xref: /netbsd-src/sys/dev/pci/if_sip.c (revision c3de1627bea3f8145539ecad5cb08e7d93cd83ac)
1 /*	$NetBSD: if_sip.c,v 1.51 2002/03/27 21:42:45 briggs Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*-
40  * Copyright (c) 1999 Network Computer, Inc.
41  * All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of Network Computer, Inc. nor the names of its
52  *    contributors may be used to endorse or promote products derived
53  *    from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65  * POSSIBILITY OF SUCH DAMAGE.
66  */
67 
68 /*
69  * Device driver for the Silicon Integrated Systems SiS 900,
70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72  * controllers.
73  *
74  * Originally written to support the SiS 900 by Jason R. Thorpe for
75  * Network Computer, Inc.
76  *
77  * TODO:
78  *
79  *	- Support the 10-bit interface on the DP83820 (for fiber).
80  *
81  *	- Reduce the interrupt load.
82  */
83 
84 #include <sys/cdefs.h>
85 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.51 2002/03/27 21:42:45 briggs Exp $");
86 
87 #include "bpfilter.h"
88 
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/callout.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/socket.h>
96 #include <sys/ioctl.h>
97 #include <sys/errno.h>
98 #include <sys/device.h>
99 #include <sys/queue.h>
100 
101 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
102 
103 #include <net/if.h>
104 #include <net/if_dl.h>
105 #include <net/if_media.h>
106 #include <net/if_ether.h>
107 
108 #if NBPFILTER > 0
109 #include <net/bpf.h>
110 #endif
111 
112 #include <machine/bus.h>
113 #include <machine/intr.h>
114 #include <machine/endian.h>
115 
116 #include <dev/mii/mii.h>
117 #include <dev/mii/miivar.h>
118 #ifdef DP83820
119 #include <dev/mii/mii_bitbang.h>
120 #endif /* DP83820 */
121 
122 #include <dev/pci/pcireg.h>
123 #include <dev/pci/pcivar.h>
124 #include <dev/pci/pcidevs.h>
125 
126 #include <dev/pci/if_sipreg.h>
127 
128 #ifdef DP83820		/* DP83820 Gigabit Ethernet */
129 #define	SIP_DECL(x)	__CONCAT(gsip_,x)
130 #else			/* SiS900 and DP83815 */
131 #define	SIP_DECL(x)	__CONCAT(sip_,x)
132 #endif
133 
134 #define	SIP_STR(x)	__STRING(SIP_DECL(x))
135 
136 /*
137  * Transmit descriptor list size.  This is arbitrary, but allocate
138  * enough descriptors for 128 pending transmissions, and 8 segments
139  * per packet.  This MUST work out to a power of 2.
140  */
141 #define	SIP_NTXSEGS		8
142 
143 #define	SIP_TXQUEUELEN		256
144 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS)
145 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
146 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
147 
148 #if defined(DP83020)
149 #define	TX_DMAMAP_SIZE		ETHER_MAX_LEN_JUMBO
150 #else
151 #define	TX_DMAMAP_SIZE		MCLBYTES
152 #endif
153 
154 /*
155  * Receive descriptor list size.  We have one Rx buffer per incoming
156  * packet, so this logic is a little simpler.
157  *
158  * Actually, on the DP83820, we allow the packet to consume more than
159  * one buffer, in order to support jumbo Ethernet frames.  In that
160  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
161  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
162  * so we'd better be quick about handling receive interrupts.
163  */
164 #if defined(DP83820)
165 #define	SIP_NRXDESC		256
166 #else
167 #define	SIP_NRXDESC		128
168 #endif /* DP83820 */
169 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
170 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
171 
172 /*
173  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
174  * a single clump that maps to a single DMA segment to make several things
175  * easier.
176  */
177 struct sip_control_data {
178 	/*
179 	 * The transmit descriptors.
180 	 */
181 	struct sip_desc scd_txdescs[SIP_NTXDESC];
182 
183 	/*
184 	 * The receive descriptors.
185 	 */
186 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
187 };
188 
189 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
190 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
191 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
192 
193 /*
194  * Software state for transmit jobs.
195  */
196 struct sip_txsoft {
197 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
198 	bus_dmamap_t txs_dmamap;	/* our DMA map */
199 	int txs_firstdesc;		/* first descriptor in packet */
200 	int txs_lastdesc;		/* last descriptor in packet */
201 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
202 };
203 
204 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
205 
206 /*
207  * Software state for receive jobs.
208  */
209 struct sip_rxsoft {
210 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
211 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
212 };
213 
214 /*
215  * Software state per device.
216  */
217 struct sip_softc {
218 	struct device sc_dev;		/* generic device information */
219 	bus_space_tag_t sc_st;		/* bus space tag */
220 	bus_space_handle_t sc_sh;	/* bus space handle */
221 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
222 	struct ethercom sc_ethercom;	/* ethernet common data */
223 	void *sc_sdhook;		/* shutdown hook */
224 
225 	const struct sip_product *sc_model; /* which model are we? */
226 	int sc_rev;			/* chip revision */
227 
228 	void *sc_ih;			/* interrupt cookie */
229 
230 	struct mii_data sc_mii;		/* MII/media information */
231 
232 	struct callout sc_tick_ch;	/* tick callout */
233 
234 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
235 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
236 
237 	/*
238 	 * Software state for transmit and receive descriptors.
239 	 */
240 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
241 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
242 
243 	/*
244 	 * Control data structures.
245 	 */
246 	struct sip_control_data *sc_control_data;
247 #define	sc_txdescs	sc_control_data->scd_txdescs
248 #define	sc_rxdescs	sc_control_data->scd_rxdescs
249 
250 #ifdef SIP_EVENT_COUNTERS
251 	/*
252 	 * Event counters.
253 	 */
254 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
255 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
256 	struct evcnt sc_ev_txintr;	/* Tx interrupts */
257 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
258 #ifdef DP83820
259 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
260 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
261 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
262 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
263 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
264 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
265 #endif /* DP83820 */
266 #endif /* SIP_EVENT_COUNTERS */
267 
268 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
269 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
270 	u_int32_t sc_imr;		/* prototype IMR register */
271 	u_int32_t sc_rfcr;		/* prototype RFCR register */
272 
273 	u_int32_t sc_cfg;		/* prototype CFG register */
274 
275 #ifdef DP83820
276 	u_int32_t sc_gpior;		/* prototype GPIOR register */
277 #endif /* DP83820 */
278 
279 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
280 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
281 
282 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
283 
284 	int	sc_flags;		/* misc. flags; see below */
285 
286 	int	sc_txfree;		/* number of free Tx descriptors */
287 	int	sc_txnext;		/* next ready Tx descriptor */
288 
289 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
290 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
291 
292 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
293 #if defined(DP83820)
294 	int	sc_rxdiscard;
295 	int	sc_rxlen;
296 	struct mbuf *sc_rxhead;
297 	struct mbuf *sc_rxtail;
298 	struct mbuf **sc_rxtailp;
299 #endif /* DP83820 */
300 };
301 
302 /* sc_flags */
303 #define	SIPF_PAUSED	0x00000001	/* paused (802.3x flow control) */
304 
305 #ifdef DP83820
306 #define	SIP_RXCHAIN_RESET(sc)						\
307 do {									\
308 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
309 	*(sc)->sc_rxtailp = NULL;					\
310 	(sc)->sc_rxlen = 0;						\
311 } while (/*CONSTCOND*/0)
312 
313 #define	SIP_RXCHAIN_LINK(sc, m)						\
314 do {									\
315 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
316 	(sc)->sc_rxtailp = &(m)->m_next;				\
317 } while (/*CONSTCOND*/0)
318 #endif /* DP83820 */
319 
320 #ifdef SIP_EVENT_COUNTERS
321 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
322 #else
323 #define	SIP_EVCNT_INCR(ev)	/* nothing */
324 #endif
325 
326 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
327 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
328 
329 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
330 do {									\
331 	int __x, __n;							\
332 									\
333 	__x = (x);							\
334 	__n = (n);							\
335 									\
336 	/* If it will wrap around, sync to the end of the ring. */	\
337 	if ((__x + __n) > SIP_NTXDESC) {				\
338 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
339 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
340 		    (SIP_NTXDESC - __x), (ops));			\
341 		__n -= (SIP_NTXDESC - __x);				\
342 		__x = 0;						\
343 	}								\
344 									\
345 	/* Now sync whatever is left. */				\
346 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
347 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
348 } while (0)
349 
350 #define	SIP_CDRXSYNC(sc, x, ops)					\
351 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
352 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
353 
354 #ifdef DP83820
355 #define	SIP_INIT_RXDESC_EXTSTS	__sipd->sipd_extsts = 0;
356 #define	SIP_RXBUF_LEN		(MCLBYTES - 4)
357 #else
358 #define	SIP_INIT_RXDESC_EXTSTS	/* nothing */
359 #define	SIP_RXBUF_LEN		(MCLBYTES - 1)	/* field width */
360 #endif
361 #define	SIP_INIT_RXDESC(sc, x)						\
362 do {									\
363 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
364 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
365 									\
366 	__sipd->sipd_link =						\
367 	    htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x))));		\
368 	__sipd->sipd_bufptr =						\
369 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr);		\
370 	__sipd->sipd_cmdsts = htole32(CMDSTS_INTR |			\
371 	    (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK));			\
372 	SIP_INIT_RXDESC_EXTSTS						\
373 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
374 } while (0)
375 
376 #define	SIP_CHIP_VERS(sc, v, p, r)					\
377 	((sc)->sc_model->sip_vendor == (v) &&				\
378 	 (sc)->sc_model->sip_product == (p) &&				\
379 	 (sc)->sc_rev == (r))
380 
381 #define	SIP_CHIP_MODEL(sc, v, p)					\
382 	((sc)->sc_model->sip_vendor == (v) &&				\
383 	 (sc)->sc_model->sip_product == (p))
384 
385 #if !defined(DP83820)
386 #define	SIP_SIS900_REV(sc, rev)						\
387 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
388 #endif
389 
390 #define SIP_TIMEOUT 1000
391 
392 void	SIP_DECL(start)(struct ifnet *);
393 void	SIP_DECL(watchdog)(struct ifnet *);
394 int	SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
395 int	SIP_DECL(init)(struct ifnet *);
396 void	SIP_DECL(stop)(struct ifnet *, int);
397 
398 void	SIP_DECL(shutdown)(void *);
399 
400 void	SIP_DECL(reset)(struct sip_softc *);
401 void	SIP_DECL(rxdrain)(struct sip_softc *);
402 int	SIP_DECL(add_rxbuf)(struct sip_softc *, int);
403 void	SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
404 void	SIP_DECL(tick)(void *);
405 
406 #if !defined(DP83820)
407 void	SIP_DECL(sis900_set_filter)(struct sip_softc *);
408 #endif /* ! DP83820 */
409 void	SIP_DECL(dp83815_set_filter)(struct sip_softc *);
410 
411 #if defined(DP83820)
412 void	SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
413 	    const struct pci_attach_args *, u_int8_t *);
414 #else
415 void	SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
416 	    const struct pci_attach_args *, u_int8_t *);
417 void	SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
418 	    const struct pci_attach_args *, u_int8_t *);
419 #endif /* DP83820 */
420 
421 int	SIP_DECL(intr)(void *);
422 void	SIP_DECL(txintr)(struct sip_softc *);
423 void	SIP_DECL(rxintr)(struct sip_softc *);
424 
425 #if defined(DP83820)
426 int	SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
427 void	SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
428 void	SIP_DECL(dp83820_mii_statchg)(struct device *);
429 #else
430 int	SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
431 void	SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
432 void	SIP_DECL(sis900_mii_statchg)(struct device *);
433 
434 int	SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
435 void	SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
436 void	SIP_DECL(dp83815_mii_statchg)(struct device *);
437 #endif /* DP83820 */
438 
439 int	SIP_DECL(mediachange)(struct ifnet *);
440 void	SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
441 
442 int	SIP_DECL(match)(struct device *, struct cfdata *, void *);
443 void	SIP_DECL(attach)(struct device *, struct device *, void *);
444 
445 int	SIP_DECL(copy_small) = 0;
446 
447 struct cfattach SIP_DECL(ca) = {
448 	sizeof(struct sip_softc), SIP_DECL(match), SIP_DECL(attach),
449 };
450 
451 /*
452  * Descriptions of the variants of the SiS900.
