xref: /netbsd-src/sys/dev/pci/if_sip.c (revision b5677b36047b601b9addaaa494a58ceae82c2a6c)
1 /*	$NetBSD: if_sip.c,v 1.138 2009/04/02 00:09:33 dyoung Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1999 Network Computer, Inc.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of Network Computer, Inc. nor the names of its
45  *    contributors may be used to endorse or promote products derived
46  *    from this software without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
49  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
50  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
51  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
52  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
53  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
54  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
55  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
56  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
57  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
58  * POSSIBILITY OF SUCH DAMAGE.
59  */
60 
61 /*
62  * Device driver for the Silicon Integrated Systems SiS 900,
63  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
64  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
65  * controllers.
66  *
67  * Originally written to support the SiS 900 by Jason R. Thorpe for
68  * Network Computer, Inc.
69  *
70  * TODO:
71  *
72  *	- Reduce the Rx interrupt load.
73  */
74 
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.138 2009/04/02 00:09:33 dyoung Exp $");
77 
78 #include "bpfilter.h"
79 #include "rnd.h"
80 
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/callout.h>
84 #include <sys/mbuf.h>
85 #include <sys/malloc.h>
86 #include <sys/kernel.h>
87 #include <sys/socket.h>
88 #include <sys/ioctl.h>
89 #include <sys/errno.h>
90 #include <sys/device.h>
91 #include <sys/queue.h>
92 
93 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
94 
95 #if NRND > 0
96 #include <sys/rnd.h>
97 #endif
98 
99 #include <net/if.h>
100 #include <net/if_dl.h>
101 #include <net/if_media.h>
102 #include <net/if_ether.h>
103 
104 #if NBPFILTER > 0
105 #include <net/bpf.h>
106 #endif
107 
108 #include <sys/bus.h>
109 #include <sys/intr.h>
110 #include <machine/endian.h>
111 
112 #include <dev/mii/mii.h>
113 #include <dev/mii/miivar.h>
114 #include <dev/mii/mii_bitbang.h>
115 
116 #include <dev/pci/pcireg.h>
117 #include <dev/pci/pcivar.h>
118 #include <dev/pci/pcidevs.h>
119 
120 #include <dev/pci/if_sipreg.h>
121 
122 /*
123  * Transmit descriptor list size.  This is arbitrary, but allocate
124  * enough descriptors for 128 pending transmissions, and 8 segments
125  * per packet (64 for DP83820 for jumbo frames).
126  *
127  * This MUST work out to a power of 2.
128  */
129 #define	GSIP_NTXSEGS_ALLOC 16
130 #define	SIP_NTXSEGS_ALLOC 8
131 
132 #define	SIP_TXQUEUELEN		256
133 #define	MAX_SIP_NTXDESC	\
134     (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
135 
136 /*
137  * Receive descriptor list size.  We have one Rx buffer per incoming
138  * packet, so this logic is a little simpler.
139  *
140  * Actually, on the DP83820, we allow the packet to consume more than
141  * one buffer, in order to support jumbo Ethernet frames.  In that
142  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
143  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
144  * so we'd better be quick about handling receive interrupts.
145  */
146 #define	GSIP_NRXDESC		256
147 #define	SIP_NRXDESC		128
148 
149 #define	MAX_SIP_NRXDESC	MAX(GSIP_NRXDESC, SIP_NRXDESC)
150 
151 /*
152  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
153  * a single clump that maps to a single DMA segment to make several things
154  * easier.
155  */
156 struct sip_control_data {
157 	/*
158 	 * The transmit descriptors.
159 	 */
160 	struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
161 
162 	/*
163 	 * The receive descriptors.
164 	 */
165 	struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
166 };
167 
168 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
169 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
170 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
171 
172 /*
173  * Software state for transmit jobs.
174  */
175 struct sip_txsoft {
176 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
177 	bus_dmamap_t txs_dmamap;	/* our DMA map */
178 	int txs_firstdesc;		/* first descriptor in packet */
179 	int txs_lastdesc;		/* last descriptor in packet */
180 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
181 };
182 
183 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
184 
185 /*
186  * Software state for receive jobs.
187  */
188 struct sip_rxsoft {
189 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
190 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
191 };
192 
193 enum sip_attach_stage {
194 	  SIP_ATTACH_FIN = 0
195 	, SIP_ATTACH_CREATE_RXMAP
196 	, SIP_ATTACH_CREATE_TXMAP
197 	, SIP_ATTACH_LOAD_MAP
198 	, SIP_ATTACH_CREATE_MAP
199 	, SIP_ATTACH_MAP_MEM
200 	, SIP_ATTACH_ALLOC_MEM
201 	, SIP_ATTACH_INTR
202 	, SIP_ATTACH_MAP
203 };
204 
205 /*
206  * Software state per device.
207  */
208 struct sip_softc {
209 	struct device sc_dev;		/* generic device information */
210 	bus_space_tag_t sc_st;		/* bus space tag */
211 	bus_space_handle_t sc_sh;	/* bus space handle */
212 	bus_size_t sc_sz;		/* bus space size */
213 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
214 	pci_chipset_tag_t sc_pc;
215 	bus_dma_segment_t sc_seg;
216 	struct ethercom sc_ethercom;	/* ethernet common data */
217 
218 	const struct sip_product *sc_model; /* which model are we? */
219 	int sc_gigabit;			/* 1: 83820, 0: other */
220 	int sc_rev;			/* chip revision */
221 
222 	void *sc_ih;			/* interrupt cookie */
223 
224 	struct mii_data sc_mii;		/* MII/media information */
225 
226 	callout_t sc_tick_ch;		/* tick callout */
227 
228 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
229 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
230 
231 	/*
232 	 * Software state for transmit and receive descriptors.
233 	 */
234 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
235 	struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
236 
237 	/*
238 	 * Control data structures.
239 	 */
240 	struct sip_control_data *sc_control_data;
241 #define	sc_txdescs	sc_control_data->scd_txdescs
242 #define	sc_rxdescs	sc_control_data->scd_rxdescs
243 
244 #ifdef SIP_EVENT_COUNTERS
245 	/*
246 	 * Event counters.
247 	 */
248 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
249 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
250 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
251 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
252 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
253 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
254 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
255 	struct evcnt sc_ev_rxpause;	/* PAUSE received */
256 	/* DP83820 only */
257 	struct evcnt sc_ev_txpause;	/* PAUSE transmitted */
258 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
259 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
260 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
261 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
262 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
263 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
264 #endif /* SIP_EVENT_COUNTERS */
265 
266 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
267 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
268 	u_int32_t sc_imr;		/* prototype IMR register */
269 	u_int32_t sc_rfcr;		/* prototype RFCR register */
270 
271 	u_int32_t sc_cfg;		/* prototype CFG register */
272 
273 	u_int32_t sc_gpior;		/* prototype GPIOR register */
274 
275 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
276 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
277 
278 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
279 
280 	int	sc_flowflags;		/* 802.3x flow control flags */
281 	int	sc_rx_flow_thresh;	/* Rx FIFO threshold for flow control */
282 	int	sc_paused;		/* paused indication */
283 
284 	int	sc_txfree;		/* number of free Tx descriptors */
285 	int	sc_txnext;		/* next ready Tx descriptor */
286 	int	sc_txwin;		/* Tx descriptors since last intr */
287 
288 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
289 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
290 
291 	/* values of interface state at last init */
292 	struct {
293 		/* if_capenable */
294 		uint64_t	if_capenable;
295 		/* ec_capenable */
296 		int		ec_capenable;
297 		/* VLAN_ATTACHED */
298 		int		is_vlan;
299 	}	sc_prev;
300 
301 	short	sc_if_flags;
302 
303 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
304 	int	sc_rxdiscard;
305 	int	sc_rxlen;
306 	struct mbuf *sc_rxhead;
307 	struct mbuf *sc_rxtail;
308 	struct mbuf **sc_rxtailp;
309 
310 	int sc_ntxdesc;
311 	int sc_ntxdesc_mask;
312 
313 	int sc_nrxdesc_mask;
314 
315 	const struct sip_parm {
316 		const struct sip_regs {
317 			int r_rxcfg;
318 			int r_txcfg;
319 		} p_regs;
320 
321 		const struct sip_bits {
322 			uint32_t b_txcfg_mxdma_8;
323 			uint32_t b_txcfg_mxdma_16;
324 			uint32_t b_txcfg_mxdma_32;
325 			uint32_t b_txcfg_mxdma_64;
326 			uint32_t b_txcfg_mxdma_128;
327 			uint32_t b_txcfg_mxdma_256;
328 			uint32_t b_txcfg_mxdma_512;
329 			uint32_t b_txcfg_flth_mask;
330 			uint32_t b_txcfg_drth_mask;
331 
332 			uint32_t b_rxcfg_mxdma_8;
333 			uint32_t b_rxcfg_mxdma_16;
334 			uint32_t b_rxcfg_mxdma_32;
335 			uint32_t b_rxcfg_mxdma_64;
336 			uint32_t b_rxcfg_mxdma_128;
337 			uint32_t b_rxcfg_mxdma_256;
338 			uint32_t b_rxcfg_mxdma_512;
339 
340 			uint32_t b_isr_txrcmp;
341 			uint32_t b_isr_rxrcmp;
342 			uint32_t b_isr_dperr;
343 			uint32_t b_isr_sserr;
344 			uint32_t b_isr_rmabt;
345 			uint32_t b_isr_rtabt;
346 
347 			uint32_t b_cmdsts_size_mask;
348 		} p_bits;
349 		int		p_filtmem;
350 		int		p_rxbuf_len;
351 		bus_size_t	p_tx_dmamap_size;
352 		int		p_ntxsegs;
353 		int		p_ntxsegs_alloc;
354 		int		p_nrxdesc;
355 	} *sc_parm;
356 
357 	void (*sc_rxintr)(struct sip_softc *);
358 
359 #if NRND > 0
360 	rndsource_element_t rnd_source;	/* random source */
361 #endif
362 };
363 
364 #define	sc_bits	sc_parm->p_bits
365 #define	sc_regs	sc_parm->p_regs
366 
367 static const struct sip_parm sip_parm = {
368 	  .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
369 	, .p_rxbuf_len = MCLBYTES - 1	/* field width */
370 	, .p_tx_dmamap_size = MCLBYTES
371 	, .p_ntxsegs = 16
372 	, .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
373 	, .p_nrxdesc = SIP_NRXDESC
374 	, .p_bits = {
375 		  .b_txcfg_mxdma_8	= 0x00200000	/*       8 bytes */
376 		, .b_txcfg_mxdma_16	= 0x00300000	/*      16 bytes */
377 		, .b_txcfg_mxdma_32	= 0x00400000	/*      32 bytes */
378 		, .b_txcfg_mxdma_64	= 0x00500000	/*      64 bytes */
379 		, .b_txcfg_mxdma_128	= 0x00600000	/*     128 bytes */
380 		, .b_txcfg_mxdma_256	= 0x00700000	/*     256 bytes */
381 		, .b_txcfg_mxdma_512	= 0x00000000	/*     512 bytes */
382 		, .b_txcfg_flth_mask	= 0x00003f00	/* Tx fill threshold */
383 		, .b_txcfg_drth_mask	= 0x0000003f	/* Tx drain threshold */
384 
385 		, .b_rxcfg_mxdma_8	= 0x00200000	/*       8 bytes */
386 		, .b_rxcfg_mxdma_16	= 0x00300000	/*      16 bytes */
387 		, .b_rxcfg_mxdma_32	= 0x00400000	/*      32 bytes */
388 		, .b_rxcfg_mxdma_64	= 0x00500000	/*      64 bytes */
389 		, .b_rxcfg_mxdma_128	= 0x00600000	/*     128 bytes */
390 		, .b_rxcfg_mxdma_256	= 0x00700000	/*     256 bytes */
391 		, .b_rxcfg_mxdma_512	= 0x00000000	/*     512 bytes */
392 
393 		, .b_isr_txrcmp	= 0x02000000	/* transmit reset complete */
394 		, .b_isr_rxrcmp	= 0x01000000	/* receive reset complete */
395 		, .b_isr_dperr	= 0x00800000	/* detected parity error */
396 		, .b_isr_sserr	= 0x00400000	/* signalled system error */
397 		, .b_isr_rmabt	= 0x00200000	/* received master abort */
398 		, .b_isr_rtabt	= 0x00100000	/* received target abort */
399 		, .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
400 	}
401 	, .p_regs = {
402 		.r_rxcfg = OTHER_SIP_RXCFG,
403 		.r_txcfg = OTHER_SIP_TXCFG
404 	}
405 }, gsip_parm = {
406 	  .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
407 	, .p_rxbuf_len = MCLBYTES - 8
408 	, .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
409 	, .p_ntxsegs = 64
410 	, .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
411 	, .p_nrxdesc = GSIP_NRXDESC
412 	, .p_bits = {
413 		  .b_txcfg_mxdma_8	= 0x00100000	/*       8 bytes */
414 		, .b_txcfg_mxdma_16	= 0x00200000	/*      16 bytes */
415 		, .b_txcfg_mxdma_32	= 0x00300000	/*      32 bytes */
416 		, .b_txcfg_mxdma_64	= 0x00400000	/*      64 bytes */
417 		, .b_txcfg_mxdma_128	= 0x00500000	/*     128 bytes */
418 		, .b_txcfg_mxdma_256	= 0x00600000	/*     256 bytes */
419 		, .b_txcfg_mxdma_512	= 0x00700000	/*     512 bytes */
420 		, .b_txcfg_flth_mask	= 0x0000ff00	/* Fx fill threshold */
421 		, .b_txcfg_drth_mask	= 0x000000ff	/* Tx drain threshold */
422 
423 		, .b_rxcfg_mxdma_8	= 0x00100000	/*       8 bytes */
424 		, .b_rxcfg_mxdma_16	= 0x00200000	/*      16 bytes */
425 		, .b_rxcfg_mxdma_32	= 0x00300000	/*      32 bytes */
426 		, .b_rxcfg_mxdma_64	= 0x00400000	/*      64 bytes */
427 		, .b_rxcfg_mxdma_128	= 0x00500000	/*     128 bytes */
428 		, .b_rxcfg_mxdma_256	= 0x00600000	/*     256 bytes */
429 		, .b_rxcfg_mxdma_512	= 0x00700000	/*     512 bytes */
430 
431 		, .b_isr_txrcmp	= 0x00400000	/* transmit reset complete */
432 		, .b_isr_rxrcmp	= 0x00200000	/* receive reset complete */
433 		, .b_isr_dperr	= 0x00100000	/* detected parity error */
434 		, .b_isr_sserr	= 0x00080000	/* signalled system error */
435 		, .b_isr_rmabt	= 0x00040000	/* received master abort */
436 		, .b_isr_rtabt	= 0x00020000	/* received target abort */
437 		, .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
438 	}
439 	, .p_regs = {
440 		.r_rxcfg = DP83820_SIP_RXCFG,
441 		.r_txcfg = DP83820_SIP_TXCFG
