xref: /netbsd-src/sys/dev/pci/if_sip.c (revision b7ae68fde0d8ef1c03714e8bbb1ee7c6118ea93b)
1 /*	$NetBSD: if_sip.c,v 1.108 2006/06/17 23:34:27 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*-
40  * Copyright (c) 1999 Network Computer, Inc.
41  * All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of Network Computer, Inc. nor the names of its
52  *    contributors may be used to endorse or promote products derived
53  *    from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65  * POSSIBILITY OF SUCH DAMAGE.
66  */
67 
68 /*
69  * Device driver for the Silicon Integrated Systems SiS 900,
70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72  * controllers.
73  *
74  * Originally written to support the SiS 900 by Jason R. Thorpe for
75  * Network Computer, Inc.
76  *
77  * TODO:
78  *
79  *	- Reduce the Rx interrupt load.
80  */
81 
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.108 2006/06/17 23:34:27 christos Exp $");
84 
85 #include "bpfilter.h"
86 #include "rnd.h"
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99 
100 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
101 
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105 
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110 
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114 
115 #include <machine/bus.h>
116 #include <machine/intr.h>
117 #include <machine/endian.h>
118 
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/mii_bitbang.h>
122 
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 #include <dev/pci/pcidevs.h>
126 
127 #include <dev/pci/if_sipreg.h>
128 
129 #ifdef DP83820		/* DP83820 Gigabit Ethernet */
130 #define	SIP_DECL(x)	__CONCAT(gsip_,x)
131 #else			/* SiS900 and DP83815 */
132 #define	SIP_DECL(x)	__CONCAT(sip_,x)
133 #endif
134 
135 #define	SIP_STR(x)	__STRING(SIP_DECL(x))
136 
137 /*
138  * Transmit descriptor list size.  This is arbitrary, but allocate
139  * enough descriptors for 128 pending transmissions, and 8 segments
140  * per packet (64 for DP83820 for jumbo frames).
141  *
142  * This MUST work out to a power of 2.
143  */
144 #ifdef DP83820
145 #define	SIP_NTXSEGS		64
146 #define	SIP_NTXSEGS_ALLOC	16
147 #else
148 #define	SIP_NTXSEGS		16
149 #define	SIP_NTXSEGS_ALLOC	8
150 #endif
151 
152 #define	SIP_TXQUEUELEN		256
153 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
154 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
155 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
156 
157 #if defined(DP83820)
158 #define	TX_DMAMAP_SIZE		ETHER_MAX_LEN_JUMBO
159 #else
160 #define	TX_DMAMAP_SIZE		MCLBYTES
161 #endif
162 
163 /*
164  * Receive descriptor list size.  We have one Rx buffer per incoming
165  * packet, so this logic is a little simpler.
166  *
167  * Actually, on the DP83820, we allow the packet to consume more than
168  * one buffer, in order to support jumbo Ethernet frames.  In that
169  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
170  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
171  * so we'd better be quick about handling receive interrupts.
172  */
173 #if defined(DP83820)
174 #define	SIP_NRXDESC		256
175 #else
176 #define	SIP_NRXDESC		128
177 #endif /* DP83820 */
178 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
179 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
180 
181 /*
182  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
183  * a single clump that maps to a single DMA segment to make several things
184  * easier.
185  */
186 struct sip_control_data {
187 	/*
188 	 * The transmit descriptors.
189 	 */
190 	struct sip_desc scd_txdescs[SIP_NTXDESC];
191 
192 	/*
193 	 * The receive descriptors.
194 	 */
195 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
196 };
197 
198 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
199 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
200 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
201 
202 /*
203  * Software state for transmit jobs.
204  */
205 struct sip_txsoft {
206 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
207 	bus_dmamap_t txs_dmamap;	/* our DMA map */
208 	int txs_firstdesc;		/* first descriptor in packet */
209 	int txs_lastdesc;		/* last descriptor in packet */
210 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
211 };
212 
213 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
214 
215 /*
216  * Software state for receive jobs.
217  */
218 struct sip_rxsoft {
219 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
220 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
221 };
222 
223 /*
224  * Software state per device.
225  */
226 struct sip_softc {
227 	struct device sc_dev;		/* generic device information */
228 	bus_space_tag_t sc_st;		/* bus space tag */
229 	bus_space_handle_t sc_sh;	/* bus space handle */
230 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
231 	struct ethercom sc_ethercom;	/* ethernet common data */
232 	void *sc_sdhook;		/* shutdown hook */
233 
234 	const struct sip_product *sc_model; /* which model are we? */
235 	int sc_rev;			/* chip revision */
236 
237 	void *sc_ih;			/* interrupt cookie */
238 
239 	struct mii_data sc_mii;		/* MII/media information */
240 
241 	struct callout sc_tick_ch;	/* tick callout */
242 
243 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
244 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
245 
246 	/*
247 	 * Software state for transmit and receive descriptors.
248 	 */
249 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
250 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
251 
252 	/*
253 	 * Control data structures.
254 	 */
255 	struct sip_control_data *sc_control_data;
256 #define	sc_txdescs	sc_control_data->scd_txdescs
257 #define	sc_rxdescs	sc_control_data->scd_rxdescs
258 
259 #ifdef SIP_EVENT_COUNTERS
260 	/*
261 	 * Event counters.
262 	 */
263 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
264 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
265 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
266 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
267 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
268 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
269 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
270 	struct evcnt sc_ev_rxpause;	/* PAUSE received */
271 #ifdef DP83820
272 	struct evcnt sc_ev_txpause;	/* PAUSE transmitted */
273 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
274 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
275 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
276 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
277 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
278 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
279 #endif /* DP83820 */
280 #endif /* SIP_EVENT_COUNTERS */
281 
282 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
283 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
284 	u_int32_t sc_imr;		/* prototype IMR register */
285 	u_int32_t sc_rfcr;		/* prototype RFCR register */
286 
287 	u_int32_t sc_cfg;		/* prototype CFG register */
288 
289 #ifdef DP83820
290 	u_int32_t sc_gpior;		/* prototype GPIOR register */
291 #endif /* DP83820 */
292 
293 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
294 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
295 
296 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
297 
298 	int	sc_flowflags;		/* 802.3x flow control flags */
299 #ifdef DP83820
300 	int	sc_rx_flow_thresh;	/* Rx FIFO threshold for flow control */
301 #else
302 	int	sc_paused;		/* paused indication */
303 #endif
304 
305 	int	sc_txfree;		/* number of free Tx descriptors */
306 	int	sc_txnext;		/* next ready Tx descriptor */
307 	int	sc_txwin;		/* Tx descriptors since last intr */
308 
309 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
310 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
311 
312 	/* values of interface state at last init */
313 	struct {
314 		/* if_capenable */
315 		uint64_t	if_capenable;
316 		/* ec_capenable */
317 		int		ec_capenable;
318 		/* VLAN_ATTACHED */
319 		int		is_vlan;
320 	}	sc_prev;
321 
322 	short	sc_if_flags;
323 
324 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
325 #if defined(DP83820)
326 	int	sc_rxdiscard;
327 	int	sc_rxlen;
328 	struct mbuf *sc_rxhead;
329 	struct mbuf *sc_rxtail;
330 	struct mbuf **sc_rxtailp;
331 #endif /* DP83820 */
332 
333 #if NRND > 0
334 	rndsource_element_t rnd_source;	/* random source */
335 #endif
336 };
337 
338 #ifdef DP83820
339 #define	SIP_RXCHAIN_RESET(sc)						\
340 do {									\
341 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
342 	*(sc)->sc_rxtailp = NULL;					\
343 	(sc)->sc_rxlen = 0;						\
344 } while (/*CONSTCOND*/0)
345 
346 #define	SIP_RXCHAIN_LINK(sc, m)						\
347 do {									\
348 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
349 	(sc)->sc_rxtailp = &(m)->m_next;				\
350 } while (/*CONSTCOND*/0)
351 #endif /* DP83820 */
352 
353 #ifdef SIP_EVENT_COUNTERS
354 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
355 #else
356 #define	SIP_EVCNT_INCR(ev)	/* nothing */
357 #endif
358 
359 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
360 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
361 
362 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
363 do {									\
364 	int __x, __n;							\
365 									\
366 	__x = (x);							\
367 	__n = (n);							\
368 									\
369 	/* If it will wrap around, sync to the end of the ring. */	\
370 	if ((__x + __n) > SIP_NTXDESC) {				\
371 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
372 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
373 		    (SIP_NTXDESC - __x), (ops));			\
374 		__n -= (SIP_NTXDESC - __x);				\
375 		__x = 0;						\
376 	}								\
377 									\
378 	/* Now sync whatever is left. */				\
379 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
380 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
381 } while (0)
382 
383 #define	SIP_CDRXSYNC(sc, x, ops)					\
384 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
385 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
386 
387 #ifdef DP83820
388 #define	SIP_INIT_RXDESC_EXTSTS	__sipd->sipd_extsts = 0;
389 #define	SIP_RXBUF_LEN		(MCLBYTES - 8)
390 #else
391 #define	SIP_INIT_RXDESC_EXTSTS	/* nothing */
392 #define	SIP_RXBUF_LEN		(MCLBYTES - 1)	/* field width */
393 #endif
394 #define	SIP_INIT_RXDESC(sc, x)						\
395 do {									\
396 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
397 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
398 									\
399 	__sipd->sipd_link =						\
400 	    htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x))));		\
401 	__sipd->sipd_bufptr =						\
402 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr);		\
403 	__sipd->sipd_cmdsts = htole32(CMDSTS_INTR |			\
404 	    (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK));			\
405 	SIP_INIT_RXDESC_EXTSTS						\
406 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
407 } while (0)
408 
409 #define	SIP_CHIP_VERS(sc, v, p, r)					\
410 	((sc)->sc_model->sip_vendor == (v) &&				\
411 	 (sc)->sc_model->sip_product == (p) &&				\
412 	 (sc)->sc_rev == (r))
413 
414 #define	SIP_CHIP_MODEL(sc, v, p)					\
415 	((sc)->sc_model->sip_vendor == (v) &&				\
416 	 (sc)->sc_model->sip_product == (p))
417 
418 #if !defined(DP83820)
419 #define	SIP_SIS900_REV(sc, rev)						\
420 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
421 #endif
422 
423 #define SIP_TIMEOUT 1000
424 
425 static void	SIP_DECL(start)(struct ifnet *);
426 static void	SIP_DECL(watchdog)(struct ifnet *);
427 static int	SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
428 static int	SIP_DECL(init)(struct ifnet *);
429 static void	SIP_DECL(stop)(struct ifnet *, int);
430 
431 static void	SIP_DECL(shutdown)(void *);
432 
433 static void	SIP_DECL(reset)(struct sip_softc *);
434 static void	SIP_DECL(rxdrain)(struct sip_softc *);
435 static int	SIP_DECL(add_rxbuf)(struct sip_softc *, int);
436 static void	SIP_DECL(read_eeprom)(struct sip_softc *, int, int,
437 				      u_int16_t *);
438 static void	SIP_DECL(tick)(void *);
439 
440 #if !defined(DP83820)
441 static void	SIP_DECL(sis900_set_filter)(struct sip_softc *);
442 #endif /* ! DP83820 */
443 static void	SIP_DECL(dp83815_set_filter)(struct sip_softc *);
444 
445 #if defined(DP83820)
446 static void	SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
447 		    const struct pci_attach_args *, u_int8_t *);
448 #else
449 static void	SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc);
450 static void	SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
451 		    const struct pci_attach_args *, u_int8_t *);
452 static void	SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
453 		    const struct pci_attach_args *, u_int8_t *);
454 #endif /* DP83820 */
455 
456 static int	SIP_DECL(intr)(void *);
457 static void	SIP_DECL(txintr)(struct sip_softc *);
458 static void	SIP_DECL(rxintr)(struct sip_softc *);
459 
460 #if defined(DP83820)
461 static int	SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
462 static void	SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
463 static void	SIP_DECL(dp83820_mii_statchg)(struct device *);
464 #else
465 static int	SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
466 static void	SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
467 static void	SIP_DECL(sis900_mii_statchg)(struct device *);
468 
469 static int	SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
470 static void	SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
471 static void	SIP_DECL(dp83815_mii_statchg)(struct device *);
472 #endif /* DP83820 */
473 
474 static int	SIP_DECL(mediachange)(struct ifnet *);
475 static void	SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
476 
477 static int	SIP_DECL(match)(struct device *, struct cfdata *, void *);
478 static void	SIP_DECL(attach)(struct device *, struct device *, void *);
479 
480 int	SIP_DECL(copy_small) = 0;
481 
482 #ifdef DP83820
483 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
484     gsip_match, gsip_attach, NULL, NULL);
485 #else
486 CFATTACH_DECL(sip, sizeof(struct sip_softc),
487     sip_match, sip_attach, NULL, NULL);
488 #endif
489 
490 /*
491  * Descriptions of the variants of the SiS900.
492  */
493 struct sip_variant {
494 	int	(*sipv_mii_readreg)(struct device *, int, int);
495 	void	(*sipv_mii_writereg)(struct device *, int, int, int);
496 	void	(*sipv_mii_statchg)(struct device *);
497 	void	(*sipv_set_filter)(struct sip_softc *);
498 	void	(*sipv_read_macaddr)(struct sip_softc *,
499 		    const struct pci_attach_args *, u_int8_t *);
500 };
501 
502 static u_int32_t SIP_DECL(mii_bitbang_read)(struct device *);
503 static void	SIP_DECL(mii_bitbang_write)(struct device *, u_int32_t);
504 
505 static const struct mii_bitbang_ops SIP_DECL(mii_bitbang_ops) = {
506 	SIP_DECL(mii_bitbang_read),
507 	SIP_DECL(mii_bitbang_write),
508 	{
509 		EROMAR_MDIO,		/* MII_BIT_MDO */
510 		EROMAR_MDIO,		/* MII_BIT_MDI */
511 		EROMAR_MDC,		/* MII_BIT_MDC */
512 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
513 		0,			/* MII_BIT_DIR_PHY_HOST */
514 	}
515 };
516 
517 #if defined(DP83820)
518 static const struct sip_variant SIP_DECL(variant_dp83820) = {
519 	SIP_DECL(dp83820_mii_readreg),
520 	SIP_DECL(dp83820_mii_writereg),
521 	SIP_DECL(dp83820_mii_statchg),
522 	SIP_DECL(dp83815_set_filter),
523 	SIP_DECL(dp83820_read_macaddr),
524 };
525 #else
526 static const struct sip_variant SIP_DECL(variant_sis900) = {
527 	SIP_DECL(sis900_mii_readreg),
528 	SIP_DECL(sis900_mii_writereg),
529 	SIP_DECL(sis900_mii_statchg),
530 	SIP_DECL(sis900_set_filter),
531 	SIP_DECL(sis900_read_macaddr),
532 };
533 
534 static const struct sip_variant SIP_DECL(variant_dp83815) = {
535 	SIP_DECL(dp83815_mii_readreg),
536 	SIP_DECL(dp83815_mii_writereg),
537 	SIP_DECL(dp83815_mii_statchg),
538 	SIP_DECL(dp83815_set_filter),
539 	SIP_DECL(dp83815_read_macaddr),
540 };
541 #endif /* DP83820 */
542 
543 /*
544  * Devices supported by this driver.