453  */
454 struct sip_variant {
455 	int	(*sipv_mii_readreg)(struct device *, int, int);
456 	void	(*sipv_mii_writereg)(struct device *, int, int, int);
457 	void	(*sipv_mii_statchg)(struct device *);
458 	void	(*sipv_set_filter)(struct sip_softc *);
459 	void	(*sipv_read_macaddr)(struct sip_softc *,
460 		    const struct pci_attach_args *, u_int8_t *);
461 };
462 
463 #if defined(DP83820)
464 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
465 void	SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
466 
467 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
468 	SIP_DECL(dp83820_mii_bitbang_read),
469 	SIP_DECL(dp83820_mii_bitbang_write),
470 	{
471 		EROMAR_MDIO,		/* MII_BIT_MDO */
472 		EROMAR_MDIO,		/* MII_BIT_MDI */
473 		EROMAR_MDC,		/* MII_BIT_MDC */
474 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
475 		0,			/* MII_BIT_DIR_PHY_HOST */
476 	}
477 };
478 #endif /* DP83820 */
479 
480 #if defined(DP83820)
481 const struct sip_variant SIP_DECL(variant_dp83820) = {
482 	SIP_DECL(dp83820_mii_readreg),
483 	SIP_DECL(dp83820_mii_writereg),
484 	SIP_DECL(dp83820_mii_statchg),
485 	SIP_DECL(dp83815_set_filter),
486 	SIP_DECL(dp83820_read_macaddr),
487 };
488 #else
489 const struct sip_variant SIP_DECL(variant_sis900) = {
490 	SIP_DECL(sis900_mii_readreg),
491 	SIP_DECL(sis900_mii_writereg),
492 	SIP_DECL(sis900_mii_statchg),
493 	SIP_DECL(sis900_set_filter),
494 	SIP_DECL(sis900_read_macaddr),
495 };
496 
497 const struct sip_variant SIP_DECL(variant_dp83815) = {
498 	SIP_DECL(dp83815_mii_readreg),
499 	SIP_DECL(dp83815_mii_writereg),
500 	SIP_DECL(dp83815_mii_statchg),
501 	SIP_DECL(dp83815_set_filter),
502 	SIP_DECL(dp83815_read_macaddr),
503 };
504 #endif /* DP83820 */
505 
506 /*
507  * Devices supported by this driver.
508  */
509 const struct sip_product {
510 	pci_vendor_id_t		sip_vendor;
511 	pci_product_id_t	sip_product;
512 	const char		*sip_name;
513 	const struct sip_variant *sip_variant;
514 } SIP_DECL(products)[] = {
515 #if defined(DP83820)
516 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
517 	  "NatSemi DP83820 Gigabit Ethernet",
518 	  &SIP_DECL(variant_dp83820) },
519 #else
520 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
521 	  "SiS 900 10/100 Ethernet",
522 	  &SIP_DECL(variant_sis900) },
523 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
524 	  "SiS 7016 10/100 Ethernet",
525 	  &SIP_DECL(variant_sis900) },
526 
527 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
528 	  "NatSemi DP83815 10/100 Ethernet",
529 	  &SIP_DECL(variant_dp83815) },
530 #endif /* DP83820 */
531 
532 	{ 0,			0,
533 	  NULL,
534 	  NULL },
535 };
536 
537 static const struct sip_product *
538 SIP_DECL(lookup)(const struct pci_attach_args *pa)
539 {
540 	const struct sip_product *sip;
541 
542 	for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
543 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
544 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
545 			return (sip);
546 	}
547 	return (NULL);
548 }
549 
550 int
551 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
552 {
553 	struct pci_attach_args *pa = aux;
554 
555 	if (SIP_DECL(lookup)(pa) != NULL)
556 		return (1);
557 
558 	return (0);
559 }
560 
561 void
562 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
563 {
564 	struct sip_softc *sc = (struct sip_softc *) self;
565 	struct pci_attach_args *pa = aux;
566 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
567 	pci_chipset_tag_t pc = pa->pa_pc;
568 	pci_intr_handle_t ih;
569 	const char *intrstr = NULL;
570 	bus_space_tag_t iot, memt;
571 	bus_space_handle_t ioh, memh;
572 	bus_dma_segment_t seg;
573 	int ioh_valid, memh_valid;
574 	int i, rseg, error;
575 	const struct sip_product *sip;
576 	pcireg_t pmode;
577 	u_int8_t enaddr[ETHER_ADDR_LEN];
578 	int pmreg;
579 #ifdef DP83820
580 	pcireg_t memtype;
581 	u_int32_t reg;
582 #endif /* DP83820 */
583 
584 	callout_init(&sc->sc_tick_ch);
585 
586 	sip = SIP_DECL(lookup)(pa);
587 	if (sip == NULL) {
588 		printf("\n");
589 		panic(SIP_STR(attach) ": impossible");
590 	}
591 	sc->sc_rev = PCI_REVISION(pa->pa_class);
592 
593 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
594 
595 	sc->sc_model = sip;
596 
597 	/*
598 	 * XXX Work-around broken PXE firmware on some boards.
599 	 *
600 	 * The DP83815 shares an address decoder with the MEM BAR
601 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
602 	 * so that memory mapped access works.
603 	 */
604 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
605 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
606 	    ~PCI_MAPREG_ROM_ENABLE);
607 
608 	/*
609 	 * Map the device.
610 	 */
611 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
612 	    PCI_MAPREG_TYPE_IO, 0,
613 	    &iot, &ioh, NULL, NULL) == 0);
614 #ifdef DP83820
615 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
616 	switch (memtype) {
617 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
618 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
619 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
620 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
621 		break;
622 	default:
623 		memh_valid = 0;
624 	}
625 #else
626 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
627 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
628 	    &memt, &memh, NULL, NULL) == 0);
629 #endif /* DP83820 */
630 
631 	if (memh_valid) {
632 		sc->sc_st = memt;
633 		sc->sc_sh = memh;
634 	} else if (ioh_valid) {
635 		sc->sc_st = iot;
636 		sc->sc_sh = ioh;
637 	} else {
638 		printf("%s: unable to map device registers\n",
639 		    sc->sc_dev.dv_xname);
640 		return;
641 	}
642 
643 	sc->sc_dmat = pa->pa_dmat;
644 
645 	/*
646 	 * Make sure bus mastering is enabled.  Also make sure
647 	 * Write/Invalidate is enabled if we're allowed to use it.
648 	 */
649 	pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
650 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
651 		pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
652 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
653 	    pmreg | PCI_COMMAND_MASTER_ENABLE);
654 
655 	/* Get it out of power save mode if needed. */
656 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
657 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
658 		if (pmode == 3) {
659 			/*
660 			 * The card has lost all configuration data in
661 			 * this state, so punt.
662 			 */
663 			printf("%s: unable to wake up from power state D3\n",
664 			    sc->sc_dev.dv_xname);
665 			return;
666 		}
667 		if (pmode != 0) {
668 			printf("%s: waking up from power state D%d\n",
669 			    sc->sc_dev.dv_xname, pmode);
670 			pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
671 		}
672 	}
673 
674 	/*
675 	 * Map and establish our interrupt.
676 	 */
677 	if (pci_intr_map(pa, &ih)) {
678 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
679 		return;
680 	}
681 	intrstr = pci_intr_string(pc, ih);
682 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
683 	if (sc->sc_ih == NULL) {
684 		printf("%s: unable to establish interrupt",
685 		    sc->sc_dev.dv_xname);
686 		if (intrstr != NULL)
687 			printf(" at %s", intrstr);
688 		printf("\n");
689 		return;
690 	}
691 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
692 
693 	SIMPLEQ_INIT(&sc->sc_txfreeq);
694 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
695 
696 	/*
697 	 * Allocate the control data structures, and create and load the
698 	 * DMA map for it.
699 	 */
700 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
701 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
702 	    0)) != 0) {
703 		printf("%s: unable to allocate control data, error = %d\n",
704 		    sc->sc_dev.dv_xname, error);
705 		goto fail_0;
706 	}
707 
708 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
709 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
710 	    BUS_DMA_COHERENT)) != 0) {
711 		printf("%s: unable to map control data, error = %d\n",
712 		    sc->sc_dev.dv_xname, error);
713 		goto fail_1;
714 	}
715 
716 	if ((error = bus_dmamap_create(sc->sc_dmat,
717 	    sizeof(struct sip_control_data), 1,
718 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
719 		printf("%s: unable to create control data DMA map, "
720 		    "error = %d\n", sc->sc_dev.dv_xname, error);
721 		goto fail_2;
722 	}
723 
724 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
725 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
726 	    0)) != 0) {
727 		printf("%s: unable to load control data DMA map, error = %d\n",
728 		    sc->sc_dev.dv_xname, error);
729 		goto fail_3;
730 	}
731 
732 	/*
733 	 * Create the transmit buffer DMA maps.
734 	 */
735 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
736 		if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
737 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
738 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
739 			printf("%s: unable to create tx DMA map %d, "
740 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
741 			goto fail_4;
742 		}
743 	}
744 
745 	/*
746 	 * Create the receive buffer DMA maps.
747 	 */
748 	for (i = 0; i < SIP_NRXDESC; i++) {
749 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
750 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
751 			printf("%s: unable to create rx DMA map %d, "
752 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
753 			goto fail_5;
754 		}
755 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
756 	}
757 
758 	/*
759 	 * Reset the chip to a known state.
760 	 */
761 	SIP_DECL(reset)(sc);
762 
763 	/*
764 	 * Read the Ethernet address from the EEPROM.  This might
765 	 * also fetch other stuff from the EEPROM and stash it
766 	 * in the softc.
767 	 */
768 	sc->sc_cfg = 0;
769 #if !defined(DP83820)
770 	if (SIP_SIS900_REV(sc,SIS_REV_635) ||
771 	    SIP_SIS900_REV(sc,SIS_REV_900B))
772 		sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
773 #endif
774 
775 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
776 
777 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
778 	    ether_sprintf(enaddr));
779 
780 	/*
781 	 * Initialize the configuration register: aggressive PCI
782 	 * bus request algorithm, default backoff, default OW timer,
783 	 * default parity error detection.
784 	 *
785 	 * NOTE: "Big endian mode" is useless on the SiS900 and
786 	 * friends -- it affects packet data, not descriptors.
787 	 */
788 #ifdef DP83820
789 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
790 	if (reg & CFG_PCI64_DET) {
791 		printf("%s: 64-bit PCI slot detected\n", sc->sc_dev.dv_xname);
792 		/*
793 		 * XXX Need some PCI flags indicating support for
794 		 * XXX 64-bit addressing (SAC or DAC) and 64-bit
795 		 * XXX data path.
796 		 */
797 	}
798 	if (sc->sc_cfg & (CFG_TBI_EN|CFG_EXT_125)) {
799 		const char *sep = "";
800 		printf("%s: using ", sc->sc_dev.dv_xname);
801 		if (sc->sc_cfg & CFG_EXT_125) {
802 			printf("%s125MHz clock", sep);
803 			sep = ", ";
804 		}
805 		if (sc->sc_cfg & CFG_TBI_EN) {
806 			printf("%sten-bit interface", sep);
807 			sep = ", ";
808 		}
809 		printf("\n");
810 	}
811 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0)
812 		sc->sc_cfg |= CFG_MRM_DIS;
813 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
814 		sc->sc_cfg |= CFG_MWI_DIS;
815 
816 	/*
817 	 * Use the extended descriptor format on the DP83820.  This
818 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
819 	 * checksumming.
820 	 */
821 	sc->sc_cfg |= CFG_EXTSTS_EN;
822 #endif /* DP83820 */
823 
824 	/*
825 	 * Initialize our media structures and probe the MII.
