xref: /netbsd-src/sys/dev/pci/if_sip.c (revision cd22f25e6f6d1cc1f197fe8c5468a80f51d1c4e1)
1 /*	$NetBSD: if_sip.c,v 1.133 2008/04/28 20:23:55 martin Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1999 Network Computer, Inc.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of Network Computer, Inc. nor the names of its
45  *    contributors may be used to endorse or promote products derived
46  *    from this software without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
49  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
50  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
51  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
52  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
53  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
54  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
55  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
56  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
57  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
58  * POSSIBILITY OF SUCH DAMAGE.
59  */
60 
61 /*
62  * Device driver for the Silicon Integrated Systems SiS 900,
63  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
64  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
65  * controllers.
66  *
67  * Originally written to support the SiS 900 by Jason R. Thorpe for
68  * Network Computer, Inc.
69  *
70  * TODO:
71  *
72  *	- Reduce the Rx interrupt load.
73  */
74 
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.133 2008/04/28 20:23:55 martin Exp $");
77 
78 #include "bpfilter.h"
79 #include "rnd.h"
80 
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/callout.h>
84 #include <sys/mbuf.h>
85 #include <sys/malloc.h>
86 #include <sys/kernel.h>
87 #include <sys/socket.h>
88 #include <sys/ioctl.h>
89 #include <sys/errno.h>
90 #include <sys/device.h>
91 #include <sys/queue.h>
92 
93 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
94 
95 #if NRND > 0
96 #include <sys/rnd.h>
97 #endif
98 
99 #include <net/if.h>
100 #include <net/if_dl.h>
101 #include <net/if_media.h>
102 #include <net/if_ether.h>
103 
104 #if NBPFILTER > 0
105 #include <net/bpf.h>
106 #endif
107 
108 #include <sys/bus.h>
109 #include <sys/intr.h>
110 #include <machine/endian.h>
111 
112 #include <dev/mii/mii.h>
113 #include <dev/mii/miivar.h>
114 #include <dev/mii/mii_bitbang.h>
115 
116 #include <dev/pci/pcireg.h>
117 #include <dev/pci/pcivar.h>
118 #include <dev/pci/pcidevs.h>
119 
120 #include <dev/pci/if_sipreg.h>
121 
122 /*
123  * Transmit descriptor list size.  This is arbitrary, but allocate
124  * enough descriptors for 128 pending transmissions, and 8 segments
125  * per packet (64 for DP83820 for jumbo frames).
126  *
127  * This MUST work out to a power of 2.
128  */
129 #define	GSIP_NTXSEGS_ALLOC 16
130 #define	SIP_NTXSEGS_ALLOC 8
131 
132 #define	SIP_TXQUEUELEN		256
133 #define	MAX_SIP_NTXDESC	\
134     (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
135 
136 /*
137  * Receive descriptor list size.  We have one Rx buffer per incoming
138  * packet, so this logic is a little simpler.
139  *
140  * Actually, on the DP83820, we allow the packet to consume more than
141  * one buffer, in order to support jumbo Ethernet frames.  In that
142  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
143  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
144  * so we'd better be quick about handling receive interrupts.
145  */
146 #define	GSIP_NRXDESC		256
147 #define	SIP_NRXDESC		128
148 
149 #define	MAX_SIP_NRXDESC	MAX(GSIP_NRXDESC, SIP_NRXDESC)
150 
151 /*
152  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
153  * a single clump that maps to a single DMA segment to make several things
154  * easier.
155  */
156 struct sip_control_data {
157 	/*
158 	 * The transmit descriptors.
159 	 */
160 	struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
161 
162 	/*
163 	 * The receive descriptors.
164 	 */
165 	struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
166 };
167 
168 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
169 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
170 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
171 
172 /*
173  * Software state for transmit jobs.
174  */
175 struct sip_txsoft {
176 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
177 	bus_dmamap_t txs_dmamap;	/* our DMA map */
178 	int txs_firstdesc;		/* first descriptor in packet */
179 	int txs_lastdesc;		/* last descriptor in packet */
180 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
181 };
182 
183 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
184 
185 /*
186  * Software state for receive jobs.
187  */
188 struct sip_rxsoft {
189 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
190 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
191 };
192 
193 enum sip_attach_stage {
194 	  SIP_ATTACH_FIN = 0
195 	, SIP_ATTACH_CREATE_RXMAP
196 	, SIP_ATTACH_CREATE_TXMAP
197 	, SIP_ATTACH_LOAD_MAP
198 	, SIP_ATTACH_CREATE_MAP
199 	, SIP_ATTACH_MAP_MEM
200 	, SIP_ATTACH_ALLOC_MEM
201 	, SIP_ATTACH_INTR
202 	, SIP_ATTACH_MAP
203 };
204 
205 /*
206  * Software state per device.
207  */
208 struct sip_softc {
209 	struct device sc_dev;		/* generic device information */
210 	bus_space_tag_t sc_st;		/* bus space tag */
211 	bus_space_handle_t sc_sh;	/* bus space handle */
212 	bus_size_t sc_sz;		/* bus space size */
213 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
214 	pci_chipset_tag_t sc_pc;
215 	bus_dma_segment_t sc_seg;
216 	struct ethercom sc_ethercom;	/* ethernet common data */
217 
218 	const struct sip_product *sc_model; /* which model are we? */
219 	int sc_gigabit;			/* 1: 83820, 0: other */
220 	int sc_rev;			/* chip revision */
221 
222 	void *sc_ih;			/* interrupt cookie */
223 
224 	struct mii_data sc_mii;		/* MII/media information */
225 
226 	callout_t sc_tick_ch;		/* tick callout */
227 
228 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
229 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
230 
231 	/*
232 	 * Software state for transmit and receive descriptors.
233 	 */
234 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
235 	struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
236 
237 	/*
238 	 * Control data structures.
239 	 */
240 	struct sip_control_data *sc_control_data;
241 #define	sc_txdescs	sc_control_data->scd_txdescs
242 #define	sc_rxdescs	sc_control_data->scd_rxdescs
243 
244 #ifdef SIP_EVENT_COUNTERS
245 	/*
246 	 * Event counters.
247 	 */
248 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
249 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
250 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
251 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
252 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
253 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
254 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
255 	struct evcnt sc_ev_rxpause;	/* PAUSE received */
256 	/* DP83820 only */
257 	struct evcnt sc_ev_txpause;	/* PAUSE transmitted */
258 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
259 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
260 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
261 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
262 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
263 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
264 #endif /* SIP_EVENT_COUNTERS */
265 
266 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
267 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
268 	u_int32_t sc_imr;		/* prototype IMR register */
269 	u_int32_t sc_rfcr;		/* prototype RFCR register */
270 
271 	u_int32_t sc_cfg;		/* prototype CFG register */
272 
273 	u_int32_t sc_gpior;		/* prototype GPIOR register */
274 
275 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
276 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
277 
278 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
279 
280 	int	sc_flowflags;		/* 802.3x flow control flags */
281 	int	sc_rx_flow_thresh;	/* Rx FIFO threshold for flow control */
282 	int	sc_paused;		/* paused indication */
283 
284 	int	sc_txfree;		/* number of free Tx descriptors */
285 	int	sc_txnext;		/* next ready Tx descriptor */
286 	int	sc_txwin;		/* Tx descriptors since last intr */
287 
288 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
289 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
290 
291 	/* values of interface state at last init */
292 	struct {
293 		/* if_capenable */
294 		uint64_t	if_capenable;
295 		/* ec_capenable */
296 		int		ec_capenable;
297 		/* VLAN_ATTACHED */
298 		int		is_vlan;
299 	}	sc_prev;
300 
301 	short	sc_if_flags;
302 
303 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
304 	int	sc_rxdiscard;
305 	int	sc_rxlen;
306 	struct mbuf *sc_rxhead;
307 	struct mbuf *sc_rxtail;
308 	struct mbuf **sc_rxtailp;
309 
310 	int sc_ntxdesc;
311 	int sc_ntxdesc_mask;
312 
313 	int sc_nrxdesc_mask;
314 
315 	const struct sip_parm {
316 		const struct sip_regs {
317 			int r_rxcfg;
318 			int r_txcfg;
319 		} p_regs;
320 
321 		const struct sip_bits {
322 			uint32_t b_txcfg_mxdma_8;
323 			uint32_t b_txcfg_mxdma_16;
324 			uint32_t b_txcfg_mxdma_32;
325 			uint32_t b_txcfg_mxdma_64;
326 			uint32_t b_txcfg_mxdma_128;
327 			uint32_t b_txcfg_mxdma_256;
328 			uint32_t b_txcfg_mxdma_512;
329 			uint32_t b_txcfg_flth_mask;
330 			uint32_t b_txcfg_drth_mask;
331 
332 			uint32_t b_rxcfg_mxdma_8;
333 			uint32_t b_rxcfg_mxdma_16;
334 			uint32_t b_rxcfg_mxdma_32;
335 			uint32_t b_rxcfg_mxdma_64;
336 			uint32_t b_rxcfg_mxdma_128;
337 			uint32_t b_rxcfg_mxdma_256;
338 			uint32_t b_rxcfg_mxdma_512;
339 
340 			uint32_t b_isr_txrcmp;
341 			uint32_t b_isr_rxrcmp;
342 			uint32_t b_isr_dperr;
343 			uint32_t b_isr_sserr;
344 			uint32_t b_isr_rmabt;
345 			uint32_t b_isr_rtabt;
346 
347 			uint32_t b_cmdsts_size_mask;
348 		} p_bits;
349 		int		p_filtmem;
350 		int		p_rxbuf_len;
351 		bus_size_t	p_tx_dmamap_size;
352 		int		p_ntxsegs;
353 		int		p_ntxsegs_alloc;
354 		int		p_nrxdesc;
355 	} *sc_parm;
356 
357 	void (*sc_rxintr)(struct sip_softc *);
358 
359 #if NRND > 0
360 	rndsource_element_t rnd_source;	/* random source */
361 #endif
362 };
363 
364 #define	sc_bits	sc_parm->p_bits
365 #define	sc_regs	sc_parm->p_regs
366 
367 static const struct sip_parm sip_parm = {
368 	  .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
369 	, .p_rxbuf_len = MCLBYTES - 1	/* field width */
370 	, .p_tx_dmamap_size = MCLBYTES
371 	, .p_ntxsegs = 16
372 	, .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
373 	, .p_nrxdesc = SIP_NRXDESC
374 	, .p_bits = {
375 		  .b_txcfg_mxdma_8	= 0x00200000	/*       8 bytes */
376 		, .b_txcfg_mxdma_16	= 0x00300000	/*      16 bytes */
377 		, .b_txcfg_mxdma_32	= 0x00400000	/*      32 bytes */
378 		, .b_txcfg_mxdma_64	= 0x00500000	/*      64 bytes */
379 		, .b_txcfg_mxdma_128	= 0x00600000	/*     128 bytes */
380 		, .b_txcfg_mxdma_256	= 0x00700000	/*     256 bytes */
381 		, .b_txcfg_mxdma_512	= 0x00000000	/*     512 bytes */
382 		, .b_txcfg_flth_mask	= 0x00003f00	/* Tx fill threshold */
383 		, .b_txcfg_drth_mask	= 0x0000003f	/* Tx drain threshold */
384 
385 		, .b_rxcfg_mxdma_8	= 0x00200000	/*       8 bytes */
386 		, .b_rxcfg_mxdma_16	= 0x00300000	/*      16 bytes */
387 		, .b_rxcfg_mxdma_32	= 0x00400000	/*      32 bytes */
388 		, .b_rxcfg_mxdma_64	= 0x00500000	/*      64 bytes */
389 		, .b_rxcfg_mxdma_128	= 0x00600000	/*     128 bytes */
390 		, .b_rxcfg_mxdma_256	= 0x00700000	/*     256 bytes */
391 		, .b_rxcfg_mxdma_512	= 0x00000000	/*     512 bytes */
392 
393 		, .b_isr_txrcmp	= 0x02000000	/* transmit reset complete */
394 		, .b_isr_rxrcmp	= 0x01000000	/* receive reset complete */
395 		, .b_isr_dperr	= 0x00800000	/* detected parity error */
396 		, .b_isr_sserr	= 0x00400000	/* signalled system error */
397 		, .b_isr_rmabt	= 0x00200000	/* received master abort */
398 		, .b_isr_rtabt	= 0x00100000	/* received target abort */
399 		, .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
400 	}
401 	, .p_regs = {
402 		.r_rxcfg = OTHER_SIP_RXCFG,
403 		.r_txcfg = OTHER_SIP_TXCFG
404 	}
405 }, gsip_parm = {
406 	  .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
407 	, .p_rxbuf_len = MCLBYTES - 8
408 	, .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
409 	, .p_ntxsegs = 64
410 	, .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
411 	, .p_nrxdesc = GSIP_NRXDESC
412 	, .p_bits = {
413 		  .b_txcfg_mxdma_8	= 0x00100000	/*       8 bytes */
414 		, .b_txcfg_mxdma_16	= 0x00200000	/*      16 bytes */
415 		, .b_txcfg_mxdma_32	= 0x00300000	/*      32 bytes */
416 		, .b_txcfg_mxdma_64	= 0x00400000	/*      64 bytes */
417 		, .b_txcfg_mxdma_128	= 0x00500000	/*     128 bytes */
418 		, .b_txcfg_mxdma_256	= 0x00600000	/*     256 bytes */
419 		, .b_txcfg_mxdma_512	= 0x00700000	/*     512 bytes */
420 		, .b_txcfg_flth_mask	= 0x0000ff00	/* Fx fill threshold */
421 		, .b_txcfg_drth_mask	= 0x000000ff	/* Tx drain threshold */
422 
423 		, .b_rxcfg_mxdma_8	= 0x00100000	/*       8 bytes */
424 		, .b_rxcfg_mxdma_16	= 0x00200000	/*      16 bytes */
425 		, .b_rxcfg_mxdma_32	= 0x00300000	/*      32 bytes */
426 		, .b_rxcfg_mxdma_64	= 0x00400000	/*      64 bytes */
427 		, .b_rxcfg_mxdma_128	= 0x00500000	/*     128 bytes */
428 		, .b_rxcfg_mxdma_256	= 0x00600000	/*     256 bytes */
429 		, .b_rxcfg_mxdma_512	= 0x00700000	/*     512 bytes */
430 
431 		, .b_isr_txrcmp	= 0x00400000	/* transmit reset complete */
432 		, .b_isr_rxrcmp	= 0x00200000	/* receive reset complete */
433 		, .b_isr_dperr	= 0x00100000	/* detected parity error */
434 		, .b_isr_sserr	= 0x00080000	/* signalled system error */
435 		, .b_isr_rmabt	= 0x00040000	/* received master abort */
436 		, .b_isr_rtabt	= 0x00020000	/* received target abort */
437 		, .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
438 	}
439 	, .p_regs = {
