, M_DONTWAIT, MT_DATA); 2372 if (m == NULL) { 2373 dropit: 2374 ifp->if_ierrors++; 2375 sip_init_rxdesc(sc, i); 2376 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 2377 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 2378 continue; 2379 } 2380 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner); 2381 if (len > (MHLEN - 2)) { 2382 MCLGET(m, M_DONTWAIT); 2383 if ((m->m_flags & M_EXT) == 0) { 2384 m_freem(m); 2385 goto dropit; 2386 } 2387 } 2388 m->m_data += 2; 2389 2390 /* 2391 * Note that we use clusters for incoming frames, so the 2392 * buffer is virtually contiguous. 2393 */ 2394 memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len); 2395 2396 /* Allow the receive descriptor to continue using its mbuf. */ 2397 sip_init_rxdesc(sc, i); 2398 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 2399 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 2400 #endif /* __NO_STRICT_ALIGNMENT */ 2401 2402 ifp->if_ipackets++; 2403 m_set_rcvif(m, ifp); 2404 m->m_pkthdr.len = m->m_len = len; 2405 2406 /* 2407 * Pass this up to any BPF listeners, but only 2408 * pass if up the stack if it's for us. 2409 */ 2410 bpf_mtap(ifp, m); 2411 2412 /* Pass it on. */ 2413 if_percpuq_enqueue(ifp->if_percpuq, m); 2414 } 2415 2416 /* Update the receive pointer. */ 2417 sc->sc_rxptr = i; 2418 } 2419 2420 /* 2421 * sip_tick: 2422 * 2423 * One second timer, used to tick the MII. 2424 */ 2425 static void 2426 sipcom_tick(void *arg) 2427 { 2428 struct sip_softc *sc = arg; 2429 int s; 2430 2431 s = splnet(); 2432 #ifdef SIP_EVENT_COUNTERS 2433 if (sc->sc_gigabit) { 2434 /* Read PAUSE related counts from MIB registers. */ 2435 sc->sc_ev_rxpause.ev_count += 2436 bus_space_read_4(sc->sc_st, sc->sc_sh, 2437 SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff; 2438 sc->sc_ev_txpause.ev_count += 2439 bus_space_read_4(sc->sc_st, sc->sc_sh, 2440 SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff; 2441 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR); 2442 } 2443 #endif /* SIP_EVENT_COUNTERS */ 2444 mii_tick(&sc->sc_mii); 2445 splx(s); 2446 2447 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc); 2448 } 2449 2450 /* 2451 * sip_reset: 2452 * 2453 * Perform a soft reset on the SiS 900. 2454 */ 2455 static bool 2456 sipcom_reset(struct sip_softc *sc) 2457 { 2458 bus_space_tag_t st = sc->sc_st; 2459 bus_space_handle_t sh = sc->sc_sh; 2460 int i; 2461 2462 bus_space_write_4(st, sh, SIP_IER, 0); 2463 bus_space_write_4(st, sh, SIP_IMR, 0); 2464 bus_space_write_4(st, sh, SIP_RFCR, 0); 2465 bus_space_write_4(st, sh, SIP_CR, CR_RST); 2466 2467 for (i = 0; i < SIP_TIMEOUT; i++) { 2468 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0) 2469 break; 2470 delay(2); 2471 } 2472 2473 if (i == SIP_TIMEOUT) { 2474 printf("%s: reset failed to complete\n", 2475 device_xname(sc->sc_dev)); 2476 return false; 2477 } 2478 2479 delay(1000); 2480 2481 if (sc->sc_gigabit) { 2482 /* 2483 * Set the general purpose I/O bits. Do it here in case we 2484 * need to have GPIO set up to talk to the media interface. 2485 */ 2486 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior); 2487 delay(1000); 2488 } 2489 return true; 2490 } 2491 2492 static void 2493 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable) 2494 { 2495 u_int32_t reg; 2496 bus_space_tag_t st = sc->sc_st; 2497 bus_space_handle_t sh = sc->sc_sh; 2498 /* 2499 * Initialize the VLAN/IP receive control register. 2500 * We enable checksum computation on all incoming 2501 * packets, and do not reject packets w/ bad checksums. 2502 */ 2503 reg = 0; 2504 if (capenable & 2505 (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx)) 2506 reg |= VRCR_IPEN; 2507 if (VLAN_ATTACHED(&sc->sc_ethercom)) 2508 reg |= VRCR_VTDEN|VRCR_VTREN; 2509 bus_space_write_4(st, sh, SIP_VRCR, reg); 2510 2511 /* 2512 * Initialize the VLAN/IP transmit control register. 2513 * We enable outgoing checksum computation on a 2514 * per-packet basis. 2515 */ 2516 reg = 0; 2517 if (capenable & 2518 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx)) 2519 reg |= VTCR_PPCHK; 2520 if (VLAN_ATTACHED(&sc->sc_ethercom)) 2521 reg |= VTCR_VPPTI; 2522 bus_space_write_4(st, sh, SIP_VTCR, reg); 2523 2524 /* 2525 * If we're using VLANs, initialize the VLAN data register. 2526 * To understand why we bswap the VLAN Ethertype, see section 2527 * 4.2.36 of the DP83820 manual. 2528 */ 2529 if (VLAN_ATTACHED(&sc->sc_ethercom)) 2530 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN)); 2531 } 2532 2533 /* 2534 * sip_init: [ ifnet interface function ] 2535 * 2536 * Initialize the interface. Must be called at splnet(). 2537 */ 2538 static int 2539 sipcom_init(struct ifnet *ifp) 2540 { 2541 struct sip_softc *sc = ifp->if_softc; 2542 bus_space_tag_t st = sc->sc_st; 2543 bus_space_handle_t sh = sc->sc_sh; 2544 struct sip_txsoft *txs; 2545 struct sip_rxsoft *rxs; 2546 struct sip_desc *sipd; 2547 int i, error = 0; 2548 2549 if (device_is_active(sc->sc_dev)) { 2550 /* 2551 * Cancel any pending I/O. 2552 */ 2553 sipcom_stop(ifp, 0); 2554 } else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) || 2555 !device_is_active(sc->sc_dev)) 2556 return 0; 2557 2558 /* 2559 * Reset the chip to a known state. 2560 */ 2561 if (!sipcom_reset(sc)) 2562 return EBUSY; 2563 2564 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) { 2565 /* 2566 * DP83815 manual, page 78: 2567 * 4.4 Recommended Registers Configuration 2568 * For optimum performance of the DP83815, version noted 2569 * as DP83815CVNG (SRR = 203h), the listed register 2570 * modifications must be followed in sequence... 