826 	 */
827 	sc->sc_mii.mii_ifp = ifp;
828 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
829 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
830 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
831 	ifmedia_init(&sc->sc_mii.mii_media, 0, SIP_DECL(mediachange),
832 	    SIP_DECL(mediastatus));
833 #ifdef DP83820
834 	if (sc->sc_cfg & CFG_TBI_EN) {
835 		/* Using ten-bit interface. */
836 		printf("%s: TBI -- FIXME\n", sc->sc_dev.dv_xname);
837 	} else {
838 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
839 		    MII_OFFSET_ANY, 0);
840 		if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
841 			ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE,
842 			    0, NULL);
843 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
844 		} else
845 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
846 	}
847 #else
848 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
849 	    MII_OFFSET_ANY, 0);
850 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
851 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
852 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
853 	} else
854 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
855 #endif /* DP83820 */
856 
857 	ifp = &sc->sc_ethercom.ec_if;
858 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
859 	ifp->if_softc = sc;
860 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
861 	ifp->if_ioctl = SIP_DECL(ioctl);
862 	ifp->if_start = SIP_DECL(start);
863 	ifp->if_watchdog = SIP_DECL(watchdog);
864 	ifp->if_init = SIP_DECL(init);
865 	ifp->if_stop = SIP_DECL(stop);
866 	IFQ_SET_READY(&ifp->if_snd);
867 
868 	/*
869 	 * We can support 802.1Q VLAN-sized frames.
870 	 */
871 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
872 
873 #ifdef DP83820
874 	/*
875 	 * And the DP83820 can do VLAN tagging in hardware, and
876 	 * support the jumbo Ethernet MTU.
877 	 */
878 	sc->sc_ethercom.ec_capabilities |=
879 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
880 
881 	/*
882 	 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
883 	 * in hardware.
884 	 */
885 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
886 	    IFCAP_CSUM_UDPv4;
887 #endif /* DP83820 */
888 
889 	/*
890 	 * Attach the interface.
891 	 */
892 	if_attach(ifp);
893 	ether_ifattach(ifp, enaddr);
894 
895 	/*
896 	 * The number of bytes that must be available in
897 	 * the Tx FIFO before the bus master can DMA more
898 	 * data into the FIFO.
899 	 */
900 	sc->sc_tx_fill_thresh = 64 / 32;
901 
902 	/*
903 	 * Start at a drain threshold of 512 bytes.  We will
904 	 * increase it if a DMA underrun occurs.
905 	 *
906 	 * XXX The minimum value of this variable should be
907 	 * tuned.  We may be able to improve performance
908 	 * by starting with a lower value.  That, however,
909 	 * may trash the first few outgoing packets if the
910 	 * PCI bus is saturated.
911 	 */
912 	sc->sc_tx_drain_thresh = 512 / 32;
913 
914 	/*
915 	 * Initialize the Rx FIFO drain threshold.
916 	 *
917 	 * This is in units of 8 bytes.
918 	 *
919 	 * We should never set this value lower than 2; 14 bytes are
920 	 * required to filter the packet.
921 	 */
922 	sc->sc_rx_drain_thresh = 128 / 8;
923 
924 #ifdef SIP_EVENT_COUNTERS
925 	/*
926 	 * Attach event counters.
927 	 */
928 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
929 	    NULL, sc->sc_dev.dv_xname, "txsstall");
930 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
931 	    NULL, sc->sc_dev.dv_xname, "txdstall");
932 	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
933 	    NULL, sc->sc_dev.dv_xname, "txintr");
934 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
935 	    NULL, sc->sc_dev.dv_xname, "rxintr");
936 #ifdef DP83820
937 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
938 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
939 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
940 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
941 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
942 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
943 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
944 	    NULL, sc->sc_dev.dv_xname, "txipsum");
945 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
946 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
947 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
948 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
949 #endif /* DP83820 */
950 #endif /* SIP_EVENT_COUNTERS */
951 
952 	/*
953 	 * Make sure the interface is shutdown during reboot.
954 	 */
955 	sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
956 	if (sc->sc_sdhook == NULL)
957 		printf("%s: WARNING: unable to establish shutdown hook\n",
958 		    sc->sc_dev.dv_xname);
959 	return;
960 
961 	/*
962 	 * Free any resources we've allocated during the failed attach
963 	 * attempt.  Do this in reverse order and fall through.
964 	 */
965  fail_5:
966 	for (i = 0; i < SIP_NRXDESC; i++) {
967 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
968 			bus_dmamap_destroy(sc->sc_dmat,
969 			    sc->sc_rxsoft[i].rxs_dmamap);
970 	}
971  fail_4:
972 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
973 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
974 			bus_dmamap_destroy(sc->sc_dmat,
975 			    sc->sc_txsoft[i].txs_dmamap);
976 	}
977 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
978  fail_3:
979 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
980  fail_2:
981 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
982 	    sizeof(struct sip_control_data));
983  fail_1:
984 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
985  fail_0:
986 	return;
987 }
988 
989 /*
990  * sip_shutdown:
991  *
992  *	Make sure the interface is stopped at reboot time.
993  */
994 void
995 SIP_DECL(shutdown)(void *arg)
996 {
997 	struct sip_softc *sc = arg;
998 
999 	SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
1000 }
1001 
1002 /*
1003  * sip_start:		[ifnet interface function]
1004  *
1005  *	Start packet transmission on the interface.
1006  */
1007 void
1008 SIP_DECL(start)(struct ifnet *ifp)
1009 {
1010 	struct sip_softc *sc = ifp->if_softc;
1011 	struct mbuf *m0, *m;
1012 	struct sip_txsoft *txs;
1013 	bus_dmamap_t dmamap;
1014 	int error, firsttx, nexttx, lasttx, ofree, seg;
1015 #ifdef DP83820
1016 	u_int32_t extsts;
1017 #endif
1018 
1019 	/*
1020 	 * If we've been told to pause, don't transmit any more packets.
1021 	 */
1022 	if (sc->sc_flags & SIPF_PAUSED)
1023 		ifp->if_flags |= IFF_OACTIVE;
1024 
1025 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1026 		return;
1027 
1028 	/*
1029 	 * Remember the previous number of free descriptors and
1030 	 * the first descriptor we'll use.
1031 	 */
1032 	ofree = sc->sc_txfree;
1033 	firsttx = sc->sc_txnext;
1034 
1035 	/*
1036 	 * Loop through the send queue, setting up transmit descriptors
1037 	 * until we drain the queue, or use up all available transmit
1038 	 * descriptors.
1039 	 */
1040 	for (;;) {
1041 		/* Get a work queue entry. */
1042 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1043 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1044 			break;
1045 		}
1046 
1047 		/*
1048 		 * Grab a packet off the queue.
1049 		 */
1050 		IFQ_POLL(&ifp->if_snd, m0);
1051 		if (m0 == NULL)
1052 			break;
1053 #ifndef DP83820
1054 		m = NULL;
1055 #endif
1056 
1057 		dmamap = txs->txs_dmamap;
1058 
1059 #ifdef DP83820
1060 		/*
1061 		 * Load the DMA map.  If this fails, the packet either
1062 		 * didn't fit in the allotted number of segments, or we
1063 		 * were short on resources.  For the too-many-segments
1064 		 * case, we simply report an error and drop the packet,
1065 		 * since we can't sanely copy a jumbo packet to a single
1066 		 * buffer.
1067 		 */
1068 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1069 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1070 		if (error) {
1071 			if (error == EFBIG) {
1072 				printf("%s: Tx packet consumes too many "
1073 				    "DMA segments, dropping...\n",
1074 				    sc->sc_dev.dv_xname);
1075 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1076 				m_freem(m0);
1077 				continue;
1078 			}
1079 			/*
1080 			 * Short on resources, just stop for now.
1081 			 */
1082 			break;
1083 		}
1084 #else /* DP83820 */
1085 		/*
1086 		 * Load the DMA map.  If this fails, the packet either
1087 		 * didn't fit in the alloted number of segments, or we
1088 		 * were short on resources.  In this case, we'll copy
1089 		 * and try again.
1090 		 */
1091 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1092 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1093 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1094 			if (m == NULL) {
1095 				printf("%s: unable to allocate Tx mbuf\n",
1096 				    sc->sc_dev.dv_xname);
1097 				break;
1098 			}
1099 			if (m0->m_pkthdr.len > MHLEN) {
1100 				MCLGET(m, M_DONTWAIT);
1101 				if ((m->m_flags & M_EXT) == 0) {
1102 					printf("%s: unable to allocate Tx "
1103 					    "cluster\n", sc->sc_dev.dv_xname);
1104 					m_freem(m);
1105 					break;
1106 				}
1107 			}
1108 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1109 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1110 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1111 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1112 			if (error) {
1113 				printf("%s: unable to load Tx buffer, "
1114 				    "error = %d\n", sc->sc_dev.dv_xname, error);
1115 				break;
1116 			}
1117 		}
1118 #endif /* DP83820 */
1119 
1120 		/*
1121 		 * Ensure we have enough descriptors free to describe
1122 		 * the packet.  Note, we always reserve one descriptor
1123 		 * at the end of the ring as a termination point, to
1124 		 * prevent wrap-around.
1125 		 */
1126 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1127 			/*
1128 			 * Not enough free descriptors to transmit this
1129 			 * packet.  We haven't committed anything yet,
1130 			 * so just unload the DMA map, put the packet
1131 			 * back on the queue, and punt.  Notify the upper
1132 			 * layer that there are not more slots left.
1133 			 *
1134 			 * XXX We could allocate an mbuf and copy, but
1135 			 * XXX is it worth it?
1136 			 */
1137 			ifp->if_flags |= IFF_OACTIVE;
1138 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1139 #ifndef DP83820
1140 			if (m != NULL)
1141 				m_freem(m);
1142 #endif
1143 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1144 			break;
1145 		}
1146 
1147 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1148 #ifndef DP83820
1149 		if (m != NULL) {
1150 			m_freem(m0);
1151 			m0 = m;
1152 		}
1153 #endif
1154 
1155 		/*
1156 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1157 		 */
1158 
1159 		/* Sync the DMA map. */
1160 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1161 		    BUS_DMASYNC_PREWRITE);
1162 
1163 		/*
1164 		 * Initialize the transmit descriptors.
1165 		 */
1166 		for (nexttx = sc->sc_txnext, seg = 0;
1167 		     seg < dmamap->dm_nsegs;
1168 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
1169 			/*
1170 			 * If this is the first descriptor we're
1171 			 * enqueueing, don't set the OWN bit just
1172 			 * yet.  That could cause a race condition.
1173 			 * We'll do it below.
1174 			 */
1175 			sc->sc_txdescs[nexttx].sipd_bufptr =
1176 			    htole32(dmamap->dm_segs[seg].ds_addr);
1177 			sc->sc_txdescs[nexttx].sipd_cmdsts =
1178 			    htole32((nexttx == firsttx ? 0 : CMDSTS_OWN) |
1179 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1180 #ifdef DP83820
1181 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
1182 #endif /* DP83820 */
1183 			lasttx = nexttx;
1184 		}
1185 
1186 		/* Clear the MORE bit on the last segment. */
1187 		sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1188 
1189 #ifdef DP83820
1190 		/*
1191 		 * If VLANs are enabled and the packet has a VLAN tag, set
1192 		 * up the descriptor to encapsulate the packet for us.
1193 		 *
1194 		 * This apparently has to be on the last descriptor of
1195 		 * the packet.
1196 		 */
1197 		if (sc->sc_ethercom.ec_nvlans != 0 &&
1198 		    (m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) {
1199 			sc->sc_txdescs[lasttx].sipd_extsts |=
1200 			    htole32(EXTSTS_VPKT |
1201 				    htons(*mtod(m, int *) & EXTSTS_VTCI));
1202 		}
1203 
1204 		/*
1205 		 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1206 		 * checksumming, set up the descriptor to do this work
1207 		 * for us.
1208 		 *
1209 		 * This apparently has to be on the first descriptor of
1210 		 * the packet.
1211 		 *
1212 		 * Byte-swap constants so the compiler can optimize.
1213 		 */
1214 		extsts = 0;
1215 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1216 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
1217 			SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1218 			extsts |= htole32(EXTSTS_IPPKT);
1219 		}
1220 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1221 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
1222 			SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1223 			extsts |= htole32(EXTSTS_TCPPKT);
1224 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1225 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
1226 			SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1227 			extsts |= htole32(EXTSTS_UDPPKT);
1228 		}
1229 		sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1230 #endif /* DP83820 */
1231 
1232 		/* Sync the descriptors we're using. */
1233 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1234 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1235 
1236 		/*
1237 		 * Store a pointer to the packet so we can free it later,
1238 		 * and remember what txdirty will be once the packet is
1239 		 * done.