440 		.r_rxcfg = DP83820_SIP_RXCFG,
441 		.r_txcfg = DP83820_SIP_TXCFG
442 	}
443 };
444 
445 static inline int
446 sip_nexttx(const struct sip_softc *sc, int x)
447 {
448 	return (x + 1) & sc->sc_ntxdesc_mask;
449 }
450 
451 static inline int
452 sip_nextrx(const struct sip_softc *sc, int x)
453 {
454 	return (x + 1) & sc->sc_nrxdesc_mask;
455 }
456 
457 /* 83820 only */
458 static inline void
459 sip_rxchain_reset(struct sip_softc *sc)
460 {
461 	sc->sc_rxtailp = &sc->sc_rxhead;
462 	*sc->sc_rxtailp = NULL;
463 	sc->sc_rxlen = 0;
464 }
465 
466 /* 83820 only */
467 static inline void
468 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
469 {
470 	*sc->sc_rxtailp = sc->sc_rxtail = m;
471 	sc->sc_rxtailp = &m->m_next;
472 }
473 
474 #ifdef SIP_EVENT_COUNTERS
475 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
476 #else
477 #define	SIP_EVCNT_INCR(ev)	/* nothing */
478 #endif
479 
480 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
481 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
482 
483 static inline void
484 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
485 {
486 	int x, n;
487 
488 	x = x0;
489 	n = n0;
490 
491 	/* If it will wrap around, sync to the end of the ring. */
492 	if (x + n > sc->sc_ntxdesc) {
493 		bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
494 		    SIP_CDTXOFF(x), sizeof(struct sip_desc) *
495 		    (sc->sc_ntxdesc - x), ops);
496 		n -= (sc->sc_ntxdesc - x);
497 		x = 0;
498 	}
499 
500 	/* Now sync whatever is left. */
501 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
502 	    SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
503 }
504 
505 static inline void
506 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
507 {
508 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
509 	    SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
510 }
511 
512 #if 0
513 #ifdef DP83820
514 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
515 	u_int32_t	sipd_cmdsts;	/* command/status word */
516 #else
517 	u_int32_t	sipd_cmdsts;	/* command/status word */
518 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
519 #endif /* DP83820 */
520 #endif /* 0 */
521 
522 static inline volatile uint32_t *
523 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
524 {
525 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
526 }
527 
528 static inline volatile uint32_t *
529 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
530 {
531 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
532 }
533 
534 static inline void
535 sip_init_rxdesc(struct sip_softc *sc, int x)
536 {
537 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
538 	struct sip_desc *sipd = &sc->sc_rxdescs[x];
539 
540 	sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
541 	*sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
542 	*sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
543 	    (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
544 	sipd->sipd_extsts = 0;
545 	sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
546 }
547 
548 #define	SIP_CHIP_VERS(sc, v, p, r)					\
549 	((sc)->sc_model->sip_vendor == (v) &&				\
550 	 (sc)->sc_model->sip_product == (p) &&				\
551 	 (sc)->sc_rev == (r))
552 
553 #define	SIP_CHIP_MODEL(sc, v, p)					\
554 	((sc)->sc_model->sip_vendor == (v) &&				\
555 	 (sc)->sc_model->sip_product == (p))
556 
557 #define	SIP_SIS900_REV(sc, rev)						\
558 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
559 
560 #define SIP_TIMEOUT 1000
561 
562 static void	sipcom_start(struct ifnet *);
563 static void	sipcom_watchdog(struct ifnet *);
564 static int	sipcom_ioctl(struct ifnet *, u_long, void *);
565 static int	sipcom_init(struct ifnet *);
566 static void	sipcom_stop(struct ifnet *, int);
567 
568 static bool	sipcom_reset(struct sip_softc *);
569 static void	sipcom_rxdrain(struct sip_softc *);
570 static int	sipcom_add_rxbuf(struct sip_softc *, int);
571 static void	sipcom_read_eeprom(struct sip_softc *, int, int,
572 				      u_int16_t *);
573 static void	sipcom_tick(void *);
574 
575 static void	sipcom_sis900_set_filter(struct sip_softc *);
576 static void	sipcom_dp83815_set_filter(struct sip_softc *);
577 
578 static void	sipcom_dp83820_read_macaddr(struct sip_softc *,
579 		    const struct pci_attach_args *, u_int8_t *);
580 static void	sipcom_sis900_eeprom_delay(struct sip_softc *sc);
581 static void	sipcom_sis900_read_macaddr(struct sip_softc *,
582 		    const struct pci_attach_args *, u_int8_t *);
583 static void	sipcom_dp83815_read_macaddr(struct sip_softc *,
584 		    const struct pci_attach_args *, u_int8_t *);
585 
586 static int	sipcom_intr(void *);
587 static void	sipcom_txintr(struct sip_softc *);
588 static void	sip_rxintr(struct sip_softc *);
589 static void	gsip_rxintr(struct sip_softc *);
590 
591 static int	sipcom_dp83820_mii_readreg(device_t, int, int);
592 static void	sipcom_dp83820_mii_writereg(device_t, int, int, int);
593 static void	sipcom_dp83820_mii_statchg(device_t);
594 
595 static int	sipcom_sis900_mii_readreg(device_t, int, int);
596 static void	sipcom_sis900_mii_writereg(device_t, int, int, int);
597 static void	sipcom_sis900_mii_statchg(device_t);
598 
599 static int	sipcom_dp83815_mii_readreg(device_t, int, int);
600 static void	sipcom_dp83815_mii_writereg(device_t, int, int, int);
601 static void	sipcom_dp83815_mii_statchg(device_t);
602 
603 static void	sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
604 
605 static int	sipcom_match(device_t, struct cfdata *, void *);
606 static void	sipcom_attach(device_t, device_t, void *);
607 static void	sipcom_do_detach(device_t, enum sip_attach_stage);
608 static int	sipcom_detach(device_t, int);
609 static bool	sipcom_resume(device_t PMF_FN_PROTO);
610 static bool	sipcom_suspend(device_t PMF_FN_PROTO);
611 
612 int	gsip_copy_small = 0;
613 int	sip_copy_small = 0;
614 
615 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
616     sipcom_match, sipcom_attach, sipcom_detach, NULL);
617 CFATTACH_DECL(sip, sizeof(struct sip_softc),
618     sipcom_match, sipcom_attach, sipcom_detach, NULL);
619 
620 /*
621  * Descriptions of the variants of the SiS900.
622  */
623 struct sip_variant {
624 	int	(*sipv_mii_readreg)(device_t, int, int);
625 	void	(*sipv_mii_writereg)(device_t, int, int, int);
626 	void	(*sipv_mii_statchg)(device_t);
627 	void	(*sipv_set_filter)(struct sip_softc *);
628 	void	(*sipv_read_macaddr)(struct sip_softc *,
629 		    const struct pci_attach_args *, u_int8_t *);
630 };
631 
632 static u_int32_t sipcom_mii_bitbang_read(device_t);
633 static void	sipcom_mii_bitbang_write(device_t, u_int32_t);
634 
635 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
636 	sipcom_mii_bitbang_read,
637 	sipcom_mii_bitbang_write,
638 	{
639 		EROMAR_MDIO,		/* MII_BIT_MDO */
640 		EROMAR_MDIO,		/* MII_BIT_MDI */
641 		EROMAR_MDC,		/* MII_BIT_MDC */
642 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
643 		0,			/* MII_BIT_DIR_PHY_HOST */
644 	}
645 };
646 
647 static const struct sip_variant sipcom_variant_dp83820 = {
648 	sipcom_dp83820_mii_readreg,
649 	sipcom_dp83820_mii_writereg,
650 	sipcom_dp83820_mii_statchg,
651 	sipcom_dp83815_set_filter,
652 	sipcom_dp83820_read_macaddr,
653 };
654 
655 static const struct sip_variant sipcom_variant_sis900 = {
656 	sipcom_sis900_mii_readreg,
657 	sipcom_sis900_mii_writereg,
658 	sipcom_sis900_mii_statchg,
659 	sipcom_sis900_set_filter,
660 	sipcom_sis900_read_macaddr,
661 };
662 
663 static const struct sip_variant sipcom_variant_dp83815 = {
664 	sipcom_dp83815_mii_readreg,
665 	sipcom_dp83815_mii_writereg,
666 	sipcom_dp83815_mii_statchg,
667 	sipcom_dp83815_set_filter,
668 	sipcom_dp83815_read_macaddr,
669 };
670 
671 
672 /*
673  * Devices supported by this driver.
674  */
675 static const struct sip_product {
676 	pci_vendor_id_t		sip_vendor;
677 	pci_product_id_t	sip_product;
678 	const char		*sip_name;
679 	const struct sip_variant *sip_variant;
680 	int			sip_gigabit;
681 } sipcom_products[] = {
682 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
683 	  "NatSemi DP83820 Gigabit Ethernet",
684 	  &sipcom_variant_dp83820, 1 },
685 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
686 	  "SiS 900 10/100 Ethernet",
687 	  &sipcom_variant_sis900, 0 },
688 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
689 	  "SiS 7016 10/100 Ethernet",
690 	  &sipcom_variant_sis900, 0 },
691 
692 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
693 	  "NatSemi DP83815 10/100 Ethernet",
694 	  &sipcom_variant_dp83815, 0 },
695 
696 	{ 0,			0,
697 	  NULL,
698 	  NULL, 0 },
699 };
700 
701 static const struct sip_product *
702 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
703 {
704 	const struct sip_product *sip;
705 
706 	for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
707 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
708 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
709 		    sip->sip_gigabit == gigabit)
710 			return sip;
711 	}
712 	return NULL;
713 }
714 
715 /*
716  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
717  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
718  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
719  * which means we try to use 64-bit data transfers on those cards if we
720  * happen to be plugged into a 32-bit slot.
721  *
722  * What we do is use this table of cards known to be 64-bit cards.  If
723  * you have a 64-bit card who's subsystem ID is not listed in this table,
724  * send the output of "pcictl dump ..." of the device to me so that your
725  * card will use the 64-bit data path when plugged into a 64-bit slot.
726  *
727  *	-- Jason R. Thorpe <thorpej@NetBSD.org>
728  *	   June 30, 2002
729  */
730 static int
731 sipcom_check_64bit(const struct pci_attach_args *pa)
732 {
733 	static const struct {
734 		pci_vendor_id_t c64_vendor;
735 		pci_product_id_t c64_product;
736 	} card64[] = {
737 		/* Asante GigaNIX */
738 		{ 0x128a,	0x0002 },
739 
740 		/* Accton EN1407-T, Planex GN-1000TE */
741 		{ 0x1113,	0x1407 },
742 
743 		/* Netgear GA-621 */
744 		{ 0x1385,	0x621a },
745 
746 		/* SMC EZ Card */
747 		{ 0x10b8,	0x9462 },
748 
749 		{ 0, 0}
750 	};
751 	pcireg_t subsys;
752 	int i;
753 
754 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
755 
756 	for (i = 0; card64[i].c64_vendor != 0; i++) {
757 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
758 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
759 			return (1);
760 	}
761 
762 	return (0);
763 }
764 
765 static int
766 sipcom_match(device_t parent, struct cfdata *cf, void *aux)
767 {
768 	struct pci_attach_args *pa = aux;
769 
770 	if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
771 		return 1;
772 
773 	return 0;
774 }
775 
776 static void
777 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
778 {
779 	u_int32_t reg;
780 	int i;
781 
782 	/*
783 	 * Cause the chip to load configuration data from the EEPROM.
784 	 */
785 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
786 	for (i = 0; i < 10000; i++) {
787 		delay(10);
788 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
789 		    PTSCR_EELOAD_EN) == 0)
790 			break;
791 	}
792 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
793 	    PTSCR_EELOAD_EN) {
794 		printf("%s: timeout loading configuration from EEPROM\n",
795 		    device_xname(&sc->sc_dev));
796 		return;
797 	}
798 
799 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
800 
801 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
802 	if (reg & CFG_PCI64_DET) {
803 		printf("%s: 64-bit PCI slot detected", device_xname(&sc->sc_dev));
804 		/*
805 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
806 		 * data transfers.
807 		 *
808 		 * We can't use the DATA64_EN bit in the EEPROM, because
809 		 * vendors of 32-bit cards fail to clear that bit in many
810 		 * cases (yet the card still detects that it's in a 64-bit
811 		 * slot; go figure).
812 		 */
813 		if (sipcom_check_64bit(pa)) {
814 			sc->sc_cfg |= CFG_DATA64_EN;
815 			printf(", using 64-bit data transfers");
816 		}
817 		printf("\n");
818 	}
819 
820 	/*
821 	 * XXX Need some PCI flags indicating support for
822 	 * XXX 64-bit addressing.
823 	 */
824 #if 0
825 	if (reg & CFG_M64ADDR)
826 		sc->sc_cfg |= CFG_M64ADDR;
827 	if (reg & CFG_T64ADDR)
828 		sc->sc_cfg |= CFG_T64ADDR;
829 #endif
830 
831 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
832 		const char *sep = "";
833 		printf("%s: using ", device_xname(&sc->sc_dev));
834 		if (reg & CFG_EXT_125) {
835 			sc->sc_cfg |= CFG_EXT_125;
836 			printf("%s125MHz clock", sep);
837 			sep = ", ";
838 		}
839 		if (reg & CFG_TBI_EN) {
840 			sc->sc_cfg |= CFG_TBI_EN;
841 			printf("%sten-bit interface", sep);
842 			sep = ", ";
843 		}
844 		printf("\n");
845 	}
846 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
847 	    (reg & CFG_MRM_DIS) != 0)
848 		sc->sc_cfg |= CFG_MRM_DIS;
849 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
850 	    (reg & CFG_MWI_DIS) != 0)
851 		sc->sc_cfg |= CFG_MWI_DIS;
852 
853 	/*
854 	 * Use the extended descriptor format on the DP83820.  This
855 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
856 	 * checksumming.
857 	 */
858 	sc->sc_cfg |= CFG_EXTSTS_EN;
859 }
860 
861 static int
862 sipcom_detach(device_t self, int flags)
863 {
864 	int s;
865 
866 	s = splnet();
867 	sipcom_do_detach(self, SIP_ATTACH_FIN);
868 	splx(s);
869 
870 	return 0;
871 }
872 
873 static void
874 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
875 {
876 	int i;
877 	struct sip_softc *sc = device_private(self);
878 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
879 
880 	/*
881 	 * Free any resources we've allocated during attach.
882 	 * Do this in reverse order and fall through.
883 	 */
884 	switch (stage) {
885 	case SIP_ATTACH_FIN:
886 		sipcom_stop(ifp, 1);
887 		pmf_device_deregister(self);
888 #ifdef SIP_EVENT_COUNTERS
889 		/*
890 		 * Attach event counters.