442 	}
443 };
444 
445 static inline int
446 sip_nexttx(const struct sip_softc *sc, int x)
447 {
448 	return (x + 1) & sc->sc_ntxdesc_mask;
449 }
450 
451 static inline int
452 sip_nextrx(const struct sip_softc *sc, int x)
453 {
454 	return (x + 1) & sc->sc_nrxdesc_mask;
455 }
456 
457 /* 83820 only */
458 static inline void
459 sip_rxchain_reset(struct sip_softc *sc)
460 {
461 	sc->sc_rxtailp = &sc->sc_rxhead;
462 	*sc->sc_rxtailp = NULL;
463 	sc->sc_rxlen = 0;
464 }
465 
466 /* 83820 only */
467 static inline void
468 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
469 {
470 	*sc->sc_rxtailp = sc->sc_rxtail = m;
471 	sc->sc_rxtailp = &m->m_next;
472 }
473 
474 #ifdef SIP_EVENT_COUNTERS
475 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
476 #else
477 #define	SIP_EVCNT_INCR(ev)	/* nothing */
478 #endif
479 
480 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
481 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
482 
483 static inline void
484 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
485 {
486 	int x, n;
487 
488 	x = x0;
489 	n = n0;
490 
491 	/* If it will wrap around, sync to the end of the ring. */
492 	if (x + n > sc->sc_ntxdesc) {
493 		bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
494 		    SIP_CDTXOFF(x), sizeof(struct sip_desc) *
495 		    (sc->sc_ntxdesc - x), ops);
496 		n -= (sc->sc_ntxdesc - x);
497 		x = 0;
498 	}
499 
500 	/* Now sync whatever is left. */
501 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
502 	    SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
503 }
504 
505 static inline void
506 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
507 {
508 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
509 	    SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
510 }
511 
512 #if 0
513 #ifdef DP83820
514 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
515 	u_int32_t	sipd_cmdsts;	/* command/status word */
516 #else
517 	u_int32_t	sipd_cmdsts;	/* command/status word */
518 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
519 #endif /* DP83820 */
520 #endif /* 0 */
521 
522 static inline volatile uint32_t *
523 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
524 {
525 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
526 }
527 
528 static inline volatile uint32_t *
529 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
530 {
531 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
532 }
533 
534 static inline void
535 sip_init_rxdesc(struct sip_softc *sc, int x)
536 {
537 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
538 	struct sip_desc *sipd = &sc->sc_rxdescs[x];
539 
540 	sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
541 	*sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
542 	*sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
543 	    (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
544 	sipd->sipd_extsts = 0;
545 	sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
546 }
547 
548 #define	SIP_CHIP_VERS(sc, v, p, r)					\
549 	((sc)->sc_model->sip_vendor == (v) &&				\
550 	 (sc)->sc_model->sip_product == (p) &&				\
551 	 (sc)->sc_rev == (r))
552 
553 #define	SIP_CHIP_MODEL(sc, v, p)					\
554 	((sc)->sc_model->sip_vendor == (v) &&				\
555 	 (sc)->sc_model->sip_product == (p))
556 
557 #define	SIP_SIS900_REV(sc, rev)						\
558 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
559 
560 #define SIP_TIMEOUT 1000
561 
562 static int	sip_ifflags_cb(struct ethercom *);
563 static void	sipcom_start(struct ifnet *);
564 static void	sipcom_watchdog(struct ifnet *);
565 static int	sipcom_ioctl(struct ifnet *, u_long, void *);
566 static int	sipcom_init(struct ifnet *);
567 static void	sipcom_stop(struct ifnet *, int);
568 
569 static bool	sipcom_reset(struct sip_softc *);
570 static void	sipcom_rxdrain(struct sip_softc *);
571 static int	sipcom_add_rxbuf(struct sip_softc *, int);
572 static void	sipcom_read_eeprom(struct sip_softc *, int, int,
573 				      u_int16_t *);
574 static void	sipcom_tick(void *);
575 
576 static void	sipcom_sis900_set_filter(struct sip_softc *);
577 static void	sipcom_dp83815_set_filter(struct sip_softc *);
578 
579 static void	sipcom_dp83820_read_macaddr(struct sip_softc *,
580 		    const struct pci_attach_args *, u_int8_t *);
581 static void	sipcom_sis900_eeprom_delay(struct sip_softc *sc);
582 static void	sipcom_sis900_read_macaddr(struct sip_softc *,
583 		    const struct pci_attach_args *, u_int8_t *);
584 static void	sipcom_dp83815_read_macaddr(struct sip_softc *,
585 		    const struct pci_attach_args *, u_int8_t *);
586 
587 static int	sipcom_intr(void *);
588 static void	sipcom_txintr(struct sip_softc *);
589 static void	sip_rxintr(struct sip_softc *);
590 static void	gsip_rxintr(struct sip_softc *);
591 
592 static int	sipcom_dp83820_mii_readreg(device_t, int, int);
593 static void	sipcom_dp83820_mii_writereg(device_t, int, int, int);
594 static void	sipcom_dp83820_mii_statchg(device_t);
595 
596 static int	sipcom_sis900_mii_readreg(device_t, int, int);
597 static void	sipcom_sis900_mii_writereg(device_t, int, int, int);
598 static void	sipcom_sis900_mii_statchg(device_t);
599 
600 static int	sipcom_dp83815_mii_readreg(device_t, int, int);
601 static void	sipcom_dp83815_mii_writereg(device_t, int, int, int);
602 static void	sipcom_dp83815_mii_statchg(device_t);
603 
604 static void	sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
605 
606 static int	sipcom_match(device_t, struct cfdata *, void *);
607 static void	sipcom_attach(device_t, device_t, void *);
608 static void	sipcom_do_detach(device_t, enum sip_attach_stage);
609 static int	sipcom_detach(device_t, int);
610 static bool	sipcom_resume(device_t PMF_FN_PROTO);
611 static bool	sipcom_suspend(device_t PMF_FN_PROTO);
612 
613 int	gsip_copy_small = 0;
614 int	sip_copy_small = 0;
615 
616 CFATTACH_DECL3(gsip, sizeof(struct sip_softc),
617     sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
618     DVF_DETACH_SHUTDOWN);
619 CFATTACH_DECL3(sip, sizeof(struct sip_softc),
620     sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
621     DVF_DETACH_SHUTDOWN);
622 
623 /*
624  * Descriptions of the variants of the SiS900.
625  */
626 struct sip_variant {
627 	int	(*sipv_mii_readreg)(device_t, int, int);
628 	void	(*sipv_mii_writereg)(device_t, int, int, int);
629 	void	(*sipv_mii_statchg)(device_t);
630 	void	(*sipv_set_filter)(struct sip_softc *);
631 	void	(*sipv_read_macaddr)(struct sip_softc *,
632 		    const struct pci_attach_args *, u_int8_t *);
633 };
634 
635 static u_int32_t sipcom_mii_bitbang_read(device_t);
636 static void	sipcom_mii_bitbang_write(device_t, u_int32_t);
637 
638 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
639 	sipcom_mii_bitbang_read,
640 	sipcom_mii_bitbang_write,
641 	{
642 		EROMAR_MDIO,		/* MII_BIT_MDO */
643 		EROMAR_MDIO,		/* MII_BIT_MDI */
644 		EROMAR_MDC,		/* MII_BIT_MDC */
645 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
646 		0,			/* MII_BIT_DIR_PHY_HOST */
647 	}
648 };
649 
650 static const struct sip_variant sipcom_variant_dp83820 = {
651 	sipcom_dp83820_mii_readreg,
652 	sipcom_dp83820_mii_writereg,
653 	sipcom_dp83820_mii_statchg,
654 	sipcom_dp83815_set_filter,
655 	sipcom_dp83820_read_macaddr,
656 };
657 
658 static const struct sip_variant sipcom_variant_sis900 = {
659 	sipcom_sis900_mii_readreg,
660 	sipcom_sis900_mii_writereg,
661 	sipcom_sis900_mii_statchg,
662 	sipcom_sis900_set_filter,
663 	sipcom_sis900_read_macaddr,
664 };
665 
666 static const struct sip_variant sipcom_variant_dp83815 = {
667 	sipcom_dp83815_mii_readreg,
668 	sipcom_dp83815_mii_writereg,
669 	sipcom_dp83815_mii_statchg,
670 	sipcom_dp83815_set_filter,
671 	sipcom_dp83815_read_macaddr,
672 };
673 
674 
675 /*
676  * Devices supported by this driver.
677  */
678 static const struct sip_product {
679 	pci_vendor_id_t		sip_vendor;
680 	pci_product_id_t	sip_product;
681 	const char		*sip_name;
682 	const struct sip_variant *sip_variant;
683 	int			sip_gigabit;
684 } sipcom_products[] = {
685 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
686 	  "NatSemi DP83820 Gigabit Ethernet",
687 	  &sipcom_variant_dp83820, 1 },
688 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
689 	  "SiS 900 10/100 Ethernet",
690 	  &sipcom_variant_sis900, 0 },
691 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
692 	  "SiS 7016 10/100 Ethernet",
693 	  &sipcom_variant_sis900, 0 },
694 
695 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
696 	  "NatSemi DP83815 10/100 Ethernet",
697 	  &sipcom_variant_dp83815, 0 },
698 
699 	{ 0,			0,
700 	  NULL,
701 	  NULL, 0 },
702 };
703 
704 static const struct sip_product *
705 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
706 {
707 	const struct sip_product *sip;
708 
709 	for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
710 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
711 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
712 		    sip->sip_gigabit == gigabit)
713 			return sip;
714 	}
715 	return NULL;
716 }
717 
718 /*
719  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
720  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
721  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
722  * which means we try to use 64-bit data transfers on those cards if we
723  * happen to be plugged into a 32-bit slot.
724  *
725  * What we do is use this table of cards known to be 64-bit cards.  If
726  * you have a 64-bit card who's subsystem ID is not listed in this table,
727  * send the output of "pcictl dump ..." of the device to me so that your
728  * card will use the 64-bit data path when plugged into a 64-bit slot.
729  *
730  *	-- Jason R. Thorpe <thorpej@NetBSD.org>
731  *	   June 30, 2002
732  */
733 static int
734 sipcom_check_64bit(const struct pci_attach_args *pa)
735 {
736 	static const struct {
737 		pci_vendor_id_t c64_vendor;
738 		pci_product_id_t c64_product;
739 	} card64[] = {
740 		/* Asante GigaNIX */
741 		{ 0x128a,	0x0002 },
742 
743 		/* Accton EN1407-T, Planex GN-1000TE */
744 		{ 0x1113,	0x1407 },
745 
746 		/* Netgear GA-621 */
747 		{ 0x1385,	0x621a },
748 
749 		/* SMC EZ Card */
750 		{ 0x10b8,	0x9462 },
751 
752 		{ 0, 0}
753 	};
754 	pcireg_t subsys;
755 	int i;
756 
757 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
758 
759 	for (i = 0; card64[i].c64_vendor != 0; i++) {
760 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
761 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
762 			return (1);
763 	}
764 
765 	return (0);
766 }
767 
768 static int
769 sipcom_match(device_t parent, struct cfdata *cf, void *aux)
770 {
771 	struct pci_attach_args *pa = aux;
772 
773 	if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
774 		return 1;
775 
776 	return 0;
777 }
778 
779 static void
780 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
781 {
782 	u_int32_t reg;
783 	int i;
784 
785 	/*
786 	 * Cause the chip to load configuration data from the EEPROM.
787 	 */
788 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
789 	for (i = 0; i < 10000; i++) {
790 		delay(10);
791 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
792 		    PTSCR_EELOAD_EN) == 0)
793 			break;
794 	}
795 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
796 	    PTSCR_EELOAD_EN) {
797 		printf("%s: timeout loading configuration from EEPROM\n",
798 		    device_xname(&sc->sc_dev));
799 		return;
800 	}
801 
802 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
803 
804 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
805 	if (reg & CFG_PCI64_DET) {
806 		printf("%s: 64-bit PCI slot detected", device_xname(&sc->sc_dev));
807 		/*
808 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
809 		 * data transfers.
810 		 *
811 		 * We can't use the DATA64_EN bit in the EEPROM, because
812 		 * vendors of 32-bit cards fail to clear that bit in many
813 		 * cases (yet the card still detects that it's in a 64-bit
814 		 * slot; go figure).
815 		 */
816 		if (sipcom_check_64bit(pa)) {
817 			sc->sc_cfg |= CFG_DATA64_EN;
818 			printf(", using 64-bit data transfers");
819 		}
820 		printf("\n");
821 	}
822 
823 	/*
824 	 * XXX Need some PCI flags indicating support for
825 	 * XXX 64-bit addressing.
826 	 */
827 #if 0
828 	if (reg & CFG_M64ADDR)
829 		sc->sc_cfg |= CFG_M64ADDR;
830 	if (reg & CFG_T64ADDR)
831 		sc->sc_cfg |= CFG_T64ADDR;
832 #endif
833 
834 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
835 		const char *sep = "";
836 		printf("%s: using ", device_xname(&sc->sc_dev));
837 		if (reg & CFG_EXT_125) {
838 			sc->sc_cfg |= CFG_EXT_125;
839 			printf("%s125MHz clock", sep);
840 			sep = ", ";
841 		}
842 		if (reg & CFG_TBI_EN) {
843 			sc->sc_cfg |= CFG_TBI_EN;
844 			printf("%sten-bit interface", sep);
845 			sep = ", ";
846 		}
847 		printf("\n");
848 	}
849 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
850 	    (reg & CFG_MRM_DIS) != 0)
851 		sc->sc_cfg |= CFG_MRM_DIS;
852 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
853 	    (reg & CFG_MWI_DIS) != 0)
854 		sc->sc_cfg |= CFG_MWI_DIS;
855 
856 	/*
857 	 * Use the extended descriptor format on the DP83820.  This
858 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
859 	 * checksumming.
860 	 */
861 	sc->sc_cfg |= CFG_EXTSTS_EN;
862 }
863 
864 static int
865 sipcom_detach(device_t self, int flags)
866 {
867 	int s;
868 
869 	s = splnet();
870 	sipcom_do_detach(self, SIP_ATTACH_FIN);
871 	splx(s);
872 
873 	return 0;
874 }
875 
876 static void
877 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
878 {
879 	int i;
880 	struct sip_softc *sc = device_private(self);
881 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
882 
883 	/*
884 	 * Free any resources we've allocated during attach.
885 	 * Do this in reverse order and fall through.
886 	 */
887 	switch (stage) {
888 	case SIP_ATTACH_FIN:
889 		sipcom_stop(ifp, 1);
890 		pmf_device_deregister(self);
891 #ifdef SIP_EVENT_COUNTERS
892 		/*
893 		 * Attach event counters.