1240 		 */
1241 		txs->txs_mbuf = m0;
1242 		txs->txs_firstdesc = sc->sc_txnext;
1243 		txs->txs_lastdesc = lasttx;
1244 
1245 		/* Advance the tx pointer. */
1246 		sc->sc_txfree -= dmamap->dm_nsegs;
1247 		sc->sc_txnext = nexttx;
1248 
1249 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
1250 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1251 
1252 #if NBPFILTER > 0
1253 		/*
1254 		 * Pass the packet to any BPF listeners.
1255 		 */
1256 		if (ifp->if_bpf)
1257 			bpf_mtap(ifp->if_bpf, m0);
1258 #endif /* NBPFILTER > 0 */
1259 	}
1260 
1261 	if (txs == NULL || sc->sc_txfree == 0) {
1262 		/* No more slots left; notify upper layer. */
1263 		ifp->if_flags |= IFF_OACTIVE;
1264 	}
1265 
1266 	if (sc->sc_txfree != ofree) {
1267 		/*
1268 		 * Cause a descriptor interrupt to happen on the
1269 		 * last packet we enqueued.
1270 		 */
1271 		sc->sc_txdescs[lasttx].sipd_cmdsts |= htole32(CMDSTS_INTR);
1272 		SIP_CDTXSYNC(sc, lasttx, 1,
1273 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1274 
1275 		/*
1276 		 * The entire packet chain is set up.  Give the
1277 		 * first descrptor to the chip now.
1278 		 */
1279 		sc->sc_txdescs[firsttx].sipd_cmdsts |= htole32(CMDSTS_OWN);
1280 		SIP_CDTXSYNC(sc, firsttx, 1,
1281 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1282 
1283 		/*
1284 		 * Start the transmit process.  Note, the manual says
1285 		 * that if there are no pending transmissions in the
1286 		 * chip's internal queue (indicated by TXE being clear),
1287 		 * then the driver software must set the TXDP to the
1288 		 * first descriptor to be transmitted.  However, if we
1289 		 * do this, it causes serious performance degredation on
1290 		 * the DP83820 under load, not setting TXDP doesn't seem
1291 		 * to adversely affect the SiS 900 or DP83815.
1292 		 *
1293 		 * Well, I guess it wouldn't be the first time a manual
1294 		 * has lied -- and they could be speaking of the NULL-
1295 		 * terminated descriptor list case, rather than OWN-
1296 		 * terminated rings.
1297 		 */
1298 #if 0
1299 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1300 		     CR_TXE) == 0) {
1301 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1302 			    SIP_CDTXADDR(sc, firsttx));
1303 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1304 		}
1305 #else
1306 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1307 #endif
1308 
1309 		/* Set a watchdog timer in case the chip flakes out. */
1310 		ifp->if_timer = 5;
1311 	}
1312 }
1313 
1314 /*
1315  * sip_watchdog:	[ifnet interface function]
1316  *
1317  *	Watchdog timer handler.
1318  */
1319 void
1320 SIP_DECL(watchdog)(struct ifnet *ifp)
1321 {
1322 	struct sip_softc *sc = ifp->if_softc;
1323 
1324 	/*
1325 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1326 	 * If we get a timeout, try and sweep up transmit descriptors.
1327 	 * If we manage to sweep them all up, ignore the lack of
1328 	 * interrupt.
1329 	 */
1330 	SIP_DECL(txintr)(sc);
1331 
1332 	if (sc->sc_txfree != SIP_NTXDESC) {
1333 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1334 		ifp->if_oerrors++;
1335 
1336 		/* Reset the interface. */
1337 		(void) SIP_DECL(init)(ifp);
1338 	} else if (ifp->if_flags & IFF_DEBUG)
1339 		printf("%s: recovered from device timeout\n",
1340 		    sc->sc_dev.dv_xname);
1341 
1342 	/* Try to get more packets going. */
1343 	SIP_DECL(start)(ifp);
1344 }
1345 
1346 /*
1347  * sip_ioctl:		[ifnet interface function]
1348  *
1349  *	Handle control requests from the operator.
1350  */
1351 int
1352 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1353 {
1354 	struct sip_softc *sc = ifp->if_softc;
1355 	struct ifreq *ifr = (struct ifreq *)data;
1356 	int s, error;
1357 
1358 	s = splnet();
1359 
1360 	switch (cmd) {
1361 	case SIOCSIFMEDIA:
1362 	case SIOCGIFMEDIA:
1363 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1364 		break;
1365 
1366 	default:
1367 		error = ether_ioctl(ifp, cmd, data);
1368 		if (error == ENETRESET) {
1369 			/*
1370 			 * Multicast list has changed; set the hardware filter
1371 			 * accordingly.
1372 			 */
1373 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1374 			error = 0;
1375 		}
1376 		break;
1377 	}
1378 
1379 	/* Try to get more packets going. */
1380 	SIP_DECL(start)(ifp);
1381 
1382 	splx(s);
1383 	return (error);
1384 }
1385 
1386 /*
1387  * sip_intr:
1388  *
1389  *	Interrupt service routine.
1390  */
1391 int
1392 SIP_DECL(intr)(void *arg)
1393 {
1394 	struct sip_softc *sc = arg;
1395 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1396 	u_int32_t isr;
1397 	int handled = 0;
1398 
1399 	for (;;) {
1400 		/* Reading clears interrupt. */
1401 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1402 		if ((isr & sc->sc_imr) == 0)
1403 			break;
1404 
1405 		handled = 1;
1406 
1407 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1408 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1409 
1410 			/* Grab any new packets. */
1411 			SIP_DECL(rxintr)(sc);
1412 
1413 			if (isr & ISR_RXORN) {
1414 				printf("%s: receive FIFO overrun\n",
1415 				    sc->sc_dev.dv_xname);
1416 
1417 				/* XXX adjust rx_drain_thresh? */
1418 			}
1419 
1420 			if (isr & ISR_RXIDLE) {
1421 				printf("%s: receive ring overrun\n",
1422 				    sc->sc_dev.dv_xname);
1423 
1424 				/* Get the receive process going again. */
1425 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1426 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1427 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1428 				    SIP_CR, CR_RXE);
1429 			}
1430 		}
1431 
1432 		if (isr & (ISR_TXURN|ISR_TXDESC)) {
1433 			SIP_EVCNT_INCR(&sc->sc_ev_txintr);
1434 
1435 			/* Sweep up transmit descriptors. */
1436 			SIP_DECL(txintr)(sc);
1437 
1438 			if (isr & ISR_TXURN) {
1439 				u_int32_t thresh;
1440 
1441 				printf("%s: transmit FIFO underrun",
1442 				    sc->sc_dev.dv_xname);
1443 
1444 				thresh = sc->sc_tx_drain_thresh + 1;
1445 				if (thresh <= TXCFG_DRTH &&
1446 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
1447 				     (sc->sc_tx_fill_thresh * 32))) {
1448 					printf("; increasing Tx drain "
1449 					    "threshold to %u bytes\n",
1450 					    thresh * 32);
1451 					sc->sc_tx_drain_thresh = thresh;
1452 					(void) SIP_DECL(init)(ifp);
1453 				} else {
1454 					(void) SIP_DECL(init)(ifp);
1455 					printf("\n");
1456 				}
1457 			}
1458 		}
1459 
1460 #if !defined(DP83820)
1461 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1462 			if (isr & ISR_PAUSE_ST) {
1463 				sc->sc_flags |= SIPF_PAUSED;
1464 				ifp->if_flags |= IFF_OACTIVE;
1465 			}
1466 			if (isr & ISR_PAUSE_END) {
1467 				sc->sc_flags &= ~SIPF_PAUSED;
1468 				ifp->if_flags &= ~IFF_OACTIVE;
1469 			}
1470 		}
1471 #endif /* ! DP83820 */
1472 
1473 		if (isr & ISR_HIBERR) {
1474 #define	PRINTERR(bit, str)						\
1475 			if (isr & (bit))				\
1476 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1477 			PRINTERR(ISR_DPERR, "parity error");
1478 			PRINTERR(ISR_SSERR, "system error");
1479 			PRINTERR(ISR_RMABT, "master abort");
1480 			PRINTERR(ISR_RTABT, "target abort");
1481 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1482 			(void) SIP_DECL(init)(ifp);
1483 #undef PRINTERR
1484 		}
1485 	}
1486 
1487 	/* Try to get more packets going. */
1488 	SIP_DECL(start)(ifp);
1489 
1490 	return (handled);
1491 }
1492 
1493 /*
1494  * sip_txintr:
1495  *
1496  *	Helper; handle transmit interrupts.
1497  */
1498 void
1499 SIP_DECL(txintr)(struct sip_softc *sc)
1500 {
1501 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1502 	struct sip_txsoft *txs;
1503 	u_int32_t cmdsts;
1504 
1505 	if ((sc->sc_flags & SIPF_PAUSED) == 0)
1506 		ifp->if_flags &= ~IFF_OACTIVE;
1507 
1508 	/*
1509 	 * Go through our Tx list and free mbufs for those
1510 	 * frames which have been transmitted.
1511 	 */
1512 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1513 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1514 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1515 
1516 		cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1517 		if (cmdsts & CMDSTS_OWN)
1518 			break;
1519 
1520 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1521 
1522 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1523 
1524 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1525 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1526 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1527 		m_freem(txs->txs_mbuf);
1528 		txs->txs_mbuf = NULL;
1529 
1530 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1531 
1532 		/*
1533 		 * Check for errors and collisions.
1534 		 */
1535 		if (cmdsts &
1536 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1537 			ifp->if_oerrors++;
1538 			if (cmdsts & CMDSTS_Tx_EC)
1539 				ifp->if_collisions += 16;
1540 			if (ifp->if_flags & IFF_DEBUG) {
1541 				if (cmdsts & CMDSTS_Tx_ED)
1542 					printf("%s: excessive deferral\n",
1543 					    sc->sc_dev.dv_xname);
1544 				if (cmdsts & CMDSTS_Tx_EC)
1545 					printf("%s: excessive collisions\n",
1546 					    sc->sc_dev.dv_xname);
1547 			}
1548 		} else {
1549 			/* Packet was transmitted successfully. */
1550 			ifp->if_opackets++;
1551 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1552 		}
1553 	}
1554 
1555 	/*
1556 	 * If there are no more pending transmissions, cancel the watchdog
1557 	 * timer.
1558 	 */
1559 	if (txs == NULL)
1560 		ifp->if_timer = 0;
1561 }
1562 
1563 #if defined(DP83820)
1564 /*
1565  * sip_rxintr:
1566  *
1567  *	Helper; handle receive interrupts.
1568  */
1569 void
1570 SIP_DECL(rxintr)(struct sip_softc *sc)
1571 {
1572 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1573 	struct sip_rxsoft *rxs;
1574 	struct mbuf *m, *tailm;
1575 	u_int32_t cmdsts, extsts;
1576 	int i, len;
1577 
1578 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1579 		rxs = &sc->sc_rxsoft[i];
1580 
1581 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1582 
1583 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1584 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1585 
1586 		/*
1587 		 * NOTE: OWN is set if owned by _consumer_.  We're the
1588 		 * consumer of the receive ring, so if the bit is clear,
1589 		 * we have processed all of the packets.
1590 		 */
1591 		if ((cmdsts & CMDSTS_OWN) == 0) {
1592 			/*
1593 			 * We have processed all of the receive buffers.
1594 			 */
1595 			break;
1596 		}
1597 
1598 		if (__predict_false(sc->sc_rxdiscard)) {
1599 			SIP_INIT_RXDESC(sc, i);
1600 			if ((cmdsts & CMDSTS_MORE) == 0) {
1601 				/* Reset our state. */
1602 				sc->sc_rxdiscard = 0;
1603 			}
1604 			continue;
1605 		}
1606 
1607 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1608 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1609 
1610 		m = rxs->rxs_mbuf;
1611 
1612 		/*
1613 		 * Add a new receive buffer to the ring.
1614 		 */
1615 		if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1616 			/*
1617 			 * Failed, throw away what we've done so
1618 			 * far, and discard the rest of the packet.
