xref: /netbsd-src/sys/dev/pci/if_sip.c (revision c2f76ff004a2cb67efe5b12d97bd3ef7fe89e18d)
1 /*	$NetBSD: if_sip.c,v 1.149 2010/11/13 13:52:06 uebayasi Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1999 Network Computer, Inc.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of Network Computer, Inc. nor the names of its
45  *    contributors may be used to endorse or promote products derived
46  *    from this software without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
49  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
50  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
51  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
52  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
53  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
54  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
55  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
56  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
57  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
58  * POSSIBILITY OF SUCH DAMAGE.
59  */
60 
61 /*
62  * Device driver for the Silicon Integrated Systems SiS 900,
63  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
64  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
65  * controllers.
66  *
67  * Originally written to support the SiS 900 by Jason R. Thorpe for
68  * Network Computer, Inc.
69  *
70  * TODO:
71  *
72  *	- Reduce the Rx interrupt load.
73  */
74 
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.149 2010/11/13 13:52:06 uebayasi Exp $");
77 
78 #include "rnd.h"
79 
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/mbuf.h>
84 #include <sys/malloc.h>
85 #include <sys/kernel.h>
86 #include <sys/socket.h>
87 #include <sys/ioctl.h>
88 #include <sys/errno.h>
89 #include <sys/device.h>
90 #include <sys/queue.h>
91 
92 #if NRND > 0
93 #include <sys/rnd.h>
94 #endif
95 
96 #include <net/if.h>
97 #include <net/if_dl.h>
98 #include <net/if_media.h>
99 #include <net/if_ether.h>
100 
101 #include <net/bpf.h>
102 
103 #include <sys/bus.h>
104 #include <sys/intr.h>
105 #include <machine/endian.h>
106 
107 #include <dev/mii/mii.h>
108 #include <dev/mii/miivar.h>
109 #include <dev/mii/mii_bitbang.h>
110 
111 #include <dev/pci/pcireg.h>
112 #include <dev/pci/pcivar.h>
113 #include <dev/pci/pcidevs.h>
114 
115 #include <dev/pci/if_sipreg.h>
116 
117 /*
118  * Transmit descriptor list size.  This is arbitrary, but allocate
119  * enough descriptors for 128 pending transmissions, and 8 segments
120  * per packet (64 for DP83820 for jumbo frames).
121  *
122  * This MUST work out to a power of 2.
123  */
124 #define	GSIP_NTXSEGS_ALLOC 16
125 #define	SIP_NTXSEGS_ALLOC 8
126 
127 #define	SIP_TXQUEUELEN		256
128 #define	MAX_SIP_NTXDESC	\
129     (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
130 
131 /*
132  * Receive descriptor list size.  We have one Rx buffer per incoming
133  * packet, so this logic is a little simpler.
134  *
135  * Actually, on the DP83820, we allow the packet to consume more than
136  * one buffer, in order to support jumbo Ethernet frames.  In that
137  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
138  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
139  * so we'd better be quick about handling receive interrupts.
140  */
141 #define	GSIP_NRXDESC		256
142 #define	SIP_NRXDESC		128
143 
144 #define	MAX_SIP_NRXDESC	MAX(GSIP_NRXDESC, SIP_NRXDESC)
145 
146 /*
147  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
148  * a single clump that maps to a single DMA segment to make several things
149  * easier.
150  */
151 struct sip_control_data {
152 	/*
153 	 * The transmit descriptors.
154 	 */
155 	struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
156 
157 	/*
158 	 * The receive descriptors.
159 	 */
160 	struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
161 };
162 
163 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
164 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
165 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
166 
167 /*
168  * Software state for transmit jobs.
169  */
170 struct sip_txsoft {
171 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
172 	bus_dmamap_t txs_dmamap;	/* our DMA map */
173 	int txs_firstdesc;		/* first descriptor in packet */
174 	int txs_lastdesc;		/* last descriptor in packet */
175 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
176 };
177 
178 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
179 
180 /*
181  * Software state for receive jobs.
182  */
183 struct sip_rxsoft {
184 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
185 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
186 };
187 
188 enum sip_attach_stage {
189 	  SIP_ATTACH_FIN = 0
190 	, SIP_ATTACH_CREATE_RXMAP
191 	, SIP_ATTACH_CREATE_TXMAP
192 	, SIP_ATTACH_LOAD_MAP
193 	, SIP_ATTACH_CREATE_MAP
194 	, SIP_ATTACH_MAP_MEM
195 	, SIP_ATTACH_ALLOC_MEM
196 	, SIP_ATTACH_INTR
197 	, SIP_ATTACH_MAP
198 };
199 
200 /*
201  * Software state per device.
202  */
203 struct sip_softc {
204 	device_t sc_dev;		/* generic device information */
205 	device_suspensor_t		sc_suspensor;
206 	pmf_qual_t			sc_qual;
207 
208 	bus_space_tag_t sc_st;		/* bus space tag */
209 	bus_space_handle_t sc_sh;	/* bus space handle */
210 	bus_size_t sc_sz;		/* bus space size */
211 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
212 	pci_chipset_tag_t sc_pc;
213 	bus_dma_segment_t sc_seg;
214 	struct ethercom sc_ethercom;	/* ethernet common data */
215 
216 	const struct sip_product *sc_model; /* which model are we? */
217 	int sc_gigabit;			/* 1: 83820, 0: other */
218 	int sc_rev;			/* chip revision */
219 
220 	void *sc_ih;			/* interrupt cookie */
221 
222 	struct mii_data sc_mii;		/* MII/media information */
223 
224 	callout_t sc_tick_ch;		/* tick callout */
225 
226 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
227 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
228 
229 	/*
230 	 * Software state for transmit and receive descriptors.
231 	 */
232 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
233 	struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
234 
235 	/*
236 	 * Control data structures.
237 	 */
238 	struct sip_control_data *sc_control_data;
239 #define	sc_txdescs	sc_control_data->scd_txdescs
240 #define	sc_rxdescs	sc_control_data->scd_rxdescs
241 
242 #ifdef SIP_EVENT_COUNTERS
243 	/*
244 	 * Event counters.
245 	 */
246 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
247 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
248 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
249 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
250 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
251 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
252 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
253 	struct evcnt sc_ev_rxpause;	/* PAUSE received */
254 	/* DP83820 only */
255 	struct evcnt sc_ev_txpause;	/* PAUSE transmitted */
256 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
257 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
258 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
259 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
260 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
261 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
262 #endif /* SIP_EVENT_COUNTERS */
263 
264 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
265 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
266 	u_int32_t sc_imr;		/* prototype IMR register */
267 	u_int32_t sc_rfcr;		/* prototype RFCR register */
268 
269 	u_int32_t sc_cfg;		/* prototype CFG register */
270 
271 	u_int32_t sc_gpior;		/* prototype GPIOR register */
272 
273 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
274 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
275 
276 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
277 
278 	int	sc_flowflags;		/* 802.3x flow control flags */
279 	int	sc_rx_flow_thresh;	/* Rx FIFO threshold for flow control */
280 	int	sc_paused;		/* paused indication */
281 
282 	int	sc_txfree;		/* number of free Tx descriptors */
283 	int	sc_txnext;		/* next ready Tx descriptor */
284 	int	sc_txwin;		/* Tx descriptors since last intr */
285 
286 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
287 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
288 
289 	/* values of interface state at last init */
290 	struct {
291 		/* if_capenable */
292 		uint64_t	if_capenable;
293 		/* ec_capenable */
294 		int		ec_capenable;
295 		/* VLAN_ATTACHED */
296 		int		is_vlan;
297 	}	sc_prev;
298 
299 	short	sc_if_flags;
300 
301 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
302 	int	sc_rxdiscard;
303 	int	sc_rxlen;
304 	struct mbuf *sc_rxhead;
305 	struct mbuf *sc_rxtail;
306 	struct mbuf **sc_rxtailp;
307 
308 	int sc_ntxdesc;
309 	int sc_ntxdesc_mask;
310 
311 	int sc_nrxdesc_mask;
312 
313 	const struct sip_parm {
314 		const struct sip_regs {
315 			int r_rxcfg;
316 			int r_txcfg;
317 		} p_regs;
318 
319 		const struct sip_bits {
320 			uint32_t b_txcfg_mxdma_8;
321 			uint32_t b_txcfg_mxdma_16;
322 			uint32_t b_txcfg_mxdma_32;
323 			uint32_t b_txcfg_mxdma_64;
324 			uint32_t b_txcfg_mxdma_128;
325 			uint32_t b_txcfg_mxdma_256;
326 			uint32_t b_txcfg_mxdma_512;
327 			uint32_t b_txcfg_flth_mask;
328 			uint32_t b_txcfg_drth_mask;
329 
330 			uint32_t b_rxcfg_mxdma_8;
331 			uint32_t b_rxcfg_mxdma_16;
332 			uint32_t b_rxcfg_mxdma_32;
333 			uint32_t b_rxcfg_mxdma_64;
334 			uint32_t b_rxcfg_mxdma_128;
335 			uint32_t b_rxcfg_mxdma_256;
336 			uint32_t b_rxcfg_mxdma_512;
337 
338 			uint32_t b_isr_txrcmp;
339 			uint32_t b_isr_rxrcmp;
340 			uint32_t b_isr_dperr;
341 			uint32_t b_isr_sserr;
342 			uint32_t b_isr_rmabt;
343 			uint32_t b_isr_rtabt;
344 
345 			uint32_t b_cmdsts_size_mask;
346 		} p_bits;
347 		int		p_filtmem;
348 		int		p_rxbuf_len;
349 		bus_size_t	p_tx_dmamap_size;
350 		int		p_ntxsegs;
351 		int		p_ntxsegs_alloc;
352 		int		p_nrxdesc;
353 	} *sc_parm;
354 
355 	void (*sc_rxintr)(struct sip_softc *);
356 
357 #if NRND > 0
358 	rndsource_element_t rnd_source;	/* random source */
359 #endif
360 };
361 
362 #define	sc_bits	sc_parm->p_bits
363 #define	sc_regs	sc_parm->p_regs
364 
365 static const struct sip_parm sip_parm = {
366 	  .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
367 	, .p_rxbuf_len = MCLBYTES - 1	/* field width */
368 	, .p_tx_dmamap_size = MCLBYTES
369 	, .p_ntxsegs = 16
370 	, .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
371 	, .p_nrxdesc = SIP_NRXDESC
372 	, .p_bits = {
373 		  .b_txcfg_mxdma_8	= 0x00200000	/*       8 bytes */
374 		, .b_txcfg_mxdma_16	= 0x00300000	/*      16 bytes */
375 		, .b_txcfg_mxdma_32	= 0x00400000	/*      32 bytes */
376 		, .b_txcfg_mxdma_64	= 0x00500000	/*      64 bytes */
377 		, .b_txcfg_mxdma_128	= 0x00600000	/*     128 bytes */
378 		, .b_txcfg_mxdma_256	= 0x00700000	/*     256 bytes */
379 		, .b_txcfg_mxdma_512	= 0x00000000	/*     512 bytes */
380 		, .b_txcfg_flth_mask	= 0x00003f00	/* Tx fill threshold */
381 		, .b_txcfg_drth_mask	= 0x0000003f	/* Tx drain threshold */
382 
383 		, .b_rxcfg_mxdma_8	= 0x00200000	/*       8 bytes */
384 		, .b_rxcfg_mxdma_16	= 0x00300000	/*      16 bytes */
385 		, .b_rxcfg_mxdma_32	= 0x00400000	/*      32 bytes */
386 		, .b_rxcfg_mxdma_64	= 0x00500000	/*      64 bytes */
387 		, .b_rxcfg_mxdma_128	= 0x00600000	/*     128 bytes */
388 		, .b_rxcfg_mxdma_256	= 0x00700000	/*     256 bytes */
389 		, .b_rxcfg_mxdma_512	= 0x00000000	/*     512 bytes */
390 
391 		, .b_isr_txrcmp	= 0x02000000	/* transmit reset complete */
392 		, .b_isr_rxrcmp	= 0x01000000	/* receive reset complete */
393 		, .b_isr_dperr	= 0x00800000	/* detected parity error */
394 		, .b_isr_sserr	= 0x00400000	/* signalled system error */
395 		, .b_isr_rmabt	= 0x00200000	/* received master abort */
396 		, .b_isr_rtabt	= 0x00100000	/* received target abort */
397 		, .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
398 	}
399 	, .p_regs = {
400 		.r_rxcfg = OTHER_SIP_RXCFG,
401 		.r_txcfg = OTHER_SIP_TXCFG
402 	}
403 }, gsip_parm = {
404 	  .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
405 	, .p_rxbuf_len = MCLBYTES - 8
406 	, .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
407 	, .p_ntxsegs = 64
408 	, .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
409 	, .p_nrxdesc = GSIP_NRXDESC
410 	, .p_bits = {
411 		  .b_txcfg_mxdma_8	= 0x00100000	/*       8 bytes */
412 		, .b_txcfg_mxdma_16	= 0x00200000	/*      16 bytes */
413 		, .b_txcfg_mxdma_32	= 0x00300000	/*      32 bytes */
414 		, .b_txcfg_mxdma_64	= 0x00400000	/*      64 bytes */
415 		, .b_txcfg_mxdma_128	= 0x00500000	/*     128 bytes */
416 		, .b_txcfg_mxdma_256	= 0x00600000	/*     256 bytes */
417 		, .b_txcfg_mxdma_512	= 0x00700000	/*     512 bytes */
418 		, .b_txcfg_flth_mask	= 0x0000ff00	/* Fx fill threshold */
419 		, .b_txcfg_drth_mask	= 0x000000ff	/* Tx drain threshold */
420 
421 		, .b_rxcfg_mxdma_8	= 0x00100000	/*       8 bytes */
422 		, .b_rxcfg_mxdma_16	= 0x00200000	/*      16 bytes */
423 		, .b_rxcfg_mxdma_32	= 0x00300000	/*      32 bytes */
424 		, .b_rxcfg_mxdma_64	= 0x00400000	/*      64 bytes */
425 		, .b_rxcfg_mxdma_128	= 0x00500000	/*     128 bytes */
426 		, .b_rxcfg_mxdma_256	= 0x00600000	/*     256 bytes */
427 		, .b_rxcfg_mxdma_512	= 0x00700000	/*     512 bytes */
428 
429 		, .b_isr_txrcmp	= 0x00400000	/* transmit reset complete */
430 		, .b_isr_rxrcmp	= 0x00200000	/* receive reset complete */
431 		, .b_isr_dperr	= 0x00100000	/* detected parity error */
432 		, .b_isr_sserr	= 0x00080000	/* signalled system error */
433 		, .b_isr_rmabt	= 0x00040000	/* received master abort */
434 		, .b_isr_rtabt	= 0x00020000	/* received target abort */
435 		, .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
436 	}
437 	, .p_regs = {
438 		.r_rxcfg = DP83820_SIP_RXCFG,
439 		.r_txcfg = DP83820_SIP_TXCFG
440 	}
441 };
442 
443 static inline int
