xref: /netbsd-src/sys/dev/pci/if_sip.c (revision b519c70ad771d0a55b3c2277db6b97a05fa6465d)
1 /*	$NetBSD: if_sip.c,v 1.44 2001/12/20 03:32:31 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*-
40  * Copyright (c) 1999 Network Computer, Inc.
41  * All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of Network Computer, Inc. nor the names of its
52  *    contributors may be used to endorse or promote products derived
53  *    from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65  * POSSIBILITY OF SUCH DAMAGE.
66  */
67 
68 /*
69  * Device driver for the Silicon Integrated Systems SiS 900,
70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72  * controllers.
73  *
74  * Originally written to support the SiS 900 by Jason R. Thorpe for
75  * Network Computer, Inc.
76  *
77  * TODO:
78  *
79  *	- Support the 10-bit interface on the DP83820 (for fiber).
80  *
81  *	- Reduce the interrupt load.
82  */
83 
84 #include <sys/cdefs.h>
85 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.44 2001/12/20 03:32:31 thorpej Exp $");
86 
87 #include "bpfilter.h"
88 
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/callout.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/socket.h>
96 #include <sys/ioctl.h>
97 #include <sys/errno.h>
98 #include <sys/device.h>
99 #include <sys/queue.h>
100 
101 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
102 
103 #include <net/if.h>
104 #include <net/if_dl.h>
105 #include <net/if_media.h>
106 #include <net/if_ether.h>
107 
108 #if NBPFILTER > 0
109 #include <net/bpf.h>
110 #endif
111 
112 #include <machine/bus.h>
113 #include <machine/intr.h>
114 #include <machine/endian.h>
115 
116 #include <dev/mii/mii.h>
117 #include <dev/mii/miivar.h>
118 #ifdef DP83820
119 #include <dev/mii/mii_bitbang.h>
120 #endif /* DP83820 */
121 
122 #include <dev/pci/pcireg.h>
123 #include <dev/pci/pcivar.h>
124 #include <dev/pci/pcidevs.h>
125 
126 #include <dev/pci/if_sipreg.h>
127 
128 #ifdef DP83820		/* DP83820 Gigabit Ethernet */
129 #define	SIP_DECL(x)	__CONCAT(gsip_,x)
130 #else			/* SiS900 and DP83815 */
131 #define	SIP_DECL(x)	__CONCAT(sip_,x)
132 #endif
133 
134 #define	SIP_STR(x)	__STRING(SIP_DECL(x))
135 
136 /*
137  * Transmit descriptor list size.  This is arbitrary, but allocate
138  * enough descriptors for 128 pending transmissions, and 8 segments
139  * per packet.  This MUST work out to a power of 2.
140  */
141 #define	SIP_NTXSEGS		8
142 
143 #define	SIP_TXQUEUELEN		256
144 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS)
145 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
146 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
147 
148 /*
149  * Receive descriptor list size.  We have one Rx buffer per incoming
150  * packet, so this logic is a little simpler.
151  *
152  * Actually, on the DP83820, we allow the packet to consume more than
153  * one buffer, in order to support jumbo Ethernet frames.  In that
154  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
155  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
156  * so we'd better be quick about handling receive interrupts.
157  */
158 #if defined(DP83820)
159 #define	SIP_NRXDESC		256
160 #else
161 #define	SIP_NRXDESC		128
162 #endif /* DP83820 */
163 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
164 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
165 
166 /*
167  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
168  * a single clump that maps to a single DMA segment to make several things
169  * easier.
170  */
171 struct sip_control_data {
172 	/*
173 	 * The transmit descriptors.
174 	 */
175 	struct sip_desc scd_txdescs[SIP_NTXDESC];
176 
177 	/*
178 	 * The receive descriptors.
179 	 */
180 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
181 };
182 
183 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
184 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
185 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
186 
187 /*
188  * Software state for transmit jobs.
189  */
190 struct sip_txsoft {
191 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
192 	bus_dmamap_t txs_dmamap;	/* our DMA map */
193 	int txs_firstdesc;		/* first descriptor in packet */
194 	int txs_lastdesc;		/* last descriptor in packet */
195 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
196 };
197 
198 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
199 
200 /*
201  * Software state for receive jobs.
202  */
203 struct sip_rxsoft {
204 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
205 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
206 };
207 
208 /*
209  * Software state per device.
210  */
211 struct sip_softc {
212 	struct device sc_dev;		/* generic device information */
213 	bus_space_tag_t sc_st;		/* bus space tag */
214 	bus_space_handle_t sc_sh;	/* bus space handle */
215 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
216 	struct ethercom sc_ethercom;	/* ethernet common data */
217 	void *sc_sdhook;		/* shutdown hook */
218 
219 	const struct sip_product *sc_model; /* which model are we? */
220 
221 	void *sc_ih;			/* interrupt cookie */
222 
223 	struct mii_data sc_mii;		/* MII/media information */
224 
225 	struct callout sc_tick_ch;	/* tick callout */
226 
227 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
228 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
229 
230 	/*
231 	 * Software state for transmit and receive descriptors.
232 	 */
233 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
234 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
235 
236 	/*
237 	 * Control data structures.
238 	 */
239 	struct sip_control_data *sc_control_data;
240 #define	sc_txdescs	sc_control_data->scd_txdescs
241 #define	sc_rxdescs	sc_control_data->scd_rxdescs
242 
243 #ifdef SIP_EVENT_COUNTERS
244 	/*
245 	 * Event counters.
246 	 */
247 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
248 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
249 	struct evcnt sc_ev_txintr;	/* Tx interrupts */
250 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
251 #ifdef DP83820
252 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
253 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
254 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
255 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
256 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
257 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
258 #endif /* DP83820 */
259 #endif /* SIP_EVENT_COUNTERS */
260 
261 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
262 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
263 	u_int32_t sc_imr;		/* prototype IMR register */
264 	u_int32_t sc_rfcr;		/* prototype RFCR register */
265 
266 	u_int32_t sc_cfg;		/* prototype CFG register */
267 
268 #ifdef DP83820
269 	u_int32_t sc_gpior;		/* prototype GPIOR register */
270 #endif /* DP83820 */
271 
272 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
273 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
274 
275 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
276 
277 	int	sc_flags;		/* misc. flags; see below */
278 
279 	int	sc_txfree;		/* number of free Tx descriptors */
280 	int	sc_txnext;		/* next ready Tx descriptor */
281 
282 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
283 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
284 
285 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
286 #if defined(DP83820)
287 	int	sc_rxdiscard;
288 	int	sc_rxlen;
289 	struct mbuf *sc_rxhead;
290 	struct mbuf *sc_rxtail;
291 	struct mbuf **sc_rxtailp;
292 #endif /* DP83820 */
293 };
294 
295 /* sc_flags */
296 #define	SIPF_PAUSED	0x00000001	/* paused (802.3x flow control) */
297 
298 #ifdef DP83820
299 #define	SIP_RXCHAIN_RESET(sc)						\
300 do {									\
301 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
302 	*(sc)->sc_rxtailp = NULL;					\
303 	(sc)->sc_rxlen = 0;						\
304 } while (/*CONSTCOND*/0)
305 
306 #define	SIP_RXCHAIN_LINK(sc, m)						\
307 do {									\
308 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
309 	(sc)->sc_rxtailp = &(m)->m_next;				\
310 } while (/*CONSTCOND*/0)
311 #endif /* DP83820 */
312 
313 #ifdef SIP_EVENT_COUNTERS
314 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
315 #else
316 #define	SIP_EVCNT_INCR(ev)	/* nothing */
317 #endif
318 
319 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
320 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
321 
322 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
323 do {									\
324 	int __x, __n;							\
325 									\
326 	__x = (x);							\
327 	__n = (n);							\
328 									\
329 	/* If it will wrap around, sync to the end of the ring. */	\
330 	if ((__x + __n) > SIP_NTXDESC) {				\
331 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
332 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
333 		    (SIP_NTXDESC - __x), (ops));			\
334 		__n -= (SIP_NTXDESC - __x);				\
335 		__x = 0;						\
336 	}								\
337 									\
338 	/* Now sync whatever is left. */				\
339 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
340 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
341 } while (0)
342 
343 #define	SIP_CDRXSYNC(sc, x, ops)					\
344 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
345 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
346 
347 #ifdef DP83820
348 #define	SIP_INIT_RXDESC_EXTSTS	__sipd->sipd_extsts = 0;
349 #define	SIP_RXBUF_LEN		(MCLBYTES - 4)
350 #else
351 #define	SIP_INIT_RXDESC_EXTSTS	/* nothing */
352 #define	SIP_RXBUF_LEN		(MCLBYTES - 1)	/* field width */
353 #endif
354 #define	SIP_INIT_RXDESC(sc, x)						\
355 do {									\
356 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
357 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
358 									\
359 	__sipd->sipd_link =						\
360 	    htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x))));		\
361 	__sipd->sipd_bufptr =						\
362 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr);		\
363 	__sipd->sipd_cmdsts = htole32(CMDSTS_INTR |			\
364 	    (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK));			\
365 	SIP_INIT_RXDESC_EXTSTS						\
366 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
367 } while (0)
368 
369 #define SIP_TIMEOUT 1000
370 
371 void	SIP_DECL(start)(struct ifnet *);
372 void	SIP_DECL(watchdog)(struct ifnet *);
373 int	SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
374 int	SIP_DECL(init)(struct ifnet *);
375 void	SIP_DECL(stop)(struct ifnet *, int);
376 
377 void	SIP_DECL(shutdown)(void *);
378 
379 void	SIP_DECL(reset)(struct sip_softc *);
380 void	SIP_DECL(rxdrain)(struct sip_softc *);
381 int	SIP_DECL(add_rxbuf)(struct sip_softc *, int);
382 void	SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
383 void	SIP_DECL(tick)(void *);
384 
385 #if !defined(DP83820)
386 void	SIP_DECL(sis900_set_filter)(struct sip_softc *);
387 #endif /* ! DP83820 */
388 void	SIP_DECL(dp83815_set_filter)(struct sip_softc *);
389 
390 #if defined(DP83820)
391 void	SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
392 	    const struct pci_attach_args *, u_int8_t *);
393 #else
394 void	SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
395 	    const struct pci_attach_args *, u_int8_t *);
396 void	SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
397 	    const struct pci_attach_args *, u_int8_t *);
398 #endif /* DP83820 */
399 
400 int	SIP_DECL(intr)(void *);
401 void	SIP_DECL(txintr)(struct sip_softc *);
402 void	SIP_DECL(rxintr)(struct sip_softc *);
403 
404 #if defined(DP83820)
405 int	SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
406 void	SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
407 void	SIP_DECL(dp83820_mii_statchg)(struct device *);
408 #else
409 int	SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
410 void	SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
411 void	SIP_DECL(sis900_mii_statchg)(struct device *);
412 
413 int	SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
414 void	SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
415 void	SIP_DECL(dp83815_mii_statchg)(struct device *);
416 #endif /* DP83820 */
417 
418 int	SIP_DECL(mediachange)(struct ifnet *);
419 void	SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
420 
421 int	SIP_DECL(match)(struct device *, struct cfdata *, void *);
422 void	SIP_DECL(attach)(struct device *, struct device *, void *);
423 
424 int	SIP_DECL(copy_small) = 0;
425 
426 struct cfattach SIP_DECL(ca) = {
427 	sizeof(struct sip_softc), SIP_DECL(match), SIP_DECL(attach),
428 };
429 
430 /*
431  * Descriptions of the variants of the SiS900.