1619 			 */
1620 			ifp->if_ierrors++;
1621 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1622 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1623 			SIP_INIT_RXDESC(sc, i);
1624 			if (cmdsts & CMDSTS_MORE)
1625 				sc->sc_rxdiscard = 1;
1626 			if (sc->sc_rxhead != NULL)
1627 				m_freem(sc->sc_rxhead);
1628 			SIP_RXCHAIN_RESET(sc);
1629 			continue;
1630 		}
1631 
1632 		SIP_RXCHAIN_LINK(sc, m);
1633 
1634 		/*
1635 		 * If this is not the end of the packet, keep
1636 		 * looking.
1637 		 */
1638 		if (cmdsts & CMDSTS_MORE) {
1639 			sc->sc_rxlen += m->m_len;
1640 			continue;
1641 		}
1642 
1643 		/*
1644 		 * Okay, we have the entire packet now...
1645 		 */
1646 		*sc->sc_rxtailp = NULL;
1647 		m = sc->sc_rxhead;
1648 		tailm = sc->sc_rxtail;
1649 
1650 		SIP_RXCHAIN_RESET(sc);
1651 
1652 		/*
1653 		 * If an error occurred, update stats and drop the packet.
1654 		 */
1655 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1656 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1657 			ifp->if_ierrors++;
1658 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1659 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
1660 				/* Receive overrun handled elsewhere. */
1661 				printf("%s: receive descriptor error\n",
1662 				    sc->sc_dev.dv_xname);
1663 			}
1664 #define	PRINTERR(bit, str)						\
1665 			if (cmdsts & (bit))				\
1666 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1667 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1668 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1669 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1670 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1671 #undef PRINTERR
1672 			m_freem(m);
1673 			continue;
1674 		}
1675 
1676 		/*
1677 		 * No errors.
1678 		 *
1679 		 * Note, the DP83820 includes the CRC with
1680 		 * every packet.
1681 		 */
1682 		len = CMDSTS_SIZE(cmdsts);
1683 		tailm->m_len = len - sc->sc_rxlen;
1684 
1685 		/*
1686 		 * If the packet is small enough to fit in a
1687 		 * single header mbuf, allocate one and copy
1688 		 * the data into it.  This greatly reduces
1689 		 * memory consumption when we receive lots
1690 		 * of small packets.
1691 		 */
1692 		if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1693 			struct mbuf *nm;
1694 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
1695 			if (nm == NULL) {
1696 				ifp->if_ierrors++;
1697 				m_freem(m);
1698 				continue;
1699 			}
1700 			nm->m_data += 2;
1701 			nm->m_pkthdr.len = nm->m_len = len;
1702 			m_copydata(m, 0, len, mtod(nm, caddr_t));
1703 			m_freem(m);
1704 			m = nm;
1705 		}
1706 #ifndef __NO_STRICT_ALIGNMENT
1707 		else {
1708 			/*
1709 			 * The DP83820's receive buffers must be 4-byte
1710 			 * aligned.  But this means that the data after
1711 			 * the Ethernet header is misaligned.  To compensate,
1712 			 * we have artificially shortened the buffer size
1713 			 * in the descriptor, and we do an overlapping copy
1714 			 * of the data two bytes further in (in the first
1715 			 * buffer of the chain only).
1716 			 */
1717 			memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1718 			    m->m_len);
1719 			m->m_data += 2;
1720 		}
1721 #endif /* ! __NO_STRICT_ALIGNMENT */
1722 
1723 		/*
1724 		 * If VLANs are enabled, VLAN packets have been unwrapped
1725 		 * for us.  Associate the tag with the packet.
1726 		 */
1727 		if (sc->sc_ethercom.ec_nvlans != 0 &&
1728 		    (extsts & EXTSTS_VPKT) != 0) {
1729 			struct mbuf *vtag;
1730 
1731 			vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
1732 			if (vtag == NULL) {
1733 				ifp->if_ierrors++;
1734 				printf("%s: unable to allocate VLAN tag\n",
1735 				    sc->sc_dev.dv_xname);
1736 				m_freem(m);
1737 				continue;
1738 			}
1739 
1740 			*mtod(vtag, int *) = ntohs(extsts & EXTSTS_VTCI);
1741 			vtag->m_len = sizeof(int);
1742 		}
1743 
1744 		/*
1745 		 * Set the incoming checksum information for the
1746 		 * packet.
1747 		 */
1748 		if ((extsts & EXTSTS_IPPKT) != 0) {
1749 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1750 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1751 			if (extsts & EXTSTS_Rx_IPERR)
1752 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1753 			if (extsts & EXTSTS_TCPPKT) {
1754 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1755 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1756 				if (extsts & EXTSTS_Rx_TCPERR)
1757 					m->m_pkthdr.csum_flags |=
1758 					    M_CSUM_TCP_UDP_BAD;
1759 			} else if (extsts & EXTSTS_UDPPKT) {
1760 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1761 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1762 				if (extsts & EXTSTS_Rx_UDPERR)
1763 					m->m_pkthdr.csum_flags |=
1764 					    M_CSUM_TCP_UDP_BAD;
1765 			}
1766 		}
1767 
1768 		ifp->if_ipackets++;
1769 		m->m_flags |= M_HASFCS;
1770 		m->m_pkthdr.rcvif = ifp;
1771 		m->m_pkthdr.len = len;
1772 
1773 #if NBPFILTER > 0
1774 		/*
1775 		 * Pass this up to any BPF listeners, but only
1776 		 * pass if up the stack if it's for us.
1777 		 */
1778 		if (ifp->if_bpf)
1779 			bpf_mtap(ifp->if_bpf, m);
1780 #endif /* NBPFILTER > 0 */
1781 
1782 		/* Pass it on. */
1783 		(*ifp->if_input)(ifp, m);
1784 	}
1785 
1786 	/* Update the receive pointer. */
1787 	sc->sc_rxptr = i;
1788 }
1789 #else /* ! DP83820 */
1790 /*
1791  * sip_rxintr:
1792  *
1793  *	Helper; handle receive interrupts.
1794  */
1795 void
1796 SIP_DECL(rxintr)(struct sip_softc *sc)
1797 {
1798 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1799 	struct sip_rxsoft *rxs;
1800 	struct mbuf *m;
1801 	u_int32_t cmdsts;
1802 	int i, len;
1803 
1804 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1805 		rxs = &sc->sc_rxsoft[i];
1806 
1807 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1808 
1809 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1810 
1811 		/*
1812 		 * NOTE: OWN is set if owned by _consumer_.  We're the
1813 		 * consumer of the receive ring, so if the bit is clear,
1814 		 * we have processed all of the packets.
1815 		 */
1816 		if ((cmdsts & CMDSTS_OWN) == 0) {
1817 			/*
1818 			 * We have processed all of the receive buffers.
1819 			 */
1820 			break;
1821 		}
1822 
1823 		/*
1824 		 * If any collisions were seen on the wire, count one.
1825 		 */
1826 		if (cmdsts & CMDSTS_Rx_COL)
1827 			ifp->if_collisions++;
1828 
1829 		/*
1830 		 * If an error occurred, update stats, clear the status
1831 		 * word, and leave the packet buffer in place.  It will
1832 		 * simply be reused the next time the ring comes around.
1833 		 */
1834 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1835 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1836 			ifp->if_ierrors++;
1837 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1838 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
1839 				/* Receive overrun handled elsewhere. */
1840 				printf("%s: receive descriptor error\n",
1841 				    sc->sc_dev.dv_xname);
1842 			}
1843 #define	PRINTERR(bit, str)						\
1844 			if (cmdsts & (bit))				\
1845 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1846 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1847 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1848 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1849 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1850 #undef PRINTERR
1851 			SIP_INIT_RXDESC(sc, i);
1852 			continue;
1853 		}
1854 
1855 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1856 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1857 
1858 		/*
1859 		 * No errors; receive the packet.  Note, the SiS 900
1860 		 * includes the CRC with every packet.
1861 		 */
1862 		len = CMDSTS_SIZE(cmdsts);
1863 
1864 #ifdef __NO_STRICT_ALIGNMENT
1865 		/*
1866 		 * If the packet is small enough to fit in a
1867 		 * single header mbuf, allocate one and copy
1868 		 * the data into it.  This greatly reduces
1869 		 * memory consumption when we receive lots
1870 		 * of small packets.
1871 		 *
1872 		 * Otherwise, we add a new buffer to the receive
1873 		 * chain.  If this fails, we drop the packet and
1874 		 * recycle the old buffer.
1875 		 */
1876 		if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
1877 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1878 			if (m == NULL)
1879 				goto dropit;
1880 			memcpy(mtod(m, caddr_t),
1881 			    mtod(rxs->rxs_mbuf, caddr_t), len);
1882 			SIP_INIT_RXDESC(sc, i);
1883 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1884 			    rxs->rxs_dmamap->dm_mapsize,
1885 			    BUS_DMASYNC_PREREAD);
1886 		} else {
1887 			m = rxs->rxs_mbuf;
1888 			if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1889  dropit:
1890 				ifp->if_ierrors++;
1891 				SIP_INIT_RXDESC(sc, i);
1892 				bus_dmamap_sync(sc->sc_dmat,
1893 				    rxs->rxs_dmamap, 0,
1894 				    rxs->rxs_dmamap->dm_mapsize,
1895 				    BUS_DMASYNC_PREREAD);
1896 				continue;
1897 			}
1898 		}
1899 #else
1900 		/*
1901 		 * The SiS 900's receive buffers must be 4-byte aligned.
1902 		 * But this means that the data after the Ethernet header
1903 		 * is misaligned.  We must allocate a new buffer and
1904 		 * copy the data, shifted forward 2 bytes.
1905 		 */
1906 		MGETHDR(m, M_DONTWAIT, MT_DATA);
1907 		if (m == NULL) {
1908  dropit:
1909 			ifp->if_ierrors++;
1910 			SIP_INIT_RXDESC(sc, i);
1911 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1912 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1913 			continue;
1914 		}
1915 		if (len > (MHLEN - 2)) {
1916 			MCLGET(m, M_DONTWAIT);
1917 			if ((m->m_flags & M_EXT) == 0) {
1918 				m_freem(m);
1919 				goto dropit;
1920 			}
1921 		}
1922 		m->m_data += 2;
1923 
1924 		/*
1925 		 * Note that we use clusters for incoming frames, so the
1926 		 * buffer is virtually contiguous.
1927 		 */
1928 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
1929 
1930 		/* Allow the receive descriptor to continue using its mbuf. */
1931 		SIP_INIT_RXDESC(sc, i);
1932 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1933 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1934 #endif /* __NO_STRICT_ALIGNMENT */
1935 
1936 		ifp->if_ipackets++;
1937 		m->m_flags |= M_HASFCS;
1938 		m->m_pkthdr.rcvif = ifp;
1939 		m->m_pkthdr.len = m->m_len = len;
1940 
1941 #if NBPFILTER > 0
1942 		/*
1943 		 * Pass this up to any BPF listeners, but only
1944 		 * pass if up the stack if it's for us.
1945 		 */
1946 		if (ifp->if_bpf)
1947 			bpf_mtap(ifp->if_bpf, m);
1948 #endif /* NBPFILTER > 0 */
1949 
1950 		/* Pass it on. */
1951 		(*ifp->if_input)(ifp, m);
1952 	}
1953 
1954 	/* Update the receive pointer. */
1955 	sc->sc_rxptr = i;
1956 }
1957 #endif /* DP83820 */
1958 
1959 /*
1960  * sip_tick:
1961  *
1962  *	One second timer, used to tick the MII.
1963  */
1964 void
1965 SIP_DECL(tick)(void *arg)
1966 {
1967 	struct sip_softc *sc = arg;
1968 	int s;
1969 
1970 	s = splnet();
1971 	mii_tick(&sc->sc_mii);
1972 	splx(s);
1973 
1974 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
1975 }
1976 
1977 /*
1978  * sip_reset:
1979  *
1980  *	Perform a soft reset on the SiS 900.
1981  */
1982 void
1983 SIP_DECL(reset)(struct sip_softc *sc)
1984 {
1985 	bus_space_tag_t st = sc->sc_st;
1986 	bus_space_handle_t sh = sc->sc_sh;
1987 	int i;
1988 
1989 	bus_space_write_4(st, sh, SIP_IER, 0);
1990 	bus_space_write_4(st, sh, SIP_IMR, 0);
1991 	bus_space_write_4(st, sh, SIP_RFCR, 0);
1992 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
1993 
1994 	for (i = 0; i < SIP_TIMEOUT; i++) {
1995 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
1996 			break;
1997 		delay(2);
1998 	}
1999 
2000 	if (i == SIP_TIMEOUT)
2001 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2002 
2003 	delay(1000);
2004 
2005 #ifdef DP83820
2006 	/*
2007 	 * Set the general purpose I/O bits.  Do it here in case we
2008 	 * need to have GPIO set up to talk to the media interface.
