1 /* $NetBSD: if_sip.c,v 1.44 2001/12/20 03:32:31 thorpej Exp $ */ 2 3 /*- 4 * Copyright (c) 2001 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /*- 40 * Copyright (c) 1999 Network Computer, Inc. 41 * All rights reserved. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. Neither the name of Network Computer, Inc. nor the names of its 52 * contributors may be used to endorse or promote products derived 53 * from this software without specific prior written permission. 54 * 55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS 56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 65 * POSSIBILITY OF SUCH DAMAGE. 66 */ 67 68 /* 69 * Device driver for the Silicon Integrated Systems SiS 900, 70 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and 71 * National Semiconductor DP83820 10/100/1000 PCI Ethernet 72 * controllers. 73 * 74 * Originally written to support the SiS 900 by Jason R. Thorpe for 75 * Network Computer, Inc. 76 * 77 * TODO: 78 * 79 * - Support the 10-bit interface on the DP83820 (for fiber). 80 * 81 * - Reduce the interrupt load. 82 */ 83 84 #include <sys/cdefs.h> 85 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.44 2001/12/20 03:32:31 thorpej Exp $"); 86 87 #include "bpfilter.h" 88 89 #include <sys/param.h> 90 #include <sys/systm.h> 91 #include <sys/callout.h> 92 #include <sys/mbuf.h> 93 #include <sys/malloc.h> 94 #include <sys/kernel.h> 95 #include <sys/socket.h> 96 #include <sys/ioctl.h> 97 #include <sys/errno.h> 98 #include <sys/device.h> 99 #include <sys/queue.h> 100 101 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */ 102 103 #include <net/if.h> 104 #include <net/if_dl.h> 105 #include <net/if_media.h> 106 #include <net/if_ether.h> 107 108 #if NBPFILTER > 0 109 #include <net/bpf.h> 110 #endif 111 112 #include <machine/bus.h> 113 #include <machine/intr.h> 114 #include <machine/endian.h> 115 116 #include <dev/mii/mii.h> 117 #include <dev/mii/miivar.h> 118 #ifdef DP83820 119 #include <dev/mii/mii_bitbang.h> 120 #endif /* DP83820 */ 121 122 #include <dev/pci/pcireg.h> 123 #include <dev/pci/pcivar.h> 124 #include <dev/pci/pcidevs.h> 125 126 #include <dev/pci/if_sipreg.h> 127 128 #ifdef DP83820 /* DP83820 Gigabit Ethernet */ 129 #define SIP_DECL(x) __CONCAT(gsip_,x) 130 #else /* SiS900 and DP83815 */ 131 #define SIP_DECL(x) __CONCAT(sip_,x) 132 #endif 133 134 #define SIP_STR(x) __STRING(SIP_DECL(x)) 135 136 /* 137 * Transmit descriptor list size. This is arbitrary, but allocate 138 * enough descriptors for 128 pending transmissions, and 8 segments 139 * per packet. This MUST work out to a power of 2. 140 */ 141 #define SIP_NTXSEGS 8 142 143 #define SIP_TXQUEUELEN 256 144 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS) 145 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1) 146 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK) 147 148 /* 149 * Receive descriptor list size. We have one Rx buffer per incoming 150 * packet, so this logic is a little simpler. 151 * 152 * Actually, on the DP83820, we allow the packet to consume more than 153 * one buffer, in order to support jumbo Ethernet frames. In that 154 * case, a packet may consume up to 5 buffers (assuming a 2048 byte 155 * mbuf cluster). 256 receive buffers is only 51 maximum size packets, 156 * so we'd better be quick about handling receive interrupts. 157 */ 158 #if defined(DP83820) 159 #define SIP_NRXDESC 256 160 #else 161 #define SIP_NRXDESC 128 162 #endif /* DP83820 */ 163 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1) 164 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK) 165 166 /* 167 * Control structures are DMA'd to the SiS900 chip. We allocate them in 168 * a single clump that maps to a single DMA segment to make several things 169 * easier. 170 */ 171 struct sip_control_data { 172 /* 173 * The transmit descriptors. 174 */ 175 struct sip_desc scd_txdescs[SIP_NTXDESC]; 176 177 /* 178 * The receive descriptors. 