432  */
433 struct sip_variant {
434 	int	(*sipv_mii_readreg)(struct device *, int, int);
435 	void	(*sipv_mii_writereg)(struct device *, int, int, int);
436 	void	(*sipv_mii_statchg)(struct device *);
437 	void	(*sipv_set_filter)(struct sip_softc *);
438 	void	(*sipv_read_macaddr)(struct sip_softc *,
439 		    const struct pci_attach_args *, u_int8_t *);
440 };
441 
442 #if defined(DP83820)
443 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
444 void	SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
445 
446 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
447 	SIP_DECL(dp83820_mii_bitbang_read),
448 	SIP_DECL(dp83820_mii_bitbang_write),
449 	{
450 		EROMAR_MDIO,		/* MII_BIT_MDO */
451 		EROMAR_MDIO,		/* MII_BIT_MDI */
452 		EROMAR_MDC,		/* MII_BIT_MDC */
453 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
454 		0,			/* MII_BIT_DIR_PHY_HOST */
455 	}
456 };
457 #endif /* DP83820 */
458 
459 #if defined(DP83820)
460 const struct sip_variant SIP_DECL(variant_dp83820) = {
461 	SIP_DECL(dp83820_mii_readreg),
462 	SIP_DECL(dp83820_mii_writereg),
463 	SIP_DECL(dp83820_mii_statchg),
464 	SIP_DECL(dp83815_set_filter),
465 	SIP_DECL(dp83820_read_macaddr),
466 };
467 #else
468 const struct sip_variant SIP_DECL(variant_sis900) = {
469 	SIP_DECL(sis900_mii_readreg),
470 	SIP_DECL(sis900_mii_writereg),
471 	SIP_DECL(sis900_mii_statchg),
472 	SIP_DECL(sis900_set_filter),
473 	SIP_DECL(sis900_read_macaddr),
474 };
475 
476 const struct sip_variant SIP_DECL(variant_dp83815) = {
477 	SIP_DECL(dp83815_mii_readreg),
478 	SIP_DECL(dp83815_mii_writereg),
479 	SIP_DECL(dp83815_mii_statchg),
480 	SIP_DECL(dp83815_set_filter),
481 	SIP_DECL(dp83815_read_macaddr),
482 };
483 #endif /* DP83820 */
484 
485 /*
486  * Devices supported by this driver.
487  */
488 const struct sip_product {
489 	pci_vendor_id_t		sip_vendor;
490 	pci_product_id_t	sip_product;
491 	const char		*sip_name;
492 	const struct sip_variant *sip_variant;
493 } SIP_DECL(products)[] = {
494 #if defined(DP83820)
495 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
496 	  "NatSemi DP83820 Gigabit Ethernet",
497 	  &SIP_DECL(variant_dp83820) },
498 #else
499 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
500 	  "SiS 900 10/100 Ethernet",
501 	  &SIP_DECL(variant_sis900) },
502 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
503 	  "SiS 7016 10/100 Ethernet",
504 	  &SIP_DECL(variant_sis900) },
505 
506 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
507 	  "NatSemi DP83815 10/100 Ethernet",
508 	  &SIP_DECL(variant_dp83815) },
509 #endif /* DP83820 */
510 
511 	{ 0,			0,
512 	  NULL,
513 	  NULL },
514 };
515 
516 static const struct sip_product *
517 SIP_DECL(lookup)(const struct pci_attach_args *pa)
518 {
519 	const struct sip_product *sip;
520 
521 	for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
522 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
523 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
524 			return (sip);
525 	}
526 	return (NULL);
527 }
528 
529 int
530 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
531 {
532 	struct pci_attach_args *pa = aux;
533 
534 	if (SIP_DECL(lookup)(pa) != NULL)
535 		return (1);
536 
537 	return (0);
538 }
539 
540 void
541 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
542 {
543 	struct sip_softc *sc = (struct sip_softc *) self;
544 	struct pci_attach_args *pa = aux;
545 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
546 	pci_chipset_tag_t pc = pa->pa_pc;
547 	pci_intr_handle_t ih;
548 	const char *intrstr = NULL;
549 	bus_space_tag_t iot, memt;
550 	bus_space_handle_t ioh, memh;
551 	bus_dma_segment_t seg;
552 	int ioh_valid, memh_valid;
553 	int i, rseg, error;
554 	const struct sip_product *sip;
555 	pcireg_t pmode;
556 	u_int8_t enaddr[ETHER_ADDR_LEN];
557 	int pmreg;
558 #ifdef DP83820
559 	pcireg_t memtype;
560 	u_int32_t reg;
561 #endif /* DP83820 */
562 
563 	callout_init(&sc->sc_tick_ch);
564 
565 	sip = SIP_DECL(lookup)(pa);
566 	if (sip == NULL) {
567 		printf("\n");
568 		panic(SIP_STR(attach) ": impossible");
569 	}
570 
571 	printf(": %s\n", sip->sip_name);
572 
573 	sc->sc_model = sip;
574 
575 	/*
576 	 * Map the device.
577 	 */
578 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
579 	    PCI_MAPREG_TYPE_IO, 0,
580 	    &iot, &ioh, NULL, NULL) == 0);
581 #ifdef DP83820
582 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
583 	switch (memtype) {
584 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
585 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
586 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
587 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
588 		break;
589 	default:
590 		memh_valid = 0;
591 	}
592 #else
593 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
594 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
595 	    &memt, &memh, NULL, NULL) == 0);
596 #endif /* DP83820 */
597 
598 	if (memh_valid) {
599 		sc->sc_st = memt;
600 		sc->sc_sh = memh;
601 	} else if (ioh_valid) {
602 		sc->sc_st = iot;
603 		sc->sc_sh = ioh;
604 	} else {
605 		printf("%s: unable to map device registers\n",
606 		    sc->sc_dev.dv_xname);
607 		return;
608 	}
609 
610 	sc->sc_dmat = pa->pa_dmat;
611 
612 	/* Enable bus mastering. */
613 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
614 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
615 	    PCI_COMMAND_MASTER_ENABLE);
616 
617 	/* Get it out of power save mode if needed. */
618 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
619 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
620 		if (pmode == 3) {
621 			/*
622 			 * The card has lost all configuration data in
623 			 * this state, so punt.
624 			 */
625 			printf("%s: unable to wake up from power state D3\n",
626 			    sc->sc_dev.dv_xname);
627 			return;
628 		}
629 		if (pmode != 0) {
630 			printf("%s: waking up from power state D%d\n",
631 			    sc->sc_dev.dv_xname, pmode);
632 			pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
633 		}
634 	}
635 
636 	/*
637 	 * Map and establish our interrupt.
638 	 */
639 	if (pci_intr_map(pa, &ih)) {
640 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
641 		return;
642 	}
643 	intrstr = pci_intr_string(pc, ih);
644 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
645 	if (sc->sc_ih == NULL) {
646 		printf("%s: unable to establish interrupt",
647 		    sc->sc_dev.dv_xname);
648 		if (intrstr != NULL)
649 			printf(" at %s", intrstr);
650 		printf("\n");
651 		return;
652 	}
653 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
654 
655 	SIMPLEQ_INIT(&sc->sc_txfreeq);
656 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
657 
658 	/*
659 	 * Allocate the control data structures, and create and load the
660 	 * DMA map for it.
661 	 */
662 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
663 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
664 	    0)) != 0) {
665 		printf("%s: unable to allocate control data, error = %d\n",
666 		    sc->sc_dev.dv_xname, error);
667 		goto fail_0;
668 	}
669 
670 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
671 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
672 	    BUS_DMA_COHERENT)) != 0) {
673 		printf("%s: unable to map control data, error = %d\n",
674 		    sc->sc_dev.dv_xname, error);
675 		goto fail_1;
676 	}
677 
678 	if ((error = bus_dmamap_create(sc->sc_dmat,
679 	    sizeof(struct sip_control_data), 1,
680 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
681 		printf("%s: unable to create control data DMA map, "
682 		    "error = %d\n", sc->sc_dev.dv_xname, error);
683 		goto fail_2;
684 	}
685 
686 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
687 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
688 	    0)) != 0) {
689 		printf("%s: unable to load control data DMA map, error = %d\n",
690 		    sc->sc_dev.dv_xname, error);
691 		goto fail_3;
692 	}
693 
694 	/*
695 	 * Create the transmit buffer DMA maps.
696 	 */
697 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
698 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
699 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
700 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
701 			printf("%s: unable to create tx DMA map %d, "
702 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
703 			goto fail_4;
704 		}
705 	}
706 
707 	/*
708 	 * Create the receive buffer DMA maps.
709 	 */
710 	for (i = 0; i < SIP_NRXDESC; i++) {
711 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
712 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
713 			printf("%s: unable to create rx DMA map %d, "
714 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
715 			goto fail_5;
716 		}
717 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
718 	}
719 
720 	/*
721 	 * Reset the chip to a known state.
722 	 */
723 	SIP_DECL(reset)(sc);
724 
725 	/*
726 	 * Read the Ethernet address from the EEPROM.  This might
727 	 * also fetch other stuff from the EEPROM and stash it
728 	 * in the softc.
729 	 */
730 	sc->sc_cfg = 0;
731 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
732 
733 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
734 	    ether_sprintf(enaddr));
735 
736 	/*
737 	 * Initialize the configuration register: aggressive PCI
738 	 * bus request algorithm, default backoff, default OW timer,
739 	 * default parity error detection.
740 	 *
741 	 * NOTE: "Big endian mode" is useless on the SiS900 and
742 	 * friends -- it affects packet data, not descriptors.
743 	 */
744 #ifdef DP83820
745 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
746 	if (reg & CFG_PCI64_DET) {
747 		printf("%s: 64-bit PCI slot detected\n", sc->sc_dev.dv_xname);
748 		/*
749 		 * XXX Need some PCI flags indicating support for
750 		 * XXX 64-bit addressing (SAC or DAC) and 64-bit
751 		 * XXX data path.
752 		 */
753 	}
754 	if (sc->sc_cfg & (CFG_TBI_EN|CFG_EXT_125)) {
755 		const char *sep = "";
756 		printf("%s: using ", sc->sc_dev.dv_xname);
757 		if (sc->sc_cfg & CFG_EXT_125) {
758 			printf("%s125MHz clock", sep);
759 			sep = ", ";
760 		}
761 		if (sc->sc_cfg & CFG_TBI_EN) {
762 			printf("%sten-bit interface", sep);
763 			sep = ", ";
764 		}
765 		printf("\n");
766 	}
767 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0)
768 		sc->sc_cfg |= CFG_MRM_DIS;
769 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
770 		sc->sc_cfg |= CFG_MWI_DIS;
771 
772 	/*
773 	 * Use the extended descriptor format on the DP83820.  This
774 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
775 	 * checksumming.
776 	 */
777 	sc->sc_cfg |= CFG_EXTSTS_EN;
778 #endif /* DP83820 */
779 
780 	/*
781 	 * Initialize our media structures and probe the MII.
782 	 */
783 	sc->sc_mii.mii_ifp = ifp;
784 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
785 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
786 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
787 	ifmedia_init(&sc->sc_mii.mii_media, 0, SIP_DECL(mediachange),
788 	    SIP_DECL(mediastatus));
789 #ifdef DP83820
790 	if (sc->sc_cfg & CFG_TBI_EN) {
791 		/* Using ten-bit interface. */
792 		printf("%s: TBI -- FIXME\n", sc->sc_dev.dv_xname);
793 	} else {
794 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
795 		    MII_OFFSET_ANY, 0);
796 		if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
797 			ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE,
798 			    0, NULL);
799 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
800 		} else
801 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
802 	}
803 #else
804 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
805 	    MII_OFFSET_ANY, 0);
806 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
807 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
808 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
809 	} else
810 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
811 #endif /* DP83820 */
812 
813 	ifp = &sc->sc_ethercom.ec_if;
814 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
815 	ifp->if_softc = sc;
816 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
817 	ifp->if_ioctl = SIP_DECL(ioctl);
818 	ifp->if_start = SIP_DECL(start);
819 	ifp->if_watchdog = SIP_DECL(watchdog);
820 	ifp->if_init = SIP_DECL(init);
821 	ifp->if_stop = SIP_DECL(stop);
822 	IFQ_SET_READY(&ifp->if_snd);
823 
824 	/*
825 	 * We can support 802.1Q VLAN-sized frames.