2009 	 */
2010 	bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2011 	delay(1000);
2012 #endif /* DP83820 */
2013 }
2014 
2015 /*
2016  * sip_init:		[ ifnet interface function ]
2017  *
2018  *	Initialize the interface.  Must be called at splnet().
2019  */
2020 int
2021 SIP_DECL(init)(struct ifnet *ifp)
2022 {
2023 	struct sip_softc *sc = ifp->if_softc;
2024 	bus_space_tag_t st = sc->sc_st;
2025 	bus_space_handle_t sh = sc->sc_sh;
2026 	struct sip_txsoft *txs;
2027 	struct sip_rxsoft *rxs;
2028 	struct sip_desc *sipd;
2029 	u_int32_t reg;
2030 	int i, error = 0;
2031 
2032 	/*
2033 	 * Cancel any pending I/O.
2034 	 */
2035 	SIP_DECL(stop)(ifp, 0);
2036 
2037 	/*
2038 	 * Reset the chip to a known state.
2039 	 */
2040 	SIP_DECL(reset)(sc);
2041 
2042 #if !defined(DP83820)
2043 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2044 		/*
2045 		 * DP83815 manual, page 78:
2046 		 *    4.4 Recommended Registers Configuration
2047 		 *    For optimum performance of the DP83815, version noted
2048 		 *    as DP83815CVNG (SRR = 203h), the listed register
2049 		 *    modifications must be followed in sequence...
2050 		 *
2051 		 * It's not clear if this should be 302h or 203h because that
2052 		 * chip name is listed as SRR 302h in the description of the
2053 		 * SRR register.  However, my revision 302h DP83815 on the
2054 		 * Netgear FA311 purchased in 02/2001 needs these settings
2055 		 * to avoid tons of errors in AcceptPerfectMatch (non-
2056 		 * IFF_PROMISC) mode.  I do not know if other revisions need
2057 		 * this set or not.  [briggs -- 09 March 2001]
2058 		 *
2059 		 * Note that only the low-order 12 bits of 0xe4 are documented
2060 		 * and that this sets reserved bits in that register.
2061 		 */
2062 		reg = bus_space_read_4(st, sh, SIP_NS_SRR);
2063 		if (reg == 0x302) {
2064 			bus_space_write_4(st, sh, 0x00cc, 0x0001);
2065 			bus_space_write_4(st, sh, 0x00e4, 0x189C);
2066 			bus_space_write_4(st, sh, 0x00fc, 0x0000);
2067 			bus_space_write_4(st, sh, 0x00f4, 0x5040);
2068 			bus_space_write_4(st, sh, 0x00f8, 0x008c);
2069 		}
2070 	}
2071 #endif /* ! DP83820 */
2072 
2073 	/*
2074 	 * Initialize the transmit descriptor ring.
2075 	 */
2076 	for (i = 0; i < SIP_NTXDESC; i++) {
2077 		sipd = &sc->sc_txdescs[i];
2078 		memset(sipd, 0, sizeof(struct sip_desc));
2079 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2080 	}
2081 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2082 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2083 	sc->sc_txfree = SIP_NTXDESC;
2084 	sc->sc_txnext = 0;
2085 
2086 	/*
2087 	 * Initialize the transmit job descriptors.
2088 	 */
2089 	SIMPLEQ_INIT(&sc->sc_txfreeq);
2090 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
2091 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
2092 		txs = &sc->sc_txsoft[i];
2093 		txs->txs_mbuf = NULL;
2094 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2095 	}
2096 
2097 	/*
2098 	 * Initialize the receive descriptor and receive job
2099 	 * descriptor rings.
2100 	 */
2101 	for (i = 0; i < SIP_NRXDESC; i++) {
2102 		rxs = &sc->sc_rxsoft[i];
2103 		if (rxs->rxs_mbuf == NULL) {
2104 			if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2105 				printf("%s: unable to allocate or map rx "
2106 				    "buffer %d, error = %d\n",
2107 				    sc->sc_dev.dv_xname, i, error);
2108 				/*
2109 				 * XXX Should attempt to run with fewer receive
2110 				 * XXX buffers instead of just failing.
2111 				 */
2112 				SIP_DECL(rxdrain)(sc);
2113 				goto out;
2114 			}
2115 		} else
2116 			SIP_INIT_RXDESC(sc, i);
2117 	}
2118 	sc->sc_rxptr = 0;
2119 #ifdef DP83820
2120 	sc->sc_rxdiscard = 0;
2121 	SIP_RXCHAIN_RESET(sc);
2122 #endif /* DP83820 */
2123 
2124 	/*
2125 	 * Set the configuration register; it's already initialized
2126 	 * in sip_attach().
2127 	 */
2128 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2129 
2130 	/*
2131 	 * Initialize the prototype TXCFG register.
2132 	 */
2133 #if defined(DP83820)
2134 	sc->sc_txcfg = TXCFG_MXDMA_512;
2135 	sc->sc_rxcfg = RXCFG_MXDMA_512;
2136 #else
2137 	if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2138 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2139 	    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & CFG_EDBMASTEN)) {
2140 		sc->sc_txcfg = TXCFG_MXDMA_64;
2141 		sc->sc_rxcfg = RXCFG_MXDMA_64;
2142 	} else {
2143 		sc->sc_txcfg = TXCFG_MXDMA_512;
2144 		sc->sc_rxcfg = RXCFG_MXDMA_512;
2145 	}
2146 #endif /* DP83820 */
2147 
2148 	sc->sc_txcfg |= TXCFG_ATP |
2149 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2150 	    sc->sc_tx_drain_thresh;
2151 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2152 
2153 	/*
2154 	 * Initialize the receive drain threshold if we have never
2155 	 * done so.
2156 	 */
2157 	if (sc->sc_rx_drain_thresh == 0) {
2158 		/*
2159 		 * XXX This value should be tuned.  This is set to the
2160 		 * maximum of 248 bytes, and we may be able to improve
2161 		 * performance by decreasing it (although we should never
2162 		 * set this value lower than 2; 14 bytes are required to
2163 		 * filter the packet).
2164 		 */
2165 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2166 	}
2167 
2168 	/*
2169 	 * Initialize the prototype RXCFG register.
2170 	 */
2171 	sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2172 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2173 
2174 #ifdef DP83820
2175 	/*
2176 	 * Initialize the VLAN/IP receive control register.
2177 	 * We enable checksum computation on all incoming
2178 	 * packets, and do not reject packets w/ bad checksums.
2179 	 */
2180 	reg = 0;
2181 	if (ifp->if_capenable &
2182 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2183 		reg |= VRCR_IPEN;
2184 	if (sc->sc_ethercom.ec_nvlans != 0)
2185 		reg |= VRCR_VTDEN|VRCR_VTREN;
2186 	bus_space_write_4(st, sh, SIP_VRCR, reg);
2187 
2188 	/*
2189 	 * Initialize the VLAN/IP transmit control register.
2190 	 * We enable outgoing checksum computation on a
2191 	 * per-packet basis.
2192 	 */
2193 	reg = 0;
2194 	if (ifp->if_capenable &
2195 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2196 		reg |= VTCR_PPCHK;
2197 	if (sc->sc_ethercom.ec_nvlans != 0)
2198 		reg |= VTCR_VPPTI;
2199 	bus_space_write_4(st, sh, SIP_VTCR, reg);
2200 
2201 	/*
2202 	 * If we're using VLANs, initialize the VLAN data register.
2203 	 * To understand why we bswap the VLAN Ethertype, see section
2204 	 * 4.2.36 of the DP83820 manual.
2205 	 */
2206 	if (sc->sc_ethercom.ec_nvlans != 0)
2207 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2208 #endif /* DP83820 */
2209 
2210 	/*
2211 	 * Give the transmit and receive rings to the chip.
2212 	 */
2213 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2214 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2215 
2216 	/*
2217 	 * Initialize the interrupt mask.
2218 	 */
2219 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2220 	    ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2221 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2222 
2223 	/* Set up the receive filter. */
2224 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2225 
2226 	/*
2227 	 * Set the current media.  Do this after initializing the prototype
2228 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2229 	 * control.
2230 	 */
2231 	mii_mediachg(&sc->sc_mii);
2232 
2233 	/*
2234 	 * Enable interrupts.
2235 	 */
2236 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
2237 
2238 	/*
2239 	 * Start the transmit and receive processes.
2240 	 */
2241 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2242 
2243 	/*
2244 	 * Start the one second MII clock.
2245 	 */
2246 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2247 
2248 	/*
2249 	 * ...all done!
2250 	 */
2251 	ifp->if_flags |= IFF_RUNNING;
2252 	ifp->if_flags &= ~IFF_OACTIVE;
2253 
2254  out:
2255 	if (error)
2256 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2257 	return (error);
2258 }
2259 
2260 /*
2261  * sip_drain:
2262  *
2263  *	Drain the receive queue.
2264  */
2265 void
2266 SIP_DECL(rxdrain)(struct sip_softc *sc)
2267 {
2268 	struct sip_rxsoft *rxs;
2269 	int i;
2270 
2271 	for (i = 0; i < SIP_NRXDESC; i++) {
2272 		rxs = &sc->sc_rxsoft[i];
2273 		if (rxs->rxs_mbuf != NULL) {
2274 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2275 			m_freem(rxs->rxs_mbuf);
2276 			rxs->rxs_mbuf = NULL;
2277 		}
2278 	}
2279 }
2280 
2281 /*
2282  * sip_stop:		[ ifnet interface function ]
2283  *
2284  *	Stop transmission on the interface.
2285  */
2286 void
2287 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2288 {
2289 	struct sip_softc *sc = ifp->if_softc;
2290 	bus_space_tag_t st = sc->sc_st;
2291 	bus_space_handle_t sh = sc->sc_sh;
2292 	struct sip_txsoft *txs;
2293 	u_int32_t cmdsts = 0;		/* DEBUG */
2294 
2295 	/*
2296 	 * Stop the one second clock.
2297 	 */
2298 	callout_stop(&sc->sc_tick_ch);
2299 
2300 	/* Down the MII. */
2301 	mii_down(&sc->sc_mii);
2302 
2303 	/*
2304 	 * Disable interrupts.
2305 	 */
2306 	bus_space_write_4(st, sh, SIP_IER, 0);
2307 
2308 	/*
2309 	 * Stop receiver and transmitter.
2310 	 */
2311 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2312 
2313 	/*
2314 	 * Release any queued transmit buffers.
2315 	 */
2316 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2317 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2318 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2319 		    (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2320 		     CMDSTS_INTR) == 0)
2321 			printf("%s: sip_stop: last descriptor does not "
2322 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
2323 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
2324 #ifdef DIAGNOSTIC
2325 		if (txs->txs_mbuf == NULL) {
2326 			printf("%s: dirty txsoft with no mbuf chain\n",
2327 			    sc->sc_dev.dv_xname);
2328 			panic("sip_stop");
2329 		}
2330 #endif
2331 		cmdsts |=		/* DEBUG */
2332 		    le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2333 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2334 		m_freem(txs->txs_mbuf);
2335 		txs->txs_mbuf = NULL;
2336 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2337 	}
2338 
2339 	if (disable)
2340 		SIP_DECL(rxdrain)(sc);
2341 
2342 	/*
2343 	 * Mark the interface down and cancel the watchdog timer.
2344 	 */
2345 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2346 	ifp->if_timer = 0;
2347 
2348 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2349 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2350 		printf("%s: sip_stop: no INTR bits set in dirty tx "
2351 		    "descriptors\n", sc->sc_dev.dv_xname);
2352 }
2353 
2354 /*
2355  * sip_read_eeprom:
2356  *
2357  *	Read data from the serial EEPROM.