179 */ 180 struct sip_desc scd_rxdescs[SIP_NRXDESC]; 181 }; 182 183 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x) 184 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)]) 185 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)]) 186 187 /* 188 * Software state for transmit jobs. 189 */ 190 struct sip_txsoft { 191 struct mbuf *txs_mbuf; /* head of our mbuf chain */ 192 bus_dmamap_t txs_dmamap; /* our DMA map */ 193 int txs_firstdesc; /* first descriptor in packet */ 194 int txs_lastdesc; /* last descriptor in packet */ 195 SIMPLEQ_ENTRY(sip_txsoft) txs_q; 196 }; 197 198 SIMPLEQ_HEAD(sip_txsq, sip_txsoft); 199 200 /* 201 * Software state for receive jobs. 202 */ 203 struct sip_rxsoft { 204 struct mbuf *rxs_mbuf; /* head of our mbuf chain */ 205 bus_dmamap_t rxs_dmamap; /* our DMA map */ 206 }; 207 208 /* 209 * Software state per device. 210 */ 211 struct sip_softc { 212 struct device sc_dev; /* generic device information */ 213 bus_space_tag_t sc_st; /* bus space tag */ 214 bus_space_handle_t sc_sh; /* bus space handle */ 215 bus_dma_tag_t sc_dmat; /* bus DMA tag */ 216 struct ethercom sc_ethercom; /* ethernet common data */ 217 void *sc_sdhook; /* shutdown hook */ 218 219 const struct sip_product *sc_model; /* which model are we? */ 220 221 void *sc_ih; /* interrupt cookie */ 222 223 struct mii_data sc_mii; /* MII/media information */ 224 225 struct callout sc_tick_ch; /* tick callout */ 226 227 bus_dmamap_t sc_cddmamap; /* control data DMA map */ 228 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr 229 230 /* 231 * Software state for transmit and receive descriptors. 232 */ 233 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN]; 234 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC]; 235 236 /* 237 * Control data structures. 238 */ 239 struct sip_control_data *sc_control_data; 240 #define sc_txdescs sc_control_data->scd_txdescs 241 #define sc_rxdescs sc_control_data->scd_rxdescs 242 243 #ifdef SIP_EVENT_COUNTERS 244 /* 245 * Event counters. 246 */ 247 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */ 248 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */ 249 struct evcnt sc_ev_txintr; /* Tx interrupts */ 250 struct evcnt sc_ev_rxintr; /* Rx interrupts */ 251 #ifdef DP83820 252 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */ 253 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */ 254 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */ 255 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */ 256 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */ 257 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */ 258 #endif /* DP83820 */ 259 #endif /* SIP_EVENT_COUNTERS */ 260 261 u_int32_t sc_txcfg; /* prototype TXCFG register */ 262 u_int32_t sc_rxcfg; /* prototype RXCFG register */ 263 u_int32_t sc_imr; /* prototype IMR register */ 264 u_int32_t sc_rfcr; /* prototype RFCR register */ 265 266 u_int32_t sc_cfg; /* prototype CFG register */ 267 268 #ifdef DP83820 269 u_int32_t sc_gpior; /* prototype GPIOR register */ 270 #endif /* DP83820 */ 271 272 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */ 273 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */ 274 275 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */ 276 277 int sc_flags; /* misc. flags; see below */ 278 279 int sc_txfree; /* number of free Tx descriptors */ 280 int sc_txnext; /* next ready Tx descriptor */ 281 282 struct sip_txsq sc_txfreeq; /* free Tx descsofts */ 283 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */ 284 285 int sc_rxptr; /* next ready Rx descriptor/descsoft */ 286 #if defined(DP83820) 287 int sc_rxdiscard; 288 int sc_rxlen; 289 struct mbuf *sc_rxhead; 290 struct mbuf *sc_rxtail; 291 struct mbuf **sc_rxtailp; 292 #endif /* DP83820 */ 293 }; 294 295 /* sc_flags */ 296 #define SIPF_PAUSED 0x00000001 /* paused (802.3x flow