891 		 */
892 		evcnt_detach(&sc->sc_ev_txforceintr);
893 		evcnt_detach(&sc->sc_ev_txdstall);
894 		evcnt_detach(&sc->sc_ev_txsstall);
895 		evcnt_detach(&sc->sc_ev_hiberr);
896 		evcnt_detach(&sc->sc_ev_rxintr);
897 		evcnt_detach(&sc->sc_ev_txiintr);
898 		evcnt_detach(&sc->sc_ev_txdintr);
899 		if (!sc->sc_gigabit) {
900 			evcnt_detach(&sc->sc_ev_rxpause);
901 		} else {
902 			evcnt_detach(&sc->sc_ev_txudpsum);
903 			evcnt_detach(&sc->sc_ev_txtcpsum);
904 			evcnt_detach(&sc->sc_ev_txipsum);
905 			evcnt_detach(&sc->sc_ev_rxudpsum);
906 			evcnt_detach(&sc->sc_ev_rxtcpsum);
907 			evcnt_detach(&sc->sc_ev_rxipsum);
908 			evcnt_detach(&sc->sc_ev_txpause);
909 			evcnt_detach(&sc->sc_ev_rxpause);
910 		}
911 #endif /* SIP_EVENT_COUNTERS */
912 
913 #if NRND > 0
914 		rnd_detach_source(&sc->rnd_source);
915 #endif
916 
917 		ether_ifdetach(ifp);
918 		if_detach(ifp);
919 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
920 
921 		/*FALLTHROUGH*/
922 	case SIP_ATTACH_CREATE_RXMAP:
923 		for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
924 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
925 				bus_dmamap_destroy(sc->sc_dmat,
926 				    sc->sc_rxsoft[i].rxs_dmamap);
927 		}
928 		/*FALLTHROUGH*/
929 	case SIP_ATTACH_CREATE_TXMAP:
930 		for (i = 0; i < SIP_TXQUEUELEN; i++) {
931 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
932 				bus_dmamap_destroy(sc->sc_dmat,
933 				    sc->sc_txsoft[i].txs_dmamap);
934 		}
935 		/*FALLTHROUGH*/
936 	case SIP_ATTACH_LOAD_MAP:
937 		bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
938 		/*FALLTHROUGH*/
939 	case SIP_ATTACH_CREATE_MAP:
940 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
941 		/*FALLTHROUGH*/
942 	case SIP_ATTACH_MAP_MEM:
943 		bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
944 		    sizeof(struct sip_control_data));
945 		/*FALLTHROUGH*/
946 	case SIP_ATTACH_ALLOC_MEM:
947 		bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
948 		/* FALLTHROUGH*/
949 	case SIP_ATTACH_INTR:
950 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
951 		/* FALLTHROUGH*/
952 	case SIP_ATTACH_MAP:
953 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
954 		break;
955 	default:
956 		break;
957 	}
958 	return;
959 }
960 
961 static bool
962 sipcom_resume(device_t self PMF_FN_ARGS)
963 {
964 	struct sip_softc *sc = device_private(self);
965 
966 	return sipcom_reset(sc);
967 }
968 
969 static bool
970 sipcom_suspend(device_t self PMF_FN_ARGS)
971 {
972 	struct sip_softc *sc = device_private(self);
973 
974 	sipcom_rxdrain(sc);
975 	return true;
976 }
977 
978 static void
979 sipcom_attach(device_t parent, device_t self, void *aux)
980 {
981 	struct sip_softc *sc = device_private(self);
982 	struct pci_attach_args *pa = aux;
983 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
984 	pci_chipset_tag_t pc = pa->pa_pc;
985 	pci_intr_handle_t ih;
986 	const char *intrstr = NULL;
987 	bus_space_tag_t iot, memt;
988 	bus_space_handle_t ioh, memh;
989 	bus_size_t iosz, memsz;
990 	int ioh_valid, memh_valid;
991 	int i, rseg, error;
992 	const struct sip_product *sip;
993 	u_int8_t enaddr[ETHER_ADDR_LEN];
994 	pcireg_t pmreg;
995 	pcireg_t memtype;
996 	bus_size_t tx_dmamap_size;
997 	int ntxsegs_alloc;
998 	cfdata_t cf = device_cfdata(self);
999 
1000 	callout_init(&sc->sc_tick_ch, 0);
1001 
1002 	sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
1003 	if (sip == NULL) {
1004 		printf("\n");
1005 		panic("%s: impossible", __func__);
1006 	}
1007 	sc->sc_gigabit = sip->sip_gigabit;
1008 
1009 	sc->sc_pc = pc;
1010 
1011 	if (sc->sc_gigabit) {
1012 		sc->sc_rxintr = gsip_rxintr;
1013 		sc->sc_parm = &gsip_parm;
1014 	} else {
1015 		sc->sc_rxintr = sip_rxintr;
1016 		sc->sc_parm = &sip_parm;
1017 	}
1018 	tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
1019 	ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
1020 	sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
1021 	sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
1022 	sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
1023 
1024 	sc->sc_rev = PCI_REVISION(pa->pa_class);
1025 
1026 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
1027 
1028 	sc->sc_model = sip;
1029 
1030 	/*
1031 	 * XXX Work-around broken PXE firmware on some boards.
1032 	 *
1033 	 * The DP83815 shares an address decoder with the MEM BAR
1034 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
1035 	 * so that memory mapped access works.
1036 	 */
1037 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
1038 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
1039 	    ~PCI_MAPREG_ROM_ENABLE);
1040 
1041 	/*
1042 	 * Map the device.
1043 	 */
1044 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
1045 	    PCI_MAPREG_TYPE_IO, 0,
1046 	    &iot, &ioh, NULL, &iosz) == 0);
1047 	if (sc->sc_gigabit) {
1048 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
1049 		switch (memtype) {
1050 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1051 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1052 			memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1053 			    memtype, 0, &memt, &memh, NULL, &memsz) == 0);
1054 			break;
1055 		default:
1056 			memh_valid = 0;
1057 		}
1058 	} else {
1059 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1060 		    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
1061 		    &memt, &memh, NULL, &memsz) == 0);
1062 	}
1063 
1064 	if (memh_valid) {
1065 		sc->sc_st = memt;
1066 		sc->sc_sh = memh;
1067 		sc->sc_sz = memsz;
1068 	} else if (ioh_valid) {
1069 		sc->sc_st = iot;
1070 		sc->sc_sh = ioh;
1071 		sc->sc_sz = iosz;
1072 	} else {
1073 		printf("%s: unable to map device registers\n",
1074 		    device_xname(&sc->sc_dev));
1075 		return;
1076 	}
1077 
1078 	sc->sc_dmat = pa->pa_dmat;
1079 
1080 	/*
1081 	 * Make sure bus mastering is enabled.  Also make sure
1082 	 * Write/Invalidate is enabled if we're allowed to use it.
1083 	 */
1084 	pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1085 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
1086 		pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
1087 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
1088 	    pmreg | PCI_COMMAND_MASTER_ENABLE);
1089 
1090 	/* power up chip */
1091 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, NULL)) &&
1092 	    error != EOPNOTSUPP) {
1093 		aprint_error_dev(&sc->sc_dev, "cannot activate %d\n",
1094 		    error);
1095 		return;
1096 	}
1097 
1098 	/*
1099 	 * Map and establish our interrupt.
1100 	 */
1101 	if (pci_intr_map(pa, &ih)) {
1102 		aprint_error_dev(&sc->sc_dev, "unable to map interrupt\n");
1103 		return;
1104 	}
1105 	intrstr = pci_intr_string(pc, ih);
1106 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc);
1107 	if (sc->sc_ih == NULL) {
1108 		aprint_error_dev(&sc->sc_dev, "unable to establish interrupt");
1109 		if (intrstr != NULL)
1110 			printf(" at %s", intrstr);
1111 		printf("\n");
1112 		return sipcom_do_detach(self, SIP_ATTACH_MAP);
1113 	}
1114 	printf("%s: interrupting at %s\n", device_xname(&sc->sc_dev), intrstr);
1115 
1116 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1117 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1118 
1119 	/*
1120 	 * Allocate the control data structures, and create and load the
1121 	 * DMA map for it.
1122 	 */
1123 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
1124 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
1125 	    &rseg, 0)) != 0) {
1126 		aprint_error_dev(&sc->sc_dev, "unable to allocate control data, error = %d\n",
1127 		    error);
1128 		return sipcom_do_detach(self, SIP_ATTACH_INTR);
1129 	}
1130 
1131 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
1132 	    sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
1133 	    BUS_DMA_COHERENT|BUS_DMA_NOCACHE)) != 0) {
1134 		aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
1135 		    error);
1136 		sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
1137 	}
1138 
1139 	if ((error = bus_dmamap_create(sc->sc_dmat,
1140 	    sizeof(struct sip_control_data), 1,
1141 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
1142 		aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
1143 		    "error = %d\n", error);
1144 		sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
1145 	}
1146 
1147 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1148 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
1149 	    0)) != 0) {
1150 		aprint_error_dev(&sc->sc_dev, "unable to load control data DMA map, error = %d\n",
1151 		    error);
1152 		sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
1153 	}
1154 
1155 	/*
1156 	 * Create the transmit buffer DMA maps.
1157 	 */
1158 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
1159 		if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
1160 		    sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
1161 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1162 			aprint_error_dev(&sc->sc_dev, "unable to create tx DMA map %d, "
1163 			    "error = %d\n", i, error);
1164 			sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1165 		}
1166 	}
1167 
1168 	/*
1169 	 * Create the receive buffer DMA maps.
1170 	 */
1171 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1172 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1173 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1174 			aprint_error_dev(&sc->sc_dev, "unable to create rx DMA map %d, "
1175 			    "error = %d\n", i, error);
1176 			sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1177 		}
1178 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
1179 	}
1180 
1181 	/*
1182 	 * Reset the chip to a known state.
1183 	 */
1184 	sipcom_reset(sc);
1185 
1186 	/*
1187 	 * Read the Ethernet address from the EEPROM.  This might
1188 	 * also fetch other stuff from the EEPROM and stash it
1189 	 * in the softc.
1190 	 */
1191 	sc->sc_cfg = 0;
1192 	if (!sc->sc_gigabit) {
1193 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1194 		    SIP_SIS900_REV(sc,SIS_REV_900B))
1195 			sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1196 
1197 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1198 		    SIP_SIS900_REV(sc,SIS_REV_960) ||
1199 		    SIP_SIS900_REV(sc,SIS_REV_900B))
1200 			sc->sc_cfg |=
1201 			    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1202 			     CFG_EDBMASTEN);
1203 	}
1204 
1205 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1206 
1207 	printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
1208 	    ether_sprintf(enaddr));
1209 
1210 	/*
1211 	 * Initialize the configuration register: aggressive PCI
1212 	 * bus request algorithm, default backoff, default OW timer,
1213 	 * default parity error detection.
1214 	 *
1215 	 * NOTE: "Big endian mode" is useless on the SiS900 and
1216 	 * friends -- it affects packet data, not descriptors.
1217 	 */
1218 	if (sc->sc_gigabit)
1219 		sipcom_dp83820_attach(sc, pa);
1220 
1221 	/*
1222 	 * Initialize our media structures and probe the MII.
1223 	 */
1224 	sc->sc_mii.mii_ifp = ifp;
1225 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
1226 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
1227 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
1228 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
1229 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
1230 	    sipcom_mediastatus);
1231 
1232 	/*
1233 	 * XXX We cannot handle flow control on the DP83815.
1234 	 */
1235 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1236 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1237 			   MII_OFFSET_ANY, 0);
1238 	else
1239 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1240 			   MII_OFFSET_ANY, MIIF_DOPAUSE);
1241 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1242 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1243 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1244 	} else
1245 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1246 
1247 	ifp = &sc->sc_ethercom.ec_if;
1248 	strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
1249 	ifp->if_softc = sc;
1250 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1251 	sc->sc_if_flags = ifp->if_flags;
1252 	ifp->if_ioctl = sipcom_ioctl;
1253 	ifp->if_start = sipcom_start;
1254 	ifp->if_watchdog = sipcom_watchdog;
1255 	ifp->if_init = sipcom_init;
1256 	ifp->if_stop = sipcom_stop;
1257 	IFQ_SET_READY(&ifp->if_snd);
1258 
1259 	/*
1260 	 * We can support 802.1Q VLAN-sized frames.
1261 	 */
1262 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1263 
1264 	if (sc->sc_gigabit) {
1265 		/*
1266 		 * And the DP83820 can do VLAN tagging in hardware, and
1267 		 * support the jumbo Ethernet MTU.
1268 		 */
1269 		sc->sc_ethercom.ec_capabilities |=
1270 		    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1271 
1272 		/*
1273 		 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1274 		 * in hardware.
1275 		 */
1276 		ifp->if_capabilities |=
1277 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1278 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1279 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1280 	}
1281 
1282 	/*
1283 	 * Attach the interface.
1284 	 */
1285 	if_attach(ifp);
1286 	ether_ifattach(ifp, enaddr);
1287 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1288 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1289 	sc->sc_prev.if_capenable = ifp->if_capenable;
1290 #if NRND > 0
1291 	rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
1292 	    RND_TYPE_NET, 0);
1293 #endif
1294 
1295 	/*
1296 	 * The number of bytes that must be available in
1297 	 * the Tx FIFO before the bus master can DMA more
1298 	 * data into the FIFO.
1299 	 */
1300 	sc->sc_tx_fill_thresh = 64 / 32;
1301 
1302 	/*
1303 	 * Start at a drain threshold of 512 bytes.  We will
1304 	 * increase it if a DMA underrun occurs.
1305 	 *
1306 	 * XXX The minimum value of this variable should be
1307 	 * tuned.  We may be able to improve performance
1308 	 * by starting with a lower value.  That, however,
1309 	 * may trash the first few outgoing packets if the
1310 	 * PCI bus is saturated.
1311 	 */
1312 	if (sc->sc_gigabit)
1313 		sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1314 	else
1315 		sc->sc_tx_drain_thresh = 1504 / 32;
1316 
1317 	/*
1318 	 * Initialize the Rx FIFO drain threshold.
1319 	 *
1320 	 * This is in units of 8 bytes.
1321 	 *
1322 	 * We should never set this value lower than 2; 14 bytes are
1323 	 * required to filter the packet.
1324 	 */
1325 	sc->sc_rx_drain_thresh = 128 / 8;
1326 
1327 #ifdef SIP_EVENT_COUNTERS
1328 	/*
1329 	 * Attach event counters.
1330 	 */
1331 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1332 	    NULL, device_xname(&sc->sc_dev), "txsstall");
1333 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1334 	    NULL, device_xname(&sc->sc_dev), "txdstall");
1335 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1336 	    NULL, device_xname(&sc->sc_dev), "txforceintr");
1337 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1338 	    NULL, device_xname(&sc->sc_dev), "txdintr");
1339 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1340 	    NULL, device_xname(&sc->sc_dev), "txiintr");
1341 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1342 	    NULL, device_xname(&sc->sc_dev), "rxintr");
1343 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1344 	    NULL, device_xname(&sc->sc_dev), "hiberr");
1345 	if (!sc->sc_gigabit) {
1346 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1347 		    NULL, device_xname(&sc->sc_dev), "rxpause");
1348 	} else {
1349 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1350 		    NULL, device_xname(&sc->sc_dev), "rxpause");
1351 		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1352 		    NULL, device_xname(&sc->sc_dev), "txpause");
1353 		evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1354 		    NULL, device_xname(&sc->sc_dev), "rxipsum");
1355 		evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1356 		    NULL, device_xname(&sc->sc_dev), "rxtcpsum");
1357 		evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1358 		    NULL, device_xname(&sc->sc_dev), "rxudpsum");
1359 		evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1360 		    NULL, device_xname(&sc->sc_dev), "txipsum");
1361 		evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1362 		    NULL, device_xname(&sc->sc_dev), "txtcpsum");
1363 		evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1364 		    NULL, device_xname(&sc->sc_dev), "txudpsum");
1365 	}
1366 #endif /* SIP_EVENT_COUNTERS */
1367 
1368 	if (!pmf_device_register(self, sipcom_suspend, sipcom_resume))
1369 		aprint_error_dev(self, "couldn't establish power handler\n");
1370 	else
1371 		pmf_class_network_register(self, ifp);
1372 }
1373 
1374 static inline void
1375 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1376     uint64_t capenable)
1377 {
1378 	struct m_tag *mtag;
1379 	u_int32_t extsts;
1380 #ifdef DEBUG
1381 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1382 #endif
1383 	/*
1384 	 * If VLANs are enabled and the packet has a VLAN tag, set
1385 	 * up the descriptor to encapsulate the packet for us.
1386 	 *
1387 	 * This apparently has to be on the last descriptor of
1388 	 * the packet.
1389 	 */
1390 
1391 	/*
1392 	 * Byte swapping is tricky. We need to provide the tag
1393 	 * in a network byte order. On a big-endian machine,
1394 	 * the byteorder is correct, but we need to swap it
1395 	 * anyway, because this will be undone by the outside
1396 	 * htole32(). That's why there must be an
1397 	 * unconditional swap instead of htons() inside.