444 sip_nexttx(const struct sip_softc *sc, int x)
445 {
446 	return (x + 1) & sc->sc_ntxdesc_mask;
447 }
448 
449 static inline int
450 sip_nextrx(const struct sip_softc *sc, int x)
451 {
452 	return (x + 1) & sc->sc_nrxdesc_mask;
453 }
454 
455 /* 83820 only */
456 static inline void
457 sip_rxchain_reset(struct sip_softc *sc)
458 {
459 	sc->sc_rxtailp = &sc->sc_rxhead;
460 	*sc->sc_rxtailp = NULL;
461 	sc->sc_rxlen = 0;
462 }
463 
464 /* 83820 only */
465 static inline void
466 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
467 {
468 	*sc->sc_rxtailp = sc->sc_rxtail = m;
469 	sc->sc_rxtailp = &m->m_next;
470 }
471 
472 #ifdef SIP_EVENT_COUNTERS
473 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
474 #else
475 #define	SIP_EVCNT_INCR(ev)	/* nothing */
476 #endif
477 
478 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
479 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
480 
481 static inline void
482 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
483 {
484 	int x, n;
485 
486 	x = x0;
487 	n = n0;
488 
489 	/* If it will wrap around, sync to the end of the ring. */
490 	if (x + n > sc->sc_ntxdesc) {
491 		bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
492 		    SIP_CDTXOFF(x), sizeof(struct sip_desc) *
493 		    (sc->sc_ntxdesc - x), ops);
494 		n -= (sc->sc_ntxdesc - x);
495 		x = 0;
496 	}
497 
498 	/* Now sync whatever is left. */
499 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
500 	    SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
501 }
502 
503 static inline void
504 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
505 {
506 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
507 	    SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
508 }
509 
510 #if 0
511 #ifdef DP83820
512 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
513 	u_int32_t	sipd_cmdsts;	/* command/status word */
514 #else
515 	u_int32_t	sipd_cmdsts;	/* command/status word */
516 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
517 #endif /* DP83820 */
518 #endif /* 0 */
519 
520 static inline volatile uint32_t *
521 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
522 {
523 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
524 }
525 
526 static inline volatile uint32_t *
527 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
528 {
529 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
530 }
531 
532 static inline void
533 sip_init_rxdesc(struct sip_softc *sc, int x)
534 {
535 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
536 	struct sip_desc *sipd = &sc->sc_rxdescs[x];
537 
538 	sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
539 	*sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
540 	*sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
541 	    (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
542 	sipd->sipd_extsts = 0;
543 	sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
544 }
545 
546 #define	SIP_CHIP_VERS(sc, v, p, r)					\
547 	((sc)->sc_model->sip_vendor == (v) &&				\
548 	 (sc)->sc_model->sip_product == (p) &&				\
549 	 (sc)->sc_rev == (r))
550 
551 #define	SIP_CHIP_MODEL(sc, v, p)					\
552 	((sc)->sc_model->sip_vendor == (v) &&				\
553 	 (sc)->sc_model->sip_product == (p))
554 
555 #define	SIP_SIS900_REV(sc, rev)						\
556 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
557 
558 #define SIP_TIMEOUT 1000
559 
560 static int	sip_ifflags_cb(struct ethercom *);
561 static void	sipcom_start(struct ifnet *);
562 static void	sipcom_watchdog(struct ifnet *);
563 static int	sipcom_ioctl(struct ifnet *, u_long, void *);
564 static int	sipcom_init(struct ifnet *);
565 static void	sipcom_stop(struct ifnet *, int);
566 
567 static bool	sipcom_reset(struct sip_softc *);
568 static void	sipcom_rxdrain(struct sip_softc *);
569 static int	sipcom_add_rxbuf(struct sip_softc *, int);
570 static void	sipcom_read_eeprom(struct sip_softc *, int, int,
571 				      u_int16_t *);
572 static void	sipcom_tick(void *);
573 
574 static void	sipcom_sis900_set_filter(struct sip_softc *);
575 static void	sipcom_dp83815_set_filter(struct sip_softc *);
576 
577 static void	sipcom_dp83820_read_macaddr(struct sip_softc *,
578 		    const struct pci_attach_args *, u_int8_t *);
579 static void	sipcom_sis900_eeprom_delay(struct sip_softc *sc);
580 static void	sipcom_sis900_read_macaddr(struct sip_softc *,
581 		    const struct pci_attach_args *, u_int8_t *);
582 static void	sipcom_dp83815_read_macaddr(struct sip_softc *,
583 		    const struct pci_attach_args *, u_int8_t *);
584 
585 static int	sipcom_intr(void *);
586 static void	sipcom_txintr(struct sip_softc *);
587 static void	sip_rxintr(struct sip_softc *);
588 static void	gsip_rxintr(struct sip_softc *);
589 
590 static int	sipcom_dp83820_mii_readreg(device_t, int, int);
591 static void	sipcom_dp83820_mii_writereg(device_t, int, int, int);
592 static void	sipcom_dp83820_mii_statchg(device_t);
593 
594 static int	sipcom_sis900_mii_readreg(device_t, int, int);
595 static void	sipcom_sis900_mii_writereg(device_t, int, int, int);
596 static void	sipcom_sis900_mii_statchg(device_t);
597 
598 static int	sipcom_dp83815_mii_readreg(device_t, int, int);
599 static void	sipcom_dp83815_mii_writereg(device_t, int, int, int);
600 static void	sipcom_dp83815_mii_statchg(device_t);
601 
602 static void	sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
603 
604 static int	sipcom_match(device_t, cfdata_t, void *);
605 static void	sipcom_attach(device_t, device_t, void *);
606 static void	sipcom_do_detach(device_t, enum sip_attach_stage);
607 static int	sipcom_detach(device_t, int);
608 static bool	sipcom_resume(device_t, const pmf_qual_t *);
609 static bool	sipcom_suspend(device_t, const pmf_qual_t *);
610 
611 int	gsip_copy_small = 0;
612 int	sip_copy_small = 0;
613 
614 CFATTACH_DECL3_NEW(gsip, sizeof(struct sip_softc),
615     sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
616     DVF_DETACH_SHUTDOWN);
617 CFATTACH_DECL3_NEW(sip, sizeof(struct sip_softc),
618     sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
619     DVF_DETACH_SHUTDOWN);
620 
621 /*
622  * Descriptions of the variants of the SiS900.
623  */
624 struct sip_variant {
625 	int	(*sipv_mii_readreg)(device_t, int, int);
626 	void	(*sipv_mii_writereg)(device_t, int, int, int);
627 	void	(*sipv_mii_statchg)(device_t);
628 	void	(*sipv_set_filter)(struct sip_softc *);
629 	void	(*sipv_read_macaddr)(struct sip_softc *,
630 		    const struct pci_attach_args *, u_int8_t *);
631 };
632 
633 static u_int32_t sipcom_mii_bitbang_read(device_t);
634 static void	sipcom_mii_bitbang_write(device_t, u_int32_t);
635 
636 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
637 	sipcom_mii_bitbang_read,
638 	sipcom_mii_bitbang_write,
639 	{
640 		EROMAR_MDIO,		/* MII_BIT_MDO */
641 		EROMAR_MDIO,		/* MII_BIT_MDI */
642 		EROMAR_MDC,		/* MII_BIT_MDC */
643 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
644 		0,			/* MII_BIT_DIR_PHY_HOST */
645 	}
646 };
647 
648 static const struct sip_variant sipcom_variant_dp83820 = {
649 	sipcom_dp83820_mii_readreg,
650 	sipcom_dp83820_mii_writereg,
651 	sipcom_dp83820_mii_statchg,
652 	sipcom_dp83815_set_filter,
653 	sipcom_dp83820_read_macaddr,
654 };
655 
656 static const struct sip_variant sipcom_variant_sis900 = {
657 	sipcom_sis900_mii_readreg,
658 	sipcom_sis900_mii_writereg,
659 	sipcom_sis900_mii_statchg,
660 	sipcom_sis900_set_filter,
661 	sipcom_sis900_read_macaddr,
662 };
663 
664 static const struct sip_variant sipcom_variant_dp83815 = {
665 	sipcom_dp83815_mii_readreg,
666 	sipcom_dp83815_mii_writereg,
667 	sipcom_dp83815_mii_statchg,
668 	sipcom_dp83815_set_filter,
669 	sipcom_dp83815_read_macaddr,
670 };
671 
672 
673 /*
674  * Devices supported by this driver.
675  */
676 static const struct sip_product {
677 	pci_vendor_id_t		sip_vendor;
678 	pci_product_id_t	sip_product;
679 	const char		*sip_name;
680 	const struct sip_variant *sip_variant;
681 	int			sip_gigabit;
682 } sipcom_products[] = {
683 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
684 	  "NatSemi DP83820 Gigabit Ethernet",
685 	  &sipcom_variant_dp83820, 1 },
686 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
687 	  "SiS 900 10/100 Ethernet",
688 	  &sipcom_variant_sis900, 0 },
689 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
690 	  "SiS 7016 10/100 Ethernet",
691 	  &sipcom_variant_sis900, 0 },
692 
693 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
694 	  "NatSemi DP83815 10/100 Ethernet",
695 	  &sipcom_variant_dp83815, 0 },
696 
697 	{ 0,			0,
698 	  NULL,
699 	  NULL, 0 },
700 };
701 
702 static const struct sip_product *
703 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
704 {
705 	const struct sip_product *sip;
706 
707 	for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
708 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
709 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
710 		    sip->sip_gigabit == gigabit)
711 			return sip;
712 	}
713 	return NULL;
714 }
715 
716 /*
717  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
718  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
719  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
720  * which means we try to use 64-bit data transfers on those cards if we
721  * happen to be plugged into a 32-bit slot.
722  *
723  * What we do is use this table of cards known to be 64-bit cards.  If
724  * you have a 64-bit card who's subsystem ID is not listed in this table,
725  * send the output of "pcictl dump ..." of the device to me so that your
726  * card will use the 64-bit data path when plugged into a 64-bit slot.
727  *
728  *	-- Jason R. Thorpe <thorpej@NetBSD.org>
729  *	   June 30, 2002
730  */
731 static int
732 sipcom_check_64bit(const struct pci_attach_args *pa)
733 {
734 	static const struct {
735 		pci_vendor_id_t c64_vendor;
736 		pci_product_id_t c64_product;
737 	} card64[] = {
738 		/* Asante GigaNIX */
739 		{ 0x128a,	0x0002 },
740 
741 		/* Accton EN1407-T, Planex GN-1000TE */
742 		{ 0x1113,	0x1407 },
743 
744 		/* Netgear GA-621 */
745 		{ 0x1385,	0x621a },
746 
747 		/* SMC EZ Card */
748 		{ 0x10b8,	0x9462 },
749 
750 		{ 0, 0}
751 	};
752 	pcireg_t subsys;
753 	int i;
754 
755 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
756 
757 	for (i = 0; card64[i].c64_vendor != 0; i++) {
758 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
759 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
760 			return (1);
761 	}
762 
763 	return (0);
764 }
765 
766 static int
767 sipcom_match(device_t parent, cfdata_t cf, void *aux)
768 {
769 	struct pci_attach_args *pa = aux;
770 
771 	if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
772 		return 1;
773 
774 	return 0;
775 }
776 
777 static void
778 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
779 {
780 	u_int32_t reg;
781 	int i;
782 
783 	/*
784 	 * Cause the chip to load configuration data from the EEPROM.
785 	 */
786 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
787 	for (i = 0; i < 10000; i++) {
788 		delay(10);
789 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
790 		    PTSCR_EELOAD_EN) == 0)
791 			break;
792 	}
793 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
794 	    PTSCR_EELOAD_EN) {
795 		printf("%s: timeout loading configuration from EEPROM\n",
796 		    device_xname(sc->sc_dev));
797 		return;
798 	}
799 
800 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
801 
802 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
803 	if (reg & CFG_PCI64_DET) {
804 		printf("%s: 64-bit PCI slot detected", device_xname(sc->sc_dev));
805 		/*
806 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
807 		 * data transfers.
808 		 *
809 		 * We can't use the DATA64_EN bit in the EEPROM, because
810 		 * vendors of 32-bit cards fail to clear that bit in many
811 		 * cases (yet the card still detects that it's in a 64-bit
812 		 * slot; go figure).
813 		 */
814 		if (sipcom_check_64bit(pa)) {
815 			sc->sc_cfg |= CFG_DATA64_EN;
816 			printf(", using 64-bit data transfers");
817 		}
818 		printf("\n");
819 	}
820 
821 	/*
822 	 * XXX Need some PCI flags indicating support for
823 	 * XXX 64-bit addressing.
824 	 */
825 #if 0
826 	if (reg & CFG_M64ADDR)
827 		sc->sc_cfg |= CFG_M64ADDR;
828 	if (reg & CFG_T64ADDR)
829 		sc->sc_cfg |= CFG_T64ADDR;
830 #endif
831 
832 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
833 		const char *sep = "";
834 		printf("%s: using ", device_xname(sc->sc_dev));
835 		if (reg & CFG_EXT_125) {
836 			sc->sc_cfg |= CFG_EXT_125;
837 			printf("%s125MHz clock", sep);
838 			sep = ", ";
839 		}
840 		if (reg & CFG_TBI_EN) {
841 			sc->sc_cfg |= CFG_TBI_EN;
842 			printf("%sten-bit interface", sep);
843 			sep = ", ";
844 		}
845 		printf("\n");
846 	}
847 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
848 	    (reg & CFG_MRM_DIS) != 0)
849 		sc->sc_cfg |= CFG_MRM_DIS;
850 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
851 	    (reg & CFG_MWI_DIS) != 0)
852 		sc->sc_cfg |= CFG_MWI_DIS;
853 
854 	/*
855 	 * Use the extended descriptor format on the DP83820.  This
856 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
857 	 * checksumming.
858 	 */
859 	sc->sc_cfg |= CFG_EXTSTS_EN;
860 }
861 
862 static int
863 sipcom_detach(device_t self, int flags)
864 {
865 	int s;
866 
867 	s = splnet();
868 	sipcom_do_detach(self, SIP_ATTACH_FIN);
869 	splx(s);
870 
871 	return 0;
872 }
873 
874 static void
875 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
876 {
877 	int i;
878 	struct sip_softc *sc = device_private(self);
879 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
880 
881 	/*
882 	 * Free any resources we've allocated during attach.
883 	 * Do this in reverse order and fall through.
884 	 */
885 	switch (stage) {
886 	case SIP_ATTACH_FIN:
887 		sipcom_stop(ifp, 1);
888 		pmf_device_deregister(self);
889 #ifdef SIP_EVENT_COUNTERS
890 		/*
891 		 * Attach event counters.