545  */
546 static const struct sip_product {
547 	pci_vendor_id_t		sip_vendor;
548 	pci_product_id_t	sip_product;
549 	const char		*sip_name;
550 	const struct sip_variant *sip_variant;
551 } SIP_DECL(products)[] = {
552 #if defined(DP83820)
553 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
554 	  "NatSemi DP83820 Gigabit Ethernet",
555 	  &SIP_DECL(variant_dp83820) },
556 #else
557 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
558 	  "SiS 900 10/100 Ethernet",
559 	  &SIP_DECL(variant_sis900) },
560 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
561 	  "SiS 7016 10/100 Ethernet",
562 	  &SIP_DECL(variant_sis900) },
563 
564 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
565 	  "NatSemi DP83815 10/100 Ethernet",
566 	  &SIP_DECL(variant_dp83815) },
567 #endif /* DP83820 */
568 
569 	{ 0,			0,
570 	  NULL,
571 	  NULL },
572 };
573 
574 static const struct sip_product *
575 SIP_DECL(lookup)(const struct pci_attach_args *pa)
576 {
577 	const struct sip_product *sip;
578 
579 	for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
580 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
581 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
582 			return (sip);
583 	}
584 	return (NULL);
585 }
586 
587 #ifdef DP83820
588 /*
589  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
590  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
591  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
592  * which means we try to use 64-bit data transfers on those cards if we
593  * happen to be plugged into a 32-bit slot.
594  *
595  * What we do is use this table of cards known to be 64-bit cards.  If
596  * you have a 64-bit card who's subsystem ID is not listed in this table,
597  * send the output of "pcictl dump ..." of the device to me so that your
598  * card will use the 64-bit data path when plugged into a 64-bit slot.
599  *
600  *	-- Jason R. Thorpe <thorpej@NetBSD.org>
601  *	   June 30, 2002
602  */
603 static int
604 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
605 {
606 	static const struct {
607 		pci_vendor_id_t c64_vendor;
608 		pci_product_id_t c64_product;
609 	} card64[] = {
610 		/* Asante GigaNIX */
611 		{ 0x128a,	0x0002 },
612 
613 		/* Accton EN1407-T, Planex GN-1000TE */
614 		{ 0x1113,	0x1407 },
615 
616 		/* Netgear GA-621 */
617 		{ 0x1385,	0x621a },
618 
619 		/* SMC EZ Card */
620 		{ 0x10b8,	0x9462 },
621 
622 		{ 0, 0}
623 	};
624 	pcireg_t subsys;
625 	int i;
626 
627 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
628 
629 	for (i = 0; card64[i].c64_vendor != 0; i++) {
630 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
631 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
632 			return (1);
633 	}
634 
635 	return (0);
636 }
637 #endif /* DP83820 */
638 
639 static int
640 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
641 {
642 	struct pci_attach_args *pa = aux;
643 
644 	if (SIP_DECL(lookup)(pa) != NULL)
645 		return (1);
646 
647 	return (0);
648 }
649 
650 static void
651 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
652 {
653 	struct sip_softc *sc = (struct sip_softc *) self;
654 	struct pci_attach_args *pa = aux;
655 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
656 	pci_chipset_tag_t pc = pa->pa_pc;
657 	pci_intr_handle_t ih;
658 	const char *intrstr = NULL;
659 	bus_space_tag_t iot, memt;
660 	bus_space_handle_t ioh, memh;
661 	bus_dma_segment_t seg;
662 	int ioh_valid, memh_valid;
663 	int i, rseg, error;
664 	const struct sip_product *sip;
665 	u_int8_t enaddr[ETHER_ADDR_LEN];
666 	pcireg_t pmreg;
667 #ifdef DP83820
668 	pcireg_t memtype;
669 	u_int32_t reg;
670 #endif /* DP83820 */
671 
672 	callout_init(&sc->sc_tick_ch);
673 
674 	sip = SIP_DECL(lookup)(pa);
675 	if (sip == NULL) {
676 		printf("\n");
677 		panic(SIP_STR(attach) ": impossible");
678 	}
679 	sc->sc_rev = PCI_REVISION(pa->pa_class);
680 
681 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
682 
683 	sc->sc_model = sip;
684 
685 	/*
686 	 * XXX Work-around broken PXE firmware on some boards.
687 	 *
688 	 * The DP83815 shares an address decoder with the MEM BAR
689 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
690 	 * so that memory mapped access works.
691 	 */
692 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
693 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
694 	    ~PCI_MAPREG_ROM_ENABLE);
695 
696 	/*
697 	 * Map the device.
698 	 */
699 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
700 	    PCI_MAPREG_TYPE_IO, 0,
701 	    &iot, &ioh, NULL, NULL) == 0);
702 #ifdef DP83820
703 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
704 	switch (memtype) {
705 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
706 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
707 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
708 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
709 		break;
710 	default:
711 		memh_valid = 0;
712 	}
713 #else
714 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
715 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
716 	    &memt, &memh, NULL, NULL) == 0);
717 #endif /* DP83820 */
718 
719 	if (memh_valid) {
720 		sc->sc_st = memt;
721 		sc->sc_sh = memh;
722 	} else if (ioh_valid) {
723 		sc->sc_st = iot;
724 		sc->sc_sh = ioh;
725 	} else {
726 		printf("%s: unable to map device registers\n",
727 		    sc->sc_dev.dv_xname);
728 		return;
729 	}
730 
731 	sc->sc_dmat = pa->pa_dmat;
732 
733 	/*
734 	 * Make sure bus mastering is enabled.  Also make sure
735 	 * Write/Invalidate is enabled if we're allowed to use it.
736 	 */
737 	pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
738 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
739 		pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
740 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
741 	    pmreg | PCI_COMMAND_MASTER_ENABLE);
742 
743 	/* power up chip */
744 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
745 	    NULL)) && error != EOPNOTSUPP) {
746 		aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname,
747 		    error);
748 		return;
749 	}
750 
751 	/*
752 	 * Map and establish our interrupt.
753 	 */
754 	if (pci_intr_map(pa, &ih)) {
755 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
756 		return;
757 	}
758 	intrstr = pci_intr_string(pc, ih);
759 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
760 	if (sc->sc_ih == NULL) {
761 		printf("%s: unable to establish interrupt",
762 		    sc->sc_dev.dv_xname);
763 		if (intrstr != NULL)
764 			printf(" at %s", intrstr);
765 		printf("\n");
766 		return;
767 	}
768 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
769 
770 	SIMPLEQ_INIT(&sc->sc_txfreeq);
771 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
772 
773 	/*
774 	 * Allocate the control data structures, and create and load the
775 	 * DMA map for it.
776 	 */
777 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
778 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
779 	    0)) != 0) {
780 		printf("%s: unable to allocate control data, error = %d\n",
781 		    sc->sc_dev.dv_xname, error);
782 		goto fail_0;
783 	}
784 
785 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
786 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
787 	    BUS_DMA_COHERENT)) != 0) {
788 		printf("%s: unable to map control data, error = %d\n",
789 		    sc->sc_dev.dv_xname, error);
790 		goto fail_1;
791 	}
792 
793 	if ((error = bus_dmamap_create(sc->sc_dmat,
794 	    sizeof(struct sip_control_data), 1,
795 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
796 		printf("%s: unable to create control data DMA map, "
797 		    "error = %d\n", sc->sc_dev.dv_xname, error);
798 		goto fail_2;
799 	}
800 
801 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
802 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
803 	    0)) != 0) {
804 		printf("%s: unable to load control data DMA map, error = %d\n",
805 		    sc->sc_dev.dv_xname, error);
806 		goto fail_3;
807 	}
808 
809 	/*
810 	 * Create the transmit buffer DMA maps.
811 	 */
812 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
813 		if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
814 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
815 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
816 			printf("%s: unable to create tx DMA map %d, "
817 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
818 			goto fail_4;
819 		}
820 	}
821 
822 	/*
823 	 * Create the receive buffer DMA maps.
824 	 */
825 	for (i = 0; i < SIP_NRXDESC; i++) {
826 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
827 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
828 			printf("%s: unable to create rx DMA map %d, "
829 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
830 			goto fail_5;
831 		}
832 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
833 	}
834 
835 	/*
836 	 * Reset the chip to a known state.
837 	 */
838 	SIP_DECL(reset)(sc);
839 
840 	/*
841 	 * Read the Ethernet address from the EEPROM.  This might
842 	 * also fetch other stuff from the EEPROM and stash it
843 	 * in the softc.
844 	 */
845 	sc->sc_cfg = 0;
846 #if !defined(DP83820)
847 	if (SIP_SIS900_REV(sc,SIS_REV_635) ||
848 	    SIP_SIS900_REV(sc,SIS_REV_900B))
849 		sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
850 
851 	if (SIP_SIS900_REV(sc,SIS_REV_635) ||
852 	    SIP_SIS900_REV(sc,SIS_REV_960) ||
853 	    SIP_SIS900_REV(sc,SIS_REV_900B))
854 		sc->sc_cfg |= (bus_space_read_4(sc->sc_st, sc->sc_sh,
855 						SIP_CFG) & CFG_EDBMASTEN);
856 #endif
857 
858 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
859 
860 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
861 	    ether_sprintf(enaddr));
862 
863 	/*
864 	 * Initialize the configuration register: aggressive PCI
865 	 * bus request algorithm, default backoff, default OW timer,
866 	 * default parity error detection.
867 	 *
868 	 * NOTE: "Big endian mode" is useless on the SiS900 and
869 	 * friends -- it affects packet data, not descriptors.
870 	 */
871 #ifdef DP83820
872 	/*
873 	 * Cause the chip to load configuration data from the EEPROM.
874 	 */
875 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
876 	for (i = 0; i < 10000; i++) {
877 		delay(10);
878 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
879 		    PTSCR_EELOAD_EN) == 0)
880 			break;
881 	}
882 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
883 	    PTSCR_EELOAD_EN) {
884 		printf("%s: timeout loading configuration from EEPROM\n",
885 		    sc->sc_dev.dv_xname);
886 		return;
887 	}
888 
889 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
890 
891 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
892 	if (reg & CFG_PCI64_DET) {
893 		printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
894 		/*
895 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
896 		 * data transfers.
897 		 *
898 		 * We can't use the DATA64_EN bit in the EEPROM, because
899 		 * vendors of 32-bit cards fail to clear that bit in many
900 		 * cases (yet the card still detects that it's in a 64-bit
901 		 * slot; go figure).
902 		 */
903 		if (SIP_DECL(check_64bit)(pa)) {
904 			sc->sc_cfg |= CFG_DATA64_EN;
905 			printf(", using 64-bit data transfers");
906 		}
907 		printf("\n");
908 	}
909 
910 	/*
911 	 * XXX Need some PCI flags indicating support for
912 	 * XXX 64-bit addressing.
913 	 */
914 #if 0
915 	if (reg & CFG_M64ADDR)
916 		sc->sc_cfg |= CFG_M64ADDR;
917 	if (reg & CFG_T64ADDR)
918 		sc->sc_cfg |= CFG_T64ADDR;
919 #endif
920 
921 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
922 		const char *sep = "";
923 		printf("%s: using ", sc->sc_dev.dv_xname);
924 		if (reg & CFG_EXT_125) {
925 			sc->sc_cfg |= CFG_EXT_125;
926 			printf("%s125MHz clock", sep);
927 			sep = ", ";
928 		}
929 		if (reg & CFG_TBI_EN) {
930 			sc->sc_cfg |= CFG_TBI_EN;
931 			printf("%sten-bit interface", sep);
932 			sep = ", ";
933 		}
934 		printf("\n");
935 	}
936 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
937 	    (reg & CFG_MRM_DIS) != 0)
938 		sc->sc_cfg |= CFG_MRM_DIS;
939 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
940 	    (reg & CFG_MWI_DIS) != 0)
941 		sc->sc_cfg |= CFG_MWI_DIS;
942 
943 	/*
944 	 * Use the extended descriptor format on the DP83820.  This
945 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
946 	 * checksumming.
947 	 */
948 	sc->sc_cfg |= CFG_EXTSTS_EN;
949 #endif /* DP83820 */
950 
951 	/*
952 	 * Initialize our media structures and probe the MII.
953 	 */
954 	sc->sc_mii.mii_ifp = ifp;
955 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
956 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
957 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
958 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, SIP_DECL(mediachange),
959 	    SIP_DECL(mediastatus));
960 
961 	/*
962 	 * XXX We cannot handle flow control on the DP83815.
963 	 */
964 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
965 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
966 			   MII_OFFSET_ANY, 0);
967 	else
968 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
969 			   MII_OFFSET_ANY, MIIF_DOPAUSE);
970 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
971 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
972 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
973 	} else
974 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
975 
976 	ifp = &sc->sc_ethercom.ec_if;
977 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
978 	ifp->if_softc = sc;
979 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
980 	sc->sc_if_flags = ifp->if_flags;
981 	ifp->if_ioctl = SIP_DECL(ioctl);
982 	ifp->if_start = SIP_DECL(start);
983 	ifp->if_watchdog = SIP_DECL(watchdog);
984 	ifp->if_init = SIP_DECL(init);
985 	ifp->if_stop = SIP_DECL(stop);
986 	IFQ_SET_READY(&ifp->if_snd);
987 
988 	/*
989 	 * We can support 802.1Q VLAN-sized frames.