1398 	 */
1399 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1400 		sc->sc_txdescs[lasttx].sipd_extsts |=
1401 		    htole32(EXTSTS_VPKT |
1402 				(bswap16(VLAN_TAG_VALUE(mtag)) &
1403 				 EXTSTS_VTCI));
1404 	}
1405 
1406 	/*
1407 	 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1408 	 * checksumming, set up the descriptor to do this work
1409 	 * for us.
1410 	 *
1411 	 * This apparently has to be on the first descriptor of
1412 	 * the packet.
1413 	 *
1414 	 * Byte-swap constants so the compiler can optimize.
1415 	 */
1416 	extsts = 0;
1417 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1418 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1419 		SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1420 		extsts |= htole32(EXTSTS_IPPKT);
1421 	}
1422 	if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1423 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1424 		SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1425 		extsts |= htole32(EXTSTS_TCPPKT);
1426 	} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1427 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1428 		SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1429 		extsts |= htole32(EXTSTS_UDPPKT);
1430 	}
1431 	sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1432 }
1433 
1434 /*
1435  * sip_start:		[ifnet interface function]
1436  *
1437  *	Start packet transmission on the interface.
1438  */
1439 static void
1440 sipcom_start(struct ifnet *ifp)
1441 {
1442 	struct sip_softc *sc = ifp->if_softc;
1443 	struct mbuf *m0;
1444 	struct mbuf *m;
1445 	struct sip_txsoft *txs;
1446 	bus_dmamap_t dmamap;
1447 	int error, nexttx, lasttx, seg;
1448 	int ofree = sc->sc_txfree;
1449 #if 0
1450 	int firsttx = sc->sc_txnext;
1451 #endif
1452 
1453 	/*
1454 	 * If we've been told to pause, don't transmit any more packets.
1455 	 */
1456 	if (!sc->sc_gigabit && sc->sc_paused)
1457 		ifp->if_flags |= IFF_OACTIVE;
1458 
1459 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1460 		return;
1461 
1462 	/*
1463 	 * Loop through the send queue, setting up transmit descriptors
1464 	 * until we drain the queue, or use up all available transmit
1465 	 * descriptors.
1466 	 */
1467 	for (;;) {
1468 		/* Get a work queue entry. */
1469 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1470 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1471 			break;
1472 		}
1473 
1474 		/*
1475 		 * Grab a packet off the queue.
1476 		 */
1477 		IFQ_POLL(&ifp->if_snd, m0);
1478 		if (m0 == NULL)
1479 			break;
1480 		m = NULL;
1481 
1482 		dmamap = txs->txs_dmamap;
1483 
1484 		/*
1485 		 * Load the DMA map.  If this fails, the packet either
1486 		 * didn't fit in the alloted number of segments, or we
1487 		 * were short on resources.
1488 		 */
1489 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1490 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1491 		/* In the non-gigabit case, we'll copy and try again. */
1492 		if (error != 0 && !sc->sc_gigabit) {
1493 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1494 			if (m == NULL) {
1495 				printf("%s: unable to allocate Tx mbuf\n",
1496 				    device_xname(&sc->sc_dev));
1497 				break;
1498 			}
1499 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1500 			if (m0->m_pkthdr.len > MHLEN) {
1501 				MCLGET(m, M_DONTWAIT);
1502 				if ((m->m_flags & M_EXT) == 0) {
1503 					printf("%s: unable to allocate Tx "
1504 					    "cluster\n", device_xname(&sc->sc_dev));
1505 					m_freem(m);
1506 					break;
1507 				}
1508 			}
1509 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1510 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1511 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1512 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1513 			if (error) {
1514 				printf("%s: unable to load Tx buffer, "
1515 				    "error = %d\n", device_xname(&sc->sc_dev), error);
1516 				break;
1517 			}
1518 		} else if (error == EFBIG) {
1519 			/*
1520 			 * For the too-many-segments case, we simply
1521 			 * report an error and drop the packet,
1522 			 * since we can't sanely copy a jumbo packet
1523 			 * to a single buffer.
1524 			 */
1525 			printf("%s: Tx packet consumes too many "
1526 			    "DMA segments, dropping...\n", device_xname(&sc->sc_dev));
1527 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1528 			m_freem(m0);
1529 			continue;
1530 		} else if (error != 0) {
1531 			/*
1532 			 * Short on resources, just stop for now.
1533 			 */
1534 			break;
1535 		}
1536 
1537 		/*
1538 		 * Ensure we have enough descriptors free to describe
1539 		 * the packet.  Note, we always reserve one descriptor
1540 		 * at the end of the ring as a termination point, to
1541 		 * prevent wrap-around.
1542 		 */
1543 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1544 			/*
1545 			 * Not enough free descriptors to transmit this
1546 			 * packet.  We haven't committed anything yet,
1547 			 * so just unload the DMA map, put the packet
1548 			 * back on the queue, and punt.  Notify the upper
1549 			 * layer that there are not more slots left.
1550 			 *
1551 			 * XXX We could allocate an mbuf and copy, but
1552 			 * XXX is it worth it?
1553 			 */
1554 			ifp->if_flags |= IFF_OACTIVE;
1555 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1556 			if (m != NULL)
1557 				m_freem(m);
1558 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1559 			break;
1560 		}
1561 
1562 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1563 		if (m != NULL) {
1564 			m_freem(m0);
1565 			m0 = m;
1566 		}
1567 
1568 		/*
1569 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1570 		 */
1571 
1572 		/* Sync the DMA map. */
1573 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1574 		    BUS_DMASYNC_PREWRITE);
1575 
1576 		/*
1577 		 * Initialize the transmit descriptors.
1578 		 */
1579 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1580 		     seg < dmamap->dm_nsegs;
1581 		     seg++, nexttx = sip_nexttx(sc, nexttx)) {
1582 			/*
1583 			 * If this is the first descriptor we're
1584 			 * enqueueing, don't set the OWN bit just
1585 			 * yet.  That could cause a race condition.
1586 			 * We'll do it below.
1587 			 */
1588 			*sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
1589 			    htole32(dmamap->dm_segs[seg].ds_addr);
1590 			*sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
1591 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1592 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1593 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
1594 			lasttx = nexttx;
1595 		}
1596 
1597 		/* Clear the MORE bit on the last segment. */
1598 		*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
1599 		    htole32(~CMDSTS_MORE);
1600 
1601 		/*
1602 		 * If we're in the interrupt delay window, delay the
1603 		 * interrupt.
1604 		 */
1605 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1606 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1607 			*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
1608 			    htole32(CMDSTS_INTR);
1609 			sc->sc_txwin = 0;
1610 		}
1611 
1612 		if (sc->sc_gigabit)
1613 			sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1614 
1615 		/* Sync the descriptors we're using. */
1616 		sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
1617 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1618 
1619 		/*
1620 		 * The entire packet is set up.  Give the first descrptor
1621 		 * to the chip now.
1622 		 */
1623 		*sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
1624 		    htole32(CMDSTS_OWN);
1625 		sip_cdtxsync(sc, sc->sc_txnext, 1,
1626 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1627 
1628 		/*
1629 		 * Store a pointer to the packet so we can free it later,
1630 		 * and remember what txdirty will be once the packet is
1631 		 * done.
1632 		 */
1633 		txs->txs_mbuf = m0;
1634 		txs->txs_firstdesc = sc->sc_txnext;
1635 		txs->txs_lastdesc = lasttx;
1636 
1637 		/* Advance the tx pointer. */
1638 		sc->sc_txfree -= dmamap->dm_nsegs;
1639 		sc->sc_txnext = nexttx;
1640 
1641 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1642 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1643 
1644 #if NBPFILTER > 0
1645 		/*
1646 		 * Pass the packet to any BPF listeners.
1647 		 */
1648 		if (ifp->if_bpf)
1649 			bpf_mtap(ifp->if_bpf, m0);
1650 #endif /* NBPFILTER > 0 */
1651 	}
1652 
1653 	if (txs == NULL || sc->sc_txfree == 0) {
1654 		/* No more slots left; notify upper layer. */
1655 		ifp->if_flags |= IFF_OACTIVE;
1656 	}
1657 
1658 	if (sc->sc_txfree != ofree) {
1659 		/*
1660 		 * Start the transmit process.  Note, the manual says
1661 		 * that if there are no pending transmissions in the
1662 		 * chip's internal queue (indicated by TXE being clear),
1663 		 * then the driver software must set the TXDP to the
1664 		 * first descriptor to be transmitted.  However, if we
1665 		 * do this, it causes serious performance degredation on
1666 		 * the DP83820 under load, not setting TXDP doesn't seem
1667 		 * to adversely affect the SiS 900 or DP83815.
1668 		 *
1669 		 * Well, I guess it wouldn't be the first time a manual
1670 		 * has lied -- and they could be speaking of the NULL-
1671 		 * terminated descriptor list case, rather than OWN-
1672 		 * terminated rings.
1673 		 */
1674 #if 0
1675 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1676 		     CR_TXE) == 0) {
1677 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1678 			    SIP_CDTXADDR(sc, firsttx));
1679 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1680 		}
1681 #else
1682 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1683 #endif
1684 
1685 		/* Set a watchdog timer in case the chip flakes out. */
1686 		/* Gigabit autonegotiation takes 5 seconds. */
1687 		ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1688 	}
1689 }
1690 
1691 /*
1692  * sip_watchdog:	[ifnet interface function]
1693  *
1694  *	Watchdog timer handler.
1695  */
1696 static void
1697 sipcom_watchdog(struct ifnet *ifp)
1698 {
1699 	struct sip_softc *sc = ifp->if_softc;
1700 
1701 	/*
1702 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1703 	 * If we get a timeout, try and sweep up transmit descriptors.
1704 	 * If we manage to sweep them all up, ignore the lack of
1705 	 * interrupt.
1706 	 */
1707 	sipcom_txintr(sc);
1708 
1709 	if (sc->sc_txfree != sc->sc_ntxdesc) {
1710 		printf("%s: device timeout\n", device_xname(&sc->sc_dev));
1711 		ifp->if_oerrors++;
1712 
1713 		/* Reset the interface. */
1714 		(void) sipcom_init(ifp);
1715 	} else if (ifp->if_flags & IFF_DEBUG)
1716 		printf("%s: recovered from device timeout\n",
1717 		    device_xname(&sc->sc_dev));
1718 
1719 	/* Try to get more packets going. */
1720 	sipcom_start(ifp);
1721 }
1722 
1723 /*
1724  * sip_ioctl:		[ifnet interface function]
1725  *
1726  *	Handle control requests from the operator.
1727  */
1728 static int
1729 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1730 {
1731 	struct sip_softc *sc = ifp->if_softc;
1732 	struct ifreq *ifr = (struct ifreq *)data;
1733 	int s, error;
1734 
1735 	s = splnet();
1736 
1737 	switch (cmd) {
1738 	case SIOCSIFMEDIA:
1739 		/* Flow control requires full-duplex mode. */
1740 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1741 		    (ifr->ifr_media & IFM_FDX) == 0)
1742 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
1743 
1744 		/* XXX */
1745 		if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1746 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1747 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1748 			if (sc->sc_gigabit &&
1749 			    (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1750 				/* We can do both TXPAUSE and RXPAUSE. */
1751 				ifr->ifr_media |=
1752 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1753 			} else if (ifr->ifr_media & IFM_FLOW) {
1754 				/*
1755 				 * Both TXPAUSE and RXPAUSE must be set.
1756 				 * (SiS900 and DP83815 don't have PAUSE_ASYM
1757 				 * feature.)
1758 				 *
1759 				 * XXX Can SiS900 and DP83815 send PAUSE?
1760 				 */
1761 				ifr->ifr_media |=
1762 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1763 			}
1764 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1765 		}
1766 		goto ethioctl;
1767 	case SIOCSIFFLAGS:
1768 		/* If the interface is up and running, only modify the receive
1769 		 * filter when setting promiscuous or debug mode.  Otherwise
1770 		 * fall through to ether_ioctl, which will reset the chip.
1771 		 */
1772 
1773 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable			\
1774 			 == (sc)->sc_ethercom.ec_capenable)		\
1775 			&& ((sc)->sc_prev.is_vlan ==			\
1776 			    VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1777 
1778 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1779 
1780 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
1781 		if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
1782 		    == (IFF_UP|IFF_RUNNING))
1783 		    && ((ifp->if_flags & (~RESETIGN))
1784 		    == (sc->sc_if_flags & (~RESETIGN)))
1785 		    && COMPARE_EC(sc) && COMPARE_IC(sc, ifp)) {
1786 			/* Set up the receive filter. */
1787 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1788 			error = 0;
1789 			break;
1790 #undef RESETIGN
1791 		}
1792 		/* FALLTHROUGH */
1793 	ethioctl:
1794 	default:
1795 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1796 			break;
1797 
1798 		error = 0;
1799 
1800 		if (cmd == SIOCSIFCAP)
1801 			error = (*ifp->if_init)(ifp);
1802 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1803 			;
1804 		else if (ifp->if_flags & IFF_RUNNING) {
1805 			/*
1806 			 * Multicast list has changed; set the hardware filter
1807 			 * accordingly.
1808 			 */
1809 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1810 		}
1811 		break;
1812 	}
1813 
1814 	/* Try to get more packets going. */
1815 	sipcom_start(ifp);
1816 
1817 	sc->sc_if_flags = ifp->if_flags;
1818 	splx(s);
1819 	return (error);
1820 }
1821 
1822 /*
1823  * sip_intr:
1824  *
1825  *	Interrupt service routine.