894 		 */
895 		evcnt_detach(&sc->sc_ev_txforceintr);
896 		evcnt_detach(&sc->sc_ev_txdstall);
897 		evcnt_detach(&sc->sc_ev_txsstall);
898 		evcnt_detach(&sc->sc_ev_hiberr);
899 		evcnt_detach(&sc->sc_ev_rxintr);
900 		evcnt_detach(&sc->sc_ev_txiintr);
901 		evcnt_detach(&sc->sc_ev_txdintr);
902 		if (!sc->sc_gigabit) {
903 			evcnt_detach(&sc->sc_ev_rxpause);
904 		} else {
905 			evcnt_detach(&sc->sc_ev_txudpsum);
906 			evcnt_detach(&sc->sc_ev_txtcpsum);
907 			evcnt_detach(&sc->sc_ev_txipsum);
908 			evcnt_detach(&sc->sc_ev_rxudpsum);
909 			evcnt_detach(&sc->sc_ev_rxtcpsum);
910 			evcnt_detach(&sc->sc_ev_rxipsum);
911 			evcnt_detach(&sc->sc_ev_txpause);
912 			evcnt_detach(&sc->sc_ev_rxpause);
913 		}
914 #endif /* SIP_EVENT_COUNTERS */
915 
916 #if NRND > 0
917 		rnd_detach_source(&sc->rnd_source);
918 #endif
919 
920 		ether_ifdetach(ifp);
921 		if_detach(ifp);
922 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
923 
924 		/*FALLTHROUGH*/
925 	case SIP_ATTACH_CREATE_RXMAP:
926 		for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
927 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
928 				bus_dmamap_destroy(sc->sc_dmat,
929 				    sc->sc_rxsoft[i].rxs_dmamap);
930 		}
931 		/*FALLTHROUGH*/
932 	case SIP_ATTACH_CREATE_TXMAP:
933 		for (i = 0; i < SIP_TXQUEUELEN; i++) {
934 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
935 				bus_dmamap_destroy(sc->sc_dmat,
936 				    sc->sc_txsoft[i].txs_dmamap);
937 		}
938 		/*FALLTHROUGH*/
939 	case SIP_ATTACH_LOAD_MAP:
940 		bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
941 		/*FALLTHROUGH*/
942 	case SIP_ATTACH_CREATE_MAP:
943 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
944 		/*FALLTHROUGH*/
945 	case SIP_ATTACH_MAP_MEM:
946 		bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
947 		    sizeof(struct sip_control_data));
948 		/*FALLTHROUGH*/
949 	case SIP_ATTACH_ALLOC_MEM:
950 		bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
951 		/* FALLTHROUGH*/
952 	case SIP_ATTACH_INTR:
953 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
954 		/* FALLTHROUGH*/
955 	case SIP_ATTACH_MAP:
956 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
957 		break;
958 	default:
959 		break;
960 	}
961 	return;
962 }
963 
964 static bool
965 sipcom_resume(device_t self PMF_FN_ARGS)
966 {
967 	struct sip_softc *sc = device_private(self);
968 
969 	return sipcom_reset(sc);
970 }
971 
972 static bool
973 sipcom_suspend(device_t self PMF_FN_ARGS)
974 {
975 	struct sip_softc *sc = device_private(self);
976 
977 	sipcom_rxdrain(sc);
978 	return true;
979 }
980 
981 static void
982 sipcom_attach(device_t parent, device_t self, void *aux)
983 {
984 	struct sip_softc *sc = device_private(self);
985 	struct pci_attach_args *pa = aux;
986 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
987 	pci_chipset_tag_t pc = pa->pa_pc;
988 	pci_intr_handle_t ih;
989 	const char *intrstr = NULL;
990 	bus_space_tag_t iot, memt;
991 	bus_space_handle_t ioh, memh;
992 	bus_size_t iosz, memsz;
993 	int ioh_valid, memh_valid;
994 	int i, rseg, error;
995 	const struct sip_product *sip;
996 	u_int8_t enaddr[ETHER_ADDR_LEN];
997 	pcireg_t csr;
998 	pcireg_t memtype;
999 	bus_size_t tx_dmamap_size;
1000 	int ntxsegs_alloc;
1001 	cfdata_t cf = device_cfdata(self);
1002 
1003 	callout_init(&sc->sc_tick_ch, 0);
1004 
1005 	sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
1006 	if (sip == NULL) {
1007 		printf("\n");
1008 		panic("%s: impossible", __func__);
1009 	}
1010 	sc->sc_gigabit = sip->sip_gigabit;
1011 
1012 	sc->sc_pc = pc;
1013 
1014 	if (sc->sc_gigabit) {
1015 		sc->sc_rxintr = gsip_rxintr;
1016 		sc->sc_parm = &gsip_parm;
1017 	} else {
1018 		sc->sc_rxintr = sip_rxintr;
1019 		sc->sc_parm = &sip_parm;
1020 	}
1021 	tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
1022 	ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
1023 	sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
1024 	sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
1025 	sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
1026 
1027 	sc->sc_rev = PCI_REVISION(pa->pa_class);
1028 
1029 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
1030 
1031 	sc->sc_model = sip;
1032 
1033 	/*
1034 	 * XXX Work-around broken PXE firmware on some boards.
1035 	 *
1036 	 * The DP83815 shares an address decoder with the MEM BAR
1037 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
1038 	 * so that memory mapped access works.
1039 	 */
1040 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
1041 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
1042 	    ~PCI_MAPREG_ROM_ENABLE);
1043 
1044 	/*
1045 	 * Map the device.
1046 	 */
1047 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
1048 	    PCI_MAPREG_TYPE_IO, 0,
1049 	    &iot, &ioh, NULL, &iosz) == 0);
1050 	if (sc->sc_gigabit) {
1051 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
1052 		switch (memtype) {
1053 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1054 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1055 			memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1056 			    memtype, 0, &memt, &memh, NULL, &memsz) == 0);
1057 			break;
1058 		default:
1059 			memh_valid = 0;
1060 		}
1061 	} else {
1062 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1063 		    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
1064 		    &memt, &memh, NULL, &memsz) == 0);
1065 	}
1066 
1067 	if (memh_valid) {
1068 		sc->sc_st = memt;
1069 		sc->sc_sh = memh;
1070 		sc->sc_sz = memsz;
1071 	} else if (ioh_valid) {
1072 		sc->sc_st = iot;
1073 		sc->sc_sh = ioh;
1074 		sc->sc_sz = iosz;
1075 	} else {
1076 		printf("%s: unable to map device registers\n",
1077 		    device_xname(&sc->sc_dev));
1078 		return;
1079 	}
1080 
1081 	sc->sc_dmat = pa->pa_dmat;
1082 
1083 	/*
1084 	 * Make sure bus mastering is enabled.  Also make sure
1085 	 * Write/Invalidate is enabled if we're allowed to use it.
1086 	 */
1087 	csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1088 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
1089 		csr |= PCI_COMMAND_INVALIDATE_ENABLE;
1090 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
1091 	    csr | PCI_COMMAND_MASTER_ENABLE);
1092 
1093 	/* power up chip */
1094 	error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null);
1095 	if (error != 0 && error != EOPNOTSUPP) {
1096 		aprint_error_dev(&sc->sc_dev, "cannot activate %d\n", error);
1097 		return;
1098 	}
1099 
1100 	/*
1101 	 * Map and establish our interrupt.
1102 	 */
1103 	if (pci_intr_map(pa, &ih)) {
1104 		aprint_error_dev(&sc->sc_dev, "unable to map interrupt\n");
1105 		return;
1106 	}
1107 	intrstr = pci_intr_string(pc, ih);
1108 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc);
1109 	if (sc->sc_ih == NULL) {
1110 		aprint_error_dev(&sc->sc_dev, "unable to establish interrupt");
1111 		if (intrstr != NULL)
1112 			printf(" at %s", intrstr);
1113 		printf("\n");
1114 		return sipcom_do_detach(self, SIP_ATTACH_MAP);
1115 	}
1116 	printf("%s: interrupting at %s\n", device_xname(&sc->sc_dev), intrstr);
1117 
1118 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1119 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1120 
1121 	/*
1122 	 * Allocate the control data structures, and create and load the
1123 	 * DMA map for it.
1124 	 */
1125 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
1126 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
1127 	    &rseg, 0)) != 0) {
1128 		aprint_error_dev(&sc->sc_dev, "unable to allocate control data, error = %d\n",
1129 		    error);
1130 		return sipcom_do_detach(self, SIP_ATTACH_INTR);
1131 	}
1132 
1133 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
1134 	    sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
1135 	    BUS_DMA_COHERENT|BUS_DMA_NOCACHE)) != 0) {
1136 		aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
1137 		    error);
1138 		sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
1139 	}
1140 
1141 	if ((error = bus_dmamap_create(sc->sc_dmat,
1142 	    sizeof(struct sip_control_data), 1,
1143 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
1144 		aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
1145 		    "error = %d\n", error);
1146 		sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
1147 	}
1148 
1149 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1150 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
1151 	    0)) != 0) {
1152 		aprint_error_dev(&sc->sc_dev, "unable to load control data DMA map, error = %d\n",
1153 		    error);
1154 		sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
1155 	}
1156 
1157 	/*
1158 	 * Create the transmit buffer DMA maps.
1159 	 */
1160 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
1161 		if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
1162 		    sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
1163 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1164 			aprint_error_dev(&sc->sc_dev, "unable to create tx DMA map %d, "
1165 			    "error = %d\n", i, error);
1166 			sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1167 		}
1168 	}
1169 
1170 	/*
1171 	 * Create the receive buffer DMA maps.
1172 	 */
1173 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1174 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1175 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1176 			aprint_error_dev(&sc->sc_dev, "unable to create rx DMA map %d, "
1177 			    "error = %d\n", i, error);
1178 			sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1179 		}
1180 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
1181 	}
1182 
1183 	/*
1184 	 * Reset the chip to a known state.
1185 	 */
1186 	sipcom_reset(sc);
1187 
1188 	/*
1189 	 * Read the Ethernet address from the EEPROM.  This might
1190 	 * also fetch other stuff from the EEPROM and stash it
1191 	 * in the softc.
1192 	 */
1193 	sc->sc_cfg = 0;
1194 	if (!sc->sc_gigabit) {
1195 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1196 		    SIP_SIS900_REV(sc,SIS_REV_900B))
1197 			sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1198 
1199 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1200 		    SIP_SIS900_REV(sc,SIS_REV_960) ||
1201 		    SIP_SIS900_REV(sc,SIS_REV_900B))
1202 			sc->sc_cfg |=
1203 			    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1204 			     CFG_EDBMASTEN);
1205 	}
1206 
1207 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1208 
1209 	printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
1210 	    ether_sprintf(enaddr));
1211 
1212 	/*
1213 	 * Initialize the configuration register: aggressive PCI
1214 	 * bus request algorithm, default backoff, default OW timer,
1215 	 * default parity error detection.
1216 	 *
1217 	 * NOTE: "Big endian mode" is useless on the SiS900 and
1218 	 * friends -- it affects packet data, not descriptors.
1219 	 */
1220 	if (sc->sc_gigabit)
1221 		sipcom_dp83820_attach(sc, pa);
1222 
1223 	/*
1224 	 * Initialize our media structures and probe the MII.
1225 	 */
1226 	sc->sc_mii.mii_ifp = ifp;
1227 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
1228 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
1229 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
1230 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
1231 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
1232 	    sipcom_mediastatus);
1233 
1234 	/*
1235 	 * XXX We cannot handle flow control on the DP83815.
1236 	 */
1237 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1238 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1239 			   MII_OFFSET_ANY, 0);
1240 	else
1241 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1242 			   MII_OFFSET_ANY, MIIF_DOPAUSE);
1243 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1244 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1245 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1246 	} else
1247 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1248 
1249 	ifp = &sc->sc_ethercom.ec_if;
1250 	strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
1251 	ifp->if_softc = sc;
1252 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1253 	sc->sc_if_flags = ifp->if_flags;
1254 	ifp->if_ioctl = sipcom_ioctl;
1255 	ifp->if_start = sipcom_start;
1256 	ifp->if_watchdog = sipcom_watchdog;
1257 	ifp->if_init = sipcom_init;
1258 	ifp->if_stop = sipcom_stop;
1259 	IFQ_SET_READY(&ifp->if_snd);
1260 
1261 	/*
1262 	 * We can support 802.1Q VLAN-sized frames.
1263 	 */
1264 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1265 
1266 	if (sc->sc_gigabit) {
1267 		/*
1268 		 * And the DP83820 can do VLAN tagging in hardware, and
1269 		 * support the jumbo Ethernet MTU.
1270 		 */
1271 		sc->sc_ethercom.ec_capabilities |=
1272 		    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1273 
1274 		/*
1275 		 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1276 		 * in hardware.
1277 		 */
1278 		ifp->if_capabilities |=
1279 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1280 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1281 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1282 	}
1283 
1284 	/*
1285 	 * Attach the interface.
1286 	 */
1287 	if_attach(ifp);
1288 	ether_ifattach(ifp, enaddr);
1289 	ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb);
1290 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1291 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1292 	sc->sc_prev.if_capenable = ifp->if_capenable;
1293 #if NRND > 0
1294 	rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
1295 	    RND_TYPE_NET, 0);
1296 #endif
1297 
1298 	/*
1299 	 * The number of bytes that must be available in
1300 	 * the Tx FIFO before the bus master can DMA more
1301 	 * data into the FIFO.
1302 	 */
1303 	sc->sc_tx_fill_thresh = 64 / 32;
1304 
1305 	/*
1306 	 * Start at a drain threshold of 512 bytes.  We will
1307 	 * increase it if a DMA underrun occurs.
1308 	 *
1309 	 * XXX The minimum value of this variable should be
1310 	 * tuned.  We may be able to improve performance
1311 	 * by starting with a lower value.  That, however,
1312 	 * may trash the first few outgoing packets if the
1313 	 * PCI bus is saturated.
1314 	 */
1315 	if (sc->sc_gigabit)
1316 		sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1317 	else
1318 		sc->sc_tx_drain_thresh = 1504 / 32;
1319 
1320 	/*
1321 	 * Initialize the Rx FIFO drain threshold.
1322 	 *
1323 	 * This is in units of 8 bytes.
1324 	 *
1325 	 * We should never set this value lower than 2; 14 bytes are
1326 	 * required to filter the packet.
1327 	 */
1328 	sc->sc_rx_drain_thresh = 128 / 8;
1329 
1330 #ifdef SIP_EVENT_COUNTERS
1331 	/*
1332 	 * Attach event counters.
1333 	 */
1334 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1335 	    NULL, device_xname(&sc->sc_dev), "txsstall");
1336 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1337 	    NULL, device_xname(&sc->sc_dev), "txdstall");
1338 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1339 	    NULL, device_xname(&sc->sc_dev), "txforceintr");
1340 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1341 	    NULL, device_xname(&sc->sc_dev), "txdintr");
1342 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1343 	    NULL, device_xname(&sc->sc_dev), "txiintr");
1344 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1345 	    NULL, device_xname(&sc->sc_dev), "rxintr");
1346 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1347 	    NULL, device_xname(&sc->sc_dev), "hiberr");
1348 	if (!sc->sc_gigabit) {
1349 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1350 		    NULL, device_xname(&sc->sc_dev), "rxpause");
1351 	} else {
1352 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1353 		    NULL, device_xname(&sc->sc_dev), "rxpause");
1354 		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1355 		    NULL, device_xname(&sc->sc_dev), "txpause");
1356 		evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1357 		    NULL, device_xname(&sc->sc_dev), "rxipsum");
1358 		evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1359 		    NULL, device_xname(&sc->sc_dev), "rxtcpsum");
1360 		evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1361 		    NULL, device_xname(&sc->sc_dev), "rxudpsum");
1362 		evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1363 		    NULL, device_xname(&sc->sc_dev), "txipsum");
1364 		evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1365 		    NULL, device_xname(&sc->sc_dev), "txtcpsum");
1366 		evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1367 		    NULL, device_xname(&sc->sc_dev), "txudpsum");
1368 	}
1369 #endif /* SIP_EVENT_COUNTERS */
1370 
1371 	if (!pmf_device_register(self, sipcom_suspend, sipcom_resume))
1372 		aprint_error_dev(self, "couldn't establish power handler\n");
1373 	else
1374 		pmf_class_network_register(self, ifp);
1375 }
1376 
1377 static inline void
1378 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1379     uint64_t capenable)
1380 {
1381 	struct m_tag *mtag;
1382 	u_int32_t extsts;
1383 #ifdef DEBUG
1384 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1385 #endif
1386 	/*
1387 	 * If VLANs are enabled and the packet has a VLAN tag, set
1388 	 * up the descriptor to encapsulate the packet for us.
1389 	 *
1390 	 * This apparently has to be on the last descriptor of
1391 	 * the packet.
1392 	 */
1393 
1394 	/*
1395 	 * Byte swapping is tricky. We need to provide the tag
1396 	 * in a network byte order. On a big-endian machine,
1397 	 * the byteorder is correct, but we need to swap it
1398 	 * anyway, because this will be undone by the outside
1399 	 * htole32(). That's why there must be an
1400 	 * unconditional swap instead of htons() inside.
