xref: /netbsd-src/sys/dev/pci/if_sip.c (revision d20841bb642898112fe68f0ad3f7b26dddf56f07)
1 /*	$NetBSD: if_sip.c,v 1.87 2004/01/11 09:07:56 cube Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*-
40  * Copyright (c) 1999 Network Computer, Inc.
41  * All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of Network Computer, Inc. nor the names of its
52  *    contributors may be used to endorse or promote products derived
53  *    from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65  * POSSIBILITY OF SUCH DAMAGE.
66  */
67 
68 /*
69  * Device driver for the Silicon Integrated Systems SiS 900,
70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72  * controllers.
73  *
74  * Originally written to support the SiS 900 by Jason R. Thorpe for
75  * Network Computer, Inc.
76  *
77  * TODO:
78  *
79  *	- Reduce the Rx interrupt load.
80  */
81 
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.87 2004/01/11 09:07:56 cube Exp $");
84 
85 #include "bpfilter.h"
86 #include "rnd.h"
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99 
100 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
101 
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105 
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110 
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114 
115 #include <machine/bus.h>
116 #include <machine/intr.h>
117 #include <machine/endian.h>
118 
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/mii_bitbang.h>
122 
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 #include <dev/pci/pcidevs.h>
126 
127 #include <dev/pci/if_sipreg.h>
128 
129 #ifdef DP83820		/* DP83820 Gigabit Ethernet */
130 #define	SIP_DECL(x)	__CONCAT(gsip_,x)
131 #else			/* SiS900 and DP83815 */
132 #define	SIP_DECL(x)	__CONCAT(sip_,x)
133 #endif
134 
135 #define	SIP_STR(x)	__STRING(SIP_DECL(x))
136 
137 /*
138  * Transmit descriptor list size.  This is arbitrary, but allocate
139  * enough descriptors for 128 pending transmissions, and 8 segments
140  * per packet.  This MUST work out to a power of 2.
141  */
142 #define	SIP_NTXSEGS		16
143 #define	SIP_NTXSEGS_ALLOC	8
144 
145 #define	SIP_TXQUEUELEN		256
146 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
147 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
148 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
149 
150 #if defined(DP83820)
151 #define	TX_DMAMAP_SIZE		ETHER_MAX_LEN_JUMBO
152 #else
153 #define	TX_DMAMAP_SIZE		MCLBYTES
154 #endif
155 
156 /*
157  * Receive descriptor list size.  We have one Rx buffer per incoming
158  * packet, so this logic is a little simpler.
159  *
160  * Actually, on the DP83820, we allow the packet to consume more than
161  * one buffer, in order to support jumbo Ethernet frames.  In that
162  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
163  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
164  * so we'd better be quick about handling receive interrupts.
165  */
166 #if defined(DP83820)
167 #define	SIP_NRXDESC		256
168 #else
169 #define	SIP_NRXDESC		128
170 #endif /* DP83820 */
171 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
172 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
173 
174 /*
175  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
176  * a single clump that maps to a single DMA segment to make several things
177  * easier.
178  */
179 struct sip_control_data {
180 	/*
181 	 * The transmit descriptors.
182 	 */
183 	struct sip_desc scd_txdescs[SIP_NTXDESC];
184 
185 	/*
186 	 * The receive descriptors.
187 	 */
188 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
189 };
190 
191 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
192 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
193 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
194 
195 /*
196  * Software state for transmit jobs.
197  */
198 struct sip_txsoft {
199 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
200 	bus_dmamap_t txs_dmamap;	/* our DMA map */
201 	int txs_firstdesc;		/* first descriptor in packet */
202 	int txs_lastdesc;		/* last descriptor in packet */
203 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
204 };
205 
206 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
207 
208 /*
209  * Software state for receive jobs.
210  */
211 struct sip_rxsoft {
212 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
213 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
214 };
215 
216 /*
217  * Software state per device.
218  */
219 struct sip_softc {
220 	struct device sc_dev;		/* generic device information */
221 	bus_space_tag_t sc_st;		/* bus space tag */
222 	bus_space_handle_t sc_sh;	/* bus space handle */
223 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
224 	struct ethercom sc_ethercom;	/* ethernet common data */
225 	void *sc_sdhook;		/* shutdown hook */
226 
227 	const struct sip_product *sc_model; /* which model are we? */
228 	int sc_rev;			/* chip revision */
229 
230 	void *sc_ih;			/* interrupt cookie */
231 
232 	struct mii_data sc_mii;		/* MII/media information */
233 
234 	struct callout sc_tick_ch;	/* tick callout */
235 
236 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
237 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
238 
239 	/*
240 	 * Software state for transmit and receive descriptors.
241 	 */
242 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
243 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
244 
245 	/*
246 	 * Control data structures.
247 	 */
248 	struct sip_control_data *sc_control_data;
249 #define	sc_txdescs	sc_control_data->scd_txdescs
250 #define	sc_rxdescs	sc_control_data->scd_rxdescs
251 
252 #ifdef SIP_EVENT_COUNTERS
253 	/*
254 	 * Event counters.
255 	 */
256 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
257 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
258 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
259 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
260 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
261 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
262 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
263 #ifdef DP83820
264 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
265 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
266 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
267 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
268 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
269 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
270 #endif /* DP83820 */
271 #endif /* SIP_EVENT_COUNTERS */
272 
273 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
274 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
275 	u_int32_t sc_imr;		/* prototype IMR register */
276 	u_int32_t sc_rfcr;		/* prototype RFCR register */
277 
278 	u_int32_t sc_cfg;		/* prototype CFG register */
279 
280 #ifdef DP83820
281 	u_int32_t sc_gpior;		/* prototype GPIOR register */
282 #endif /* DP83820 */
283 
284 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
285 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
286 
287 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
288 
289 	int	sc_flags;		/* misc. flags; see below */
290 
291 	int	sc_txfree;		/* number of free Tx descriptors */
292 	int	sc_txnext;		/* next ready Tx descriptor */
293 	int	sc_txwin;		/* Tx descriptors since last intr */
294 
295 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
296 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
297 
298 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
299 #if defined(DP83820)
300 	int	sc_rxdiscard;
301 	int	sc_rxlen;
302 	struct mbuf *sc_rxhead;
303 	struct mbuf *sc_rxtail;
304 	struct mbuf **sc_rxtailp;
305 #endif /* DP83820 */
306 
307 #if NRND > 0
308 	rndsource_element_t rnd_source;	/* random source */
309 #endif
310 };
311 
312 /* sc_flags */
313 #define	SIPF_PAUSED	0x00000001	/* paused (802.3x flow control) */
314 
315 #ifdef DP83820
316 #define	SIP_RXCHAIN_RESET(sc)						\
317 do {									\
318 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
319 	*(sc)->sc_rxtailp = NULL;					\
320 	(sc)->sc_rxlen = 0;						\
321 } while (/*CONSTCOND*/0)
322 
323 #define	SIP_RXCHAIN_LINK(sc, m)						\
324 do {									\
325 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
326 	(sc)->sc_rxtailp = &(m)->m_next;				\
327 } while (/*CONSTCOND*/0)
328 #endif /* DP83820 */
329 
330 #ifdef SIP_EVENT_COUNTERS
331 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
332 #else
333 #define	SIP_EVCNT_INCR(ev)	/* nothing */
334 #endif
335 
336 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
337 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
338 
339 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
340 do {									\
341 	int __x, __n;							\
342 									\
343 	__x = (x);							\
344 	__n = (n);							\
345 									\
346 	/* If it will wrap around, sync to the end of the ring. */	\
347 	if ((__x + __n) > SIP_NTXDESC) {				\
348 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
349 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
350 		    (SIP_NTXDESC - __x), (ops));			\
351 		__n -= (SIP_NTXDESC - __x);				\
352 		__x = 0;						\
353 	}								\
354 									\
355 	/* Now sync whatever is left. */				\
356 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
357 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
358 } while (0)
359 
360 #define	SIP_CDRXSYNC(sc, x, ops)					\
361 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
362 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
363 
364 #ifdef DP83820
365 #define	SIP_INIT_RXDESC_EXTSTS	__sipd->sipd_extsts = 0;
366 #define	SIP_RXBUF_LEN		(MCLBYTES - 4)
367 #else
368 #define	SIP_INIT_RXDESC_EXTSTS	/* nothing */
369 #define	SIP_RXBUF_LEN		(MCLBYTES - 1)	/* field width */
370 #endif
371 #define	SIP_INIT_RXDESC(sc, x)						\
372 do {									\
373 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
374 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
375 									\
376 	__sipd->sipd_link =						\
377 	    htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x))));		\
378 	__sipd->sipd_bufptr =						\
379 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr);		\
380 	__sipd->sipd_cmdsts = htole32(CMDSTS_INTR |			\
381 	    (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK));			\
382 	SIP_INIT_RXDESC_EXTSTS						\
383 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
384 } while (0)
385 
386 #define	SIP_CHIP_VERS(sc, v, p, r)					\
387 	((sc)->sc_model->sip_vendor == (v) &&				\
388 	 (sc)->sc_model->sip_product == (p) &&				\
389 	 (sc)->sc_rev == (r))
390 
391 #define	SIP_CHIP_MODEL(sc, v, p)					\
392 	((sc)->sc_model->sip_vendor == (v) &&				\
393 	 (sc)->sc_model->sip_product == (p))
394 
395 #if !defined(DP83820)
396 #define	SIP_SIS900_REV(sc, rev)						\
397 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
398 #endif
399 
400 #define SIP_TIMEOUT 1000
401 
402 void	SIP_DECL(start)(struct ifnet *);
403 void	SIP_DECL(watchdog)(struct ifnet *);
404 int	SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
405 int	SIP_DECL(init)(struct ifnet *);
406 void	SIP_DECL(stop)(struct ifnet *, int);
407 
408 void	SIP_DECL(shutdown)(void *);
409 
410 void	SIP_DECL(reset)(struct sip_softc *);
411 void	SIP_DECL(rxdrain)(struct sip_softc *);
412 int	SIP_DECL(add_rxbuf)(struct sip_softc *, int);
413 void	SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
414 void	SIP_DECL(tick)(void *);
415 
416 #if !defined(DP83820)
417 void	SIP_DECL(sis900_set_filter)(struct sip_softc *);
418 #endif /* ! DP83820 */
419 void	SIP_DECL(dp83815_set_filter)(struct sip_softc *);
420 
421 #if defined(DP83820)
422 void	SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
423 	    const struct pci_attach_args *, u_int8_t *);
424 #else
425 static void	SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc);
426 void	SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
427 	    const struct pci_attach_args *, u_int8_t *);
428 void	SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
429 	    const struct pci_attach_args *, u_int8_t *);
430 #endif /* DP83820 */
431 
432 int	SIP_DECL(intr)(void *);
433 void	SIP_DECL(txintr)(struct sip_softc *);
434 void	SIP_DECL(rxintr)(struct sip_softc *);
435 
436 #if defined(DP83820)
437 int	SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
438 void	SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
439 void	SIP_DECL(dp83820_mii_statchg)(struct device *);
440 #else
441 int	SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
442 void	SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
443 void	SIP_DECL(sis900_mii_statchg)(struct device *);
444 
445 int	SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
446 void	SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
447 void	SIP_DECL(dp83815_mii_statchg)(struct device *);
448 #endif /* DP83820 */
449 
450 int	SIP_DECL(mediachange)(struct ifnet *);
451 void	SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
452 
453 int	SIP_DECL(match)(struct device *, struct cfdata *, void *);
454 void	SIP_DECL(attach)(struct device *, struct device *, void *);
455 
456 int	SIP_DECL(copy_small) = 0;
457 
458 #ifdef DP83820
459 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
460     gsip_match, gsip_attach, NULL, NULL);
461 #else
462 CFATTACH_DECL(sip, sizeof(struct sip_softc),
463     sip_match, sip_attach, NULL, NULL);
464 #endif
465 
466 /*
467  * Descriptions of the variants of the SiS900.
468  */
469 struct sip_variant {
470 	int	(*sipv_mii_readreg)(struct device *, int, int);
471 	void	(*sipv_mii_writereg)(struct device *, int, int, int);
472 	void	(*sipv_mii_statchg)(struct device *);
473 	void	(*sipv_set_filter)(struct sip_softc *);
474 	void	(*sipv_read_macaddr)(struct sip_softc *,
475 		    const struct pci_attach_args *, u_int8_t *);
476 };
477 
478 u_int32_t SIP_DECL(mii_bitbang_read)(struct device *);
479 void	SIP_DECL(mii_bitbang_write)(struct device *, u_int32_t);
480 
481 const struct mii_bitbang_ops SIP_DECL(mii_bitbang_ops) = {
482 	SIP_DECL(mii_bitbang_read),
483 	SIP_DECL(mii_bitbang_write),
484 	{
485 		EROMAR_MDIO,		/* MII_BIT_MDO */
486 		EROMAR_MDIO,		/* MII_BIT_MDI */
487 		EROMAR_MDC,		/* MII_BIT_MDC */
488 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
489 		0,			/* MII_BIT_DIR_PHY_HOST */
490 	}
491 };
492 
493 #if defined(DP83820)
494 const struct sip_variant SIP_DECL(variant_dp83820) = {
495 	SIP_DECL(dp83820_mii_readreg),
496 	SIP_DECL(dp83820_mii_writereg),
497 	SIP_DECL(dp83820_mii_statchg),
498 	SIP_DECL(dp83815_set_filter),
499 	SIP_DECL(dp83820_read_macaddr),
500 };
501 #else
502 const struct sip_variant SIP_DECL(variant_sis900) = {
503 	SIP_DECL(sis900_mii_readreg),
504 	SIP_DECL(sis900_mii_writereg),
505 	SIP_DECL(sis900_mii_statchg),
506 	SIP_DECL(sis900_set_filter),
507 	SIP_DECL(sis900_read_macaddr),
508 };
509 
510 const struct sip_variant SIP_DECL(variant_dp83815) = {
511 	SIP_DECL(dp83815_mii_readreg),
512 	SIP_DECL(dp83815_mii_writereg),
513 	SIP_DECL(dp83815_mii_statchg),
514 	SIP_DECL(dp83815_set_filter),
515 	SIP_DECL(dp83815_read_macaddr),
516 };
517 #endif /* DP83820 */
518 
519 /*
520  * Devices supported by this driver.