2571 * 2572 * It's not clear if this should be 302h or 203h because that 2573 * chip name is listed as SRR 302h in the description of the 2574 * SRR register. However, my revision 302h DP83815 on the 2575 * Netgear FA311 purchased in 02/2001 needs these settings 2576 * to avoid tons of errors in AcceptPerfectMatch (non- 2577 * IFF_PROMISC) mode. I do not know if other revisions need 2578 * this set or not. [briggs -- 09 March 2001] 2579 * 2580 * Note that only the low-order 12 bits of 0xe4 are documented 2581 * and that this sets reserved bits in that register. 2582 */ 2583 bus_space_write_4(st, sh, 0x00cc, 0x0001); 2584 2585 bus_space_write_4(st, sh, 0x00e4, 0x189C); 2586 bus_space_write_4(st, sh, 0x00fc, 0x0000); 2587 bus_space_write_4(st, sh, 0x00f4, 0x5040); 2588 bus_space_write_4(st, sh, 0x00f8, 0x008c); 2589 2590 bus_space_write_4(st, sh, 0x00cc, 0x0000); 2591 } 2592 2593 /* 2594 * Initialize the transmit descriptor ring. 2595 */ 2596 for (i = 0; i < sc->sc_ntxdesc; i++) { 2597 sipd = &sc->sc_txdescs[i]; 2598 memset(sipd, 0, sizeof(struct sip_desc)); 2599 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i))); 2600 } 2601 sip_cdtxsync(sc, 0, sc->sc_ntxdesc, 2602 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 2603 sc->sc_txfree = sc->sc_ntxdesc; 2604 sc->sc_txnext = 0; 2605 sc->sc_txwin = 0; 2606 2607 /* 2608 * Initialize the transmit job descriptors. 2609 */ 2610 SIMPLEQ_INIT(&sc->sc_txfreeq); 2611 SIMPLEQ_INIT(&sc->sc_txdirtyq); 2612 for (i = 0; i < SIP_TXQUEUELEN; i++) { 2613 txs = &sc->sc_txsoft[i]; 2614 txs->txs_mbuf = NULL; 2615 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 2616 } 2617 2618 /* 2619 * Initialize the receive descriptor and receive job 2620 * descriptor rings. 2621 */ 2622 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) { 2623 rxs = &sc->sc_rxsoft[i]; 2624 if (rxs->rxs_mbuf == NULL) { 2625 if ((error = sipcom_add_rxbuf(sc, i)) != 0) { 2626 printf("%s: unable to allocate or map rx " 2627 "buffer %d, error = %d\n", 2628 device_xname(sc->sc_dev), i, error); 2629 /* 2630 * XXX Should attempt to run with fewer receive 2631 * XXX buffers instead of just failing. 2632 */ 2633 sipcom_rxdrain(sc); 2634 goto out; 2635 } 2636 } else 2637 sip_init_rxdesc(sc, i); 2638 } 2639 sc->sc_rxptr = 0; 2640 sc->sc_rxdiscard = 0; 2641 sip_rxchain_reset(sc); 2642 2643 /* 2644 * Set the configuration register; it's already initialized 2645 * in sip_attach(). 2646 */ 2647 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg); 2648 2649 /* 2650 * Initialize the prototype TXCFG register. 2651 */ 2652 if (sc->sc_gigabit) { 2653 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512; 2654 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512; 2655 } else if ((SIP_SIS900_REV(sc, SIS_REV_635) || 2656 SIP_SIS900_REV(sc, SIS_REV_960) || 2657 SIP_SIS900_REV(sc, SIS_REV_900B)) && 2658 (sc->sc_cfg & CFG_EDBMASTEN)) { 2659 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64; 2660 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64; 2661 } else { 2662 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512; 2663 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512; 2664 } 2665 2666 sc->sc_txcfg |= TXCFG_ATP | 2667 __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) | 2668 sc->sc_tx_drain_thresh; 2669 bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg); 2670 2671 /* 2672 * Initialize the receive drain threshold if we have never 2673 * done so. 2674 */ 2675 if (sc->sc_rx_drain_thresh == 0) { 2676 /* 2677 * XXX This value should be tuned. This is set to the 2678 * maximum of 248 bytes, and we may be able to improve 2679 * performance by decreasing it (although we should never 2680 * set this value lower than 2; 14 bytes are required to 2681 * filter the packet). 2682 */ 2683 sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK); 2684 } 2685 2686 /* 2687 * Initialize the prototype RXCFG register. 2688 */ 2689 sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK); 2690 /* 2691 * Accept long packets (including FCS) so we can handle 2692 * 802.1q-tagged frames and jumbo frames properly. 2693 */ 2694 if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) || 2695 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)) 2696 sc->sc_rxcfg |= RXCFG_ALP; 2697 2698 /* 2699 * Checksum offloading is disabled if the user selects an MTU 2700 * larger than 8109. (FreeBSD says 8152, but there is emperical 2701 * evidence that >8109 does not work on some boards, such as the 2702 * Planex GN-1000TE). 2703 */ 2704 if (sc->sc_gigabit && ifp->if_mtu > 8109 && 2705 (ifp->if_capenable & 2706 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx| 2707 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx| 2708 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) { 2709 printf("%s: Checksum offloading does not work if MTU > 8109 - " 2710 "disabled.\n", device_xname(sc->sc_dev)); 2711 ifp->if_capenable &= 2712 ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx| 2713 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx| 2714 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx); 2715 ifp->if_csum_flags_tx = 0; 2716 ifp->if_csum_flags_rx = 0; 2717 } 2718 2719 bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg); 2720 2721 if (sc->sc_gigabit) 2722 sipcom_dp83820_init(sc, ifp->if_capenable); 2723 2724 /* 2725 * Give the transmit and receive rings to the chip. 2726 */ 2727 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext)); 2728 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr)); 2729 2730 /* 2731 * Initialize the interrupt mask. 2732 */ 2733 sc->sc_imr = sc->sc_bits.b_isr_dperr | 2734 sc->sc_bits.b_isr_sserr | 2735 sc->sc_bits.b_isr_rmabt | 2736 sc->sc_bits.b_isr_rtabt | ISR_RXSOVR | 2737 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC; 2738 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr); 2739 2740 /* Set up the receive filter. */ 2741 (*sc->sc_model->sip_variant->sipv_set_filter)(sc); 2742 2743 /* 2744 * Tune sc_rx_flow_thresh. 2745 * XXX "More than 8KB" is too short for jumbo frames. 2746 * XXX TODO: Threshold value should be user-settable. 