990 	 */
991 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
992 
993 #ifdef DP83820
994 	/*
995 	 * And the DP83820 can do VLAN tagging in hardware, and
996 	 * support the jumbo Ethernet MTU.
997 	 */
998 	sc->sc_ethercom.ec_capabilities |=
999 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1000 
1001 	/*
1002 	 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1003 	 * in hardware.
1004 	 */
1005 	ifp->if_capabilities |=
1006 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1007 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1008 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1009 #endif /* DP83820 */
1010 
1011 	/*
1012 	 * Attach the interface.
1013 	 */
1014 	if_attach(ifp);
1015 	ether_ifattach(ifp, enaddr);
1016 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1017 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1018 	sc->sc_prev.if_capenable = ifp->if_capenable;
1019 #if NRND > 0
1020 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1021 	    RND_TYPE_NET, 0);
1022 #endif
1023 
1024 	/*
1025 	 * The number of bytes that must be available in
1026 	 * the Tx FIFO before the bus master can DMA more
1027 	 * data into the FIFO.
1028 	 */
1029 	sc->sc_tx_fill_thresh = 64 / 32;
1030 
1031 	/*
1032 	 * Start at a drain threshold of 512 bytes.  We will
1033 	 * increase it if a DMA underrun occurs.
1034 	 *
1035 	 * XXX The minimum value of this variable should be
1036 	 * tuned.  We may be able to improve performance
1037 	 * by starting with a lower value.  That, however,
1038 	 * may trash the first few outgoing packets if the
1039 	 * PCI bus is saturated.
1040 	 */
1041 #ifdef DP83820
1042 	sc->sc_tx_drain_thresh = 6400 / 32;	/* from FreeBSD nge(4) */
1043 #else
1044 	sc->sc_tx_drain_thresh = 1504 / 32;
1045 #endif
1046 
1047 	/*
1048 	 * Initialize the Rx FIFO drain threshold.
1049 	 *
1050 	 * This is in units of 8 bytes.
1051 	 *
1052 	 * We should never set this value lower than 2; 14 bytes are
1053 	 * required to filter the packet.
1054 	 */
1055 	sc->sc_rx_drain_thresh = 128 / 8;
1056 
1057 #ifdef SIP_EVENT_COUNTERS
1058 	/*
1059 	 * Attach event counters.
1060 	 */
1061 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1062 	    NULL, sc->sc_dev.dv_xname, "txsstall");
1063 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1064 	    NULL, sc->sc_dev.dv_xname, "txdstall");
1065 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1066 	    NULL, sc->sc_dev.dv_xname, "txforceintr");
1067 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1068 	    NULL, sc->sc_dev.dv_xname, "txdintr");
1069 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1070 	    NULL, sc->sc_dev.dv_xname, "txiintr");
1071 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1072 	    NULL, sc->sc_dev.dv_xname, "rxintr");
1073 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1074 	    NULL, sc->sc_dev.dv_xname, "hiberr");
1075 #ifndef DP83820
1076 	evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1077 	    NULL, sc->sc_dev.dv_xname, "rxpause");
1078 #endif /* !DP83820 */
1079 #ifdef DP83820
1080 	evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1081 	    NULL, sc->sc_dev.dv_xname, "rxpause");
1082 	evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1083 	    NULL, sc->sc_dev.dv_xname, "txpause");
1084 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1085 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
1086 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1087 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
1088 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1089 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
1090 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1091 	    NULL, sc->sc_dev.dv_xname, "txipsum");
1092 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1093 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
1094 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1095 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
1096 #endif /* DP83820 */
1097 #endif /* SIP_EVENT_COUNTERS */
1098 
1099 	/*
1100 	 * Make sure the interface is shutdown during reboot.
1101 	 */
1102 	sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
1103 	if (sc->sc_sdhook == NULL)
1104 		printf("%s: WARNING: unable to establish shutdown hook\n",
1105 		    sc->sc_dev.dv_xname);
1106 	return;
1107 
1108 	/*
1109 	 * Free any resources we've allocated during the failed attach
1110 	 * attempt.  Do this in reverse order and fall through.
1111 	 */
1112  fail_5:
1113 	for (i = 0; i < SIP_NRXDESC; i++) {
1114 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1115 			bus_dmamap_destroy(sc->sc_dmat,
1116 			    sc->sc_rxsoft[i].rxs_dmamap);
1117 	}
1118  fail_4:
1119 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
1120 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
1121 			bus_dmamap_destroy(sc->sc_dmat,
1122 			    sc->sc_txsoft[i].txs_dmamap);
1123 	}
1124 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1125  fail_3:
1126 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1127  fail_2:
1128 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1129 	    sizeof(struct sip_control_data));
1130  fail_1:
1131 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1132  fail_0:
1133 	return;
1134 }
1135 
1136 /*
1137  * sip_shutdown:
1138  *
1139  *	Make sure the interface is stopped at reboot time.
1140  */
1141 static void
1142 SIP_DECL(shutdown)(void *arg)
1143 {
1144 	struct sip_softc *sc = arg;
1145 
1146 	SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
1147 }
1148 
1149 /*
1150  * sip_start:		[ifnet interface function]
1151  *
1152  *	Start packet transmission on the interface.
1153  */
1154 static void
1155 SIP_DECL(start)(struct ifnet *ifp)
1156 {
1157 	struct sip_softc *sc = ifp->if_softc;
1158 	struct mbuf *m0;
1159 #ifndef DP83820
1160 	struct mbuf *m;
1161 #endif
1162 	struct sip_txsoft *txs;
1163 	bus_dmamap_t dmamap;
1164 	int error, nexttx, lasttx, seg;
1165 	int ofree = sc->sc_txfree;
1166 #if 0
1167 	int firsttx = sc->sc_txnext;
1168 #endif
1169 #ifdef DP83820
1170 	struct m_tag *mtag;
1171 	u_int32_t extsts;
1172 #endif
1173 
1174 #ifndef DP83820
1175 	/*
1176 	 * If we've been told to pause, don't transmit any more packets.
1177 	 */
1178 	if (sc->sc_paused)
1179 		ifp->if_flags |= IFF_OACTIVE;
1180 #endif
1181 
1182 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1183 		return;
1184 
1185 	/*
1186 	 * Loop through the send queue, setting up transmit descriptors
1187 	 * until we drain the queue, or use up all available transmit
1188 	 * descriptors.
1189 	 */
1190 	for (;;) {
1191 		/* Get a work queue entry. */
1192 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1193 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1194 			break;
1195 		}
1196 
1197 		/*
1198 		 * Grab a packet off the queue.
1199 		 */
1200 		IFQ_POLL(&ifp->if_snd, m0);
1201 		if (m0 == NULL)
1202 			break;
1203 #ifndef DP83820
1204 		m = NULL;
1205 #endif
1206 
1207 		dmamap = txs->txs_dmamap;
1208 
1209 #ifdef DP83820
1210 		/*
1211 		 * Load the DMA map.  If this fails, the packet either
1212 		 * didn't fit in the allotted number of segments, or we
1213 		 * were short on resources.  For the too-many-segments
1214 		 * case, we simply report an error and drop the packet,
1215 		 * since we can't sanely copy a jumbo packet to a single
1216 		 * buffer.
1217 		 */
1218 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1219 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1220 		if (error) {
1221 			if (error == EFBIG) {
1222 				printf("%s: Tx packet consumes too many "
1223 				    "DMA segments, dropping...\n",
1224 				    sc->sc_dev.dv_xname);
1225 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1226 				m_freem(m0);
1227 				continue;
1228 			}
1229 			/*
1230 			 * Short on resources, just stop for now.
1231 			 */
1232 			break;
1233 		}
1234 #else /* DP83820 */
1235 		/*
1236 		 * Load the DMA map.  If this fails, the packet either
1237 		 * didn't fit in the alloted number of segments, or we
1238 		 * were short on resources.  In this case, we'll copy
1239 		 * and try again.
1240 		 */
1241 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1242 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1243 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1244 			if (m == NULL) {
1245 				printf("%s: unable to allocate Tx mbuf\n",
1246 				    sc->sc_dev.dv_xname);
1247 				break;
1248 			}
1249 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1250 			if (m0->m_pkthdr.len > MHLEN) {
1251 				MCLGET(m, M_DONTWAIT);
1252 				if ((m->m_flags & M_EXT) == 0) {
1253 					printf("%s: unable to allocate Tx "
1254 					    "cluster\n", sc->sc_dev.dv_xname);
1255 					m_freem(m);
1256 					break;
1257 				}
1258 			}
1259 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1260 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1261 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1262 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1263 			if (error) {
1264 				printf("%s: unable to load Tx buffer, "
1265 				    "error = %d\n", sc->sc_dev.dv_xname, error);
1266 				break;
1267 			}
1268 		}
1269 #endif /* DP83820 */
1270 
1271 		/*
1272 		 * Ensure we have enough descriptors free to describe
1273 		 * the packet.  Note, we always reserve one descriptor
1274 		 * at the end of the ring as a termination point, to
1275 		 * prevent wrap-around.
1276 		 */
1277 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1278 			/*
1279 			 * Not enough free descriptors to transmit this
1280 			 * packet.  We haven't committed anything yet,
1281 			 * so just unload the DMA map, put the packet
1282 			 * back on the queue, and punt.  Notify the upper
1283 			 * layer that there are not more slots left.
1284 			 *
1285 			 * XXX We could allocate an mbuf and copy, but
1286 			 * XXX is it worth it?
1287 			 */
1288 			ifp->if_flags |= IFF_OACTIVE;
1289 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1290 #ifndef DP83820
1291 			if (m != NULL)
1292 				m_freem(m);
1293 #endif
1294 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1295 			break;
1296 		}
1297 
1298 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1299 #ifndef DP83820
1300 		if (m != NULL) {
1301 			m_freem(m0);
1302 			m0 = m;
1303 		}
1304 #endif
1305 
1306 		/*
1307 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1308 		 */
1309 
1310 		/* Sync the DMA map. */
1311 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1312 		    BUS_DMASYNC_PREWRITE);
1313 
1314 		/*
1315 		 * Initialize the transmit descriptors.
1316 		 */
1317 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1318 		     seg < dmamap->dm_nsegs;
1319 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
1320 			/*
1321 			 * If this is the first descriptor we're
1322 			 * enqueueing, don't set the OWN bit just
1323 			 * yet.  That could cause a race condition.
1324 			 * We'll do it below.
1325 			 */
1326 			sc->sc_txdescs[nexttx].sipd_bufptr =
1327 			    htole32(dmamap->dm_segs[seg].ds_addr);
1328 			sc->sc_txdescs[nexttx].sipd_cmdsts =
1329 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1330 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1331 #ifdef DP83820
1332 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
1333 #endif /* DP83820 */
1334 			lasttx = nexttx;
1335 		}
1336 
1337 		/* Clear the MORE bit on the last segment. */
1338 		sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1339 
1340 		/*
1341 		 * If we're in the interrupt delay window, delay the
1342 		 * interrupt.
1343 		 */
1344 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1345 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1346 			sc->sc_txdescs[lasttx].sipd_cmdsts |=
1347 			    htole32(CMDSTS_INTR);
1348 			sc->sc_txwin = 0;
1349 		}
1350 
1351 #ifdef DP83820
1352 		/*
1353 		 * If VLANs are enabled and the packet has a VLAN tag, set
1354 		 * up the descriptor to encapsulate the packet for us.
1355 		 *
1356 		 * This apparently has to be on the last descriptor of
1357 		 * the packet.
1358 		 */
1359 
1360 		/*
1361 		 * Byte swapping is tricky. We need to provide the tag
1362 		 * in a network byte order. On a big-endian machine,
1363 		 * the byteorder is correct, but we need to swap it
1364 		 * anyway, because this will be undone by the outside
1365 		 * htole32(). That's why there must be an
1366 		 * unconditional swap instead of htons() inside.
1367 		 */
1368 		if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1369 			sc->sc_txdescs[lasttx].sipd_extsts |=
1370 			    htole32(EXTSTS_VPKT |
1371 					(bswap16(VLAN_TAG_VALUE(mtag)) &
1372 					 EXTSTS_VTCI));
1373 		}
1374 
1375 		/*
1376 		 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1377 		 * checksumming, set up the descriptor to do this work
1378 		 * for us.
1379 		 *
1380 		 * This apparently has to be on the first descriptor of
1381 		 * the packet.
1382 		 *
1383 		 * Byte-swap constants so the compiler can optimize.
1384 		 */
1385 		extsts = 0;
1386 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1387 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1388 			SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1389 			extsts |= htole32(EXTSTS_IPPKT);
1390 		}
1391 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1392 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1393 			SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1394 			extsts |= htole32(EXTSTS_TCPPKT);
1395 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1396 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1397 			SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1398 			extsts |= htole32(EXTSTS_UDPPKT);
1399 		}
1400 		sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1401 #endif /* DP83820 */
1402 
1403 		/* Sync the descriptors we're using. */
1404 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1405 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1406 
1407 		/*
1408 		 * The entire packet is set up.  Give the first descrptor
1409 		 * to the chip now.
1410 		 */
1411 		sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
1412 		    htole32(CMDSTS_OWN);
1413 		SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
1414 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1415 
1416 		/*
1417 		 * Store a pointer to the packet so we can free it later,
1418 		 * and remember what txdirty will be once the packet is
1419 		 * done.
1420 		 */
1421 		txs->txs_mbuf = m0;
1422 		txs->txs_firstdesc = sc->sc_txnext;
1423 		txs->txs_lastdesc = lasttx;
1424 
1425 		/* Advance the tx pointer. */
1426 		sc->sc_txfree -= dmamap->dm_nsegs;
1427 		sc->sc_txnext = nexttx;
1428 
1429 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1430 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1431 
1432 #if NBPFILTER > 0
1433 		/*
1434 		 * Pass the packet to any BPF listeners.