control) */ 297 298 #ifdef DP83820 299 #define SIP_RXCHAIN_RESET(sc) \ 300 do { \ 301 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \ 302 *(sc)->sc_rxtailp = NULL; \ 303 (sc)->sc_rxlen = 0; \ 304 } while (/*CONSTCOND*/0) 305 306 #define SIP_RXCHAIN_LINK(sc, m) \ 307 do { \ 308 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \ 309 (sc)->sc_rxtailp = &(m)->m_next; \ 310 } while (/*CONSTCOND*/0) 311 #endif /* DP83820 */ 312 313 #ifdef SIP_EVENT_COUNTERS 314 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++ 315 #else 316 #define SIP_EVCNT_INCR(ev) /* nothing */ 317 #endif 318 319 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x))) 320 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x))) 321 322 #define SIP_CDTXSYNC(sc, x, n, ops) \ 323 do { \ 324 int __x, __n; \ 325 \ 326 __x = (x); \ 327 __n = (n); \ 328 \ 329 /* If it will wrap around, sync to the end of the ring. */ \ 330 if ((__x + __n) > SIP_NTXDESC) { \ 331 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 332 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \ 333 (SIP_NTXDESC - __x), (ops)); \ 334 __n -= (SIP_NTXDESC - __x); \ 335 __x = 0; \ 336 } \ 337 \ 338 /* Now sync whatever is left. */ \ 339 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 340 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \ 341 } while (0) 342 343 #define SIP_CDRXSYNC(sc, x, ops) \ 344 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 345 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops)) 346 347 #ifdef DP83820 348 #define SIP_INIT_RXDESC_EXTSTS __sipd->sipd_extsts = 0; 349 #define SIP_RXBUF_LEN (MCLBYTES - 4) 350 #else 351 #define SIP_INIT_RXDESC_EXTSTS /* nothing */ 352 #define SIP_RXBUF_LEN (MCLBYTES - 1) /* field width */ 353 #endif 354 #define SIP_INIT_RXDESC(sc, x) \ 355 do { \ 356 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \ 357 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \ 358 \ 359 __sipd->sipd_link = \ 360 htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \ 361 __sipd->sipd_bufptr = \ 362 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \ 363 __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \ 364 (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK)); \ 365 SIP_INIT_RXDESC_EXTSTS \ 366 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \ 367 } while (0) 368 369 #define SIP_TIMEOUT 1000 370 371 void SIP_DECL(start)(struct ifnet *); 372 void SIP_DECL(watchdog)(struct ifnet *); 373 int SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t); 374 int SIP_DECL(init)(struct ifnet *); 375 void SIP_DECL(stop)(struct ifnet *, int); 376 377 void SIP_DECL(shutdown)(void *); 378 379 void SIP_DECL(reset)(struct sip_softc *); 380 void SIP_DECL(rxdrain)(struct sip_softc *); 381 int SIP_DECL(add_rxbuf)(struct sip_softc *, int); 382 void SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *); 383 void SIP_DECL(tick)(void *); 384 385 #if !defined(DP83820) 386 void SIP_DECL(sis900_set_filter)(struct sip_softc *); 387 #endif /* ! DP83820 */ 388 void SIP_DECL(dp83815_set_filter)(struct sip_softc *); 389 390 #if defined(DP83820) 391 void SIP_DECL(dp83820_read_macaddr)(struct sip_softc *, 392 const struct pci_attach_args *, u_int8_t *); 393 #else 394 void SIP_DECL(sis900_read_macaddr)(struct sip_softc *, 395 const struct pci_attach_args *, u_int8_t *); 396 void SIP_DECL(dp83815_read_macaddr)(struct sip_softc *, 397 const struct pci_attach_args *, u_int8_t *); 398 #endif /* DP83820 */ 399 400 int SIP_DECL(intr)(void *); 401 void SIP_DECL(txintr)(struct sip_softc *); 402 void SIP_DECL(rxintr)(struct sip_softc *); 403 404 #if defined(DP83820) 405 int SIP_DECL(dp83820_mii_readreg)(struct device *, int, int); 406 void SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int); 407 void SIP_DECL(dp83820_mii_statchg)(struct device *); 408 #else 409 int SIP_DECL(sis900_mii_readreg)(struct device *, int, int); 