521  */
522 const struct sip_product {
523 	pci_vendor_id_t		sip_vendor;
524 	pci_product_id_t	sip_product;
525 	const char		*sip_name;
526 	const struct sip_variant *sip_variant;
527 } SIP_DECL(products)[] = {
528 #if defined(DP83820)
529 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
530 	  "NatSemi DP83820 Gigabit Ethernet",
531 	  &SIP_DECL(variant_dp83820) },
532 #else
533 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
534 	  "SiS 900 10/100 Ethernet",
535 	  &SIP_DECL(variant_sis900) },
536 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
537 	  "SiS 7016 10/100 Ethernet",
538 	  &SIP_DECL(variant_sis900) },
539 
540 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
541 	  "NatSemi DP83815 10/100 Ethernet",
542 	  &SIP_DECL(variant_dp83815) },
543 #endif /* DP83820 */
544 
545 	{ 0,			0,
546 	  NULL,
547 	  NULL },
548 };
549 
550 static const struct sip_product *
551 SIP_DECL(lookup)(const struct pci_attach_args *pa)
552 {
553 	const struct sip_product *sip;
554 
555 	for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
556 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
557 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
558 			return (sip);
559 	}
560 	return (NULL);
561 }
562 
563 #ifdef DP83820
564 /*
565  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
566  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
567  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
568  * which means we try to use 64-bit data transfers on those cards if we
569  * happen to be plugged into a 32-bit slot.
570  *
571  * What we do is use this table of cards known to be 64-bit cards.  If
572  * you have a 64-bit card who's subsystem ID is not listed in this table,
573  * send the output of "pcictl dump ..." of the device to me so that your
574  * card will use the 64-bit data path when plugged into a 64-bit slot.
575  *
576  *	-- Jason R. Thorpe <thorpej@NetBSD.org>
577  *	   June 30, 2002
578  */
579 static int
580 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
581 {
582 	static const struct {
583 		pci_vendor_id_t c64_vendor;
584 		pci_product_id_t c64_product;
585 	} card64[] = {
586 		/* Asante GigaNIX */
587 		{ 0x128a,	0x0002 },
588 
589 		/* Accton EN1407-T, Planex GN-1000TE */
590 		{ 0x1113,	0x1407 },
591 
592 		/* Netgear GA-621 */
593 		{ 0x1385,	0x621a },
594 
595 		/* SMC EZ Card */
596 		{ 0x10b8,	0x9462 },
597 
598 		{ 0, 0}
599 	};
600 	pcireg_t subsys;
601 	int i;
602 
603 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
604 
605 	for (i = 0; card64[i].c64_vendor != 0; i++) {
606 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
607 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
608 			return (1);
609 	}
610 
611 	return (0);
612 }
613 #endif /* DP83820 */
614 
615 int
616 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
617 {
618 	struct pci_attach_args *pa = aux;
619 
620 	if (SIP_DECL(lookup)(pa) != NULL)
621 		return (1);
622 
623 	return (0);
624 }
625 
626 void
627 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
628 {
629 	struct sip_softc *sc = (struct sip_softc *) self;
630 	struct pci_attach_args *pa = aux;
631 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
632 	pci_chipset_tag_t pc = pa->pa_pc;
633 	pci_intr_handle_t ih;
634 	const char *intrstr = NULL;
635 	bus_space_tag_t iot, memt;
636 	bus_space_handle_t ioh, memh;
637 	bus_dma_segment_t seg;
638 	int ioh_valid, memh_valid;
639 	int i, rseg, error;
640 	const struct sip_product *sip;
641 	pcireg_t pmode;
642 	u_int8_t enaddr[ETHER_ADDR_LEN];
643 	int pmreg;
644 #ifdef DP83820
645 	pcireg_t memtype;
646 	u_int32_t reg;
647 #endif /* DP83820 */
648 
649 	callout_init(&sc->sc_tick_ch);
650 
651 	sip = SIP_DECL(lookup)(pa);
652 	if (sip == NULL) {
653 		printf("\n");
654 		panic(SIP_STR(attach) ": impossible");
655 	}
656 	sc->sc_rev = PCI_REVISION(pa->pa_class);
657 
658 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
659 
660 	sc->sc_model = sip;
661 
662 	/*
663 	 * XXX Work-around broken PXE firmware on some boards.
664 	 *
665 	 * The DP83815 shares an address decoder with the MEM BAR
666 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
667 	 * so that memory mapped access works.
668 	 */
669 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
670 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
671 	    ~PCI_MAPREG_ROM_ENABLE);
672 
673 	/*
674 	 * Map the device.
675 	 */
676 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
677 	    PCI_MAPREG_TYPE_IO, 0,
678 	    &iot, &ioh, NULL, NULL) == 0);
679 #ifdef DP83820
680 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
681 	switch (memtype) {
682 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
683 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
684 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
685 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
686 		break;
687 	default:
688 		memh_valid = 0;
689 	}
690 #else
691 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
692 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
693 	    &memt, &memh, NULL, NULL) == 0);
694 #endif /* DP83820 */
695 
696 	if (memh_valid) {
697 		sc->sc_st = memt;
698 		sc->sc_sh = memh;
699 	} else if (ioh_valid) {
700 		sc->sc_st = iot;
701 		sc->sc_sh = ioh;
702 	} else {
703 		printf("%s: unable to map device registers\n",
704 		    sc->sc_dev.dv_xname);
705 		return;
706 	}
707 
708 	sc->sc_dmat = pa->pa_dmat;
709 
710 	/*
711 	 * Make sure bus mastering is enabled.  Also make sure
712 	 * Write/Invalidate is enabled if we're allowed to use it.
713 	 */
714 	pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
715 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
716 		pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
717 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
718 	    pmreg | PCI_COMMAND_MASTER_ENABLE);
719 
720 	/* Get it out of power save mode if needed. */
721 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
722 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
723 		    PCI_PMCSR_STATE_MASK;
724 		if (pmode == PCI_PMCSR_STATE_D3) {
725 			/*
726 			 * The card has lost all configuration data in
727 			 * this state, so punt.
728 			 */
729 			printf("%s: unable to wake up from power state D3\n",
730 			    sc->sc_dev.dv_xname);
731 			return;
732 		}
733 		if (pmode != PCI_PMCSR_STATE_D0) {
734 			printf("%s: waking up from power state D%d\n",
735 			    sc->sc_dev.dv_xname, pmode);
736 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
737 			    PCI_PMCSR_STATE_D0);
738 		}
739 	}
740 
741 	/*
742 	 * Map and establish our interrupt.
743 	 */
744 	if (pci_intr_map(pa, &ih)) {
745 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
746 		return;
747 	}
748 	intrstr = pci_intr_string(pc, ih);
749 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
750 	if (sc->sc_ih == NULL) {
751 		printf("%s: unable to establish interrupt",
752 		    sc->sc_dev.dv_xname);
753 		if (intrstr != NULL)
754 			printf(" at %s", intrstr);
755 		printf("\n");
756 		return;
757 	}
758 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
759 
760 	SIMPLEQ_INIT(&sc->sc_txfreeq);
761 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
762 
763 	/*
764 	 * Allocate the control data structures, and create and load the
765 	 * DMA map for it.
766 	 */
767 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
768 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
769 	    0)) != 0) {
770 		printf("%s: unable to allocate control data, error = %d\n",
771 		    sc->sc_dev.dv_xname, error);
772 		goto fail_0;
773 	}
774 
775 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
776 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
777 	    BUS_DMA_COHERENT)) != 0) {
778 		printf("%s: unable to map control data, error = %d\n",
779 		    sc->sc_dev.dv_xname, error);
780 		goto fail_1;
781 	}
782 
783 	if ((error = bus_dmamap_create(sc->sc_dmat,
784 	    sizeof(struct sip_control_data), 1,
785 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
786 		printf("%s: unable to create control data DMA map, "
787 		    "error = %d\n", sc->sc_dev.dv_xname, error);
788 		goto fail_2;
789 	}
790 
791 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
792 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
793 	    0)) != 0) {
794 		printf("%s: unable to load control data DMA map, error = %d\n",
795 		    sc->sc_dev.dv_xname, error);
796 		goto fail_3;
797 	}
798 
799 	/*
800 	 * Create the transmit buffer DMA maps.
801 	 */
802 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
803 		if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
804 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
805 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
806 			printf("%s: unable to create tx DMA map %d, "
807 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
808 			goto fail_4;
809 		}
810 	}
811 
812 	/*
813 	 * Create the receive buffer DMA maps.
814 	 */
815 	for (i = 0; i < SIP_NRXDESC; i++) {
816 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
817 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
818 			printf("%s: unable to create rx DMA map %d, "
819 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
820 			goto fail_5;
821 		}
822 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
823 	}
824 
825 	/*
826 	 * Reset the chip to a known state.
827 	 */
828 	SIP_DECL(reset)(sc);
829 
830 	/*
831 	 * Read the Ethernet address from the EEPROM.  This might
832 	 * also fetch other stuff from the EEPROM and stash it
833 	 * in the softc.
834 	 */
835 	sc->sc_cfg = 0;
836 #if !defined(DP83820)
837 	if (SIP_SIS900_REV(sc,SIS_REV_635) ||
838 	    SIP_SIS900_REV(sc,SIS_REV_900B))
839 		sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
840 #endif
841 
842 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
843 
844 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
845 	    ether_sprintf(enaddr));
846 
847 	/*
848 	 * Initialize the configuration register: aggressive PCI
849 	 * bus request algorithm, default backoff, default OW timer,
850 	 * default parity error detection.
851 	 *
852 	 * NOTE: "Big endian mode" is useless on the SiS900 and
853 	 * friends -- it affects packet data, not descriptors.
854 	 */
855 #ifdef DP83820
856 	/*
857 	 * Cause the chip to load configuration data from the EEPROM.
858 	 */
859 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
860 	for (i = 0; i < 10000; i++) {
861 		delay(10);
862 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
863 		    PTSCR_EELOAD_EN) == 0)
864 			break;
865 	}
866 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
867 	    PTSCR_EELOAD_EN) {
868 		printf("%s: timeout loading configuration from EEPROM\n",
869 		    sc->sc_dev.dv_xname);
870 		return;
871 	}
872 
873 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
874 
875 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
876 	if (reg & CFG_PCI64_DET) {
877 		printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
878 		/*
879 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
880 		 * data transfers.
881 		 *
882 		 * We can't use the DATA64_EN bit in the EEPROM, because
883 		 * vendors of 32-bit cards fail to clear that bit in many
884 		 * cases (yet the card still detects that it's in a 64-bit
885 		 * slot; go figure).
886 		 */
887 		if (SIP_DECL(check_64bit)(pa)) {
888 			sc->sc_cfg |= CFG_DATA64_EN;
889 			printf(", using 64-bit data transfers");
890 		}
891 		printf("\n");
892 	}
893 
894 	/*
895 	 * XXX Need some PCI flags indicating support for
896 	 * XXX 64-bit addressing.
897 	 */
898 #if 0
899 	if (reg & CFG_M64ADDR)
900 		sc->sc_cfg |= CFG_M64ADDR;
901 	if (reg & CFG_T64ADDR)
902 		sc->sc_cfg |= CFG_T64ADDR;
903 #endif
904 
905 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
906 		const char *sep = "";
907 		printf("%s: using ", sc->sc_dev.dv_xname);
908 		if (reg & CFG_EXT_125) {
909 			sc->sc_cfg |= CFG_EXT_125;
910 			printf("%s125MHz clock", sep);
911 			sep = ", ";
912 		}
913 		if (reg & CFG_TBI_EN) {
914 			sc->sc_cfg |= CFG_TBI_EN;
915 			printf("%sten-bit interface", sep);
916 			sep = ", ";
917 		}
918 		printf("\n");
919 	}
920 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
921 	    (reg & CFG_MRM_DIS) != 0)
922 		sc->sc_cfg |= CFG_MRM_DIS;
923 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
924 	    (reg & CFG_MWI_DIS) != 0)
925 		sc->sc_cfg |= CFG_MWI_DIS;
926 
927 	/*
928 	 * Use the extended descriptor format on the DP83820.  This
929 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
930 	 * checksumming.
931 	 */
932 	sc->sc_cfg |= CFG_EXTSTS_EN;
933 #endif /* DP83820 */
934 
935 	/*
936 	 * Initialize our media structures and probe the MII.