892 		 */
893 		evcnt_detach(&sc->sc_ev_txforceintr);
894 		evcnt_detach(&sc->sc_ev_txdstall);
895 		evcnt_detach(&sc->sc_ev_txsstall);
896 		evcnt_detach(&sc->sc_ev_hiberr);
897 		evcnt_detach(&sc->sc_ev_rxintr);
898 		evcnt_detach(&sc->sc_ev_txiintr);
899 		evcnt_detach(&sc->sc_ev_txdintr);
900 		if (!sc->sc_gigabit) {
901 			evcnt_detach(&sc->sc_ev_rxpause);
902 		} else {
903 			evcnt_detach(&sc->sc_ev_txudpsum);
904 			evcnt_detach(&sc->sc_ev_txtcpsum);
905 			evcnt_detach(&sc->sc_ev_txipsum);
906 			evcnt_detach(&sc->sc_ev_rxudpsum);
907 			evcnt_detach(&sc->sc_ev_rxtcpsum);
908 			evcnt_detach(&sc->sc_ev_rxipsum);
909 			evcnt_detach(&sc->sc_ev_txpause);
910 			evcnt_detach(&sc->sc_ev_rxpause);
911 		}
912 #endif /* SIP_EVENT_COUNTERS */
913 
914 #if NRND > 0
915 		rnd_detach_source(&sc->rnd_source);
916 #endif
917 
918 		ether_ifdetach(ifp);
919 		if_detach(ifp);
920 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
921 
922 		/*FALLTHROUGH*/
923 	case SIP_ATTACH_CREATE_RXMAP:
924 		for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
925 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
926 				bus_dmamap_destroy(sc->sc_dmat,
927 				    sc->sc_rxsoft[i].rxs_dmamap);
928 		}
929 		/*FALLTHROUGH*/
930 	case SIP_ATTACH_CREATE_TXMAP:
931 		for (i = 0; i < SIP_TXQUEUELEN; i++) {
932 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
933 				bus_dmamap_destroy(sc->sc_dmat,
934 				    sc->sc_txsoft[i].txs_dmamap);
935 		}
936 		/*FALLTHROUGH*/
937 	case SIP_ATTACH_LOAD_MAP:
938 		bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
939 		/*FALLTHROUGH*/
940 	case SIP_ATTACH_CREATE_MAP:
941 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
942 		/*FALLTHROUGH*/
943 	case SIP_ATTACH_MAP_MEM:
944 		bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
945 		    sizeof(struct sip_control_data));
946 		/*FALLTHROUGH*/
947 	case SIP_ATTACH_ALLOC_MEM:
948 		bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
949 		/* FALLTHROUGH*/
950 	case SIP_ATTACH_INTR:
951 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
952 		/* FALLTHROUGH*/
953 	case SIP_ATTACH_MAP:
954 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
955 		break;
956 	default:
957 		break;
958 	}
959 	return;
960 }
961 
962 static bool
963 sipcom_resume(device_t self, const pmf_qual_t *qual)
964 {
965 	struct sip_softc *sc = device_private(self);
966 
967 	return sipcom_reset(sc);
968 }
969 
970 static bool
971 sipcom_suspend(device_t self, const pmf_qual_t *qual)
972 {
973 	struct sip_softc *sc = device_private(self);
974 
975 	sipcom_rxdrain(sc);
976 	return true;
977 }
978 
979 static void
980 sipcom_attach(device_t parent, device_t self, void *aux)
981 {
982 	struct sip_softc *sc = device_private(self);
983 	struct pci_attach_args *pa = aux;
984 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
985 	pci_chipset_tag_t pc = pa->pa_pc;
986 	pci_intr_handle_t ih;
987 	const char *intrstr = NULL;
988 	bus_space_tag_t iot, memt;
989 	bus_space_handle_t ioh, memh;
990 	bus_size_t iosz, memsz;
991 	int ioh_valid, memh_valid;
992 	int i, rseg, error;
993 	const struct sip_product *sip;
994 	u_int8_t enaddr[ETHER_ADDR_LEN];
995 	pcireg_t csr;
996 	pcireg_t memtype;
997 	bus_size_t tx_dmamap_size;
998 	int ntxsegs_alloc;
999 	cfdata_t cf = device_cfdata(self);
1000 
1001 	callout_init(&sc->sc_tick_ch, 0);
1002 
1003 	sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
1004 	if (sip == NULL) {
1005 		printf("\n");
1006 		panic("%s: impossible", __func__);
1007 	}
1008 	sc->sc_dev = self;
1009 	sc->sc_gigabit = sip->sip_gigabit;
1010 	pmf_self_suspensor_init(self, &sc->sc_suspensor, &sc->sc_qual);
1011 	sc->sc_pc = pc;
1012 
1013 	if (sc->sc_gigabit) {
1014 		sc->sc_rxintr = gsip_rxintr;
1015 		sc->sc_parm = &gsip_parm;
1016 	} else {
1017 		sc->sc_rxintr = sip_rxintr;
1018 		sc->sc_parm = &sip_parm;
1019 	}
1020 	tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
1021 	ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
1022 	sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
1023 	sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
1024 	sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
1025 
1026 	sc->sc_rev = PCI_REVISION(pa->pa_class);
1027 
1028 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
1029 
1030 	sc->sc_model = sip;
1031 
1032 	/*
1033 	 * XXX Work-around broken PXE firmware on some boards.
1034 	 *
1035 	 * The DP83815 shares an address decoder with the MEM BAR
1036 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
1037 	 * so that memory mapped access works.
1038 	 */
1039 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
1040 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
1041 	    ~PCI_MAPREG_ROM_ENABLE);
1042 
1043 	/*
1044 	 * Map the device.
1045 	 */
1046 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
1047 	    PCI_MAPREG_TYPE_IO, 0,
1048 	    &iot, &ioh, NULL, &iosz) == 0);
1049 	if (sc->sc_gigabit) {
1050 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
1051 		switch (memtype) {
1052 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1053 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1054 			memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1055 			    memtype, 0, &memt, &memh, NULL, &memsz) == 0);
1056 			break;
1057 		default:
1058 			memh_valid = 0;
1059 		}
1060 	} else {
1061 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1062 		    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
1063 		    &memt, &memh, NULL, &memsz) == 0);
1064 	}
1065 
1066 	if (memh_valid) {
1067 		sc->sc_st = memt;
1068 		sc->sc_sh = memh;
1069 		sc->sc_sz = memsz;
1070 	} else if (ioh_valid) {
1071 		sc->sc_st = iot;
1072 		sc->sc_sh = ioh;
1073 		sc->sc_sz = iosz;
1074 	} else {
1075 		printf("%s: unable to map device registers\n",
1076 		    device_xname(sc->sc_dev));
1077 		return;
1078 	}
1079 
1080 	sc->sc_dmat = pa->pa_dmat;
1081 
1082 	/*
1083 	 * Make sure bus mastering is enabled.  Also make sure
1084 	 * Write/Invalidate is enabled if we're allowed to use it.
1085 	 */
1086 	csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1087 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
1088 		csr |= PCI_COMMAND_INVALIDATE_ENABLE;
1089 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
1090 	    csr | PCI_COMMAND_MASTER_ENABLE);
1091 
1092 	/* power up chip */
1093 	error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null);
1094 	if (error != 0 && error != EOPNOTSUPP) {
1095 		aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
1096 		return;
1097 	}
1098 
1099 	/*
1100 	 * Map and establish our interrupt.
1101 	 */
1102 	if (pci_intr_map(pa, &ih)) {
1103 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
1104 		return;
1105 	}
1106 	intrstr = pci_intr_string(pc, ih);
1107 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc);
1108 	if (sc->sc_ih == NULL) {
1109 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
1110 		if (intrstr != NULL)
1111 			aprint_error(" at %s", intrstr);
1112 		aprint_error("\n");
1113 		return sipcom_do_detach(self, SIP_ATTACH_MAP);
1114 	}
1115 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1116 
1117 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1118 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1119 
1120 	/*
1121 	 * Allocate the control data structures, and create and load the
1122 	 * DMA map for it.
1123 	 */
1124 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
1125 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
1126 	    &rseg, 0)) != 0) {
1127 		aprint_error_dev(sc->sc_dev, "unable to allocate control data, error = %d\n",
1128 		    error);
1129 		return sipcom_do_detach(self, SIP_ATTACH_INTR);
1130 	}
1131 
1132 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
1133 	    sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
1134 	    BUS_DMA_COHERENT|BUS_DMA_NOCACHE)) != 0) {
1135 		aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n",
1136 		    error);
1137 		sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
1138 	}
1139 
1140 	if ((error = bus_dmamap_create(sc->sc_dmat,
1141 	    sizeof(struct sip_control_data), 1,
1142 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
1143 		aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, "
1144 		    "error = %d\n", error);
1145 		sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
1146 	}
1147 
1148 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1149 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
1150 	    0)) != 0) {
1151 		aprint_error_dev(sc->sc_dev, "unable to load control data DMA map, error = %d\n",
1152 		    error);
1153 		sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
1154 	}
1155 
1156 	/*
1157 	 * Create the transmit buffer DMA maps.
1158 	 */
1159 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
1160 		if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
1161 		    sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
1162 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1163 			aprint_error_dev(sc->sc_dev, "unable to create tx DMA map %d, "
1164 			    "error = %d\n", i, error);
1165 			sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1166 		}
1167 	}
1168 
1169 	/*
1170 	 * Create the receive buffer DMA maps.
1171 	 */
1172 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1173 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1174 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1175 			aprint_error_dev(sc->sc_dev, "unable to create rx DMA map %d, "
1176 			    "error = %d\n", i, error);
1177 			sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1178 		}
1179 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
1180 	}
1181 
1182 	/*
1183 	 * Reset the chip to a known state.
1184 	 */
1185 	sipcom_reset(sc);
1186 
1187 	/*
1188 	 * Read the Ethernet address from the EEPROM.  This might
1189 	 * also fetch other stuff from the EEPROM and stash it
1190 	 * in the softc.
1191 	 */
1192 	sc->sc_cfg = 0;
1193 	if (!sc->sc_gigabit) {
1194 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1195 		    SIP_SIS900_REV(sc,SIS_REV_900B))
1196 			sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1197 
1198 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1199 		    SIP_SIS900_REV(sc,SIS_REV_960) ||
1200 		    SIP_SIS900_REV(sc,SIS_REV_900B))
1201 			sc->sc_cfg |=
1202 			    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1203 			     CFG_EDBMASTEN);
1204 	}
1205 
1206 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1207 
1208 	printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
1209 	    ether_sprintf(enaddr));
1210 
1211 	/*
1212 	 * Initialize the configuration register: aggressive PCI
1213 	 * bus request algorithm, default backoff, default OW timer,
1214 	 * default parity error detection.
1215 	 *
1216 	 * NOTE: "Big endian mode" is useless on the SiS900 and
1217 	 * friends -- it affects packet data, not descriptors.
1218 	 */
1219 	if (sc->sc_gigabit)
1220 		sipcom_dp83820_attach(sc, pa);
1221 
1222 	/*
1223 	 * Initialize our media structures and probe the MII.
1224 	 */
1225 	sc->sc_mii.mii_ifp = ifp;
1226 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
1227 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
1228 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
1229 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
1230 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
1231 	    sipcom_mediastatus);
1232 
1233 	/*
1234 	 * XXX We cannot handle flow control on the DP83815.
1235 	 */
1236 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1237 		mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1238 			   MII_OFFSET_ANY, 0);
1239 	else
1240 		mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1241 			   MII_OFFSET_ANY, MIIF_DOPAUSE);
1242 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1243 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1244 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1245 	} else
1246 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1247 
1248 	ifp = &sc->sc_ethercom.ec_if;
1249 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1250 	ifp->if_softc = sc;
1251 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1252 	sc->sc_if_flags = ifp->if_flags;
1253 	ifp->if_ioctl = sipcom_ioctl;
1254 	ifp->if_start = sipcom_start;
1255 	ifp->if_watchdog = sipcom_watchdog;
1256 	ifp->if_init = sipcom_init;
1257 	ifp->if_stop = sipcom_stop;
1258 	IFQ_SET_READY(&ifp->if_snd);
1259 
1260 	/*
1261 	 * We can support 802.1Q VLAN-sized frames.
1262 	 */
1263 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1264 
1265 	if (sc->sc_gigabit) {
1266 		/*
1267 		 * And the DP83820 can do VLAN tagging in hardware, and
1268 		 * support the jumbo Ethernet MTU.
1269 		 */
1270 		sc->sc_ethercom.ec_capabilities |=
1271 		    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1272 
1273 		/*
1274 		 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1275 		 * in hardware.
1276 		 */
1277 		ifp->if_capabilities |=
1278 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1279 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1280 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1281 	}
1282 
1283 	/*
1284 	 * Attach the interface.
1285 	 */
1286 	if_attach(ifp);
1287 	ether_ifattach(ifp, enaddr);
1288 	ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb);
1289 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1290 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1291 	sc->sc_prev.if_capenable = ifp->if_capenable;
1292 #if NRND > 0
1293 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
1294 	    RND_TYPE_NET, 0);
1295 #endif
1296 
1297 	/*
1298 	 * The number of bytes that must be available in
1299 	 * the Tx FIFO before the bus master can DMA more
1300 	 * data into the FIFO.
1301 	 */
1302 	sc->sc_tx_fill_thresh = 64 / 32;
1303 
1304 	/*
1305 	 * Start at a drain threshold of 512 bytes.  We will
1306 	 * increase it if a DMA underrun occurs.
1307 	 *
1308 	 * XXX The minimum value of this variable should be
1309 	 * tuned.  We may be able to improve performance
1310 	 * by starting with a lower value.  That, however,
1311 	 * may trash the first few outgoing packets if the
1312 	 * PCI bus is saturated.
1313 	 */
1314 	if (sc->sc_gigabit)
1315 		sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1316 	else
1317 		sc->sc_tx_drain_thresh = 1504 / 32;
1318 
1319 	/*
1320 	 * Initialize the Rx FIFO drain threshold.
1321 	 *
1322 	 * This is in units of 8 bytes.
1323 	 *
1324 	 * We should never set this value lower than 2; 14 bytes are
1325 	 * required to filter the packet.
1326 	 */
1327 	sc->sc_rx_drain_thresh = 128 / 8;
1328 
1329 #ifdef SIP_EVENT_COUNTERS
1330 	/*
1331 	 * Attach event counters.
1332 	 */
1333 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1334 	    NULL, device_xname(sc->sc_dev), "txsstall");
1335 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1336 	    NULL, device_xname(sc->sc_dev), "txdstall");
1337 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1338 	    NULL, device_xname(sc->sc_dev), "txforceintr");
1339 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1340 	    NULL, device_xname(sc->sc_dev), "txdintr");
1341 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1342 	    NULL, device_xname(sc->sc_dev), "txiintr");
1343 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1344 	    NULL, device_xname(sc->sc_dev), "rxintr");
1345 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1346 	    NULL, device_xname(sc->sc_dev), "hiberr");
1347 	if (!sc->sc_gigabit) {
1348 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1349 		    NULL, device_xname(sc->sc_dev), "rxpause");
1350 	} else {
1351 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1352 		    NULL, device_xname(sc->sc_dev), "rxpause");
1353 		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1354 		    NULL, device_xname(sc->sc_dev), "txpause");
1355 		evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1356 		    NULL, device_xname(sc->sc_dev), "rxipsum");
1357 		evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1358 		    NULL, device_xname(sc->sc_dev), "rxtcpsum");
1359 		evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1360 		    NULL, device_xname(sc->sc_dev), "rxudpsum");
1361 		evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1362 		    NULL, device_xname(sc->sc_dev), "txipsum");
1363 		evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1364 		    NULL, device_xname(sc->sc_dev), "txtcpsum");
1365 		evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1366 		    NULL, device_xname(sc->sc_dev), "txudpsum");
1367 	}
1368 #endif /* SIP_EVENT_COUNTERS */
1369 
1370 	if (pmf_device_register(self, sipcom_suspend, sipcom_resume))
1371 		pmf_class_network_register(self, ifp);
1372 	else
1373 		aprint_error_dev(self, "couldn't establish power handler\n");
1374 }
1375 
1376 static inline void
1377 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1378     uint64_t capenable)
1379 {
1380 	struct m_tag *mtag;
1381 	u_int32_t extsts;
1382 #ifdef DEBUG
1383 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1384 #endif
1385 	/*
1386 	 * If VLANs are enabled and the packet has a VLAN tag, set
1387 	 * up the descriptor to encapsulate the packet for us.
1388 	 *
1389 	 * This apparently has to be on the last descriptor of
1390 	 * the packet.
1391 	 */
1392 
1393 	/*
1394 	 * Byte swapping is tricky. We need to provide the tag
1395 	 * in a network byte order. On a big-endian machine,
1396 	 * the byteorder is correct, but we need to swap it
1397 	 * anyway, because this will be undone by the outside
1398 	 * htole32(). That's why there must be an
1399 	 * unconditional swap instead of htons() inside.