1401 	 */
1402 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1403 		sc->sc_txdescs[lasttx].sipd_extsts |=
1404 		    htole32(EXTSTS_VPKT |
1405 				(bswap16(VLAN_TAG_VALUE(mtag)) &
1406 				 EXTSTS_VTCI));
1407 	}
1408 
1409 	/*
1410 	 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1411 	 * checksumming, set up the descriptor to do this work
1412 	 * for us.
1413 	 *
1414 	 * This apparently has to be on the first descriptor of
1415 	 * the packet.
1416 	 *
1417 	 * Byte-swap constants so the compiler can optimize.
1418 	 */
1419 	extsts = 0;
1420 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1421 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1422 		SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1423 		extsts |= htole32(EXTSTS_IPPKT);
1424 	}
1425 	if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1426 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1427 		SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1428 		extsts |= htole32(EXTSTS_TCPPKT);
1429 	} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1430 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1431 		SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1432 		extsts |= htole32(EXTSTS_UDPPKT);
1433 	}
1434 	sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1435 }
1436 
1437 /*
1438  * sip_start:		[ifnet interface function]
1439  *
1440  *	Start packet transmission on the interface.
1441  */
1442 static void
1443 sipcom_start(struct ifnet *ifp)
1444 {
1445 	struct sip_softc *sc = ifp->if_softc;
1446 	struct mbuf *m0;
1447 	struct mbuf *m;
1448 	struct sip_txsoft *txs;
1449 	bus_dmamap_t dmamap;
1450 	int error, nexttx, lasttx, seg;
1451 	int ofree = sc->sc_txfree;
1452 #if 0
1453 	int firsttx = sc->sc_txnext;
1454 #endif
1455 
1456 	/*
1457 	 * If we've been told to pause, don't transmit any more packets.
1458 	 */
1459 	if (!sc->sc_gigabit && sc->sc_paused)
1460 		ifp->if_flags |= IFF_OACTIVE;
1461 
1462 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1463 		return;
1464 
1465 	/*
1466 	 * Loop through the send queue, setting up transmit descriptors
1467 	 * until we drain the queue, or use up all available transmit
1468 	 * descriptors.
1469 	 */
1470 	for (;;) {
1471 		/* Get a work queue entry. */
1472 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1473 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1474 			break;
1475 		}
1476 
1477 		/*
1478 		 * Grab a packet off the queue.
1479 		 */
1480 		IFQ_POLL(&ifp->if_snd, m0);
1481 		if (m0 == NULL)
1482 			break;
1483 		m = NULL;
1484 
1485 		dmamap = txs->txs_dmamap;
1486 
1487 		/*
1488 		 * Load the DMA map.  If this fails, the packet either
1489 		 * didn't fit in the alloted number of segments, or we
1490 		 * were short on resources.
1491 		 */
1492 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1493 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1494 		/* In the non-gigabit case, we'll copy and try again. */
1495 		if (error != 0 && !sc->sc_gigabit) {
1496 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1497 			if (m == NULL) {
1498 				printf("%s: unable to allocate Tx mbuf\n",
1499 				    device_xname(&sc->sc_dev));
1500 				break;
1501 			}
1502 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1503 			if (m0->m_pkthdr.len > MHLEN) {
1504 				MCLGET(m, M_DONTWAIT);
1505 				if ((m->m_flags & M_EXT) == 0) {
1506 					printf("%s: unable to allocate Tx "
1507 					    "cluster\n", device_xname(&sc->sc_dev));
1508 					m_freem(m);
1509 					break;
1510 				}
1511 			}
1512 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1513 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1514 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1515 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1516 			if (error) {
1517 				printf("%s: unable to load Tx buffer, "
1518 				    "error = %d\n", device_xname(&sc->sc_dev), error);
1519 				break;
1520 			}
1521 		} else if (error == EFBIG) {
1522 			/*
1523 			 * For the too-many-segments case, we simply
1524 			 * report an error and drop the packet,
1525 			 * since we can't sanely copy a jumbo packet
1526 			 * to a single buffer.
1527 			 */
1528 			printf("%s: Tx packet consumes too many "
1529 			    "DMA segments, dropping...\n", device_xname(&sc->sc_dev));
1530 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1531 			m_freem(m0);
1532 			continue;
1533 		} else if (error != 0) {
1534 			/*
1535 			 * Short on resources, just stop for now.
1536 			 */
1537 			break;
1538 		}
1539 
1540 		/*
1541 		 * Ensure we have enough descriptors free to describe
1542 		 * the packet.  Note, we always reserve one descriptor
1543 		 * at the end of the ring as a termination point, to
1544 		 * prevent wrap-around.
1545 		 */
1546 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1547 			/*
1548 			 * Not enough free descriptors to transmit this
1549 			 * packet.  We haven't committed anything yet,
1550 			 * so just unload the DMA map, put the packet
1551 			 * back on the queue, and punt.  Notify the upper
1552 			 * layer that there are not more slots left.
1553 			 *
1554 			 * XXX We could allocate an mbuf and copy, but
1555 			 * XXX is it worth it?
1556 			 */
1557 			ifp->if_flags |= IFF_OACTIVE;
1558 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1559 			if (m != NULL)
1560 				m_freem(m);
1561 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1562 			break;
1563 		}
1564 
1565 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1566 		if (m != NULL) {
1567 			m_freem(m0);
1568 			m0 = m;
1569 		}
1570 
1571 		/*
1572 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1573 		 */
1574 
1575 		/* Sync the DMA map. */
1576 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1577 		    BUS_DMASYNC_PREWRITE);
1578 
1579 		/*
1580 		 * Initialize the transmit descriptors.
1581 		 */
1582 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1583 		     seg < dmamap->dm_nsegs;
1584 		     seg++, nexttx = sip_nexttx(sc, nexttx)) {
1585 			/*
1586 			 * If this is the first descriptor we're
1587 			 * enqueueing, don't set the OWN bit just
1588 			 * yet.  That could cause a race condition.
1589 			 * We'll do it below.
1590 			 */
1591 			*sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
1592 			    htole32(dmamap->dm_segs[seg].ds_addr);
1593 			*sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
1594 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1595 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1596 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
1597 			lasttx = nexttx;
1598 		}
1599 
1600 		/* Clear the MORE bit on the last segment. */
1601 		*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
1602 		    htole32(~CMDSTS_MORE);
1603 
1604 		/*
1605 		 * If we're in the interrupt delay window, delay the
1606 		 * interrupt.
1607 		 */
1608 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1609 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1610 			*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
1611 			    htole32(CMDSTS_INTR);
1612 			sc->sc_txwin = 0;
1613 		}
1614 
1615 		if (sc->sc_gigabit)
1616 			sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1617 
1618 		/* Sync the descriptors we're using. */
1619 		sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
1620 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1621 
1622 		/*
1623 		 * The entire packet is set up.  Give the first descrptor
1624 		 * to the chip now.
1625 		 */
1626 		*sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
1627 		    htole32(CMDSTS_OWN);
1628 		sip_cdtxsync(sc, sc->sc_txnext, 1,
1629 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1630 
1631 		/*
1632 		 * Store a pointer to the packet so we can free it later,
1633 		 * and remember what txdirty will be once the packet is
1634 		 * done.
1635 		 */
1636 		txs->txs_mbuf = m0;
1637 		txs->txs_firstdesc = sc->sc_txnext;
1638 		txs->txs_lastdesc = lasttx;
1639 
1640 		/* Advance the tx pointer. */
1641 		sc->sc_txfree -= dmamap->dm_nsegs;
1642 		sc->sc_txnext = nexttx;
1643 
1644 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1645 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1646 
1647 #if NBPFILTER > 0
1648 		/*
1649 		 * Pass the packet to any BPF listeners.
1650 		 */
1651 		if (ifp->if_bpf)
1652 			bpf_mtap(ifp->if_bpf, m0);
1653 #endif /* NBPFILTER > 0 */
1654 	}
1655 
1656 	if (txs == NULL || sc->sc_txfree == 0) {
1657 		/* No more slots left; notify upper layer. */
1658 		ifp->if_flags |= IFF_OACTIVE;
1659 	}
1660 
1661 	if (sc->sc_txfree != ofree) {
1662 		/*
1663 		 * Start the transmit process.  Note, the manual says
1664 		 * that if there are no pending transmissions in the
1665 		 * chip's internal queue (indicated by TXE being clear),
1666 		 * then the driver software must set the TXDP to the
1667 		 * first descriptor to be transmitted.  However, if we
1668 		 * do this, it causes serious performance degredation on
1669 		 * the DP83820 under load, not setting TXDP doesn't seem
1670 		 * to adversely affect the SiS 900 or DP83815.
1671 		 *
1672 		 * Well, I guess it wouldn't be the first time a manual
1673 		 * has lied -- and they could be speaking of the NULL-
1674 		 * terminated descriptor list case, rather than OWN-
1675 		 * terminated rings.
1676 		 */
1677 #if 0
1678 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1679 		     CR_TXE) == 0) {
1680 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1681 			    SIP_CDTXADDR(sc, firsttx));
1682 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1683 		}
1684 #else
1685 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1686 #endif
1687 
1688 		/* Set a watchdog timer in case the chip flakes out. */
1689 		/* Gigabit autonegotiation takes 5 seconds. */
1690 		ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1691 	}
1692 }
1693 
1694 /*
1695  * sip_watchdog:	[ifnet interface function]
1696  *
1697  *	Watchdog timer handler.
1698  */
1699 static void
1700 sipcom_watchdog(struct ifnet *ifp)
1701 {
1702 	struct sip_softc *sc = ifp->if_softc;
1703 
1704 	/*
1705 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1706 	 * If we get a timeout, try and sweep up transmit descriptors.
1707 	 * If we manage to sweep them all up, ignore the lack of
1708 	 * interrupt.
1709 	 */
1710 	sipcom_txintr(sc);
1711 
1712 	if (sc->sc_txfree != sc->sc_ntxdesc) {
1713 		printf("%s: device timeout\n", device_xname(&sc->sc_dev));
1714 		ifp->if_oerrors++;
1715 
1716 		/* Reset the interface. */
1717 		(void) sipcom_init(ifp);
1718 	} else if (ifp->if_flags & IFF_DEBUG)
1719 		printf("%s: recovered from device timeout\n",
1720 		    device_xname(&sc->sc_dev));
1721 
1722 	/* Try to get more packets going. */
1723 	sipcom_start(ifp);
1724 }
1725 
1726 /* If the interface is up and running, only modify the receive
1727  * filter when setting promiscuous or debug mode.  Otherwise fall
1728  * through to ether_ioctl, which will reset the chip.
1729  */
1730 static int
1731 sip_ifflags_cb(struct ethercom *ec)
1732 {
1733 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable			\
1734 			 == (sc)->sc_ethercom.ec_capenable)		\
1735 			&& ((sc)->sc_prev.is_vlan ==			\
1736 			    VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1737 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1738 	struct ifnet *ifp = &ec->ec_if;
1739 	struct sip_softc *sc = ifp->if_softc;
1740 	int change = ifp->if_flags ^ sc->sc_if_flags;
1741 
1742 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0 || !COMPARE_EC(sc) ||
1743 	    !COMPARE_IC(sc, ifp))
1744 		return ENETRESET;
1745 	/* Set up the receive filter. */
1746 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1747 	return 0;
1748 }
1749 
1750 /*
1751  * sip_ioctl:		[ifnet interface function]
1752  *
1753  *	Handle control requests from the operator.
1754  */
1755 static int
1756 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1757 {
1758 	struct sip_softc *sc = ifp->if_softc;
1759 	struct ifreq *ifr = (struct ifreq *)data;
1760 	int s, error;
1761 
1762 	s = splnet();
1763 
1764 	switch (cmd) {
1765 	case SIOCSIFMEDIA:
1766 		/* Flow control requires full-duplex mode. */
1767 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1768 		    (ifr->ifr_media & IFM_FDX) == 0)
1769 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
1770 
1771 		/* XXX */
1772 		if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1773 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1774 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1775 			if (sc->sc_gigabit &&
1776 			    (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1777 				/* We can do both TXPAUSE and RXPAUSE. */
1778 				ifr->ifr_media |=
1779 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1780 			} else if (ifr->ifr_media & IFM_FLOW) {
1781 				/*
1782 				 * Both TXPAUSE and RXPAUSE must be set.
1783 				 * (SiS900 and DP83815 don't have PAUSE_ASYM
1784 				 * feature.)
1785 				 *
1786 				 * XXX Can SiS900 and DP83815 send PAUSE?
1787 				 */
1788 				ifr->ifr_media |=
1789 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1790 			}
1791 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1792 		}
1793 		/*FALLTHROUGH*/
1794 	default:
1795 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1796 			break;
1797 
1798 		error = 0;
1799 
1800 		if (cmd == SIOCSIFCAP)
1801 			error = (*ifp->if_init)(ifp);
1802 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1803 			;
1804 		else if (ifp->if_flags & IFF_RUNNING) {
1805 			/*
1806 			 * Multicast list has changed; set the hardware filter
1807 			 * accordingly.
1808 			 */
1809 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1810 		}
1811 		break;
1812 	}
1813 
1814 	/* Try to get more packets going. */
1815 	sipcom_start(ifp);
1816 
1817 	sc->sc_if_flags = ifp->if_flags;
1818 	splx(s);
1819 	return (error);
1820 }
1821 
1822 /*
1823  * sip_intr:
1824  *
1825  *	Interrupt service routine.
1826  */
1827 static int
1828 sipcom_intr(void *arg)
1829 {
1830 	struct sip_softc *sc = arg;
1831 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1832 	u_int32_t isr;
1833 	int handled = 0;
1834 
1835 	if (!device_is_active(&sc->sc_dev))
1836 		return 0;
1837 
1838 	/* Disable interrupts. */
1839 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1840 
1841 	for (;;) {
1842 		/* Reading clears interrupt. */
1843 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1844 		if ((isr & sc->sc_imr) == 0)
1845 			break;
1846 
1847 #if NRND > 0
1848 		if (RND_ENABLED(&sc->rnd_source))
1849 			rnd_add_uint32(&sc->rnd_source, isr);
1850 #endif
1851 
1852 		handled = 1;
1853 
1854 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1855 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1856 
1857 			/* Grab any new packets. */
1858 			(*sc->sc_rxintr)(sc);
1859 
1860 			if (isr & ISR_RXORN) {
1861 				printf("%s: receive FIFO overrun\n",
1862 				    device_xname(&sc->sc_dev));
1863 
1864 				/* XXX adjust rx_drain_thresh? */
1865 			}
1866 
1867 			if (isr & ISR_RXIDLE) {
1868 				printf("%s: receive ring overrun\n",
1869 				    device_xname(&sc->sc_dev));
1870 
1871 				/* Get the receive process going again. */
1872 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1873 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1874 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1875 				    SIP_CR, CR_RXE);
1876 			}
1877 		}
1878 
1879 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1880 #ifdef SIP_EVENT_COUNTERS
1881 			if (isr & ISR_TXDESC)
1882 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1883 			else if (isr & ISR_TXIDLE)
1884 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1885 #endif
1886 
1887 			/* Sweep up transmit descriptors. */
1888 			sipcom_txintr(sc);
1889 
1890 			if (isr & ISR_TXURN) {
1891 				u_int32_t thresh;
1892 				int txfifo_size = (sc->sc_gigabit)
1893 				    ? DP83820_SIP_TXFIFO_SIZE
1894 				    : OTHER_SIP_TXFIFO_SIZE;
1895 
1896 				printf("%s: transmit FIFO underrun",
1897 				    device_xname(&sc->sc_dev));
1898 				thresh = sc->sc_tx_drain_thresh + 1;
1899 				if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
1900 				&& (thresh * 32) <= (txfifo_size -
1901 				     (sc->sc_tx_fill_thresh * 32))) {
1902 					printf("; increasing Tx drain "
1903 					    "threshold to %u bytes\n",
1904 					    thresh * 32);
1905 					sc->sc_tx_drain_thresh = thresh;
1906 					(void) sipcom_init(ifp);
1907 				} else {
1908 					(void) sipcom_init(ifp);
1909 					printf("\n");
1910 				}
1911 			}
1912 		}
1913 
1914 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1915 			if (isr & ISR_PAUSE_ST) {
1916 				sc->sc_paused = 1;
1917 				SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1918 				ifp->if_flags |= IFF_OACTIVE;
1919 			}
1920 			if (isr & ISR_PAUSE_END) {
1921 				sc->sc_paused = 0;
1922 				ifp->if_flags &= ~IFF_OACTIVE;
1923 			}
1924 		}
1925 
1926 		if (isr & ISR_HIBERR) {
1927 			int want_init = 0;
1928 
1929 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1930 
1931 #define	PRINTERR(bit, str)						\
1932 			do {						\
1933 				if ((isr & (bit)) != 0) {		\
1934 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
1935 						printf("%s: %s\n",	\
1936 						    device_xname(&sc->sc_dev), str); \
1937 					want_init = 1;			\
1938 				}					\
1939 			} while (/*CONSTCOND*/0)
1940 
1941 			PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
1942 			PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
1943 			PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
1944 			PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
1945 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1946 			/*
1947 			 * Ignore:
1948 			 *	Tx reset complete
1949 			 *	Rx reset complete
1950 			 */
1951 			if (want_init)
1952 				(void) sipcom_init(ifp);
1953 #undef PRINTERR
1954 		}
1955 	}
1956 
1957 	/* Re-enable interrupts. */
1958 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1959 
1960 	/* Try to get more packets going. */
1961 	sipcom_start(ifp);
1962 
1963 	return (handled);
1964 }
1965 
1966 /*
1967  * sip_txintr:
1968  *
1969  *	Helper; handle transmit interrupts.