937 	 */
938 	sc->sc_mii.mii_ifp = ifp;
939 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
940 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
941 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
942 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, SIP_DECL(mediachange),
943 	    SIP_DECL(mediastatus));
944 
945 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
946 	    MII_OFFSET_ANY, 0);
947 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
948 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
949 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
950 	} else
951 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
952 
953 	ifp = &sc->sc_ethercom.ec_if;
954 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
955 	ifp->if_softc = sc;
956 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
957 	ifp->if_ioctl = SIP_DECL(ioctl);
958 	ifp->if_start = SIP_DECL(start);
959 	ifp->if_watchdog = SIP_DECL(watchdog);
960 	ifp->if_init = SIP_DECL(init);
961 	ifp->if_stop = SIP_DECL(stop);
962 	IFQ_SET_READY(&ifp->if_snd);
963 
964 	/*
965 	 * We can support 802.1Q VLAN-sized frames.
966 	 */
967 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
968 
969 #ifdef DP83820
970 	/*
971 	 * And the DP83820 can do VLAN tagging in hardware, and
972 	 * support the jumbo Ethernet MTU.
973 	 */
974 	sc->sc_ethercom.ec_capabilities |=
975 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
976 
977 	/*
978 	 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
979 	 * in hardware.
980 	 */
981 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
982 	    IFCAP_CSUM_UDPv4;
983 #endif /* DP83820 */
984 
985 	/*
986 	 * Attach the interface.
987 	 */
988 	if_attach(ifp);
989 	ether_ifattach(ifp, enaddr);
990 #if NRND > 0
991 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
992 	    RND_TYPE_NET, 0);
993 #endif
994 
995 	/*
996 	 * The number of bytes that must be available in
997 	 * the Tx FIFO before the bus master can DMA more
998 	 * data into the FIFO.
999 	 */
1000 	sc->sc_tx_fill_thresh = 64 / 32;
1001 
1002 	/*
1003 	 * Start at a drain threshold of 512 bytes.  We will
1004 	 * increase it if a DMA underrun occurs.
1005 	 *
1006 	 * XXX The minimum value of this variable should be
1007 	 * tuned.  We may be able to improve performance
1008 	 * by starting with a lower value.  That, however,
1009 	 * may trash the first few outgoing packets if the
1010 	 * PCI bus is saturated.
1011 	 */
1012 	sc->sc_tx_drain_thresh = 1504 / 32;
1013 
1014 	/*
1015 	 * Initialize the Rx FIFO drain threshold.
1016 	 *
1017 	 * This is in units of 8 bytes.
1018 	 *
1019 	 * We should never set this value lower than 2; 14 bytes are
1020 	 * required to filter the packet.
1021 	 */
1022 	sc->sc_rx_drain_thresh = 128 / 8;
1023 
1024 #ifdef SIP_EVENT_COUNTERS
1025 	/*
1026 	 * Attach event counters.
1027 	 */
1028 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1029 	    NULL, sc->sc_dev.dv_xname, "txsstall");
1030 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1031 	    NULL, sc->sc_dev.dv_xname, "txdstall");
1032 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1033 	    NULL, sc->sc_dev.dv_xname, "txforceintr");
1034 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1035 	    NULL, sc->sc_dev.dv_xname, "txdintr");
1036 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1037 	    NULL, sc->sc_dev.dv_xname, "txiintr");
1038 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1039 	    NULL, sc->sc_dev.dv_xname, "rxintr");
1040 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1041 	    NULL, sc->sc_dev.dv_xname, "hiberr");
1042 #ifdef DP83820
1043 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1044 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
1045 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1046 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
1047 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1048 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
1049 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1050 	    NULL, sc->sc_dev.dv_xname, "txipsum");
1051 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1052 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
1053 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1054 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
1055 #endif /* DP83820 */
1056 #endif /* SIP_EVENT_COUNTERS */
1057 
1058 	/*
1059 	 * Make sure the interface is shutdown during reboot.
1060 	 */
1061 	sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
1062 	if (sc->sc_sdhook == NULL)
1063 		printf("%s: WARNING: unable to establish shutdown hook\n",
1064 		    sc->sc_dev.dv_xname);
1065 	return;
1066 
1067 	/*
1068 	 * Free any resources we've allocated during the failed attach
1069 	 * attempt.  Do this in reverse order and fall through.
1070 	 */
1071  fail_5:
1072 	for (i = 0; i < SIP_NRXDESC; i++) {
1073 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1074 			bus_dmamap_destroy(sc->sc_dmat,
1075 			    sc->sc_rxsoft[i].rxs_dmamap);
1076 	}
1077  fail_4:
1078 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
1079 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
1080 			bus_dmamap_destroy(sc->sc_dmat,
1081 			    sc->sc_txsoft[i].txs_dmamap);
1082 	}
1083 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1084  fail_3:
1085 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1086  fail_2:
1087 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1088 	    sizeof(struct sip_control_data));
1089  fail_1:
1090 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1091  fail_0:
1092 	return;
1093 }
1094 
1095 /*
1096  * sip_shutdown:
1097  *
1098  *	Make sure the interface is stopped at reboot time.
1099  */
1100 void
1101 SIP_DECL(shutdown)(void *arg)
1102 {
1103 	struct sip_softc *sc = arg;
1104 
1105 	SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
1106 }
1107 
1108 /*
1109  * sip_start:		[ifnet interface function]
1110  *
1111  *	Start packet transmission on the interface.
1112  */
1113 void
1114 SIP_DECL(start)(struct ifnet *ifp)
1115 {
1116 	struct sip_softc *sc = ifp->if_softc;
1117 	struct mbuf *m0;
1118 #ifndef DP83820
1119 	struct mbuf *m;
1120 #endif
1121 	struct sip_txsoft *txs;
1122 	bus_dmamap_t dmamap;
1123 	int error, nexttx, lasttx, seg;
1124 	int ofree = sc->sc_txfree;
1125 #if 0
1126 	int firsttx = sc->sc_txnext;
1127 #endif
1128 #ifdef DP83820
1129 	struct m_tag *mtag;
1130 	u_int32_t extsts;
1131 #endif
1132 
1133 	/*
1134 	 * If we've been told to pause, don't transmit any more packets.
1135 	 */
1136 	if (sc->sc_flags & SIPF_PAUSED)
1137 		ifp->if_flags |= IFF_OACTIVE;
1138 
1139 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1140 		return;
1141 
1142 	/*
1143 	 * Loop through the send queue, setting up transmit descriptors
1144 	 * until we drain the queue, or use up all available transmit
1145 	 * descriptors.
1146 	 */
1147 	for (;;) {
1148 		/* Get a work queue entry. */
1149 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1150 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1151 			break;
1152 		}
1153 
1154 		/*
1155 		 * Grab a packet off the queue.
1156 		 */
1157 		IFQ_POLL(&ifp->if_snd, m0);
1158 		if (m0 == NULL)
1159 			break;
1160 #ifndef DP83820
1161 		m = NULL;
1162 #endif
1163 
1164 		dmamap = txs->txs_dmamap;
1165 
1166 #ifdef DP83820
1167 		/*
1168 		 * Load the DMA map.  If this fails, the packet either
1169 		 * didn't fit in the allotted number of segments, or we
1170 		 * were short on resources.  For the too-many-segments
1171 		 * case, we simply report an error and drop the packet,
1172 		 * since we can't sanely copy a jumbo packet to a single
1173 		 * buffer.
1174 		 */
1175 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1176 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1177 		if (error) {
1178 			if (error == EFBIG) {
1179 				printf("%s: Tx packet consumes too many "
1180 				    "DMA segments, dropping...\n",
1181 				    sc->sc_dev.dv_xname);
1182 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1183 				m_freem(m0);
1184 				continue;
1185 			}
1186 			/*
1187 			 * Short on resources, just stop for now.
1188 			 */
1189 			break;
1190 		}
1191 #else /* DP83820 */
1192 		/*
1193 		 * Load the DMA map.  If this fails, the packet either
1194 		 * didn't fit in the alloted number of segments, or we
1195 		 * were short on resources.  In this case, we'll copy
1196 		 * and try again.
1197 		 */
1198 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1199 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1200 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1201 			if (m == NULL) {
1202 				printf("%s: unable to allocate Tx mbuf\n",
1203 				    sc->sc_dev.dv_xname);
1204 				break;
1205 			}
1206 			if (m0->m_pkthdr.len > MHLEN) {
1207 				MCLGET(m, M_DONTWAIT);
1208 				if ((m->m_flags & M_EXT) == 0) {
1209 					printf("%s: unable to allocate Tx "
1210 					    "cluster\n", sc->sc_dev.dv_xname);
1211 					m_freem(m);
1212 					break;
1213 				}
1214 			}
1215 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1216 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1217 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1218 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1219 			if (error) {
1220 				printf("%s: unable to load Tx buffer, "
1221 				    "error = %d\n", sc->sc_dev.dv_xname, error);
1222 				break;
1223 			}
1224 		}
1225 #endif /* DP83820 */
1226 
1227 		/*
1228 		 * Ensure we have enough descriptors free to describe
1229 		 * the packet.  Note, we always reserve one descriptor
1230 		 * at the end of the ring as a termination point, to
1231 		 * prevent wrap-around.
1232 		 */
1233 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1234 			/*
1235 			 * Not enough free descriptors to transmit this
1236 			 * packet.  We haven't committed anything yet,
1237 			 * so just unload the DMA map, put the packet
1238 			 * back on the queue, and punt.  Notify the upper
1239 			 * layer that there are not more slots left.
1240 			 *
1241 			 * XXX We could allocate an mbuf and copy, but
1242 			 * XXX is it worth it?
1243 			 */
1244 			ifp->if_flags |= IFF_OACTIVE;
1245 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1246 #ifndef DP83820
1247 			if (m != NULL)
1248 				m_freem(m);
1249 #endif
1250 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1251 			break;
1252 		}
1253 
1254 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1255 #ifndef DP83820
1256 		if (m != NULL) {
1257 			m_freem(m0);
1258 			m0 = m;
1259 		}
1260 #endif
1261 
1262 		/*
1263 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1264 		 */
1265 
1266 		/* Sync the DMA map. */
1267 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1268 		    BUS_DMASYNC_PREWRITE);
1269 
1270 		/*
1271 		 * Initialize the transmit descriptors.
1272 		 */
1273 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1274 		     seg < dmamap->dm_nsegs;
1275 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
1276 			/*
1277 			 * If this is the first descriptor we're
1278 			 * enqueueing, don't set the OWN bit just
1279 			 * yet.  That could cause a race condition.
1280 			 * We'll do it below.
1281 			 */
1282 			sc->sc_txdescs[nexttx].sipd_bufptr =
1283 			    htole32(dmamap->dm_segs[seg].ds_addr);
1284 			sc->sc_txdescs[nexttx].sipd_cmdsts =
1285 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1286 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1287 #ifdef DP83820
1288 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
1289 #endif /* DP83820 */
1290 			lasttx = nexttx;
1291 		}
1292 
1293 		/* Clear the MORE bit on the last segment. */
1294 		sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1295 
1296 		/*
1297 		 * If we're in the interrupt delay window, delay the
1298 		 * interrupt.
1299 		 */
1300 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1301 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1302 			sc->sc_txdescs[lasttx].sipd_cmdsts |=
1303 			    htole32(CMDSTS_INTR);
1304 			sc->sc_txwin = 0;
1305 		}
1306 
1307 #ifdef DP83820
1308 		/*
1309 		 * If VLANs are enabled and the packet has a VLAN tag, set
1310 		 * up the descriptor to encapsulate the packet for us.
1311 		 *
1312 		 * This apparently has to be on the last descriptor of
1313 		 * the packet.
1314 		 */
1315 		if (sc->sc_ethercom.ec_nvlans != 0 &&
1316 		    (mtag = m_tag_find(m0, PACKET_TAG_VLAN, NULL)) != NULL) {
1317 			sc->sc_txdescs[lasttx].sipd_extsts |=
1318 			    htole32(EXTSTS_VPKT |
1319 				    (*(u_int *)(mtag + 1) & EXTSTS_VTCI));
1320 		}
1321 
1322 		/*
1323 		 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1324 		 * checksumming, set up the descriptor to do this work
1325 		 * for us.
1326 		 *
1327 		 * This apparently has to be on the first descriptor of
1328 		 * the packet.
1329 		 *
1330 		 * Byte-swap constants so the compiler can optimize.
1331 		 */
1332 		extsts = 0;
1333 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1334 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
1335 			SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1336 			extsts |= htole32(EXTSTS_IPPKT);
1337 		}
1338 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1339 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
1340 			SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1341 			extsts |= htole32(EXTSTS_TCPPKT);
1342 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1343 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
1344 			SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1345 			extsts |= htole32(EXTSTS_UDPPKT);
1346 		}
1347 		sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1348 #endif /* DP83820 */
1349 
1350 		/* Sync the descriptors we're using. */
1351 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1352 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1353 
1354 		/*
1355 		 * The entire packet is set up.  Give the first descrptor
1356 		 * to the chip now.
1357 		 */
1358 		sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
1359 		    htole32(CMDSTS_OWN);
1360 		SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
1361 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1362 
1363 		/*
1364 		 * Store a pointer to the packet so we can free it later,
1365 		 * and remember what txdirty will be once the packet is
1366 		 * done.