1826  */
1827 static int
1828 sipcom_intr(void *arg)
1829 {
1830 	struct sip_softc *sc = arg;
1831 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1832 	u_int32_t isr;
1833 	int handled = 0;
1834 
1835 	/* Disable interrupts. */
1836 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1837 
1838 	for (;;) {
1839 		/* Reading clears interrupt. */
1840 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1841 		if ((isr & sc->sc_imr) == 0)
1842 			break;
1843 
1844 #if NRND > 0
1845 		if (RND_ENABLED(&sc->rnd_source))
1846 			rnd_add_uint32(&sc->rnd_source, isr);
1847 #endif
1848 
1849 		handled = 1;
1850 
1851 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1852 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1853 
1854 			/* Grab any new packets. */
1855 			(*sc->sc_rxintr)(sc);
1856 
1857 			if (isr & ISR_RXORN) {
1858 				printf("%s: receive FIFO overrun\n",
1859 				    device_xname(&sc->sc_dev));
1860 
1861 				/* XXX adjust rx_drain_thresh? */
1862 			}
1863 
1864 			if (isr & ISR_RXIDLE) {
1865 				printf("%s: receive ring overrun\n",
1866 				    device_xname(&sc->sc_dev));
1867 
1868 				/* Get the receive process going again. */
1869 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1870 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1871 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1872 				    SIP_CR, CR_RXE);
1873 			}
1874 		}
1875 
1876 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1877 #ifdef SIP_EVENT_COUNTERS
1878 			if (isr & ISR_TXDESC)
1879 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1880 			else if (isr & ISR_TXIDLE)
1881 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1882 #endif
1883 
1884 			/* Sweep up transmit descriptors. */
1885 			sipcom_txintr(sc);
1886 
1887 			if (isr & ISR_TXURN) {
1888 				u_int32_t thresh;
1889 				int txfifo_size = (sc->sc_gigabit)
1890 				    ? DP83820_SIP_TXFIFO_SIZE
1891 				    : OTHER_SIP_TXFIFO_SIZE;
1892 
1893 				printf("%s: transmit FIFO underrun",
1894 				    device_xname(&sc->sc_dev));
1895 				thresh = sc->sc_tx_drain_thresh + 1;
1896 				if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
1897 				&& (thresh * 32) <= (txfifo_size -
1898 				     (sc->sc_tx_fill_thresh * 32))) {
1899 					printf("; increasing Tx drain "
1900 					    "threshold to %u bytes\n",
1901 					    thresh * 32);
1902 					sc->sc_tx_drain_thresh = thresh;
1903 					(void) sipcom_init(ifp);
1904 				} else {
1905 					(void) sipcom_init(ifp);
1906 					printf("\n");
1907 				}
1908 			}
1909 		}
1910 
1911 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1912 			if (isr & ISR_PAUSE_ST) {
1913 				sc->sc_paused = 1;
1914 				SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1915 				ifp->if_flags |= IFF_OACTIVE;
1916 			}
1917 			if (isr & ISR_PAUSE_END) {
1918 				sc->sc_paused = 0;
1919 				ifp->if_flags &= ~IFF_OACTIVE;
1920 			}
1921 		}
1922 
1923 		if (isr & ISR_HIBERR) {
1924 			int want_init = 0;
1925 
1926 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1927 
1928 #define	PRINTERR(bit, str)						\
1929 			do {						\
1930 				if ((isr & (bit)) != 0) {		\
1931 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
1932 						printf("%s: %s\n",	\
1933 						    device_xname(&sc->sc_dev), str); \
1934 					want_init = 1;			\
1935 				}					\
1936 			} while (/*CONSTCOND*/0)
1937 
1938 			PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
1939 			PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
1940 			PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
1941 			PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
1942 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1943 			/*
1944 			 * Ignore:
1945 			 *	Tx reset complete
1946 			 *	Rx reset complete
1947 			 */
1948 			if (want_init)
1949 				(void) sipcom_init(ifp);
1950 #undef PRINTERR
1951 		}
1952 	}
1953 
1954 	/* Re-enable interrupts. */
1955 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1956 
1957 	/* Try to get more packets going. */
1958 	sipcom_start(ifp);
1959 
1960 	return (handled);
1961 }
1962 
1963 /*
1964  * sip_txintr:
1965  *
1966  *	Helper; handle transmit interrupts.
1967  */
1968 static void
1969 sipcom_txintr(struct sip_softc *sc)
1970 {
1971 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1972 	struct sip_txsoft *txs;
1973 	u_int32_t cmdsts;
1974 
1975 	if (sc->sc_paused == 0)
1976 		ifp->if_flags &= ~IFF_OACTIVE;
1977 
1978 	/*
1979 	 * Go through our Tx list and free mbufs for those
1980 	 * frames which have been transmitted.
1981 	 */
1982 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1983 		sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1984 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1985 
1986 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
1987 		if (cmdsts & CMDSTS_OWN)
1988 			break;
1989 
1990 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1991 
1992 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1993 
1994 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1995 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1996 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1997 		m_freem(txs->txs_mbuf);
1998 		txs->txs_mbuf = NULL;
1999 
2000 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2001 
2002 		/*
2003 		 * Check for errors and collisions.
2004 		 */
2005 		if (cmdsts &
2006 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
2007 			ifp->if_oerrors++;
2008 			if (cmdsts & CMDSTS_Tx_EC)
2009 				ifp->if_collisions += 16;
2010 			if (ifp->if_flags & IFF_DEBUG) {
2011 				if (cmdsts & CMDSTS_Tx_ED)
2012 					printf("%s: excessive deferral\n",
2013 					    device_xname(&sc->sc_dev));
2014 				if (cmdsts & CMDSTS_Tx_EC)
2015 					printf("%s: excessive collisions\n",
2016 					    device_xname(&sc->sc_dev));
2017 			}
2018 		} else {
2019 			/* Packet was transmitted successfully. */
2020 			ifp->if_opackets++;
2021 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
2022 		}
2023 	}
2024 
2025 	/*
2026 	 * If there are no more pending transmissions, cancel the watchdog
2027 	 * timer.
2028 	 */
2029 	if (txs == NULL) {
2030 		ifp->if_timer = 0;
2031 		sc->sc_txwin = 0;
2032 	}
2033 }
2034 
2035 /*
2036  * gsip_rxintr:
2037  *
2038  *	Helper; handle receive interrupts on gigabit parts.
2039  */
2040 static void
2041 gsip_rxintr(struct sip_softc *sc)
2042 {
2043 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2044 	struct sip_rxsoft *rxs;
2045 	struct mbuf *m;
2046 	u_int32_t cmdsts, extsts;
2047 	int i, len;
2048 
2049 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2050 		rxs = &sc->sc_rxsoft[i];
2051 
2052 		sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2053 
2054 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2055 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
2056 		len = CMDSTS_SIZE(sc, cmdsts);
2057 
2058 		/*
2059 		 * NOTE: OWN is set if owned by _consumer_.  We're the
2060 		 * consumer of the receive ring, so if the bit is clear,
2061 		 * we have processed all of the packets.
2062 		 */
2063 		if ((cmdsts & CMDSTS_OWN) == 0) {
2064 			/*
2065 			 * We have processed all of the receive buffers.
2066 			 */
2067 			break;
2068 		}
2069 
2070 		if (__predict_false(sc->sc_rxdiscard)) {
2071 			sip_init_rxdesc(sc, i);
2072 			if ((cmdsts & CMDSTS_MORE) == 0) {
2073 				/* Reset our state. */
2074 				sc->sc_rxdiscard = 0;
2075 			}
2076 			continue;
2077 		}
2078 
2079 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2080 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2081 
2082 		m = rxs->rxs_mbuf;
2083 
2084 		/*
2085 		 * Add a new receive buffer to the ring.
2086 		 */
2087 		if (sipcom_add_rxbuf(sc, i) != 0) {
2088 			/*
2089 			 * Failed, throw away what we've done so
2090 			 * far, and discard the rest of the packet.
2091 			 */
2092 			ifp->if_ierrors++;
2093 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2094 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2095 			sip_init_rxdesc(sc, i);
2096 			if (cmdsts & CMDSTS_MORE)
2097 				sc->sc_rxdiscard = 1;
2098 			if (sc->sc_rxhead != NULL)
2099 				m_freem(sc->sc_rxhead);
2100 			sip_rxchain_reset(sc);
2101 			continue;
2102 		}
2103 
2104 		sip_rxchain_link(sc, m);
2105 
2106 		m->m_len = len;
2107 
2108 		/*
2109 		 * If this is not the end of the packet, keep
2110 		 * looking.
2111 		 */
2112 		if (cmdsts & CMDSTS_MORE) {
2113 			sc->sc_rxlen += len;
2114 			continue;
2115 		}
2116 
2117 		/*
2118 		 * Okay, we have the entire packet now.  The chip includes
2119 		 * the FCS, so we need to trim it.
2120 		 */
2121 		m->m_len -= ETHER_CRC_LEN;
2122 
2123 		*sc->sc_rxtailp = NULL;
2124 		len = m->m_len + sc->sc_rxlen;
2125 		m = sc->sc_rxhead;
2126 
2127 		sip_rxchain_reset(sc);
2128 
2129 		/*
2130 		 * If an error occurred, update stats and drop the packet.
2131 		 */
2132 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2133 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2134 			ifp->if_ierrors++;
2135 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2136 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
2137 				/* Receive overrun handled elsewhere. */
2138 				printf("%s: receive descriptor error\n",
2139 				    device_xname(&sc->sc_dev));
2140 			}
2141 #define	PRINTERR(bit, str)						\
2142 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
2143 			    (cmdsts & (bit)) != 0)			\
2144 				printf("%s: %s\n", device_xname(&sc->sc_dev), str)
2145 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2146 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2147 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2148 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2149 #undef PRINTERR
2150 			m_freem(m);
2151 			continue;
2152 		}
2153 
2154 		/*
2155 		 * If the packet is small enough to fit in a
2156 		 * single header mbuf, allocate one and copy
2157 		 * the data into it.  This greatly reduces
2158 		 * memory consumption when we receive lots
2159 		 * of small packets.
2160 		 */
2161 		if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
2162 			struct mbuf *nm;
2163 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
2164 			if (nm == NULL) {
2165 				ifp->if_ierrors++;
2166 				m_freem(m);
2167 				continue;
2168 			}
2169 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2170 			nm->m_data += 2;
2171 			nm->m_pkthdr.len = nm->m_len = len;
2172 			m_copydata(m, 0, len, mtod(nm, void *));
2173 			m_freem(m);
2174 			m = nm;
2175 		}
2176 #ifndef __NO_STRICT_ALIGNMENT
2177 		else {
2178 			/*
2179 			 * The DP83820's receive buffers must be 4-byte
2180 			 * aligned.  But this means that the data after
2181 			 * the Ethernet header is misaligned.  To compensate,
2182 			 * we have artificially shortened the buffer size
2183 			 * in the descriptor, and we do an overlapping copy
2184 			 * of the data two bytes further in (in the first
2185 			 * buffer of the chain only).
2186 			 */
2187 			memmove(mtod(m, char *) + 2, mtod(m, void *),
2188 			    m->m_len);
2189 			m->m_data += 2;
2190 		}
2191 #endif /* ! __NO_STRICT_ALIGNMENT */
2192 
2193 		/*
2194 		 * If VLANs are enabled, VLAN packets have been unwrapped
2195 		 * for us.  Associate the tag with the packet.
2196 		 */
2197 
2198 		/*
2199 		 * Again, byte swapping is tricky. Hardware provided
2200 		 * the tag in the network byte order, but extsts was
2201 		 * passed through le32toh() in the meantime. On a
2202 		 * big-endian machine, we need to swap it again. On a
2203 		 * little-endian machine, we need to convert from the
2204 		 * network to host byte order. This means that we must
2205 		 * swap it in any case, so unconditional swap instead
2206 		 * of htons() is used.
2207 		 */
2208 		if ((extsts & EXTSTS_VPKT) != 0) {
2209 			VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
2210 			    continue);
2211 		}
2212 
2213 		/*
2214 		 * Set the incoming checksum information for the
2215 		 * packet.
2216 		 */
2217 		if ((extsts & EXTSTS_IPPKT) != 0) {
2218 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2219 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2220 			if (extsts & EXTSTS_Rx_IPERR)
2221 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2222 			if (extsts & EXTSTS_TCPPKT) {
2223 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2224 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2225 				if (extsts & EXTSTS_Rx_TCPERR)
2226 					m->m_pkthdr.csum_flags |=
2227 					    M_CSUM_TCP_UDP_BAD;
2228 			} else if (extsts & EXTSTS_UDPPKT) {
2229 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2230 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2231 				if (extsts & EXTSTS_Rx_UDPERR)
2232 					m->m_pkthdr.csum_flags |=
2233 					    M_CSUM_TCP_UDP_BAD;
2234 			}
2235 		}
2236 
2237 		ifp->if_ipackets++;
2238 		m->m_pkthdr.rcvif = ifp;
2239 		m->m_pkthdr.len = len;
2240 
2241 #if NBPFILTER > 0
2242 		/*
2243 		 * Pass this up to any BPF listeners, but only
2244 		 * pass if up the stack if it's for us.
2245 		 */
2246 		if (ifp->if_bpf)
2247 			bpf_mtap(ifp->if_bpf, m);
2248 #endif /* NBPFILTER > 0 */
2249 
2250 		/* Pass it on. */
2251 		(*ifp->if_input)(ifp, m);
2252 	}
2253 
2254 	/* Update the receive pointer. */
2255 	sc->sc_rxptr = i;
2256 }
2257 
2258 /*
2259  * sip_rxintr:
2260  *
2261  *	Helper; handle receive interrupts on 10/100 parts.
2262  */
2263 static void
2264 sip_rxintr(struct sip_softc *sc)
2265 {
2266 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2267 	struct sip_rxsoft *rxs;
2268 	struct mbuf *m;
2269 	u_int32_t cmdsts;
2270 	int i, len;
2271 
2272 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2273 		rxs = &sc->sc_rxsoft[i];
2274 
2275 		sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2276 
2277 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2278 
2279 		/*
2280 		 * NOTE: OWN is set if owned by _consumer_.  We're the
2281 		 * consumer of the receive ring, so if the bit is clear,
2282 		 * we have processed all of the packets.
2283 		 */
2284 		if ((cmdsts & CMDSTS_OWN) == 0) {
2285 			/*
2286 			 * We have processed all of the receive buffers.
2287 			 */
2288 			break;
2289 		}
2290 
2291 		/*
2292 		 * If any collisions were seen on the wire, count one.
2293 		 */
2294 		if (cmdsts & CMDSTS_Rx_COL)
2295 			ifp->if_collisions++;
2296 
2297 		/*
2298 		 * If an error occurred, update stats, clear the status
2299 		 * word, and leave the packet buffer in place.  It will
2300 		 * simply be reused the next time the ring comes around.
2301 		 */
2302 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2303 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2304 			ifp->if_ierrors++;
2305 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2306 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
2307 				/* Receive overrun handled elsewhere. */
2308 				printf("%s: receive descriptor error\n",
2309 				    device_xname(&sc->sc_dev));
2310 			}
2311 #define	PRINTERR(bit, str)						\
2312 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
2313 			    (cmdsts & (bit)) != 0)			\
2314 				printf("%s: %s\n", device_xname(&sc->sc_dev), str)
2315 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2316 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2317 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2318 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2319 #undef PRINTERR
2320 			sip_init_rxdesc(sc, i);
2321 			continue;
2322 		}
2323 
2324 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2325 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2326 
2327 		/*
2328 		 * No errors; receive the packet.  Note, the SiS 900
2329 		 * includes the CRC with every packet.
2330 		 */
2331 		len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
2332 
2333 #ifdef __NO_STRICT_ALIGNMENT
2334 		/*
2335 		 * If the packet is small enough to fit in a
2336 		 * single header mbuf, allocate one and copy
2337 		 * the data into it.  This greatly reduces
2338 		 * memory consumption when we receive lots
2339 		 * of small packets.
2340 		 *
2341 		 * Otherwise, we add a new buffer to the receive
2342 		 * chain.  If this fails, we drop the packet and
2343 		 * recycle the old buffer.
2344 		 */
2345 		if (sip_copy_small != 0 && len <= MHLEN) {
2346 			MGETHDR(m, M_DONTWAIT, MT_DATA);
2347 			if (m == NULL)
2348 				goto dropit;
2349 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2350 			memcpy(mtod(m, void *),
2351 			    mtod(rxs->rxs_mbuf, void *), len);
2352 			sip_init_rxdesc(sc, i);
2353 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2354 			    rxs->rxs_dmamap->dm_mapsize,
2355 			    BUS_DMASYNC_PREREAD);
2356 		} else {
2357 			m = rxs->rxs_mbuf;
2358 			if (sipcom_add_rxbuf(sc, i) != 0) {
2359  dropit:
2360 				ifp->if_ierrors++;
2361 				sip_init_rxdesc(sc, i);
2362 				bus_dmamap_sync(sc->sc_dmat,
2363 				    rxs->rxs_dmamap, 0,
2364 				    rxs->rxs_dmamap->dm_mapsize,
2365 				    BUS_DMASYNC_PREREAD);
2366 				continue;
2367 			}
2368 		}
2369 #else
2370 		/*
2371 		 * The SiS 900's receive buffers must be 4-byte aligned.
2372 		 * But this means that the data after the Ethernet header
2373 		 * is misaligned.  We must allocate a new buffer and
2374 		 * copy the data, shifted forward 2 bytes.