826 	 */
827 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
828 
829 #ifdef DP83820
830 	/*
831 	 * And the DP83820 can do VLAN tagging in hardware, and
832 	 * support the jumbo Ethernet MTU.
833 	 */
834 	sc->sc_ethercom.ec_capabilities |=
835 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
836 
837 	/*
838 	 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
839 	 * in hardware.
840 	 */
841 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
842 	    IFCAP_CSUM_UDPv4;
843 #endif /* DP83820 */
844 
845 	/*
846 	 * Attach the interface.
847 	 */
848 	if_attach(ifp);
849 	ether_ifattach(ifp, enaddr);
850 
851 #ifdef SIP_EVENT_COUNTERS
852 	/*
853 	 * Attach event counters.
854 	 */
855 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
856 	    NULL, sc->sc_dev.dv_xname, "txsstall");
857 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
858 	    NULL, sc->sc_dev.dv_xname, "txdstall");
859 	evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
860 	    NULL, sc->sc_dev.dv_xname, "txintr");
861 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
862 	    NULL, sc->sc_dev.dv_xname, "rxintr");
863 #ifdef DP83820
864 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
865 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
866 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
867 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
868 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
869 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
870 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
871 	    NULL, sc->sc_dev.dv_xname, "txipsum");
872 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
873 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
874 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
875 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
876 #endif /* DP83820 */
877 #endif /* SIP_EVENT_COUNTERS */
878 
879 	/*
880 	 * Make sure the interface is shutdown during reboot.
881 	 */
882 	sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
883 	if (sc->sc_sdhook == NULL)
884 		printf("%s: WARNING: unable to establish shutdown hook\n",
885 		    sc->sc_dev.dv_xname);
886 	return;
887 
888 	/*
889 	 * Free any resources we've allocated during the failed attach
890 	 * attempt.  Do this in reverse order and fall through.
891 	 */
892  fail_5:
893 	for (i = 0; i < SIP_NRXDESC; i++) {
894 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
895 			bus_dmamap_destroy(sc->sc_dmat,
896 			    sc->sc_rxsoft[i].rxs_dmamap);
897 	}
898  fail_4:
899 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
900 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
901 			bus_dmamap_destroy(sc->sc_dmat,
902 			    sc->sc_txsoft[i].txs_dmamap);
903 	}
904 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
905  fail_3:
906 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
907  fail_2:
908 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
909 	    sizeof(struct sip_control_data));
910  fail_1:
911 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
912  fail_0:
913 	return;
914 }
915 
916 /*
917  * sip_shutdown:
918  *
919  *	Make sure the interface is stopped at reboot time.
920  */
921 void
922 SIP_DECL(shutdown)(void *arg)
923 {
924 	struct sip_softc *sc = arg;
925 
926 	SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
927 }
928 
929 /*
930  * sip_start:		[ifnet interface function]
931  *
932  *	Start packet transmission on the interface.
933  */
934 void
935 SIP_DECL(start)(struct ifnet *ifp)
936 {
937 	struct sip_softc *sc = ifp->if_softc;
938 	struct mbuf *m0, *m;
939 	struct sip_txsoft *txs;
940 	bus_dmamap_t dmamap;
941 	int error, firsttx, nexttx, lasttx, ofree, seg;
942 #ifdef DP83820
943 	u_int32_t extsts;
944 #endif
945 
946 	/*
947 	 * If we've been told to pause, don't transmit any more packets.
948 	 */
949 	if (sc->sc_flags & SIPF_PAUSED)
950 		ifp->if_flags |= IFF_OACTIVE;
951 
952 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
953 		return;
954 
955 	/*
956 	 * Remember the previous number of free descriptors and
957 	 * the first descriptor we'll use.
958 	 */
959 	ofree = sc->sc_txfree;
960 	firsttx = sc->sc_txnext;
961 
962 	/*
963 	 * Loop through the send queue, setting up transmit descriptors
964 	 * until we drain the queue, or use up all available transmit
965 	 * descriptors.
966 	 */
967 	for (;;) {
968 		/* Get a work queue entry. */
969 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
970 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
971 			break;
972 		}
973 
974 		/*
975 		 * Grab a packet off the queue.
976 		 */
977 		IFQ_POLL(&ifp->if_snd, m0);
978 		if (m0 == NULL)
979 			break;
980 #ifndef DP83820
981 		m = NULL;
982 #endif
983 
984 		dmamap = txs->txs_dmamap;
985 
986 #ifdef DP83820
987 		/*
988 		 * Load the DMA map.  If this fails, the packet either
989 		 * didn't fit in the allotted number of segments, or we
990 		 * were short on resources.  For the too-many-segments
991 		 * case, we simply report an error and drop the packet,
992 		 * since we can't sanely copy a jumbo packet to a single
993 		 * buffer.
994 		 */
995 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
996 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
997 		if (error) {
998 			if (error == EFBIG) {
999 				printf("%s: Tx packet consumes too many "
1000 				    "DMA segments, dropping...\n",
1001 				    sc->sc_dev.dv_xname);
1002 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1003 				m_freem(m0);
1004 				continue;
1005 			}
1006 			/*
1007 			 * Short on resources, just stop for now.
1008 			 */
1009 			break;
1010 		}
1011 #else /* DP83820 */
1012 		/*
1013 		 * Load the DMA map.  If this fails, the packet either
1014 		 * didn't fit in the alloted number of segments, or we
1015 		 * were short on resources.  In this case, we'll copy
1016 		 * and try again.
1017 		 */
1018 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1019 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1020 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1021 			if (m == NULL) {
1022 				printf("%s: unable to allocate Tx mbuf\n",
1023 				    sc->sc_dev.dv_xname);
1024 				break;
1025 			}
1026 			if (m0->m_pkthdr.len > MHLEN) {
1027 				MCLGET(m, M_DONTWAIT);
1028 				if ((m->m_flags & M_EXT) == 0) {
1029 					printf("%s: unable to allocate Tx "
1030 					    "cluster\n", sc->sc_dev.dv_xname);
1031 					m_freem(m);
1032 					break;
1033 				}
1034 			}
1035 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1036 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1037 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1038 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1039 			if (error) {
1040 				printf("%s: unable to load Tx buffer, "
1041 				    "error = %d\n", sc->sc_dev.dv_xname, error);
1042 				break;
1043 			}
1044 		}
1045 #endif /* DP83820 */
1046 
1047 		/*
1048 		 * Ensure we have enough descriptors free to describe
1049 		 * the packet.  Note, we always reserve one descriptor
1050 		 * at the end of the ring as a termination point, to
1051 		 * prevent wrap-around.
1052 		 */
1053 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1054 			/*
1055 			 * Not enough free descriptors to transmit this
1056 			 * packet.  We haven't committed anything yet,
1057 			 * so just unload the DMA map, put the packet
1058 			 * back on the queue, and punt.  Notify the upper
1059 			 * layer that there are not more slots left.
1060 			 *
1061 			 * XXX We could allocate an mbuf and copy, but
1062 			 * XXX is it worth it?
1063 			 */
1064 			ifp->if_flags |= IFF_OACTIVE;
1065 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1066 #ifndef DP83820
1067 			if (m != NULL)
1068 				m_freem(m);
1069 #endif
1070 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1071 			break;
1072 		}
1073 
1074 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1075 #ifndef DP83820
1076 		if (m != NULL) {
1077 			m_freem(m0);
1078 			m0 = m;
1079 		}
1080 #endif
1081 
1082 		/*
1083 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1084 		 */
1085 
1086 		/* Sync the DMA map. */
1087 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1088 		    BUS_DMASYNC_PREWRITE);
1089 
1090 		/*
1091 		 * Initialize the transmit descriptors.
1092 		 */
1093 		for (nexttx = sc->sc_txnext, seg = 0;
1094 		     seg < dmamap->dm_nsegs;
1095 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
1096 			/*
1097 			 * If this is the first descriptor we're
1098 			 * enqueueing, don't set the OWN bit just
1099 			 * yet.  That could cause a race condition.
1100 			 * We'll do it below.
1101 			 */
1102 			sc->sc_txdescs[nexttx].sipd_bufptr =
1103 			    htole32(dmamap->dm_segs[seg].ds_addr);
1104 			sc->sc_txdescs[nexttx].sipd_cmdsts =
1105 			    htole32((nexttx == firsttx ? 0 : CMDSTS_OWN) |
1106 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1107 #ifdef DP83820
1108 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
1109 #endif /* DP83820 */
1110 			lasttx = nexttx;
1111 		}
1112 
1113 		/* Clear the MORE bit on the last segment. */
1114 		sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1115 
1116 #ifdef DP83820
1117 		/*
1118 		 * If VLANs are enabled and the packet has a VLAN tag, set
1119 		 * up the descriptor to encapsulate the packet for us.
1120 		 *
1121 		 * This apparently has to be on the last descriptor of
1122 		 * the packet.
1123 		 */
1124 		if (sc->sc_ethercom.ec_nvlans != 0 &&
1125 		    (m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) {
1126 			sc->sc_txdescs[lasttx].sipd_extsts |=
1127 			    htole32(EXTSTS_VPKT |
1128 				    htons(*mtod(m, int *) & EXTSTS_VTCI));
1129 		}
1130 
1131 		/*
1132 		 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1133 		 * checksumming, set up the descriptor to do this work
1134 		 * for us.
1135 		 *
1136 		 * This apparently has to be on the first descriptor of
1137 		 * the packet.
1138 		 *
1139 		 * Byte-swap constants so the compiler can optimize.
1140 		 */
1141 		extsts = 0;
1142 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1143 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
1144 			SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1145 			extsts |= htole32(EXTSTS_IPPKT);
1146 		}
1147 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1148 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
1149 			SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1150 			extsts |= htole32(EXTSTS_TCPPKT);
1151 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1152 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
1153 			SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1154 			extsts |= htole32(EXTSTS_UDPPKT);
1155 		}
1156 		sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1157 #endif /* DP83820 */
1158 
1159 		/* Sync the descriptors we're using. */
1160 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1161 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1162 
1163 		/*
1164 		 * Store a pointer to the packet so we can free it later,
1165 		 * and remember what txdirty will be once the packet is
1166 		 * done.
1167 		 */
1168 		txs->txs_mbuf = m0;
1169 		txs->txs_firstdesc = sc->sc_txnext;
1170 		txs->txs_lastdesc = lasttx;
1171 
1172 		/* Advance the tx pointer. */
1173 		sc->sc_txfree -= dmamap->dm_nsegs;
1174 		sc->sc_txnext = nexttx;
1175 
1176 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
1177 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1178 
1179 #if NBPFILTER > 0
1180 		/*
1181 		 * Pass the packet to any BPF listeners.
1182 		 */
1183 		if (ifp->if_bpf)
1184 			bpf_mtap(ifp->if_bpf, m0);
1185 #endif /* NBPFILTER > 0 */
1186 	}
1187 
1188 	if (txs == NULL || sc->sc_txfree == 0) {
1189 		/* No more slots left; notify upper layer. */
1190 		ifp->if_flags |= IFF_OACTIVE;
1191 	}
1192 
1193 	if (sc->sc_txfree != ofree) {
1194 		/*
1195 		 * Cause a descriptor interrupt to happen on the
1196 		 * last packet we enqueued.
1197 		 */
1198 		sc->sc_txdescs[lasttx].sipd_cmdsts |= htole32(CMDSTS_INTR);
1199 		SIP_CDTXSYNC(sc, lasttx, 1,
1200 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1201 
1202 		/*
1203 		 * The entire packet chain is set up.  Give the
1204 		 * first descrptor to the chip now.
1205 		 */
1206 		sc->sc_txdescs[firsttx].sipd_cmdsts |= htole32(CMDSTS_OWN);
1207 		SIP_CDTXSYNC(sc, firsttx, 1,
1208 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1209 
1210 		/*
1211 		 * Start the transmit process.  Note, the manual says
1212 		 * that if there are no pending transmissions in the
1213 		 * chip's internal queue (indicated by TXE being clear),
1214 		 * then the driver software must set the TXDP to the
1215 		 * first descriptor to be transmitted.  However, if we
1216 		 * do this, it causes serious performance degredation on
1217 		 * the DP83820 under load, not setting TXDP doesn't seem
1218 		 * to adversely affect the SiS 900 or DP83815.