1367 		 */
1368 		txs->txs_mbuf = m0;
1369 		txs->txs_firstdesc = sc->sc_txnext;
1370 		txs->txs_lastdesc = lasttx;
1371 
1372 		/* Advance the tx pointer. */
1373 		sc->sc_txfree -= dmamap->dm_nsegs;
1374 		sc->sc_txnext = nexttx;
1375 
1376 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1377 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1378 
1379 #if NBPFILTER > 0
1380 		/*
1381 		 * Pass the packet to any BPF listeners.
1382 		 */
1383 		if (ifp->if_bpf)
1384 			bpf_mtap(ifp->if_bpf, m0);
1385 #endif /* NBPFILTER > 0 */
1386 	}
1387 
1388 	if (txs == NULL || sc->sc_txfree == 0) {
1389 		/* No more slots left; notify upper layer. */
1390 		ifp->if_flags |= IFF_OACTIVE;
1391 	}
1392 
1393 	if (sc->sc_txfree != ofree) {
1394 		/*
1395 		 * Start the transmit process.  Note, the manual says
1396 		 * that if there are no pending transmissions in the
1397 		 * chip's internal queue (indicated by TXE being clear),
1398 		 * then the driver software must set the TXDP to the
1399 		 * first descriptor to be transmitted.  However, if we
1400 		 * do this, it causes serious performance degredation on
1401 		 * the DP83820 under load, not setting TXDP doesn't seem
1402 		 * to adversely affect the SiS 900 or DP83815.
1403 		 *
1404 		 * Well, I guess it wouldn't be the first time a manual
1405 		 * has lied -- and they could be speaking of the NULL-
1406 		 * terminated descriptor list case, rather than OWN-
1407 		 * terminated rings.
1408 		 */
1409 #if 0
1410 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1411 		     CR_TXE) == 0) {
1412 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1413 			    SIP_CDTXADDR(sc, firsttx));
1414 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1415 		}
1416 #else
1417 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1418 #endif
1419 
1420 		/* Set a watchdog timer in case the chip flakes out. */
1421 		ifp->if_timer = 5;
1422 	}
1423 }
1424 
1425 /*
1426  * sip_watchdog:	[ifnet interface function]
1427  *
1428  *	Watchdog timer handler.
1429  */
1430 void
1431 SIP_DECL(watchdog)(struct ifnet *ifp)
1432 {
1433 	struct sip_softc *sc = ifp->if_softc;
1434 
1435 	/*
1436 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1437 	 * If we get a timeout, try and sweep up transmit descriptors.
1438 	 * If we manage to sweep them all up, ignore the lack of
1439 	 * interrupt.
1440 	 */
1441 	SIP_DECL(txintr)(sc);
1442 
1443 	if (sc->sc_txfree != SIP_NTXDESC) {
1444 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1445 		ifp->if_oerrors++;
1446 
1447 		/* Reset the interface. */
1448 		(void) SIP_DECL(init)(ifp);
1449 	} else if (ifp->if_flags & IFF_DEBUG)
1450 		printf("%s: recovered from device timeout\n",
1451 		    sc->sc_dev.dv_xname);
1452 
1453 	/* Try to get more packets going. */
1454 	SIP_DECL(start)(ifp);
1455 }
1456 
1457 /*
1458  * sip_ioctl:		[ifnet interface function]
1459  *
1460  *	Handle control requests from the operator.
1461  */
1462 int
1463 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1464 {
1465 	struct sip_softc *sc = ifp->if_softc;
1466 	struct ifreq *ifr = (struct ifreq *)data;
1467 	int s, error;
1468 
1469 	s = splnet();
1470 
1471 	switch (cmd) {
1472 	case SIOCSIFMEDIA:
1473 	case SIOCGIFMEDIA:
1474 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1475 		break;
1476 
1477 	default:
1478 		error = ether_ioctl(ifp, cmd, data);
1479 		if (error == ENETRESET) {
1480 			/*
1481 			 * Multicast list has changed; set the hardware filter
1482 			 * accordingly.
1483 			 */
1484 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1485 			error = 0;
1486 		}
1487 		break;
1488 	}
1489 
1490 	/* Try to get more packets going. */
1491 	SIP_DECL(start)(ifp);
1492 
1493 	splx(s);
1494 	return (error);
1495 }
1496 
1497 /*
1498  * sip_intr:
1499  *
1500  *	Interrupt service routine.
1501  */
1502 int
1503 SIP_DECL(intr)(void *arg)
1504 {
1505 	struct sip_softc *sc = arg;
1506 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1507 	u_int32_t isr;
1508 	int handled = 0;
1509 
1510 	for (;;) {
1511 		/* Reading clears interrupt. */
1512 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1513 		if ((isr & sc->sc_imr) == 0)
1514 			break;
1515 
1516 #if NRND > 0
1517 		if (RND_ENABLED(&sc->rnd_source))
1518 			rnd_add_uint32(&sc->rnd_source, isr);
1519 #endif
1520 
1521 		handled = 1;
1522 
1523 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1524 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1525 
1526 			/* Grab any new packets. */
1527 			SIP_DECL(rxintr)(sc);
1528 
1529 			if (isr & ISR_RXORN) {
1530 				printf("%s: receive FIFO overrun\n",
1531 				    sc->sc_dev.dv_xname);
1532 
1533 				/* XXX adjust rx_drain_thresh? */
1534 			}
1535 
1536 			if (isr & ISR_RXIDLE) {
1537 				printf("%s: receive ring overrun\n",
1538 				    sc->sc_dev.dv_xname);
1539 
1540 				/* Get the receive process going again. */
1541 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1542 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1543 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1544 				    SIP_CR, CR_RXE);
1545 			}
1546 		}
1547 
1548 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1549 #ifdef SIP_EVENT_COUNTERS
1550 			if (isr & ISR_TXDESC)
1551 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1552 			else if (isr & ISR_TXIDLE)
1553 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1554 #endif
1555 
1556 			/* Sweep up transmit descriptors. */
1557 			SIP_DECL(txintr)(sc);
1558 
1559 			if (isr & ISR_TXURN) {
1560 				u_int32_t thresh;
1561 
1562 				printf("%s: transmit FIFO underrun",
1563 				    sc->sc_dev.dv_xname);
1564 
1565 				thresh = sc->sc_tx_drain_thresh + 1;
1566 				if (thresh <= TXCFG_DRTH &&
1567 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
1568 				     (sc->sc_tx_fill_thresh * 32))) {
1569 					printf("; increasing Tx drain "
1570 					    "threshold to %u bytes\n",
1571 					    thresh * 32);
1572 					sc->sc_tx_drain_thresh = thresh;
1573 					(void) SIP_DECL(init)(ifp);
1574 				} else {
1575 					(void) SIP_DECL(init)(ifp);
1576 					printf("\n");
1577 				}
1578 			}
1579 		}
1580 
1581 #if !defined(DP83820)
1582 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1583 			if (isr & ISR_PAUSE_ST) {
1584 				sc->sc_flags |= SIPF_PAUSED;
1585 				ifp->if_flags |= IFF_OACTIVE;
1586 			}
1587 			if (isr & ISR_PAUSE_END) {
1588 				sc->sc_flags &= ~SIPF_PAUSED;
1589 				ifp->if_flags &= ~IFF_OACTIVE;
1590 			}
1591 		}
1592 #endif /* ! DP83820 */
1593 
1594 		if (isr & ISR_HIBERR) {
1595 			int want_init = 0;
1596 
1597 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1598 
1599 #define	PRINTERR(bit, str)						\
1600 			do {						\
1601 				if ((isr & (bit)) != 0) {		\
1602 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
1603 						printf("%s: %s\n",	\
1604 						    sc->sc_dev.dv_xname, str); \
1605 					want_init = 1;			\
1606 				}					\
1607 			} while (/*CONSTCOND*/0)
1608 
1609 			PRINTERR(ISR_DPERR, "parity error");
1610 			PRINTERR(ISR_SSERR, "system error");
1611 			PRINTERR(ISR_RMABT, "master abort");
1612 			PRINTERR(ISR_RTABT, "target abort");
1613 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1614 			/*
1615 			 * Ignore:
1616 			 *	Tx reset complete
1617 			 *	Rx reset complete
1618 			 */
1619 			if (want_init)
1620 				(void) SIP_DECL(init)(ifp);
1621 #undef PRINTERR
1622 		}
1623 	}
1624 
1625 	/* Try to get more packets going. */
1626 	SIP_DECL(start)(ifp);
1627 
1628 	return (handled);
1629 }
1630 
1631 /*
1632  * sip_txintr:
1633  *
1634  *	Helper; handle transmit interrupts.
1635  */
1636 void
1637 SIP_DECL(txintr)(struct sip_softc *sc)
1638 {
1639 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1640 	struct sip_txsoft *txs;
1641 	u_int32_t cmdsts;
1642 
1643 	if ((sc->sc_flags & SIPF_PAUSED) == 0)
1644 		ifp->if_flags &= ~IFF_OACTIVE;
1645 
1646 	/*
1647 	 * Go through our Tx list and free mbufs for those
1648 	 * frames which have been transmitted.
1649 	 */
1650 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1651 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1652 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1653 
1654 		cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1655 		if (cmdsts & CMDSTS_OWN)
1656 			break;
1657 
1658 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1659 
1660 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1661 
1662 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1663 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1664 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1665 		m_freem(txs->txs_mbuf);
1666 		txs->txs_mbuf = NULL;
1667 
1668 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1669 
1670 		/*
1671 		 * Check for errors and collisions.
1672 		 */
1673 		if (cmdsts &
1674 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1675 			ifp->if_oerrors++;
1676 			if (cmdsts & CMDSTS_Tx_EC)
1677 				ifp->if_collisions += 16;
1678 			if (ifp->if_flags & IFF_DEBUG) {
1679 				if (cmdsts & CMDSTS_Tx_ED)
1680 					printf("%s: excessive deferral\n",
1681 					    sc->sc_dev.dv_xname);
1682 				if (cmdsts & CMDSTS_Tx_EC)
1683 					printf("%s: excessive collisions\n",
1684 					    sc->sc_dev.dv_xname);
1685 			}
1686 		} else {
1687 			/* Packet was transmitted successfully. */
1688 			ifp->if_opackets++;
1689 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1690 		}
1691 	}
1692 
1693 	/*
1694 	 * If there are no more pending transmissions, cancel the watchdog
1695 	 * timer.
1696 	 */
1697 	if (txs == NULL) {
1698 		ifp->if_timer = 0;
1699 		sc->sc_txwin = 0;
1700 	}
1701 }
1702 
1703 #if defined(DP83820)
1704 /*
1705  * sip_rxintr:
1706  *
1707  *	Helper; handle receive interrupts.
1708  */
1709 void
1710 SIP_DECL(rxintr)(struct sip_softc *sc)
1711 {
1712 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1713 	struct sip_rxsoft *rxs;
1714 	struct mbuf *m, *tailm;
1715 	u_int32_t cmdsts, extsts;
1716 	int i, len;
1717 
1718 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1719 		rxs = &sc->sc_rxsoft[i];
1720 
1721 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1722 
1723 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1724 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1725 
1726 		/*
1727 		 * NOTE: OWN is set if owned by _consumer_.  We're the
1728 		 * consumer of the receive ring, so if the bit is clear,
1729 		 * we have processed all of the packets.
1730 		 */
1731 		if ((cmdsts & CMDSTS_OWN) == 0) {
1732 			/*
1733 			 * We have processed all of the receive buffers.
1734 			 */
1735 			break;
1736 		}
1737 
1738 		if (__predict_false(sc->sc_rxdiscard)) {
1739 			SIP_INIT_RXDESC(sc, i);
1740 			if ((cmdsts & CMDSTS_MORE) == 0) {
1741 				/* Reset our state. */
1742 				sc->sc_rxdiscard = 0;
1743 			}
1744 			continue;
1745 		}
1746 
1747 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1748 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1749 
1750 		m = rxs->rxs_mbuf;
1751 
1752 		/*
1753 		 * Add a new receive buffer to the ring.
1754 		 */
1755 		if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1756 			/*
1757 			 * Failed, throw away what we've done so
1758 			 * far, and discard the rest of the packet.
1759 			 */
1760 			ifp->if_ierrors++;
1761 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1762 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1763 			SIP_INIT_RXDESC(sc, i);
1764 			if (cmdsts & CMDSTS_MORE)
1765 				sc->sc_rxdiscard = 1;
1766 			if (sc->sc_rxhead != NULL)
1767 				m_freem(sc->sc_rxhead);
1768 			SIP_RXCHAIN_RESET(sc);
1769 			continue;
1770 		}
1771 
1772 		SIP_RXCHAIN_LINK(sc, m);
1773 
1774 		/*
1775 		 * If this is not the end of the packet, keep
1776 		 * looking.
1777 		 */
1778 		if (cmdsts & CMDSTS_MORE) {
1779 			sc->sc_rxlen += m->m_len;
1780 			continue;
1781 		}
1782 
1783 		/*
1784 		 * Okay, we have the entire packet now...
1785 		 */
1786 		*sc->sc_rxtailp = NULL;
1787 		m = sc->sc_rxhead;
1788 		tailm = sc->sc_rxtail;
1789 
1790 		SIP_RXCHAIN_RESET(sc);
1791 
1792 		/*
1793 		 * If an error occurred, update stats and drop the packet.