1435 		 */
1436 		if (ifp->if_bpf)
1437 			bpf_mtap(ifp->if_bpf, m0);
1438 #endif /* NBPFILTER > 0 */
1439 	}
1440 
1441 	if (txs == NULL || sc->sc_txfree == 0) {
1442 		/* No more slots left; notify upper layer. */
1443 		ifp->if_flags |= IFF_OACTIVE;
1444 	}
1445 
1446 	if (sc->sc_txfree != ofree) {
1447 		/*
1448 		 * Start the transmit process.  Note, the manual says
1449 		 * that if there are no pending transmissions in the
1450 		 * chip's internal queue (indicated by TXE being clear),
1451 		 * then the driver software must set the TXDP to the
1452 		 * first descriptor to be transmitted.  However, if we
1453 		 * do this, it causes serious performance degredation on
1454 		 * the DP83820 under load, not setting TXDP doesn't seem
1455 		 * to adversely affect the SiS 900 or DP83815.
1456 		 *
1457 		 * Well, I guess it wouldn't be the first time a manual
1458 		 * has lied -- and they could be speaking of the NULL-
1459 		 * terminated descriptor list case, rather than OWN-
1460 		 * terminated rings.
1461 		 */
1462 #if 0
1463 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1464 		     CR_TXE) == 0) {
1465 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1466 			    SIP_CDTXADDR(sc, firsttx));
1467 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1468 		}
1469 #else
1470 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1471 #endif
1472 
1473 		/* Set a watchdog timer in case the chip flakes out. */
1474 #ifdef DP83820
1475 		/* Gigabit autonegotiation takes 5 seconds. */
1476 		ifp->if_timer = 10;
1477 #else
1478 		ifp->if_timer = 5;
1479 #endif
1480 	}
1481 }
1482 
1483 /*
1484  * sip_watchdog:	[ifnet interface function]
1485  *
1486  *	Watchdog timer handler.
1487  */
1488 static void
1489 SIP_DECL(watchdog)(struct ifnet *ifp)
1490 {
1491 	struct sip_softc *sc = ifp->if_softc;
1492 
1493 	/*
1494 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1495 	 * If we get a timeout, try and sweep up transmit descriptors.
1496 	 * If we manage to sweep them all up, ignore the lack of
1497 	 * interrupt.
1498 	 */
1499 	SIP_DECL(txintr)(sc);
1500 
1501 	if (sc->sc_txfree != SIP_NTXDESC) {
1502 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1503 		ifp->if_oerrors++;
1504 
1505 		/* Reset the interface. */
1506 		(void) SIP_DECL(init)(ifp);
1507 	} else if (ifp->if_flags & IFF_DEBUG)
1508 		printf("%s: recovered from device timeout\n",
1509 		    sc->sc_dev.dv_xname);
1510 
1511 	/* Try to get more packets going. */
1512 	SIP_DECL(start)(ifp);
1513 }
1514 
1515 /*
1516  * sip_ioctl:		[ifnet interface function]
1517  *
1518  *	Handle control requests from the operator.
1519  */
1520 static int
1521 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1522 {
1523 	struct sip_softc *sc = ifp->if_softc;
1524 	struct ifreq *ifr = (struct ifreq *)data;
1525 	int s, error;
1526 
1527 	s = splnet();
1528 
1529 	switch (cmd) {
1530 	case SIOCSIFMEDIA:
1531 		/* Flow control requires full-duplex mode. */
1532 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1533 		    (ifr->ifr_media & IFM_FDX) == 0)
1534 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
1535 #ifdef DP83820
1536 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1537 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1538 				/* We can do both TXPAUSE and RXPAUSE. */
1539 				ifr->ifr_media |=
1540 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1541 			}
1542 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1543 		}
1544 #else
1545 		/* XXX */
1546 		if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1547 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1548 
1549 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1550 			if (ifr->ifr_media & IFM_FLOW) {
1551 				/*
1552 				 * Both TXPAUSE and RXPAUSE must be set.
1553 				 * (SiS900 and DP83815 don't have PAUSE_ASYM
1554 				 * feature.)
1555 				 *
1556 				 * XXX Can SiS900 and DP83815 send PAUSE?
1557 				 */
1558 				ifr->ifr_media |=
1559 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1560 			}
1561 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1562 		}
1563 #endif
1564 		/* FALLTHROUGH */
1565 	case SIOCGIFMEDIA:
1566 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1567 		break;
1568 	case SIOCSIFFLAGS:
1569 		/* If the interface is up and running, only modify the receive
1570 		 * filter when setting promiscuous or debug mode.  Otherwise
1571 		 * fall through to ether_ioctl, which will reset the chip.
1572 		 */
1573 
1574 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable			\
1575 			 == (sc)->sc_ethercom.ec_capenable)		\
1576 			&& ((sc)->sc_prev.is_vlan ==			\
1577 			    VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1578 
1579 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1580 
1581 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
1582 		if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
1583 		    == (IFF_UP|IFF_RUNNING))
1584 		    && ((ifp->if_flags & (~RESETIGN))
1585 		    == (sc->sc_if_flags & (~RESETIGN)))
1586 		    && COMPARE_EC(sc) && COMPARE_IC(sc, ifp)) {
1587 			/* Set up the receive filter. */
1588 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1589 			error = 0;
1590 			break;
1591 #undef RESETIGN
1592 		}
1593 		/* FALLTHROUGH */
1594 	default:
1595 		error = ether_ioctl(ifp, cmd, data);
1596 		if (error == ENETRESET) {
1597 			/*
1598 			 * Multicast list has changed; set the hardware filter
1599 			 * accordingly.
1600 			 */
1601 			if (ifp->if_flags & IFF_RUNNING)
1602 			    (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1603 			error = 0;
1604 		}
1605 		break;
1606 	}
1607 
1608 	/* Try to get more packets going. */
1609 	SIP_DECL(start)(ifp);
1610 
1611 	sc->sc_if_flags = ifp->if_flags;
1612 	splx(s);
1613 	return (error);
1614 }
1615 
1616 /*
1617  * sip_intr:
1618  *
1619  *	Interrupt service routine.
1620  */
1621 static int
1622 SIP_DECL(intr)(void *arg)
1623 {
1624 	struct sip_softc *sc = arg;
1625 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1626 	u_int32_t isr;
1627 	int handled = 0;
1628 
1629 	/* Disable interrupts. */
1630 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1631 
1632 	for (;;) {
1633 		/* Reading clears interrupt. */
1634 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1635 		if ((isr & sc->sc_imr) == 0)
1636 			break;
1637 
1638 #if NRND > 0
1639 		if (RND_ENABLED(&sc->rnd_source))
1640 			rnd_add_uint32(&sc->rnd_source, isr);
1641 #endif
1642 
1643 		handled = 1;
1644 
1645 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1646 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1647 
1648 			/* Grab any new packets. */
1649 			SIP_DECL(rxintr)(sc);
1650 
1651 			if (isr & ISR_RXORN) {
1652 				printf("%s: receive FIFO overrun\n",
1653 				    sc->sc_dev.dv_xname);
1654 
1655 				/* XXX adjust rx_drain_thresh? */
1656 			}
1657 
1658 			if (isr & ISR_RXIDLE) {
1659 				printf("%s: receive ring overrun\n",
1660 				    sc->sc_dev.dv_xname);
1661 
1662 				/* Get the receive process going again. */
1663 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1664 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1665 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1666 				    SIP_CR, CR_RXE);
1667 			}
1668 		}
1669 
1670 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1671 #ifdef SIP_EVENT_COUNTERS
1672 			if (isr & ISR_TXDESC)
1673 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1674 			else if (isr & ISR_TXIDLE)
1675 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1676 #endif
1677 
1678 			/* Sweep up transmit descriptors. */
1679 			SIP_DECL(txintr)(sc);
1680 
1681 			if (isr & ISR_TXURN) {
1682 				u_int32_t thresh;
1683 
1684 				printf("%s: transmit FIFO underrun",
1685 				    sc->sc_dev.dv_xname);
1686 
1687 				thresh = sc->sc_tx_drain_thresh + 1;
1688 				if (thresh <= TXCFG_DRTH &&
1689 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
1690 				     (sc->sc_tx_fill_thresh * 32))) {
1691 					printf("; increasing Tx drain "
1692 					    "threshold to %u bytes\n",
1693 					    thresh * 32);
1694 					sc->sc_tx_drain_thresh = thresh;
1695 					(void) SIP_DECL(init)(ifp);
1696 				} else {
1697 					(void) SIP_DECL(init)(ifp);
1698 					printf("\n");
1699 				}
1700 			}
1701 		}
1702 
1703 #if !defined(DP83820)
1704 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1705 			if (isr & ISR_PAUSE_ST) {
1706 				sc->sc_paused = 1;
1707 				SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1708 				ifp->if_flags |= IFF_OACTIVE;
1709 			}
1710 			if (isr & ISR_PAUSE_END) {
1711 				sc->sc_paused = 0;
1712 				ifp->if_flags &= ~IFF_OACTIVE;
1713 			}
1714 		}
1715 #endif /* ! DP83820 */
1716 
1717 		if (isr & ISR_HIBERR) {
1718 			int want_init = 0;
1719 
1720 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1721 
1722 #define	PRINTERR(bit, str)						\
1723 			do {						\
1724 				if ((isr & (bit)) != 0) {		\
1725 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
1726 						printf("%s: %s\n",	\
1727 						    sc->sc_dev.dv_xname, str); \
1728 					want_init = 1;			\
1729 				}					\
1730 			} while (/*CONSTCOND*/0)
1731 
1732 			PRINTERR(ISR_DPERR, "parity error");
1733 			PRINTERR(ISR_SSERR, "system error");
1734 			PRINTERR(ISR_RMABT, "master abort");
1735 			PRINTERR(ISR_RTABT, "target abort");
1736 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1737 			/*
1738 			 * Ignore:
1739 			 *	Tx reset complete
1740 			 *	Rx reset complete
1741 			 */
1742 			if (want_init)
1743 				(void) SIP_DECL(init)(ifp);
1744 #undef PRINTERR
1745 		}
1746 	}
1747 
1748 	/* Re-enable interrupts. */
1749 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1750 
1751 	/* Try to get more packets going. */
1752 	SIP_DECL(start)(ifp);
1753 
1754 	return (handled);
1755 }
1756 
1757 /*
1758  * sip_txintr:
1759  *
1760  *	Helper; handle transmit interrupts.
1761  */
1762 static void
1763 SIP_DECL(txintr)(struct sip_softc *sc)
1764 {
1765 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1766 	struct sip_txsoft *txs;
1767 	u_int32_t cmdsts;
1768 
1769 #ifndef DP83820
1770 	if (sc->sc_paused == 0)
1771 #endif
1772 		ifp->if_flags &= ~IFF_OACTIVE;
1773 
1774 	/*
1775 	 * Go through our Tx list and free mbufs for those
1776 	 * frames which have been transmitted.
1777 	 */
1778 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1779 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1780 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1781 
1782 		cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1783 		if (cmdsts & CMDSTS_OWN)
1784 			break;
1785 
1786 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1787 
1788 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1789 
1790 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1791 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1792 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1793 		m_freem(txs->txs_mbuf);
1794 		txs->txs_mbuf = NULL;
1795 
1796 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1797 
1798 		/*
1799 		 * Check for errors and collisions.
1800 		 */
1801 		if (cmdsts &
1802 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1803 			ifp->if_oerrors++;
1804 			if (cmdsts & CMDSTS_Tx_EC)
1805 				ifp->if_collisions += 16;
1806 			if (ifp->if_flags & IFF_DEBUG) {
1807 				if (cmdsts & CMDSTS_Tx_ED)
1808 					printf("%s: excessive deferral\n",
1809 					    sc->sc_dev.dv_xname);
1810 				if (cmdsts & CMDSTS_Tx_EC)
1811 					printf("%s: excessive collisions\n",
1812 					    sc->sc_dev.dv_xname);
1813 			}
1814 		} else {
1815 			/* Packet was transmitted successfully. */
1816 			ifp->if_opackets++;
1817 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1818 		}
1819 	}
1820 
1821 	/*
1822 	 * If there are no more pending transmissions, cancel the watchdog
1823 	 * timer.
1824 	 */
1825 	if (txs == NULL) {
1826 		ifp->if_timer = 0;
1827 		sc->sc_txwin = 0;
1828 	}
1829 }
1830 
1831 #if defined(DP83820)
1832 /*
1833  * sip_rxintr:
1834  *
1835  *	Helper; handle receive interrupts.
1836  */
1837 static void
1838 SIP_DECL(rxintr)(struct sip_softc *sc)
1839 {
1840 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1841 	struct sip_rxsoft *rxs;
1842 	struct mbuf *m;
1843 	u_int32_t cmdsts, extsts;
1844 	int i, len;
1845 
1846 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1847 		rxs = &sc->sc_rxsoft[i];
1848 
1849 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1850 
1851 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1852 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1853 		len = CMDSTS_SIZE(cmdsts);
1854 
1855 		/*
1856 		 * NOTE: OWN is set if owned by _consumer_.  We're the
1857 		 * consumer of the receive ring, so if the bit is clear,
1858 		 * we have processed all of the packets.
1859 		 */
1860 		if ((cmdsts & CMDSTS_OWN) == 0) {
1861 			/*
1862 			 * We have processed all of the receive buffers.
1863 			 */
1864 			break;
1865 		}
1866 
1867 		if (__predict_false(sc->sc_rxdiscard)) {
1868 			SIP_INIT_RXDESC(sc, i);
1869 			if ((cmdsts & CMDSTS_MORE) == 0) {
1870 				/* Reset our state. */
1871 				sc->sc_rxdiscard = 0;
1872 			}
1873 			continue;
1874 		}
1875 
1876 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1877 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1878 
1879 		m = rxs->rxs_mbuf;
1880 
1881 		/*
1882 		 * Add a new receive buffer to the ring.
1883 		 */
1884 		if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1885 			/*
1886 			 * Failed, throw away what we've done so
1887 			 * far, and discard the rest of the packet.
1888 			 */
1889 			ifp->if_ierrors++;
1890 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1891 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1892 			SIP_INIT_RXDESC(sc, i);
1893 			if (cmdsts & CMDSTS_MORE)
1894 				sc->sc_rxdiscard = 1;
1895 			if (sc->sc_rxhead != NULL)
1896 				m_freem(sc->sc_rxhead);
1897 			SIP_RXCHAIN_RESET(sc);
1898 			continue;
1899 		}
1900 
1901 		SIP_RXCHAIN_LINK(sc, m);
1902 
1903 		m->m_len = len;
1904 
1905 		/*
1906 		 * If this is not the end of the packet, keep
1907 		 * looking.