2747 */ 2748 sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 | 2749 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 | 2750 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK)); 2751 2752 /* 2753 * Set the current media. Do this after initializing the prototype 2754 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow 2755 * control. 2756 */ 2757 if ((error = ether_mediachange(ifp)) != 0) 2758 goto out; 2759 2760 /* 2761 * Set the interrupt hold-off timer to 100us. 2762 */ 2763 if (sc->sc_gigabit) 2764 bus_space_write_4(st, sh, SIP_IHR, 0x01); 2765 2766 /* 2767 * Enable interrupts. 2768 */ 2769 bus_space_write_4(st, sh, SIP_IER, IER_IE); 2770 2771 /* 2772 * Start the transmit and receive processes. 2773 */ 2774 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE); 2775 2776 /* 2777 * Start the one second MII clock. 2778 */ 2779 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc); 2780 2781 /* 2782 * ...all done! 2783 */ 2784 ifp->if_flags |= IFF_RUNNING; 2785 ifp->if_flags &= ~IFF_OACTIVE; 2786 sc->sc_if_flags = ifp->if_flags; 2787 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable; 2788 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom); 2789 sc->sc_prev.if_capenable = ifp->if_capenable; 2790 2791 out: 2792 if (error) 2793 printf("%s: interface not running\n", device_xname(sc->sc_dev)); 2794 return (error); 2795 } 2796 2797 /* 2798 * sip_drain: 2799 * 2800 * Drain the receive queue. 2801 */ 2802 static void 2803 sipcom_rxdrain(struct sip_softc *sc) 2804 { 2805 struct sip_rxsoft *rxs; 2806 int i; 2807 2808 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) { 2809 rxs = &sc->sc_rxsoft[i]; 2810 if (rxs->rxs_mbuf != NULL) { 2811 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 2812 m_freem(rxs->rxs_mbuf); 2813 rxs->rxs_mbuf = NULL; 2814 } 2815 } 2816 } 2817 2818 /* 2819 * sip_stop: [ ifnet interface function ] 2820 * 2821 * Stop transmission on the interface. 2822 */ 2823 static void 2824 sipcom_stop(struct ifnet *ifp, int disable) 2825 { 2826 struct sip_softc *sc = ifp->if_softc; 2827 bus_space_tag_t st = sc->sc_st; 2828 bus_space_handle_t sh = sc->sc_sh; 2829 struct sip_txsoft *txs; 2830 u_int32_t cmdsts = 0; /* DEBUG */ 2831 2832 /* 2833 * Stop the one second clock. 2834 */ 2835 callout_stop(&sc->sc_tick_ch); 2836 2837 /* Down the MII. */ 2838 mii_down(&sc->sc_mii); 2839 2840 if (device_is_active(sc->sc_dev)) { 2841 /* 2842 * Disable interrupts. 2843 */ 2844 bus_space_write_4(st, sh, SIP_IER, 0); 2845 2846 /* 2847 * Stop receiver and transmitter. 2848 */ 2849 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD); 2850 } 2851 2852 /* 2853 * Release any queued transmit buffers. 2854 */ 2855 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) { 2856 if ((ifp->if_flags & IFF_DEBUG) != 0 && 2857 SIMPLEQ_NEXT(txs, txs_q) == NULL && 2858 (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) & 2859 CMDSTS_INTR) == 0) 2860 printf("%s: sip_stop: last descriptor does not " 2861 "have INTR bit set\n", device_xname(sc->sc_dev)); 2862 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); 2863 #ifdef DIAGNOSTIC 2864 if (txs->txs_mbuf == NULL) { 2865 printf("%s: dirty txsoft with no mbuf chain\n", 2866 device_xname(sc->sc_dev)); 2867 panic("sip_stop"); 2868 } 2869 #endif 2870 cmdsts |= /* DEBUG */ 2871 le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])); 2872 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); 2873 m_freem(txs->txs_mbuf); 2874 txs->txs_mbuf = NULL; 2875 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 2876 } 2877 2878 /* 2879 * Mark the interface down and cancel the watchdog timer. 2880 */ 2881 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2882 ifp->if_timer = 0; 2883 2884 if (disable) 2885 pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual); 2886 2887 if ((ifp->if_flags & IFF_DEBUG) != 0 && 2888 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc) 2889 printf("%s: sip_stop: no INTR bits set in dirty tx " 2890 "descriptors\n", device_xname(sc->sc_dev)); 2891 } 2892 2893 /* 2894 * sip_read_eeprom: 2895 * 2896 * Read data from the serial EEPROM. 2897 */ 2898 static void 2899 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt, 2900 u_int16_t *data) 2901 { 2902 bus_space_tag_t st = sc->sc_st; 2903 bus_space_handle_t sh = sc->sc_sh; 2904 u_int16_t reg; 2905 int i, x; 2906 2907 for (i = 0; i < wordcnt; i++) { 2908 /* Send CHIP SELECT. */ 2909 reg = EROMAR_EECS; 2910 bus_space_write_4(st, sh, SIP_EROMAR, reg); 2911 2912 /* Shift in the READ opcode. */ 2913 for (x = 3; x > 0; x--) { 2914 if (SIP_EEPROM_OPC_READ & (1 << (x - 1))) 2915 reg |= EROMAR_EEDI; 2916 else 2917 reg &= ~EROMAR_EEDI; 2918 bus_space_write_4(st, sh, SIP_EROMAR, reg); 2919 bus_space_write_4(st, sh, SIP_EROMAR, 2920 reg | EROMAR_EESK); 2921 delay(4); 2922 bus_space_write_4(st, sh, SIP_EROMAR, reg); 2923 delay(4); 2924 } 2925 2926 /* Shift in address. */ 2927 for (x = 6; x > 0; x--) { 2928 if ((word + i) & (1 << (x - 1))) 2929 reg |= EROMAR_EEDI; 2930 else 2931 reg &= ~EROMAR_EEDI; 2932 bus_space_write_4(st, sh, SIP_EROMAR, reg); 2933 bus_space_write_4(st, sh, SIP_EROMAR, 2934 reg | EROMAR_EESK); 2935 delay(4); 2936 bus_space_write_4(st, sh, SIP_EROMAR, reg); 2937 delay(4); 2938 } 2939 2940 /* Shift out data. */ 2941 reg = EROMAR_EECS; 2942 data[i] = 0; 2943 for (x = 16; x > 0; x--) { 2944 bus_space_write_4(st, sh, SIP_EROMAR, 2945 reg | EROMAR_EESK); 2946 delay(4); 2947 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO) 2948 data[i] |= (1 << (x - 1)); 2949 bus_space_write_4(st, sh, SIP_EROMAR, reg); 2950 delay(4); 2951 } 2952 2953 /* Clear CHIP SELECT. */ 2954 bus_space_write_4(st, sh, SIP_EROMAR, 0); 2955 delay(4); 2956 } 2957 } 2958 2959 /* 2960 * sipcom_add_rxbuf: 2961 * 2962 * Add a receive buffer to the indicated descriptor. 