1794 		 */
1795 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1796 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1797 			ifp->if_ierrors++;
1798 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1799 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
1800 				/* Receive overrun handled elsewhere. */
1801 				printf("%s: receive descriptor error\n",
1802 				    sc->sc_dev.dv_xname);
1803 			}
1804 #define	PRINTERR(bit, str)						\
1805 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
1806 			    (cmdsts & (bit)) != 0)			\
1807 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1808 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1809 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1810 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1811 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1812 #undef PRINTERR
1813 			m_freem(m);
1814 			continue;
1815 		}
1816 
1817 		/*
1818 		 * No errors.
1819 		 *
1820 		 * Note, the DP83820 includes the CRC with
1821 		 * every packet.
1822 		 */
1823 		len = CMDSTS_SIZE(cmdsts);
1824 		tailm->m_len = len - sc->sc_rxlen;
1825 
1826 		/*
1827 		 * If the packet is small enough to fit in a
1828 		 * single header mbuf, allocate one and copy
1829 		 * the data into it.  This greatly reduces
1830 		 * memory consumption when we receive lots
1831 		 * of small packets.
1832 		 */
1833 		if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1834 			struct mbuf *nm;
1835 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
1836 			if (nm == NULL) {
1837 				ifp->if_ierrors++;
1838 				m_freem(m);
1839 				continue;
1840 			}
1841 			nm->m_data += 2;
1842 			nm->m_pkthdr.len = nm->m_len = len;
1843 			m_copydata(m, 0, len, mtod(nm, caddr_t));
1844 			m_freem(m);
1845 			m = nm;
1846 		}
1847 #ifndef __NO_STRICT_ALIGNMENT
1848 		else {
1849 			/*
1850 			 * The DP83820's receive buffers must be 4-byte
1851 			 * aligned.  But this means that the data after
1852 			 * the Ethernet header is misaligned.  To compensate,
1853 			 * we have artificially shortened the buffer size
1854 			 * in the descriptor, and we do an overlapping copy
1855 			 * of the data two bytes further in (in the first
1856 			 * buffer of the chain only).
1857 			 */
1858 			memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1859 			    m->m_len);
1860 			m->m_data += 2;
1861 		}
1862 #endif /* ! __NO_STRICT_ALIGNMENT */
1863 
1864 		/*
1865 		 * If VLANs are enabled, VLAN packets have been unwrapped
1866 		 * for us.  Associate the tag with the packet.
1867 		 */
1868 		if (sc->sc_ethercom.ec_nvlans != 0 &&
1869 		    (extsts & EXTSTS_VPKT) != 0) {
1870 			struct m_tag *vtag;
1871 
1872 			vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
1873 			    M_NOWAIT);
1874 			if (vtag == NULL) {
1875 				ifp->if_ierrors++;
1876 				printf("%s: unable to allocate VLAN tag\n",
1877 				    sc->sc_dev.dv_xname);
1878 				m_freem(m);
1879 				continue;
1880 			}
1881 
1882 			*(u_int *)(vtag + 1) = ntohs(extsts & EXTSTS_VTCI);
1883 		}
1884 
1885 		/*
1886 		 * Set the incoming checksum information for the
1887 		 * packet.
1888 		 */
1889 		if ((extsts & EXTSTS_IPPKT) != 0) {
1890 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1891 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1892 			if (extsts & EXTSTS_Rx_IPERR)
1893 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1894 			if (extsts & EXTSTS_TCPPKT) {
1895 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1896 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1897 				if (extsts & EXTSTS_Rx_TCPERR)
1898 					m->m_pkthdr.csum_flags |=
1899 					    M_CSUM_TCP_UDP_BAD;
1900 			} else if (extsts & EXTSTS_UDPPKT) {
1901 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1902 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1903 				if (extsts & EXTSTS_Rx_UDPERR)
1904 					m->m_pkthdr.csum_flags |=
1905 					    M_CSUM_TCP_UDP_BAD;
1906 			}
1907 		}
1908 
1909 		ifp->if_ipackets++;
1910 		m->m_flags |= M_HASFCS;
1911 		m->m_pkthdr.rcvif = ifp;
1912 		m->m_pkthdr.len = len;
1913 
1914 #if NBPFILTER > 0
1915 		/*
1916 		 * Pass this up to any BPF listeners, but only
1917 		 * pass if up the stack if it's for us.
1918 		 */
1919 		if (ifp->if_bpf)
1920 			bpf_mtap(ifp->if_bpf, m);
1921 #endif /* NBPFILTER > 0 */
1922 
1923 		/* Pass it on. */
1924 		(*ifp->if_input)(ifp, m);
1925 	}
1926 
1927 	/* Update the receive pointer. */
1928 	sc->sc_rxptr = i;
1929 }
1930 #else /* ! DP83820 */
1931 /*
1932  * sip_rxintr:
1933  *
1934  *	Helper; handle receive interrupts.
1935  */
1936 void
1937 SIP_DECL(rxintr)(struct sip_softc *sc)
1938 {
1939 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1940 	struct sip_rxsoft *rxs;
1941 	struct mbuf *m;
1942 	u_int32_t cmdsts;
1943 	int i, len;
1944 
1945 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1946 		rxs = &sc->sc_rxsoft[i];
1947 
1948 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1949 
1950 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1951 
1952 		/*
1953 		 * NOTE: OWN is set if owned by _consumer_.  We're the
1954 		 * consumer of the receive ring, so if the bit is clear,
1955 		 * we have processed all of the packets.
1956 		 */
1957 		if ((cmdsts & CMDSTS_OWN) == 0) {
1958 			/*
1959 			 * We have processed all of the receive buffers.
1960 			 */
1961 			break;
1962 		}
1963 
1964 		/*
1965 		 * If any collisions were seen on the wire, count one.
1966 		 */
1967 		if (cmdsts & CMDSTS_Rx_COL)
1968 			ifp->if_collisions++;
1969 
1970 		/*
1971 		 * If an error occurred, update stats, clear the status
1972 		 * word, and leave the packet buffer in place.  It will
1973 		 * simply be reused the next time the ring comes around.
1974 		 */
1975 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1976 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1977 			ifp->if_ierrors++;
1978 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1979 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
1980 				/* Receive overrun handled elsewhere. */
1981 				printf("%s: receive descriptor error\n",
1982 				    sc->sc_dev.dv_xname);
1983 			}
1984 #define	PRINTERR(bit, str)						\
1985 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
1986 			    (cmdsts & (bit)) != 0)			\
1987 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1988 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1989 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1990 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1991 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1992 #undef PRINTERR
1993 			SIP_INIT_RXDESC(sc, i);
1994 			continue;
1995 		}
1996 
1997 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1998 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1999 
2000 		/*
2001 		 * No errors; receive the packet.  Note, the SiS 900
2002 		 * includes the CRC with every packet.
2003 		 */
2004 		len = CMDSTS_SIZE(cmdsts);
2005 
2006 #ifdef __NO_STRICT_ALIGNMENT
2007 		/*
2008 		 * If the packet is small enough to fit in a
2009 		 * single header mbuf, allocate one and copy
2010 		 * the data into it.  This greatly reduces
2011 		 * memory consumption when we receive lots
2012 		 * of small packets.
2013 		 *
2014 		 * Otherwise, we add a new buffer to the receive
2015 		 * chain.  If this fails, we drop the packet and
2016 		 * recycle the old buffer.
2017 		 */
2018 		if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
2019 			MGETHDR(m, M_DONTWAIT, MT_DATA);
2020 			if (m == NULL)
2021 				goto dropit;
2022 			memcpy(mtod(m, caddr_t),
2023 			    mtod(rxs->rxs_mbuf, caddr_t), len);
2024 			SIP_INIT_RXDESC(sc, i);
2025 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2026 			    rxs->rxs_dmamap->dm_mapsize,
2027 			    BUS_DMASYNC_PREREAD);
2028 		} else {
2029 			m = rxs->rxs_mbuf;
2030 			if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
2031  dropit:
2032 				ifp->if_ierrors++;
2033 				SIP_INIT_RXDESC(sc, i);
2034 				bus_dmamap_sync(sc->sc_dmat,
2035 				    rxs->rxs_dmamap, 0,
2036 				    rxs->rxs_dmamap->dm_mapsize,
2037 				    BUS_DMASYNC_PREREAD);
2038 				continue;
2039 			}
2040 		}
2041 #else
2042 		/*
2043 		 * The SiS 900's receive buffers must be 4-byte aligned.
2044 		 * But this means that the data after the Ethernet header
2045 		 * is misaligned.  We must allocate a new buffer and
2046 		 * copy the data, shifted forward 2 bytes.
2047 		 */
2048 		MGETHDR(m, M_DONTWAIT, MT_DATA);
2049 		if (m == NULL) {
2050  dropit:
2051 			ifp->if_ierrors++;
2052 			SIP_INIT_RXDESC(sc, i);
2053 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2054 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2055 			continue;
2056 		}
2057 		if (len > (MHLEN - 2)) {
2058 			MCLGET(m, M_DONTWAIT);
2059 			if ((m->m_flags & M_EXT) == 0) {
2060 				m_freem(m);
2061 				goto dropit;
2062 			}
2063 		}
2064 		m->m_data += 2;
2065 
2066 		/*
2067 		 * Note that we use clusters for incoming frames, so the
2068 		 * buffer is virtually contiguous.
2069 		 */
2070 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
2071 
2072 		/* Allow the receive descriptor to continue using its mbuf. */
2073 		SIP_INIT_RXDESC(sc, i);
2074 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2075 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2076 #endif /* __NO_STRICT_ALIGNMENT */
2077 
2078 		ifp->if_ipackets++;
2079 		m->m_flags |= M_HASFCS;
2080 		m->m_pkthdr.rcvif = ifp;
2081 		m->m_pkthdr.len = m->m_len = len;
2082 
2083 #if NBPFILTER > 0
2084 		/*
2085 		 * Pass this up to any BPF listeners, but only
2086 		 * pass if up the stack if it's for us.
2087 		 */
2088 		if (ifp->if_bpf)
2089 			bpf_mtap(ifp->if_bpf, m);
2090 #endif /* NBPFILTER > 0 */
2091 
2092 		/* Pass it on. */
2093 		(*ifp->if_input)(ifp, m);
2094 	}
2095 
2096 	/* Update the receive pointer. */
2097 	sc->sc_rxptr = i;
2098 }
2099 #endif /* DP83820 */
2100 
2101 /*
2102  * sip_tick:
2103  *
2104  *	One second timer, used to tick the MII.
2105  */
2106 void
2107 SIP_DECL(tick)(void *arg)
2108 {
2109 	struct sip_softc *sc = arg;
2110 	int s;
2111 
2112 	s = splnet();
2113 	mii_tick(&sc->sc_mii);
2114 	splx(s);
2115 
2116 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2117 }
2118 
2119 /*
2120  * sip_reset:
2121  *
2122  *	Perform a soft reset on the SiS 900.
2123  */
2124 void
2125 SIP_DECL(reset)(struct sip_softc *sc)
2126 {
2127 	bus_space_tag_t st = sc->sc_st;
2128 	bus_space_handle_t sh = sc->sc_sh;
2129 	int i;
2130 
2131 	bus_space_write_4(st, sh, SIP_IER, 0);
2132 	bus_space_write_4(st, sh, SIP_IMR, 0);
2133 	bus_space_write_4(st, sh, SIP_RFCR, 0);
2134 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
2135 
2136 	for (i = 0; i < SIP_TIMEOUT; i++) {
2137 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2138 			break;
2139 		delay(2);
2140 	}
2141 
2142 	if (i == SIP_TIMEOUT)
2143 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2144 
2145 	delay(1000);
2146 
2147 #ifdef DP83820
2148 	/*
2149 	 * Set the general purpose I/O bits.  Do it here in case we
2150 	 * need to have GPIO set up to talk to the media interface.
2151 	 */
2152 	bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2153 	delay(1000);
2154 #endif /* DP83820 */
2155 }
2156 
2157 /*
2158  * sip_init:		[ ifnet interface function ]
2159  *
2160  *	Initialize the interface.  Must be called at splnet().
2161  */
2162 int
2163 SIP_DECL(init)(struct ifnet *ifp)
2164 {
2165 	struct sip_softc *sc = ifp->if_softc;
2166 	bus_space_tag_t st = sc->sc_st;
2167 	bus_space_handle_t sh = sc->sc_sh;
2168 	struct sip_txsoft *txs;
2169 	struct sip_rxsoft *rxs;
2170 	struct sip_desc *sipd;
2171 #if defined(DP83820)
2172 	u_int32_t reg;
2173 #endif
2174 	int i, error = 0;
2175 
2176 	/*
2177 	 * Cancel any pending I/O.
2178 	 */
2179 	SIP_DECL(stop)(ifp, 0);
2180 
2181 	/*
2182 	 * Reset the chip to a known state.
2183 	 */
2184 	SIP_DECL(reset)(sc);
2185 
2186 #if !defined(DP83820)
2187 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2188 		/*
2189 		 * DP83815 manual, page 78:
2190 		 *    4.4 Recommended Registers Configuration
2191 		 *    For optimum performance of the DP83815, version noted
2192 		 *    as DP83815CVNG (SRR = 203h), the listed register
2193 		 *    modifications must be followed in sequence...