1219 		 *
1220 		 * Well, I guess it wouldn't be the first time a manual
1221 		 * has lied -- and they could be speaking of the NULL-
1222 		 * terminated descriptor list case, rather than OWN-
1223 		 * terminated rings.
1224 		 */
1225 #if 0
1226 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1227 		     CR_TXE) == 0) {
1228 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1229 			    SIP_CDTXADDR(sc, firsttx));
1230 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1231 		}
1232 #else
1233 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1234 #endif
1235 
1236 		/* Set a watchdog timer in case the chip flakes out. */
1237 		ifp->if_timer = 5;
1238 	}
1239 }
1240 
1241 /*
1242  * sip_watchdog:	[ifnet interface function]
1243  *
1244  *	Watchdog timer handler.
1245  */
1246 void
1247 SIP_DECL(watchdog)(struct ifnet *ifp)
1248 {
1249 	struct sip_softc *sc = ifp->if_softc;
1250 
1251 	/*
1252 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1253 	 * If we get a timeout, try and sweep up transmit descriptors.
1254 	 * If we manage to sweep them all up, ignore the lack of
1255 	 * interrupt.
1256 	 */
1257 	SIP_DECL(txintr)(sc);
1258 
1259 	if (sc->sc_txfree != SIP_NTXDESC) {
1260 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1261 		ifp->if_oerrors++;
1262 
1263 		/* Reset the interface. */
1264 		(void) SIP_DECL(init)(ifp);
1265 	} else if (ifp->if_flags & IFF_DEBUG)
1266 		printf("%s: recovered from device timeout\n",
1267 		    sc->sc_dev.dv_xname);
1268 
1269 	/* Try to get more packets going. */
1270 	SIP_DECL(start)(ifp);
1271 }
1272 
1273 /*
1274  * sip_ioctl:		[ifnet interface function]
1275  *
1276  *	Handle control requests from the operator.
1277  */
1278 int
1279 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1280 {
1281 	struct sip_softc *sc = ifp->if_softc;
1282 	struct ifreq *ifr = (struct ifreq *)data;
1283 	int s, error;
1284 
1285 	s = splnet();
1286 
1287 	switch (cmd) {
1288 	case SIOCSIFMEDIA:
1289 	case SIOCGIFMEDIA:
1290 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1291 		break;
1292 
1293 	default:
1294 		error = ether_ioctl(ifp, cmd, data);
1295 		if (error == ENETRESET) {
1296 			/*
1297 			 * Multicast list has changed; set the hardware filter
1298 			 * accordingly.
1299 			 */
1300 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1301 			error = 0;
1302 		}
1303 		break;
1304 	}
1305 
1306 	/* Try to get more packets going. */
1307 	SIP_DECL(start)(ifp);
1308 
1309 	splx(s);
1310 	return (error);
1311 }
1312 
1313 /*
1314  * sip_intr:
1315  *
1316  *	Interrupt service routine.
1317  */
1318 int
1319 SIP_DECL(intr)(void *arg)
1320 {
1321 	struct sip_softc *sc = arg;
1322 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1323 	u_int32_t isr;
1324 	int handled = 0;
1325 
1326 	for (;;) {
1327 		/* Reading clears interrupt. */
1328 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1329 		if ((isr & sc->sc_imr) == 0)
1330 			break;
1331 
1332 		handled = 1;
1333 
1334 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1335 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1336 
1337 			/* Grab any new packets. */
1338 			SIP_DECL(rxintr)(sc);
1339 
1340 			if (isr & ISR_RXORN) {
1341 				printf("%s: receive FIFO overrun\n",
1342 				    sc->sc_dev.dv_xname);
1343 
1344 				/* XXX adjust rx_drain_thresh? */
1345 			}
1346 
1347 			if (isr & ISR_RXIDLE) {
1348 				printf("%s: receive ring overrun\n",
1349 				    sc->sc_dev.dv_xname);
1350 
1351 				/* Get the receive process going again. */
1352 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1353 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1354 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1355 				    SIP_CR, CR_RXE);
1356 			}
1357 		}
1358 
1359 		if (isr & (ISR_TXURN|ISR_TXDESC)) {
1360 			SIP_EVCNT_INCR(&sc->sc_ev_txintr);
1361 
1362 			/* Sweep up transmit descriptors. */
1363 			SIP_DECL(txintr)(sc);
1364 
1365 			if (isr & ISR_TXURN) {
1366 				u_int32_t thresh;
1367 
1368 				printf("%s: transmit FIFO underrun",
1369 				    sc->sc_dev.dv_xname);
1370 
1371 				thresh = sc->sc_tx_drain_thresh + 1;
1372 				if (thresh <= TXCFG_DRTH &&
1373 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
1374 				     (sc->sc_tx_fill_thresh * 32))) {
1375 					printf("; increasing Tx drain "
1376 					    "threshold to %u bytes\n",
1377 					    thresh * 32);
1378 					sc->sc_tx_drain_thresh = thresh;
1379 					(void) SIP_DECL(init)(ifp);
1380 				} else {
1381 					(void) SIP_DECL(init)(ifp);
1382 					printf("\n");
1383 				}
1384 			}
1385 		}
1386 
1387 #if !defined(DP83820)
1388 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1389 			if (isr & ISR_PAUSE_ST) {
1390 				sc->sc_flags |= SIPF_PAUSED;
1391 				ifp->if_flags |= IFF_OACTIVE;
1392 			}
1393 			if (isr & ISR_PAUSE_END) {
1394 				sc->sc_flags &= ~SIPF_PAUSED;
1395 				ifp->if_flags &= ~IFF_OACTIVE;
1396 			}
1397 		}
1398 #endif /* ! DP83820 */
1399 
1400 		if (isr & ISR_HIBERR) {
1401 #define	PRINTERR(bit, str)						\
1402 			if (isr & (bit))				\
1403 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1404 			PRINTERR(ISR_DPERR, "parity error");
1405 			PRINTERR(ISR_SSERR, "system error");
1406 			PRINTERR(ISR_RMABT, "master abort");
1407 			PRINTERR(ISR_RTABT, "target abort");
1408 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1409 			(void) SIP_DECL(init)(ifp);
1410 #undef PRINTERR
1411 		}
1412 	}
1413 
1414 	/* Try to get more packets going. */
1415 	SIP_DECL(start)(ifp);
1416 
1417 	return (handled);
1418 }
1419 
1420 /*
1421  * sip_txintr:
1422  *
1423  *	Helper; handle transmit interrupts.
1424  */
1425 void
1426 SIP_DECL(txintr)(struct sip_softc *sc)
1427 {
1428 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1429 	struct sip_txsoft *txs;
1430 	u_int32_t cmdsts;
1431 
1432 	if ((sc->sc_flags & SIPF_PAUSED) == 0)
1433 		ifp->if_flags &= ~IFF_OACTIVE;
1434 
1435 	/*
1436 	 * Go through our Tx list and free mbufs for those
1437 	 * frames which have been transmitted.
1438 	 */
1439 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1440 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1441 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1442 
1443 		cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1444 		if (cmdsts & CMDSTS_OWN)
1445 			break;
1446 
1447 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1448 
1449 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1450 
1451 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1452 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1453 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1454 		m_freem(txs->txs_mbuf);
1455 		txs->txs_mbuf = NULL;
1456 
1457 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1458 
1459 		/*
1460 		 * Check for errors and collisions.
1461 		 */
1462 		if (cmdsts &
1463 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1464 			ifp->if_oerrors++;
1465 			if (cmdsts & CMDSTS_Tx_EC)
1466 				ifp->if_collisions += 16;
1467 			if (ifp->if_flags & IFF_DEBUG) {
1468 				if (cmdsts & CMDSTS_Tx_ED)
1469 					printf("%s: excessive deferral\n",
1470 					    sc->sc_dev.dv_xname);
1471 				if (cmdsts & CMDSTS_Tx_EC)
1472 					printf("%s: excessive collisions\n",
1473 					    sc->sc_dev.dv_xname);
1474 			}
1475 		} else {
1476 			/* Packet was transmitted successfully. */
1477 			ifp->if_opackets++;
1478 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1479 		}
1480 	}
1481 
1482 	/*
1483 	 * If there are no more pending transmissions, cancel the watchdog
1484 	 * timer.
1485 	 */
1486 	if (txs == NULL)
1487 		ifp->if_timer = 0;
1488 }
1489 
1490 #if defined(DP83820)
1491 /*
1492  * sip_rxintr:
1493  *
1494  *	Helper; handle receive interrupts.
1495  */
1496 void
1497 SIP_DECL(rxintr)(struct sip_softc *sc)
1498 {
1499 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1500 	struct sip_rxsoft *rxs;
1501 	struct mbuf *m, *tailm;
1502 	u_int32_t cmdsts, extsts;
1503 	int i, len;
1504 
1505 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1506 		rxs = &sc->sc_rxsoft[i];
1507 
1508 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1509 
1510 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1511 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1512 
1513 		/*
1514 		 * NOTE: OWN is set if owned by _consumer_.  We're the
1515 		 * consumer of the receive ring, so if the bit is clear,
1516 		 * we have processed all of the packets.
1517 		 */
1518 		if ((cmdsts & CMDSTS_OWN) == 0) {
1519 			/*
1520 			 * We have processed all of the receive buffers.
1521 			 */
1522 			break;
1523 		}
1524 
1525 		if (__predict_false(sc->sc_rxdiscard)) {
1526 			SIP_INIT_RXDESC(sc, i);
1527 			if ((cmdsts & CMDSTS_MORE) == 0) {
1528 				/* Reset our state. */
1529 				sc->sc_rxdiscard = 0;
1530 			}
1531 			continue;
1532 		}
1533 
1534 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1535 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1536 
1537 		m = rxs->rxs_mbuf;
1538 
1539 		/*
1540 		 * Add a new receive buffer to the ring.
1541 		 */
1542 		if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1543 			/*
1544 			 * Failed, throw away what we've done so
1545 			 * far, and discard the rest of the packet.
1546 			 */
1547 			ifp->if_ierrors++;
1548 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1549 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1550 			SIP_INIT_RXDESC(sc, i);
1551 			if (cmdsts & CMDSTS_MORE)
1552 				sc->sc_rxdiscard = 1;
1553 			if (sc->sc_rxhead != NULL)
1554 				m_freem(sc->sc_rxhead);
1555 			SIP_RXCHAIN_RESET(sc);
1556 			continue;
1557 		}
1558 
1559 		SIP_RXCHAIN_LINK(sc, m);
1560 
1561 		/*
1562 		 * If this is not the end of the packet, keep
1563 		 * looking.
1564 		 */
1565 		if (cmdsts & CMDSTS_MORE) {
1566 			sc->sc_rxlen += m->m_len;
1567 			continue;
1568 		}
1569 
1570 		/*
1571 		 * Okay, we have the entire packet now...
1572 		 */
1573 		*sc->sc_rxtailp = NULL;
1574 		m = sc->sc_rxhead;
1575 		tailm = sc->sc_rxtail;
1576 
1577 		SIP_RXCHAIN_RESET(sc);
1578 
1579 		/*
1580 		 * If an error occurred, update stats and drop the packet.
1581 		 */
1582 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1583 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1584 			ifp->if_ierrors++;
1585 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1586 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
1587 				/* Receive overrun handled elsewhere. */
1588 				printf("%s: receive descriptor error\n",
1589 				    sc->sc_dev.dv_xname);
1590 			}
1591 #define	PRINTERR(bit, str)						\
1592 			if (cmdsts & (bit))				\
1593 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1594 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1595 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1596 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1597 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1598 #undef PRINTERR
1599 			m_freem(m);
1600 			continue;
1601 		}
1602 
1603 		/*
1604 		 * No errors.