2358  */
2359 void
2360 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2361     u_int16_t *data)
2362 {
2363 	bus_space_tag_t st = sc->sc_st;
2364 	bus_space_handle_t sh = sc->sc_sh;
2365 	u_int16_t reg;
2366 	int i, x;
2367 
2368 	for (i = 0; i < wordcnt; i++) {
2369 		/* Send CHIP SELECT. */
2370 		reg = EROMAR_EECS;
2371 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
2372 
2373 		/* Shift in the READ opcode. */
2374 		for (x = 3; x > 0; x--) {
2375 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2376 				reg |= EROMAR_EEDI;
2377 			else
2378 				reg &= ~EROMAR_EEDI;
2379 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2380 			bus_space_write_4(st, sh, SIP_EROMAR,
2381 			    reg | EROMAR_EESK);
2382 			delay(4);
2383 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2384 			delay(4);
2385 		}
2386 
2387 		/* Shift in address. */
2388 		for (x = 6; x > 0; x--) {
2389 			if ((word + i) & (1 << (x - 1)))
2390 				reg |= EROMAR_EEDI;
2391 			else
2392 				reg &= ~EROMAR_EEDI;
2393 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2394 			bus_space_write_4(st, sh, SIP_EROMAR,
2395 			    reg | EROMAR_EESK);
2396 			delay(4);
2397 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2398 			delay(4);
2399 		}
2400 
2401 		/* Shift out data. */
2402 		reg = EROMAR_EECS;
2403 		data[i] = 0;
2404 		for (x = 16; x > 0; x--) {
2405 			bus_space_write_4(st, sh, SIP_EROMAR,
2406 			    reg | EROMAR_EESK);
2407 			delay(4);
2408 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2409 				data[i] |= (1 << (x - 1));
2410 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2411 			delay(4);
2412 		}
2413 
2414 		/* Clear CHIP SELECT. */
2415 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
2416 		delay(4);
2417 	}
2418 }
2419 
2420 /*
2421  * sip_add_rxbuf:
2422  *
2423  *	Add a receive buffer to the indicated descriptor.
2424  */
2425 int
2426 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2427 {
2428 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2429 	struct mbuf *m;
2430 	int error;
2431 
2432 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2433 	if (m == NULL)
2434 		return (ENOBUFS);
2435 
2436 	MCLGET(m, M_DONTWAIT);
2437 	if ((m->m_flags & M_EXT) == 0) {
2438 		m_freem(m);
2439 		return (ENOBUFS);
2440 	}
2441 
2442 #if defined(DP83820)
2443 	m->m_len = SIP_RXBUF_LEN;
2444 #endif /* DP83820 */
2445 
2446 	if (rxs->rxs_mbuf != NULL)
2447 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2448 
2449 	rxs->rxs_mbuf = m;
2450 
2451 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2452 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2453 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2454 	if (error) {
2455 		printf("%s: can't load rx DMA map %d, error = %d\n",
2456 		    sc->sc_dev.dv_xname, idx, error);
2457 		panic("sip_add_rxbuf");		/* XXX */
2458 	}
2459 
2460 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2461 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2462 
2463 	SIP_INIT_RXDESC(sc, idx);
2464 
2465 	return (0);
2466 }
2467 
2468 #if !defined(DP83820)
2469 /*
2470  * sip_sis900_set_filter:
2471  *
2472  *	Set up the receive filter.
2473  */
2474 void
2475 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2476 {
2477 	bus_space_tag_t st = sc->sc_st;
2478 	bus_space_handle_t sh = sc->sc_sh;
2479 	struct ethercom *ec = &sc->sc_ethercom;
2480 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2481 	struct ether_multi *enm;
2482 	u_int8_t *cp;
2483 	struct ether_multistep step;
2484 	u_int32_t crc, mchash[16];
2485 
2486 	/*
2487 	 * Initialize the prototype RFCR.
2488 	 */
2489 	sc->sc_rfcr = RFCR_RFEN;
2490 	if (ifp->if_flags & IFF_BROADCAST)
2491 		sc->sc_rfcr |= RFCR_AAB;
2492 	if (ifp->if_flags & IFF_PROMISC) {
2493 		sc->sc_rfcr |= RFCR_AAP;
2494 		goto allmulti;
2495 	}
2496 
2497 	/*
2498 	 * Set up the multicast address filter by passing all multicast
2499 	 * addresses through a CRC generator, and then using the high-order
2500 	 * 6 bits as an index into the 128 bit multicast hash table (only
2501 	 * the lower 16 bits of each 32 bit multicast hash register are
2502 	 * valid).  The high order bits select the register, while the
2503 	 * rest of the bits select the bit within the register.
2504 	 */
2505 
2506 	memset(mchash, 0, sizeof(mchash));
2507 
2508 	ETHER_FIRST_MULTI(step, ec, enm);
2509 	while (enm != NULL) {
2510 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2511 			/*
2512 			 * We must listen to a range of multicast addresses.
2513 			 * For now, just accept all multicasts, rather than
2514 			 * trying to set only those filter bits needed to match
2515 			 * the range.  (At this time, the only use of address
2516 			 * ranges is for IP multicast routing, for which the
2517 			 * range is big enough to require all bits set.)
2518 			 */
2519 			goto allmulti;
2520 		}
2521 
2522 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2523 
2524 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2525 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
2526 			/* Just want the 8 most significant bits. */
2527 			crc >>= 24;
2528 		} else {
2529 			/* Just want the 7 most significant bits. */
2530 			crc >>= 25;
2531 		}
2532 
2533 		/* Set the corresponding bit in the hash table. */
2534 		mchash[crc >> 4] |= 1 << (crc & 0xf);
2535 
2536 		ETHER_NEXT_MULTI(step, enm);
2537 	}
2538 
2539 	ifp->if_flags &= ~IFF_ALLMULTI;
2540 	goto setit;
2541 
2542  allmulti:
2543 	ifp->if_flags |= IFF_ALLMULTI;
2544 	sc->sc_rfcr |= RFCR_AAM;
2545 
2546  setit:
2547 #define	FILTER_EMIT(addr, data)						\
2548 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
2549 	delay(1);							\
2550 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
2551 	delay(1)
2552 
2553 	/*
2554 	 * Disable receive filter, and program the node address.
2555 	 */
2556 	cp = LLADDR(ifp->if_sadl);
2557 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2558 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2559 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2560 
2561 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2562 		/*
2563 		 * Program the multicast hash table.
2564 		 */
2565 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2566 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2567 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2568 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2569 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2570 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2571 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2572 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2573 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2574 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
2575 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2576 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2577 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2578 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2579 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2580 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2581 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2582 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2583 		}
2584 	}
2585 #undef FILTER_EMIT
2586 
2587 	/*
2588 	 * Re-enable the receiver filter.
2589 	 */
2590 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2591 }
2592 #endif /* ! DP83820 */
2593 
2594 /*
2595  * sip_dp83815_set_filter:
2596  *
2597  *	Set up the receive filter.
2598  */
2599 void
2600 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2601 {
2602 	bus_space_tag_t st = sc->sc_st;
2603 	bus_space_handle_t sh = sc->sc_sh;
2604 	struct ethercom *ec = &sc->sc_ethercom;
2605 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2606 	struct ether_multi *enm;
2607 	u_int8_t *cp;
2608 	struct ether_multistep step;
2609 	u_int32_t crc, hash, slot, bit;
2610 #ifdef DP83820
2611 #define	MCHASH_NWORDS	128
2612 #else
2613 #define	MCHASH_NWORDS	32
2614 #endif /* DP83820 */
2615 	u_int16_t mchash[MCHASH_NWORDS];
2616 	int i;
2617 
2618 	/*
2619 	 * Initialize the prototype RFCR.
2620 	 * Enable the receive filter, and accept on
2621 	 *    Perfect (destination address) Match
2622 	 * If IFF_BROADCAST, also accept all broadcast packets.
2623 	 * If IFF_PROMISC, accept all unicast packets (and later, set
2624 	 *    IFF_ALLMULTI and accept all multicast, too).
2625 	 */
2626 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2627 	if (ifp->if_flags & IFF_BROADCAST)
2628 		sc->sc_rfcr |= RFCR_AAB;
2629 	if (ifp->if_flags & IFF_PROMISC) {
2630 		sc->sc_rfcr |= RFCR_AAP;
2631 		goto allmulti;
2632 	}
2633 
2634 #ifdef DP83820
2635 	/*
2636 	 * Set up the DP83820 multicast address filter by passing all multicast
2637 	 * addresses through a CRC generator, and then using the high-order
2638 	 * 11 bits as an index into the 2048 bit multicast hash table.  The
2639 	 * high-order 7 bits select the slot, while the low-order 4 bits
2640 	 * select the bit within the slot.  Note that only the low 16-bits
2641 	 * of each filter word are used, and there are 128 filter words.
2642 	 */
2643 #else
2644 	/*
2645 	 * Set up the DP83815 multicast address filter by passing all multicast
2646 	 * addresses through a CRC generator, and then using the high-order
2647 	 * 9 bits as an index into the 512 bit multicast hash table.  The
2648 	 * high-order 5 bits select the slot, while the low-order 4 bits
2649 	 * select the bit within the slot.  Note that only the low 16-bits
2650 	 * of each filter word are used, and there are 32 filter words.
2651 	 */
2652 #endif /* DP83820 */
2653 
2654 	memset(mchash, 0, sizeof(mchash));
2655 
2656 	ifp->if_flags &= ~IFF_ALLMULTI;
2657 	ETHER_FIRST_MULTI(step, ec, enm);
2658 	if (enm == NULL)
2659 		goto setit;
2660 	while (enm != NULL) {
2661 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2662 			/*
2663 			 * We must listen to a range of multicast addresses.
2664 			 * For now, just accept all multicasts, rather than
2665 			 * trying to set only those filter bits needed to match
2666 			 * the range.  (At this time, the only use of address
2667 			 * ranges is for IP multicast routing, for which the
2668 			 * range is big enough to require all bits set.)
2669 			 */
2670 			goto allmulti;
2671 		}
2672 
2673 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2674 
2675 #ifdef DP83820
2676 		/* Just want the 11 most significant bits. */
2677 		hash = crc >> 21;
2678 #else
2679 		/* Just want the 9 most significant bits. */
2680 		hash = crc >> 23;
2681 #endif /* DP83820 */
2682 
2683 		slot = hash >> 4;
2684 		bit = hash & 0xf;
2685 
2686 		/* Set the corresponding bit in the hash table. */
2687 		mchash[slot] |= 1 << bit;
2688 
2689 		ETHER_NEXT_MULTI(step, enm);
2690 	}
2691 	sc->sc_rfcr |= RFCR_MHEN;
2692 	goto setit;
2693 
2694  allmulti:
2695 	ifp->if_flags |= IFF_ALLMULTI;
2696 	sc->sc_rfcr |= RFCR_AAM;
2697 
2698  setit:
2699 #define	FILTER_EMIT(addr, data)						\
2700 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
2701 	delay(1);							\
2702 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
2703 	delay(1)
2704 
2705 	/*
2706 	 * Disable receive filter, and program the node address.
2707 	 */
2708 	cp = LLADDR(ifp->if_sadl);
2709 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
2710 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
2711 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
2712 
2713 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2714 		/*
2715 		 * Program the multicast hash table.
2716 		 */
2717 		for (i = 0; i < MCHASH_NWORDS; i++) {
2718 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
2719 			    mchash[i]);
2720 		}
2721 	}
2722 #undef FILTER_EMIT
2723 #undef MCHASH_NWORDS
2724 
2725 	/*
2726 	 * Re-enable the receiver filter.
2727 	 */
2728 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2729 }
2730 
2731 #if defined(DP83820)
2732 /*
2733  * sip_dp83820_mii_readreg:	[mii interface function]
2734  *
2735  *	Read a PHY register on the MII of the DP83820.
2736  */
2737 int
2738 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
2739 {
2740 
2741 	return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2742 	    phy, reg));
2743 }
2744 
2745 /*
2746  * sip_dp83820_mii_writereg:	[mii interface function]
2747  *
2748  *	Write a PHY register on the MII of the DP83820.
2749  */
2750 void
2751 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
2752 {
2753 
2754 	mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2755 	    phy, reg, val);
2756 }
2757 
2758 /*
2759  * sip_dp83815_mii_statchg:	[mii interface function]
2760  *
2761  *	Callback from MII layer when media changes.