2194 		 *
2195 		 * It's not clear if this should be 302h or 203h because that
2196 		 * chip name is listed as SRR 302h in the description of the
2197 		 * SRR register.  However, my revision 302h DP83815 on the
2198 		 * Netgear FA311 purchased in 02/2001 needs these settings
2199 		 * to avoid tons of errors in AcceptPerfectMatch (non-
2200 		 * IFF_PROMISC) mode.  I do not know if other revisions need
2201 		 * this set or not.  [briggs -- 09 March 2001]
2202 		 *
2203 		 * Note that only the low-order 12 bits of 0xe4 are documented
2204 		 * and that this sets reserved bits in that register.
2205 		 */
2206 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
2207 
2208 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
2209 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
2210 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
2211 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
2212 
2213 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
2214 	}
2215 #endif /* ! DP83820 */
2216 
2217 	/*
2218 	 * Initialize the transmit descriptor ring.
2219 	 */
2220 	for (i = 0; i < SIP_NTXDESC; i++) {
2221 		sipd = &sc->sc_txdescs[i];
2222 		memset(sipd, 0, sizeof(struct sip_desc));
2223 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2224 	}
2225 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2226 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2227 	sc->sc_txfree = SIP_NTXDESC;
2228 	sc->sc_txnext = 0;
2229 	sc->sc_txwin = 0;
2230 
2231 	/*
2232 	 * Initialize the transmit job descriptors.
2233 	 */
2234 	SIMPLEQ_INIT(&sc->sc_txfreeq);
2235 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
2236 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
2237 		txs = &sc->sc_txsoft[i];
2238 		txs->txs_mbuf = NULL;
2239 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2240 	}
2241 
2242 	/*
2243 	 * Initialize the receive descriptor and receive job
2244 	 * descriptor rings.
2245 	 */
2246 	for (i = 0; i < SIP_NRXDESC; i++) {
2247 		rxs = &sc->sc_rxsoft[i];
2248 		if (rxs->rxs_mbuf == NULL) {
2249 			if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2250 				printf("%s: unable to allocate or map rx "
2251 				    "buffer %d, error = %d\n",
2252 				    sc->sc_dev.dv_xname, i, error);
2253 				/*
2254 				 * XXX Should attempt to run with fewer receive
2255 				 * XXX buffers instead of just failing.
2256 				 */
2257 				SIP_DECL(rxdrain)(sc);
2258 				goto out;
2259 			}
2260 		} else
2261 			SIP_INIT_RXDESC(sc, i);
2262 	}
2263 	sc->sc_rxptr = 0;
2264 #ifdef DP83820
2265 	sc->sc_rxdiscard = 0;
2266 	SIP_RXCHAIN_RESET(sc);
2267 #endif /* DP83820 */
2268 
2269 	/*
2270 	 * Set the configuration register; it's already initialized
2271 	 * in sip_attach().
2272 	 */
2273 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2274 
2275 	/*
2276 	 * Initialize the prototype TXCFG register.
2277 	 */
2278 #if defined(DP83820)
2279 	sc->sc_txcfg = TXCFG_MXDMA_512;
2280 	sc->sc_rxcfg = RXCFG_MXDMA_512;
2281 #else
2282 	if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2283 	     SIP_SIS900_REV(sc, SIS_REV_960) ||
2284 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2285 	    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & CFG_EDBMASTEN)) {
2286 		sc->sc_txcfg = TXCFG_MXDMA_64;
2287 		sc->sc_rxcfg = RXCFG_MXDMA_64;
2288 	} else {
2289 		sc->sc_txcfg = TXCFG_MXDMA_512;
2290 		sc->sc_rxcfg = RXCFG_MXDMA_512;
2291 	}
2292 #endif /* DP83820 */
2293 
2294 	sc->sc_txcfg |= TXCFG_ATP |
2295 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2296 	    sc->sc_tx_drain_thresh;
2297 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2298 
2299 	/*
2300 	 * Initialize the receive drain threshold if we have never
2301 	 * done so.
2302 	 */
2303 	if (sc->sc_rx_drain_thresh == 0) {
2304 		/*
2305 		 * XXX This value should be tuned.  This is set to the
2306 		 * maximum of 248 bytes, and we may be able to improve
2307 		 * performance by decreasing it (although we should never
2308 		 * set this value lower than 2; 14 bytes are required to
2309 		 * filter the packet).
2310 		 */
2311 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2312 	}
2313 
2314 	/*
2315 	 * Initialize the prototype RXCFG register.
2316 	 */
2317 	sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2318 #ifndef DP83820
2319 	/*
2320 	 * Accept packets >1518 bytes (including FCS) so we can handle
2321 	 * 802.1q-tagged frames properly.
2322 	 */
2323 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2324 		sc->sc_rxcfg |= RXCFG_ALP;
2325 #endif
2326 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2327 
2328 #ifdef DP83820
2329 	/*
2330 	 * Initialize the VLAN/IP receive control register.
2331 	 * We enable checksum computation on all incoming
2332 	 * packets, and do not reject packets w/ bad checksums.
2333 	 */
2334 	reg = 0;
2335 	if (ifp->if_capenable &
2336 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2337 		reg |= VRCR_IPEN;
2338 	if (sc->sc_ethercom.ec_nvlans != 0)
2339 		reg |= VRCR_VTDEN|VRCR_VTREN;
2340 	bus_space_write_4(st, sh, SIP_VRCR, reg);
2341 
2342 	/*
2343 	 * Initialize the VLAN/IP transmit control register.
2344 	 * We enable outgoing checksum computation on a
2345 	 * per-packet basis.
2346 	 */
2347 	reg = 0;
2348 	if (ifp->if_capenable &
2349 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2350 		reg |= VTCR_PPCHK;
2351 	if (sc->sc_ethercom.ec_nvlans != 0)
2352 		reg |= VTCR_VPPTI;
2353 	bus_space_write_4(st, sh, SIP_VTCR, reg);
2354 
2355 	/*
2356 	 * If we're using VLANs, initialize the VLAN data register.
2357 	 * To understand why we bswap the VLAN Ethertype, see section
2358 	 * 4.2.36 of the DP83820 manual.
2359 	 */
2360 	if (sc->sc_ethercom.ec_nvlans != 0)
2361 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2362 #endif /* DP83820 */
2363 
2364 	/*
2365 	 * Give the transmit and receive rings to the chip.
2366 	 */
2367 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2368 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2369 
2370 	/*
2371 	 * Initialize the interrupt mask.
2372 	 */
2373 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2374 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2375 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2376 
2377 	/* Set up the receive filter. */
2378 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2379 
2380 	/*
2381 	 * Set the current media.  Do this after initializing the prototype
2382 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2383 	 * control.
2384 	 */
2385 	mii_mediachg(&sc->sc_mii);
2386 
2387 	/*
2388 	 * Enable interrupts.
2389 	 */
2390 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
2391 
2392 	/*
2393 	 * Start the transmit and receive processes.
2394 	 */
2395 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2396 
2397 	/*
2398 	 * Start the one second MII clock.
2399 	 */
2400 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2401 
2402 	/*
2403 	 * ...all done!
2404 	 */
2405 	ifp->if_flags |= IFF_RUNNING;
2406 	ifp->if_flags &= ~IFF_OACTIVE;
2407 
2408  out:
2409 	if (error)
2410 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2411 	return (error);
2412 }
2413 
2414 /*
2415  * sip_drain:
2416  *
2417  *	Drain the receive queue.
2418  */
2419 void
2420 SIP_DECL(rxdrain)(struct sip_softc *sc)
2421 {
2422 	struct sip_rxsoft *rxs;
2423 	int i;
2424 
2425 	for (i = 0; i < SIP_NRXDESC; i++) {
2426 		rxs = &sc->sc_rxsoft[i];
2427 		if (rxs->rxs_mbuf != NULL) {
2428 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2429 			m_freem(rxs->rxs_mbuf);
2430 			rxs->rxs_mbuf = NULL;
2431 		}
2432 	}
2433 }
2434 
2435 /*
2436  * sip_stop:		[ ifnet interface function ]
2437  *
2438  *	Stop transmission on the interface.
2439  */
2440 void
2441 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2442 {
2443 	struct sip_softc *sc = ifp->if_softc;
2444 	bus_space_tag_t st = sc->sc_st;
2445 	bus_space_handle_t sh = sc->sc_sh;
2446 	struct sip_txsoft *txs;
2447 	u_int32_t cmdsts = 0;		/* DEBUG */
2448 
2449 	/*
2450 	 * Stop the one second clock.
2451 	 */
2452 	callout_stop(&sc->sc_tick_ch);
2453 
2454 	/* Down the MII. */
2455 	mii_down(&sc->sc_mii);
2456 
2457 	/*
2458 	 * Disable interrupts.
2459 	 */
2460 	bus_space_write_4(st, sh, SIP_IER, 0);
2461 
2462 	/*
2463 	 * Stop receiver and transmitter.
2464 	 */
2465 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2466 
2467 	/*
2468 	 * Release any queued transmit buffers.
2469 	 */
2470 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2471 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2472 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2473 		    (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2474 		     CMDSTS_INTR) == 0)
2475 			printf("%s: sip_stop: last descriptor does not "
2476 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
2477 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2478 #ifdef DIAGNOSTIC
2479 		if (txs->txs_mbuf == NULL) {
2480 			printf("%s: dirty txsoft with no mbuf chain\n",
2481 			    sc->sc_dev.dv_xname);
2482 			panic("sip_stop");
2483 		}
2484 #endif
2485 		cmdsts |=		/* DEBUG */
2486 		    le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2487 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2488 		m_freem(txs->txs_mbuf);
2489 		txs->txs_mbuf = NULL;
2490 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2491 	}
2492 
2493 	if (disable)
2494 		SIP_DECL(rxdrain)(sc);
2495 
2496 	/*
2497 	 * Mark the interface down and cancel the watchdog timer.
2498 	 */
2499 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2500 	ifp->if_timer = 0;
2501 
2502 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2503 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2504 		printf("%s: sip_stop: no INTR bits set in dirty tx "
2505 		    "descriptors\n", sc->sc_dev.dv_xname);
2506 }
2507 
2508 /*
2509  * sip_read_eeprom:
2510  *
2511  *	Read data from the serial EEPROM.
2512  */
2513 void
2514 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2515     u_int16_t *data)
2516 {
2517 	bus_space_tag_t st = sc->sc_st;
2518 	bus_space_handle_t sh = sc->sc_sh;
2519 	u_int16_t reg;
2520 	int i, x;
2521 
2522 	for (i = 0; i < wordcnt; i++) {
2523 		/* Send CHIP SELECT. */
2524 		reg = EROMAR_EECS;
2525 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
2526 
2527 		/* Shift in the READ opcode. */
2528 		for (x = 3; x > 0; x--) {
2529 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2530 				reg |= EROMAR_EEDI;
2531 			else
2532 				reg &= ~EROMAR_EEDI;
2533 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2534 			bus_space_write_4(st, sh, SIP_EROMAR,
2535 			    reg | EROMAR_EESK);
2536 			delay(4);
2537 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2538 			delay(4);
2539 		}
2540 
2541 		/* Shift in address. */
2542 		for (x = 6; x > 0; x--) {
2543 			if ((word + i) & (1 << (x - 1)))
2544 				reg |= EROMAR_EEDI;
2545 			else
2546 				reg &= ~EROMAR_EEDI;
2547 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2548 			bus_space_write_4(st, sh, SIP_EROMAR,
2549 			    reg | EROMAR_EESK);
2550 			delay(4);
2551 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2552 			delay(4);
2553 		}
2554 
2555 		/* Shift out data. */
2556 		reg = EROMAR_EECS;
2557 		data[i] = 0;
2558 		for (x = 16; x > 0; x--) {
2559 			bus_space_write_4(st, sh, SIP_EROMAR,
2560 			    reg | EROMAR_EESK);
2561 			delay(4);
2562 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2563 				data[i] |= (1 << (x - 1));
2564 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2565 			delay(4);
2566 		}
2567 
2568 		/* Clear CHIP SELECT. */
2569 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
2570 		delay(4);
2571 	}
2572 }
2573 
2574 /*
2575  * sip_add_rxbuf:
2576  *
2577  *	Add a receive buffer to the indicated descriptor.
2578  */
2579 int
2580 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2581 {
2582 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2583 	struct mbuf *m;
2584 	int error;
2585 
2586 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2587 	if (m == NULL)
2588 		return (ENOBUFS);
2589 
2590 	MCLGET(m, M_DONTWAIT);
2591 	if ((m->m_flags & M_EXT) == 0) {
2592 		m_freem(m);
2593 		return (ENOBUFS);
2594 	}
2595 
2596 #if defined(DP83820)
2597 	m->m_len = SIP_RXBUF_LEN;
2598 #endif /* DP83820 */
2599 
2600 	if (rxs->rxs_mbuf != NULL)
2601 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2602 
2603 	rxs->rxs_mbuf = m;
2604 
2605 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2606 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2607 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2608 	if (error) {
2609 		printf("%s: can't load rx DMA map %d, error = %d\n",
2610 		    sc->sc_dev.dv_xname, idx, error);
2611 		panic("sip_add_rxbuf");		/* XXX */
2612 	}
2613 
2614 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2615 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2616 
2617 	SIP_INIT_RXDESC(sc, idx);
2618 
2619 	return (0);
2620 }
2621 
2622 #if !defined(DP83820)
2623 /*
2624  * sip_sis900_set_filter:
2625  *
2626  *	Set up the receive filter.