1605 		 *
1606 		 * Note, the DP83820 includes the CRC with
1607 		 * every packet.
1608 		 */
1609 		len = CMDSTS_SIZE(cmdsts);
1610 		tailm->m_len = len - sc->sc_rxlen;
1611 
1612 		/*
1613 		 * If the packet is small enough to fit in a
1614 		 * single header mbuf, allocate one and copy
1615 		 * the data into it.  This greatly reduces
1616 		 * memory consumption when we receive lots
1617 		 * of small packets.
1618 		 */
1619 		if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1620 			struct mbuf *nm;
1621 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
1622 			if (nm == NULL) {
1623 				ifp->if_ierrors++;
1624 				m_freem(m);
1625 				continue;
1626 			}
1627 			nm->m_data += 2;
1628 			nm->m_pkthdr.len = nm->m_len = len;
1629 			m_copydata(m, 0, len, mtod(nm, caddr_t));
1630 			m_freem(m);
1631 			m = nm;
1632 		}
1633 #ifndef __NO_STRICT_ALIGNMENT
1634 		else {
1635 			/*
1636 			 * The DP83820's receive buffers must be 4-byte
1637 			 * aligned.  But this means that the data after
1638 			 * the Ethernet header is misaligned.  To compensate,
1639 			 * we have artificially shortened the buffer size
1640 			 * in the descriptor, and we do an overlapping copy
1641 			 * of the data two bytes further in (in the first
1642 			 * buffer of the chain only).
1643 			 */
1644 			memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1645 			    m->m_len);
1646 			m->m_data += 2;
1647 		}
1648 #endif /* ! __NO_STRICT_ALIGNMENT */
1649 
1650 		/*
1651 		 * If VLANs are enabled, VLAN packets have been unwrapped
1652 		 * for us.  Associate the tag with the packet.
1653 		 */
1654 		if (sc->sc_ethercom.ec_nvlans != 0 &&
1655 		    (extsts & EXTSTS_VPKT) != 0) {
1656 			struct mbuf *vtag;
1657 
1658 			vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
1659 			if (vtag == NULL) {
1660 				ifp->if_ierrors++;
1661 				printf("%s: unable to allocate VLAN tag\n",
1662 				    sc->sc_dev.dv_xname);
1663 				m_freem(m);
1664 				continue;
1665 			}
1666 
1667 			*mtod(vtag, int *) = ntohs(extsts & EXTSTS_VTCI);
1668 			vtag->m_len = sizeof(int);
1669 		}
1670 
1671 		/*
1672 		 * Set the incoming checksum information for the
1673 		 * packet.
1674 		 */
1675 		if ((extsts & EXTSTS_IPPKT) != 0) {
1676 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1677 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1678 			if (extsts & EXTSTS_Rx_IPERR)
1679 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1680 			if (extsts & EXTSTS_TCPPKT) {
1681 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1682 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1683 				if (extsts & EXTSTS_Rx_TCPERR)
1684 					m->m_pkthdr.csum_flags |=
1685 					    M_CSUM_TCP_UDP_BAD;
1686 			} else if (extsts & EXTSTS_UDPPKT) {
1687 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1688 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1689 				if (extsts & EXTSTS_Rx_UDPERR)
1690 					m->m_pkthdr.csum_flags |=
1691 					    M_CSUM_TCP_UDP_BAD;
1692 			}
1693 		}
1694 
1695 		ifp->if_ipackets++;
1696 		m->m_flags |= M_HASFCS;
1697 		m->m_pkthdr.rcvif = ifp;
1698 		m->m_pkthdr.len = len;
1699 
1700 #if NBPFILTER > 0
1701 		/*
1702 		 * Pass this up to any BPF listeners, but only
1703 		 * pass if up the stack if it's for us.
1704 		 */
1705 		if (ifp->if_bpf)
1706 			bpf_mtap(ifp->if_bpf, m);
1707 #endif /* NBPFILTER > 0 */
1708 
1709 		/* Pass it on. */
1710 		(*ifp->if_input)(ifp, m);
1711 	}
1712 
1713 	/* Update the receive pointer. */
1714 	sc->sc_rxptr = i;
1715 }
1716 #else /* ! DP83820 */
1717 /*
1718  * sip_rxintr:
1719  *
1720  *	Helper; handle receive interrupts.
1721  */
1722 void
1723 SIP_DECL(rxintr)(struct sip_softc *sc)
1724 {
1725 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1726 	struct sip_rxsoft *rxs;
1727 	struct mbuf *m;
1728 	u_int32_t cmdsts;
1729 	int i, len;
1730 
1731 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1732 		rxs = &sc->sc_rxsoft[i];
1733 
1734 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1735 
1736 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1737 
1738 		/*
1739 		 * NOTE: OWN is set if owned by _consumer_.  We're the
1740 		 * consumer of the receive ring, so if the bit is clear,
1741 		 * we have processed all of the packets.
1742 		 */
1743 		if ((cmdsts & CMDSTS_OWN) == 0) {
1744 			/*
1745 			 * We have processed all of the receive buffers.
1746 			 */
1747 			break;
1748 		}
1749 
1750 		/*
1751 		 * If any collisions were seen on the wire, count one.
1752 		 */
1753 		if (cmdsts & CMDSTS_Rx_COL)
1754 			ifp->if_collisions++;
1755 
1756 		/*
1757 		 * If an error occurred, update stats, clear the status
1758 		 * word, and leave the packet buffer in place.  It will
1759 		 * simply be reused the next time the ring comes around.
1760 		 */
1761 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1762 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1763 			ifp->if_ierrors++;
1764 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1765 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
1766 				/* Receive overrun handled elsewhere. */
1767 				printf("%s: receive descriptor error\n",
1768 				    sc->sc_dev.dv_xname);
1769 			}
1770 #define	PRINTERR(bit, str)						\
1771 			if (cmdsts & (bit))				\
1772 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1773 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1774 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1775 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1776 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1777 #undef PRINTERR
1778 			SIP_INIT_RXDESC(sc, i);
1779 			continue;
1780 		}
1781 
1782 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1783 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1784 
1785 		/*
1786 		 * No errors; receive the packet.  Note, the SiS 900
1787 		 * includes the CRC with every packet.
1788 		 */
1789 		len = CMDSTS_SIZE(cmdsts);
1790 
1791 #ifdef __NO_STRICT_ALIGNMENT
1792 		/*
1793 		 * If the packet is small enough to fit in a
1794 		 * single header mbuf, allocate one and copy
1795 		 * the data into it.  This greatly reduces
1796 		 * memory consumption when we receive lots
1797 		 * of small packets.
1798 		 *
1799 		 * Otherwise, we add a new buffer to the receive
1800 		 * chain.  If this fails, we drop the packet and
1801 		 * recycle the old buffer.
1802 		 */
1803 		if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
1804 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1805 			if (m == NULL)
1806 				goto dropit;
1807 			memcpy(mtod(m, caddr_t),
1808 			    mtod(rxs->rxs_mbuf, caddr_t), len);
1809 			SIP_INIT_RXDESC(sc, i);
1810 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1811 			    rxs->rxs_dmamap->dm_mapsize,
1812 			    BUS_DMASYNC_PREREAD);
1813 		} else {
1814 			m = rxs->rxs_mbuf;
1815 			if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1816  dropit:
1817 				ifp->if_ierrors++;
1818 				SIP_INIT_RXDESC(sc, i);
1819 				bus_dmamap_sync(sc->sc_dmat,
1820 				    rxs->rxs_dmamap, 0,
1821 				    rxs->rxs_dmamap->dm_mapsize,
1822 				    BUS_DMASYNC_PREREAD);
1823 				continue;
1824 			}
1825 		}
1826 #else
1827 		/*
1828 		 * The SiS 900's receive buffers must be 4-byte aligned.
1829 		 * But this means that the data after the Ethernet header
1830 		 * is misaligned.  We must allocate a new buffer and
1831 		 * copy the data, shifted forward 2 bytes.
1832 		 */
1833 		MGETHDR(m, M_DONTWAIT, MT_DATA);
1834 		if (m == NULL) {
1835  dropit:
1836 			ifp->if_ierrors++;
1837 			SIP_INIT_RXDESC(sc, i);
1838 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1839 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1840 			continue;
1841 		}
1842 		if (len > (MHLEN - 2)) {
1843 			MCLGET(m, M_DONTWAIT);
1844 			if ((m->m_flags & M_EXT) == 0) {
1845 				m_freem(m);
1846 				goto dropit;
1847 			}
1848 		}
1849 		m->m_data += 2;
1850 
1851 		/*
1852 		 * Note that we use clusters for incoming frames, so the
1853 		 * buffer is virtually contiguous.
1854 		 */
1855 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
1856 
1857 		/* Allow the receive descriptor to continue using its mbuf. */
1858 		SIP_INIT_RXDESC(sc, i);
1859 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1860 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1861 #endif /* __NO_STRICT_ALIGNMENT */
1862 
1863 		ifp->if_ipackets++;
1864 		m->m_flags |= M_HASFCS;
1865 		m->m_pkthdr.rcvif = ifp;
1866 		m->m_pkthdr.len = m->m_len = len;
1867 
1868 #if NBPFILTER > 0
1869 		/*
1870 		 * Pass this up to any BPF listeners, but only
1871 		 * pass if up the stack if it's for us.
1872 		 */
1873 		if (ifp->if_bpf)
1874 			bpf_mtap(ifp->if_bpf, m);
1875 #endif /* NBPFILTER > 0 */
1876 
1877 		/* Pass it on. */
1878 		(*ifp->if_input)(ifp, m);
1879 	}
1880 
1881 	/* Update the receive pointer. */
1882 	sc->sc_rxptr = i;
1883 }
1884 #endif /* DP83820 */
1885 
1886 /*
1887  * sip_tick:
1888  *
1889  *	One second timer, used to tick the MII.
1890  */
1891 void
1892 SIP_DECL(tick)(void *arg)
1893 {
1894 	struct sip_softc *sc = arg;
1895 	int s;
1896 
1897 	s = splnet();
1898 	mii_tick(&sc->sc_mii);
1899 	splx(s);
1900 
1901 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
1902 }
1903 
1904 /*
1905  * sip_reset:
1906  *
1907  *	Perform a soft reset on the SiS 900.
1908  */
1909 void
1910 SIP_DECL(reset)(struct sip_softc *sc)
1911 {
1912 	bus_space_tag_t st = sc->sc_st;
1913 	bus_space_handle_t sh = sc->sc_sh;
1914 	int i;
1915 
1916 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
1917 
1918 	for (i = 0; i < SIP_TIMEOUT; i++) {
1919 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
1920 			break;
1921 		delay(2);
1922 	}
1923 
1924 	if (i == SIP_TIMEOUT)
1925 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1926 
1927 	delay(1000);
1928 
1929 #ifdef DP83820
1930 	/*
1931 	 * Set the general purpose I/O bits.  Do it here in case we
1932 	 * need to have GPIO set up to talk to the media interface.
1933 	 */
1934 	bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
1935 	delay(1000);
1936 #endif /* DP83820 */
1937 }
1938 
1939 /*
1940  * sip_init:		[ ifnet interface function ]
1941  *
1942  *	Initialize the interface.  Must be called at splnet().
1943  */
1944 int
1945 SIP_DECL(init)(struct ifnet *ifp)
1946 {
1947 	struct sip_softc *sc = ifp->if_softc;
1948 	bus_space_tag_t st = sc->sc_st;
1949 	bus_space_handle_t sh = sc->sc_sh;
1950 	struct sip_txsoft *txs;
1951 	struct sip_rxsoft *rxs;
1952 	struct sip_desc *sipd;
1953 	u_int32_t reg;
1954 	int i, error = 0;
1955 
1956 	/*
1957 	 * Cancel any pending I/O.
1958 	 */
1959 	SIP_DECL(stop)(ifp, 0);
1960 
1961 	/*
1962 	 * Reset the chip to a known state.