1400 	 */
1401 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1402 		sc->sc_txdescs[lasttx].sipd_extsts |=
1403 		    htole32(EXTSTS_VPKT |
1404 				(bswap16(VLAN_TAG_VALUE(mtag)) &
1405 				 EXTSTS_VTCI));
1406 	}
1407 
1408 	/*
1409 	 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1410 	 * checksumming, set up the descriptor to do this work
1411 	 * for us.
1412 	 *
1413 	 * This apparently has to be on the first descriptor of
1414 	 * the packet.
1415 	 *
1416 	 * Byte-swap constants so the compiler can optimize.
1417 	 */
1418 	extsts = 0;
1419 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1420 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1421 		SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1422 		extsts |= htole32(EXTSTS_IPPKT);
1423 	}
1424 	if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1425 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1426 		SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1427 		extsts |= htole32(EXTSTS_TCPPKT);
1428 	} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1429 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1430 		SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1431 		extsts |= htole32(EXTSTS_UDPPKT);
1432 	}
1433 	sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1434 }
1435 
1436 /*
1437  * sip_start:		[ifnet interface function]
1438  *
1439  *	Start packet transmission on the interface.
1440  */
1441 static void
1442 sipcom_start(struct ifnet *ifp)
1443 {
1444 	struct sip_softc *sc = ifp->if_softc;
1445 	struct mbuf *m0;
1446 	struct mbuf *m;
1447 	struct sip_txsoft *txs;
1448 	bus_dmamap_t dmamap;
1449 	int error, nexttx, lasttx, seg;
1450 	int ofree = sc->sc_txfree;
1451 #if 0
1452 	int firsttx = sc->sc_txnext;
1453 #endif
1454 
1455 	/*
1456 	 * If we've been told to pause, don't transmit any more packets.
1457 	 */
1458 	if (!sc->sc_gigabit && sc->sc_paused)
1459 		ifp->if_flags |= IFF_OACTIVE;
1460 
1461 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1462 		return;
1463 
1464 	/*
1465 	 * Loop through the send queue, setting up transmit descriptors
1466 	 * until we drain the queue, or use up all available transmit
1467 	 * descriptors.
1468 	 */
1469 	for (;;) {
1470 		/* Get a work queue entry. */
1471 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1472 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1473 			break;
1474 		}
1475 
1476 		/*
1477 		 * Grab a packet off the queue.
1478 		 */
1479 		IFQ_POLL(&ifp->if_snd, m0);
1480 		if (m0 == NULL)
1481 			break;
1482 		m = NULL;
1483 
1484 		dmamap = txs->txs_dmamap;
1485 
1486 		/*
1487 		 * Load the DMA map.  If this fails, the packet either
1488 		 * didn't fit in the alloted number of segments, or we
1489 		 * were short on resources.
1490 		 */
1491 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1492 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1493 		/* In the non-gigabit case, we'll copy and try again. */
1494 		if (error != 0 && !sc->sc_gigabit) {
1495 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1496 			if (m == NULL) {
1497 				printf("%s: unable to allocate Tx mbuf\n",
1498 				    device_xname(sc->sc_dev));
1499 				break;
1500 			}
1501 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1502 			if (m0->m_pkthdr.len > MHLEN) {
1503 				MCLGET(m, M_DONTWAIT);
1504 				if ((m->m_flags & M_EXT) == 0) {
1505 					printf("%s: unable to allocate Tx "
1506 					    "cluster\n", device_xname(sc->sc_dev));
1507 					m_freem(m);
1508 					break;
1509 				}
1510 			}
1511 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1512 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1513 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1514 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1515 			if (error) {
1516 				printf("%s: unable to load Tx buffer, "
1517 				    "error = %d\n", device_xname(sc->sc_dev), error);
1518 				break;
1519 			}
1520 		} else if (error == EFBIG) {
1521 			/*
1522 			 * For the too-many-segments case, we simply
1523 			 * report an error and drop the packet,
1524 			 * since we can't sanely copy a jumbo packet
1525 			 * to a single buffer.
1526 			 */
1527 			printf("%s: Tx packet consumes too many "
1528 			    "DMA segments, dropping...\n", device_xname(sc->sc_dev));
1529 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1530 			m_freem(m0);
1531 			continue;
1532 		} else if (error != 0) {
1533 			/*
1534 			 * Short on resources, just stop for now.
1535 			 */
1536 			break;
1537 		}
1538 
1539 		/*
1540 		 * Ensure we have enough descriptors free to describe
1541 		 * the packet.  Note, we always reserve one descriptor
1542 		 * at the end of the ring as a termination point, to
1543 		 * prevent wrap-around.
1544 		 */
1545 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1546 			/*
1547 			 * Not enough free descriptors to transmit this
1548 			 * packet.  We haven't committed anything yet,
1549 			 * so just unload the DMA map, put the packet
1550 			 * back on the queue, and punt.  Notify the upper
1551 			 * layer that there are not more slots left.
1552 			 *
1553 			 * XXX We could allocate an mbuf and copy, but
1554 			 * XXX is it worth it?
1555 			 */
1556 			ifp->if_flags |= IFF_OACTIVE;
1557 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1558 			if (m != NULL)
1559 				m_freem(m);
1560 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1561 			break;
1562 		}
1563 
1564 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1565 		if (m != NULL) {
1566 			m_freem(m0);
1567 			m0 = m;
1568 		}
1569 
1570 		/*
1571 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1572 		 */
1573 
1574 		/* Sync the DMA map. */
1575 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1576 		    BUS_DMASYNC_PREWRITE);
1577 
1578 		/*
1579 		 * Initialize the transmit descriptors.
1580 		 */
1581 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1582 		     seg < dmamap->dm_nsegs;
1583 		     seg++, nexttx = sip_nexttx(sc, nexttx)) {
1584 			/*
1585 			 * If this is the first descriptor we're
1586 			 * enqueueing, don't set the OWN bit just
1587 			 * yet.  That could cause a race condition.
1588 			 * We'll do it below.
1589 			 */
1590 			*sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
1591 			    htole32(dmamap->dm_segs[seg].ds_addr);
1592 			*sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
1593 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1594 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1595 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
1596 			lasttx = nexttx;
1597 		}
1598 
1599 		/* Clear the MORE bit on the last segment. */
1600 		*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
1601 		    htole32(~CMDSTS_MORE);
1602 
1603 		/*
1604 		 * If we're in the interrupt delay window, delay the
1605 		 * interrupt.
1606 		 */
1607 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1608 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1609 			*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
1610 			    htole32(CMDSTS_INTR);
1611 			sc->sc_txwin = 0;
1612 		}
1613 
1614 		if (sc->sc_gigabit)
1615 			sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1616 
1617 		/* Sync the descriptors we're using. */
1618 		sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
1619 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1620 
1621 		/*
1622 		 * The entire packet is set up.  Give the first descrptor
1623 		 * to the chip now.
1624 		 */
1625 		*sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
1626 		    htole32(CMDSTS_OWN);
1627 		sip_cdtxsync(sc, sc->sc_txnext, 1,
1628 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1629 
1630 		/*
1631 		 * Store a pointer to the packet so we can free it later,
1632 		 * and remember what txdirty will be once the packet is
1633 		 * done.
1634 		 */
1635 		txs->txs_mbuf = m0;
1636 		txs->txs_firstdesc = sc->sc_txnext;
1637 		txs->txs_lastdesc = lasttx;
1638 
1639 		/* Advance the tx pointer. */
1640 		sc->sc_txfree -= dmamap->dm_nsegs;
1641 		sc->sc_txnext = nexttx;
1642 
1643 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1644 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1645 
1646 		/*
1647 		 * Pass the packet to any BPF listeners.
1648 		 */
1649 		bpf_mtap(ifp, m0);
1650 	}
1651 
1652 	if (txs == NULL || sc->sc_txfree == 0) {
1653 		/* No more slots left; notify upper layer. */
1654 		ifp->if_flags |= IFF_OACTIVE;
1655 	}
1656 
1657 	if (sc->sc_txfree != ofree) {
1658 		/*
1659 		 * Start the transmit process.  Note, the manual says
1660 		 * that if there are no pending transmissions in the
1661 		 * chip's internal queue (indicated by TXE being clear),
1662 		 * then the driver software must set the TXDP to the
1663 		 * first descriptor to be transmitted.  However, if we
1664 		 * do this, it causes serious performance degredation on
1665 		 * the DP83820 under load, not setting TXDP doesn't seem
1666 		 * to adversely affect the SiS 900 or DP83815.
1667 		 *
1668 		 * Well, I guess it wouldn't be the first time a manual
1669 		 * has lied -- and they could be speaking of the NULL-
1670 		 * terminated descriptor list case, rather than OWN-
1671 		 * terminated rings.
1672 		 */
1673 #if 0
1674 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1675 		     CR_TXE) == 0) {
1676 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1677 			    SIP_CDTXADDR(sc, firsttx));
1678 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1679 		}
1680 #else
1681 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1682 #endif
1683 
1684 		/* Set a watchdog timer in case the chip flakes out. */
1685 		/* Gigabit autonegotiation takes 5 seconds. */
1686 		ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1687 	}
1688 }
1689 
1690 /*
1691  * sip_watchdog:	[ifnet interface function]
1692  *
1693  *	Watchdog timer handler.
1694  */
1695 static void
1696 sipcom_watchdog(struct ifnet *ifp)
1697 {
1698 	struct sip_softc *sc = ifp->if_softc;
1699 
1700 	/*
1701 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1702 	 * If we get a timeout, try and sweep up transmit descriptors.
1703 	 * If we manage to sweep them all up, ignore the lack of
1704 	 * interrupt.
1705 	 */
1706 	sipcom_txintr(sc);
1707 
1708 	if (sc->sc_txfree != sc->sc_ntxdesc) {
1709 		printf("%s: device timeout\n", device_xname(sc->sc_dev));
1710 		ifp->if_oerrors++;
1711 
1712 		/* Reset the interface. */
1713 		(void) sipcom_init(ifp);
1714 	} else if (ifp->if_flags & IFF_DEBUG)
1715 		printf("%s: recovered from device timeout\n",
1716 		    device_xname(sc->sc_dev));
1717 
1718 	/* Try to get more packets going. */
1719 	sipcom_start(ifp);
1720 }
1721 
1722 /* If the interface is up and running, only modify the receive
1723  * filter when setting promiscuous or debug mode.  Otherwise fall
1724  * through to ether_ioctl, which will reset the chip.
1725  */
1726 static int
1727 sip_ifflags_cb(struct ethercom *ec)
1728 {
1729 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable			\
1730 			 == (sc)->sc_ethercom.ec_capenable)		\
1731 			&& ((sc)->sc_prev.is_vlan ==			\
1732 			    VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1733 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1734 	struct ifnet *ifp = &ec->ec_if;
1735 	struct sip_softc *sc = ifp->if_softc;
1736 	int change = ifp->if_flags ^ sc->sc_if_flags;
1737 
1738 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0 || !COMPARE_EC(sc) ||
1739 	    !COMPARE_IC(sc, ifp))
1740 		return ENETRESET;
1741 	/* Set up the receive filter. */
1742 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1743 	return 0;
1744 }
1745 
1746 /*
1747  * sip_ioctl:		[ifnet interface function]
1748  *
1749  *	Handle control requests from the operator.
1750  */
1751 static int
1752 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1753 {
1754 	struct sip_softc *sc = ifp->if_softc;
1755 	struct ifreq *ifr = (struct ifreq *)data;
1756 	int s, error;
1757 
1758 	s = splnet();
1759 
1760 	switch (cmd) {
1761 	case SIOCSIFMEDIA:
1762 		/* Flow control requires full-duplex mode. */
1763 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1764 		    (ifr->ifr_media & IFM_FDX) == 0)
1765 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
1766 
1767 		/* XXX */
1768 		if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1769 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1770 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1771 			if (sc->sc_gigabit &&
1772 			    (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1773 				/* We can do both TXPAUSE and RXPAUSE. */
1774 				ifr->ifr_media |=
1775 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1776 			} else if (ifr->ifr_media & IFM_FLOW) {
1777 				/*
1778 				 * Both TXPAUSE and RXPAUSE must be set.
1779 				 * (SiS900 and DP83815 don't have PAUSE_ASYM
1780 				 * feature.)
1781 				 *
1782 				 * XXX Can SiS900 and DP83815 send PAUSE?
1783 				 */
1784 				ifr->ifr_media |=
1785 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1786 			}
1787 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1788 		}
1789 		/*FALLTHROUGH*/
1790 	default:
1791 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1792 			break;
1793 
1794 		error = 0;
1795 
1796 		if (cmd == SIOCSIFCAP)
1797 			error = (*ifp->if_init)(ifp);
1798 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1799 			;
1800 		else if (ifp->if_flags & IFF_RUNNING) {
1801 			/*
1802 			 * Multicast list has changed; set the hardware filter
1803 			 * accordingly.
1804 			 */
1805 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1806 		}
1807 		break;
1808 	}
1809 
1810 	/* Try to get more packets going. */
1811 	sipcom_start(ifp);
1812 
1813 	sc->sc_if_flags = ifp->if_flags;
1814 	splx(s);
1815 	return (error);
1816 }
1817 
1818 /*
1819  * sip_intr:
1820  *
1821  *	Interrupt service routine.