1908 		 */
1909 		if (cmdsts & CMDSTS_MORE) {
1910 			sc->sc_rxlen += len;
1911 			continue;
1912 		}
1913 
1914 		/*
1915 		 * Okay, we have the entire packet now.  The chip includes
1916 		 * the FCS, so we need to trim it.
1917 		 */
1918 		m->m_len -= ETHER_CRC_LEN;
1919 
1920 		*sc->sc_rxtailp = NULL;
1921 		len = m->m_len + sc->sc_rxlen;
1922 		m = sc->sc_rxhead;
1923 
1924 		SIP_RXCHAIN_RESET(sc);
1925 
1926 		/*
1927 		 * If an error occurred, update stats and drop the packet.
1928 		 */
1929 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1930 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1931 			ifp->if_ierrors++;
1932 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1933 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
1934 				/* Receive overrun handled elsewhere. */
1935 				printf("%s: receive descriptor error\n",
1936 				    sc->sc_dev.dv_xname);
1937 			}
1938 #define	PRINTERR(bit, str)						\
1939 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
1940 			    (cmdsts & (bit)) != 0)			\
1941 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1942 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1943 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1944 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1945 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1946 #undef PRINTERR
1947 			m_freem(m);
1948 			continue;
1949 		}
1950 
1951 		/*
1952 		 * If the packet is small enough to fit in a
1953 		 * single header mbuf, allocate one and copy
1954 		 * the data into it.  This greatly reduces
1955 		 * memory consumption when we receive lots
1956 		 * of small packets.
1957 		 */
1958 		if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1959 			struct mbuf *nm;
1960 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
1961 			if (nm == NULL) {
1962 				ifp->if_ierrors++;
1963 				m_freem(m);
1964 				continue;
1965 			}
1966 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1967 			nm->m_data += 2;
1968 			nm->m_pkthdr.len = nm->m_len = len;
1969 			m_copydata(m, 0, len, mtod(nm, caddr_t));
1970 			m_freem(m);
1971 			m = nm;
1972 		}
1973 #ifndef __NO_STRICT_ALIGNMENT
1974 		else {
1975 			/*
1976 			 * The DP83820's receive buffers must be 4-byte
1977 			 * aligned.  But this means that the data after
1978 			 * the Ethernet header is misaligned.  To compensate,
1979 			 * we have artificially shortened the buffer size
1980 			 * in the descriptor, and we do an overlapping copy
1981 			 * of the data two bytes further in (in the first
1982 			 * buffer of the chain only).
1983 			 */
1984 			memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1985 			    m->m_len);
1986 			m->m_data += 2;
1987 		}
1988 #endif /* ! __NO_STRICT_ALIGNMENT */
1989 
1990 		/*
1991 		 * If VLANs are enabled, VLAN packets have been unwrapped
1992 		 * for us.  Associate the tag with the packet.
1993 		 */
1994 
1995 		/*
1996 		 * Again, byte swapping is tricky. Hardware provided
1997 		 * the tag in the network byte order, but extsts was
1998 		 * passed through le32toh() in the meantime. On a
1999 		 * big-endian machine, we need to swap it again. On a
2000 		 * little-endian machine, we need to convert from the
2001 		 * network to host byte order. This means that we must
2002 		 * swap it in any case, so unconditional swap instead
2003 		 * of htons() is used.
2004 		 */
2005 		if ((extsts & EXTSTS_VPKT) != 0) {
2006 			VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
2007 			    continue);
2008 		}
2009 
2010 		/*
2011 		 * Set the incoming checksum information for the
2012 		 * packet.
2013 		 */
2014 		if ((extsts & EXTSTS_IPPKT) != 0) {
2015 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2016 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2017 			if (extsts & EXTSTS_Rx_IPERR)
2018 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2019 			if (extsts & EXTSTS_TCPPKT) {
2020 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2021 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2022 				if (extsts & EXTSTS_Rx_TCPERR)
2023 					m->m_pkthdr.csum_flags |=
2024 					    M_CSUM_TCP_UDP_BAD;
2025 			} else if (extsts & EXTSTS_UDPPKT) {
2026 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2027 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2028 				if (extsts & EXTSTS_Rx_UDPERR)
2029 					m->m_pkthdr.csum_flags |=
2030 					    M_CSUM_TCP_UDP_BAD;
2031 			}
2032 		}
2033 
2034 		ifp->if_ipackets++;
2035 		m->m_pkthdr.rcvif = ifp;
2036 		m->m_pkthdr.len = len;
2037 
2038 #if NBPFILTER > 0
2039 		/*
2040 		 * Pass this up to any BPF listeners, but only
2041 		 * pass if up the stack if it's for us.
2042 		 */
2043 		if (ifp->if_bpf)
2044 			bpf_mtap(ifp->if_bpf, m);
2045 #endif /* NBPFILTER > 0 */
2046 
2047 		/* Pass it on. */
2048 		(*ifp->if_input)(ifp, m);
2049 	}
2050 
2051 	/* Update the receive pointer. */
2052 	sc->sc_rxptr = i;
2053 }
2054 #else /* ! DP83820 */
2055 /*
2056  * sip_rxintr:
2057  *
2058  *	Helper; handle receive interrupts.
2059  */
2060 static void
2061 SIP_DECL(rxintr)(struct sip_softc *sc)
2062 {
2063 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2064 	struct sip_rxsoft *rxs;
2065 	struct mbuf *m;
2066 	u_int32_t cmdsts;
2067 	int i, len;
2068 
2069 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
2070 		rxs = &sc->sc_rxsoft[i];
2071 
2072 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2073 
2074 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
2075 
2076 		/*
2077 		 * NOTE: OWN is set if owned by _consumer_.  We're the
2078 		 * consumer of the receive ring, so if the bit is clear,
2079 		 * we have processed all of the packets.
2080 		 */
2081 		if ((cmdsts & CMDSTS_OWN) == 0) {
2082 			/*
2083 			 * We have processed all of the receive buffers.
2084 			 */
2085 			break;
2086 		}
2087 
2088 		/*
2089 		 * If any collisions were seen on the wire, count one.
2090 		 */
2091 		if (cmdsts & CMDSTS_Rx_COL)
2092 			ifp->if_collisions++;
2093 
2094 		/*
2095 		 * If an error occurred, update stats, clear the status
2096 		 * word, and leave the packet buffer in place.  It will
2097 		 * simply be reused the next time the ring comes around.
2098 		 */
2099 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2100 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2101 			ifp->if_ierrors++;
2102 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2103 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
2104 				/* Receive overrun handled elsewhere. */
2105 				printf("%s: receive descriptor error\n",
2106 				    sc->sc_dev.dv_xname);
2107 			}
2108 #define	PRINTERR(bit, str)						\
2109 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
2110 			    (cmdsts & (bit)) != 0)			\
2111 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
2112 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2113 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2114 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2115 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2116 #undef PRINTERR
2117 			SIP_INIT_RXDESC(sc, i);
2118 			continue;
2119 		}
2120 
2121 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2122 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2123 
2124 		/*
2125 		 * No errors; receive the packet.  Note, the SiS 900
2126 		 * includes the CRC with every packet.
2127 		 */
2128 		len = CMDSTS_SIZE(cmdsts) - ETHER_CRC_LEN;
2129 
2130 #ifdef __NO_STRICT_ALIGNMENT
2131 		/*
2132 		 * If the packet is small enough to fit in a
2133 		 * single header mbuf, allocate one and copy
2134 		 * the data into it.  This greatly reduces
2135 		 * memory consumption when we receive lots
2136 		 * of small packets.
2137 		 *
2138 		 * Otherwise, we add a new buffer to the receive
2139 		 * chain.  If this fails, we drop the packet and
2140 		 * recycle the old buffer.
2141 		 */
2142 		if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
2143 			MGETHDR(m, M_DONTWAIT, MT_DATA);
2144 			if (m == NULL)
2145 				goto dropit;
2146 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2147 			memcpy(mtod(m, caddr_t),
2148 			    mtod(rxs->rxs_mbuf, caddr_t), len);
2149 			SIP_INIT_RXDESC(sc, i);
2150 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2151 			    rxs->rxs_dmamap->dm_mapsize,
2152 			    BUS_DMASYNC_PREREAD);
2153 		} else {
2154 			m = rxs->rxs_mbuf;
2155 			if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
2156  dropit:
2157 				ifp->if_ierrors++;
2158 				SIP_INIT_RXDESC(sc, i);
2159 				bus_dmamap_sync(sc->sc_dmat,
2160 				    rxs->rxs_dmamap, 0,
2161 				    rxs->rxs_dmamap->dm_mapsize,
2162 				    BUS_DMASYNC_PREREAD);
2163 				continue;
2164 			}
2165 		}
2166 #else
2167 		/*
2168 		 * The SiS 900's receive buffers must be 4-byte aligned.
2169 		 * But this means that the data after the Ethernet header
2170 		 * is misaligned.  We must allocate a new buffer and
2171 		 * copy the data, shifted forward 2 bytes.
2172 		 */
2173 		MGETHDR(m, M_DONTWAIT, MT_DATA);
2174 		if (m == NULL) {
2175  dropit:
2176 			ifp->if_ierrors++;
2177 			SIP_INIT_RXDESC(sc, i);
2178 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2179 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2180 			continue;
2181 		}
2182 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2183 		if (len > (MHLEN - 2)) {
2184 			MCLGET(m, M_DONTWAIT);
2185 			if ((m->m_flags & M_EXT) == 0) {
2186 				m_freem(m);
2187 				goto dropit;
2188 			}
2189 		}
2190 		m->m_data += 2;
2191 
2192 		/*
2193 		 * Note that we use clusters for incoming frames, so the
2194 		 * buffer is virtually contiguous.
2195 		 */
2196 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
2197 
2198 		/* Allow the receive descriptor to continue using its mbuf. */
2199 		SIP_INIT_RXDESC(sc, i);
2200 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2201 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2202 #endif /* __NO_STRICT_ALIGNMENT */
2203 
2204 		ifp->if_ipackets++;
2205 		m->m_pkthdr.rcvif = ifp;
2206 		m->m_pkthdr.len = m->m_len = len;
2207 
2208 #if NBPFILTER > 0
2209 		/*
2210 		 * Pass this up to any BPF listeners, but only
2211 		 * pass if up the stack if it's for us.
2212 		 */
2213 		if (ifp->if_bpf)
2214 			bpf_mtap(ifp->if_bpf, m);
2215 #endif /* NBPFILTER > 0 */
2216 
2217 		/* Pass it on. */
2218 		(*ifp->if_input)(ifp, m);
2219 	}
2220 
2221 	/* Update the receive pointer. */
2222 	sc->sc_rxptr = i;
2223 }
2224 #endif /* DP83820 */
2225 
2226 /*
2227  * sip_tick:
2228  *
2229  *	One second timer, used to tick the MII.
2230  */
2231 static void
2232 SIP_DECL(tick)(void *arg)
2233 {
2234 	struct sip_softc *sc = arg;
2235 	int s;
2236 
2237 	s = splnet();
2238 #ifdef DP83820
2239 #ifdef SIP_EVENT_COUNTERS
2240 	/* Read PAUSE related counts from MIB registers. */
2241 	sc->sc_ev_rxpause.ev_count +=
2242 	    bus_space_read_4(sc->sc_st, sc->sc_sh,
2243 			     SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2244 	sc->sc_ev_txpause.ev_count +=
2245 	    bus_space_read_4(sc->sc_st, sc->sc_sh,
2246 			     SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2247 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2248 #endif /* SIP_EVENT_COUNTERS */
2249 #endif /* DP83820 */
2250 	mii_tick(&sc->sc_mii);
2251 	splx(s);
2252 
2253 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2254 }
2255 
2256 /*
2257  * sip_reset:
2258  *
2259  *	Perform a soft reset on the SiS 900.
2260  */
2261 static void
2262 SIP_DECL(reset)(struct sip_softc *sc)
2263 {
2264 	bus_space_tag_t st = sc->sc_st;
2265 	bus_space_handle_t sh = sc->sc_sh;
2266 	int i;
2267 
2268 	bus_space_write_4(st, sh, SIP_IER, 0);
2269 	bus_space_write_4(st, sh, SIP_IMR, 0);
2270 	bus_space_write_4(st, sh, SIP_RFCR, 0);
2271 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
2272 
2273 	for (i = 0; i < SIP_TIMEOUT; i++) {
2274 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2275 			break;
2276 		delay(2);
2277 	}
2278 
2279 	if (i == SIP_TIMEOUT)
2280 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2281 
2282 	delay(1000);
2283 
2284 #ifdef DP83820
2285 	/*
2286 	 * Set the general purpose I/O bits.  Do it here in case we
2287 	 * need to have GPIO set up to talk to the media interface.
2288 	 */
2289 	bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2290 	delay(1000);
2291 #endif /* DP83820 */
2292 }
2293 
2294 /*
2295  * sip_init:		[ ifnet interface function ]
2296  *
2297  *	Initialize the interface.  Must be called at splnet().
2298  */
2299 static int
2300 SIP_DECL(init)(struct ifnet *ifp)
2301 {
2302 	struct sip_softc *sc = ifp->if_softc;
2303 	bus_space_tag_t st = sc->sc_st;
2304 	bus_space_handle_t sh = sc->sc_sh;
2305 	struct sip_txsoft *txs;
2306 	struct sip_rxsoft *rxs;
2307 	struct sip_desc *sipd;
2308 #if defined(DP83820)
2309 	u_int32_t reg;
2310 #endif
2311 	int i, error = 0;
2312 
2313 	/*
2314 	 * Cancel any pending I/O.
2315 	 */
2316 	SIP_DECL(stop)(ifp, 0);
2317 
2318 	/*
2319 	 * Reset the chip to a known state.
2320 	 */
2321 	SIP_DECL(reset)(sc);
2322 
2323 #if !defined(DP83820)
2324 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2325 		/*
2326 		 * DP83815 manual, page 78:
2327 		 *    4.4 Recommended Registers Configuration
2328 		 *    For optimum performance of the DP83815, version noted
2329 		 *    as DP83815CVNG (SRR = 203h), the listed register
2330 		 *    modifications must be followed in sequence...