1963 	 */
1964 	SIP_DECL(reset)(sc);
1965 
1966 #if !defined(DP83820)
1967 	if (sc->sc_model->sip_vendor == PCI_VENDOR_NS &&
1968 	    sc->sc_model->sip_product == PCI_PRODUCT_NS_DP83815) {
1969 		/*
1970 		 * DP83815 manual, page 78:
1971 		 *    4.4 Recommended Registers Configuration
1972 		 *    For optimum performance of the DP83815, version noted
1973 		 *    as DP83815CVNG (SRR = 203h), the listed register
1974 		 *    modifications must be followed in sequence...
1975 		 *
1976 		 * It's not clear if this should be 302h or 203h because that
1977 		 * chip name is listed as SRR 302h in the description of the
1978 		 * SRR register.  However, my revision 302h DP83815 on the
1979 		 * Netgear FA311 purchased in 02/2001 needs these settings
1980 		 * to avoid tons of errors in AcceptPerfectMatch (non-
1981 		 * IFF_PROMISC) mode.  I do not know if other revisions need
1982 		 * this set or not.  [briggs -- 09 March 2001]
1983 		 *
1984 		 * Note that only the low-order 12 bits of 0xe4 are documented
1985 		 * and that this sets reserved bits in that register.
1986 		 */
1987 		reg = bus_space_read_4(st, sh, SIP_NS_SRR);
1988 		if (reg == 0x302) {
1989 			bus_space_write_4(st, sh, 0x00cc, 0x0001);
1990 			bus_space_write_4(st, sh, 0x00e4, 0x189C);
1991 			bus_space_write_4(st, sh, 0x00fc, 0x0000);
1992 			bus_space_write_4(st, sh, 0x00f4, 0x5040);
1993 			bus_space_write_4(st, sh, 0x00f8, 0x008c);
1994 		}
1995 	}
1996 #endif /* ! DP83820 */
1997 
1998 	/*
1999 	 * Initialize the transmit descriptor ring.
2000 	 */
2001 	for (i = 0; i < SIP_NTXDESC; i++) {
2002 		sipd = &sc->sc_txdescs[i];
2003 		memset(sipd, 0, sizeof(struct sip_desc));
2004 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2005 	}
2006 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2007 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2008 	sc->sc_txfree = SIP_NTXDESC;
2009 	sc->sc_txnext = 0;
2010 
2011 	/*
2012 	 * Initialize the transmit job descriptors.
2013 	 */
2014 	SIMPLEQ_INIT(&sc->sc_txfreeq);
2015 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
2016 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
2017 		txs = &sc->sc_txsoft[i];
2018 		txs->txs_mbuf = NULL;
2019 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2020 	}
2021 
2022 	/*
2023 	 * Initialize the receive descriptor and receive job
2024 	 * descriptor rings.
2025 	 */
2026 	for (i = 0; i < SIP_NRXDESC; i++) {
2027 		rxs = &sc->sc_rxsoft[i];
2028 		if (rxs->rxs_mbuf == NULL) {
2029 			if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2030 				printf("%s: unable to allocate or map rx "
2031 				    "buffer %d, error = %d\n",
2032 				    sc->sc_dev.dv_xname, i, error);
2033 				/*
2034 				 * XXX Should attempt to run with fewer receive
2035 				 * XXX buffers instead of just failing.
2036 				 */
2037 				SIP_DECL(rxdrain)(sc);
2038 				goto out;
2039 			}
2040 		} else
2041 			SIP_INIT_RXDESC(sc, i);
2042 	}
2043 	sc->sc_rxptr = 0;
2044 #ifdef DP83820
2045 	sc->sc_rxdiscard = 0;
2046 	SIP_RXCHAIN_RESET(sc);
2047 #endif /* DP83820 */
2048 
2049 	/*
2050 	 * Set the configuration register; it's already initialized
2051 	 * in sip_attach().
2052 	 */
2053 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2054 
2055 	/*
2056 	 * Initialize the transmit fill and drain thresholds if
2057 	 * we have never done so.
2058 	 */
2059 	if (sc->sc_tx_fill_thresh == 0) {
2060 		/*
2061 		 * XXX This value should be tuned.  This is the
2062 		 * minimum (32 bytes), and we may be able to
2063 		 * improve performance by increasing it.
2064 		 */
2065 		sc->sc_tx_fill_thresh = 1;
2066 	}
2067 	if (sc->sc_tx_drain_thresh == 0) {
2068 		/*
2069 		 * Start at a drain threshold of 512 bytes.  We will
2070 		 * increase it if a DMA underrun occurs.
2071 		 *
2072 		 * XXX The minimum value of this variable should be
2073 		 * tuned.  We may be able to improve performance
2074 		 * by starting with a lower value.  That, however,
2075 		 * may trash the first few outgoing packets if the
2076 		 * PCI bus is saturated.
2077 		 */
2078 		sc->sc_tx_drain_thresh = 512 / 32;
2079 	}
2080 
2081 	/*
2082 	 * Initialize the prototype TXCFG register.
2083 	 */
2084 	sc->sc_txcfg = TXCFG_ATP | TXCFG_MXDMA_512 |
2085 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2086 	    sc->sc_tx_drain_thresh;
2087 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2088 
2089 	/*
2090 	 * Initialize the receive drain threshold if we have never
2091 	 * done so.
2092 	 */
2093 	if (sc->sc_rx_drain_thresh == 0) {
2094 		/*
2095 		 * XXX This value should be tuned.  This is set to the
2096 		 * maximum of 248 bytes, and we may be able to improve
2097 		 * performance by decreasing it (although we should never
2098 		 * set this value lower than 2; 14 bytes are required to
2099 		 * filter the packet).
2100 		 */
2101 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2102 	}
2103 
2104 	/*
2105 	 * Initialize the prototype RXCFG register.
2106 	 */
2107 	sc->sc_rxcfg = RXCFG_MXDMA_512 |
2108 	    (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2109 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2110 
2111 	/* Set up the receive filter. */
2112 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2113 
2114 #ifdef DP83820
2115 	/*
2116 	 * Initialize the VLAN/IP receive control register.
2117 	 * We enable checksum computation on all incoming
2118 	 * packets, and do not reject packets w/ bad checksums.
2119 	 */
2120 	reg = 0;
2121 	if (ifp->if_capenable &
2122 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2123 		reg |= VRCR_IPEN;
2124 	if (sc->sc_ethercom.ec_nvlans != 0)
2125 		reg |= VRCR_VTDEN|VRCR_VTREN;
2126 	bus_space_write_4(st, sh, SIP_VRCR, reg);
2127 
2128 	/*
2129 	 * Initialize the VLAN/IP transmit control register.
2130 	 * We enable outgoing checksum computation on a
2131 	 * per-packet basis.
2132 	 */
2133 	reg = 0;
2134 	if (ifp->if_capenable &
2135 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2136 		reg |= VTCR_PPCHK;
2137 	if (sc->sc_ethercom.ec_nvlans != 0)
2138 		reg |= VTCR_VPPTI;
2139 	bus_space_write_4(st, sh, SIP_VTCR, reg);
2140 
2141 	/*
2142 	 * If we're using VLANs, initialize the VLAN data register.
2143 	 * To understand why we bswap the VLAN Ethertype, see section
2144 	 * 4.2.36 of the DP83820 manual.
2145 	 */
2146 	if (sc->sc_ethercom.ec_nvlans != 0)
2147 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2148 #endif /* DP83820 */
2149 
2150 	/*
2151 	 * Give the transmit and receive rings to the chip.
2152 	 */
2153 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2154 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2155 
2156 	/*
2157 	 * Initialize the interrupt mask.
2158 	 */
2159 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2160 	    ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2161 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2162 
2163 	/*
2164 	 * Set the current media.  Do this after initializing the prototype
2165 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2166 	 * control.
2167 	 */
2168 	mii_mediachg(&sc->sc_mii);
2169 
2170 	/*
2171 	 * Enable interrupts.
2172 	 */
2173 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
2174 
2175 	/*
2176 	 * Start the transmit and receive processes.
2177 	 */
2178 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2179 
2180 	/*
2181 	 * Start the one second MII clock.
2182 	 */
2183 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2184 
2185 	/*
2186 	 * ...all done!
2187 	 */
2188 	ifp->if_flags |= IFF_RUNNING;
2189 	ifp->if_flags &= ~IFF_OACTIVE;
2190 
2191  out:
2192 	if (error)
2193 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2194 	return (error);
2195 }
2196 
2197 /*
2198  * sip_drain:
2199  *
2200  *	Drain the receive queue.
2201  */
2202 void
2203 SIP_DECL(rxdrain)(struct sip_softc *sc)
2204 {
2205 	struct sip_rxsoft *rxs;
2206 	int i;
2207 
2208 	for (i = 0; i < SIP_NRXDESC; i++) {
2209 		rxs = &sc->sc_rxsoft[i];
2210 		if (rxs->rxs_mbuf != NULL) {
2211 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2212 			m_freem(rxs->rxs_mbuf);
2213 			rxs->rxs_mbuf = NULL;
2214 		}
2215 	}
2216 }
2217 
2218 /*
2219  * sip_stop:		[ ifnet interface function ]
2220  *
2221  *	Stop transmission on the interface.
2222  */
2223 void
2224 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2225 {
2226 	struct sip_softc *sc = ifp->if_softc;
2227 	bus_space_tag_t st = sc->sc_st;
2228 	bus_space_handle_t sh = sc->sc_sh;
2229 	struct sip_txsoft *txs;
2230 	u_int32_t cmdsts = 0;		/* DEBUG */
2231 
2232 	/*
2233 	 * Stop the one second clock.
2234 	 */
2235 	callout_stop(&sc->sc_tick_ch);
2236 
2237 	/* Down the MII. */
2238 	mii_down(&sc->sc_mii);
2239 
2240 	/*
2241 	 * Disable interrupts.
2242 	 */
2243 	bus_space_write_4(st, sh, SIP_IER, 0);
2244 
2245 	/*
2246 	 * Stop receiver and transmitter.
2247 	 */
2248 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2249 
2250 	/*
2251 	 * Release any queued transmit buffers.
2252 	 */
2253 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2254 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2255 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2256 		    (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2257 		     CMDSTS_INTR) == 0)
2258 			printf("%s: sip_stop: last descriptor does not "
2259 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
2260 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
2261 #ifdef DIAGNOSTIC
2262 		if (txs->txs_mbuf == NULL) {
2263 			printf("%s: dirty txsoft with no mbuf chain\n",
2264 			    sc->sc_dev.dv_xname);
2265 			panic("sip_stop");
2266 		}
2267 #endif
2268 		cmdsts |=		/* DEBUG */
2269 		    le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2270 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2271 		m_freem(txs->txs_mbuf);
2272 		txs->txs_mbuf = NULL;
2273 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2274 	}
2275 
2276 	if (disable)
2277 		SIP_DECL(rxdrain)(sc);
2278 
2279 	/*
2280 	 * Mark the interface down and cancel the watchdog timer.
2281 	 */
2282 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2283 	ifp->if_timer = 0;
2284 
2285 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2286 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2287 		printf("%s: sip_stop: no INTR bits set in dirty tx "
2288 		    "descriptors\n", sc->sc_dev.dv_xname);
2289 }
2290 
2291 /*
2292  * sip_read_eeprom:
2293  *
2294  *	Read data from the serial EEPROM.