2963 */ 2964 static int 2965 sipcom_add_rxbuf(struct sip_softc *sc, int idx) 2966 { 2967 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx]; 2968 struct mbuf *m; 2969 int error; 2970 2971 MGETHDR(m, M_DONTWAIT, MT_DATA); 2972 if (m == NULL) 2973 return (ENOBUFS); 2974 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner); 2975 2976 MCLGET(m, M_DONTWAIT); 2977 if ((m->m_flags & M_EXT) == 0) { 2978 m_freem(m); 2979 return (ENOBUFS); 2980 } 2981 2982 /* XXX I don't believe this is necessary. --dyoung */ 2983 if (sc->sc_gigabit) 2984 m->m_len = sc->sc_parm->p_rxbuf_len; 2985 2986 if (rxs->rxs_mbuf != NULL) 2987 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 2988 2989 rxs->rxs_mbuf = m; 2990 2991 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, 2992 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, 2993 BUS_DMA_READ|BUS_DMA_NOWAIT); 2994 if (error) { 2995 printf("%s: can't load rx DMA map %d, error = %d\n", 2996 device_xname(sc->sc_dev), idx, error); 2997 panic("%s", __func__); /* XXX */ 2998 } 2999 3000 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 3001 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 3002 3003 sip_init_rxdesc(sc, idx); 3004 3005 return (0); 3006 } 3007 3008 /* 3009 * sip_sis900_set_filter: 3010 * 3011 * Set up the receive filter. 3012 */ 3013 static void 3014 sipcom_sis900_set_filter(struct sip_softc *sc) 3015 { 3016 bus_space_tag_t st = sc->sc_st; 3017 bus_space_handle_t sh = sc->sc_sh; 3018 struct ethercom *ec = &sc->sc_ethercom; 3019 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 3020 struct ether_multi *enm; 3021 const u_int8_t *cp; 3022 struct ether_multistep step; 3023 u_int32_t crc, mchash[16]; 3024 3025 /* 3026 * Initialize the prototype RFCR. 3027 */ 3028 sc->sc_rfcr = RFCR_RFEN; 3029 if (ifp->if_flags & IFF_BROADCAST) 3030 sc->sc_rfcr |= RFCR_AAB; 3031 if (ifp->if_flags & IFF_PROMISC) { 3032 sc->sc_rfcr |= RFCR_AAP; 3033 goto allmulti; 3034 } 3035 3036 /* 3037 * Set up the multicast address filter by passing all multicast 3038 * addresses through a CRC generator, and then using the high-order 3039 * 6 bits as an index into the 128 bit multicast hash table (only 3040 * the lower 16 bits of each 32 bit multicast hash register are 3041 * valid). The high order bits select the register, while the 3042 * rest of the bits select the bit within the register. 3043 */ 3044 3045 memset(mchash, 0, sizeof(mchash)); 3046 3047 /* 3048 * SiS900 (at least SiS963) requires us to register the address of 3049 * the PAUSE packet (01:80:c2:00:00:01) into the address filter. 3050 */ 3051 crc = 0x0ed423f9; 3052 3053 if (SIP_SIS900_REV(sc, SIS_REV_635) || 3054 SIP_SIS900_REV(sc, SIS_REV_960) || 3055 SIP_SIS900_REV(sc, SIS_REV_900B)) { 3056 /* Just want the 8 most significant bits. */ 3057 crc >>= 24; 3058 } else { 3059 /* Just want the 7 most significant bits. */ 3060 crc >>= 25; 3061 } 3062 3063 /* Set the corresponding bit in the hash table. */ 3064 mchash[crc >> 4] |= 1 << (crc & 0xf); 3065 3066 ETHER_FIRST_MULTI(step, ec, enm); 3067 while (enm != NULL) { 3068 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 3069 /* 3070 * We must listen to a range of multicast addresses. 3071 * For now, just accept all multicasts, rather than 3072 * trying to set only those filter bits needed to match 3073 * the range. (At this time, the only use of address 3074 * ranges is for IP multicast routing, for which the 3075 * range is big enough to require all bits set.) 3076 */ 3077 goto allmulti; 3078 } 3079 3080 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN); 3081 3082 if (SIP_SIS900_REV(sc, SIS_REV_635) || 3083 SIP_SIS900_REV(sc, SIS_REV_960) || 3084 SIP_SIS900_REV(sc, SIS_REV_900B)) { 3085 /* Just want the 8 most significant bits. */ 3086 crc >>= 24; 3087 } else { 3088 /* Just want the 7 most significant bits. */ 3089 crc >>= 25; 3090 } 3091 3092 /* Set the corresponding bit in the hash table. */ 3093 mchash[crc >> 4] |= 1 << (crc & 0xf); 3094 3095 ETHER_NEXT_MULTI(step, enm); 3096 } 3097 3098 ifp->if_flags &= ~IFF_ALLMULTI; 3099 goto setit; 3100 3101 allmulti: 3102 ifp->if_flags |= IFF_ALLMULTI; 3103 sc->sc_rfcr |= RFCR_AAM; 3104 3105 setit: 3106 #define FILTER_EMIT(addr, data) \ 3107 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \ 3108 delay(1); \ 3109 bus_space_write_4(st, sh, SIP_RFDR, (data)); \ 3110 delay(1) 3111 3112 /* 3113 * Disable receive filter, and program the node address. 3114 */ 3115 cp = CLLADDR(ifp->if_sadl); 3116 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]); 3117 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]); 3118 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]); 3119 3120 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 3121 /* 3122 * Program the multicast hash table. 3123 */ 3124 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]); 3125 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]); 3126 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]); 3127 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]); 3128 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]); 3129 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]); 3130 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]); 3131 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]); 3132 if (SIP_SIS900_REV(sc, SIS_REV_635) || 3133 SIP_SIS900_REV(sc, SIS_REV_960) || 3134 SIP_SIS900_REV(sc, SIS_REV_900B)) { 3135 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]); 3136 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]); 3137 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]); 3138 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]); 3139 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]); 3140 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]); 3141 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]); 3142 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]); 3143 } 3144 } 3145 #undef FILTER_EMIT 3146 3147 /* 3148 * Re-enable the receiver filter. 