2331 		 *
2332 		 * It's not clear if this should be 302h or 203h because that
2333 		 * chip name is listed as SRR 302h in the description of the
2334 		 * SRR register.  However, my revision 302h DP83815 on the
2335 		 * Netgear FA311 purchased in 02/2001 needs these settings
2336 		 * to avoid tons of errors in AcceptPerfectMatch (non-
2337 		 * IFF_PROMISC) mode.  I do not know if other revisions need
2338 		 * this set or not.  [briggs -- 09 March 2001]
2339 		 *
2340 		 * Note that only the low-order 12 bits of 0xe4 are documented
2341 		 * and that this sets reserved bits in that register.
2342 		 */
2343 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
2344 
2345 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
2346 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
2347 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
2348 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
2349 
2350 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
2351 	}
2352 #endif /* ! DP83820 */
2353 
2354 	/*
2355 	 * Initialize the transmit descriptor ring.
2356 	 */
2357 	for (i = 0; i < SIP_NTXDESC; i++) {
2358 		sipd = &sc->sc_txdescs[i];
2359 		memset(sipd, 0, sizeof(struct sip_desc));
2360 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2361 	}
2362 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2363 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2364 	sc->sc_txfree = SIP_NTXDESC;
2365 	sc->sc_txnext = 0;
2366 	sc->sc_txwin = 0;
2367 
2368 	/*
2369 	 * Initialize the transmit job descriptors.
2370 	 */
2371 	SIMPLEQ_INIT(&sc->sc_txfreeq);
2372 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
2373 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
2374 		txs = &sc->sc_txsoft[i];
2375 		txs->txs_mbuf = NULL;
2376 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2377 	}
2378 
2379 	/*
2380 	 * Initialize the receive descriptor and receive job
2381 	 * descriptor rings.
2382 	 */
2383 	for (i = 0; i < SIP_NRXDESC; i++) {
2384 		rxs = &sc->sc_rxsoft[i];
2385 		if (rxs->rxs_mbuf == NULL) {
2386 			if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2387 				printf("%s: unable to allocate or map rx "
2388 				    "buffer %d, error = %d\n",
2389 				    sc->sc_dev.dv_xname, i, error);
2390 				/*
2391 				 * XXX Should attempt to run with fewer receive
2392 				 * XXX buffers instead of just failing.
2393 				 */
2394 				SIP_DECL(rxdrain)(sc);
2395 				goto out;
2396 			}
2397 		} else
2398 			SIP_INIT_RXDESC(sc, i);
2399 	}
2400 	sc->sc_rxptr = 0;
2401 #ifdef DP83820
2402 	sc->sc_rxdiscard = 0;
2403 	SIP_RXCHAIN_RESET(sc);
2404 #endif /* DP83820 */
2405 
2406 	/*
2407 	 * Set the configuration register; it's already initialized
2408 	 * in sip_attach().
2409 	 */
2410 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2411 
2412 	/*
2413 	 * Initialize the prototype TXCFG register.
2414 	 */
2415 #if defined(DP83820)
2416 	sc->sc_txcfg = TXCFG_MXDMA_512;
2417 	sc->sc_rxcfg = RXCFG_MXDMA_512;
2418 #else
2419 	if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2420 	     SIP_SIS900_REV(sc, SIS_REV_960) ||
2421 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2422 	    (sc->sc_cfg & CFG_EDBMASTEN)) {
2423 		sc->sc_txcfg = TXCFG_MXDMA_64;
2424 		sc->sc_rxcfg = RXCFG_MXDMA_64;
2425 	} else {
2426 		sc->sc_txcfg = TXCFG_MXDMA_512;
2427 		sc->sc_rxcfg = RXCFG_MXDMA_512;
2428 	}
2429 #endif /* DP83820 */
2430 
2431 	sc->sc_txcfg |= TXCFG_ATP |
2432 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2433 	    sc->sc_tx_drain_thresh;
2434 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2435 
2436 	/*
2437 	 * Initialize the receive drain threshold if we have never
2438 	 * done so.
2439 	 */
2440 	if (sc->sc_rx_drain_thresh == 0) {
2441 		/*
2442 		 * XXX This value should be tuned.  This is set to the
2443 		 * maximum of 248 bytes, and we may be able to improve
2444 		 * performance by decreasing it (although we should never
2445 		 * set this value lower than 2; 14 bytes are required to
2446 		 * filter the packet).
2447 		 */
2448 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2449 	}
2450 
2451 	/*
2452 	 * Initialize the prototype RXCFG register.
2453 	 */
2454 	sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2455 #ifdef DP83820
2456 	/*
2457 	 * Accept long packets (including FCS) so we can handle
2458 	 * 802.1q-tagged frames and jumbo frames properly.
2459 	 */
2460 	if (ifp->if_mtu > ETHERMTU ||
2461 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2462 		sc->sc_rxcfg |= RXCFG_ALP;
2463 
2464 	/*
2465 	 * Checksum offloading is disabled if the user selects an MTU
2466 	 * larger than 8109.  (FreeBSD says 8152, but there is emperical
2467 	 * evidence that >8109 does not work on some boards, such as the
2468 	 * Planex GN-1000TE).
2469 	 */
2470 	if (ifp->if_mtu > 8109 &&
2471 	    (ifp->if_capenable &
2472 	     (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2473 	      IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2474 	      IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
2475 		printf("%s: Checksum offloading does not work if MTU > 8109 - "
2476 		       "disabled.\n", sc->sc_dev.dv_xname);
2477 		ifp->if_capenable &=
2478 		    ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2479 		     IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2480 		     IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
2481 		ifp->if_csum_flags_tx = 0;
2482 		ifp->if_csum_flags_rx = 0;
2483 	}
2484 #else
2485 	/*
2486 	 * Accept packets >1518 bytes (including FCS) so we can handle
2487 	 * 802.1q-tagged frames properly.
2488 	 */
2489 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2490 		sc->sc_rxcfg |= RXCFG_ALP;
2491 #endif
2492 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2493 
2494 #ifdef DP83820
2495 	/*
2496 	 * Initialize the VLAN/IP receive control register.
2497 	 * We enable checksum computation on all incoming
2498 	 * packets, and do not reject packets w/ bad checksums.
2499 	 */
2500 	reg = 0;
2501 	if (ifp->if_capenable &
2502 	    (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
2503 		reg |= VRCR_IPEN;
2504 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2505 		reg |= VRCR_VTDEN|VRCR_VTREN;
2506 	bus_space_write_4(st, sh, SIP_VRCR, reg);
2507 
2508 	/*
2509 	 * Initialize the VLAN/IP transmit control register.
2510 	 * We enable outgoing checksum computation on a
2511 	 * per-packet basis.
2512 	 */
2513 	reg = 0;
2514 	if (ifp->if_capenable &
2515 	    (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2516 		reg |= VTCR_PPCHK;
2517 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2518 		reg |= VTCR_VPPTI;
2519 	bus_space_write_4(st, sh, SIP_VTCR, reg);
2520 
2521 	/*
2522 	 * If we're using VLANs, initialize the VLAN data register.
2523 	 * To understand why we bswap the VLAN Ethertype, see section
2524 	 * 4.2.36 of the DP83820 manual.
2525 	 */
2526 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2527 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2528 #endif /* DP83820 */
2529 
2530 	/*
2531 	 * Give the transmit and receive rings to the chip.
2532 	 */
2533 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2534 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2535 
2536 	/*
2537 	 * Initialize the interrupt mask.
2538 	 */
2539 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2540 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2541 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2542 
2543 	/* Set up the receive filter. */
2544 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2545 
2546 #ifdef DP83820
2547 	/*
2548 	 * Tune sc_rx_flow_thresh.
2549 	 * XXX "More than 8KB" is too short for jumbo frames.
2550 	 * XXX TODO: Threshold value should be user-settable.
2551 	 */
2552 	sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2553 				 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2554 				 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2555 #endif
2556 
2557 	/*
2558 	 * Set the current media.  Do this after initializing the prototype
2559 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2560 	 * control.
2561 	 */
2562 	mii_mediachg(&sc->sc_mii);
2563 
2564 #ifdef DP83820
2565 	/*
2566 	 * Set the interrupt hold-off timer to 100us.
2567 	 */
2568 	bus_space_write_4(st, sh, SIP_IHR, 0x01);
2569 #endif
2570 
2571 	/*
2572 	 * Enable interrupts.
2573 	 */
2574 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
2575 
2576 	/*
2577 	 * Start the transmit and receive processes.
2578 	 */
2579 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2580 
2581 	/*
2582 	 * Start the one second MII clock.
2583 	 */
2584 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2585 
2586 	/*
2587 	 * ...all done!
2588 	 */
2589 	ifp->if_flags |= IFF_RUNNING;
2590 	ifp->if_flags &= ~IFF_OACTIVE;
2591 	sc->sc_if_flags = ifp->if_flags;
2592 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2593 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2594 	sc->sc_prev.if_capenable = ifp->if_capenable;
2595 
2596  out:
2597 	if (error)
2598 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2599 	return (error);
2600 }
2601 
2602 /*
2603  * sip_drain:
2604  *
2605  *	Drain the receive queue.
2606  */
2607 static void
2608 SIP_DECL(rxdrain)(struct sip_softc *sc)
2609 {
2610 	struct sip_rxsoft *rxs;
2611 	int i;
2612 
2613 	for (i = 0; i < SIP_NRXDESC; i++) {
2614 		rxs = &sc->sc_rxsoft[i];
2615 		if (rxs->rxs_mbuf != NULL) {
2616 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2617 			m_freem(rxs->rxs_mbuf);
2618 			rxs->rxs_mbuf = NULL;
2619 		}
2620 	}
2621 }
2622 
2623 /*
2624  * sip_stop:		[ ifnet interface function ]
2625  *
2626  *	Stop transmission on the interface.
2627  */
2628 static void
2629 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2630 {
2631 	struct sip_softc *sc = ifp->if_softc;
2632 	bus_space_tag_t st = sc->sc_st;
2633 	bus_space_handle_t sh = sc->sc_sh;
2634 	struct sip_txsoft *txs;
2635 	u_int32_t cmdsts = 0;		/* DEBUG */
2636 
2637 	/*
2638 	 * Stop the one second clock.
2639 	 */
2640 	callout_stop(&sc->sc_tick_ch);
2641 
2642 	/* Down the MII. */
2643 	mii_down(&sc->sc_mii);
2644 
2645 	/*
2646 	 * Disable interrupts.
2647 	 */
2648 	bus_space_write_4(st, sh, SIP_IER, 0);
2649 
2650 	/*
2651 	 * Stop receiver and transmitter.
2652 	 */
2653 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2654 
2655 	/*
2656 	 * Release any queued transmit buffers.
2657 	 */
2658 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2659 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2660 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2661 		    (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2662 		     CMDSTS_INTR) == 0)
2663 			printf("%s: sip_stop: last descriptor does not "
2664 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
2665 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2666 #ifdef DIAGNOSTIC
2667 		if (txs->txs_mbuf == NULL) {
2668 			printf("%s: dirty txsoft with no mbuf chain\n",
2669 			    sc->sc_dev.dv_xname);
2670 			panic("sip_stop");
2671 		}
2672 #endif
2673 		cmdsts |=		/* DEBUG */
2674 		    le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2675 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2676 		m_freem(txs->txs_mbuf);
2677 		txs->txs_mbuf = NULL;
2678 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2679 	}
2680 
2681 	if (disable)
2682 		SIP_DECL(rxdrain)(sc);
2683 
2684 	/*
2685 	 * Mark the interface down and cancel the watchdog timer.
2686 	 */
2687 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2688 	ifp->if_timer = 0;
2689 
2690 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2691 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2692 		printf("%s: sip_stop: no INTR bits set in dirty tx "
2693 		    "descriptors\n", sc->sc_dev.dv_xname);
2694 }
2695 
2696 /*
2697  * sip_read_eeprom:
2698  *
2699  *	Read data from the serial EEPROM.
2700  */
2701 static void
2702 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2703     u_int16_t *data)
2704 {
2705 	bus_space_tag_t st = sc->sc_st;
2706 	bus_space_handle_t sh = sc->sc_sh;
2707 	u_int16_t reg;
2708 	int i, x;
2709 
2710 	for (i = 0; i < wordcnt; i++) {
2711 		/* Send CHIP SELECT. */
2712 		reg = EROMAR_EECS;
2713 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
2714 
2715 		/* Shift in the READ opcode. */
2716 		for (x = 3; x > 0; x--) {
2717 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2718 				reg |= EROMAR_EEDI;
2719 			else
2720 				reg &= ~EROMAR_EEDI;
2721 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2722 			bus_space_write_4(st, sh, SIP_EROMAR,
2723 			    reg | EROMAR_EESK);
2724 			delay(4);
2725 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2726 			delay(4);
2727 		}
2728 
2729 		/* Shift in address. */
2730 		for (x = 6; x > 0; x--) {
2731 			if ((word + i) & (1 << (x - 1)))
2732 				reg |= EROMAR_EEDI;
2733 			else
2734 				reg &= ~EROMAR_EEDI;
2735 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2736 			bus_space_write_4(st, sh, SIP_EROMAR,
2737 			    reg | EROMAR_EESK);
2738 			delay(4);
2739 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2740 			delay(4);
2741 		}
2742 
2743 		/* Shift out data. */
2744 		reg = EROMAR_EECS;
2745 		data[i] = 0;
2746 		for (x = 16; x > 0; x--) {
2747 			bus_space_write_4(st, sh, SIP_EROMAR,
2748 			    reg | EROMAR_EESK);
2749 			delay(4);
2750 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2751 				data[i] |= (1 << (x - 1));
2752 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2753 			delay(4);
2754 		}
2755 
2756 		/* Clear CHIP SELECT. */
2757 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
2758 		delay(4);
2759 	}
2760 }
2761 
2762 /*
2763  * sip_add_rxbuf:
2764  *
2765  *	Add a receive buffer to the indicated descriptor.