1970  */
1971 static void
1972 sipcom_txintr(struct sip_softc *sc)
1973 {
1974 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1975 	struct sip_txsoft *txs;
1976 	u_int32_t cmdsts;
1977 
1978 	if (sc->sc_paused == 0)
1979 		ifp->if_flags &= ~IFF_OACTIVE;
1980 
1981 	/*
1982 	 * Go through our Tx list and free mbufs for those
1983 	 * frames which have been transmitted.
1984 	 */
1985 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1986 		sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1987 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1988 
1989 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
1990 		if (cmdsts & CMDSTS_OWN)
1991 			break;
1992 
1993 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1994 
1995 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1996 
1997 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1998 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1999 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2000 		m_freem(txs->txs_mbuf);
2001 		txs->txs_mbuf = NULL;
2002 
2003 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2004 
2005 		/*
2006 		 * Check for errors and collisions.
2007 		 */
2008 		if (cmdsts &
2009 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
2010 			ifp->if_oerrors++;
2011 			if (cmdsts & CMDSTS_Tx_EC)
2012 				ifp->if_collisions += 16;
2013 			if (ifp->if_flags & IFF_DEBUG) {
2014 				if (cmdsts & CMDSTS_Tx_ED)
2015 					printf("%s: excessive deferral\n",
2016 					    device_xname(&sc->sc_dev));
2017 				if (cmdsts & CMDSTS_Tx_EC)
2018 					printf("%s: excessive collisions\n",
2019 					    device_xname(&sc->sc_dev));
2020 			}
2021 		} else {
2022 			/* Packet was transmitted successfully. */
2023 			ifp->if_opackets++;
2024 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
2025 		}
2026 	}
2027 
2028 	/*
2029 	 * If there are no more pending transmissions, cancel the watchdog
2030 	 * timer.
2031 	 */
2032 	if (txs == NULL) {
2033 		ifp->if_timer = 0;
2034 		sc->sc_txwin = 0;
2035 	}
2036 }
2037 
2038 /*
2039  * gsip_rxintr:
2040  *
2041  *	Helper; handle receive interrupts on gigabit parts.
2042  */
2043 static void
2044 gsip_rxintr(struct sip_softc *sc)
2045 {
2046 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2047 	struct sip_rxsoft *rxs;
2048 	struct mbuf *m;
2049 	u_int32_t cmdsts, extsts;
2050 	int i, len;
2051 
2052 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2053 		rxs = &sc->sc_rxsoft[i];
2054 
2055 		sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2056 
2057 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2058 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
2059 		len = CMDSTS_SIZE(sc, cmdsts);
2060 
2061 		/*
2062 		 * NOTE: OWN is set if owned by _consumer_.  We're the
2063 		 * consumer of the receive ring, so if the bit is clear,
2064 		 * we have processed all of the packets.
2065 		 */
2066 		if ((cmdsts & CMDSTS_OWN) == 0) {
2067 			/*
2068 			 * We have processed all of the receive buffers.
2069 			 */
2070 			break;
2071 		}
2072 
2073 		if (__predict_false(sc->sc_rxdiscard)) {
2074 			sip_init_rxdesc(sc, i);
2075 			if ((cmdsts & CMDSTS_MORE) == 0) {
2076 				/* Reset our state. */
2077 				sc->sc_rxdiscard = 0;
2078 			}
2079 			continue;
2080 		}
2081 
2082 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2083 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2084 
2085 		m = rxs->rxs_mbuf;
2086 
2087 		/*
2088 		 * Add a new receive buffer to the ring.
2089 		 */
2090 		if (sipcom_add_rxbuf(sc, i) != 0) {
2091 			/*
2092 			 * Failed, throw away what we've done so
2093 			 * far, and discard the rest of the packet.
2094 			 */
2095 			ifp->if_ierrors++;
2096 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2097 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2098 			sip_init_rxdesc(sc, i);
2099 			if (cmdsts & CMDSTS_MORE)
2100 				sc->sc_rxdiscard = 1;
2101 			if (sc->sc_rxhead != NULL)
2102 				m_freem(sc->sc_rxhead);
2103 			sip_rxchain_reset(sc);
2104 			continue;
2105 		}
2106 
2107 		sip_rxchain_link(sc, m);
2108 
2109 		m->m_len = len;
2110 
2111 		/*
2112 		 * If this is not the end of the packet, keep
2113 		 * looking.
2114 		 */
2115 		if (cmdsts & CMDSTS_MORE) {
2116 			sc->sc_rxlen += len;
2117 			continue;
2118 		}
2119 
2120 		/*
2121 		 * Okay, we have the entire packet now.  The chip includes
2122 		 * the FCS, so we need to trim it.
2123 		 */
2124 		m->m_len -= ETHER_CRC_LEN;
2125 
2126 		*sc->sc_rxtailp = NULL;
2127 		len = m->m_len + sc->sc_rxlen;
2128 		m = sc->sc_rxhead;
2129 
2130 		sip_rxchain_reset(sc);
2131 
2132 		/*
2133 		 * If an error occurred, update stats and drop the packet.
2134 		 */
2135 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2136 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2137 			ifp->if_ierrors++;
2138 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2139 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
2140 				/* Receive overrun handled elsewhere. */
2141 				printf("%s: receive descriptor error\n",
2142 				    device_xname(&sc->sc_dev));
2143 			}
2144 #define	PRINTERR(bit, str)						\
2145 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
2146 			    (cmdsts & (bit)) != 0)			\
2147 				printf("%s: %s\n", device_xname(&sc->sc_dev), str)
2148 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2149 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2150 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2151 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2152 #undef PRINTERR
2153 			m_freem(m);
2154 			continue;
2155 		}
2156 
2157 		/*
2158 		 * If the packet is small enough to fit in a
2159 		 * single header mbuf, allocate one and copy
2160 		 * the data into it.  This greatly reduces
2161 		 * memory consumption when we receive lots
2162 		 * of small packets.
2163 		 */
2164 		if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
2165 			struct mbuf *nm;
2166 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
2167 			if (nm == NULL) {
2168 				ifp->if_ierrors++;
2169 				m_freem(m);
2170 				continue;
2171 			}
2172 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2173 			nm->m_data += 2;
2174 			nm->m_pkthdr.len = nm->m_len = len;
2175 			m_copydata(m, 0, len, mtod(nm, void *));
2176 			m_freem(m);
2177 			m = nm;
2178 		}
2179 #ifndef __NO_STRICT_ALIGNMENT
2180 		else {
2181 			/*
2182 			 * The DP83820's receive buffers must be 4-byte
2183 			 * aligned.  But this means that the data after
2184 			 * the Ethernet header is misaligned.  To compensate,
2185 			 * we have artificially shortened the buffer size
2186 			 * in the descriptor, and we do an overlapping copy
2187 			 * of the data two bytes further in (in the first
2188 			 * buffer of the chain only).
2189 			 */
2190 			memmove(mtod(m, char *) + 2, mtod(m, void *),
2191 			    m->m_len);
2192 			m->m_data += 2;
2193 		}
2194 #endif /* ! __NO_STRICT_ALIGNMENT */
2195 
2196 		/*
2197 		 * If VLANs are enabled, VLAN packets have been unwrapped
2198 		 * for us.  Associate the tag with the packet.
2199 		 */
2200 
2201 		/*
2202 		 * Again, byte swapping is tricky. Hardware provided
2203 		 * the tag in the network byte order, but extsts was
2204 		 * passed through le32toh() in the meantime. On a
2205 		 * big-endian machine, we need to swap it again. On a
2206 		 * little-endian machine, we need to convert from the
2207 		 * network to host byte order. This means that we must
2208 		 * swap it in any case, so unconditional swap instead
2209 		 * of htons() is used.
2210 		 */
2211 		if ((extsts & EXTSTS_VPKT) != 0) {
2212 			VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
2213 			    continue);
2214 		}
2215 
2216 		/*
2217 		 * Set the incoming checksum information for the
2218 		 * packet.
2219 		 */
2220 		if ((extsts & EXTSTS_IPPKT) != 0) {
2221 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2222 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2223 			if (extsts & EXTSTS_Rx_IPERR)
2224 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2225 			if (extsts & EXTSTS_TCPPKT) {
2226 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2227 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2228 				if (extsts & EXTSTS_Rx_TCPERR)
2229 					m->m_pkthdr.csum_flags |=
2230 					    M_CSUM_TCP_UDP_BAD;
2231 			} else if (extsts & EXTSTS_UDPPKT) {
2232 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2233 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2234 				if (extsts & EXTSTS_Rx_UDPERR)
2235 					m->m_pkthdr.csum_flags |=
2236 					    M_CSUM_TCP_UDP_BAD;
2237 			}
2238 		}
2239 
2240 		ifp->if_ipackets++;
2241 		m->m_pkthdr.rcvif = ifp;
2242 		m->m_pkthdr.len = len;
2243 
2244 #if NBPFILTER > 0
2245 		/*
2246 		 * Pass this up to any BPF listeners, but only
2247 		 * pass if up the stack if it's for us.
2248 		 */
2249 		if (ifp->if_bpf)
2250 			bpf_mtap(ifp->if_bpf, m);
2251 #endif /* NBPFILTER > 0 */
2252 
2253 		/* Pass it on. */
2254 		(*ifp->if_input)(ifp, m);
2255 	}
2256 
2257 	/* Update the receive pointer. */
2258 	sc->sc_rxptr = i;
2259 }
2260 
2261 /*
2262  * sip_rxintr:
2263  *
2264  *	Helper; handle receive interrupts on 10/100 parts.
2265  */
2266 static void
2267 sip_rxintr(struct sip_softc *sc)
2268 {
2269 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2270 	struct sip_rxsoft *rxs;
2271 	struct mbuf *m;
2272 	u_int32_t cmdsts;
2273 	int i, len;
2274 
2275 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2276 		rxs = &sc->sc_rxsoft[i];
2277 
2278 		sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2279 
2280 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2281 
2282 		/*
2283 		 * NOTE: OWN is set if owned by _consumer_.  We're the
2284 		 * consumer of the receive ring, so if the bit is clear,
2285 		 * we have processed all of the packets.
2286 		 */
2287 		if ((cmdsts & CMDSTS_OWN) == 0) {
2288 			/*
2289 			 * We have processed all of the receive buffers.
2290 			 */
2291 			break;
2292 		}
2293 
2294 		/*
2295 		 * If any collisions were seen on the wire, count one.
2296 		 */
2297 		if (cmdsts & CMDSTS_Rx_COL)
2298 			ifp->if_collisions++;
2299 
2300 		/*
2301 		 * If an error occurred, update stats, clear the status
2302 		 * word, and leave the packet buffer in place.  It will
2303 		 * simply be reused the next time the ring comes around.
2304 		 */
2305 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2306 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2307 			ifp->if_ierrors++;
2308 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2309 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
2310 				/* Receive overrun handled elsewhere. */
2311 				printf("%s: receive descriptor error\n",
2312 				    device_xname(&sc->sc_dev));
2313 			}
2314 #define	PRINTERR(bit, str)						\
2315 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
2316 			    (cmdsts & (bit)) != 0)			\
2317 				printf("%s: %s\n", device_xname(&sc->sc_dev), str)
2318 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2319 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2320 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2321 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2322 #undef PRINTERR
2323 			sip_init_rxdesc(sc, i);
2324 			continue;
2325 		}
2326 
2327 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2328 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2329 
2330 		/*
2331 		 * No errors; receive the packet.  Note, the SiS 900
2332 		 * includes the CRC with every packet.
2333 		 */
2334 		len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
2335 
2336 #ifdef __NO_STRICT_ALIGNMENT
2337 		/*
2338 		 * If the packet is small enough to fit in a
2339 		 * single header mbuf, allocate one and copy
2340 		 * the data into it.  This greatly reduces
2341 		 * memory consumption when we receive lots
2342 		 * of small packets.
2343 		 *
2344 		 * Otherwise, we add a new buffer to the receive
2345 		 * chain.  If this fails, we drop the packet and
2346 		 * recycle the old buffer.
2347 		 */
2348 		if (sip_copy_small != 0 && len <= MHLEN) {
2349 			MGETHDR(m, M_DONTWAIT, MT_DATA);
2350 			if (m == NULL)
2351 				goto dropit;
2352 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2353 			memcpy(mtod(m, void *),
2354 			    mtod(rxs->rxs_mbuf, void *), len);
2355 			sip_init_rxdesc(sc, i);
2356 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2357 			    rxs->rxs_dmamap->dm_mapsize,
2358 			    BUS_DMASYNC_PREREAD);
2359 		} else {
2360 			m = rxs->rxs_mbuf;
2361 			if (sipcom_add_rxbuf(sc, i) != 0) {
2362  dropit:
2363 				ifp->if_ierrors++;
2364 				sip_init_rxdesc(sc, i);
2365 				bus_dmamap_sync(sc->sc_dmat,
2366 				    rxs->rxs_dmamap, 0,
2367 				    rxs->rxs_dmamap->dm_mapsize,
2368 				    BUS_DMASYNC_PREREAD);
2369 				continue;
2370 			}
2371 		}
2372 #else
2373 		/*
2374 		 * The SiS 900's receive buffers must be 4-byte aligned.
2375 		 * But this means that the data after the Ethernet header
2376 		 * is misaligned.  We must allocate a new buffer and
2377 		 * copy the data, shifted forward 2 bytes.