2627  */
2628 void
2629 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2630 {
2631 	bus_space_tag_t st = sc->sc_st;
2632 	bus_space_handle_t sh = sc->sc_sh;
2633 	struct ethercom *ec = &sc->sc_ethercom;
2634 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2635 	struct ether_multi *enm;
2636 	u_int8_t *cp;
2637 	struct ether_multistep step;
2638 	u_int32_t crc, mchash[16];
2639 
2640 	/*
2641 	 * Initialize the prototype RFCR.
2642 	 */
2643 	sc->sc_rfcr = RFCR_RFEN;
2644 	if (ifp->if_flags & IFF_BROADCAST)
2645 		sc->sc_rfcr |= RFCR_AAB;
2646 	if (ifp->if_flags & IFF_PROMISC) {
2647 		sc->sc_rfcr |= RFCR_AAP;
2648 		goto allmulti;
2649 	}
2650 
2651 	/*
2652 	 * Set up the multicast address filter by passing all multicast
2653 	 * addresses through a CRC generator, and then using the high-order
2654 	 * 6 bits as an index into the 128 bit multicast hash table (only
2655 	 * the lower 16 bits of each 32 bit multicast hash register are
2656 	 * valid).  The high order bits select the register, while the
2657 	 * rest of the bits select the bit within the register.
2658 	 */
2659 
2660 	memset(mchash, 0, sizeof(mchash));
2661 
2662 	ETHER_FIRST_MULTI(step, ec, enm);
2663 	while (enm != NULL) {
2664 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2665 			/*
2666 			 * We must listen to a range of multicast addresses.
2667 			 * For now, just accept all multicasts, rather than
2668 			 * trying to set only those filter bits needed to match
2669 			 * the range.  (At this time, the only use of address
2670 			 * ranges is for IP multicast routing, for which the
2671 			 * range is big enough to require all bits set.)
2672 			 */
2673 			goto allmulti;
2674 		}
2675 
2676 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2677 
2678 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2679 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
2680 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
2681 			/* Just want the 8 most significant bits. */
2682 			crc >>= 24;
2683 		} else {
2684 			/* Just want the 7 most significant bits. */
2685 			crc >>= 25;
2686 		}
2687 
2688 		/* Set the corresponding bit in the hash table. */
2689 		mchash[crc >> 4] |= 1 << (crc & 0xf);
2690 
2691 		ETHER_NEXT_MULTI(step, enm);
2692 	}
2693 
2694 	ifp->if_flags &= ~IFF_ALLMULTI;
2695 	goto setit;
2696 
2697  allmulti:
2698 	ifp->if_flags |= IFF_ALLMULTI;
2699 	sc->sc_rfcr |= RFCR_AAM;
2700 
2701  setit:
2702 #define	FILTER_EMIT(addr, data)						\
2703 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
2704 	delay(1);							\
2705 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
2706 	delay(1)
2707 
2708 	/*
2709 	 * Disable receive filter, and program the node address.
2710 	 */
2711 	cp = LLADDR(ifp->if_sadl);
2712 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2713 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2714 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2715 
2716 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2717 		/*
2718 		 * Program the multicast hash table.
2719 		 */
2720 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2721 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2722 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2723 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2724 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2725 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2726 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2727 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2728 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2729 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
2730 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
2731 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2732 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2733 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2734 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2735 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2736 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2737 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2738 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2739 		}
2740 	}
2741 #undef FILTER_EMIT
2742 
2743 	/*
2744 	 * Re-enable the receiver filter.
2745 	 */
2746 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2747 }
2748 #endif /* ! DP83820 */
2749 
2750 /*
2751  * sip_dp83815_set_filter:
2752  *
2753  *	Set up the receive filter.
2754  */
2755 void
2756 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2757 {
2758 	bus_space_tag_t st = sc->sc_st;
2759 	bus_space_handle_t sh = sc->sc_sh;
2760 	struct ethercom *ec = &sc->sc_ethercom;
2761 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2762 	struct ether_multi *enm;
2763 	u_int8_t *cp;
2764 	struct ether_multistep step;
2765 	u_int32_t crc, hash, slot, bit;
2766 #ifdef DP83820
2767 #define	MCHASH_NWORDS	128
2768 #else
2769 #define	MCHASH_NWORDS	32
2770 #endif /* DP83820 */
2771 	u_int16_t mchash[MCHASH_NWORDS];
2772 	int i;
2773 
2774 	/*
2775 	 * Initialize the prototype RFCR.
2776 	 * Enable the receive filter, and accept on
2777 	 *    Perfect (destination address) Match
2778 	 * If IFF_BROADCAST, also accept all broadcast packets.
2779 	 * If IFF_PROMISC, accept all unicast packets (and later, set
2780 	 *    IFF_ALLMULTI and accept all multicast, too).
2781 	 */
2782 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2783 	if (ifp->if_flags & IFF_BROADCAST)
2784 		sc->sc_rfcr |= RFCR_AAB;
2785 	if (ifp->if_flags & IFF_PROMISC) {
2786 		sc->sc_rfcr |= RFCR_AAP;
2787 		goto allmulti;
2788 	}
2789 
2790 #ifdef DP83820
2791 	/*
2792 	 * Set up the DP83820 multicast address filter by passing all multicast
2793 	 * addresses through a CRC generator, and then using the high-order
2794 	 * 11 bits as an index into the 2048 bit multicast hash table.  The
2795 	 * high-order 7 bits select the slot, while the low-order 4 bits
2796 	 * select the bit within the slot.  Note that only the low 16-bits
2797 	 * of each filter word are used, and there are 128 filter words.
2798 	 */
2799 #else
2800 	/*
2801 	 * Set up the DP83815 multicast address filter by passing all multicast
2802 	 * addresses through a CRC generator, and then using the high-order
2803 	 * 9 bits as an index into the 512 bit multicast hash table.  The
2804 	 * high-order 5 bits select the slot, while the low-order 4 bits
2805 	 * select the bit within the slot.  Note that only the low 16-bits
2806 	 * of each filter word are used, and there are 32 filter words.
2807 	 */
2808 #endif /* DP83820 */
2809 
2810 	memset(mchash, 0, sizeof(mchash));
2811 
2812 	ifp->if_flags &= ~IFF_ALLMULTI;
2813 	ETHER_FIRST_MULTI(step, ec, enm);
2814 	if (enm == NULL)
2815 		goto setit;
2816 	while (enm != NULL) {
2817 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2818 			/*
2819 			 * We must listen to a range of multicast addresses.
2820 			 * For now, just accept all multicasts, rather than
2821 			 * trying to set only those filter bits needed to match
2822 			 * the range.  (At this time, the only use of address
2823 			 * ranges is for IP multicast routing, for which the
2824 			 * range is big enough to require all bits set.)
2825 			 */
2826 			goto allmulti;
2827 		}
2828 
2829 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2830 
2831 #ifdef DP83820
2832 		/* Just want the 11 most significant bits. */
2833 		hash = crc >> 21;
2834 #else
2835 		/* Just want the 9 most significant bits. */
2836 		hash = crc >> 23;
2837 #endif /* DP83820 */
2838 
2839 		slot = hash >> 4;
2840 		bit = hash & 0xf;
2841 
2842 		/* Set the corresponding bit in the hash table. */
2843 		mchash[slot] |= 1 << bit;
2844 
2845 		ETHER_NEXT_MULTI(step, enm);
2846 	}
2847 	sc->sc_rfcr |= RFCR_MHEN;
2848 	goto setit;
2849 
2850  allmulti:
2851 	ifp->if_flags |= IFF_ALLMULTI;
2852 	sc->sc_rfcr |= RFCR_AAM;
2853 
2854  setit:
2855 #define	FILTER_EMIT(addr, data)						\
2856 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
2857 	delay(1);							\
2858 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
2859 	delay(1)
2860 
2861 	/*
2862 	 * Disable receive filter, and program the node address.
2863 	 */
2864 	cp = LLADDR(ifp->if_sadl);
2865 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
2866 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
2867 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
2868 
2869 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2870 		/*
2871 		 * Program the multicast hash table.
2872 		 */
2873 		for (i = 0; i < MCHASH_NWORDS; i++) {
2874 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
2875 			    mchash[i]);
2876 		}
2877 	}
2878 #undef FILTER_EMIT
2879 #undef MCHASH_NWORDS
2880 
2881 	/*
2882 	 * Re-enable the receiver filter.
2883 	 */
2884 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2885 }
2886 
2887 #if defined(DP83820)
2888 /*
2889  * sip_dp83820_mii_readreg:	[mii interface function]
2890  *
2891  *	Read a PHY register on the MII of the DP83820.
2892  */
2893 int
2894 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
2895 {
2896 	struct sip_softc *sc = (void *) self;
2897 
2898 	if (sc->sc_cfg & CFG_TBI_EN) {
2899 		bus_addr_t tbireg;
2900 		int rv;
2901 
2902 		if (phy != 0)
2903 			return (0);
2904 
2905 		switch (reg) {
2906 		case MII_BMCR:		tbireg = SIP_TBICR; break;
2907 		case MII_BMSR:		tbireg = SIP_TBISR; break;
2908 		case MII_ANAR:		tbireg = SIP_TANAR; break;
2909 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
2910 		case MII_ANER:		tbireg = SIP_TANER; break;
2911 		case MII_EXTSR:
2912 			/*
2913 			 * Don't even bother reading the TESR register.
2914 			 * The manual documents that the device has
2915 			 * 1000baseX full/half capability, but the
2916 			 * register itself seems read back 0 on some
2917 			 * boards.  Just hard-code the result.
2918 			 */
2919 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
2920 
2921 		default:
2922 			return (0);
2923 		}
2924 
2925 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
2926 		if (tbireg == SIP_TBISR) {
2927 			/* LINK and ACOMP are switched! */
2928 			int val = rv;
2929 
2930 			rv = 0;
2931 			if (val & TBISR_MR_LINK_STATUS)
2932 				rv |= BMSR_LINK;
2933 			if (val & TBISR_MR_AN_COMPLETE)
2934 				rv |= BMSR_ACOMP;
2935 
2936 			/*
2937 			 * The manual claims this register reads back 0
2938 			 * on hard and soft reset.  But we want to let
2939 			 * the gentbi driver know that we support auto-
2940 			 * negotiation, so hard-code this bit in the
2941 			 * result.
2942 			 */
2943 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
2944 		}
2945 
2946 		return (rv);
2947 	}
2948 
2949 	return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
2950 	    phy, reg));
2951 }
2952 
2953 /*
2954  * sip_dp83820_mii_writereg:	[mii interface function]
2955  *
2956  *	Write a PHY register on the MII of the DP83820.
2957  */
2958 void
2959 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
2960 {
2961 	struct sip_softc *sc = (void *) self;
2962 
2963 	if (sc->sc_cfg & CFG_TBI_EN) {
2964 		bus_addr_t tbireg;
2965 
2966 		if (phy != 0)
2967 			return;
2968 
2969 		switch (reg) {
2970 		case MII_BMCR:		tbireg = SIP_TBICR; break;
2971 		case MII_ANAR:		tbireg = SIP_TANAR; break;
2972 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
2973 		default:
2974 			return;
2975 		}
2976 
2977 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
2978 		return;
2979 	}
2980 
2981 	mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
2982 	    phy, reg, val);
2983 }
2984 
2985 /*
2986  * sip_dp83815_mii_statchg:	[mii interface function]
2987  *
2988  *	Callback from MII layer when media changes.
2989  */
2990 void
2991 SIP_DECL(dp83820_mii_statchg)(struct device *self)
2992 {
2993 	struct sip_softc *sc = (struct sip_softc *) self;
2994 	u_int32_t cfg;
2995 
2996 	/*
2997 	 * Update TXCFG for full-duplex operation.
2998 	 */
2999 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3000 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3001 	else
3002 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3003 
3004 	/*
3005 	 * Update RXCFG for full-duplex or loopback.
3006 	 */
3007 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3008 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3009 		sc->sc_rxcfg |= RXCFG_ATX;
3010 	else
3011 		sc->sc_rxcfg &= ~RXCFG_ATX;
3012 
3013 	/*
3014 	 * Update CFG for MII/GMII.
3015 	 */
3016 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3017 		cfg = sc->sc_cfg | CFG_MODE_1000;
3018 	else
3019 		cfg = sc->sc_cfg;
3020 
3021 	/*
3022 	 * XXX 802.3x flow control.
3023 	 */
3024 
3025 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3026 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3027 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3028 }
3029 #endif /* ! DP83820 */
3030 
3031 /*
3032  * sip_mii_bitbang_read: [mii bit-bang interface function]
3033  *
3034  *	Read the MII serial port for the MII bit-bang module.
3035  */
3036 u_int32_t
3037 SIP_DECL(mii_bitbang_read)(struct device *self)
3038 {
3039 	struct sip_softc *sc = (void *) self;
3040 
3041 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3042 }
3043 
3044 /*
3045  * sip_mii_bitbang_write: [mii big-bang interface function]
3046  *
3047  *	Write the MII serial port for the MII bit-bang module.