3149 */ 3150 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr); 3151 } 3152 3153 /* 3154 * sip_dp83815_set_filter: 3155 * 3156 * Set up the receive filter. 3157 */ 3158 static void 3159 sipcom_dp83815_set_filter(struct sip_softc *sc) 3160 { 3161 bus_space_tag_t st = sc->sc_st; 3162 bus_space_handle_t sh = sc->sc_sh; 3163 struct ethercom *ec = &sc->sc_ethercom; 3164 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 3165 struct ether_multi *enm; 3166 const u_int8_t *cp; 3167 struct ether_multistep step; 3168 u_int32_t crc, hash, slot, bit; 3169 #define MCHASH_NWORDS_83820 128 3170 #define MCHASH_NWORDS_83815 32 3171 #define MCHASH_NWORDS MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815) 3172 u_int16_t mchash[MCHASH_NWORDS]; 3173 int i; 3174 3175 /* 3176 * Initialize the prototype RFCR. 3177 * Enable the receive filter, and accept on 3178 * Perfect (destination address) Match 3179 * If IFF_BROADCAST, also accept all broadcast packets. 3180 * If IFF_PROMISC, accept all unicast packets (and later, set 3181 * IFF_ALLMULTI and accept all multicast, too). 3182 */ 3183 sc->sc_rfcr = RFCR_RFEN | RFCR_APM; 3184 if (ifp->if_flags & IFF_BROADCAST) 3185 sc->sc_rfcr |= RFCR_AAB; 3186 if (ifp->if_flags & IFF_PROMISC) { 3187 sc->sc_rfcr |= RFCR_AAP; 3188 goto allmulti; 3189 } 3190 3191 /* 3192 * Set up the DP83820/DP83815 multicast address filter by 3193 * passing all multicast addresses through a CRC generator, 3194 * and then using the high-order 11/9 bits as an index into 3195 * the 2048/512 bit multicast hash table. The high-order 3196 * 7/5 bits select the slot, while the low-order 4 bits 3197 * select the bit within the slot. Note that only the low 3198 * 16-bits of each filter word are used, and there are 3199 * 128/32 filter words. 3200 */ 3201 3202 memset(mchash, 0, sizeof(mchash)); 3203 3204 ifp->if_flags &= ~IFF_ALLMULTI; 3205 ETHER_FIRST_MULTI(step, ec, enm); 3206 if (enm == NULL) 3207 goto setit; 3208 while (enm != NULL) { 3209 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 3210 /* 3211 * We must listen to a range of multicast addresses. 3212 * For now, just accept all multicasts, rather than 3213 * trying to set only those filter bits needed to match 3214 * the range. (At this time, the only use of address 3215 * ranges is for IP multicast routing, for which the 3216 * range is big enough to require all bits set.) 3217 */ 3218 goto allmulti; 3219 } 3220 3221 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN); 3222 3223 if (sc->sc_gigabit) { 3224 /* Just want the 11 most significant bits. */ 3225 hash = crc >> 21; 3226 } else { 3227 /* Just want the 9 most significant bits. */ 3228 hash = crc >> 23; 3229 } 3230 3231 slot = hash >> 4; 3232 bit = hash & 0xf; 3233 3234 /* Set the corresponding bit in the hash table. */ 3235 mchash[slot] |= 1 << bit; 3236 3237 ETHER_NEXT_MULTI(step, enm); 3238 } 3239 sc->sc_rfcr |= RFCR_MHEN; 3240 goto setit; 3241 3242 allmulti: 3243 ifp->if_flags |= IFF_ALLMULTI; 3244 sc->sc_rfcr |= RFCR_AAM; 3245 3246 setit: 3247 #define FILTER_EMIT(addr, data) \ 3248 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \ 3249 delay(1); \ 3250 bus_space_write_4(st, sh, SIP_RFDR, (data)); \ 3251 delay(1) 3252 3253 /* 3254 * Disable receive filter, and program the node address. 3255 */ 3256 cp = CLLADDR(ifp->if_sadl); 3257 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]); 3258 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]); 3259 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]); 3260 3261 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 3262 int nwords = 3263 sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815; 3264 /* 3265 * Program the multicast hash table. 3266 */ 3267 for (i = 0; i < nwords; i++) { 3268 FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]); 3269 } 3270 } 3271 #undef FILTER_EMIT 3272 #undef MCHASH_NWORDS 3273 #undef MCHASH_NWORDS_83815 3274 #undef MCHASH_NWORDS_83820 3275 3276 /* 3277 * Re-enable the receiver filter. 3278 */ 3279 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr); 3280 } 3281 3282 /* 3283 * sip_dp83820_mii_readreg: [mii interface function] 3284 * 3285 * Read a PHY register on the MII of the DP83820. 3286 */ 3287 static int 3288 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg) 3289 { 3290 struct sip_softc *sc = device_private(self); 3291 3292 if (sc->sc_cfg & CFG_TBI_EN) { 3293 bus_addr_t tbireg; 3294 int rv; 3295 3296 if (phy != 0) 3297 return (0); 3298 3299 switch (reg) { 3300 case MII_BMCR: tbireg = SIP_TBICR; break; 3301 case MII_BMSR: tbireg = SIP_TBISR; break; 3302 case MII_ANAR: tbireg = SIP_TANAR; break; 3303 case MII_ANLPAR: tbireg = SIP_TANLPAR; break; 3304 case MII_ANER: tbireg = SIP_TANER; break; 3305 case MII_EXTSR: 3306 /* 3307 * Don't even bother reading the TESR register. 3308 * The manual documents that the device has 3309 * 1000baseX full/half capability, but the 3310 * register itself seems read back 0 on some 3311 * boards. Just hard-code the result. 3312 */ 3313 return (EXTSR_1000XFDX|EXTSR_1000XHDX); 3314 3315 default: 3316 return (0); 3317 } 3318 3319 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff; 3320 if (tbireg == SIP_TBISR) { 3321 /* LINK and ACOMP are switched! */ 3322 int val = rv; 3323 3324 rv = 0; 3325 if (val & TBISR_MR_LINK_STATUS) 3326 rv |= BMSR_LINK; 3327 if (val & TBISR_MR_AN_COMPLETE) 3328 rv |= BMSR_ACOMP; 3329 3330 /* 3331 * The manual claims this register reads back 0 3332 * on hard and soft reset. But we want to let 3333 * the gentbi driver know that we support auto- 3334 * negotiation, so hard-code this bit in the 3335 * result. 3336 */ 3337 rv |= BMSR_ANEG | BMSR_EXTSTAT; 3338 } 3339 3340 return (rv); 3341 } 3342 3343 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg); 3344 } 3345 3346 /* 3347 * sip_dp83820_mii_writereg: [mii interface function] 3348 * 3349 * Write a PHY register on the MII of the DP83820. 