2378 		 */
2379 		MGETHDR(m, M_DONTWAIT, MT_DATA);
2380 		if (m == NULL) {
2381  dropit:
2382 			ifp->if_ierrors++;
2383 			sip_init_rxdesc(sc, i);
2384 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2385 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2386 			continue;
2387 		}
2388 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2389 		if (len > (MHLEN - 2)) {
2390 			MCLGET(m, M_DONTWAIT);
2391 			if ((m->m_flags & M_EXT) == 0) {
2392 				m_freem(m);
2393 				goto dropit;
2394 			}
2395 		}
2396 		m->m_data += 2;
2397 
2398 		/*
2399 		 * Note that we use clusters for incoming frames, so the
2400 		 * buffer is virtually contiguous.
2401 		 */
2402 		memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2403 
2404 		/* Allow the receive descriptor to continue using its mbuf. */
2405 		sip_init_rxdesc(sc, i);
2406 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2407 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2408 #endif /* __NO_STRICT_ALIGNMENT */
2409 
2410 		ifp->if_ipackets++;
2411 		m->m_pkthdr.rcvif = ifp;
2412 		m->m_pkthdr.len = m->m_len = len;
2413 
2414 #if NBPFILTER > 0
2415 		/*
2416 		 * Pass this up to any BPF listeners, but only
2417 		 * pass if up the stack if it's for us.
2418 		 */
2419 		if (ifp->if_bpf)
2420 			bpf_mtap(ifp->if_bpf, m);
2421 #endif /* NBPFILTER > 0 */
2422 
2423 		/* Pass it on. */
2424 		(*ifp->if_input)(ifp, m);
2425 	}
2426 
2427 	/* Update the receive pointer. */
2428 	sc->sc_rxptr = i;
2429 }
2430 
2431 /*
2432  * sip_tick:
2433  *
2434  *	One second timer, used to tick the MII.
2435  */
2436 static void
2437 sipcom_tick(void *arg)
2438 {
2439 	struct sip_softc *sc = arg;
2440 	int s;
2441 
2442 	s = splnet();
2443 #ifdef SIP_EVENT_COUNTERS
2444 	if (sc->sc_gigabit) {
2445 		/* Read PAUSE related counts from MIB registers. */
2446 		sc->sc_ev_rxpause.ev_count +=
2447 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
2448 				     SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2449 		sc->sc_ev_txpause.ev_count +=
2450 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
2451 				     SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2452 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2453 	}
2454 #endif /* SIP_EVENT_COUNTERS */
2455 	mii_tick(&sc->sc_mii);
2456 	splx(s);
2457 
2458 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2459 }
2460 
2461 /*
2462  * sip_reset:
2463  *
2464  *	Perform a soft reset on the SiS 900.
2465  */
2466 static bool
2467 sipcom_reset(struct sip_softc *sc)
2468 {
2469 	bus_space_tag_t st = sc->sc_st;
2470 	bus_space_handle_t sh = sc->sc_sh;
2471 	int i;
2472 
2473 	bus_space_write_4(st, sh, SIP_IER, 0);
2474 	bus_space_write_4(st, sh, SIP_IMR, 0);
2475 	bus_space_write_4(st, sh, SIP_RFCR, 0);
2476 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
2477 
2478 	for (i = 0; i < SIP_TIMEOUT; i++) {
2479 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2480 			break;
2481 		delay(2);
2482 	}
2483 
2484 	if (i == SIP_TIMEOUT) {
2485 		printf("%s: reset failed to complete\n", device_xname(&sc->sc_dev));
2486 		return false;
2487 	}
2488 
2489 	delay(1000);
2490 
2491 	if (sc->sc_gigabit) {
2492 		/*
2493 		 * Set the general purpose I/O bits.  Do it here in case we
2494 		 * need to have GPIO set up to talk to the media interface.
2495 		 */
2496 		bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2497 		delay(1000);
2498 	}
2499 	return true;
2500 }
2501 
2502 static void
2503 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2504 {
2505 	u_int32_t reg;
2506 	bus_space_tag_t st = sc->sc_st;
2507 	bus_space_handle_t sh = sc->sc_sh;
2508 	/*
2509 	 * Initialize the VLAN/IP receive control register.
2510 	 * We enable checksum computation on all incoming
2511 	 * packets, and do not reject packets w/ bad checksums.
2512 	 */
2513 	reg = 0;
2514 	if (capenable &
2515 	    (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
2516 		reg |= VRCR_IPEN;
2517 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2518 		reg |= VRCR_VTDEN|VRCR_VTREN;
2519 	bus_space_write_4(st, sh, SIP_VRCR, reg);
2520 
2521 	/*
2522 	 * Initialize the VLAN/IP transmit control register.
2523 	 * We enable outgoing checksum computation on a
2524 	 * per-packet basis.
2525 	 */
2526 	reg = 0;
2527 	if (capenable &
2528 	    (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2529 		reg |= VTCR_PPCHK;
2530 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2531 		reg |= VTCR_VPPTI;
2532 	bus_space_write_4(st, sh, SIP_VTCR, reg);
2533 
2534 	/*
2535 	 * If we're using VLANs, initialize the VLAN data register.
2536 	 * To understand why we bswap the VLAN Ethertype, see section
2537 	 * 4.2.36 of the DP83820 manual.
2538 	 */
2539 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2540 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2541 }
2542 
2543 /*
2544  * sip_init:		[ ifnet interface function ]
2545  *
2546  *	Initialize the interface.  Must be called at splnet().
2547  */
2548 static int
2549 sipcom_init(struct ifnet *ifp)
2550 {
2551 	struct sip_softc *sc = ifp->if_softc;
2552 	bus_space_tag_t st = sc->sc_st;
2553 	bus_space_handle_t sh = sc->sc_sh;
2554 	struct sip_txsoft *txs;
2555 	struct sip_rxsoft *rxs;
2556 	struct sip_desc *sipd;
2557 	int i, error = 0;
2558 
2559 	if (device_is_active(&sc->sc_dev)) {
2560 		/*
2561 		 * Cancel any pending I/O.
2562 		 */
2563 		sipcom_stop(ifp, 0);
2564 	} else if (!pmf_device_resume_self(&sc->sc_dev))
2565 		return 0;
2566 
2567 	/*
2568 	 * Reset the chip to a known state.
2569 	 */
2570 	if (!sipcom_reset(sc))
2571 		return EBUSY;
2572 
2573 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2574 		/*
2575 		 * DP83815 manual, page 78:
2576 		 *    4.4 Recommended Registers Configuration
2577 		 *    For optimum performance of the DP83815, version noted
2578 		 *    as DP83815CVNG (SRR = 203h), the listed register
2579 		 *    modifications must be followed in sequence...
2580 		 *
2581 		 * It's not clear if this should be 302h or 203h because that
2582 		 * chip name is listed as SRR 302h in the description of the
2583 		 * SRR register.  However, my revision 302h DP83815 on the
2584 		 * Netgear FA311 purchased in 02/2001 needs these settings
2585 		 * to avoid tons of errors in AcceptPerfectMatch (non-
2586 		 * IFF_PROMISC) mode.  I do not know if other revisions need
2587 		 * this set or not.  [briggs -- 09 March 2001]
2588 		 *
2589 		 * Note that only the low-order 12 bits of 0xe4 are documented
2590 		 * and that this sets reserved bits in that register.
2591 		 */
2592 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
2593 
2594 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
2595 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
2596 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
2597 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
2598 
2599 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
2600 	}
2601 
2602 	/*
2603 	 * Initialize the transmit descriptor ring.
2604 	 */
2605 	for (i = 0; i < sc->sc_ntxdesc; i++) {
2606 		sipd = &sc->sc_txdescs[i];
2607 		memset(sipd, 0, sizeof(struct sip_desc));
2608 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
2609 	}
2610 	sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
2611 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2612 	sc->sc_txfree = sc->sc_ntxdesc;
2613 	sc->sc_txnext = 0;
2614 	sc->sc_txwin = 0;
2615 
2616 	/*
2617 	 * Initialize the transmit job descriptors.
2618 	 */
2619 	SIMPLEQ_INIT(&sc->sc_txfreeq);
2620 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
2621 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
2622 		txs = &sc->sc_txsoft[i];
2623 		txs->txs_mbuf = NULL;
2624 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2625 	}
2626 
2627 	/*
2628 	 * Initialize the receive descriptor and receive job
2629 	 * descriptor rings.
2630 	 */
2631 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2632 		rxs = &sc->sc_rxsoft[i];
2633 		if (rxs->rxs_mbuf == NULL) {
2634 			if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
2635 				printf("%s: unable to allocate or map rx "
2636 				    "buffer %d, error = %d\n",
2637 				    device_xname(&sc->sc_dev), i, error);
2638 				/*
2639 				 * XXX Should attempt to run with fewer receive
2640 				 * XXX buffers instead of just failing.
2641 				 */
2642 				sipcom_rxdrain(sc);
2643 				goto out;
2644 			}
2645 		} else
2646 			sip_init_rxdesc(sc, i);
2647 	}
2648 	sc->sc_rxptr = 0;
2649 	sc->sc_rxdiscard = 0;
2650 	sip_rxchain_reset(sc);
2651 
2652 	/*
2653 	 * Set the configuration register; it's already initialized
2654 	 * in sip_attach().
2655 	 */
2656 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2657 
2658 	/*
2659 	 * Initialize the prototype TXCFG register.
2660 	 */
2661 	if (sc->sc_gigabit) {
2662 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2663 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2664 	} else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2665 	     SIP_SIS900_REV(sc, SIS_REV_960) ||
2666 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2667 	    (sc->sc_cfg & CFG_EDBMASTEN)) {
2668 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
2669 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
2670 	} else {
2671 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2672 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2673 	}
2674 
2675 	sc->sc_txcfg |= TXCFG_ATP |
2676 	    __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
2677 	    sc->sc_tx_drain_thresh;
2678 	bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
2679 
2680 	/*
2681 	 * Initialize the receive drain threshold if we have never
2682 	 * done so.
2683 	 */
2684 	if (sc->sc_rx_drain_thresh == 0) {
2685 		/*
2686 		 * XXX This value should be tuned.  This is set to the
2687 		 * maximum of 248 bytes, and we may be able to improve
2688 		 * performance by decreasing it (although we should never
2689 		 * set this value lower than 2; 14 bytes are required to
2690 		 * filter the packet).
2691 		 */
2692 		sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
2693 	}
2694 
2695 	/*
2696 	 * Initialize the prototype RXCFG register.
2697 	 */
2698 	sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
2699 	/*
2700 	 * Accept long packets (including FCS) so we can handle
2701 	 * 802.1q-tagged frames and jumbo frames properly.
2702 	 */
2703 	if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2704 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2705 		sc->sc_rxcfg |= RXCFG_ALP;
2706 
2707 	/*
2708 	 * Checksum offloading is disabled if the user selects an MTU
2709 	 * larger than 8109.  (FreeBSD says 8152, but there is emperical
2710 	 * evidence that >8109 does not work on some boards, such as the
2711 	 * Planex GN-1000TE).
2712 	 */
2713 	if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2714 	    (ifp->if_capenable &
2715 	     (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2716 	      IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2717 	      IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
2718 		printf("%s: Checksum offloading does not work if MTU > 8109 - "
2719 		       "disabled.\n", device_xname(&sc->sc_dev));
2720 		ifp->if_capenable &=
2721 		    ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2722 		     IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2723 		     IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
2724 		ifp->if_csum_flags_tx = 0;
2725 		ifp->if_csum_flags_rx = 0;
2726 	}
2727 
2728 	bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
2729 
2730 	if (sc->sc_gigabit)
2731 		sipcom_dp83820_init(sc, ifp->if_capenable);
2732 
2733 	/*
2734 	 * Give the transmit and receive rings to the chip.
2735 	 */
2736 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2737 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2738 
2739 	/*
2740 	 * Initialize the interrupt mask.
2741 	 */
2742 	sc->sc_imr = sc->sc_bits.b_isr_dperr |
2743 	             sc->sc_bits.b_isr_sserr |
2744 		     sc->sc_bits.b_isr_rmabt |
2745 		     sc->sc_bits.b_isr_rtabt | ISR_RXSOVR |
2746 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2747 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2748 
2749 	/* Set up the receive filter. */
2750 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2751 
2752 	/*
2753 	 * Tune sc_rx_flow_thresh.
2754 	 * XXX "More than 8KB" is too short for jumbo frames.
2755 	 * XXX TODO: Threshold value should be user-settable.
2756 	 */
2757 	sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2758 				 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2759 				 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2760 
2761 	/*
2762 	 * Set the current media.  Do this after initializing the prototype
2763 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2764 	 * control.
2765 	 */
2766 	if ((error = ether_mediachange(ifp)) != 0)
2767 		goto out;
2768 
2769 	/*
2770 	 * Set the interrupt hold-off timer to 100us.
2771 	 */
2772 	if (sc->sc_gigabit)
2773 		bus_space_write_4(st, sh, SIP_IHR, 0x01);
2774 
2775 	/*
2776 	 * Enable interrupts.
2777 	 */
2778 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
2779 
2780 	/*
2781 	 * Start the transmit and receive processes.
2782 	 */
2783 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2784 
2785 	/*
2786 	 * Start the one second MII clock.
2787 	 */
2788 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2789 
2790 	/*
2791 	 * ...all done!
2792 	 */
2793 	ifp->if_flags |= IFF_RUNNING;
2794 	ifp->if_flags &= ~IFF_OACTIVE;
2795 	sc->sc_if_flags = ifp->if_flags;
2796 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2797 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2798 	sc->sc_prev.if_capenable = ifp->if_capenable;
2799 
2800  out:
2801 	if (error)
2802 		printf("%s: interface not running\n", device_xname(&sc->sc_dev));
2803 	return (error);
2804 }
2805 
2806 /*
2807  * sip_drain:
2808  *
2809  *	Drain the receive queue.
2810  */
2811 static void
2812 sipcom_rxdrain(struct sip_softc *sc)
2813 {
2814 	struct sip_rxsoft *rxs;
2815 	int i;
2816 
2817 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2818 		rxs = &sc->sc_rxsoft[i];
2819 		if (rxs->rxs_mbuf != NULL) {
2820 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2821 			m_freem(rxs->rxs_mbuf);
2822 			rxs->rxs_mbuf = NULL;
2823 		}
2824 	}
2825 }
2826 
2827 /*
2828  * sip_stop:		[ ifnet interface function ]
2829  *
2830  *	Stop transmission on the interface.
2831  */
2832 static void
2833 sipcom_stop(struct ifnet *ifp, int disable)
2834 {
2835 	struct sip_softc *sc = ifp->if_softc;
2836 	bus_space_tag_t st = sc->sc_st;
2837 	bus_space_handle_t sh = sc->sc_sh;
2838 	struct sip_txsoft *txs;
2839 	u_int32_t cmdsts = 0;		/* DEBUG */
2840 
2841 	/*
2842 	 * Stop the one second clock.
2843 	 */
2844 	callout_stop(&sc->sc_tick_ch);
2845 
2846 	/* Down the MII. */
2847 	mii_down(&sc->sc_mii);
2848 
2849 	if (device_is_active(&sc->sc_dev)) {
2850 		/*
2851 		 * Disable interrupts.
2852 		 */
2853 		bus_space_write_4(st, sh, SIP_IER, 0);
2854 
2855 		/*
2856 		 * Stop receiver and transmitter.
2857 		 */
2858 		bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2859 	}
2860 
2861 	/*
2862 	 * Release any queued transmit buffers.