2766  */
2767 static int
2768 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2769 {
2770 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2771 	struct mbuf *m;
2772 	int error;
2773 
2774 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2775 	if (m == NULL)
2776 		return (ENOBUFS);
2777 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2778 
2779 	MCLGET(m, M_DONTWAIT);
2780 	if ((m->m_flags & M_EXT) == 0) {
2781 		m_freem(m);
2782 		return (ENOBUFS);
2783 	}
2784 
2785 #if defined(DP83820)
2786 	m->m_len = SIP_RXBUF_LEN;
2787 #endif /* DP83820 */
2788 
2789 	if (rxs->rxs_mbuf != NULL)
2790 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2791 
2792 	rxs->rxs_mbuf = m;
2793 
2794 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2795 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2796 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2797 	if (error) {
2798 		printf("%s: can't load rx DMA map %d, error = %d\n",
2799 		    sc->sc_dev.dv_xname, idx, error);
2800 		panic("sip_add_rxbuf");		/* XXX */
2801 	}
2802 
2803 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2804 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2805 
2806 	SIP_INIT_RXDESC(sc, idx);
2807 
2808 	return (0);
2809 }
2810 
2811 #if !defined(DP83820)
2812 /*
2813  * sip_sis900_set_filter:
2814  *
2815  *	Set up the receive filter.
2816  */
2817 static void
2818 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2819 {
2820 	bus_space_tag_t st = sc->sc_st;
2821 	bus_space_handle_t sh = sc->sc_sh;
2822 	struct ethercom *ec = &sc->sc_ethercom;
2823 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2824 	struct ether_multi *enm;
2825 	u_int8_t *cp;
2826 	struct ether_multistep step;
2827 	u_int32_t crc, mchash[16];
2828 
2829 	/*
2830 	 * Initialize the prototype RFCR.
2831 	 */
2832 	sc->sc_rfcr = RFCR_RFEN;
2833 	if (ifp->if_flags & IFF_BROADCAST)
2834 		sc->sc_rfcr |= RFCR_AAB;
2835 	if (ifp->if_flags & IFF_PROMISC) {
2836 		sc->sc_rfcr |= RFCR_AAP;
2837 		goto allmulti;
2838 	}
2839 
2840 	/*
2841 	 * Set up the multicast address filter by passing all multicast
2842 	 * addresses through a CRC generator, and then using the high-order
2843 	 * 6 bits as an index into the 128 bit multicast hash table (only
2844 	 * the lower 16 bits of each 32 bit multicast hash register are
2845 	 * valid).  The high order bits select the register, while the
2846 	 * rest of the bits select the bit within the register.
2847 	 */
2848 
2849 	memset(mchash, 0, sizeof(mchash));
2850 
2851 	/*
2852 	 * SiS900 (at least SiS963) requires us to register the address of
2853 	 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
2854 	 */
2855 	crc = 0x0ed423f9;
2856 
2857 	if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2858 	    SIP_SIS900_REV(sc, SIS_REV_960) ||
2859 	    SIP_SIS900_REV(sc, SIS_REV_900B)) {
2860 		/* Just want the 8 most significant bits. */
2861 		crc >>= 24;
2862 	} else {
2863 		/* Just want the 7 most significant bits. */
2864 		crc >>= 25;
2865 	}
2866 
2867 	/* Set the corresponding bit in the hash table. */
2868 	mchash[crc >> 4] |= 1 << (crc & 0xf);
2869 
2870 	ETHER_FIRST_MULTI(step, ec, enm);
2871 	while (enm != NULL) {
2872 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2873 			/*
2874 			 * We must listen to a range of multicast addresses.
2875 			 * For now, just accept all multicasts, rather than
2876 			 * trying to set only those filter bits needed to match
2877 			 * the range.  (At this time, the only use of address
2878 			 * ranges is for IP multicast routing, for which the
2879 			 * range is big enough to require all bits set.)
2880 			 */
2881 			goto allmulti;
2882 		}
2883 
2884 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2885 
2886 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2887 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
2888 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
2889 			/* Just want the 8 most significant bits. */
2890 			crc >>= 24;
2891 		} else {
2892 			/* Just want the 7 most significant bits. */
2893 			crc >>= 25;
2894 		}
2895 
2896 		/* Set the corresponding bit in the hash table. */
2897 		mchash[crc >> 4] |= 1 << (crc & 0xf);
2898 
2899 		ETHER_NEXT_MULTI(step, enm);
2900 	}
2901 
2902 	ifp->if_flags &= ~IFF_ALLMULTI;
2903 	goto setit;
2904 
2905  allmulti:
2906 	ifp->if_flags |= IFF_ALLMULTI;
2907 	sc->sc_rfcr |= RFCR_AAM;
2908 
2909  setit:
2910 #define	FILTER_EMIT(addr, data)						\
2911 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
2912 	delay(1);							\
2913 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
2914 	delay(1)
2915 
2916 	/*
2917 	 * Disable receive filter, and program the node address.
2918 	 */
2919 	cp = LLADDR(ifp->if_sadl);
2920 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2921 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2922 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2923 
2924 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2925 		/*
2926 		 * Program the multicast hash table.
2927 		 */
2928 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2929 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2930 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2931 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2932 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2933 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2934 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2935 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2936 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2937 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
2938 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
2939 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2940 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2941 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2942 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2943 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2944 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2945 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2946 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2947 		}
2948 	}
2949 #undef FILTER_EMIT
2950 
2951 	/*
2952 	 * Re-enable the receiver filter.
2953 	 */
2954 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2955 }
2956 #endif /* ! DP83820 */
2957 
2958 /*
2959  * sip_dp83815_set_filter:
2960  *
2961  *	Set up the receive filter.
2962  */
2963 static void
2964 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2965 {
2966 	bus_space_tag_t st = sc->sc_st;
2967 	bus_space_handle_t sh = sc->sc_sh;
2968 	struct ethercom *ec = &sc->sc_ethercom;
2969 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2970 	struct ether_multi *enm;
2971 	u_int8_t *cp;
2972 	struct ether_multistep step;
2973 	u_int32_t crc, hash, slot, bit;
2974 #ifdef DP83820
2975 #define	MCHASH_NWORDS	128
2976 #else
2977 #define	MCHASH_NWORDS	32
2978 #endif /* DP83820 */
2979 	u_int16_t mchash[MCHASH_NWORDS];
2980 	int i;
2981 
2982 	/*
2983 	 * Initialize the prototype RFCR.
2984 	 * Enable the receive filter, and accept on
2985 	 *    Perfect (destination address) Match
2986 	 * If IFF_BROADCAST, also accept all broadcast packets.
2987 	 * If IFF_PROMISC, accept all unicast packets (and later, set
2988 	 *    IFF_ALLMULTI and accept all multicast, too).
2989 	 */
2990 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2991 	if (ifp->if_flags & IFF_BROADCAST)
2992 		sc->sc_rfcr |= RFCR_AAB;
2993 	if (ifp->if_flags & IFF_PROMISC) {
2994 		sc->sc_rfcr |= RFCR_AAP;
2995 		goto allmulti;
2996 	}
2997 
2998 #ifdef DP83820
2999 	/*
3000 	 * Set up the DP83820 multicast address filter by passing all multicast
3001 	 * addresses through a CRC generator, and then using the high-order
3002 	 * 11 bits as an index into the 2048 bit multicast hash table.  The
3003 	 * high-order 7 bits select the slot, while the low-order 4 bits
3004 	 * select the bit within the slot.  Note that only the low 16-bits
3005 	 * of each filter word are used, and there are 128 filter words.
3006 	 */
3007 #else
3008 	/*
3009 	 * Set up the DP83815 multicast address filter by passing all multicast
3010 	 * addresses through a CRC generator, and then using the high-order
3011 	 * 9 bits as an index into the 512 bit multicast hash table.  The
3012 	 * high-order 5 bits select the slot, while the low-order 4 bits
3013 	 * select the bit within the slot.  Note that only the low 16-bits
3014 	 * of each filter word are used, and there are 32 filter words.
3015 	 */
3016 #endif /* DP83820 */
3017 
3018 	memset(mchash, 0, sizeof(mchash));
3019 
3020 	ifp->if_flags &= ~IFF_ALLMULTI;
3021 	ETHER_FIRST_MULTI(step, ec, enm);
3022 	if (enm == NULL)
3023 		goto setit;
3024 	while (enm != NULL) {
3025 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3026 			/*
3027 			 * We must listen to a range of multicast addresses.
3028 			 * For now, just accept all multicasts, rather than
3029 			 * trying to set only those filter bits needed to match
3030 			 * the range.  (At this time, the only use of address
3031 			 * ranges is for IP multicast routing, for which the
3032 			 * range is big enough to require all bits set.)
3033 			 */
3034 			goto allmulti;
3035 		}
3036 
3037 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3038 
3039 #ifdef DP83820
3040 		/* Just want the 11 most significant bits. */
3041 		hash = crc >> 21;
3042 #else
3043 		/* Just want the 9 most significant bits. */
3044 		hash = crc >> 23;
3045 #endif /* DP83820 */
3046 
3047 		slot = hash >> 4;
3048 		bit = hash & 0xf;
3049 
3050 		/* Set the corresponding bit in the hash table. */
3051 		mchash[slot] |= 1 << bit;
3052 
3053 		ETHER_NEXT_MULTI(step, enm);
3054 	}
3055 	sc->sc_rfcr |= RFCR_MHEN;
3056 	goto setit;
3057 
3058  allmulti:
3059 	ifp->if_flags |= IFF_ALLMULTI;
3060 	sc->sc_rfcr |= RFCR_AAM;
3061 
3062  setit:
3063 #define	FILTER_EMIT(addr, data)						\
3064 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
3065 	delay(1);							\
3066 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
3067 	delay(1)
3068 
3069 	/*
3070 	 * Disable receive filter, and program the node address.
3071 	 */
3072 	cp = LLADDR(ifp->if_sadl);
3073 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3074 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3075 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3076 
3077 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3078 		/*
3079 		 * Program the multicast hash table.
3080 		 */
3081 		for (i = 0; i < MCHASH_NWORDS; i++) {
3082 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
3083 			    mchash[i]);
3084 		}
3085 	}
3086 #undef FILTER_EMIT
3087 #undef MCHASH_NWORDS
3088 
3089 	/*
3090 	 * Re-enable the receiver filter.
3091 	 */
3092 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3093 }
3094 
3095 #if defined(DP83820)
3096 /*
3097  * sip_dp83820_mii_readreg:	[mii interface function]
3098  *
3099  *	Read a PHY register on the MII of the DP83820.
3100  */
3101 static int
3102 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
3103 {
3104 	struct sip_softc *sc = (void *) self;
3105 
3106 	if (sc->sc_cfg & CFG_TBI_EN) {
3107 		bus_addr_t tbireg;
3108 		int rv;
3109 
3110 		if (phy != 0)
3111 			return (0);
3112 
3113 		switch (reg) {
3114 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3115 		case MII_BMSR:		tbireg = SIP_TBISR; break;
3116 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3117 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3118 		case MII_ANER:		tbireg = SIP_TANER; break;
3119 		case MII_EXTSR:
3120 			/*
3121 			 * Don't even bother reading the TESR register.
3122 			 * The manual documents that the device has
3123 			 * 1000baseX full/half capability, but the
3124 			 * register itself seems read back 0 on some
3125 			 * boards.  Just hard-code the result.
3126 			 */
3127 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3128 
3129 		default:
3130 			return (0);
3131 		}
3132 
3133 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3134 		if (tbireg == SIP_TBISR) {
3135 			/* LINK and ACOMP are switched! */
3136 			int val = rv;
3137 
3138 			rv = 0;
3139 			if (val & TBISR_MR_LINK_STATUS)
3140 				rv |= BMSR_LINK;
3141 			if (val & TBISR_MR_AN_COMPLETE)
3142 				rv |= BMSR_ACOMP;
3143 
3144 			/*
3145 			 * The manual claims this register reads back 0
3146 			 * on hard and soft reset.  But we want to let
3147 			 * the gentbi driver know that we support auto-
3148 			 * negotiation, so hard-code this bit in the
3149 			 * result.
3150 			 */
3151 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
3152 		}
3153 
3154 		return (rv);
3155 	}
3156 
3157 	return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
3158 	    phy, reg));
3159 }
3160 
3161 /*
3162  * sip_dp83820_mii_writereg:	[mii interface function]
3163  *
3164  *	Write a PHY register on the MII of the DP83820.
3165  */
3166 static void
3167 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
3168 {
3169 	struct sip_softc *sc = (void *) self;
3170 
3171 	if (sc->sc_cfg & CFG_TBI_EN) {
3172 		bus_addr_t tbireg;
3173 
3174 		if (phy != 0)
3175 			return;
3176 
3177 		switch (reg) {
3178 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3179 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3180 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3181 		default:
3182 			return;
3183 		}
3184 
3185 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3186 		return;
3187 	}
3188 
3189 	mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
3190 	    phy, reg, val);
3191 }
3192 
3193 /*
3194  * sip_dp83820_mii_statchg:	[mii interface function]
3195  *
3196  *	Callback from MII layer when media changes.
3197  */
3198 static void
3199 SIP_DECL(dp83820_mii_statchg)(struct device *self)
3200 {
3201 	struct sip_softc *sc = (struct sip_softc *) self;
3202 	struct mii_data *mii = &sc->sc_mii;
3203 	u_int32_t cfg, pcr;
3204 
3205 	/*
3206 	 * Get flow control negotiation result.
3207 	 */
3208 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3209 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3210 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3211 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3212 	}
3213 
3214 	/*
3215 	 * Update TXCFG for full-duplex operation.
3216 	 */
3217 	if ((mii->mii_media_active & IFM_FDX) != 0)
3218 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3219 	else
3220 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3221 
3222 	/*
3223 	 * Update RXCFG for full-duplex or loopback.
3224 	 */
3225 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3226 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3227 		sc->sc_rxcfg |= RXCFG_ATX;
3228 	else
3229 		sc->sc_rxcfg &= ~RXCFG_ATX;
3230 
3231 	/*
3232 	 * Update CFG for MII/GMII.
3233 	 */
3234 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3235 		cfg = sc->sc_cfg | CFG_MODE_1000;
3236 	else
3237 		cfg = sc->sc_cfg;
3238 
3239 	/*
3240 	 * 802.3x flow control.
3241 	 */
3242 	pcr = 0;
3243 	if (sc->sc_flowflags & IFM_FLOW) {
3244 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3245 			pcr |= sc->sc_rx_flow_thresh;
3246 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3247 			pcr |= PCR_PSEN | PCR_PS_MCAST;
3248 	}
3249 
3250 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3251 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3252 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3253 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3254 }
3255 #endif /* ! DP83820 */
3256 
3257 /*
3258  * sip_mii_bitbang_read: [mii bit-bang interface function]
3259  *
3260  *	Read the MII serial port for the MII bit-bang module.