3048  */
3049 void
3050 SIP_DECL(mii_bitbang_write)(struct device *self, u_int32_t val)
3051 {
3052 	struct sip_softc *sc = (void *) self;
3053 
3054 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3055 }
3056 
3057 #ifndef DP83820
3058 /*
3059  * sip_sis900_mii_readreg:	[mii interface function]
3060  *
3061  *	Read a PHY register on the MII.
3062  */
3063 int
3064 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
3065 {
3066 	struct sip_softc *sc = (struct sip_softc *) self;
3067 	u_int32_t enphy;
3068 
3069 	/*
3070 	 * The PHY of recent SiS chipsets is accessed through bitbang
3071 	 * operations.
3072 	 */
3073 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
3074 	    sc->sc_rev >= SIS_REV_635)
3075 		return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
3076 		    phy, reg));
3077 
3078 	/*
3079 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3080 	 * MII address 0.
3081 	 */
3082 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3083 		return (0);
3084 
3085 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3086 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3087 	    ENPHY_RWCMD | ENPHY_ACCESS);
3088 	do {
3089 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3090 	} while (enphy & ENPHY_ACCESS);
3091 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3092 }
3093 
3094 /*
3095  * sip_sis900_mii_writereg:	[mii interface function]
3096  *
3097  *	Write a PHY register on the MII.
3098  */
3099 void
3100 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
3101 {
3102 	struct sip_softc *sc = (struct sip_softc *) self;
3103 	u_int32_t enphy;
3104 
3105 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
3106 	    sc->sc_rev >= SIS_REV_635) {
3107 		mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
3108 		    phy, reg, val);
3109 		return;
3110 	}
3111 
3112 	/*
3113 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3114 	 * MII address 0.
3115 	 */
3116 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3117 		return;
3118 
3119 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3120 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3121 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3122 	do {
3123 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3124 	} while (enphy & ENPHY_ACCESS);
3125 }
3126 
3127 /*
3128  * sip_sis900_mii_statchg:	[mii interface function]
3129  *
3130  *	Callback from MII layer when media changes.
3131  */
3132 void
3133 SIP_DECL(sis900_mii_statchg)(struct device *self)
3134 {
3135 	struct sip_softc *sc = (struct sip_softc *) self;
3136 	u_int32_t flowctl;
3137 
3138 	/*
3139 	 * Update TXCFG for full-duplex operation.
3140 	 */
3141 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3142 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3143 	else
3144 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3145 
3146 	/*
3147 	 * Update RXCFG for full-duplex or loopback.
3148 	 */
3149 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3150 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3151 		sc->sc_rxcfg |= RXCFG_ATX;
3152 	else
3153 		sc->sc_rxcfg &= ~RXCFG_ATX;
3154 
3155 	/*
3156 	 * Update IMR for use of 802.3x flow control.
3157 	 */
3158 	if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
3159 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3160 		flowctl = FLOWCTL_FLOWEN;
3161 	} else {
3162 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3163 		flowctl = 0;
3164 	}
3165 
3166 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3167 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3168 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3169 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3170 }
3171 
3172 /*
3173  * sip_dp83815_mii_readreg:	[mii interface function]
3174  *
3175  *	Read a PHY register on the MII.
3176  */
3177 int
3178 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
3179 {
3180 	struct sip_softc *sc = (struct sip_softc *) self;
3181 	u_int32_t val;
3182 
3183 	/*
3184 	 * The DP83815 only has an internal PHY.  Only allow
3185 	 * MII address 0.
3186 	 */
3187 	if (phy != 0)
3188 		return (0);
3189 
3190 	/*
3191 	 * Apparently, after a reset, the DP83815 can take a while
3192 	 * to respond.  During this recovery period, the BMSR returns
3193 	 * a value of 0.  Catch this -- it's not supposed to happen
3194 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3195 	 * PHY to come back to life.
3196 	 *
3197 	 * This works out because the BMSR is the first register
3198 	 * read during the PHY probe process.
3199 	 */
3200 	do {
3201 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3202 	} while (reg == MII_BMSR && val == 0);
3203 
3204 	return (val & 0xffff);
3205 }
3206 
3207 /*
3208  * sip_dp83815_mii_writereg:	[mii interface function]
3209  *
3210  *	Write a PHY register to the MII.
3211  */
3212 void
3213 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
3214 {
3215 	struct sip_softc *sc = (struct sip_softc *) self;
3216 
3217 	/*
3218 	 * The DP83815 only has an internal PHY.  Only allow
3219 	 * MII address 0.
3220 	 */
3221 	if (phy != 0)
3222 		return;
3223 
3224 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3225 }
3226 
3227 /*
3228  * sip_dp83815_mii_statchg:	[mii interface function]
3229  *
3230  *	Callback from MII layer when media changes.
3231  */
3232 void
3233 SIP_DECL(dp83815_mii_statchg)(struct device *self)
3234 {
3235 	struct sip_softc *sc = (struct sip_softc *) self;
3236 
3237 	/*
3238 	 * Update TXCFG for full-duplex operation.
3239 	 */
3240 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3241 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3242 	else
3243 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3244 
3245 	/*
3246 	 * Update RXCFG for full-duplex or loopback.
3247 	 */
3248 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3249 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3250 		sc->sc_rxcfg |= RXCFG_ATX;
3251 	else
3252 		sc->sc_rxcfg &= ~RXCFG_ATX;
3253 
3254 	/*
3255 	 * XXX 802.3x flow control.
3256 	 */
3257 
3258 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3259 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3260 
3261 	/*
3262 	 * Some DP83815s experience problems when used with short
3263 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
3264 	 * sequence adjusts the DSP's signal attenuation to fix the
3265 	 * problem.
3266 	 */
3267 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3268 		uint32_t reg;
3269 
3270 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3271 
3272 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3273 		reg &= 0x0fff;
3274 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3275 		delay(100);
3276 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3277 		reg &= 0x00ff;
3278 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3279 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3280 			    0x00e8);
3281 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3282 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3283 			    reg | 0x20);
3284 		}
3285 
3286 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3287 	}
3288 }
3289 #endif /* DP83820 */
3290 
3291 #if defined(DP83820)
3292 void
3293 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
3294     const struct pci_attach_args *pa, u_int8_t *enaddr)
3295 {
3296 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3297 	u_int8_t cksum, *e, match;
3298 	int i;
3299 
3300 	/*
3301 	 * EEPROM data format for the DP83820 can be found in
3302 	 * the DP83820 manual, section 4.2.4.
3303 	 */
3304 
3305 	SIP_DECL(read_eeprom)(sc, 0,
3306 	    sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
3307 
3308 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3309 	match = ~(match - 1);
3310 
3311 	cksum = 0x55;
3312 	e = (u_int8_t *) eeprom_data;
3313 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3314 		cksum += *e++;
3315 
3316 	if (cksum != match)
3317 		printf("%s: Checksum (%x) mismatch (%x)",
3318 		    sc->sc_dev.dv_xname, cksum, match);
3319 
3320 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3321 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3322 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3323 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3324 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3325 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3326 }
3327 #else /* ! DP83820 */
3328 static void
3329 SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc)
3330 {
3331 	int i;
3332 
3333 	/*
3334 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
3335 	 * a reason, but I don't know it.
3336 	 */
3337 	for (i = 0; i < 10; i++)
3338 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3339 }
3340 
3341 void
3342 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
3343     const struct pci_attach_args *pa, u_int8_t *enaddr)
3344 {
3345 	u_int16_t myea[ETHER_ADDR_LEN / 2];
3346 
3347 	switch (sc->sc_rev) {
3348 	case SIS_REV_630S:
3349 	case SIS_REV_630E:
3350 	case SIS_REV_630EA1:
3351 	case SIS_REV_630ET:
3352 	case SIS_REV_635:
3353 		/*
3354 		 * The MAC address for the on-board Ethernet of
3355 		 * the SiS 630 chipset is in the NVRAM.  Kick
3356 		 * the chip into re-loading it from NVRAM, and
3357 		 * read the MAC address out of the filter registers.
3358 		 */
3359 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3360 
3361 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3362 		    RFCR_RFADDR_NODE0);
3363 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3364 		    0xffff;
3365 
3366 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3367 		    RFCR_RFADDR_NODE2);
3368 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3369 		    0xffff;
3370 
3371 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3372 		    RFCR_RFADDR_NODE4);
3373 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3374 		    0xffff;
3375 		break;
3376 
3377 	case SIS_REV_960:
3378 		{
3379 #define	SIS_SET_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3380 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3381 
3382 #define	SIS_CLR_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3383 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3384 
3385 			int waittime, i;
3386 
3387 			/* Allow to read EEPROM from LAN. It is shared
3388 			 * between a 1394 controller and the NIC and each
3389 			 * time we access it, we need to set SIS_EECMD_REQ.
3390 			 */
3391 			SIS_SET_EROMAR(sc, EROMAR_REQ);
3392 
3393 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3394 				/* Force EEPROM to idle state. */
3395 
3396 				/*
3397 				 * XXX-cube This is ugly.  I'll look for docs about it.
3398 				 */
3399 				SIS_SET_EROMAR(sc, EROMAR_EECS);
3400 				SIP_DECL(sis900_eeprom_delay)(sc);
3401 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3402 					SIS_SET_EROMAR(sc, EROMAR_EESK);
3403 					SIP_DECL(sis900_eeprom_delay)(sc);
3404 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
3405 					SIP_DECL(sis900_eeprom_delay)(sc);
3406 				}
3407 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
3408 				SIP_DECL(sis900_eeprom_delay)(sc);
3409 				bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3410 
3411 				if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3412 					SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3413 					    sizeof(myea) / sizeof(myea[0]), myea);
3414 					break;
3415 				}
3416 				DELAY(1);
3417 			}
3418 
3419 			/*
3420 			 * Set SIS_EECTL_CLK to high, so a other master
3421 			 * can operate on the i2c bus.
3422 			 */
3423 			SIS_SET_EROMAR(sc, EROMAR_EESK);
3424 
3425 			/* Refuse EEPROM access by LAN */
3426 			SIS_SET_EROMAR(sc, EROMAR_DONE);
3427 		} break;
3428 
3429 	default:
3430 		SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3431 		    sizeof(myea) / sizeof(myea[0]), myea);
3432 	}
3433 
3434 	enaddr[0] = myea[0] & 0xff;
3435 	enaddr[1] = myea[0] >> 8;
3436 	enaddr[2] = myea[1] & 0xff;
3437 	enaddr[3] = myea[1] >> 8;
3438 	enaddr[4] = myea[2] & 0xff;
3439 	enaddr[5] = myea[2] >> 8;
3440 }
3441 
3442 /* Table and macro to bit-reverse an octet. */
3443 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3444 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3445 
3446 void
3447 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3448     const struct pci_attach_args *pa, u_int8_t *enaddr)
3449 {
3450 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3451 	u_int8_t cksum, *e, match;
3452 	int i;
3453 
3454 	SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3455 	    sizeof(eeprom_data[0]), eeprom_data);
3456 
3457 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3458 	match = ~(match - 1);
3459 
3460 	cksum = 0x55;
3461 	e = (u_int8_t *) eeprom_data;
3462 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3463 		cksum += *e++;
3464 	}
3465 	if (cksum != match) {
3466 		printf("%s: Checksum (%x) mismatch (%x)",
3467 		    sc->sc_dev.dv_xname, cksum, match);
3468 	}
3469 
3470 	/*
3471 	 * Unrolled because it makes slightly more sense this way.
3472 	 * The DP83815 stores the MAC address in bit 0 of word 6
3473 	 * through bit 15 of word 8.
3474 	 */
3475 	ea = &eeprom_data[6];
3476 	enaddr[0] = ((*ea & 0x1) << 7);
3477 	ea++;
3478 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
3479 	enaddr[1] = ((*ea & 0x1FE) >> 1);
3480 	enaddr[2] = ((*ea & 0x1) << 7);
3481 	ea++;
3482 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
3483 	enaddr[3] = ((*ea & 0x1FE) >> 1);
3484 	enaddr[4] = ((*ea & 0x1) << 7);
3485 	ea++;
3486 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
3487 	enaddr[5] = ((*ea & 0x1FE) >> 1);
3488 
3489 	/*
3490 	 * In case that's not weird enough, we also need to reverse
3491 	 * the bits in each byte.  This all actually makes more sense
3492 	 * if you think about the EEPROM storage as an array of bits
3493 	 * being shifted into bytes, but that's not how we're looking
3494 	 * at it here...
3495 	 */
3496 	for (i = 0; i < 6 ;i++)
3497 		enaddr[i] = bbr(enaddr[i]);
3498 }
3499 #endif /* DP83820 */
3500 
3501 /*
3502  * sip_mediastatus:	[ifmedia interface function]
3503  *
3504  *	Get the current interface media status.
3505  */
3506 void
3507 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3508 {
3509 	struct sip_softc *sc = ifp->if_softc;
3510 
3511 	mii_pollstat(&sc->sc_mii);
3512 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
3513 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
3514 }
3515 
3516 /*
3517  * sip_mediachange:	[ifmedia interface function]
3518  *
3519  *	Set hardware to newly-selected media.
3520  */
3521 int
3522 SIP_DECL(mediachange)(struct ifnet *ifp)
3523 {
3524 	struct sip_softc *sc = ifp->if_softc;
3525 
3526 	if (ifp->if_flags & IFF_UP)
3527 		mii_mediachg(&sc->sc_mii);
3528 	return (0);
3529 }
3530