1822  */
1823 static int
1824 sipcom_intr(void *arg)
1825 {
1826 	struct sip_softc *sc = arg;
1827 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1828 	u_int32_t isr;
1829 	int handled = 0;
1830 
1831 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
1832 		return 0;
1833 
1834 	/* Disable interrupts. */
1835 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1836 
1837 	for (;;) {
1838 		/* Reading clears interrupt. */
1839 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1840 		if ((isr & sc->sc_imr) == 0)
1841 			break;
1842 
1843 #if NRND > 0
1844 		if (RND_ENABLED(&sc->rnd_source))
1845 			rnd_add_uint32(&sc->rnd_source, isr);
1846 #endif
1847 
1848 		handled = 1;
1849 
1850 		if ((ifp->if_flags & IFF_RUNNING) == 0)
1851 			break;
1852 
1853 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1854 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1855 
1856 			/* Grab any new packets. */
1857 			(*sc->sc_rxintr)(sc);
1858 
1859 			if (isr & ISR_RXORN) {
1860 				printf("%s: receive FIFO overrun\n",
1861 				    device_xname(sc->sc_dev));
1862 
1863 				/* XXX adjust rx_drain_thresh? */
1864 			}
1865 
1866 			if (isr & ISR_RXIDLE) {
1867 				printf("%s: receive ring overrun\n",
1868 				    device_xname(sc->sc_dev));
1869 
1870 				/* Get the receive process going again. */
1871 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1872 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1873 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1874 				    SIP_CR, CR_RXE);
1875 			}
1876 		}
1877 
1878 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1879 #ifdef SIP_EVENT_COUNTERS
1880 			if (isr & ISR_TXDESC)
1881 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1882 			else if (isr & ISR_TXIDLE)
1883 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1884 #endif
1885 
1886 			/* Sweep up transmit descriptors. */
1887 			sipcom_txintr(sc);
1888 
1889 			if (isr & ISR_TXURN) {
1890 				u_int32_t thresh;
1891 				int txfifo_size = (sc->sc_gigabit)
1892 				    ? DP83820_SIP_TXFIFO_SIZE
1893 				    : OTHER_SIP_TXFIFO_SIZE;
1894 
1895 				printf("%s: transmit FIFO underrun",
1896 				    device_xname(sc->sc_dev));
1897 				thresh = sc->sc_tx_drain_thresh + 1;
1898 				if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
1899 				&& (thresh * 32) <= (txfifo_size -
1900 				     (sc->sc_tx_fill_thresh * 32))) {
1901 					printf("; increasing Tx drain "
1902 					    "threshold to %u bytes\n",
1903 					    thresh * 32);
1904 					sc->sc_tx_drain_thresh = thresh;
1905 					(void) sipcom_init(ifp);
1906 				} else {
1907 					(void) sipcom_init(ifp);
1908 					printf("\n");
1909 				}
1910 			}
1911 		}
1912 
1913 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1914 			if (isr & ISR_PAUSE_ST) {
1915 				sc->sc_paused = 1;
1916 				SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1917 				ifp->if_flags |= IFF_OACTIVE;
1918 			}
1919 			if (isr & ISR_PAUSE_END) {
1920 				sc->sc_paused = 0;
1921 				ifp->if_flags &= ~IFF_OACTIVE;
1922 			}
1923 		}
1924 
1925 		if (isr & ISR_HIBERR) {
1926 			int want_init = 0;
1927 
1928 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1929 
1930 #define	PRINTERR(bit, str)						\
1931 			do {						\
1932 				if ((isr & (bit)) != 0) {		\
1933 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
1934 						printf("%s: %s\n",	\
1935 						    device_xname(sc->sc_dev), str); \
1936 					want_init = 1;			\
1937 				}					\
1938 			} while (/*CONSTCOND*/0)
1939 
1940 			PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
1941 			PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
1942 			PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
1943 			PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
1944 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1945 			/*
1946 			 * Ignore:
1947 			 *	Tx reset complete
1948 			 *	Rx reset complete
1949 			 */
1950 			if (want_init)
1951 				(void) sipcom_init(ifp);
1952 #undef PRINTERR
1953 		}
1954 	}
1955 
1956 	/* Re-enable interrupts. */
1957 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1958 
1959 	/* Try to get more packets going. */
1960 	sipcom_start(ifp);
1961 
1962 	return (handled);
1963 }
1964 
1965 /*
1966  * sip_txintr:
1967  *
1968  *	Helper; handle transmit interrupts.
1969  */
1970 static void
1971 sipcom_txintr(struct sip_softc *sc)
1972 {
1973 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1974 	struct sip_txsoft *txs;
1975 	u_int32_t cmdsts;
1976 
1977 	if (sc->sc_paused == 0)
1978 		ifp->if_flags &= ~IFF_OACTIVE;
1979 
1980 	/*
1981 	 * Go through our Tx list and free mbufs for those
1982 	 * frames which have been transmitted.
1983 	 */
1984 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1985 		sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1986 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1987 
1988 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
1989 		if (cmdsts & CMDSTS_OWN)
1990 			break;
1991 
1992 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1993 
1994 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1995 
1996 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1997 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1998 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1999 		m_freem(txs->txs_mbuf);
2000 		txs->txs_mbuf = NULL;
2001 
2002 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2003 
2004 		/*
2005 		 * Check for errors and collisions.
2006 		 */
2007 		if (cmdsts &
2008 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
2009 			ifp->if_oerrors++;
2010 			if (cmdsts & CMDSTS_Tx_EC)
2011 				ifp->if_collisions += 16;
2012 			if (ifp->if_flags & IFF_DEBUG) {
2013 				if (cmdsts & CMDSTS_Tx_ED)
2014 					printf("%s: excessive deferral\n",
2015 					    device_xname(sc->sc_dev));
2016 				if (cmdsts & CMDSTS_Tx_EC)
2017 					printf("%s: excessive collisions\n",
2018 					    device_xname(sc->sc_dev));
2019 			}
2020 		} else {
2021 			/* Packet was transmitted successfully. */
2022 			ifp->if_opackets++;
2023 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
2024 		}
2025 	}
2026 
2027 	/*
2028 	 * If there are no more pending transmissions, cancel the watchdog
2029 	 * timer.
2030 	 */
2031 	if (txs == NULL) {
2032 		ifp->if_timer = 0;
2033 		sc->sc_txwin = 0;
2034 	}
2035 }
2036 
2037 /*
2038  * gsip_rxintr:
2039  *
2040  *	Helper; handle receive interrupts on gigabit parts.
2041  */
2042 static void
2043 gsip_rxintr(struct sip_softc *sc)
2044 {
2045 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2046 	struct sip_rxsoft *rxs;
2047 	struct mbuf *m;
2048 	u_int32_t cmdsts, extsts;
2049 	int i, len;
2050 
2051 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2052 		rxs = &sc->sc_rxsoft[i];
2053 
2054 		sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2055 
2056 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2057 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
2058 		len = CMDSTS_SIZE(sc, cmdsts);
2059 
2060 		/*
2061 		 * NOTE: OWN is set if owned by _consumer_.  We're the
2062 		 * consumer of the receive ring, so if the bit is clear,
2063 		 * we have processed all of the packets.
2064 		 */
2065 		if ((cmdsts & CMDSTS_OWN) == 0) {
2066 			/*
2067 			 * We have processed all of the receive buffers.
2068 			 */
2069 			break;
2070 		}
2071 
2072 		if (__predict_false(sc->sc_rxdiscard)) {
2073 			sip_init_rxdesc(sc, i);
2074 			if ((cmdsts & CMDSTS_MORE) == 0) {
2075 				/* Reset our state. */
2076 				sc->sc_rxdiscard = 0;
2077 			}
2078 			continue;
2079 		}
2080 
2081 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2082 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2083 
2084 		m = rxs->rxs_mbuf;
2085 
2086 		/*
2087 		 * Add a new receive buffer to the ring.
2088 		 */
2089 		if (sipcom_add_rxbuf(sc, i) != 0) {
2090 			/*
2091 			 * Failed, throw away what we've done so
2092 			 * far, and discard the rest of the packet.
2093 			 */
2094 			ifp->if_ierrors++;
2095 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2096 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2097 			sip_init_rxdesc(sc, i);
2098 			if (cmdsts & CMDSTS_MORE)
2099 				sc->sc_rxdiscard = 1;
2100 			if (sc->sc_rxhead != NULL)
2101 				m_freem(sc->sc_rxhead);
2102 			sip_rxchain_reset(sc);
2103 			continue;
2104 		}
2105 
2106 		sip_rxchain_link(sc, m);
2107 
2108 		m->m_len = len;
2109 
2110 		/*
2111 		 * If this is not the end of the packet, keep
2112 		 * looking.
2113 		 */
2114 		if (cmdsts & CMDSTS_MORE) {
2115 			sc->sc_rxlen += len;
2116 			continue;
2117 		}
2118 
2119 		/*
2120 		 * Okay, we have the entire packet now.  The chip includes
2121 		 * the FCS, so we need to trim it.
2122 		 */
2123 		m->m_len -= ETHER_CRC_LEN;
2124 
2125 		*sc->sc_rxtailp = NULL;
2126 		len = m->m_len + sc->sc_rxlen;
2127 		m = sc->sc_rxhead;
2128 
2129 		sip_rxchain_reset(sc);
2130 
2131 		/*
2132 		 * If an error occurred, update stats and drop the packet.
2133 		 */
2134 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2135 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2136 			ifp->if_ierrors++;
2137 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2138 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
2139 				/* Receive overrun handled elsewhere. */
2140 				printf("%s: receive descriptor error\n",
2141 				    device_xname(sc->sc_dev));
2142 			}
2143 #define	PRINTERR(bit, str)						\
2144 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
2145 			    (cmdsts & (bit)) != 0)			\
2146 				printf("%s: %s\n", device_xname(sc->sc_dev), str)
2147 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2148 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2149 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2150 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2151 #undef PRINTERR
2152 			m_freem(m);
2153 			continue;
2154 		}
2155 
2156 		/*
2157 		 * If the packet is small enough to fit in a
2158 		 * single header mbuf, allocate one and copy
2159 		 * the data into it.  This greatly reduces
2160 		 * memory consumption when we receive lots
2161 		 * of small packets.
2162 		 */
2163 		if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
2164 			struct mbuf *nm;
2165 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
2166 			if (nm == NULL) {
2167 				ifp->if_ierrors++;
2168 				m_freem(m);
2169 				continue;
2170 			}
2171 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2172 			nm->m_data += 2;
2173 			nm->m_pkthdr.len = nm->m_len = len;
2174 			m_copydata(m, 0, len, mtod(nm, void *));
2175 			m_freem(m);
2176 			m = nm;
2177 		}
2178 #ifndef __NO_STRICT_ALIGNMENT
2179 		else {
2180 			/*
2181 			 * The DP83820's receive buffers must be 4-byte
2182 			 * aligned.  But this means that the data after
2183 			 * the Ethernet header is misaligned.  To compensate,
2184 			 * we have artificially shortened the buffer size
2185 			 * in the descriptor, and we do an overlapping copy
2186 			 * of the data two bytes further in (in the first
2187 			 * buffer of the chain only).
2188 			 */
2189 			memmove(mtod(m, char *) + 2, mtod(m, void *),
2190 			    m->m_len);
2191 			m->m_data += 2;
2192 		}
2193 #endif /* ! __NO_STRICT_ALIGNMENT */
2194 
2195 		/*
2196 		 * If VLANs are enabled, VLAN packets have been unwrapped
2197 		 * for us.  Associate the tag with the packet.
2198 		 */
2199 
2200 		/*
2201 		 * Again, byte swapping is tricky. Hardware provided
2202 		 * the tag in the network byte order, but extsts was
2203 		 * passed through le32toh() in the meantime. On a
2204 		 * big-endian machine, we need to swap it again. On a
2205 		 * little-endian machine, we need to convert from the
2206 		 * network to host byte order. This means that we must
2207 		 * swap it in any case, so unconditional swap instead
2208 		 * of htons() is used.
2209 		 */
2210 		if ((extsts & EXTSTS_VPKT) != 0) {
2211 			VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
2212 			    continue);
2213 		}
2214 
2215 		/*
2216 		 * Set the incoming checksum information for the
2217 		 * packet.
2218 		 */
2219 		if ((extsts & EXTSTS_IPPKT) != 0) {
2220 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2221 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2222 			if (extsts & EXTSTS_Rx_IPERR)
2223 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2224 			if (extsts & EXTSTS_TCPPKT) {
2225 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2226 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2227 				if (extsts & EXTSTS_Rx_TCPERR)
2228 					m->m_pkthdr.csum_flags |=
2229 					    M_CSUM_TCP_UDP_BAD;
2230 			} else if (extsts & EXTSTS_UDPPKT) {
2231 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2232 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2233 				if (extsts & EXTSTS_Rx_UDPERR)
2234 					m->m_pkthdr.csum_flags |=
2235 					    M_CSUM_TCP_UDP_BAD;
2236 			}
2237 		}
2238 
2239 		ifp->if_ipackets++;
2240 		m->m_pkthdr.rcvif = ifp;
2241 		m->m_pkthdr.len = len;
2242 
2243 		/*
2244 		 * Pass this up to any BPF listeners, but only
2245 		 * pass if up the stack if it's for us.
2246 		 */
2247 		bpf_mtap(ifp, m);
2248 
2249 		/* Pass it on. */
2250 		(*ifp->if_input)(ifp, m);
2251 	}
2252 
2253 	/* Update the receive pointer. */
2254 	sc->sc_rxptr = i;
2255 }
2256 
2257 /*
2258  * sip_rxintr:
2259  *
2260  *	Helper; handle receive interrupts on 10/100 parts.
2261  */
2262 static void
2263 sip_rxintr(struct sip_softc *sc)
2264 {
2265 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2266 	struct sip_rxsoft *rxs;
2267 	struct mbuf *m;
2268 	u_int32_t cmdsts;
2269 	int i, len;
2270 
2271 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2272 		rxs = &sc->sc_rxsoft[i];
2273 
2274 		sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2275 
2276 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2277 
2278 		/*
2279 		 * NOTE: OWN is set if owned by _consumer_.  We're the
2280 		 * consumer of the receive ring, so if the bit is clear,
2281 		 * we have processed all of the packets.
2282 		 */
2283 		if ((cmdsts & CMDSTS_OWN) == 0) {
2284 			/*
2285 			 * We have processed all of the receive buffers.
2286 			 */
2287 			break;
2288 		}
2289 
2290 		/*
2291 		 * If any collisions were seen on the wire, count one.
2292 		 */
2293 		if (cmdsts & CMDSTS_Rx_COL)
2294 			ifp->if_collisions++;
2295 
2296 		/*
2297 		 * If an error occurred, update stats, clear the status
2298 		 * word, and leave the packet buffer in place.  It will
2299 		 * simply be reused the next time the ring comes around.
2300 		 */
2301 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2302 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2303 			ifp->if_ierrors++;
2304 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2305 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
2306 				/* Receive overrun handled elsewhere. */
2307 				printf("%s: receive descriptor error\n",
2308 				    device_xname(sc->sc_dev));
2309 			}
2310 #define	PRINTERR(bit, str)						\
2311 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
2312 			    (cmdsts & (bit)) != 0)			\
2313 				printf("%s: %s\n", device_xname(sc->sc_dev), str)
2314 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2315 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2316 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2317 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2318 #undef PRINTERR
2319 			sip_init_rxdesc(sc, i);
2320 			continue;
2321 		}
2322 
2323 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2324 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2325 
2326 		/*
2327 		 * No errors; receive the packet.  Note, the SiS 900
2328 		 * includes the CRC with every packet.
2329 		 */
2330 		len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
2331 
2332 #ifdef __NO_STRICT_ALIGNMENT
2333 		/*
2334 		 * If the packet is small enough to fit in a
2335 		 * single header mbuf, allocate one and copy
2336 		 * the data into it.  This greatly reduces
2337 		 * memory consumption when we receive lots
2338 		 * of small packets.
2339 		 *
2340 		 * Otherwise, we add a new buffer to the receive
2341 		 * chain.  If this fails, we drop the packet and
2342 		 * recycle the old buffer.
2343 		 */
2344 		if (sip_copy_small != 0 && len <= MHLEN) {
2345 			MGETHDR(m, M_DONTWAIT, MT_DATA);
2346 			if (m == NULL)
2347 				goto dropit;
2348 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2349 			memcpy(mtod(m, void *),
2350 			    mtod(rxs->rxs_mbuf, void *), len);
2351 			sip_init_rxdesc(sc, i);
2352 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2353 			    rxs->rxs_dmamap->dm_mapsize,
2354 			    BUS_DMASYNC_PREREAD);
2355 		} else {
2356 			m = rxs->rxs_mbuf;
2357 			if (sipcom_add_rxbuf(sc, i) != 0) {
2358  dropit:
2359 				ifp->if_ierrors++;
2360 				sip_init_rxdesc(sc, i);
2361 				bus_dmamap_sync(sc->sc_dmat,
2362 				    rxs->rxs_dmamap, 0,
2363 				    rxs->rxs_dmamap->dm_mapsize,
2364 				    BUS_DMASYNC_PREREAD);
2365 				continue;
2366 			}
2367 		}
2368 #else
2369 		/*
2370 		 * The SiS 900's receive buffers must be 4-byte aligned.
2371 		 * But this means that the data after the Ethernet header
2372 		 * is misaligned.  We must allocate a new buffer and
2373 		 * copy the data, shifted forward 2 bytes.