3350 */ 3351 static void 3352 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, int val) 3353 { 3354 struct sip_softc *sc = device_private(self); 3355 3356 if (sc->sc_cfg & CFG_TBI_EN) { 3357 bus_addr_t tbireg; 3358 3359 if (phy != 0) 3360 return; 3361 3362 switch (reg) { 3363 case MII_BMCR: tbireg = SIP_TBICR; break; 3364 case MII_ANAR: tbireg = SIP_TANAR; break; 3365 case MII_ANLPAR: tbireg = SIP_TANLPAR; break; 3366 default: 3367 return; 3368 } 3369 3370 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val); 3371 return; 3372 } 3373 3374 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val); 3375 } 3376 3377 /* 3378 * sip_dp83820_mii_statchg: [mii interface function] 3379 * 3380 * Callback from MII layer when media changes. 3381 */ 3382 static void 3383 sipcom_dp83820_mii_statchg(struct ifnet *ifp) 3384 { 3385 struct sip_softc *sc = ifp->if_softc; 3386 struct mii_data *mii = &sc->sc_mii; 3387 u_int32_t cfg, pcr; 3388 3389 /* 3390 * Get flow control negotiation result. 3391 */ 3392 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO && 3393 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) { 3394 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK; 3395 mii->mii_media_active &= ~IFM_ETH_FMASK; 3396 } 3397 3398 /* 3399 * Update TXCFG for full-duplex operation. 3400 */ 3401 if ((mii->mii_media_active & IFM_FDX) != 0) 3402 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI); 3403 else 3404 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI); 3405 3406 /* 3407 * Update RXCFG for full-duplex or loopback. 3408 */ 3409 if ((mii->mii_media_active & IFM_FDX) != 0 || 3410 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP) 3411 sc->sc_rxcfg |= RXCFG_ATX; 3412 else 3413 sc->sc_rxcfg &= ~RXCFG_ATX; 3414 3415 /* 3416 * Update CFG for MII/GMII. 3417 */ 3418 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000)) 3419 cfg = sc->sc_cfg | CFG_MODE_1000; 3420 else 3421 cfg = sc->sc_cfg; 3422 3423 /* 3424 * 802.3x flow control. 3425 */ 3426 pcr = 0; 3427 if (sc->sc_flowflags & IFM_FLOW) { 3428 if (sc->sc_flowflags & IFM_ETH_TXPAUSE) 3429 pcr |= sc->sc_rx_flow_thresh; 3430 if (sc->sc_flowflags & IFM_ETH_RXPAUSE) 3431 pcr |= PCR_PSEN | PCR_PS_MCAST; 3432 } 3433 3434 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg); 3435 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg, 3436 sc->sc_txcfg); 3437 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg, 3438 sc->sc_rxcfg); 3439 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr); 3440 } 3441 3442 /* 3443 * sip_mii_bitbang_read: [mii bit-bang interface function] 3444 * 3445 * Read the MII serial port for the MII bit-bang module. 3446 */ 3447 static u_int32_t 3448 sipcom_mii_bitbang_read(device_t self) 3449 { 3450 struct sip_softc *sc = device_private(self); 3451 3452 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR)); 3453 } 3454 3455 /* 3456 * sip_mii_bitbang_write: [mii big-bang interface function] 3457 * 3458 * Write the MII serial port for the MII bit-bang module. 3459 */ 3460 static void 3461 sipcom_mii_bitbang_write(device_t self, u_int32_t val) 3462 { 3463 struct sip_softc *sc = device_private(self); 3464 3465 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val); 3466 } 3467 3468 /* 3469 * sip_sis900_mii_readreg: [mii interface function] 3470 * 3471 * Read a PHY register on the MII. 3472 */ 3473 static int 3474 sipcom_sis900_mii_readreg(device_t self, int phy, int reg) 3475 { 3476 struct sip_softc *sc = device_private(self); 3477 u_int32_t enphy; 3478 3479 /* 3480 * The PHY of recent SiS chipsets is accessed through bitbang 3481 * operations. 3482 */ 3483 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) 3484 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, 3485 phy, reg); 3486 3487 #ifndef SIS900_MII_RESTRICT 3488 /* 3489 * The SiS 900 has only an internal PHY on the MII. Only allow 3490 * MII address 0. 3491 */ 3492 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0) 3493 return (0); 3494 #endif 3495 3496 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY, 3497 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) | 3498 ENPHY_RWCMD | ENPHY_ACCESS); 3499 do { 3500 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY); 3501 } while (enphy & ENPHY_ACCESS); 3502 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT); 3503 } 3504 3505 /* 3506 * sip_sis900_mii_writereg: [mii interface function] 3507 * 3508 * Write a PHY register on the MII. 3509 */ 3510 static void 3511 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, int val) 3512 { 3513 struct sip_softc *sc = device_private(self); 3514 u_int32_t enphy; 3515 3516 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) { 3517 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, 3518 phy, reg, val); 3519 return; 3520 } 3521 3522 #ifndef SIS900_MII_RESTRICT 3523 /* 3524 * The SiS 900 has only an internal PHY on the MII. Only allow 3525 * MII address 0. 3526 */ 3527 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0) 3528 return; 3529 #endif 3530 3531 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY, 3532 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) | 3533 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS); 3534 do { 3535 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY); 3536 } while (enphy & ENPHY_ACCESS); 3537 } 3538 3539 /* 3540 * sip_sis900_mii_statchg: [mii interface function] 3541 * 3542 * Callback from MII layer when media changes. 3543 */ 3544 static void 3545 sipcom_sis900_mii_statchg(struct ifnet *ifp) 3546 { 3547 struct sip_softc *sc = ifp->if_softc; 3548 struct mii_data *mii = &sc->sc_mii; 3549 u_int32_t flowctl; 3550 3551 /* 3552 * Get flow control negotiation result. 