2295  */
2296 void
2297 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2298     u_int16_t *data)
2299 {
2300 	bus_space_tag_t st = sc->sc_st;
2301 	bus_space_handle_t sh = sc->sc_sh;
2302 	u_int16_t reg;
2303 	int i, x;
2304 
2305 	for (i = 0; i < wordcnt; i++) {
2306 		/* Send CHIP SELECT. */
2307 		reg = EROMAR_EECS;
2308 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
2309 
2310 		/* Shift in the READ opcode. */
2311 		for (x = 3; x > 0; x--) {
2312 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2313 				reg |= EROMAR_EEDI;
2314 			else
2315 				reg &= ~EROMAR_EEDI;
2316 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2317 			bus_space_write_4(st, sh, SIP_EROMAR,
2318 			    reg | EROMAR_EESK);
2319 			delay(4);
2320 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2321 			delay(4);
2322 		}
2323 
2324 		/* Shift in address. */
2325 		for (x = 6; x > 0; x--) {
2326 			if ((word + i) & (1 << (x - 1)))
2327 				reg |= EROMAR_EEDI;
2328 			else
2329 				reg &= ~EROMAR_EEDI;
2330 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2331 			bus_space_write_4(st, sh, SIP_EROMAR,
2332 			    reg | EROMAR_EESK);
2333 			delay(4);
2334 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2335 			delay(4);
2336 		}
2337 
2338 		/* Shift out data. */
2339 		reg = EROMAR_EECS;
2340 		data[i] = 0;
2341 		for (x = 16; x > 0; x--) {
2342 			bus_space_write_4(st, sh, SIP_EROMAR,
2343 			    reg | EROMAR_EESK);
2344 			delay(4);
2345 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2346 				data[i] |= (1 << (x - 1));
2347 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2348 			delay(4);
2349 		}
2350 
2351 		/* Clear CHIP SELECT. */
2352 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
2353 		delay(4);
2354 	}
2355 }
2356 
2357 /*
2358  * sip_add_rxbuf:
2359  *
2360  *	Add a receive buffer to the indicated descriptor.
2361  */
2362 int
2363 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2364 {
2365 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2366 	struct mbuf *m;
2367 	int error;
2368 
2369 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2370 	if (m == NULL)
2371 		return (ENOBUFS);
2372 
2373 	MCLGET(m, M_DONTWAIT);
2374 	if ((m->m_flags & M_EXT) == 0) {
2375 		m_freem(m);
2376 		return (ENOBUFS);
2377 	}
2378 
2379 #if defined(DP83820)
2380 	m->m_len = SIP_RXBUF_LEN;
2381 #endif /* DP83820 */
2382 
2383 	if (rxs->rxs_mbuf != NULL)
2384 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2385 
2386 	rxs->rxs_mbuf = m;
2387 
2388 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2389 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2390 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2391 	if (error) {
2392 		printf("%s: can't load rx DMA map %d, error = %d\n",
2393 		    sc->sc_dev.dv_xname, idx, error);
2394 		panic("sip_add_rxbuf");		/* XXX */
2395 	}
2396 
2397 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2398 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2399 
2400 	SIP_INIT_RXDESC(sc, idx);
2401 
2402 	return (0);
2403 }
2404 
2405 #if !defined(DP83820)
2406 /*
2407  * sip_sis900_set_filter:
2408  *
2409  *	Set up the receive filter.
2410  */
2411 void
2412 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2413 {
2414 	bus_space_tag_t st = sc->sc_st;
2415 	bus_space_handle_t sh = sc->sc_sh;
2416 	struct ethercom *ec = &sc->sc_ethercom;
2417 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2418 	struct ether_multi *enm;
2419 	u_int8_t *cp;
2420 	struct ether_multistep step;
2421 	u_int32_t crc, mchash[8];
2422 
2423 	/*
2424 	 * Initialize the prototype RFCR.
2425 	 */
2426 	sc->sc_rfcr = RFCR_RFEN;
2427 	if (ifp->if_flags & IFF_BROADCAST)
2428 		sc->sc_rfcr |= RFCR_AAB;
2429 	if (ifp->if_flags & IFF_PROMISC) {
2430 		sc->sc_rfcr |= RFCR_AAP;
2431 		goto allmulti;
2432 	}
2433 
2434 	/*
2435 	 * Set up the multicast address filter by passing all multicast
2436 	 * addresses through a CRC generator, and then using the high-order
2437 	 * 6 bits as an index into the 128 bit multicast hash table (only
2438 	 * the lower 16 bits of each 32 bit multicast hash register are
2439 	 * valid).  The high order bits select the register, while the
2440 	 * rest of the bits select the bit within the register.
2441 	 */
2442 
2443 	memset(mchash, 0, sizeof(mchash));
2444 
2445 	ETHER_FIRST_MULTI(step, ec, enm);
2446 	while (enm != NULL) {
2447 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2448 			/*
2449 			 * We must listen to a range of multicast addresses.
2450 			 * For now, just accept all multicasts, rather than
2451 			 * trying to set only those filter bits needed to match
2452 			 * the range.  (At this time, the only use of address
2453 			 * ranges is for IP multicast routing, for which the
2454 			 * range is big enough to require all bits set.)
2455 			 */
2456 			goto allmulti;
2457 		}
2458 
2459 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2460 
2461 		/* Just want the 7 most significant bits. */
2462 		crc >>= 25;
2463 
2464 		/* Set the corresponding bit in the hash table. */
2465 		mchash[crc >> 4] |= 1 << (crc & 0xf);
2466 
2467 		ETHER_NEXT_MULTI(step, enm);
2468 	}
2469 
2470 	ifp->if_flags &= ~IFF_ALLMULTI;
2471 	goto setit;
2472 
2473  allmulti:
2474 	ifp->if_flags |= IFF_ALLMULTI;
2475 	sc->sc_rfcr |= RFCR_AAM;
2476 
2477  setit:
2478 #define	FILTER_EMIT(addr, data)						\
2479 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
2480 	delay(1);							\
2481 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
2482 	delay(1)
2483 
2484 	/*
2485 	 * Disable receive filter, and program the node address.
2486 	 */
2487 	cp = LLADDR(ifp->if_sadl);
2488 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2489 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2490 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2491 
2492 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2493 		/*
2494 		 * Program the multicast hash table.
2495 		 */
2496 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2497 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2498 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2499 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2500 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2501 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2502 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2503 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2504 	}
2505 #undef FILTER_EMIT
2506 
2507 	/*
2508 	 * Re-enable the receiver filter.
2509 	 */
2510 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2511 }
2512 #endif /* ! DP83820 */
2513 
2514 /*
2515  * sip_dp83815_set_filter:
2516  *
2517  *	Set up the receive filter.
2518  */
2519 void
2520 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2521 {
2522 	bus_space_tag_t st = sc->sc_st;
2523 	bus_space_handle_t sh = sc->sc_sh;
2524 	struct ethercom *ec = &sc->sc_ethercom;
2525 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2526 	struct ether_multi *enm;
2527 	u_int8_t *cp;
2528 	struct ether_multistep step;
2529 	u_int32_t crc, hash, slot, bit;
2530 #ifdef DP83820
2531 #define	MCHASH_NWORDS	128
2532 #else
2533 #define	MCHASH_NWORDS	32
2534 #endif /* DP83820 */
2535 	u_int16_t mchash[MCHASH_NWORDS];
2536 	int i;
2537 
2538 	/*
2539 	 * Initialize the prototype RFCR.
2540 	 * Enable the receive filter, and accept on
2541 	 *    Perfect (destination address) Match
2542 	 * If IFF_BROADCAST, also accept all broadcast packets.
2543 	 * If IFF_PROMISC, accept all unicast packets (and later, set
2544 	 *    IFF_ALLMULTI and accept all multicast, too).
2545 	 */
2546 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2547 	if (ifp->if_flags & IFF_BROADCAST)
2548 		sc->sc_rfcr |= RFCR_AAB;
2549 	if (ifp->if_flags & IFF_PROMISC) {
2550 		sc->sc_rfcr |= RFCR_AAP;
2551 		goto allmulti;
2552 	}
2553 
2554 #ifdef DP83820
2555 	/*
2556 	 * Set up the DP83820 multicast address filter by passing all multicast
2557 	 * addresses through a CRC generator, and then using the high-order
2558 	 * 11 bits as an index into the 2048 bit multicast hash table.  The
2559 	 * high-order 7 bits select the slot, while the low-order 4 bits
2560 	 * select the bit within the slot.  Note that only the low 16-bits
2561 	 * of each filter word are used, and there are 128 filter words.
2562 	 */
2563 #else
2564 	/*
2565 	 * Set up the DP83815 multicast address filter by passing all multicast
2566 	 * addresses through a CRC generator, and then using the high-order
2567 	 * 9 bits as an index into the 512 bit multicast hash table.  The
2568 	 * high-order 5 bits select the slot, while the low-order 4 bits
2569 	 * select the bit within the slot.  Note that only the low 16-bits
2570 	 * of each filter word are used, and there are 32 filter words.
2571 	 */
2572 #endif /* DP83820 */
2573 
2574 	memset(mchash, 0, sizeof(mchash));
2575 
2576 	ifp->if_flags &= ~IFF_ALLMULTI;
2577 	ETHER_FIRST_MULTI(step, ec, enm);
2578 	if (enm == NULL)
2579 		goto setit;
2580 	while (enm != NULL) {
2581 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2582 			/*
2583 			 * We must listen to a range of multicast addresses.
2584 			 * For now, just accept all multicasts, rather than
2585 			 * trying to set only those filter bits needed to match
2586 			 * the range.  (At this time, the only use of address
2587 			 * ranges is for IP multicast routing, for which the
2588 			 * range is big enough to require all bits set.)
2589 			 */
2590 			goto allmulti;
2591 		}
2592 
2593 #ifdef DP83820
2594 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2595 
2596 		/* Just want the 11 most significant bits. */
2597 		hash = crc >> 21;
2598 #else
2599 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2600 
2601 		/* Just want the 9 most significant bits. */
2602 		hash = crc >> 23;
2603 #endif /* DP83820 */
2604 		slot = hash >> 4;
2605 		bit = hash & 0xf;
2606 
2607 		/* Set the corresponding bit in the hash table. */
2608 		mchash[slot] |= 1 << bit;
2609 
2610 		ETHER_NEXT_MULTI(step, enm);
2611 	}
2612 	sc->sc_rfcr |= RFCR_MHEN;
2613 	goto setit;
2614 
2615  allmulti:
2616 	ifp->if_flags |= IFF_ALLMULTI;
2617 	sc->sc_rfcr |= RFCR_AAM;
2618 
2619  setit:
2620 #define	FILTER_EMIT(addr, data)						\
2621 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
2622 	delay(1);							\
2623 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
2624 	delay(1)
2625 
2626 	/*
2627 	 * Disable receive filter, and program the node address.
2628 	 */
2629 	cp = LLADDR(ifp->if_sadl);
2630 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
2631 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
2632 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
2633 
2634 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2635 		/*
2636 		 * Program the multicast hash table.
2637 		 */
2638 		for (i = 0; i < MCHASH_NWORDS; i++) {
2639 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
2640 			    mchash[i]);
2641 		}
2642 	}
2643 #undef FILTER_EMIT
2644 #undef MCHASH_NWORDS
2645 
2646 	/*
2647 	 * Re-enable the receiver filter.
2648 	 */
2649 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2650 }
2651 
2652 #if defined(DP83820)
2653 /*
2654  * sip_dp83820_mii_readreg:	[mii interface function]
2655  *
2656  *	Read a PHY register on the MII of the DP83820.
2657  */
2658 int
2659 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
2660 {
2661 
2662 	return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2663 	    phy, reg));
2664 }
2665 
2666 /*
2667  * sip_dp83820_mii_writereg:	[mii interface function]
2668  *
2669  *	Write a PHY register on the MII of the DP83820.
2670  */
2671 void
2672 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
2673 {
2674 
2675 	mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2676 	    phy, reg, val);
2677 }
2678 
2679 /*
2680  * sip_dp83815_mii_statchg:	[mii interface function]
2681  *
2682  *	Callback from MII layer when media changes.
2683  */
2684 void
2685 SIP_DECL(dp83820_mii_statchg)(struct device *self)
2686 {
2687 	struct sip_softc *sc = (struct sip_softc *) self;
2688 	u_int32_t cfg;
2689 
2690 	/*
2691 	 * Update TXCFG for full-duplex operation.