2374 		 */
2375 		MGETHDR(m, M_DONTWAIT, MT_DATA);
2376 		if (m == NULL) {
2377  dropit:
2378 			ifp->if_ierrors++;
2379 			sip_init_rxdesc(sc, i);
2380 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2381 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2382 			continue;
2383 		}
2384 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2385 		if (len > (MHLEN - 2)) {
2386 			MCLGET(m, M_DONTWAIT);
2387 			if ((m->m_flags & M_EXT) == 0) {
2388 				m_freem(m);
2389 				goto dropit;
2390 			}
2391 		}
2392 		m->m_data += 2;
2393 
2394 		/*
2395 		 * Note that we use clusters for incoming frames, so the
2396 		 * buffer is virtually contiguous.
2397 		 */
2398 		memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2399 
2400 		/* Allow the receive descriptor to continue using its mbuf. */
2401 		sip_init_rxdesc(sc, i);
2402 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2403 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2404 #endif /* __NO_STRICT_ALIGNMENT */
2405 
2406 		ifp->if_ipackets++;
2407 		m->m_pkthdr.rcvif = ifp;
2408 		m->m_pkthdr.len = m->m_len = len;
2409 
2410 		/*
2411 		 * Pass this up to any BPF listeners, but only
2412 		 * pass if up the stack if it's for us.
2413 		 */
2414 		bpf_mtap(ifp, m);
2415 
2416 		/* Pass it on. */
2417 		(*ifp->if_input)(ifp, m);
2418 	}
2419 
2420 	/* Update the receive pointer. */
2421 	sc->sc_rxptr = i;
2422 }
2423 
2424 /*
2425  * sip_tick:
2426  *
2427  *	One second timer, used to tick the MII.
2428  */
2429 static void
2430 sipcom_tick(void *arg)
2431 {
2432 	struct sip_softc *sc = arg;
2433 	int s;
2434 
2435 	s = splnet();
2436 #ifdef SIP_EVENT_COUNTERS
2437 	if (sc->sc_gigabit) {
2438 		/* Read PAUSE related counts from MIB registers. */
2439 		sc->sc_ev_rxpause.ev_count +=
2440 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
2441 				     SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2442 		sc->sc_ev_txpause.ev_count +=
2443 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
2444 				     SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2445 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2446 	}
2447 #endif /* SIP_EVENT_COUNTERS */
2448 	mii_tick(&sc->sc_mii);
2449 	splx(s);
2450 
2451 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2452 }
2453 
2454 /*
2455  * sip_reset:
2456  *
2457  *	Perform a soft reset on the SiS 900.
2458  */
2459 static bool
2460 sipcom_reset(struct sip_softc *sc)
2461 {
2462 	bus_space_tag_t st = sc->sc_st;
2463 	bus_space_handle_t sh = sc->sc_sh;
2464 	int i;
2465 
2466 	bus_space_write_4(st, sh, SIP_IER, 0);
2467 	bus_space_write_4(st, sh, SIP_IMR, 0);
2468 	bus_space_write_4(st, sh, SIP_RFCR, 0);
2469 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
2470 
2471 	for (i = 0; i < SIP_TIMEOUT; i++) {
2472 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2473 			break;
2474 		delay(2);
2475 	}
2476 
2477 	if (i == SIP_TIMEOUT) {
2478 		printf("%s: reset failed to complete\n", device_xname(sc->sc_dev));
2479 		return false;
2480 	}
2481 
2482 	delay(1000);
2483 
2484 	if (sc->sc_gigabit) {
2485 		/*
2486 		 * Set the general purpose I/O bits.  Do it here in case we
2487 		 * need to have GPIO set up to talk to the media interface.
2488 		 */
2489 		bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2490 		delay(1000);
2491 	}
2492 	return true;
2493 }
2494 
2495 static void
2496 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2497 {
2498 	u_int32_t reg;
2499 	bus_space_tag_t st = sc->sc_st;
2500 	bus_space_handle_t sh = sc->sc_sh;
2501 	/*
2502 	 * Initialize the VLAN/IP receive control register.
2503 	 * We enable checksum computation on all incoming
2504 	 * packets, and do not reject packets w/ bad checksums.
2505 	 */
2506 	reg = 0;
2507 	if (capenable &
2508 	    (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
2509 		reg |= VRCR_IPEN;
2510 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2511 		reg |= VRCR_VTDEN|VRCR_VTREN;
2512 	bus_space_write_4(st, sh, SIP_VRCR, reg);
2513 
2514 	/*
2515 	 * Initialize the VLAN/IP transmit control register.
2516 	 * We enable outgoing checksum computation on a
2517 	 * per-packet basis.
2518 	 */
2519 	reg = 0;
2520 	if (capenable &
2521 	    (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2522 		reg |= VTCR_PPCHK;
2523 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2524 		reg |= VTCR_VPPTI;
2525 	bus_space_write_4(st, sh, SIP_VTCR, reg);
2526 
2527 	/*
2528 	 * If we're using VLANs, initialize the VLAN data register.
2529 	 * To understand why we bswap the VLAN Ethertype, see section
2530 	 * 4.2.36 of the DP83820 manual.
2531 	 */
2532 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2533 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2534 }
2535 
2536 /*
2537  * sip_init:		[ ifnet interface function ]
2538  *
2539  *	Initialize the interface.  Must be called at splnet().
2540  */
2541 static int
2542 sipcom_init(struct ifnet *ifp)
2543 {
2544 	struct sip_softc *sc = ifp->if_softc;
2545 	bus_space_tag_t st = sc->sc_st;
2546 	bus_space_handle_t sh = sc->sc_sh;
2547 	struct sip_txsoft *txs;
2548 	struct sip_rxsoft *rxs;
2549 	struct sip_desc *sipd;
2550 	int i, error = 0;
2551 
2552 	if (device_is_active(sc->sc_dev)) {
2553 		/*
2554 		 * Cancel any pending I/O.
2555 		 */
2556 		sipcom_stop(ifp, 0);
2557 	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
2558 	           !device_is_active(sc->sc_dev))
2559 		return 0;
2560 
2561 	/*
2562 	 * Reset the chip to a known state.
2563 	 */
2564 	if (!sipcom_reset(sc))
2565 		return EBUSY;
2566 
2567 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2568 		/*
2569 		 * DP83815 manual, page 78:
2570 		 *    4.4 Recommended Registers Configuration
2571 		 *    For optimum performance of the DP83815, version noted
2572 		 *    as DP83815CVNG (SRR = 203h), the listed register
2573 		 *    modifications must be followed in sequence...
2574 		 *
2575 		 * It's not clear if this should be 302h or 203h because that
2576 		 * chip name is listed as SRR 302h in the description of the
2577 		 * SRR register.  However, my revision 302h DP83815 on the
2578 		 * Netgear FA311 purchased in 02/2001 needs these settings
2579 		 * to avoid tons of errors in AcceptPerfectMatch (non-
2580 		 * IFF_PROMISC) mode.  I do not know if other revisions need
2581 		 * this set or not.  [briggs -- 09 March 2001]
2582 		 *
2583 		 * Note that only the low-order 12 bits of 0xe4 are documented
2584 		 * and that this sets reserved bits in that register.
2585 		 */
2586 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
2587 
2588 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
2589 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
2590 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
2591 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
2592 
2593 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
2594 	}
2595 
2596 	/*
2597 	 * Initialize the transmit descriptor ring.
2598 	 */
2599 	for (i = 0; i < sc->sc_ntxdesc; i++) {
2600 		sipd = &sc->sc_txdescs[i];
2601 		memset(sipd, 0, sizeof(struct sip_desc));
2602 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
2603 	}
2604 	sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
2605 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2606 	sc->sc_txfree = sc->sc_ntxdesc;
2607 	sc->sc_txnext = 0;
2608 	sc->sc_txwin = 0;
2609 
2610 	/*
2611 	 * Initialize the transmit job descriptors.
2612 	 */
2613 	SIMPLEQ_INIT(&sc->sc_txfreeq);
2614 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
2615 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
2616 		txs = &sc->sc_txsoft[i];
2617 		txs->txs_mbuf = NULL;
2618 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2619 	}
2620 
2621 	/*
2622 	 * Initialize the receive descriptor and receive job
2623 	 * descriptor rings.
2624 	 */
2625 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2626 		rxs = &sc->sc_rxsoft[i];
2627 		if (rxs->rxs_mbuf == NULL) {
2628 			if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
2629 				printf("%s: unable to allocate or map rx "
2630 				    "buffer %d, error = %d\n",
2631 				    device_xname(sc->sc_dev), i, error);
2632 				/*
2633 				 * XXX Should attempt to run with fewer receive
2634 				 * XXX buffers instead of just failing.
2635 				 */
2636 				sipcom_rxdrain(sc);
2637 				goto out;
2638 			}
2639 		} else
2640 			sip_init_rxdesc(sc, i);
2641 	}
2642 	sc->sc_rxptr = 0;
2643 	sc->sc_rxdiscard = 0;
2644 	sip_rxchain_reset(sc);
2645 
2646 	/*
2647 	 * Set the configuration register; it's already initialized
2648 	 * in sip_attach().
2649 	 */
2650 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2651 
2652 	/*
2653 	 * Initialize the prototype TXCFG register.
2654 	 */
2655 	if (sc->sc_gigabit) {
2656 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2657 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2658 	} else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2659 	     SIP_SIS900_REV(sc, SIS_REV_960) ||
2660 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2661 	    (sc->sc_cfg & CFG_EDBMASTEN)) {
2662 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
2663 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
2664 	} else {
2665 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2666 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2667 	}
2668 
2669 	sc->sc_txcfg |= TXCFG_ATP |
2670 	    __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
2671 	    sc->sc_tx_drain_thresh;
2672 	bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
2673 
2674 	/*
2675 	 * Initialize the receive drain threshold if we have never
2676 	 * done so.
2677 	 */
2678 	if (sc->sc_rx_drain_thresh == 0) {
2679 		/*
2680 		 * XXX This value should be tuned.  This is set to the
2681 		 * maximum of 248 bytes, and we may be able to improve
2682 		 * performance by decreasing it (although we should never
2683 		 * set this value lower than 2; 14 bytes are required to
2684 		 * filter the packet).
2685 		 */
2686 		sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
2687 	}
2688 
2689 	/*
2690 	 * Initialize the prototype RXCFG register.
2691 	 */
2692 	sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
2693 	/*
2694 	 * Accept long packets (including FCS) so we can handle
2695 	 * 802.1q-tagged frames and jumbo frames properly.
2696 	 */
2697 	if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2698 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2699 		sc->sc_rxcfg |= RXCFG_ALP;
2700 
2701 	/*
2702 	 * Checksum offloading is disabled if the user selects an MTU
2703 	 * larger than 8109.  (FreeBSD says 8152, but there is emperical
2704 	 * evidence that >8109 does not work on some boards, such as the
2705 	 * Planex GN-1000TE).
2706 	 */
2707 	if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2708 	    (ifp->if_capenable &
2709 	     (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2710 	      IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2711 	      IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
2712 		printf("%s: Checksum offloading does not work if MTU > 8109 - "
2713 		       "disabled.\n", device_xname(sc->sc_dev));
2714 		ifp->if_capenable &=
2715 		    ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2716 		     IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2717 		     IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
2718 		ifp->if_csum_flags_tx = 0;
2719 		ifp->if_csum_flags_rx = 0;
2720 	}
2721 
2722 	bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
2723 
2724 	if (sc->sc_gigabit)
2725 		sipcom_dp83820_init(sc, ifp->if_capenable);
2726 
2727 	/*
2728 	 * Give the transmit and receive rings to the chip.
2729 	 */
2730 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2731 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2732 
2733 	/*
2734 	 * Initialize the interrupt mask.
2735 	 */
2736 	sc->sc_imr = sc->sc_bits.b_isr_dperr |
2737 	             sc->sc_bits.b_isr_sserr |
2738 		     sc->sc_bits.b_isr_rmabt |
2739 		     sc->sc_bits.b_isr_rtabt | ISR_RXSOVR |
2740 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2741 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2742 
2743 	/* Set up the receive filter. */
2744 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2745 
2746 	/*
2747 	 * Tune sc_rx_flow_thresh.
2748 	 * XXX "More than 8KB" is too short for jumbo frames.
2749 	 * XXX TODO: Threshold value should be user-settable.
2750 	 */
2751 	sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2752 				 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2753 				 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2754 
2755 	/*
2756 	 * Set the current media.  Do this after initializing the prototype
2757 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2758 	 * control.
2759 	 */
2760 	if ((error = ether_mediachange(ifp)) != 0)
2761 		goto out;
2762 
2763 	/*
2764 	 * Set the interrupt hold-off timer to 100us.
2765 	 */
2766 	if (sc->sc_gigabit)
2767 		bus_space_write_4(st, sh, SIP_IHR, 0x01);
2768 
2769 	/*
2770 	 * Enable interrupts.
2771 	 */
2772 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
2773 
2774 	/*
2775 	 * Start the transmit and receive processes.
2776 	 */
2777 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2778 
2779 	/*
2780 	 * Start the one second MII clock.
2781 	 */
2782 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2783 
2784 	/*
2785 	 * ...all done!
2786 	 */
2787 	ifp->if_flags |= IFF_RUNNING;
2788 	ifp->if_flags &= ~IFF_OACTIVE;
2789 	sc->sc_if_flags = ifp->if_flags;
2790 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2791 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2792 	sc->sc_prev.if_capenable = ifp->if_capenable;
2793 
2794  out:
2795 	if (error)
2796 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
2797 	return (error);
2798 }
2799 
2800 /*
2801  * sip_drain:
2802  *
2803  *	Drain the receive queue.
2804  */
2805 static void
2806 sipcom_rxdrain(struct sip_softc *sc)
2807 {
2808 	struct sip_rxsoft *rxs;
2809 	int i;
2810 
2811 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2812 		rxs = &sc->sc_rxsoft[i];
2813 		if (rxs->rxs_mbuf != NULL) {
2814 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2815 			m_freem(rxs->rxs_mbuf);
2816 			rxs->rxs_mbuf = NULL;
2817 		}
2818 	}
2819 }
2820 
2821 /*
2822  * sip_stop:		[ ifnet interface function ]
2823  *
2824  *	Stop transmission on the interface.
2825  */
2826 static void
2827 sipcom_stop(struct ifnet *ifp, int disable)
2828 {
2829 	struct sip_softc *sc = ifp->if_softc;
2830 	bus_space_tag_t st = sc->sc_st;
2831 	bus_space_handle_t sh = sc->sc_sh;
2832 	struct sip_txsoft *txs;
2833 	u_int32_t cmdsts = 0;		/* DEBUG */
2834 
2835 	/*
2836 	 * Stop the one second clock.
2837 	 */
2838 	callout_stop(&sc->sc_tick_ch);
2839 
2840 	/* Down the MII. */
2841 	mii_down(&sc->sc_mii);
2842 
2843 	if (device_is_active(sc->sc_dev)) {
2844 		/*
2845 		 * Disable interrupts.
2846 		 */
2847 		bus_space_write_4(st, sh, SIP_IER, 0);
2848 
2849 		/*
2850 		 * Stop receiver and transmitter.
2851 		 */
2852 		bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2853 	}
2854 
2855 	/*
2856 	 * Release any queued transmit buffers.