3553 */ 3554 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO && 3555 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) { 3556 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK; 3557 mii->mii_media_active &= ~IFM_ETH_FMASK; 3558 } 3559 3560 /* 3561 * Update TXCFG for full-duplex operation. 3562 */ 3563 if ((mii->mii_media_active & IFM_FDX) != 0) 3564 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI); 3565 else 3566 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI); 3567 3568 /* 3569 * Update RXCFG for full-duplex or loopback. 3570 */ 3571 if ((mii->mii_media_active & IFM_FDX) != 0 || 3572 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP) 3573 sc->sc_rxcfg |= RXCFG_ATX; 3574 else 3575 sc->sc_rxcfg &= ~RXCFG_ATX; 3576 3577 /* 3578 * Update IMR for use of 802.3x flow control. 3579 */ 3580 if (sc->sc_flowflags & IFM_FLOW) { 3581 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST); 3582 flowctl = FLOWCTL_FLOWEN; 3583 } else { 3584 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST); 3585 flowctl = 0; 3586 } 3587 3588 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg, 3589 sc->sc_txcfg); 3590 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg, 3591 sc->sc_rxcfg); 3592 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr); 3593 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl); 3594 } 3595 3596 /* 3597 * sip_dp83815_mii_readreg: [mii interface function] 3598 * 3599 * Read a PHY register on the MII. 3600 */ 3601 static int 3602 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg) 3603 { 3604 struct sip_softc *sc = device_private(self); 3605 u_int32_t val; 3606 3607 /* 3608 * The DP83815 only has an internal PHY. Only allow 3609 * MII address 0. 3610 */ 3611 if (phy != 0) 3612 return (0); 3613 3614 /* 3615 * Apparently, after a reset, the DP83815 can take a while 3616 * to respond. During this recovery period, the BMSR returns 3617 * a value of 0. Catch this -- it's not supposed to happen 3618 * (the BMSR has some hardcoded-to-1 bits), and wait for the 3619 * PHY to come back to life. 3620 * 3621 * This works out because the BMSR is the first register 3622 * read during the PHY probe process. 3623 */ 3624 do { 3625 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg)); 3626 } while (reg == MII_BMSR && val == 0); 3627 3628 return (val & 0xffff); 3629 } 3630 3631 /* 3632 * sip_dp83815_mii_writereg: [mii interface function] 3633 * 3634 * Write a PHY register to the MII. 3635 */ 3636 static void 3637 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, int val) 3638 { 3639 struct sip_softc *sc = device_private(self); 3640 3641 /* 3642 * The DP83815 only has an internal PHY. Only allow 3643 * MII address 0. 3644 */ 3645 if (phy != 0) 3646 return; 3647 3648 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val); 3649 } 3650 3651 /* 3652 * sip_dp83815_mii_statchg: [mii interface function] 3653 * 3654 * Callback from MII layer when media changes. 3655 */ 3656 static void 3657 sipcom_dp83815_mii_statchg(struct ifnet *ifp) 3658 { 3659 struct sip_softc *sc = ifp->if_softc; 3660 3661 /* 3662 * Update TXCFG for full-duplex operation. 3663 */ 3664 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0) 3665 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI); 3666 else 3667 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI); 3668 3669 /* 3670 * Update RXCFG for full-duplex or loopback. 3671 */ 3672 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 || 3673 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP) 3674 sc->sc_rxcfg |= RXCFG_ATX; 3675 else 3676 sc->sc_rxcfg &= ~RXCFG_ATX; 3677 3678 /* 3679 * XXX 802.3x flow control. 3680 */ 3681 3682 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg, 3683 sc->sc_txcfg); 3684 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg, 3685 sc->sc_rxcfg); 3686 3687 /* 3688 * Some DP83815s experience problems when used with short 3689 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This 3690 * sequence adjusts the DSP's signal attenuation to fix the 3691 * problem. 3692 */ 3693 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) { 3694 uint32_t reg; 3695 3696 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001); 3697 3698 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4); 3699 reg &= 0x0fff; 3700 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000); 3701 delay(100); 3702 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc); 3703 reg &= 0x00ff; 3704 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) { 3705 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc, 3706 0x00e8); 3707 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4); 3708 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, 3709 reg | 0x20); 3710 } 3711 3712 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0); 3713 } 3714 } 3715 3716 static void 3717 sipcom_dp83820_read_macaddr(struct sip_softc *sc, 3718 const struct pci_attach_args *pa, u_int8_t *enaddr) 3719 { 3720 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2]; 3721 u_int8_t cksum, *e, match; 3722 int i; 3723 3724 /* 3725 * EEPROM data format for the DP83820 can be found in 3726 * the DP83820 manual, section 4.2.4. 