2692 	 */
2693 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2694 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2695 	else
2696 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2697 
2698 	/*
2699 	 * Update RXCFG for full-duplex or loopback.
2700 	 */
2701 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2702 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2703 		sc->sc_rxcfg |= RXCFG_ATX;
2704 	else
2705 		sc->sc_rxcfg &= ~RXCFG_ATX;
2706 
2707 	/*
2708 	 * Update CFG for MII/GMII.
2709 	 */
2710 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2711 		cfg = sc->sc_cfg | CFG_MODE_1000;
2712 	else
2713 		cfg = sc->sc_cfg;
2714 
2715 	/*
2716 	 * XXX 802.3x flow control.
2717 	 */
2718 
2719 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
2720 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2721 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2722 }
2723 
2724 /*
2725  * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
2726  *
2727  *	Read the MII serial port for the MII bit-bang module.
2728  */
2729 u_int32_t
2730 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
2731 {
2732 	struct sip_softc *sc = (void *) self;
2733 
2734 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
2735 }
2736 
2737 /*
2738  * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
2739  *
2740  *	Write the MII serial port for the MII bit-bang module.
2741  */
2742 void
2743 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
2744 {
2745 	struct sip_softc *sc = (void *) self;
2746 
2747 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
2748 }
2749 #else /* ! DP83820 */
2750 /*
2751  * sip_sis900_mii_readreg:	[mii interface function]
2752  *
2753  *	Read a PHY register on the MII.
2754  */
2755 int
2756 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
2757 {
2758 	struct sip_softc *sc = (struct sip_softc *) self;
2759 	u_int32_t enphy;
2760 
2761 	/*
2762 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
2763 	 * MII address 0.
2764 	 */
2765 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
2766 		return (0);
2767 
2768 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2769 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
2770 	    ENPHY_RWCMD | ENPHY_ACCESS);
2771 	do {
2772 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2773 	} while (enphy & ENPHY_ACCESS);
2774 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
2775 }
2776 
2777 /*
2778  * sip_sis900_mii_writereg:	[mii interface function]
2779  *
2780  *	Write a PHY register on the MII.
2781  */
2782 void
2783 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
2784 {
2785 	struct sip_softc *sc = (struct sip_softc *) self;
2786 	u_int32_t enphy;
2787 
2788 	/*
2789 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
2790 	 * MII address 0.
2791 	 */
2792 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
2793 		return;
2794 
2795 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
2796 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
2797 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
2798 	do {
2799 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
2800 	} while (enphy & ENPHY_ACCESS);
2801 }
2802 
2803 /*
2804  * sip_sis900_mii_statchg:	[mii interface function]
2805  *
2806  *	Callback from MII layer when media changes.
2807  */
2808 void
2809 SIP_DECL(sis900_mii_statchg)(struct device *self)
2810 {
2811 	struct sip_softc *sc = (struct sip_softc *) self;
2812 	u_int32_t flowctl;
2813 
2814 	/*
2815 	 * Update TXCFG for full-duplex operation.
2816 	 */
2817 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2818 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2819 	else
2820 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2821 
2822 	/*
2823 	 * Update RXCFG for full-duplex or loopback.
2824 	 */
2825 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2826 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2827 		sc->sc_rxcfg |= RXCFG_ATX;
2828 	else
2829 		sc->sc_rxcfg &= ~RXCFG_ATX;
2830 
2831 	/*
2832 	 * Update IMR for use of 802.3x flow control.
2833 	 */
2834 	if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
2835 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
2836 		flowctl = FLOWCTL_FLOWEN;
2837 	} else {
2838 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
2839 		flowctl = 0;
2840 	}
2841 
2842 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2843 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2844 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
2845 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
2846 }
2847 
2848 /*
2849  * sip_dp83815_mii_readreg:	[mii interface function]
2850  *
2851  *	Read a PHY register on the MII.
2852  */
2853 int
2854 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
2855 {
2856 	struct sip_softc *sc = (struct sip_softc *) self;
2857 	u_int32_t val;
2858 
2859 	/*
2860 	 * The DP83815 only has an internal PHY.  Only allow
2861 	 * MII address 0.
2862 	 */
2863 	if (phy != 0)
2864 		return (0);
2865 
2866 	/*
2867 	 * Apparently, after a reset, the DP83815 can take a while
2868 	 * to respond.  During this recovery period, the BMSR returns
2869 	 * a value of 0.  Catch this -- it's not supposed to happen
2870 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
2871 	 * PHY to come back to life.
2872 	 *
2873 	 * This works out because the BMSR is the first register
2874 	 * read during the PHY probe process.
2875 	 */
2876 	do {
2877 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
2878 	} while (reg == MII_BMSR && val == 0);
2879 
2880 	return (val & 0xffff);
2881 }
2882 
2883 /*
2884  * sip_dp83815_mii_writereg:	[mii interface function]
2885  *
2886  *	Write a PHY register to the MII.
2887  */
2888 void
2889 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
2890 {
2891 	struct sip_softc *sc = (struct sip_softc *) self;
2892 
2893 	/*
2894 	 * The DP83815 only has an internal PHY.  Only allow
2895 	 * MII address 0.
2896 	 */
2897 	if (phy != 0)
2898 		return;
2899 
2900 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
2901 }
2902 
2903 /*
2904  * sip_dp83815_mii_statchg:	[mii interface function]
2905  *
2906  *	Callback from MII layer when media changes.
2907  */
2908 void
2909 SIP_DECL(dp83815_mii_statchg)(struct device *self)
2910 {
2911 	struct sip_softc *sc = (struct sip_softc *) self;
2912 
2913 	/*
2914 	 * Update TXCFG for full-duplex operation.
2915 	 */
2916 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2917 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2918 	else
2919 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2920 
2921 	/*
2922 	 * Update RXCFG for full-duplex or loopback.
2923 	 */
2924 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2925 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2926 		sc->sc_rxcfg |= RXCFG_ATX;
2927 	else
2928 		sc->sc_rxcfg &= ~RXCFG_ATX;
2929 
2930 	/*
2931 	 * XXX 802.3x flow control.
2932 	 */
2933 
2934 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2935 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2936 }
2937 #endif /* DP83820 */
2938 
2939 #if defined(DP83820)
2940 void
2941 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
2942     const struct pci_attach_args *pa, u_int8_t *enaddr)
2943 {
2944 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
2945 	u_int8_t cksum, *e, match;
2946 	int i;
2947 
2948 	/*
2949 	 * EEPROM data format for the DP83820 can be found in
2950 	 * the DP83820 manual, section 4.2.4.
2951 	 */
2952 
2953 	SIP_DECL(read_eeprom)(sc, 0,
2954 	    sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
2955 
2956 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
2957 	match = ~(match - 1);
2958 
2959 	cksum = 0x55;
2960 	e = (u_int8_t *) eeprom_data;
2961 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
2962 		cksum += *e++;
2963 
2964 	if (cksum != match)
2965 		printf("%s: Checksum (%x) mismatch (%x)",
2966 		    sc->sc_dev.dv_xname, cksum, match);
2967 
2968 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
2969 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
2970 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
2971 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
2972 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
2973 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
2974 
2975 	/* Get the GPIOR bits. */
2976 	sc->sc_gpior = eeprom_data[0x04];
2977 
2978 	/* Get various CFG related bits. */
2979 	if ((eeprom_data[0x05] >> 0) & 1)
2980 		sc->sc_cfg |= CFG_EXT_125;
2981 	if ((eeprom_data[0x05] >> 9) & 1)
2982 		sc->sc_cfg |= CFG_TBI_EN;
2983 }
2984 #else /* ! DP83820 */
2985 void
2986 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
2987     const struct pci_attach_args *pa, u_int8_t *enaddr)
2988 {
2989 	u_int16_t myea[ETHER_ADDR_LEN / 2];
2990 
2991 	switch (PCI_REVISION(pa->pa_class)) {
2992 	case SIS_REV_630S:
2993 	case SIS_REV_630E:
2994 	case SIS_REV_630EA1:
2995 		/*
2996 		 * The MAC address for the on-board Ethernet of
2997 		 * the SiS 630 chipset is in the NVRAM.  Kick
2998 		 * the chip into re-loading it from NVRAM, and
2999 		 * read the MAC address out of the filter registers.
3000 		 */
3001 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3002 
3003 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3004 		    RFCR_RFADDR_NODE0);
3005 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3006 		    0xffff;
3007 
3008 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3009 		    RFCR_RFADDR_NODE2);
3010 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3011 		    0xffff;
3012 
3013 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3014 		    RFCR_RFADDR_NODE4);
3015 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3016 		    0xffff;
3017 		break;
3018 
3019 	default:
3020 		SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3021 		    sizeof(myea) / sizeof(myea[0]), myea);
3022 	}
3023 
3024 	enaddr[0] = myea[0] & 0xff;
3025 	enaddr[1] = myea[0] >> 8;
3026 	enaddr[2] = myea[1] & 0xff;
3027 	enaddr[3] = myea[1] >> 8;
3028 	enaddr[4] = myea[2] & 0xff;
3029 	enaddr[5] = myea[2] >> 8;
3030 }
3031 
3032 /* Table and macro to bit-reverse an octet. */
3033 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3034 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3035 
3036 void
3037 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3038     const struct pci_attach_args *pa, u_int8_t *enaddr)
3039 {
3040 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3041 	u_int8_t cksum, *e, match;
3042 	int i;
3043 
3044 	SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3045 	    sizeof(eeprom_data[0]), eeprom_data);
3046 
3047 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3048 	match = ~(match - 1);
3049 
3050 	cksum = 0x55;
3051 	e = (u_int8_t *) eeprom_data;
3052 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3053 		cksum += *e++;
3054 	}
3055 	if (cksum != match) {
3056 		printf("%s: Checksum (%x) mismatch (%x)",
3057 		    sc->sc_dev.dv_xname, cksum, match);
3058 	}
3059 
3060 	/*
3061 	 * Unrolled because it makes slightly more sense this way.
3062 	 * The DP83815 stores the MAC address in bit 0 of word 6
3063 	 * through bit 15 of word 8.
3064 	 */
3065 	ea = &eeprom_data[6];
3066 	enaddr[0] = ((*ea & 0x1) << 7);
3067 	ea++;
3068 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
3069 	enaddr[1] = ((*ea & 0x1FE) >> 1);
3070 	enaddr[2] = ((*ea & 0x1) << 7);
3071 	ea++;
3072 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
3073 	enaddr[3] = ((*ea & 0x1FE) >> 1);
3074 	enaddr[4] = ((*ea & 0x1) << 7);
3075 	ea++;
3076 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
3077 	enaddr[5] = ((*ea & 0x1FE) >> 1);
3078 
3079 	/*
3080 	 * In case that's not weird enough, we also need to reverse
3081 	 * the bits in each byte.  This all actually makes more sense
3082 	 * if you think about the EEPROM storage as an array of bits
3083 	 * being shifted into bytes, but that's not how we're looking
3084 	 * at it here...
3085 	 */
3086 	for (i = 0; i < 6 ;i++)
3087 		enaddr[i] = bbr(enaddr[i]);
3088 }
3089 #endif /* DP83820 */
3090 
3091 /*
3092  * sip_mediastatus:	[ifmedia interface function]
3093  *
3094  *	Get the current interface media status.
3095  */
3096 void
3097 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3098 {
3099 	struct sip_softc *sc = ifp->if_softc;
3100 
3101 	mii_pollstat(&sc->sc_mii);
3102 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
3103 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
3104 }
3105 
3106 /*
3107  * sip_mediachange:	[ifmedia interface function]
3108  *
3109  *	Set hardware to newly-selected media.
3110  */
3111 int
3112 SIP_DECL(mediachange)(struct ifnet *ifp)
3113 {
3114 	struct sip_softc *sc = ifp->if_softc;
3115 
3116 	if (ifp->if_flags & IFF_UP)
3117 		mii_mediachg(&sc->sc_mii);
3118 	return (0);
3119 }
3120