2857 	 */
2858 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2859 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2860 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2861 		    (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
2862 		     CMDSTS_INTR) == 0)
2863 			printf("%s: sip_stop: last descriptor does not "
2864 			    "have INTR bit set\n", device_xname(sc->sc_dev));
2865 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2866 #ifdef DIAGNOSTIC
2867 		if (txs->txs_mbuf == NULL) {
2868 			printf("%s: dirty txsoft with no mbuf chain\n",
2869 			    device_xname(sc->sc_dev));
2870 			panic("sip_stop");
2871 		}
2872 #endif
2873 		cmdsts |=		/* DEBUG */
2874 		    le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
2875 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2876 		m_freem(txs->txs_mbuf);
2877 		txs->txs_mbuf = NULL;
2878 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2879 	}
2880 
2881 	/*
2882 	 * Mark the interface down and cancel the watchdog timer.
2883 	 */
2884 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2885 	ifp->if_timer = 0;
2886 
2887 	if (disable)
2888 		pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
2889 
2890 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2891 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2892 		printf("%s: sip_stop: no INTR bits set in dirty tx "
2893 		    "descriptors\n", device_xname(sc->sc_dev));
2894 }
2895 
2896 /*
2897  * sip_read_eeprom:
2898  *
2899  *	Read data from the serial EEPROM.
2900  */
2901 static void
2902 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2903     u_int16_t *data)
2904 {
2905 	bus_space_tag_t st = sc->sc_st;
2906 	bus_space_handle_t sh = sc->sc_sh;
2907 	u_int16_t reg;
2908 	int i, x;
2909 
2910 	for (i = 0; i < wordcnt; i++) {
2911 		/* Send CHIP SELECT. */
2912 		reg = EROMAR_EECS;
2913 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
2914 
2915 		/* Shift in the READ opcode. */
2916 		for (x = 3; x > 0; x--) {
2917 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2918 				reg |= EROMAR_EEDI;
2919 			else
2920 				reg &= ~EROMAR_EEDI;
2921 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2922 			bus_space_write_4(st, sh, SIP_EROMAR,
2923 			    reg | EROMAR_EESK);
2924 			delay(4);
2925 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2926 			delay(4);
2927 		}
2928 
2929 		/* Shift in address. */
2930 		for (x = 6; x > 0; x--) {
2931 			if ((word + i) & (1 << (x - 1)))
2932 				reg |= EROMAR_EEDI;
2933 			else
2934 				reg &= ~EROMAR_EEDI;
2935 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2936 			bus_space_write_4(st, sh, SIP_EROMAR,
2937 			    reg | EROMAR_EESK);
2938 			delay(4);
2939 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2940 			delay(4);
2941 		}
2942 
2943 		/* Shift out data. */
2944 		reg = EROMAR_EECS;
2945 		data[i] = 0;
2946 		for (x = 16; x > 0; x--) {
2947 			bus_space_write_4(st, sh, SIP_EROMAR,
2948 			    reg | EROMAR_EESK);
2949 			delay(4);
2950 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2951 				data[i] |= (1 << (x - 1));
2952 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2953 			delay(4);
2954 		}
2955 
2956 		/* Clear CHIP SELECT. */
2957 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
2958 		delay(4);
2959 	}
2960 }
2961 
2962 /*
2963  * sipcom_add_rxbuf:
2964  *
2965  *	Add a receive buffer to the indicated descriptor.
2966  */
2967 static int
2968 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
2969 {
2970 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2971 	struct mbuf *m;
2972 	int error;
2973 
2974 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2975 	if (m == NULL)
2976 		return (ENOBUFS);
2977 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2978 
2979 	MCLGET(m, M_DONTWAIT);
2980 	if ((m->m_flags & M_EXT) == 0) {
2981 		m_freem(m);
2982 		return (ENOBUFS);
2983 	}
2984 
2985 	/* XXX I don't believe this is necessary. --dyoung */
2986 	if (sc->sc_gigabit)
2987 		m->m_len = sc->sc_parm->p_rxbuf_len;
2988 
2989 	if (rxs->rxs_mbuf != NULL)
2990 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2991 
2992 	rxs->rxs_mbuf = m;
2993 
2994 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2995 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2996 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2997 	if (error) {
2998 		printf("%s: can't load rx DMA map %d, error = %d\n",
2999 		    device_xname(sc->sc_dev), idx, error);
3000 		panic("%s", __func__);		/* XXX */
3001 	}
3002 
3003 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3004 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3005 
3006 	sip_init_rxdesc(sc, idx);
3007 
3008 	return (0);
3009 }
3010 
3011 /*
3012  * sip_sis900_set_filter:
3013  *
3014  *	Set up the receive filter.
3015  */
3016 static void
3017 sipcom_sis900_set_filter(struct sip_softc *sc)
3018 {
3019 	bus_space_tag_t st = sc->sc_st;
3020 	bus_space_handle_t sh = sc->sc_sh;
3021 	struct ethercom *ec = &sc->sc_ethercom;
3022 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3023 	struct ether_multi *enm;
3024 	const u_int8_t *cp;
3025 	struct ether_multistep step;
3026 	u_int32_t crc, mchash[16];
3027 
3028 	/*
3029 	 * Initialize the prototype RFCR.
3030 	 */
3031 	sc->sc_rfcr = RFCR_RFEN;
3032 	if (ifp->if_flags & IFF_BROADCAST)
3033 		sc->sc_rfcr |= RFCR_AAB;
3034 	if (ifp->if_flags & IFF_PROMISC) {
3035 		sc->sc_rfcr |= RFCR_AAP;
3036 		goto allmulti;
3037 	}
3038 
3039 	/*
3040 	 * Set up the multicast address filter by passing all multicast
3041 	 * addresses through a CRC generator, and then using the high-order
3042 	 * 6 bits as an index into the 128 bit multicast hash table (only
3043 	 * the lower 16 bits of each 32 bit multicast hash register are
3044 	 * valid).  The high order bits select the register, while the
3045 	 * rest of the bits select the bit within the register.
3046 	 */
3047 
3048 	memset(mchash, 0, sizeof(mchash));
3049 
3050 	/*
3051 	 * SiS900 (at least SiS963) requires us to register the address of
3052 	 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3053 	 */
3054 	crc = 0x0ed423f9;
3055 
3056 	if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3057 	    SIP_SIS900_REV(sc, SIS_REV_960) ||
3058 	    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3059 		/* Just want the 8 most significant bits. */
3060 		crc >>= 24;
3061 	} else {
3062 		/* Just want the 7 most significant bits. */
3063 		crc >>= 25;
3064 	}
3065 
3066 	/* Set the corresponding bit in the hash table. */
3067 	mchash[crc >> 4] |= 1 << (crc & 0xf);
3068 
3069 	ETHER_FIRST_MULTI(step, ec, enm);
3070 	while (enm != NULL) {
3071 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3072 			/*
3073 			 * We must listen to a range of multicast addresses.
3074 			 * For now, just accept all multicasts, rather than
3075 			 * trying to set only those filter bits needed to match
3076 			 * the range.  (At this time, the only use of address
3077 			 * ranges is for IP multicast routing, for which the
3078 			 * range is big enough to require all bits set.)
3079 			 */
3080 			goto allmulti;
3081 		}
3082 
3083 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3084 
3085 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3086 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
3087 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3088 			/* Just want the 8 most significant bits. */
3089 			crc >>= 24;
3090 		} else {
3091 			/* Just want the 7 most significant bits. */
3092 			crc >>= 25;
3093 		}
3094 
3095 		/* Set the corresponding bit in the hash table. */
3096 		mchash[crc >> 4] |= 1 << (crc & 0xf);
3097 
3098 		ETHER_NEXT_MULTI(step, enm);
3099 	}
3100 
3101 	ifp->if_flags &= ~IFF_ALLMULTI;
3102 	goto setit;
3103 
3104  allmulti:
3105 	ifp->if_flags |= IFF_ALLMULTI;
3106 	sc->sc_rfcr |= RFCR_AAM;
3107 
3108  setit:
3109 #define	FILTER_EMIT(addr, data)						\
3110 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
3111 	delay(1);							\
3112 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
3113 	delay(1)
3114 
3115 	/*
3116 	 * Disable receive filter, and program the node address.
3117 	 */
3118 	cp = CLLADDR(ifp->if_sadl);
3119 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
3120 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
3121 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
3122 
3123 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3124 		/*
3125 		 * Program the multicast hash table.
3126 		 */
3127 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
3128 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
3129 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
3130 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
3131 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
3132 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
3133 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
3134 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
3135 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3136 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
3137 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3138 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
3139 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
3140 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
3141 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
3142 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
3143 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
3144 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
3145 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
3146 		}
3147 	}
3148 #undef FILTER_EMIT
3149 
3150 	/*
3151 	 * Re-enable the receiver filter.
3152 	 */
3153 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3154 }
3155 
3156 /*
3157  * sip_dp83815_set_filter:
3158  *
3159  *	Set up the receive filter.
3160  */
3161 static void
3162 sipcom_dp83815_set_filter(struct sip_softc *sc)
3163 {
3164 	bus_space_tag_t st = sc->sc_st;
3165 	bus_space_handle_t sh = sc->sc_sh;
3166 	struct ethercom *ec = &sc->sc_ethercom;
3167 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3168 	struct ether_multi *enm;
3169 	const u_int8_t *cp;
3170 	struct ether_multistep step;
3171 	u_int32_t crc, hash, slot, bit;
3172 #define	MCHASH_NWORDS_83820	128
3173 #define	MCHASH_NWORDS_83815	32
3174 #define	MCHASH_NWORDS	MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3175 	u_int16_t mchash[MCHASH_NWORDS];
3176 	int i;
3177 
3178 	/*
3179 	 * Initialize the prototype RFCR.
3180 	 * Enable the receive filter, and accept on
3181 	 *    Perfect (destination address) Match
3182 	 * If IFF_BROADCAST, also accept all broadcast packets.
3183 	 * If IFF_PROMISC, accept all unicast packets (and later, set
3184 	 *    IFF_ALLMULTI and accept all multicast, too).
3185 	 */
3186 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3187 	if (ifp->if_flags & IFF_BROADCAST)
3188 		sc->sc_rfcr |= RFCR_AAB;
3189 	if (ifp->if_flags & IFF_PROMISC) {
3190 		sc->sc_rfcr |= RFCR_AAP;
3191 		goto allmulti;
3192 	}
3193 
3194 	/*
3195          * Set up the DP83820/DP83815 multicast address filter by
3196          * passing all multicast addresses through a CRC generator,
3197          * and then using the high-order 11/9 bits as an index into
3198          * the 2048/512 bit multicast hash table.  The high-order
3199          * 7/5 bits select the slot, while the low-order 4 bits
3200          * select the bit within the slot.  Note that only the low
3201          * 16-bits of each filter word are used, and there are
3202          * 128/32 filter words.
3203 	 */
3204 
3205 	memset(mchash, 0, sizeof(mchash));
3206 
3207 	ifp->if_flags &= ~IFF_ALLMULTI;
3208 	ETHER_FIRST_MULTI(step, ec, enm);
3209 	if (enm == NULL)
3210 		goto setit;
3211 	while (enm != NULL) {
3212 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3213 			/*
3214 			 * We must listen to a range of multicast addresses.
3215 			 * For now, just accept all multicasts, rather than
3216 			 * trying to set only those filter bits needed to match
3217 			 * the range.  (At this time, the only use of address
3218 			 * ranges is for IP multicast routing, for which the
3219 			 * range is big enough to require all bits set.)
3220 			 */
3221 			goto allmulti;
3222 		}
3223 
3224 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3225 
3226 		if (sc->sc_gigabit) {
3227 			/* Just want the 11 most significant bits. */
3228 			hash = crc >> 21;
3229 		} else {
3230 			/* Just want the 9 most significant bits. */
3231 			hash = crc >> 23;
3232 		}
3233 
3234 		slot = hash >> 4;
3235 		bit = hash & 0xf;
3236 
3237 		/* Set the corresponding bit in the hash table. */
3238 		mchash[slot] |= 1 << bit;
3239 
3240 		ETHER_NEXT_MULTI(step, enm);
3241 	}
3242 	sc->sc_rfcr |= RFCR_MHEN;
3243 	goto setit;
3244 
3245  allmulti:
3246 	ifp->if_flags |= IFF_ALLMULTI;
3247 	sc->sc_rfcr |= RFCR_AAM;
3248 
3249  setit:
3250 #define	FILTER_EMIT(addr, data)						\
3251 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
3252 	delay(1);							\
3253 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
3254 	delay(1)
3255 
3256 	/*
3257 	 * Disable receive filter, and program the node address.
3258 	 */
3259 	cp = CLLADDR(ifp->if_sadl);
3260 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3261 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3262 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3263 
3264 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3265 		int nwords =
3266 		    sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3267 		/*
3268 		 * Program the multicast hash table.
3269 		 */
3270 		for (i = 0; i < nwords; i++) {
3271 			FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
3272 		}
3273 	}
3274 #undef FILTER_EMIT
3275 #undef MCHASH_NWORDS
3276 #undef MCHASH_NWORDS_83815
3277 #undef MCHASH_NWORDS_83820
3278 
3279 	/*
3280 	 * Re-enable the receiver filter.
3281 	 */
3282 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3283 }
3284 
3285 /*
3286  * sip_dp83820_mii_readreg:	[mii interface function]
3287  *
3288  *	Read a PHY register on the MII of the DP83820.
3289  */
3290 static int
3291 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg)
3292 {
3293 	struct sip_softc *sc = device_private(self);
3294 
3295 	if (sc->sc_cfg & CFG_TBI_EN) {
3296 		bus_addr_t tbireg;
3297 		int rv;
3298 
3299 		if (phy != 0)
3300 			return (0);
3301 
3302 		switch (reg) {
3303 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3304 		case MII_BMSR:		tbireg = SIP_TBISR; break;
3305 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3306 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3307 		case MII_ANER:		tbireg = SIP_TANER; break;
3308 		case MII_EXTSR:
3309 			/*
3310 			 * Don't even bother reading the TESR register.
3311 			 * The manual documents that the device has
3312 			 * 1000baseX full/half capability, but the
3313 			 * register itself seems read back 0 on some
3314 			 * boards.  Just hard-code the result.
3315 			 */
3316 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3317 
3318 		default:
3319 			return (0);
3320 		}
3321 
3322 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3323 		if (tbireg == SIP_TBISR) {
3324 			/* LINK and ACOMP are switched! */
3325 			int val = rv;
3326 
3327 			rv = 0;
3328 			if (val & TBISR_MR_LINK_STATUS)
3329 				rv |= BMSR_LINK;
3330 			if (val & TBISR_MR_AN_COMPLETE)
3331 				rv |= BMSR_ACOMP;
3332 
3333 			/*
3334 			 * The manual claims this register reads back 0
3335 			 * on hard and soft reset.  But we want to let
3336 			 * the gentbi driver know that we support auto-
3337 			 * negotiation, so hard-code this bit in the
3338 			 * result.
3339 			 */
3340 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
3341 		}
3342 
3343 		return (rv);
3344 	}
3345 
3346 	return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
3347 }
3348 
3349 /*
3350  * sip_dp83820_mii_writereg:	[mii interface function]
3351  *
3352  *	Write a PHY register on the MII of the DP83820.
3353  */
3354 static void
3355 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, int val)
3356 {
3357 	struct sip_softc *sc = device_private(self);
3358 
3359 	if (sc->sc_cfg & CFG_TBI_EN) {
3360 		bus_addr_t tbireg;
3361 
3362 		if (phy != 0)
3363 			return;
3364 
3365 		switch (reg) {
3366 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3367 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3368 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3369 		default:
3370 			return;
3371 		}
3372 
3373 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3374 		return;
3375 	}
3376 
3377 	mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
3378 }
3379 
3380 /*
3381  * sip_dp83820_mii_statchg:	[mii interface function]
3382  *
3383  *	Callback from MII layer when media changes.