3727 */ 3728 3729 sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data); 3730 3731 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8; 3732 match = ~(match - 1); 3733 3734 cksum = 0x55; 3735 e = (u_int8_t *) eeprom_data; 3736 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++) 3737 cksum += *e++; 3738 3739 if (cksum != match) 3740 printf("%s: Checksum (%x) mismatch (%x)", 3741 device_xname(sc->sc_dev), cksum, match); 3742 3743 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff; 3744 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8; 3745 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff; 3746 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8; 3747 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff; 3748 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8; 3749 } 3750 3751 static void 3752 sipcom_sis900_eeprom_delay(struct sip_softc *sc) 3753 { 3754 int i; 3755 3756 /* 3757 * FreeBSD goes from (300/33)+1 [10] to 0. There must be 3758 * a reason, but I don't know it. 3759 */ 3760 for (i = 0; i < 10; i++) 3761 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR); 3762 } 3763 3764 static void 3765 sipcom_sis900_read_macaddr(struct sip_softc *sc, 3766 const struct pci_attach_args *pa, u_int8_t *enaddr) 3767 { 3768 u_int16_t myea[ETHER_ADDR_LEN / 2]; 3769 3770 switch (sc->sc_rev) { 3771 case SIS_REV_630S: 3772 case SIS_REV_630E: 3773 case SIS_REV_630EA1: 3774 case SIS_REV_630ET: 3775 case SIS_REV_635: 3776 /* 3777 * The MAC address for the on-board Ethernet of 3778 * the SiS 630 chipset is in the NVRAM. Kick 3779 * the chip into re-loading it from NVRAM, and 3780 * read the MAC address out of the filter registers. 3781 */ 3782 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD); 3783 3784 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR, 3785 RFCR_RFADDR_NODE0); 3786 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) & 3787 0xffff; 3788 3789 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR, 3790 RFCR_RFADDR_NODE2); 3791 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) & 3792 0xffff; 3793 3794 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR, 3795 RFCR_RFADDR_NODE4); 3796 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) & 3797 0xffff; 3798 break; 3799 3800 case SIS_REV_960: 3801 { 3802 #define SIS_SET_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \ 3803 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y)) 3804 3805 #define SIS_CLR_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \ 3806 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y)) 3807 3808 int waittime, i; 3809 3810 /* Allow to read EEPROM from LAN. It is shared 3811 * between a 1394 controller and the NIC and each 3812 * time we access it, we need to set SIS_EECMD_REQ. 3813 */ 3814 SIS_SET_EROMAR(sc, EROMAR_REQ); 3815 3816 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */ 3817 /* Force EEPROM to idle state. */ 3818 3819 /* 3820 * XXX-cube This is ugly. I'll look for docs about it. 3821 */ 3822 SIS_SET_EROMAR(sc, EROMAR_EECS); 3823 sipcom_sis900_eeprom_delay(sc); 3824 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */ 3825 SIS_SET_EROMAR(sc, EROMAR_EESK); 3826 sipcom_sis900_eeprom_delay(sc); 3827 SIS_CLR_EROMAR(sc, EROMAR_EESK); 3828 sipcom_sis900_eeprom_delay(sc); 3829 } 3830 SIS_CLR_EROMAR(sc, EROMAR_EECS); 3831 sipcom_sis900_eeprom_delay(sc); 3832 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0); 3833 3834 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) { 3835 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1, 3836 sizeof(myea) / sizeof(myea[0]), myea); 3837 break; 3838 } 3839 DELAY(1); 3840 } 3841 3842 /* 3843 * Set SIS_EECTL_CLK to high, so a other master 3844 * can operate on the i2c bus. 3845 */ 3846 SIS_SET_EROMAR(sc, EROMAR_EESK); 3847 3848 /* Refuse EEPROM access by LAN */ 3849 SIS_SET_EROMAR(sc, EROMAR_DONE); 3850 } break; 3851 3852 default: 3853 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1, 3854 sizeof(myea) / sizeof(myea[0]), myea); 3855 } 3856 3857 enaddr[0] = myea[0] & 0xff; 3858 enaddr[1] = myea[0] >> 8; 3859 enaddr[2] = myea[1] & 0xff; 3860 enaddr[3] = myea[1] >> 8; 3861 enaddr[4] = myea[2] & 0xff; 3862 enaddr[5] = myea[2] >> 8; 3863 } 3864 3865 /* Table and macro to bit-reverse an octet. */ 3866 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15}; 3867 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf]) 3868 3869 static void 3870 sipcom_dp83815_read_macaddr(struct sip_softc *sc, 3871 const struct pci_attach_args *pa, u_int8_t *enaddr) 3872 { 3873 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea; 3874 u_int8_t cksum, *e, match; 3875 int i; 3876 3877 sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) / 3878 sizeof(eeprom_data[0]), eeprom_data); 3879 3880 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8; 3881 match = ~(match - 1); 3882 3883 cksum = 0x55; 3884 e = (u_int8_t *) eeprom_data; 3885 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) { 3886 cksum += *e++; 3887 } 3888 if (cksum != match) { 3889 printf("%s: Checksum (%x) mismatch (%x)", 3890 device_xname(sc->sc_dev), cksum, match); 3891 } 3892 3893 /* 3894 * Unrolled because it makes slightly more sense this way. 3895 * The DP83815 stores the MAC address in bit 0 of word 6 3896 * through bit 15 of word 8. 3897 */ 3898 ea = &eeprom_data[6]; 3899 enaddr[0] = ((*ea & 0x1) << 7); 3900 ea++; 3901 enaddr[0] |= ((*ea & 0xFE00) >> 9); 3902 enaddr[1] = ((*ea & 0x1FE) >> 1); 3903 enaddr[2] = ((*ea & 0x1) << 7); 3904 ea++; 3905 enaddr[2] |= ((*ea & 0xFE00) >> 9); 3906 enaddr[3] = ((*ea & 0x1FE) >> 1); 3907 enaddr[4] = ((*ea & 0x1) << 7); 3908 ea++; 3909 enaddr[4] |= ((*ea & 0xFE00) >> 9); 3910 enaddr[5] = ((*ea & 0x1FE) >> 1); 3911 3912 /* 3913 * In case that's not weird enough, we also need to reverse 3914 * the bits in each byte. This all actually makes more sense 3915 * if you think about the EEPROM storage as an array of bits 3916 * being shifted into bytes, but that's not how we're looking 3917 * at it here... 3918 */ 3919 for (i = 0; i < 6 ;i++) 3920 enaddr[i] = bbr(enaddr[i]); 3921 } 3922 3923 /* 3924 * sip_mediastatus: [ifmedia interface function] 3925 * 3926 * Get the current interface media status. 3927 */ 3928 static void 3929 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 3930 { 3931 struct sip_softc *sc = ifp->if_softc; 3932 3933 if (!device_is_active(sc->sc_dev)) { 3934 ifmr->ifm_active = IFM_ETHER | IFM_NONE; 3935 ifmr->ifm_status = 0; 3936 return; 3937 } 3938 ether_mediastatus(ifp, ifmr); 3939 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) | 3940 sc->sc_flowflags; 3941 } 3942