2375 		 */
2376 		MGETHDR(m, M_DONTWAIT, MT_DATA);
2377 		if (m == NULL) {
2378  dropit:
2379 			ifp->if_ierrors++;
2380 			sip_init_rxdesc(sc, i);
2381 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2382 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2383 			continue;
2384 		}
2385 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2386 		if (len > (MHLEN - 2)) {
2387 			MCLGET(m, M_DONTWAIT);
2388 			if ((m->m_flags & M_EXT) == 0) {
2389 				m_freem(m);
2390 				goto dropit;
2391 			}
2392 		}
2393 		m->m_data += 2;
2394 
2395 		/*
2396 		 * Note that we use clusters for incoming frames, so the
2397 		 * buffer is virtually contiguous.
2398 		 */
2399 		memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2400 
2401 		/* Allow the receive descriptor to continue using its mbuf. */
2402 		sip_init_rxdesc(sc, i);
2403 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2404 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2405 #endif /* __NO_STRICT_ALIGNMENT */
2406 
2407 		ifp->if_ipackets++;
2408 		m->m_pkthdr.rcvif = ifp;
2409 		m->m_pkthdr.len = m->m_len = len;
2410 
2411 #if NBPFILTER > 0
2412 		/*
2413 		 * Pass this up to any BPF listeners, but only
2414 		 * pass if up the stack if it's for us.
2415 		 */
2416 		if (ifp->if_bpf)
2417 			bpf_mtap(ifp->if_bpf, m);
2418 #endif /* NBPFILTER > 0 */
2419 
2420 		/* Pass it on. */
2421 		(*ifp->if_input)(ifp, m);
2422 	}
2423 
2424 	/* Update the receive pointer. */
2425 	sc->sc_rxptr = i;
2426 }
2427 
2428 /*
2429  * sip_tick:
2430  *
2431  *	One second timer, used to tick the MII.
2432  */
2433 static void
2434 sipcom_tick(void *arg)
2435 {
2436 	struct sip_softc *sc = arg;
2437 	int s;
2438 
2439 	s = splnet();
2440 #ifdef SIP_EVENT_COUNTERS
2441 	if (sc->sc_gigabit) {
2442 		/* Read PAUSE related counts from MIB registers. */
2443 		sc->sc_ev_rxpause.ev_count +=
2444 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
2445 				     SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2446 		sc->sc_ev_txpause.ev_count +=
2447 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
2448 				     SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2449 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2450 	}
2451 #endif /* SIP_EVENT_COUNTERS */
2452 	mii_tick(&sc->sc_mii);
2453 	splx(s);
2454 
2455 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2456 }
2457 
2458 /*
2459  * sip_reset:
2460  *
2461  *	Perform a soft reset on the SiS 900.
2462  */
2463 static bool
2464 sipcom_reset(struct sip_softc *sc)
2465 {
2466 	bus_space_tag_t st = sc->sc_st;
2467 	bus_space_handle_t sh = sc->sc_sh;
2468 	int i;
2469 
2470 	bus_space_write_4(st, sh, SIP_IER, 0);
2471 	bus_space_write_4(st, sh, SIP_IMR, 0);
2472 	bus_space_write_4(st, sh, SIP_RFCR, 0);
2473 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
2474 
2475 	for (i = 0; i < SIP_TIMEOUT; i++) {
2476 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2477 			break;
2478 		delay(2);
2479 	}
2480 
2481 	if (i == SIP_TIMEOUT) {
2482 		printf("%s: reset failed to complete\n", device_xname(&sc->sc_dev));
2483 		return false;
2484 	}
2485 
2486 	delay(1000);
2487 
2488 	if (sc->sc_gigabit) {
2489 		/*
2490 		 * Set the general purpose I/O bits.  Do it here in case we
2491 		 * need to have GPIO set up to talk to the media interface.
2492 		 */
2493 		bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2494 		delay(1000);
2495 	}
2496 	return true;
2497 }
2498 
2499 static void
2500 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2501 {
2502 	u_int32_t reg;
2503 	bus_space_tag_t st = sc->sc_st;
2504 	bus_space_handle_t sh = sc->sc_sh;
2505 	/*
2506 	 * Initialize the VLAN/IP receive control register.
2507 	 * We enable checksum computation on all incoming
2508 	 * packets, and do not reject packets w/ bad checksums.
2509 	 */
2510 	reg = 0;
2511 	if (capenable &
2512 	    (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
2513 		reg |= VRCR_IPEN;
2514 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2515 		reg |= VRCR_VTDEN|VRCR_VTREN;
2516 	bus_space_write_4(st, sh, SIP_VRCR, reg);
2517 
2518 	/*
2519 	 * Initialize the VLAN/IP transmit control register.
2520 	 * We enable outgoing checksum computation on a
2521 	 * per-packet basis.
2522 	 */
2523 	reg = 0;
2524 	if (capenable &
2525 	    (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2526 		reg |= VTCR_PPCHK;
2527 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2528 		reg |= VTCR_VPPTI;
2529 	bus_space_write_4(st, sh, SIP_VTCR, reg);
2530 
2531 	/*
2532 	 * If we're using VLANs, initialize the VLAN data register.
2533 	 * To understand why we bswap the VLAN Ethertype, see section
2534 	 * 4.2.36 of the DP83820 manual.
2535 	 */
2536 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2537 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2538 }
2539 
2540 /*
2541  * sip_init:		[ ifnet interface function ]
2542  *
2543  *	Initialize the interface.  Must be called at splnet().
2544  */
2545 static int
2546 sipcom_init(struct ifnet *ifp)
2547 {
2548 	struct sip_softc *sc = ifp->if_softc;
2549 	bus_space_tag_t st = sc->sc_st;
2550 	bus_space_handle_t sh = sc->sc_sh;
2551 	struct sip_txsoft *txs;
2552 	struct sip_rxsoft *rxs;
2553 	struct sip_desc *sipd;
2554 	int i, error = 0;
2555 
2556 	if (device_is_active(&sc->sc_dev)) {
2557 		/*
2558 		 * Cancel any pending I/O.
2559 		 */
2560 		sipcom_stop(ifp, 0);
2561 	} else if (!pmf_device_resume_self(&sc->sc_dev))
2562 		return 0;
2563 
2564 	/*
2565 	 * Reset the chip to a known state.
2566 	 */
2567 	if (!sipcom_reset(sc))
2568 		return EBUSY;
2569 
2570 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2571 		/*
2572 		 * DP83815 manual, page 78:
2573 		 *    4.4 Recommended Registers Configuration
2574 		 *    For optimum performance of the DP83815, version noted
2575 		 *    as DP83815CVNG (SRR = 203h), the listed register
2576 		 *    modifications must be followed in sequence...
2577 		 *
2578 		 * It's not clear if this should be 302h or 203h because that
2579 		 * chip name is listed as SRR 302h in the description of the
2580 		 * SRR register.  However, my revision 302h DP83815 on the
2581 		 * Netgear FA311 purchased in 02/2001 needs these settings
2582 		 * to avoid tons of errors in AcceptPerfectMatch (non-
2583 		 * IFF_PROMISC) mode.  I do not know if other revisions need
2584 		 * this set or not.  [briggs -- 09 March 2001]
2585 		 *
2586 		 * Note that only the low-order 12 bits of 0xe4 are documented
2587 		 * and that this sets reserved bits in that register.
2588 		 */
2589 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
2590 
2591 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
2592 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
2593 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
2594 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
2595 
2596 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
2597 	}
2598 
2599 	/*
2600 	 * Initialize the transmit descriptor ring.
2601 	 */
2602 	for (i = 0; i < sc->sc_ntxdesc; i++) {
2603 		sipd = &sc->sc_txdescs[i];
2604 		memset(sipd, 0, sizeof(struct sip_desc));
2605 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
2606 	}
2607 	sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
2608 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2609 	sc->sc_txfree = sc->sc_ntxdesc;
2610 	sc->sc_txnext = 0;
2611 	sc->sc_txwin = 0;
2612 
2613 	/*
2614 	 * Initialize the transmit job descriptors.
2615 	 */
2616 	SIMPLEQ_INIT(&sc->sc_txfreeq);
2617 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
2618 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
2619 		txs = &sc->sc_txsoft[i];
2620 		txs->txs_mbuf = NULL;
2621 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2622 	}
2623 
2624 	/*
2625 	 * Initialize the receive descriptor and receive job
2626 	 * descriptor rings.
2627 	 */
2628 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2629 		rxs = &sc->sc_rxsoft[i];
2630 		if (rxs->rxs_mbuf == NULL) {
2631 			if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
2632 				printf("%s: unable to allocate or map rx "
2633 				    "buffer %d, error = %d\n",
2634 				    device_xname(&sc->sc_dev), i, error);
2635 				/*
2636 				 * XXX Should attempt to run with fewer receive
2637 				 * XXX buffers instead of just failing.
2638 				 */
2639 				sipcom_rxdrain(sc);
2640 				goto out;
2641 			}
2642 		} else
2643 			sip_init_rxdesc(sc, i);
2644 	}
2645 	sc->sc_rxptr = 0;
2646 	sc->sc_rxdiscard = 0;
2647 	sip_rxchain_reset(sc);
2648 
2649 	/*
2650 	 * Set the configuration register; it's already initialized
2651 	 * in sip_attach().
2652 	 */
2653 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2654 
2655 	/*
2656 	 * Initialize the prototype TXCFG register.
2657 	 */
2658 	if (sc->sc_gigabit) {
2659 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2660 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2661 	} else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2662 	     SIP_SIS900_REV(sc, SIS_REV_960) ||
2663 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2664 	    (sc->sc_cfg & CFG_EDBMASTEN)) {
2665 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
2666 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
2667 	} else {
2668 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2669 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2670 	}
2671 
2672 	sc->sc_txcfg |= TXCFG_ATP |
2673 	    __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
2674 	    sc->sc_tx_drain_thresh;
2675 	bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
2676 
2677 	/*
2678 	 * Initialize the receive drain threshold if we have never
2679 	 * done so.
2680 	 */
2681 	if (sc->sc_rx_drain_thresh == 0) {
2682 		/*
2683 		 * XXX This value should be tuned.  This is set to the
2684 		 * maximum of 248 bytes, and we may be able to improve
2685 		 * performance by decreasing it (although we should never
2686 		 * set this value lower than 2; 14 bytes are required to
2687 		 * filter the packet).
2688 		 */
2689 		sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
2690 	}
2691 
2692 	/*
2693 	 * Initialize the prototype RXCFG register.
2694 	 */
2695 	sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
2696 	/*
2697 	 * Accept long packets (including FCS) so we can handle
2698 	 * 802.1q-tagged frames and jumbo frames properly.
2699 	 */
2700 	if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2701 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2702 		sc->sc_rxcfg |= RXCFG_ALP;
2703 
2704 	/*
2705 	 * Checksum offloading is disabled if the user selects an MTU
2706 	 * larger than 8109.  (FreeBSD says 8152, but there is emperical
2707 	 * evidence that >8109 does not work on some boards, such as the
2708 	 * Planex GN-1000TE).
2709 	 */
2710 	if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2711 	    (ifp->if_capenable &
2712 	     (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2713 	      IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2714 	      IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
2715 		printf("%s: Checksum offloading does not work if MTU > 8109 - "
2716 		       "disabled.\n", device_xname(&sc->sc_dev));
2717 		ifp->if_capenable &=
2718 		    ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2719 		     IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2720 		     IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
2721 		ifp->if_csum_flags_tx = 0;
2722 		ifp->if_csum_flags_rx = 0;
2723 	}
2724 
2725 	bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
2726 
2727 	if (sc->sc_gigabit)
2728 		sipcom_dp83820_init(sc, ifp->if_capenable);
2729 
2730 	/*
2731 	 * Give the transmit and receive rings to the chip.
2732 	 */
2733 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2734 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2735 
2736 	/*
2737 	 * Initialize the interrupt mask.
2738 	 */
2739 	sc->sc_imr = sc->sc_bits.b_isr_dperr |
2740 	             sc->sc_bits.b_isr_sserr |
2741 		     sc->sc_bits.b_isr_rmabt |
2742 		     sc->sc_bits.b_isr_rtabt | ISR_RXSOVR |
2743 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2744 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2745 
2746 	/* Set up the receive filter. */
2747 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2748 
2749 	/*
2750 	 * Tune sc_rx_flow_thresh.
2751 	 * XXX "More than 8KB" is too short for jumbo frames.
2752 	 * XXX TODO: Threshold value should be user-settable.
2753 	 */
2754 	sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2755 				 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2756 				 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2757 
2758 	/*
2759 	 * Set the current media.  Do this after initializing the prototype
2760 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2761 	 * control.
2762 	 */
2763 	if ((error = ether_mediachange(ifp)) != 0)
2764 		goto out;
2765 
2766 	/*
2767 	 * Set the interrupt hold-off timer to 100us.
2768 	 */
2769 	if (sc->sc_gigabit)
2770 		bus_space_write_4(st, sh, SIP_IHR, 0x01);
2771 
2772 	/*
2773 	 * Enable interrupts.
2774 	 */
2775 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
2776 
2777 	/*
2778 	 * Start the transmit and receive processes.
2779 	 */
2780 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2781 
2782 	/*
2783 	 * Start the one second MII clock.
2784 	 */
2785 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2786 
2787 	/*
2788 	 * ...all done!
2789 	 */
2790 	ifp->if_flags |= IFF_RUNNING;
2791 	ifp->if_flags &= ~IFF_OACTIVE;
2792 	sc->sc_if_flags = ifp->if_flags;
2793 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2794 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2795 	sc->sc_prev.if_capenable = ifp->if_capenable;
2796 
2797  out:
2798 	if (error)
2799 		printf("%s: interface not running\n", device_xname(&sc->sc_dev));
2800 	return (error);
2801 }
2802 
2803 /*
2804  * sip_drain:
2805  *
2806  *	Drain the receive queue.
2807  */
2808 static void
2809 sipcom_rxdrain(struct sip_softc *sc)
2810 {
2811 	struct sip_rxsoft *rxs;
2812 	int i;
2813 
2814 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2815 		rxs = &sc->sc_rxsoft[i];
2816 		if (rxs->rxs_mbuf != NULL) {
2817 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2818 			m_freem(rxs->rxs_mbuf);
2819 			rxs->rxs_mbuf = NULL;
2820 		}
2821 	}
2822 }
2823 
2824 /*
2825  * sip_stop:		[ ifnet interface function ]
2826  *
2827  *	Stop transmission on the interface.
2828  */
2829 static void
2830 sipcom_stop(struct ifnet *ifp, int disable)
2831 {
2832 	struct sip_softc *sc = ifp->if_softc;
2833 	bus_space_tag_t st = sc->sc_st;
2834 	bus_space_handle_t sh = sc->sc_sh;
2835 	struct sip_txsoft *txs;
2836 	u_int32_t cmdsts = 0;		/* DEBUG */
2837 
2838 	/*
2839 	 * Stop the one second clock.
2840 	 */
2841 	callout_stop(&sc->sc_tick_ch);
2842 
2843 	/* Down the MII. */
2844 	mii_down(&sc->sc_mii);
2845 
2846 	/*
2847 	 * Disable interrupts.
2848 	 */
2849 	bus_space_write_4(st, sh, SIP_IER, 0);
2850 
2851 	/*
2852 	 * Stop receiver and transmitter.
2853 	 */
2854 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2855 
2856 	/*
2857 	 * Release any queued transmit buffers.