3384  */
3385 static void
3386 sipcom_dp83820_mii_statchg(device_t self)
3387 {
3388 	struct sip_softc *sc = device_private(self);
3389 	struct mii_data *mii = &sc->sc_mii;
3390 	u_int32_t cfg, pcr;
3391 
3392 	/*
3393 	 * Get flow control negotiation result.
3394 	 */
3395 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3396 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3397 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3398 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3399 	}
3400 
3401 	/*
3402 	 * Update TXCFG for full-duplex operation.
3403 	 */
3404 	if ((mii->mii_media_active & IFM_FDX) != 0)
3405 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3406 	else
3407 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3408 
3409 	/*
3410 	 * Update RXCFG for full-duplex or loopback.
3411 	 */
3412 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3413 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3414 		sc->sc_rxcfg |= RXCFG_ATX;
3415 	else
3416 		sc->sc_rxcfg &= ~RXCFG_ATX;
3417 
3418 	/*
3419 	 * Update CFG for MII/GMII.
3420 	 */
3421 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3422 		cfg = sc->sc_cfg | CFG_MODE_1000;
3423 	else
3424 		cfg = sc->sc_cfg;
3425 
3426 	/*
3427 	 * 802.3x flow control.
3428 	 */
3429 	pcr = 0;
3430 	if (sc->sc_flowflags & IFM_FLOW) {
3431 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3432 			pcr |= sc->sc_rx_flow_thresh;
3433 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3434 			pcr |= PCR_PSEN | PCR_PS_MCAST;
3435 	}
3436 
3437 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3438 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3439 	    sc->sc_txcfg);
3440 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3441 	    sc->sc_rxcfg);
3442 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3443 }
3444 
3445 /*
3446  * sip_mii_bitbang_read: [mii bit-bang interface function]
3447  *
3448  *	Read the MII serial port for the MII bit-bang module.
3449  */
3450 static u_int32_t
3451 sipcom_mii_bitbang_read(device_t self)
3452 {
3453 	struct sip_softc *sc = device_private(self);
3454 
3455 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3456 }
3457 
3458 /*
3459  * sip_mii_bitbang_write: [mii big-bang interface function]
3460  *
3461  *	Write the MII serial port for the MII bit-bang module.
3462  */
3463 static void
3464 sipcom_mii_bitbang_write(device_t self, u_int32_t val)
3465 {
3466 	struct sip_softc *sc = device_private(self);
3467 
3468 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3469 }
3470 
3471 /*
3472  * sip_sis900_mii_readreg:	[mii interface function]
3473  *
3474  *	Read a PHY register on the MII.
3475  */
3476 static int
3477 sipcom_sis900_mii_readreg(device_t self, int phy, int reg)
3478 {
3479 	struct sip_softc *sc = device_private(self);
3480 	u_int32_t enphy;
3481 
3482 	/*
3483 	 * The PHY of recent SiS chipsets is accessed through bitbang
3484 	 * operations.
3485 	 */
3486 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3487 		return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3488 		    phy, reg);
3489 
3490 #ifndef SIS900_MII_RESTRICT
3491 	/*
3492 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3493 	 * MII address 0.
3494 	 */
3495 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3496 		return (0);
3497 #endif
3498 
3499 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3500 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3501 	    ENPHY_RWCMD | ENPHY_ACCESS);
3502 	do {
3503 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3504 	} while (enphy & ENPHY_ACCESS);
3505 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3506 }
3507 
3508 /*
3509  * sip_sis900_mii_writereg:	[mii interface function]
3510  *
3511  *	Write a PHY register on the MII.
3512  */
3513 static void
3514 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, int val)
3515 {
3516 	struct sip_softc *sc = device_private(self);
3517 	u_int32_t enphy;
3518 
3519 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3520 		mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3521 		    phy, reg, val);
3522 		return;
3523 	}
3524 
3525 #ifndef SIS900_MII_RESTRICT
3526 	/*
3527 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3528 	 * MII address 0.
3529 	 */
3530 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3531 		return;
3532 #endif
3533 
3534 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3535 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3536 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3537 	do {
3538 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3539 	} while (enphy & ENPHY_ACCESS);
3540 }
3541 
3542 /*
3543  * sip_sis900_mii_statchg:	[mii interface function]
3544  *
3545  *	Callback from MII layer when media changes.
3546  */
3547 static void
3548 sipcom_sis900_mii_statchg(device_t self)
3549 {
3550 	struct sip_softc *sc = device_private(self);
3551 	struct mii_data *mii = &sc->sc_mii;
3552 	u_int32_t flowctl;
3553 
3554 	/*
3555 	 * Get flow control negotiation result.
3556 	 */
3557 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3558 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3559 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3560 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3561 	}
3562 
3563 	/*
3564 	 * Update TXCFG for full-duplex operation.
3565 	 */
3566 	if ((mii->mii_media_active & IFM_FDX) != 0)
3567 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3568 	else
3569 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3570 
3571 	/*
3572 	 * Update RXCFG for full-duplex or loopback.
3573 	 */
3574 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3575 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3576 		sc->sc_rxcfg |= RXCFG_ATX;
3577 	else
3578 		sc->sc_rxcfg &= ~RXCFG_ATX;
3579 
3580 	/*
3581 	 * Update IMR for use of 802.3x flow control.
3582 	 */
3583 	if (sc->sc_flowflags & IFM_FLOW) {
3584 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3585 		flowctl = FLOWCTL_FLOWEN;
3586 	} else {
3587 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3588 		flowctl = 0;
3589 	}
3590 
3591 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3592 	    sc->sc_txcfg);
3593 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3594 	    sc->sc_rxcfg);
3595 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3596 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3597 }
3598 
3599 /*
3600  * sip_dp83815_mii_readreg:	[mii interface function]
3601  *
3602  *	Read a PHY register on the MII.
3603  */
3604 static int
3605 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg)
3606 {
3607 	struct sip_softc *sc = device_private(self);
3608 	u_int32_t val;
3609 
3610 	/*
3611 	 * The DP83815 only has an internal PHY.  Only allow
3612 	 * MII address 0.
3613 	 */
3614 	if (phy != 0)
3615 		return (0);
3616 
3617 	/*
3618 	 * Apparently, after a reset, the DP83815 can take a while
3619 	 * to respond.  During this recovery period, the BMSR returns
3620 	 * a value of 0.  Catch this -- it's not supposed to happen
3621 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3622 	 * PHY to come back to life.
3623 	 *
3624 	 * This works out because the BMSR is the first register
3625 	 * read during the PHY probe process.
3626 	 */
3627 	do {
3628 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3629 	} while (reg == MII_BMSR && val == 0);
3630 
3631 	return (val & 0xffff);
3632 }
3633 
3634 /*
3635  * sip_dp83815_mii_writereg:	[mii interface function]
3636  *
3637  *	Write a PHY register to the MII.
3638  */
3639 static void
3640 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, int val)
3641 {
3642 	struct sip_softc *sc = device_private(self);
3643 
3644 	/*
3645 	 * The DP83815 only has an internal PHY.  Only allow
3646 	 * MII address 0.
3647 	 */
3648 	if (phy != 0)
3649 		return;
3650 
3651 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3652 }
3653 
3654 /*
3655  * sip_dp83815_mii_statchg:	[mii interface function]
3656  *
3657  *	Callback from MII layer when media changes.
3658  */
3659 static void
3660 sipcom_dp83815_mii_statchg(device_t self)
3661 {
3662 	struct sip_softc *sc = device_private(self);
3663 
3664 	/*
3665 	 * Update TXCFG for full-duplex operation.
3666 	 */
3667 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3668 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3669 	else
3670 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3671 
3672 	/*
3673 	 * Update RXCFG for full-duplex or loopback.
3674 	 */
3675 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3676 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3677 		sc->sc_rxcfg |= RXCFG_ATX;
3678 	else
3679 		sc->sc_rxcfg &= ~RXCFG_ATX;
3680 
3681 	/*
3682 	 * XXX 802.3x flow control.
3683 	 */
3684 
3685 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3686 	    sc->sc_txcfg);
3687 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3688 	    sc->sc_rxcfg);
3689 
3690 	/*
3691 	 * Some DP83815s experience problems when used with short
3692 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
3693 	 * sequence adjusts the DSP's signal attenuation to fix the
3694 	 * problem.
3695 	 */
3696 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3697 		uint32_t reg;
3698 
3699 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3700 
3701 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3702 		reg &= 0x0fff;
3703 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3704 		delay(100);
3705 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3706 		reg &= 0x00ff;
3707 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3708 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3709 			    0x00e8);
3710 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3711 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3712 			    reg | 0x20);
3713 		}
3714 
3715 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3716 	}
3717 }
3718 
3719 static void
3720 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3721     const struct pci_attach_args *pa, u_int8_t *enaddr)
3722 {
3723 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3724 	u_int8_t cksum, *e, match;
3725 	int i;
3726 
3727 	/*
3728 	 * EEPROM data format for the DP83820 can be found in
3729 	 * the DP83820 manual, section 4.2.4.
3730 	 */
3731 
3732 	sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3733 
3734 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3735 	match = ~(match - 1);
3736 
3737 	cksum = 0x55;
3738 	e = (u_int8_t *) eeprom_data;
3739 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3740 		cksum += *e++;
3741 
3742 	if (cksum != match)
3743 		printf("%s: Checksum (%x) mismatch (%x)",
3744 		    device_xname(sc->sc_dev), cksum, match);
3745 
3746 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3747 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3748 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3749 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3750 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3751 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3752 }
3753 
3754 static void
3755 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3756 {
3757 	int i;
3758 
3759 	/*
3760 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
3761 	 * a reason, but I don't know it.
3762 	 */
3763 	for (i = 0; i < 10; i++)
3764 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3765 }
3766 
3767 static void
3768 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3769     const struct pci_attach_args *pa, u_int8_t *enaddr)
3770 {
3771 	u_int16_t myea[ETHER_ADDR_LEN / 2];
3772 
3773 	switch (sc->sc_rev) {
3774 	case SIS_REV_630S:
3775 	case SIS_REV_630E:
3776 	case SIS_REV_630EA1:
3777 	case SIS_REV_630ET:
3778 	case SIS_REV_635:
3779 		/*
3780 		 * The MAC address for the on-board Ethernet of
3781 		 * the SiS 630 chipset is in the NVRAM.  Kick
3782 		 * the chip into re-loading it from NVRAM, and
3783 		 * read the MAC address out of the filter registers.
3784 		 */
3785 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3786 
3787 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3788 		    RFCR_RFADDR_NODE0);
3789 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3790 		    0xffff;
3791 
3792 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3793 		    RFCR_RFADDR_NODE2);
3794 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3795 		    0xffff;
3796 
3797 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3798 		    RFCR_RFADDR_NODE4);
3799 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3800 		    0xffff;
3801 		break;
3802 
3803 	case SIS_REV_960:
3804 		{
3805 #define	SIS_SET_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3806 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3807 
3808 #define	SIS_CLR_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3809 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3810 
3811 			int waittime, i;
3812 
3813 			/* Allow to read EEPROM from LAN. It is shared
3814 			 * between a 1394 controller and the NIC and each
3815 			 * time we access it, we need to set SIS_EECMD_REQ.
3816 			 */
3817 			SIS_SET_EROMAR(sc, EROMAR_REQ);
3818 
3819 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3820 				/* Force EEPROM to idle state. */
3821 
3822 				/*
3823 				 * XXX-cube This is ugly.  I'll look for docs about it.
3824 				 */
3825 				SIS_SET_EROMAR(sc, EROMAR_EECS);
3826 				sipcom_sis900_eeprom_delay(sc);
3827 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3828 					SIS_SET_EROMAR(sc, EROMAR_EESK);
3829 					sipcom_sis900_eeprom_delay(sc);
3830 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
3831 					sipcom_sis900_eeprom_delay(sc);
3832 				}
3833 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
3834 				sipcom_sis900_eeprom_delay(sc);
3835 				bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3836 
3837 				if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3838 					sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3839 					    sizeof(myea) / sizeof(myea[0]), myea);
3840 					break;
3841 				}
3842 				DELAY(1);
3843 			}
3844 
3845 			/*
3846 			 * Set SIS_EECTL_CLK to high, so a other master
3847 			 * can operate on the i2c bus.
3848 			 */
3849 			SIS_SET_EROMAR(sc, EROMAR_EESK);
3850 
3851 			/* Refuse EEPROM access by LAN */
3852 			SIS_SET_EROMAR(sc, EROMAR_DONE);
3853 		} break;
3854 
3855 	default:
3856 		sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3857 		    sizeof(myea) / sizeof(myea[0]), myea);
3858 	}
3859 
3860 	enaddr[0] = myea[0] & 0xff;
3861 	enaddr[1] = myea[0] >> 8;
3862 	enaddr[2] = myea[1] & 0xff;
3863 	enaddr[3] = myea[1] >> 8;
3864 	enaddr[4] = myea[2] & 0xff;
3865 	enaddr[5] = myea[2] >> 8;
3866 }
3867 
3868 /* Table and macro to bit-reverse an octet. */
3869 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3870 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3871 
3872 static void
3873 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3874     const struct pci_attach_args *pa, u_int8_t *enaddr)
3875 {
3876 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3877 	u_int8_t cksum, *e, match;
3878 	int i;
3879 
3880 	sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3881 	    sizeof(eeprom_data[0]), eeprom_data);
3882 
3883 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3884 	match = ~(match - 1);
3885 
3886 	cksum = 0x55;
3887 	e = (u_int8_t *) eeprom_data;
3888 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3889 		cksum += *e++;
3890 	}
3891 	if (cksum != match) {
3892 		printf("%s: Checksum (%x) mismatch (%x)",
3893 		    device_xname(sc->sc_dev), cksum, match);
3894 	}
3895 
3896 	/*
3897 	 * Unrolled because it makes slightly more sense this way.
3898 	 * The DP83815 stores the MAC address in bit 0 of word 6
3899 	 * through bit 15 of word 8.
3900 	 */
3901 	ea = &eeprom_data[6];
3902 	enaddr[0] = ((*ea & 0x1) << 7);
3903 	ea++;
3904 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
3905 	enaddr[1] = ((*ea & 0x1FE) >> 1);
3906 	enaddr[2] = ((*ea & 0x1) << 7);
3907 	ea++;
3908 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
3909 	enaddr[3] = ((*ea & 0x1FE) >> 1);
3910 	enaddr[4] = ((*ea & 0x1) << 7);
3911 	ea++;
3912 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
3913 	enaddr[5] = ((*ea & 0x1FE) >> 1);
3914 
3915 	/*
3916 	 * In case that's not weird enough, we also need to reverse
3917 	 * the bits in each byte.  This all actually makes more sense
3918 	 * if you think about the EEPROM storage as an array of bits
3919 	 * being shifted into bytes, but that's not how we're looking
3920 	 * at it here...
3921 	 */
3922 	for (i = 0; i < 6 ;i++)
3923 		enaddr[i] = bbr(enaddr[i]);
3924 }
3925 
3926 /*
3927  * sip_mediastatus:	[ifmedia interface function]
3928  *
3929  *	Get the current interface media status.
3930  */
3931 static void
3932 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3933 {
3934 	struct sip_softc *sc = ifp->if_softc;
3935 
3936 	if (!device_is_active(sc->sc_dev)) {
3937 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
3938 		ifmr->ifm_status = 0;
3939 		return;
3940 	}
3941 	ether_mediastatus(ifp, ifmr);
3942 	ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
3943 			   sc->sc_flowflags;
3944 }
3945