2863 	 */
2864 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2865 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2866 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2867 		    (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
2868 		     CMDSTS_INTR) == 0)
2869 			printf("%s: sip_stop: last descriptor does not "
2870 			    "have INTR bit set\n", device_xname(&sc->sc_dev));
2871 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2872 #ifdef DIAGNOSTIC
2873 		if (txs->txs_mbuf == NULL) {
2874 			printf("%s: dirty txsoft with no mbuf chain\n",
2875 			    device_xname(&sc->sc_dev));
2876 			panic("sip_stop");
2877 		}
2878 #endif
2879 		cmdsts |=		/* DEBUG */
2880 		    le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
2881 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2882 		m_freem(txs->txs_mbuf);
2883 		txs->txs_mbuf = NULL;
2884 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2885 	}
2886 
2887 	/*
2888 	 * Mark the interface down and cancel the watchdog timer.
2889 	 */
2890 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2891 	ifp->if_timer = 0;
2892 
2893 	if (disable)
2894 		pmf_device_suspend_self(&sc->sc_dev);
2895 
2896 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2897 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2898 		printf("%s: sip_stop: no INTR bits set in dirty tx "
2899 		    "descriptors\n", device_xname(&sc->sc_dev));
2900 }
2901 
2902 /*
2903  * sip_read_eeprom:
2904  *
2905  *	Read data from the serial EEPROM.
2906  */
2907 static void
2908 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2909     u_int16_t *data)
2910 {
2911 	bus_space_tag_t st = sc->sc_st;
2912 	bus_space_handle_t sh = sc->sc_sh;
2913 	u_int16_t reg;
2914 	int i, x;
2915 
2916 	for (i = 0; i < wordcnt; i++) {
2917 		/* Send CHIP SELECT. */
2918 		reg = EROMAR_EECS;
2919 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
2920 
2921 		/* Shift in the READ opcode. */
2922 		for (x = 3; x > 0; x--) {
2923 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2924 				reg |= EROMAR_EEDI;
2925 			else
2926 				reg &= ~EROMAR_EEDI;
2927 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2928 			bus_space_write_4(st, sh, SIP_EROMAR,
2929 			    reg | EROMAR_EESK);
2930 			delay(4);
2931 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2932 			delay(4);
2933 		}
2934 
2935 		/* Shift in address. */
2936 		for (x = 6; x > 0; x--) {
2937 			if ((word + i) & (1 << (x - 1)))
2938 				reg |= EROMAR_EEDI;
2939 			else
2940 				reg &= ~EROMAR_EEDI;
2941 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2942 			bus_space_write_4(st, sh, SIP_EROMAR,
2943 			    reg | EROMAR_EESK);
2944 			delay(4);
2945 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2946 			delay(4);
2947 		}
2948 
2949 		/* Shift out data. */
2950 		reg = EROMAR_EECS;
2951 		data[i] = 0;
2952 		for (x = 16; x > 0; x--) {
2953 			bus_space_write_4(st, sh, SIP_EROMAR,
2954 			    reg | EROMAR_EESK);
2955 			delay(4);
2956 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2957 				data[i] |= (1 << (x - 1));
2958 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2959 			delay(4);
2960 		}
2961 
2962 		/* Clear CHIP SELECT. */
2963 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
2964 		delay(4);
2965 	}
2966 }
2967 
2968 /*
2969  * sipcom_add_rxbuf:
2970  *
2971  *	Add a receive buffer to the indicated descriptor.
2972  */
2973 static int
2974 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
2975 {
2976 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2977 	struct mbuf *m;
2978 	int error;
2979 
2980 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2981 	if (m == NULL)
2982 		return (ENOBUFS);
2983 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2984 
2985 	MCLGET(m, M_DONTWAIT);
2986 	if ((m->m_flags & M_EXT) == 0) {
2987 		m_freem(m);
2988 		return (ENOBUFS);
2989 	}
2990 
2991 	/* XXX I don't believe this is necessary. --dyoung */
2992 	if (sc->sc_gigabit)
2993 		m->m_len = sc->sc_parm->p_rxbuf_len;
2994 
2995 	if (rxs->rxs_mbuf != NULL)
2996 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2997 
2998 	rxs->rxs_mbuf = m;
2999 
3000 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
3001 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
3002 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
3003 	if (error) {
3004 		printf("%s: can't load rx DMA map %d, error = %d\n",
3005 		    device_xname(&sc->sc_dev), idx, error);
3006 		panic("%s", __func__);		/* XXX */
3007 	}
3008 
3009 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3010 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3011 
3012 	sip_init_rxdesc(sc, idx);
3013 
3014 	return (0);
3015 }
3016 
3017 /*
3018  * sip_sis900_set_filter:
3019  *
3020  *	Set up the receive filter.
3021  */
3022 static void
3023 sipcom_sis900_set_filter(struct sip_softc *sc)
3024 {
3025 	bus_space_tag_t st = sc->sc_st;
3026 	bus_space_handle_t sh = sc->sc_sh;
3027 	struct ethercom *ec = &sc->sc_ethercom;
3028 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3029 	struct ether_multi *enm;
3030 	const u_int8_t *cp;
3031 	struct ether_multistep step;
3032 	u_int32_t crc, mchash[16];
3033 
3034 	/*
3035 	 * Initialize the prototype RFCR.
3036 	 */
3037 	sc->sc_rfcr = RFCR_RFEN;
3038 	if (ifp->if_flags & IFF_BROADCAST)
3039 		sc->sc_rfcr |= RFCR_AAB;
3040 	if (ifp->if_flags & IFF_PROMISC) {
3041 		sc->sc_rfcr |= RFCR_AAP;
3042 		goto allmulti;
3043 	}
3044 
3045 	/*
3046 	 * Set up the multicast address filter by passing all multicast
3047 	 * addresses through a CRC generator, and then using the high-order
3048 	 * 6 bits as an index into the 128 bit multicast hash table (only
3049 	 * the lower 16 bits of each 32 bit multicast hash register are
3050 	 * valid).  The high order bits select the register, while the
3051 	 * rest of the bits select the bit within the register.
3052 	 */
3053 
3054 	memset(mchash, 0, sizeof(mchash));
3055 
3056 	/*
3057 	 * SiS900 (at least SiS963) requires us to register the address of
3058 	 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3059 	 */
3060 	crc = 0x0ed423f9;
3061 
3062 	if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3063 	    SIP_SIS900_REV(sc, SIS_REV_960) ||
3064 	    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3065 		/* Just want the 8 most significant bits. */
3066 		crc >>= 24;
3067 	} else {
3068 		/* Just want the 7 most significant bits. */
3069 		crc >>= 25;
3070 	}
3071 
3072 	/* Set the corresponding bit in the hash table. */
3073 	mchash[crc >> 4] |= 1 << (crc & 0xf);
3074 
3075 	ETHER_FIRST_MULTI(step, ec, enm);
3076 	while (enm != NULL) {
3077 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3078 			/*
3079 			 * We must listen to a range of multicast addresses.
3080 			 * For now, just accept all multicasts, rather than
3081 			 * trying to set only those filter bits needed to match
3082 			 * the range.  (At this time, the only use of address
3083 			 * ranges is for IP multicast routing, for which the
3084 			 * range is big enough to require all bits set.)
3085 			 */
3086 			goto allmulti;
3087 		}
3088 
3089 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3090 
3091 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3092 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
3093 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3094 			/* Just want the 8 most significant bits. */
3095 			crc >>= 24;
3096 		} else {
3097 			/* Just want the 7 most significant bits. */
3098 			crc >>= 25;
3099 		}
3100 
3101 		/* Set the corresponding bit in the hash table. */
3102 		mchash[crc >> 4] |= 1 << (crc & 0xf);
3103 
3104 		ETHER_NEXT_MULTI(step, enm);
3105 	}
3106 
3107 	ifp->if_flags &= ~IFF_ALLMULTI;
3108 	goto setit;
3109 
3110  allmulti:
3111 	ifp->if_flags |= IFF_ALLMULTI;
3112 	sc->sc_rfcr |= RFCR_AAM;
3113 
3114  setit:
3115 #define	FILTER_EMIT(addr, data)						\
3116 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
3117 	delay(1);							\
3118 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
3119 	delay(1)
3120 
3121 	/*
3122 	 * Disable receive filter, and program the node address.
3123 	 */
3124 	cp = CLLADDR(ifp->if_sadl);
3125 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
3126 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
3127 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
3128 
3129 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3130 		/*
3131 		 * Program the multicast hash table.
3132 		 */
3133 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
3134 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
3135 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
3136 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
3137 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
3138 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
3139 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
3140 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
3141 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3142 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
3143 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3144 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
3145 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
3146 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
3147 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
3148 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
3149 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
3150 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
3151 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
3152 		}
3153 	}
3154 #undef FILTER_EMIT
3155 
3156 	/*
3157 	 * Re-enable the receiver filter.
3158 	 */
3159 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3160 }
3161 
3162 /*
3163  * sip_dp83815_set_filter:
3164  *
3165  *	Set up the receive filter.
3166  */
3167 static void
3168 sipcom_dp83815_set_filter(struct sip_softc *sc)
3169 {
3170 	bus_space_tag_t st = sc->sc_st;
3171 	bus_space_handle_t sh = sc->sc_sh;
3172 	struct ethercom *ec = &sc->sc_ethercom;
3173 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3174 	struct ether_multi *enm;
3175 	const u_int8_t *cp;
3176 	struct ether_multistep step;
3177 	u_int32_t crc, hash, slot, bit;
3178 #define	MCHASH_NWORDS_83820	128
3179 #define	MCHASH_NWORDS_83815	32
3180 #define	MCHASH_NWORDS	MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3181 	u_int16_t mchash[MCHASH_NWORDS];
3182 	int i;
3183 
3184 	/*
3185 	 * Initialize the prototype RFCR.
3186 	 * Enable the receive filter, and accept on
3187 	 *    Perfect (destination address) Match
3188 	 * If IFF_BROADCAST, also accept all broadcast packets.
3189 	 * If IFF_PROMISC, accept all unicast packets (and later, set
3190 	 *    IFF_ALLMULTI and accept all multicast, too).
3191 	 */
3192 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3193 	if (ifp->if_flags & IFF_BROADCAST)
3194 		sc->sc_rfcr |= RFCR_AAB;
3195 	if (ifp->if_flags & IFF_PROMISC) {
3196 		sc->sc_rfcr |= RFCR_AAP;
3197 		goto allmulti;
3198 	}
3199 
3200 	/*
3201          * Set up the DP83820/DP83815 multicast address filter by
3202          * passing all multicast addresses through a CRC generator,
3203          * and then using the high-order 11/9 bits as an index into
3204          * the 2048/512 bit multicast hash table.  The high-order
3205          * 7/5 bits select the slot, while the low-order 4 bits
3206          * select the bit within the slot.  Note that only the low
3207          * 16-bits of each filter word are used, and there are
3208          * 128/32 filter words.
3209 	 */
3210 
3211 	memset(mchash, 0, sizeof(mchash));
3212 
3213 	ifp->if_flags &= ~IFF_ALLMULTI;
3214 	ETHER_FIRST_MULTI(step, ec, enm);
3215 	if (enm == NULL)
3216 		goto setit;
3217 	while (enm != NULL) {
3218 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3219 			/*
3220 			 * We must listen to a range of multicast addresses.
3221 			 * For now, just accept all multicasts, rather than
3222 			 * trying to set only those filter bits needed to match
3223 			 * the range.  (At this time, the only use of address
3224 			 * ranges is for IP multicast routing, for which the
3225 			 * range is big enough to require all bits set.)
3226 			 */
3227 			goto allmulti;
3228 		}
3229 
3230 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3231 
3232 		if (sc->sc_gigabit) {
3233 			/* Just want the 11 most significant bits. */
3234 			hash = crc >> 21;
3235 		} else {
3236 			/* Just want the 9 most significant bits. */
3237 			hash = crc >> 23;
3238 		}
3239 
3240 		slot = hash >> 4;
3241 		bit = hash & 0xf;
3242 
3243 		/* Set the corresponding bit in the hash table. */
3244 		mchash[slot] |= 1 << bit;
3245 
3246 		ETHER_NEXT_MULTI(step, enm);
3247 	}
3248 	sc->sc_rfcr |= RFCR_MHEN;
3249 	goto setit;
3250 
3251  allmulti:
3252 	ifp->if_flags |= IFF_ALLMULTI;
3253 	sc->sc_rfcr |= RFCR_AAM;
3254 
3255  setit:
3256 #define	FILTER_EMIT(addr, data)						\
3257 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
3258 	delay(1);							\
3259 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
3260 	delay(1)
3261 
3262 	/*
3263 	 * Disable receive filter, and program the node address.
3264 	 */
3265 	cp = CLLADDR(ifp->if_sadl);
3266 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3267 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3268 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3269 
3270 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3271 		int nwords =
3272 		    sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3273 		/*
3274 		 * Program the multicast hash table.
3275 		 */
3276 		for (i = 0; i < nwords; i++) {
3277 			FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
3278 		}
3279 	}
3280 #undef FILTER_EMIT
3281 #undef MCHASH_NWORDS
3282 #undef MCHASH_NWORDS_83815
3283 #undef MCHASH_NWORDS_83820
3284 
3285 	/*
3286 	 * Re-enable the receiver filter.
3287 	 */
3288 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3289 }
3290 
3291 /*
3292  * sip_dp83820_mii_readreg:	[mii interface function]
3293  *
3294  *	Read a PHY register on the MII of the DP83820.
3295  */
3296 static int
3297 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg)
3298 {
3299 	struct sip_softc *sc = device_private(self);
3300 
3301 	if (sc->sc_cfg & CFG_TBI_EN) {
3302 		bus_addr_t tbireg;
3303 		int rv;
3304 
3305 		if (phy != 0)
3306 			return (0);
3307 
3308 		switch (reg) {
3309 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3310 		case MII_BMSR:		tbireg = SIP_TBISR; break;
3311 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3312 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3313 		case MII_ANER:		tbireg = SIP_TANER; break;
3314 		case MII_EXTSR:
3315 			/*
3316 			 * Don't even bother reading the TESR register.
3317 			 * The manual documents that the device has
3318 			 * 1000baseX full/half capability, but the
3319 			 * register itself seems read back 0 on some
3320 			 * boards.  Just hard-code the result.
3321 			 */
3322 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3323 
3324 		default:
3325 			return (0);
3326 		}
3327 
3328 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3329 		if (tbireg == SIP_TBISR) {
3330 			/* LINK and ACOMP are switched! */
3331 			int val = rv;
3332 
3333 			rv = 0;
3334 			if (val & TBISR_MR_LINK_STATUS)
3335 				rv |= BMSR_LINK;
3336 			if (val & TBISR_MR_AN_COMPLETE)
3337 				rv |= BMSR_ACOMP;
3338 
3339 			/*
3340 			 * The manual claims this register reads back 0
3341 			 * on hard and soft reset.  But we want to let
3342 			 * the gentbi driver know that we support auto-
3343 			 * negotiation, so hard-code this bit in the
3344 			 * result.
3345 			 */
3346 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
3347 		}
3348 
3349 		return (rv);
3350 	}
3351 
3352 	return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
3353 }
3354 
3355 /*
3356  * sip_dp83820_mii_writereg:	[mii interface function]
3357  *
3358  *	Write a PHY register on the MII of the DP83820.
3359  */
3360 static void
3361 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, int val)
3362 {
3363 	struct sip_softc *sc = device_private(self);
3364 
3365 	if (sc->sc_cfg & CFG_TBI_EN) {
3366 		bus_addr_t tbireg;
3367 
3368 		if (phy != 0)
3369 			return;
3370 
3371 		switch (reg) {
3372 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3373 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3374 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3375 		default:
3376 			return;
3377 		}
3378 
3379 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3380 		return;
3381 	}
3382 
3383 	mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
3384 }
3385 
3386 /*
3387  * sip_dp83820_mii_statchg:	[mii interface function]
3388  *
3389  *	Callback from MII layer when media changes.