2858 	 */
2859 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2860 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2861 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2862 		    (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
2863 		     CMDSTS_INTR) == 0)
2864 			printf("%s: sip_stop: last descriptor does not "
2865 			    "have INTR bit set\n", device_xname(&sc->sc_dev));
2866 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2867 #ifdef DIAGNOSTIC
2868 		if (txs->txs_mbuf == NULL) {
2869 			printf("%s: dirty txsoft with no mbuf chain\n",
2870 			    device_xname(&sc->sc_dev));
2871 			panic("sip_stop");
2872 		}
2873 #endif
2874 		cmdsts |=		/* DEBUG */
2875 		    le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
2876 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2877 		m_freem(txs->txs_mbuf);
2878 		txs->txs_mbuf = NULL;
2879 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2880 	}
2881 
2882 	/*
2883 	 * Mark the interface down and cancel the watchdog timer.
2884 	 */
2885 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2886 	ifp->if_timer = 0;
2887 
2888 	if (disable)
2889 		pmf_device_suspend_self(&sc->sc_dev);
2890 
2891 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2892 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2893 		printf("%s: sip_stop: no INTR bits set in dirty tx "
2894 		    "descriptors\n", device_xname(&sc->sc_dev));
2895 }
2896 
2897 /*
2898  * sip_read_eeprom:
2899  *
2900  *	Read data from the serial EEPROM.
2901  */
2902 static void
2903 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2904     u_int16_t *data)
2905 {
2906 	bus_space_tag_t st = sc->sc_st;
2907 	bus_space_handle_t sh = sc->sc_sh;
2908 	u_int16_t reg;
2909 	int i, x;
2910 
2911 	for (i = 0; i < wordcnt; i++) {
2912 		/* Send CHIP SELECT. */
2913 		reg = EROMAR_EECS;
2914 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
2915 
2916 		/* Shift in the READ opcode. */
2917 		for (x = 3; x > 0; x--) {
2918 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2919 				reg |= EROMAR_EEDI;
2920 			else
2921 				reg &= ~EROMAR_EEDI;
2922 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2923 			bus_space_write_4(st, sh, SIP_EROMAR,
2924 			    reg | EROMAR_EESK);
2925 			delay(4);
2926 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2927 			delay(4);
2928 		}
2929 
2930 		/* Shift in address. */
2931 		for (x = 6; x > 0; x--) {
2932 			if ((word + i) & (1 << (x - 1)))
2933 				reg |= EROMAR_EEDI;
2934 			else
2935 				reg &= ~EROMAR_EEDI;
2936 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2937 			bus_space_write_4(st, sh, SIP_EROMAR,
2938 			    reg | EROMAR_EESK);
2939 			delay(4);
2940 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2941 			delay(4);
2942 		}
2943 
2944 		/* Shift out data. */
2945 		reg = EROMAR_EECS;
2946 		data[i] = 0;
2947 		for (x = 16; x > 0; x--) {
2948 			bus_space_write_4(st, sh, SIP_EROMAR,
2949 			    reg | EROMAR_EESK);
2950 			delay(4);
2951 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2952 				data[i] |= (1 << (x - 1));
2953 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2954 			delay(4);
2955 		}
2956 
2957 		/* Clear CHIP SELECT. */
2958 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
2959 		delay(4);
2960 	}
2961 }
2962 
2963 /*
2964  * sipcom_add_rxbuf:
2965  *
2966  *	Add a receive buffer to the indicated descriptor.
2967  */
2968 static int
2969 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
2970 {
2971 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2972 	struct mbuf *m;
2973 	int error;
2974 
2975 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2976 	if (m == NULL)
2977 		return (ENOBUFS);
2978 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2979 
2980 	MCLGET(m, M_DONTWAIT);
2981 	if ((m->m_flags & M_EXT) == 0) {
2982 		m_freem(m);
2983 		return (ENOBUFS);
2984 	}
2985 
2986 	/* XXX I don't believe this is necessary. --dyoung */
2987 	if (sc->sc_gigabit)
2988 		m->m_len = sc->sc_parm->p_rxbuf_len;
2989 
2990 	if (rxs->rxs_mbuf != NULL)
2991 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2992 
2993 	rxs->rxs_mbuf = m;
2994 
2995 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2996 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2997 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2998 	if (error) {
2999 		printf("%s: can't load rx DMA map %d, error = %d\n",
3000 		    device_xname(&sc->sc_dev), idx, error);
3001 		panic("%s", __func__);		/* XXX */
3002 	}
3003 
3004 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3005 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3006 
3007 	sip_init_rxdesc(sc, idx);
3008 
3009 	return (0);
3010 }
3011 
3012 /*
3013  * sip_sis900_set_filter:
3014  *
3015  *	Set up the receive filter.
3016  */
3017 static void
3018 sipcom_sis900_set_filter(struct sip_softc *sc)
3019 {
3020 	bus_space_tag_t st = sc->sc_st;
3021 	bus_space_handle_t sh = sc->sc_sh;
3022 	struct ethercom *ec = &sc->sc_ethercom;
3023 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3024 	struct ether_multi *enm;
3025 	const u_int8_t *cp;
3026 	struct ether_multistep step;
3027 	u_int32_t crc, mchash[16];
3028 
3029 	/*
3030 	 * Initialize the prototype RFCR.
3031 	 */
3032 	sc->sc_rfcr = RFCR_RFEN;
3033 	if (ifp->if_flags & IFF_BROADCAST)
3034 		sc->sc_rfcr |= RFCR_AAB;
3035 	if (ifp->if_flags & IFF_PROMISC) {
3036 		sc->sc_rfcr |= RFCR_AAP;
3037 		goto allmulti;
3038 	}
3039 
3040 	/*
3041 	 * Set up the multicast address filter by passing all multicast
3042 	 * addresses through a CRC generator, and then using the high-order
3043 	 * 6 bits as an index into the 128 bit multicast hash table (only
3044 	 * the lower 16 bits of each 32 bit multicast hash register are
3045 	 * valid).  The high order bits select the register, while the
3046 	 * rest of the bits select the bit within the register.
3047 	 */
3048 
3049 	memset(mchash, 0, sizeof(mchash));
3050 
3051 	/*
3052 	 * SiS900 (at least SiS963) requires us to register the address of
3053 	 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3054 	 */
3055 	crc = 0x0ed423f9;
3056 
3057 	if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3058 	    SIP_SIS900_REV(sc, SIS_REV_960) ||
3059 	    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3060 		/* Just want the 8 most significant bits. */
3061 		crc >>= 24;
3062 	} else {
3063 		/* Just want the 7 most significant bits. */
3064 		crc >>= 25;
3065 	}
3066 
3067 	/* Set the corresponding bit in the hash table. */
3068 	mchash[crc >> 4] |= 1 << (crc & 0xf);
3069 
3070 	ETHER_FIRST_MULTI(step, ec, enm);
3071 	while (enm != NULL) {
3072 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3073 			/*
3074 			 * We must listen to a range of multicast addresses.
3075 			 * For now, just accept all multicasts, rather than
3076 			 * trying to set only those filter bits needed to match
3077 			 * the range.  (At this time, the only use of address
3078 			 * ranges is for IP multicast routing, for which the
3079 			 * range is big enough to require all bits set.)
3080 			 */
3081 			goto allmulti;
3082 		}
3083 
3084 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3085 
3086 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3087 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
3088 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3089 			/* Just want the 8 most significant bits. */
3090 			crc >>= 24;
3091 		} else {
3092 			/* Just want the 7 most significant bits. */
3093 			crc >>= 25;
3094 		}
3095 
3096 		/* Set the corresponding bit in the hash table. */
3097 		mchash[crc >> 4] |= 1 << (crc & 0xf);
3098 
3099 		ETHER_NEXT_MULTI(step, enm);
3100 	}
3101 
3102 	ifp->if_flags &= ~IFF_ALLMULTI;
3103 	goto setit;
3104 
3105  allmulti:
3106 	ifp->if_flags |= IFF_ALLMULTI;
3107 	sc->sc_rfcr |= RFCR_AAM;
3108 
3109  setit:
3110 #define	FILTER_EMIT(addr, data)						\
3111 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
3112 	delay(1);							\
3113 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
3114 	delay(1)
3115 
3116 	/*
3117 	 * Disable receive filter, and program the node address.
3118 	 */
3119 	cp = CLLADDR(ifp->if_sadl);
3120 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
3121 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
3122 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
3123 
3124 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3125 		/*
3126 		 * Program the multicast hash table.
3127 		 */
3128 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
3129 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
3130 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
3131 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
3132 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
3133 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
3134 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
3135 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
3136 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3137 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
3138 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3139 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
3140 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
3141 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
3142 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
3143 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
3144 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
3145 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
3146 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
3147 		}
3148 	}
3149 #undef FILTER_EMIT
3150 
3151 	/*
3152 	 * Re-enable the receiver filter.
3153 	 */
3154 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3155 }
3156 
3157 /*
3158  * sip_dp83815_set_filter:
3159  *
3160  *	Set up the receive filter.
3161  */
3162 static void
3163 sipcom_dp83815_set_filter(struct sip_softc *sc)
3164 {
3165 	bus_space_tag_t st = sc->sc_st;
3166 	bus_space_handle_t sh = sc->sc_sh;
3167 	struct ethercom *ec = &sc->sc_ethercom;
3168 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3169 	struct ether_multi *enm;
3170 	const u_int8_t *cp;
3171 	struct ether_multistep step;
3172 	u_int32_t crc, hash, slot, bit;
3173 #define	MCHASH_NWORDS_83820	128
3174 #define	MCHASH_NWORDS_83815	32
3175 #define	MCHASH_NWORDS	MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3176 	u_int16_t mchash[MCHASH_NWORDS];
3177 	int i;
3178 
3179 	/*
3180 	 * Initialize the prototype RFCR.
3181 	 * Enable the receive filter, and accept on
3182 	 *    Perfect (destination address) Match
3183 	 * If IFF_BROADCAST, also accept all broadcast packets.
3184 	 * If IFF_PROMISC, accept all unicast packets (and later, set
3185 	 *    IFF_ALLMULTI and accept all multicast, too).
3186 	 */
3187 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3188 	if (ifp->if_flags & IFF_BROADCAST)
3189 		sc->sc_rfcr |= RFCR_AAB;
3190 	if (ifp->if_flags & IFF_PROMISC) {
3191 		sc->sc_rfcr |= RFCR_AAP;
3192 		goto allmulti;
3193 	}
3194 
3195 	/*
3196          * Set up the DP83820/DP83815 multicast address filter by
3197          * passing all multicast addresses through a CRC generator,
3198          * and then using the high-order 11/9 bits as an index into
3199          * the 2048/512 bit multicast hash table.  The high-order
3200          * 7/5 bits select the slot, while the low-order 4 bits
3201          * select the bit within the slot.  Note that only the low
3202          * 16-bits of each filter word are used, and there are
3203          * 128/32 filter words.
3204 	 */
3205 
3206 	memset(mchash, 0, sizeof(mchash));
3207 
3208 	ifp->if_flags &= ~IFF_ALLMULTI;
3209 	ETHER_FIRST_MULTI(step, ec, enm);
3210 	if (enm == NULL)
3211 		goto setit;
3212 	while (enm != NULL) {
3213 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3214 			/*
3215 			 * We must listen to a range of multicast addresses.
3216 			 * For now, just accept all multicasts, rather than
3217 			 * trying to set only those filter bits needed to match
3218 			 * the range.  (At this time, the only use of address
3219 			 * ranges is for IP multicast routing, for which the
3220 			 * range is big enough to require all bits set.)
3221 			 */
3222 			goto allmulti;
3223 		}
3224 
3225 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3226 
3227 		if (sc->sc_gigabit) {
3228 			/* Just want the 11 most significant bits. */
3229 			hash = crc >> 21;
3230 		} else {
3231 			/* Just want the 9 most significant bits. */
3232 			hash = crc >> 23;
3233 		}
3234 
3235 		slot = hash >> 4;
3236 		bit = hash & 0xf;
3237 
3238 		/* Set the corresponding bit in the hash table. */
3239 		mchash[slot] |= 1 << bit;
3240 
3241 		ETHER_NEXT_MULTI(step, enm);
3242 	}
3243 	sc->sc_rfcr |= RFCR_MHEN;
3244 	goto setit;
3245 
3246  allmulti:
3247 	ifp->if_flags |= IFF_ALLMULTI;
3248 	sc->sc_rfcr |= RFCR_AAM;
3249 
3250  setit:
3251 #define	FILTER_EMIT(addr, data)						\
3252 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
3253 	delay(1);							\
3254 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
3255 	delay(1)
3256 
3257 	/*
3258 	 * Disable receive filter, and program the node address.
3259 	 */
3260 	cp = CLLADDR(ifp->if_sadl);
3261 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3262 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3263 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3264 
3265 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3266 		int nwords =
3267 		    sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3268 		/*
3269 		 * Program the multicast hash table.
3270 		 */
3271 		for (i = 0; i < nwords; i++) {
3272 			FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
3273 		}
3274 	}
3275 #undef FILTER_EMIT
3276 #undef MCHASH_NWORDS
3277 #undef MCHASH_NWORDS_83815
3278 #undef MCHASH_NWORDS_83820
3279 
3280 	/*
3281 	 * Re-enable the receiver filter.
3282 	 */
3283 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3284 }
3285 
3286 /*
3287  * sip_dp83820_mii_readreg:	[mii interface function]
3288  *
3289  *	Read a PHY register on the MII of the DP83820.
3290  */
3291 static int
3292 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg)
3293 {
3294 	struct sip_softc *sc = device_private(self);
3295 
3296 	if (sc->sc_cfg & CFG_TBI_EN) {
3297 		bus_addr_t tbireg;
3298 		int rv;
3299 
3300 		if (phy != 0)
3301 			return (0);
3302 
3303 		switch (reg) {
3304 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3305 		case MII_BMSR:		tbireg = SIP_TBISR; break;
3306 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3307 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3308 		case MII_ANER:		tbireg = SIP_TANER; break;
3309 		case MII_EXTSR:
3310 			/*
3311 			 * Don't even bother reading the TESR register.
3312 			 * The manual documents that the device has
3313 			 * 1000baseX full/half capability, but the
3314 			 * register itself seems read back 0 on some
3315 			 * boards.  Just hard-code the result.
3316 			 */
3317 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3318 
3319 		default:
3320 			return (0);
3321 		}
3322 
3323 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3324 		if (tbireg == SIP_TBISR) {
3325 			/* LINK and ACOMP are switched! */
3326 			int val = rv;
3327 
3328 			rv = 0;
3329 			if (val & TBISR_MR_LINK_STATUS)
3330 				rv |= BMSR_LINK;
3331 			if (val & TBISR_MR_AN_COMPLETE)
3332 				rv |= BMSR_ACOMP;
3333 
3334 			/*
3335 			 * The manual claims this register reads back 0
3336 			 * on hard and soft reset.  But we want to let
3337 			 * the gentbi driver know that we support auto-
3338 			 * negotiation, so hard-code this bit in the
3339 			 * result.
3340 			 */
3341 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
3342 		}
3343 
3344 		return (rv);
3345 	}
3346 
3347 	return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
3348 }
3349 
3350 /*
3351  * sip_dp83820_mii_writereg:	[mii interface function]
3352  *
3353  *	Write a PHY register on the MII of the DP83820.
3354  */
3355 static void
3356 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, int val)
3357 {
3358 	struct sip_softc *sc = device_private(self);
3359 
3360 	if (sc->sc_cfg & CFG_TBI_EN) {
3361 		bus_addr_t tbireg;
3362 
3363 		if (phy != 0)
3364 			return;
3365 
3366 		switch (reg) {
3367 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3368 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3369 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3370 		default:
3371 			return;
3372 		}
3373 
3374 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3375 		return;
3376 	}
3377 
3378 	mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
3379 }
3380 
3381 /*
3382  * sip_dp83820_mii_statchg:	[mii interface function]
3383  *
3384  *	Callback from MII layer when media changes.