3261  */
3262 static u_int32_t
3263 SIP_DECL(mii_bitbang_read)(struct device *self)
3264 {
3265 	struct sip_softc *sc = (void *) self;
3266 
3267 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3268 }
3269 
3270 /*
3271  * sip_mii_bitbang_write: [mii big-bang interface function]
3272  *
3273  *	Write the MII serial port for the MII bit-bang module.
3274  */
3275 static void
3276 SIP_DECL(mii_bitbang_write)(struct device *self, u_int32_t val)
3277 {
3278 	struct sip_softc *sc = (void *) self;
3279 
3280 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3281 }
3282 
3283 #ifndef DP83820
3284 /*
3285  * sip_sis900_mii_readreg:	[mii interface function]
3286  *
3287  *	Read a PHY register on the MII.
3288  */
3289 static int
3290 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
3291 {
3292 	struct sip_softc *sc = (struct sip_softc *) self;
3293 	u_int32_t enphy;
3294 
3295 	/*
3296 	 * The PHY of recent SiS chipsets is accessed through bitbang
3297 	 * operations.
3298 	 */
3299 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3300 		return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
3301 		    phy, reg));
3302 
3303 #ifndef SIS900_MII_RESTRICT
3304 	/*
3305 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3306 	 * MII address 0.
3307 	 */
3308 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3309 		return (0);
3310 #endif
3311 
3312 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3313 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3314 	    ENPHY_RWCMD | ENPHY_ACCESS);
3315 	do {
3316 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3317 	} while (enphy & ENPHY_ACCESS);
3318 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3319 }
3320 
3321 /*
3322  * sip_sis900_mii_writereg:	[mii interface function]
3323  *
3324  *	Write a PHY register on the MII.
3325  */
3326 static void
3327 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
3328 {
3329 	struct sip_softc *sc = (struct sip_softc *) self;
3330 	u_int32_t enphy;
3331 
3332 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3333 		mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
3334 		    phy, reg, val);
3335 		return;
3336 	}
3337 
3338 #ifndef SIS900_MII_RESTRICT
3339 	/*
3340 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3341 	 * MII address 0.
3342 	 */
3343 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3344 		return;
3345 #endif
3346 
3347 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3348 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3349 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3350 	do {
3351 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3352 	} while (enphy & ENPHY_ACCESS);
3353 }
3354 
3355 /*
3356  * sip_sis900_mii_statchg:	[mii interface function]
3357  *
3358  *	Callback from MII layer when media changes.
3359  */
3360 static void
3361 SIP_DECL(sis900_mii_statchg)(struct device *self)
3362 {
3363 	struct sip_softc *sc = (struct sip_softc *) self;
3364 	struct mii_data *mii = &sc->sc_mii;
3365 	u_int32_t flowctl;
3366 
3367 	/*
3368 	 * Get flow control negotiation result.
3369 	 */
3370 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3371 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3372 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3373 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3374 	}
3375 
3376 	/*
3377 	 * Update TXCFG for full-duplex operation.
3378 	 */
3379 	if ((mii->mii_media_active & IFM_FDX) != 0)
3380 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3381 	else
3382 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3383 
3384 	/*
3385 	 * Update RXCFG for full-duplex or loopback.
3386 	 */
3387 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3388 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3389 		sc->sc_rxcfg |= RXCFG_ATX;
3390 	else
3391 		sc->sc_rxcfg &= ~RXCFG_ATX;
3392 
3393 	/*
3394 	 * Update IMR for use of 802.3x flow control.
3395 	 */
3396 	if (sc->sc_flowflags & IFM_FLOW) {
3397 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3398 		flowctl = FLOWCTL_FLOWEN;
3399 	} else {
3400 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3401 		flowctl = 0;
3402 	}
3403 
3404 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3405 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3406 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3407 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3408 }
3409 
3410 /*
3411  * sip_dp83815_mii_readreg:	[mii interface function]
3412  *
3413  *	Read a PHY register on the MII.
3414  */
3415 static int
3416 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
3417 {
3418 	struct sip_softc *sc = (struct sip_softc *) self;
3419 	u_int32_t val;
3420 
3421 	/*
3422 	 * The DP83815 only has an internal PHY.  Only allow
3423 	 * MII address 0.
3424 	 */
3425 	if (phy != 0)
3426 		return (0);
3427 
3428 	/*
3429 	 * Apparently, after a reset, the DP83815 can take a while
3430 	 * to respond.  During this recovery period, the BMSR returns
3431 	 * a value of 0.  Catch this -- it's not supposed to happen
3432 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3433 	 * PHY to come back to life.
3434 	 *
3435 	 * This works out because the BMSR is the first register
3436 	 * read during the PHY probe process.
3437 	 */
3438 	do {
3439 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3440 	} while (reg == MII_BMSR && val == 0);
3441 
3442 	return (val & 0xffff);
3443 }
3444 
3445 /*
3446  * sip_dp83815_mii_writereg:	[mii interface function]
3447  *
3448  *	Write a PHY register to the MII.
3449  */
3450 static void
3451 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
3452 {
3453 	struct sip_softc *sc = (struct sip_softc *) self;
3454 
3455 	/*
3456 	 * The DP83815 only has an internal PHY.  Only allow
3457 	 * MII address 0.
3458 	 */
3459 	if (phy != 0)
3460 		return;
3461 
3462 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3463 }
3464 
3465 /*
3466  * sip_dp83815_mii_statchg:	[mii interface function]
3467  *
3468  *	Callback from MII layer when media changes.
3469  */
3470 static void
3471 SIP_DECL(dp83815_mii_statchg)(struct device *self)
3472 {
3473 	struct sip_softc *sc = (struct sip_softc *) self;
3474 
3475 	/*
3476 	 * Update TXCFG for full-duplex operation.
3477 	 */
3478 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3479 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3480 	else
3481 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3482 
3483 	/*
3484 	 * Update RXCFG for full-duplex or loopback.
3485 	 */
3486 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3487 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3488 		sc->sc_rxcfg |= RXCFG_ATX;
3489 	else
3490 		sc->sc_rxcfg &= ~RXCFG_ATX;
3491 
3492 	/*
3493 	 * XXX 802.3x flow control.
3494 	 */
3495 
3496 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3497 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3498 
3499 	/*
3500 	 * Some DP83815s experience problems when used with short
3501 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
3502 	 * sequence adjusts the DSP's signal attenuation to fix the
3503 	 * problem.
3504 	 */
3505 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3506 		uint32_t reg;
3507 
3508 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3509 
3510 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3511 		reg &= 0x0fff;
3512 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3513 		delay(100);
3514 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3515 		reg &= 0x00ff;
3516 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3517 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3518 			    0x00e8);
3519 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3520 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3521 			    reg | 0x20);
3522 		}
3523 
3524 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3525 	}
3526 }
3527 #endif /* DP83820 */
3528 
3529 #if defined(DP83820)
3530 static void
3531 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
3532     const struct pci_attach_args *pa, u_int8_t *enaddr)
3533 {
3534 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3535 	u_int8_t cksum, *e, match;
3536 	int i;
3537 
3538 	/*
3539 	 * EEPROM data format for the DP83820 can be found in
3540 	 * the DP83820 manual, section 4.2.4.
3541 	 */
3542 
3543 	SIP_DECL(read_eeprom)(sc, 0,
3544 	    sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
3545 
3546 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3547 	match = ~(match - 1);
3548 
3549 	cksum = 0x55;
3550 	e = (u_int8_t *) eeprom_data;
3551 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3552 		cksum += *e++;
3553 
3554 	if (cksum != match)
3555 		printf("%s: Checksum (%x) mismatch (%x)",
3556 		    sc->sc_dev.dv_xname, cksum, match);
3557 
3558 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3559 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3560 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3561 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3562 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3563 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3564 }
3565 #else /* ! DP83820 */
3566 static void
3567 SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc)
3568 {
3569 	int i;
3570 
3571 	/*
3572 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
3573 	 * a reason, but I don't know it.
3574 	 */
3575 	for (i = 0; i < 10; i++)
3576 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3577 }
3578 
3579 static void
3580 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
3581     const struct pci_attach_args *pa, u_int8_t *enaddr)
3582 {
3583 	u_int16_t myea[ETHER_ADDR_LEN / 2];
3584 
3585 	switch (sc->sc_rev) {
3586 	case SIS_REV_630S:
3587 	case SIS_REV_630E:
3588 	case SIS_REV_630EA1:
3589 	case SIS_REV_630ET:
3590 	case SIS_REV_635:
3591 		/*
3592 		 * The MAC address for the on-board Ethernet of
3593 		 * the SiS 630 chipset is in the NVRAM.  Kick
3594 		 * the chip into re-loading it from NVRAM, and
3595 		 * read the MAC address out of the filter registers.
3596 		 */
3597 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3598 
3599 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3600 		    RFCR_RFADDR_NODE0);
3601 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3602 		    0xffff;
3603 
3604 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3605 		    RFCR_RFADDR_NODE2);
3606 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3607 		    0xffff;
3608 
3609 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3610 		    RFCR_RFADDR_NODE4);
3611 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3612 		    0xffff;
3613 		break;
3614 
3615 	case SIS_REV_960:
3616 		{
3617 #define	SIS_SET_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3618 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3619 
3620 #define	SIS_CLR_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3621 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3622 
3623 			int waittime, i;
3624 
3625 			/* Allow to read EEPROM from LAN. It is shared
3626 			 * between a 1394 controller and the NIC and each
3627 			 * time we access it, we need to set SIS_EECMD_REQ.
3628 			 */
3629 			SIS_SET_EROMAR(sc, EROMAR_REQ);
3630 
3631 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3632 				/* Force EEPROM to idle state. */
3633 
3634 				/*
3635 				 * XXX-cube This is ugly.  I'll look for docs about it.
3636 				 */
3637 				SIS_SET_EROMAR(sc, EROMAR_EECS);
3638 				SIP_DECL(sis900_eeprom_delay)(sc);
3639 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3640 					SIS_SET_EROMAR(sc, EROMAR_EESK);
3641 					SIP_DECL(sis900_eeprom_delay)(sc);
3642 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
3643 					SIP_DECL(sis900_eeprom_delay)(sc);
3644 				}
3645 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
3646 				SIP_DECL(sis900_eeprom_delay)(sc);
3647 				bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3648 
3649 				if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3650 					SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3651 					    sizeof(myea) / sizeof(myea[0]), myea);
3652 					break;
3653 				}
3654 				DELAY(1);
3655 			}
3656 
3657 			/*
3658 			 * Set SIS_EECTL_CLK to high, so a other master
3659 			 * can operate on the i2c bus.
3660 			 */
3661 			SIS_SET_EROMAR(sc, EROMAR_EESK);
3662 
3663 			/* Refuse EEPROM access by LAN */
3664 			SIS_SET_EROMAR(sc, EROMAR_DONE);
3665 		} break;
3666 
3667 	default:
3668 		SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3669 		    sizeof(myea) / sizeof(myea[0]), myea);
3670 	}
3671 
3672 	enaddr[0] = myea[0] & 0xff;
3673 	enaddr[1] = myea[0] >> 8;
3674 	enaddr[2] = myea[1] & 0xff;
3675 	enaddr[3] = myea[1] >> 8;
3676 	enaddr[4] = myea[2] & 0xff;
3677 	enaddr[5] = myea[2] >> 8;
3678 }
3679 
3680 /* Table and macro to bit-reverse an octet. */
3681 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3682 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3683 
3684 static void
3685 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3686     const struct pci_attach_args *pa, u_int8_t *enaddr)
3687 {
3688 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3689 	u_int8_t cksum, *e, match;
3690 	int i;
3691 
3692 	SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3693 	    sizeof(eeprom_data[0]), eeprom_data);
3694 
3695 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3696 	match = ~(match - 1);
3697 
3698 	cksum = 0x55;
3699 	e = (u_int8_t *) eeprom_data;
3700 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3701 		cksum += *e++;
3702 	}
3703 	if (cksum != match) {
3704 		printf("%s: Checksum (%x) mismatch (%x)",
3705 		    sc->sc_dev.dv_xname, cksum, match);
3706 	}
3707 
3708 	/*
3709 	 * Unrolled because it makes slightly more sense this way.
3710 	 * The DP83815 stores the MAC address in bit 0 of word 6
3711 	 * through bit 15 of word 8.
3712 	 */
3713 	ea = &eeprom_data[6];
3714 	enaddr[0] = ((*ea & 0x1) << 7);
3715 	ea++;
3716 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
3717 	enaddr[1] = ((*ea & 0x1FE) >> 1);
3718 	enaddr[2] = ((*ea & 0x1) << 7);
3719 	ea++;
3720 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
3721 	enaddr[3] = ((*ea & 0x1FE) >> 1);
3722 	enaddr[4] = ((*ea & 0x1) << 7);
3723 	ea++;
3724 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
3725 	enaddr[5] = ((*ea & 0x1FE) >> 1);
3726 
3727 	/*
3728 	 * In case that's not weird enough, we also need to reverse
3729 	 * the bits in each byte.  This all actually makes more sense
3730 	 * if you think about the EEPROM storage as an array of bits
3731 	 * being shifted into bytes, but that's not how we're looking
3732 	 * at it here...
3733 	 */
3734 	for (i = 0; i < 6 ;i++)
3735 		enaddr[i] = bbr(enaddr[i]);
3736 }
3737 #endif /* DP83820 */
3738 
3739 /*
3740  * sip_mediastatus:	[ifmedia interface function]
3741  *
3742  *	Get the current interface media status.
3743  */
3744 static void
3745 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3746 {
3747 	struct sip_softc *sc = ifp->if_softc;
3748 
3749 	mii_pollstat(&sc->sc_mii);
3750 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
3751 	ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3752 			   sc->sc_flowflags;
3753 }
3754 
3755 /*
3756  * sip_mediachange:	[ifmedia interface function]
3757  *
3758  *	Set hardware to newly-selected media.
3759  */
3760 static int
3761 SIP_DECL(mediachange)(struct ifnet *ifp)
3762 {
3763 	struct sip_softc *sc = ifp->if_softc;
3764 
3765 	if (ifp->if_flags & IFF_UP)
3766 		mii_mediachg(&sc->sc_mii);
3767 	return (0);
3768 }
3769