3390  */
3391 static void
3392 sipcom_dp83820_mii_statchg(device_t self)
3393 {
3394 	struct sip_softc *sc = device_private(self);
3395 	struct mii_data *mii = &sc->sc_mii;
3396 	u_int32_t cfg, pcr;
3397 
3398 	/*
3399 	 * Get flow control negotiation result.
3400 	 */
3401 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3402 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3403 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3404 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3405 	}
3406 
3407 	/*
3408 	 * Update TXCFG for full-duplex operation.
3409 	 */
3410 	if ((mii->mii_media_active & IFM_FDX) != 0)
3411 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3412 	else
3413 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3414 
3415 	/*
3416 	 * Update RXCFG for full-duplex or loopback.
3417 	 */
3418 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3419 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3420 		sc->sc_rxcfg |= RXCFG_ATX;
3421 	else
3422 		sc->sc_rxcfg &= ~RXCFG_ATX;
3423 
3424 	/*
3425 	 * Update CFG for MII/GMII.
3426 	 */
3427 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3428 		cfg = sc->sc_cfg | CFG_MODE_1000;
3429 	else
3430 		cfg = sc->sc_cfg;
3431 
3432 	/*
3433 	 * 802.3x flow control.
3434 	 */
3435 	pcr = 0;
3436 	if (sc->sc_flowflags & IFM_FLOW) {
3437 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3438 			pcr |= sc->sc_rx_flow_thresh;
3439 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3440 			pcr |= PCR_PSEN | PCR_PS_MCAST;
3441 	}
3442 
3443 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3444 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3445 	    sc->sc_txcfg);
3446 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3447 	    sc->sc_rxcfg);
3448 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3449 }
3450 
3451 /*
3452  * sip_mii_bitbang_read: [mii bit-bang interface function]
3453  *
3454  *	Read the MII serial port for the MII bit-bang module.
3455  */
3456 static u_int32_t
3457 sipcom_mii_bitbang_read(device_t self)
3458 {
3459 	struct sip_softc *sc = device_private(self);
3460 
3461 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3462 }
3463 
3464 /*
3465  * sip_mii_bitbang_write: [mii big-bang interface function]
3466  *
3467  *	Write the MII serial port for the MII bit-bang module.
3468  */
3469 static void
3470 sipcom_mii_bitbang_write(device_t self, u_int32_t val)
3471 {
3472 	struct sip_softc *sc = device_private(self);
3473 
3474 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3475 }
3476 
3477 /*
3478  * sip_sis900_mii_readreg:	[mii interface function]
3479  *
3480  *	Read a PHY register on the MII.
3481  */
3482 static int
3483 sipcom_sis900_mii_readreg(device_t self, int phy, int reg)
3484 {
3485 	struct sip_softc *sc = device_private(self);
3486 	u_int32_t enphy;
3487 
3488 	/*
3489 	 * The PHY of recent SiS chipsets is accessed through bitbang
3490 	 * operations.
3491 	 */
3492 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3493 		return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3494 		    phy, reg);
3495 
3496 #ifndef SIS900_MII_RESTRICT
3497 	/*
3498 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3499 	 * MII address 0.
3500 	 */
3501 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3502 		return (0);
3503 #endif
3504 
3505 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3506 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3507 	    ENPHY_RWCMD | ENPHY_ACCESS);
3508 	do {
3509 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3510 	} while (enphy & ENPHY_ACCESS);
3511 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3512 }
3513 
3514 /*
3515  * sip_sis900_mii_writereg:	[mii interface function]
3516  *
3517  *	Write a PHY register on the MII.
3518  */
3519 static void
3520 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, int val)
3521 {
3522 	struct sip_softc *sc = device_private(self);
3523 	u_int32_t enphy;
3524 
3525 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3526 		mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3527 		    phy, reg, val);
3528 		return;
3529 	}
3530 
3531 #ifndef SIS900_MII_RESTRICT
3532 	/*
3533 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3534 	 * MII address 0.
3535 	 */
3536 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3537 		return;
3538 #endif
3539 
3540 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3541 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3542 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3543 	do {
3544 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3545 	} while (enphy & ENPHY_ACCESS);
3546 }
3547 
3548 /*
3549  * sip_sis900_mii_statchg:	[mii interface function]
3550  *
3551  *	Callback from MII layer when media changes.
3552  */
3553 static void
3554 sipcom_sis900_mii_statchg(device_t self)
3555 {
3556 	struct sip_softc *sc = device_private(self);
3557 	struct mii_data *mii = &sc->sc_mii;
3558 	u_int32_t flowctl;
3559 
3560 	/*
3561 	 * Get flow control negotiation result.
3562 	 */
3563 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3564 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3565 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3566 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3567 	}
3568 
3569 	/*
3570 	 * Update TXCFG for full-duplex operation.
3571 	 */
3572 	if ((mii->mii_media_active & IFM_FDX) != 0)
3573 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3574 	else
3575 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3576 
3577 	/*
3578 	 * Update RXCFG for full-duplex or loopback.
3579 	 */
3580 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3581 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3582 		sc->sc_rxcfg |= RXCFG_ATX;
3583 	else
3584 		sc->sc_rxcfg &= ~RXCFG_ATX;
3585 
3586 	/*
3587 	 * Update IMR for use of 802.3x flow control.
3588 	 */
3589 	if (sc->sc_flowflags & IFM_FLOW) {
3590 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3591 		flowctl = FLOWCTL_FLOWEN;
3592 	} else {
3593 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3594 		flowctl = 0;
3595 	}
3596 
3597 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3598 	    sc->sc_txcfg);
3599 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3600 	    sc->sc_rxcfg);
3601 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3602 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3603 }
3604 
3605 /*
3606  * sip_dp83815_mii_readreg:	[mii interface function]
3607  *
3608  *	Read a PHY register on the MII.
3609  */
3610 static int
3611 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg)
3612 {
3613 	struct sip_softc *sc = device_private(self);
3614 	u_int32_t val;
3615 
3616 	/*
3617 	 * The DP83815 only has an internal PHY.  Only allow
3618 	 * MII address 0.
3619 	 */
3620 	if (phy != 0)
3621 		return (0);
3622 
3623 	/*
3624 	 * Apparently, after a reset, the DP83815 can take a while
3625 	 * to respond.  During this recovery period, the BMSR returns
3626 	 * a value of 0.  Catch this -- it's not supposed to happen
3627 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3628 	 * PHY to come back to life.
3629 	 *
3630 	 * This works out because the BMSR is the first register
3631 	 * read during the PHY probe process.
3632 	 */
3633 	do {
3634 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3635 	} while (reg == MII_BMSR && val == 0);
3636 
3637 	return (val & 0xffff);
3638 }
3639 
3640 /*
3641  * sip_dp83815_mii_writereg:	[mii interface function]
3642  *
3643  *	Write a PHY register to the MII.
3644  */
3645 static void
3646 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, int val)
3647 {
3648 	struct sip_softc *sc = device_private(self);
3649 
3650 	/*
3651 	 * The DP83815 only has an internal PHY.  Only allow
3652 	 * MII address 0.
3653 	 */
3654 	if (phy != 0)
3655 		return;
3656 
3657 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3658 }
3659 
3660 /*
3661  * sip_dp83815_mii_statchg:	[mii interface function]
3662  *
3663  *	Callback from MII layer when media changes.
3664  */
3665 static void
3666 sipcom_dp83815_mii_statchg(device_t self)
3667 {
3668 	struct sip_softc *sc = device_private(self);
3669 
3670 	/*
3671 	 * Update TXCFG for full-duplex operation.
3672 	 */
3673 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3674 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3675 	else
3676 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3677 
3678 	/*
3679 	 * Update RXCFG for full-duplex or loopback.
3680 	 */
3681 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3682 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3683 		sc->sc_rxcfg |= RXCFG_ATX;
3684 	else
3685 		sc->sc_rxcfg &= ~RXCFG_ATX;
3686 
3687 	/*
3688 	 * XXX 802.3x flow control.
3689 	 */
3690 
3691 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3692 	    sc->sc_txcfg);
3693 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3694 	    sc->sc_rxcfg);
3695 
3696 	/*
3697 	 * Some DP83815s experience problems when used with short
3698 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
3699 	 * sequence adjusts the DSP's signal attenuation to fix the
3700 	 * problem.
3701 	 */
3702 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3703 		uint32_t reg;
3704 
3705 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3706 
3707 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3708 		reg &= 0x0fff;
3709 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3710 		delay(100);
3711 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3712 		reg &= 0x00ff;
3713 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3714 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3715 			    0x00e8);
3716 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3717 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3718 			    reg | 0x20);
3719 		}
3720 
3721 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3722 	}
3723 }
3724 
3725 static void
3726 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3727     const struct pci_attach_args *pa, u_int8_t *enaddr)
3728 {
3729 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3730 	u_int8_t cksum, *e, match;
3731 	int i;
3732 
3733 	/*
3734 	 * EEPROM data format for the DP83820 can be found in
3735 	 * the DP83820 manual, section 4.2.4.
3736 	 */
3737 
3738 	sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3739 
3740 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3741 	match = ~(match - 1);
3742 
3743 	cksum = 0x55;
3744 	e = (u_int8_t *) eeprom_data;
3745 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3746 		cksum += *e++;
3747 
3748 	if (cksum != match)
3749 		printf("%s: Checksum (%x) mismatch (%x)",
3750 		    device_xname(&sc->sc_dev), cksum, match);
3751 
3752 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3753 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3754 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3755 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3756 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3757 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3758 }
3759 
3760 static void
3761 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3762 {
3763 	int i;
3764 
3765 	/*
3766 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
3767 	 * a reason, but I don't know it.
3768 	 */
3769 	for (i = 0; i < 10; i++)
3770 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3771 }
3772 
3773 static void
3774 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3775     const struct pci_attach_args *pa, u_int8_t *enaddr)
3776 {
3777 	u_int16_t myea[ETHER_ADDR_LEN / 2];
3778 
3779 	switch (sc->sc_rev) {
3780 	case SIS_REV_630S:
3781 	case SIS_REV_630E:
3782 	case SIS_REV_630EA1:
3783 	case SIS_REV_630ET:
3784 	case SIS_REV_635:
3785 		/*
3786 		 * The MAC address for the on-board Ethernet of
3787 		 * the SiS 630 chipset is in the NVRAM.  Kick
3788 		 * the chip into re-loading it from NVRAM, and
3789 		 * read the MAC address out of the filter registers.
3790 		 */
3791 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3792 
3793 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3794 		    RFCR_RFADDR_NODE0);
3795 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3796 		    0xffff;
3797 
3798 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3799 		    RFCR_RFADDR_NODE2);
3800 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3801 		    0xffff;
3802 
3803 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3804 		    RFCR_RFADDR_NODE4);
3805 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3806 		    0xffff;
3807 		break;
3808 
3809 	case SIS_REV_960:
3810 		{
3811 #define	SIS_SET_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3812 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3813 
3814 #define	SIS_CLR_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3815 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3816 
3817 			int waittime, i;
3818 
3819 			/* Allow to read EEPROM from LAN. It is shared
3820 			 * between a 1394 controller and the NIC and each
3821 			 * time we access it, we need to set SIS_EECMD_REQ.
3822 			 */
3823 			SIS_SET_EROMAR(sc, EROMAR_REQ);
3824 
3825 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3826 				/* Force EEPROM to idle state. */
3827 
3828 				/*
3829 				 * XXX-cube This is ugly.  I'll look for docs about it.
3830 				 */
3831 				SIS_SET_EROMAR(sc, EROMAR_EECS);
3832 				sipcom_sis900_eeprom_delay(sc);
3833 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3834 					SIS_SET_EROMAR(sc, EROMAR_EESK);
3835 					sipcom_sis900_eeprom_delay(sc);
3836 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
3837 					sipcom_sis900_eeprom_delay(sc);
3838 				}
3839 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
3840 				sipcom_sis900_eeprom_delay(sc);
3841 				bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3842 
3843 				if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3844 					sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3845 					    sizeof(myea) / sizeof(myea[0]), myea);
3846 					break;
3847 				}
3848 				DELAY(1);
3849 			}
3850 
3851 			/*
3852 			 * Set SIS_EECTL_CLK to high, so a other master
3853 			 * can operate on the i2c bus.
3854 			 */
3855 			SIS_SET_EROMAR(sc, EROMAR_EESK);
3856 
3857 			/* Refuse EEPROM access by LAN */
3858 			SIS_SET_EROMAR(sc, EROMAR_DONE);
3859 		} break;
3860 
3861 	default:
3862 		sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3863 		    sizeof(myea) / sizeof(myea[0]), myea);
3864 	}
3865 
3866 	enaddr[0] = myea[0] & 0xff;
3867 	enaddr[1] = myea[0] >> 8;
3868 	enaddr[2] = myea[1] & 0xff;
3869 	enaddr[3] = myea[1] >> 8;
3870 	enaddr[4] = myea[2] & 0xff;
3871 	enaddr[5] = myea[2] >> 8;
3872 }
3873 
3874 /* Table and macro to bit-reverse an octet. */
3875 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3876 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3877 
3878 static void
3879 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3880     const struct pci_attach_args *pa, u_int8_t *enaddr)
3881 {
3882 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3883 	u_int8_t cksum, *e, match;
3884 	int i;
3885 
3886 	sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3887 	    sizeof(eeprom_data[0]), eeprom_data);
3888 
3889 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3890 	match = ~(match - 1);
3891 
3892 	cksum = 0x55;
3893 	e = (u_int8_t *) eeprom_data;
3894 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3895 		cksum += *e++;
3896 	}
3897 	if (cksum != match) {
3898 		printf("%s: Checksum (%x) mismatch (%x)",
3899 		    device_xname(&sc->sc_dev), cksum, match);
3900 	}
3901 
3902 	/*
3903 	 * Unrolled because it makes slightly more sense this way.
3904 	 * The DP83815 stores the MAC address in bit 0 of word 6
3905 	 * through bit 15 of word 8.
3906 	 */
3907 	ea = &eeprom_data[6];
3908 	enaddr[0] = ((*ea & 0x1) << 7);
3909 	ea++;
3910 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
3911 	enaddr[1] = ((*ea & 0x1FE) >> 1);
3912 	enaddr[2] = ((*ea & 0x1) << 7);
3913 	ea++;
3914 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
3915 	enaddr[3] = ((*ea & 0x1FE) >> 1);
3916 	enaddr[4] = ((*ea & 0x1) << 7);
3917 	ea++;
3918 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
3919 	enaddr[5] = ((*ea & 0x1FE) >> 1);
3920 
3921 	/*
3922 	 * In case that's not weird enough, we also need to reverse
3923 	 * the bits in each byte.  This all actually makes more sense
3924 	 * if you think about the EEPROM storage as an array of bits
3925 	 * being shifted into bytes, but that's not how we're looking
3926 	 * at it here...
3927 	 */
3928 	for (i = 0; i < 6 ;i++)
3929 		enaddr[i] = bbr(enaddr[i]);
3930 }
3931 
3932 /*
3933  * sip_mediastatus:	[ifmedia interface function]
3934  *
3935  *	Get the current interface media status.
3936  */
3937 static void
3938 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3939 {
3940 	struct sip_softc *sc = ifp->if_softc;
3941 
3942 	if (!device_is_active(&sc->sc_dev)) {
3943 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
3944 		ifmr->ifm_status = 0;
3945 		return;
3946 	}
3947 	ether_mediastatus(ifp, ifmr);
3948 	ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
3949 			   sc->sc_flowflags;
3950 }
3951