2762  */
2763 void
2764 SIP_DECL(dp83820_mii_statchg)(struct device *self)
2765 {
2766 	struct sip_softc *sc = (struct sip_softc *) self;
2767 	u_int32_t cfg;
2768 
2769 	/*
2770 	 * Update TXCFG for full-duplex operation.
2771 	 */
2772 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2773 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2774 	else
2775 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2776 
2777 	/*
2778 	 * Update RXCFG for full-duplex or loopback.
2779 	 */
2780 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2781 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2782 		sc->sc_rxcfg |= RXCFG_ATX;
2783 	else
2784 		sc->sc_rxcfg &= ~RXCFG_ATX;
2785 
2786 	/*
2787 	 * Update CFG for MII/GMII.
2788 	 */
2789 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2790 		cfg = sc->sc_cfg | CFG_MODE_1000;
2791 	else
2792 		cfg = sc->sc_cfg;
2793 
2794 	/*
2795 	 * XXX 802.3x flow control.
2796 	 */
2797 
2798 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
2799 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2800 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2801 }
2802 
2803 /*
2804  * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
2805  *
2806  *	Read the MII serial port for the MII bit-bang module.
2807  */
2808 u_int32_t
2809 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
2810 {
2811 	struct sip_softc *sc = (void *) self;
2812 
2813 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
2814 }
2815 
2816 /*
2817  * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
2818  *
2819  *	Write the MII serial port for the MII bit-bang module.
2820  */
2821 void
2822 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
2823 {
2824 	struct sip_softc *sc = (void *) self;
2825 
2826 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
2827 }
2828 #else /* ! DP83820 */
2829 /*
2830  * sip_sis900_mii_readreg:	[mii interface function]
2831  *
2832  *	Read a PHY register on the MII.
2833  */
2834 int
2835 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
2836 {
2837 	struct sip_softc *sc = (struct sip_softc *) self;
2838 	u_int32_t enphy;
2839 
2840 	/*
2841 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
2842 	 * MII address 0.
2843 	 */
2844 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
2845 	    sc->sc_rev < SIS_REV_635 && phy != 0)
2846 		return (0);
2847 
2848 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2849 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
2850 	    ENPHY_RWCMD | ENPHY_ACCESS);
2851 	do {
2852 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2853 	} while (enphy & ENPHY_ACCESS);
2854 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
2855 }
2856 
2857 /*
2858  * sip_sis900_mii_writereg:	[mii interface function]
2859  *
2860  *	Write a PHY register on the MII.
2861  */
2862 void
2863 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
2864 {
2865 	struct sip_softc *sc = (struct sip_softc *) self;
2866 	u_int32_t enphy;
2867 
2868 	/*
2869 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
2870 	 * MII address 0.
2871 	 */
2872 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
2873 	    sc->sc_rev < SIS_REV_635 && phy != 0)
2874 		return;
2875 
2876 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2877 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
2878 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
2879 	do {
2880 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2881 	} while (enphy & ENPHY_ACCESS);
2882 }
2883 
2884 /*
2885  * sip_sis900_mii_statchg:	[mii interface function]
2886  *
2887  *	Callback from MII layer when media changes.
2888  */
2889 void
2890 SIP_DECL(sis900_mii_statchg)(struct device *self)
2891 {
2892 	struct sip_softc *sc = (struct sip_softc *) self;
2893 	u_int32_t flowctl;
2894 
2895 	/*
2896 	 * Update TXCFG for full-duplex operation.
2897 	 */
2898 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2899 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2900 	else
2901 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2902 
2903 	/*
2904 	 * Update RXCFG for full-duplex or loopback.
2905 	 */
2906 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2907 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2908 		sc->sc_rxcfg |= RXCFG_ATX;
2909 	else
2910 		sc->sc_rxcfg &= ~RXCFG_ATX;
2911 
2912 	/*
2913 	 * Update IMR for use of 802.3x flow control.
2914 	 */
2915 	if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
2916 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
2917 		flowctl = FLOWCTL_FLOWEN;
2918 	} else {
2919 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
2920 		flowctl = 0;
2921 	}
2922 
2923 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2924 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2925 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
2926 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
2927 }
2928 
2929 /*
2930  * sip_dp83815_mii_readreg:	[mii interface function]
2931  *
2932  *	Read a PHY register on the MII.
2933  */
2934 int
2935 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
2936 {
2937 	struct sip_softc *sc = (struct sip_softc *) self;
2938 	u_int32_t val;
2939 
2940 	/*
2941 	 * The DP83815 only has an internal PHY.  Only allow
2942 	 * MII address 0.
2943 	 */
2944 	if (phy != 0)
2945 		return (0);
2946 
2947 	/*
2948 	 * Apparently, after a reset, the DP83815 can take a while
2949 	 * to respond.  During this recovery period, the BMSR returns
2950 	 * a value of 0.  Catch this -- it's not supposed to happen
2951 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
2952 	 * PHY to come back to life.
2953 	 *
2954 	 * This works out because the BMSR is the first register
2955 	 * read during the PHY probe process.
2956 	 */
2957 	do {
2958 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
2959 	} while (reg == MII_BMSR && val == 0);
2960 
2961 	return (val & 0xffff);
2962 }
2963 
2964 /*
2965  * sip_dp83815_mii_writereg:	[mii interface function]
2966  *
2967  *	Write a PHY register to the MII.
2968  */
2969 void
2970 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
2971 {
2972 	struct sip_softc *sc = (struct sip_softc *) self;
2973 
2974 	/*
2975 	 * The DP83815 only has an internal PHY.  Only allow
2976 	 * MII address 0.
2977 	 */
2978 	if (phy != 0)
2979 		return;
2980 
2981 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
2982 }
2983 
2984 /*
2985  * sip_dp83815_mii_statchg:	[mii interface function]
2986  *
2987  *	Callback from MII layer when media changes.
2988  */
2989 void
2990 SIP_DECL(dp83815_mii_statchg)(struct device *self)
2991 {
2992 	struct sip_softc *sc = (struct sip_softc *) self;
2993 
2994 	/*
2995 	 * Update TXCFG for full-duplex operation.
2996 	 */
2997 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2998 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2999 	else
3000 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3001 
3002 	/*
3003 	 * Update RXCFG for full-duplex or loopback.
3004 	 */
3005 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3006 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3007 		sc->sc_rxcfg |= RXCFG_ATX;
3008 	else
3009 		sc->sc_rxcfg &= ~RXCFG_ATX;
3010 
3011 	/*
3012 	 * XXX 802.3x flow control.
3013 	 */
3014 
3015 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3016 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3017 }
3018 #endif /* DP83820 */
3019 
3020 #if defined(DP83820)
3021 void
3022 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
3023     const struct pci_attach_args *pa, u_int8_t *enaddr)
3024 {
3025 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3026 	u_int8_t cksum, *e, match;
3027 	int i;
3028 
3029 	/*
3030 	 * EEPROM data format for the DP83820 can be found in
3031 	 * the DP83820 manual, section 4.2.4.
3032 	 */
3033 
3034 	SIP_DECL(read_eeprom)(sc, 0,
3035 	    sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
3036 
3037 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3038 	match = ~(match - 1);
3039 
3040 	cksum = 0x55;
3041 	e = (u_int8_t *) eeprom_data;
3042 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3043 		cksum += *e++;
3044 
3045 	if (cksum != match)
3046 		printf("%s: Checksum (%x) mismatch (%x)",
3047 		    sc->sc_dev.dv_xname, cksum, match);
3048 
3049 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3050 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3051 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3052 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3053 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3054 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3055 
3056 	/* Get the GPIOR bits. */
3057 	sc->sc_gpior = eeprom_data[0x04];
3058 
3059 	/* Get various CFG related bits. */
3060 	if ((eeprom_data[0x05] >> 0) & 1)
3061 		sc->sc_cfg |= CFG_EXT_125;
3062 	if ((eeprom_data[0x05] >> 9) & 1)
3063 		sc->sc_cfg |= CFG_TBI_EN;
3064 }
3065 #else /* ! DP83820 */
3066 void
3067 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
3068     const struct pci_attach_args *pa, u_int8_t *enaddr)
3069 {
3070 	u_int16_t myea[ETHER_ADDR_LEN / 2];
3071 
3072 	switch (sc->sc_rev) {
3073 	case SIS_REV_630S:
3074 	case SIS_REV_630E:
3075 	case SIS_REV_630EA1:
3076 	case SIS_REV_630ET:
3077 	case SIS_REV_635:
3078 		/*
3079 		 * The MAC address for the on-board Ethernet of
3080 		 * the SiS 630 chipset is in the NVRAM.  Kick
3081 		 * the chip into re-loading it from NVRAM, and
3082 		 * read the MAC address out of the filter registers.
3083 		 */
3084 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3085 
3086 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3087 		    RFCR_RFADDR_NODE0);
3088 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3089 		    0xffff;
3090 
3091 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3092 		    RFCR_RFADDR_NODE2);
3093 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3094 		    0xffff;
3095 
3096 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3097 		    RFCR_RFADDR_NODE4);
3098 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3099 		    0xffff;
3100 		break;
3101 
3102 	default:
3103 		SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3104 		    sizeof(myea) / sizeof(myea[0]), myea);
3105 	}
3106 
3107 	enaddr[0] = myea[0] & 0xff;
3108 	enaddr[1] = myea[0] >> 8;
3109 	enaddr[2] = myea[1] & 0xff;
3110 	enaddr[3] = myea[1] >> 8;
3111 	enaddr[4] = myea[2] & 0xff;
3112 	enaddr[5] = myea[2] >> 8;
3113 }
3114 
3115 /* Table and macro to bit-reverse an octet. */
3116 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3117 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3118 
3119 void
3120 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3121     const struct pci_attach_args *pa, u_int8_t *enaddr)
3122 {
3123 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3124 	u_int8_t cksum, *e, match;
3125 	int i;
3126 
3127 	SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3128 	    sizeof(eeprom_data[0]), eeprom_data);
3129 
3130 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3131 	match = ~(match - 1);
3132 
3133 	cksum = 0x55;
3134 	e = (u_int8_t *) eeprom_data;
3135 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3136 		cksum += *e++;
3137 	}
3138 	if (cksum != match) {
3139 		printf("%s: Checksum (%x) mismatch (%x)",
3140 		    sc->sc_dev.dv_xname, cksum, match);
3141 	}
3142 
3143 	/*
3144 	 * Unrolled because it makes slightly more sense this way.
3145 	 * The DP83815 stores the MAC address in bit 0 of word 6
3146 	 * through bit 15 of word 8.
3147 	 */
3148 	ea = &eeprom_data[6];
3149 	enaddr[0] = ((*ea & 0x1) << 7);
3150 	ea++;
3151 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
3152 	enaddr[1] = ((*ea & 0x1FE) >> 1);
3153 	enaddr[2] = ((*ea & 0x1) << 7);
3154 	ea++;
3155 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
3156 	enaddr[3] = ((*ea & 0x1FE) >> 1);
3157 	enaddr[4] = ((*ea & 0x1) << 7);
3158 	ea++;
3159 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
3160 	enaddr[5] = ((*ea & 0x1FE) >> 1);
3161 
3162 	/*
3163 	 * In case that's not weird enough, we also need to reverse
3164 	 * the bits in each byte.  This all actually makes more sense
3165 	 * if you think about the EEPROM storage as an array of bits
3166 	 * being shifted into bytes, but that's not how we're looking
3167 	 * at it here...
3168 	 */
3169 	for (i = 0; i < 6 ;i++)
3170 		enaddr[i] = bbr(enaddr[i]);
3171 }
3172 #endif /* DP83820 */
3173 
3174 /*
3175  * sip_mediastatus:	[ifmedia interface function]
3176  *
3177  *	Get the current interface media status.
3178  */
3179 void
3180 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3181 {
3182 	struct sip_softc *sc = ifp->if_softc;
3183 
3184 	mii_pollstat(&sc->sc_mii);
3185 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
3186 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
3187 }
3188 
3189 /*
3190  * sip_mediachange:	[ifmedia interface function]
3191  *
3192  *	Set hardware to newly-selected media.
3193  */
3194 int
3195 SIP_DECL(mediachange)(struct ifnet *ifp)
3196 {
3197 	struct sip_softc *sc = ifp->if_softc;
3198 
3199 	if (ifp->if_flags & IFF_UP)
3200 		mii_mediachg(&sc->sc_mii);
3201 	return (0);
3202 }
3203