3385  */
3386 static void
3387 sipcom_dp83820_mii_statchg(device_t self)
3388 {
3389 	struct sip_softc *sc = device_private(self);
3390 	struct mii_data *mii = &sc->sc_mii;
3391 	u_int32_t cfg, pcr;
3392 
3393 	/*
3394 	 * Get flow control negotiation result.
3395 	 */
3396 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3397 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3398 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3399 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3400 	}
3401 
3402 	/*
3403 	 * Update TXCFG for full-duplex operation.
3404 	 */
3405 	if ((mii->mii_media_active & IFM_FDX) != 0)
3406 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3407 	else
3408 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3409 
3410 	/*
3411 	 * Update RXCFG for full-duplex or loopback.
3412 	 */
3413 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3414 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3415 		sc->sc_rxcfg |= RXCFG_ATX;
3416 	else
3417 		sc->sc_rxcfg &= ~RXCFG_ATX;
3418 
3419 	/*
3420 	 * Update CFG for MII/GMII.
3421 	 */
3422 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3423 		cfg = sc->sc_cfg | CFG_MODE_1000;
3424 	else
3425 		cfg = sc->sc_cfg;
3426 
3427 	/*
3428 	 * 802.3x flow control.
3429 	 */
3430 	pcr = 0;
3431 	if (sc->sc_flowflags & IFM_FLOW) {
3432 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3433 			pcr |= sc->sc_rx_flow_thresh;
3434 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3435 			pcr |= PCR_PSEN | PCR_PS_MCAST;
3436 	}
3437 
3438 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3439 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3440 	    sc->sc_txcfg);
3441 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3442 	    sc->sc_rxcfg);
3443 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3444 }
3445 
3446 /*
3447  * sip_mii_bitbang_read: [mii bit-bang interface function]
3448  *
3449  *	Read the MII serial port for the MII bit-bang module.
3450  */
3451 static u_int32_t
3452 sipcom_mii_bitbang_read(device_t self)
3453 {
3454 	struct sip_softc *sc = device_private(self);
3455 
3456 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3457 }
3458 
3459 /*
3460  * sip_mii_bitbang_write: [mii big-bang interface function]
3461  *
3462  *	Write the MII serial port for the MII bit-bang module.
3463  */
3464 static void
3465 sipcom_mii_bitbang_write(device_t self, u_int32_t val)
3466 {
3467 	struct sip_softc *sc = device_private(self);
3468 
3469 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3470 }
3471 
3472 /*
3473  * sip_sis900_mii_readreg:	[mii interface function]
3474  *
3475  *	Read a PHY register on the MII.
3476  */
3477 static int
3478 sipcom_sis900_mii_readreg(device_t self, int phy, int reg)
3479 {
3480 	struct sip_softc *sc = device_private(self);
3481 	u_int32_t enphy;
3482 
3483 	/*
3484 	 * The PHY of recent SiS chipsets is accessed through bitbang
3485 	 * operations.
3486 	 */
3487 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3488 		return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3489 		    phy, reg);
3490 
3491 #ifndef SIS900_MII_RESTRICT
3492 	/*
3493 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3494 	 * MII address 0.
3495 	 */
3496 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3497 		return (0);
3498 #endif
3499 
3500 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3501 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3502 	    ENPHY_RWCMD | ENPHY_ACCESS);
3503 	do {
3504 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3505 	} while (enphy & ENPHY_ACCESS);
3506 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3507 }
3508 
3509 /*
3510  * sip_sis900_mii_writereg:	[mii interface function]
3511  *
3512  *	Write a PHY register on the MII.
3513  */
3514 static void
3515 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, int val)
3516 {
3517 	struct sip_softc *sc = device_private(self);
3518 	u_int32_t enphy;
3519 
3520 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3521 		mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3522 		    phy, reg, val);
3523 		return;
3524 	}
3525 
3526 #ifndef SIS900_MII_RESTRICT
3527 	/*
3528 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3529 	 * MII address 0.
3530 	 */
3531 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3532 		return;
3533 #endif
3534 
3535 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3536 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3537 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3538 	do {
3539 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3540 	} while (enphy & ENPHY_ACCESS);
3541 }
3542 
3543 /*
3544  * sip_sis900_mii_statchg:	[mii interface function]
3545  *
3546  *	Callback from MII layer when media changes.
3547  */
3548 static void
3549 sipcom_sis900_mii_statchg(device_t self)
3550 {
3551 	struct sip_softc *sc = device_private(self);
3552 	struct mii_data *mii = &sc->sc_mii;
3553 	u_int32_t flowctl;
3554 
3555 	/*
3556 	 * Get flow control negotiation result.
3557 	 */
3558 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3559 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3560 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3561 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3562 	}
3563 
3564 	/*
3565 	 * Update TXCFG for full-duplex operation.
3566 	 */
3567 	if ((mii->mii_media_active & IFM_FDX) != 0)
3568 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3569 	else
3570 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3571 
3572 	/*
3573 	 * Update RXCFG for full-duplex or loopback.
3574 	 */
3575 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3576 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3577 		sc->sc_rxcfg |= RXCFG_ATX;
3578 	else
3579 		sc->sc_rxcfg &= ~RXCFG_ATX;
3580 
3581 	/*
3582 	 * Update IMR for use of 802.3x flow control.
3583 	 */
3584 	if (sc->sc_flowflags & IFM_FLOW) {
3585 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3586 		flowctl = FLOWCTL_FLOWEN;
3587 	} else {
3588 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3589 		flowctl = 0;
3590 	}
3591 
3592 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3593 	    sc->sc_txcfg);
3594 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3595 	    sc->sc_rxcfg);
3596 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3597 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3598 }
3599 
3600 /*
3601  * sip_dp83815_mii_readreg:	[mii interface function]
3602  *
3603  *	Read a PHY register on the MII.
3604  */
3605 static int
3606 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg)
3607 {
3608 	struct sip_softc *sc = device_private(self);
3609 	u_int32_t val;
3610 
3611 	/*
3612 	 * The DP83815 only has an internal PHY.  Only allow
3613 	 * MII address 0.
3614 	 */
3615 	if (phy != 0)
3616 		return (0);
3617 
3618 	/*
3619 	 * Apparently, after a reset, the DP83815 can take a while
3620 	 * to respond.  During this recovery period, the BMSR returns
3621 	 * a value of 0.  Catch this -- it's not supposed to happen
3622 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3623 	 * PHY to come back to life.
3624 	 *
3625 	 * This works out because the BMSR is the first register
3626 	 * read during the PHY probe process.
3627 	 */
3628 	do {
3629 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3630 	} while (reg == MII_BMSR && val == 0);
3631 
3632 	return (val & 0xffff);
3633 }
3634 
3635 /*
3636  * sip_dp83815_mii_writereg:	[mii interface function]
3637  *
3638  *	Write a PHY register to the MII.
3639  */
3640 static void
3641 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, int val)
3642 {
3643 	struct sip_softc *sc = device_private(self);
3644 
3645 	/*
3646 	 * The DP83815 only has an internal PHY.  Only allow
3647 	 * MII address 0.
3648 	 */
3649 	if (phy != 0)
3650 		return;
3651 
3652 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3653 }
3654 
3655 /*
3656  * sip_dp83815_mii_statchg:	[mii interface function]
3657  *
3658  *	Callback from MII layer when media changes.
3659  */
3660 static void
3661 sipcom_dp83815_mii_statchg(device_t self)
3662 {
3663 	struct sip_softc *sc = device_private(self);
3664 
3665 	/*
3666 	 * Update TXCFG for full-duplex operation.
3667 	 */
3668 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3669 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3670 	else
3671 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3672 
3673 	/*
3674 	 * Update RXCFG for full-duplex or loopback.
3675 	 */
3676 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3677 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3678 		sc->sc_rxcfg |= RXCFG_ATX;
3679 	else
3680 		sc->sc_rxcfg &= ~RXCFG_ATX;
3681 
3682 	/*
3683 	 * XXX 802.3x flow control.
3684 	 */
3685 
3686 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3687 	    sc->sc_txcfg);
3688 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3689 	    sc->sc_rxcfg);
3690 
3691 	/*
3692 	 * Some DP83815s experience problems when used with short
3693 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
3694 	 * sequence adjusts the DSP's signal attenuation to fix the
3695 	 * problem.
3696 	 */
3697 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3698 		uint32_t reg;
3699 
3700 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3701 
3702 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3703 		reg &= 0x0fff;
3704 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3705 		delay(100);
3706 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3707 		reg &= 0x00ff;
3708 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3709 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3710 			    0x00e8);
3711 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3712 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3713 			    reg | 0x20);
3714 		}
3715 
3716 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3717 	}
3718 }
3719 
3720 static void
3721 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3722     const struct pci_attach_args *pa, u_int8_t *enaddr)
3723 {
3724 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3725 	u_int8_t cksum, *e, match;
3726 	int i;
3727 
3728 	/*
3729 	 * EEPROM data format for the DP83820 can be found in
3730 	 * the DP83820 manual, section 4.2.4.
3731 	 */
3732 
3733 	sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3734 
3735 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3736 	match = ~(match - 1);
3737 
3738 	cksum = 0x55;
3739 	e = (u_int8_t *) eeprom_data;
3740 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3741 		cksum += *e++;
3742 
3743 	if (cksum != match)
3744 		printf("%s: Checksum (%x) mismatch (%x)",
3745 		    device_xname(&sc->sc_dev), cksum, match);
3746 
3747 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3748 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3749 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3750 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3751 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3752 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3753 }
3754 
3755 static void
3756 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3757 {
3758 	int i;
3759 
3760 	/*
3761 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
3762 	 * a reason, but I don't know it.
3763 	 */
3764 	for (i = 0; i < 10; i++)
3765 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3766 }
3767 
3768 static void
3769 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3770     const struct pci_attach_args *pa, u_int8_t *enaddr)
3771 {
3772 	u_int16_t myea[ETHER_ADDR_LEN / 2];
3773 
3774 	switch (sc->sc_rev) {
3775 	case SIS_REV_630S:
3776 	case SIS_REV_630E:
3777 	case SIS_REV_630EA1:
3778 	case SIS_REV_630ET:
3779 	case SIS_REV_635:
3780 		/*
3781 		 * The MAC address for the on-board Ethernet of
3782 		 * the SiS 630 chipset is in the NVRAM.  Kick
3783 		 * the chip into re-loading it from NVRAM, and
3784 		 * read the MAC address out of the filter registers.
3785 		 */
3786 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3787 
3788 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3789 		    RFCR_RFADDR_NODE0);
3790 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3791 		    0xffff;
3792 
3793 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3794 		    RFCR_RFADDR_NODE2);
3795 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3796 		    0xffff;
3797 
3798 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3799 		    RFCR_RFADDR_NODE4);
3800 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3801 		    0xffff;
3802 		break;
3803 
3804 	case SIS_REV_960:
3805 		{
3806 #define	SIS_SET_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3807 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3808 
3809 #define	SIS_CLR_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3810 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3811 
3812 			int waittime, i;
3813 
3814 			/* Allow to read EEPROM from LAN. It is shared
3815 			 * between a 1394 controller and the NIC and each
3816 			 * time we access it, we need to set SIS_EECMD_REQ.
3817 			 */
3818 			SIS_SET_EROMAR(sc, EROMAR_REQ);
3819 
3820 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3821 				/* Force EEPROM to idle state. */
3822 
3823 				/*
3824 				 * XXX-cube This is ugly.  I'll look for docs about it.
3825 				 */
3826 				SIS_SET_EROMAR(sc, EROMAR_EECS);
3827 				sipcom_sis900_eeprom_delay(sc);
3828 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3829 					SIS_SET_EROMAR(sc, EROMAR_EESK);
3830 					sipcom_sis900_eeprom_delay(sc);
3831 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
3832 					sipcom_sis900_eeprom_delay(sc);
3833 				}
3834 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
3835 				sipcom_sis900_eeprom_delay(sc);
3836 				bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3837 
3838 				if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3839 					sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3840 					    sizeof(myea) / sizeof(myea[0]), myea);
3841 					break;
3842 				}
3843 				DELAY(1);
3844 			}
3845 
3846 			/*
3847 			 * Set SIS_EECTL_CLK to high, so a other master
3848 			 * can operate on the i2c bus.
3849 			 */
3850 			SIS_SET_EROMAR(sc, EROMAR_EESK);
3851 
3852 			/* Refuse EEPROM access by LAN */
3853 			SIS_SET_EROMAR(sc, EROMAR_DONE);
3854 		} break;
3855 
3856 	default:
3857 		sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3858 		    sizeof(myea) / sizeof(myea[0]), myea);
3859 	}
3860 
3861 	enaddr[0] = myea[0] & 0xff;
3862 	enaddr[1] = myea[0] >> 8;
3863 	enaddr[2] = myea[1] & 0xff;
3864 	enaddr[3] = myea[1] >> 8;
3865 	enaddr[4] = myea[2] & 0xff;
3866 	enaddr[5] = myea[2] >> 8;
3867 }
3868 
3869 /* Table and macro to bit-reverse an octet. */
3870 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3871 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3872 
3873 static void
3874 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3875     const struct pci_attach_args *pa, u_int8_t *enaddr)
3876 {
3877 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3878 	u_int8_t cksum, *e, match;
3879 	int i;
3880 
3881 	sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3882 	    sizeof(eeprom_data[0]), eeprom_data);
3883 
3884 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3885 	match = ~(match - 1);
3886 
3887 	cksum = 0x55;
3888 	e = (u_int8_t *) eeprom_data;
3889 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3890 		cksum += *e++;
3891 	}
3892 	if (cksum != match) {
3893 		printf("%s: Checksum (%x) mismatch (%x)",
3894 		    device_xname(&sc->sc_dev), cksum, match);
3895 	}
3896 
3897 	/*
3898 	 * Unrolled because it makes slightly more sense this way.
3899 	 * The DP83815 stores the MAC address in bit 0 of word 6
3900 	 * through bit 15 of word 8.
3901 	 */
3902 	ea = &eeprom_data[6];
3903 	enaddr[0] = ((*ea & 0x1) << 7);
3904 	ea++;
3905 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
3906 	enaddr[1] = ((*ea & 0x1FE) >> 1);
3907 	enaddr[2] = ((*ea & 0x1) << 7);
3908 	ea++;
3909 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
3910 	enaddr[3] = ((*ea & 0x1FE) >> 1);
3911 	enaddr[4] = ((*ea & 0x1) << 7);
3912 	ea++;
3913 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
3914 	enaddr[5] = ((*ea & 0x1FE) >> 1);
3915 
3916 	/*
3917 	 * In case that's not weird enough, we also need to reverse
3918 	 * the bits in each byte.  This all actually makes more sense
3919 	 * if you think about the EEPROM storage as an array of bits
3920 	 * being shifted into bytes, but that's not how we're looking
3921 	 * at it here...
3922 	 */
3923 	for (i = 0; i < 6 ;i++)
3924 		enaddr[i] = bbr(enaddr[i]);
3925 }
3926 
3927 /*
3928  * sip_mediastatus:	[ifmedia interface function]
3929  *
3930  *	Get the current interface media status.
3931  */
3932 static void
3933 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3934 {
3935 	struct sip_softc *sc = ifp->if_softc;
3936 
3937 	ether_mediastatus(ifp, ifmr);
3938 	ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
3939 			   sc->sc_flowflags;
3940 }
3941