410 void SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int); 411 void SIP_DECL(sis900_mii_statchg)(struct device *); 412 413 int SIP_DECL(dp83815_mii_readreg)(struct device *, int, int); 414 void SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int); 415 void SIP_DECL(dp83815_mii_statchg)(struct device *); 416 #endif /* DP83820 */ 417 418 int SIP_DECL(mediachange)(struct ifnet *); 419 void SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *); 420 421 int SIP_DECL(match)(struct device *, struct cfdata *, void *); 422 void SIP_DECL(attach)(struct device *, struct device *, void *); 423 424 int SIP_DECL(copy_small) = 0; 425 426 struct cfattach SIP_DECL(ca) = { 427 sizeof(struct sip_softc), SIP_DECL(match), SIP_DECL(attach), 428 }; 429 430 /* 431 * Descriptions of the variants of the SiS900. 432 */ 433 struct sip_variant { 434 int (*sipv_mii_readreg)(struct device *, int, int); 435 void (*sipv_mii_writereg)(struct device *, int, int, int); 436 void (*sipv_mii_statchg)(struct device *); 437 void (*sipv_set_filter)(struct sip_softc *); 438 void (*sipv_read_macaddr)(struct sip_softc *, 439 const struct pci_attach_args *, u_int8_t *); 440 }; 441 442 #if defined(DP83820) 443 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *); 444 void SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t); 445 446 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = { 447 SIP_DECL(dp83820_mii_bitbang_read), 448 SIP_DECL(dp83820_mii_bitbang_write), 449 { 450 EROMAR_MDIO, /* MII_BIT_MDO */ 451 EROMAR_MDIO, /* MII_BIT_MDI */ 452 EROMAR_MDC, /* MII_BIT_MDC */ 453 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */ 454 0, /* MII_BIT_DIR_PHY_HOST */ 455 } 456 }; 457 #endif /* DP83820 */ 458 459 #if defined(DP83820) 460 const struct sip_variant SIP_DECL(variant_dp83820) = { 461 SIP_DECL(dp83820_mii_readreg), 462 SIP_DECL(dp83820_mii_writereg), 463 SIP_DECL(dp83820_mii_statchg), 464 SIP_DECL(dp83815_set_filter), 465 SIP_DECL(dp83820_read_macaddr), 466 }; 467 #else 468 const struct sip_variant SIP_DECL(variant_sis900) = { 469 SIP_DECL(sis900_mii_readreg), 470 SIP_DECL(sis900_mii_writereg), 471 SIP_DECL(sis900_mii_statchg), 472 SIP_DECL(sis900_set_filter), 473 SIP_DECL(sis900_read_macaddr), 474 }; 475 476 const struct sip_variant SIP_DECL(variant_dp83815) = { 477 SIP_DECL(dp83815_mii_readreg), 478 SIP_DECL(dp83815_mii_writereg), 479 SIP_DECL(dp83815_mii_statchg), 480 SIP_DECL(dp83815_set_filter), 481 SIP_DECL(dp83815_read_macaddr), 482 }; 483 #endif /* DP83820 */ 484 485 /* 486 * Devices supported by this driver. 487 */ 488 const struct sip_product { 489 pci_vendor_id_t sip_vendor; 490 pci_product_id_t sip_product; 491 const char *sip_name; 492 const struct sip_variant *sip_variant; 493 } SIP_DECL(products)[] = { 494 #if defined(DP83820) 495 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820, 496 "NatSemi DP83820 Gigabit Ethernet", 497 &SIP_DECL(variant_dp83820) }, 498 #else 499 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, 500 "SiS 900 10/100 Ethernet", 501 &SIP_DECL(variant_sis900) }, 502 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016, 503 "SiS 7016 10/100 Ethernet", 504 &SIP_DECL(variant_sis900) }, 505 506 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815, 507 "NatSemi DP83815 10/100 Ethernet", 508 &SIP_DECL(variant_dp83815) }, 509 #endif /* DP83820 */ 510 511 { 0, 0, 512 NULL, 513 NULL }, 514 }; 515 516 static const struct sip_product * 517 SIP_DECL(lookup)(const struct pci_attach_args *pa) 518 { 519 const struct sip_product *sip; 520 521 for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) { 522 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor && 523 PCI_PRODUCT(pa->pa_id) == sip->sip_product) 524 return (sip); 525 } 526 return (NULL); 527 } 528 529 int 530 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux) 531 { 532 struct pci_attach_args *pa = aux; 533 534 if (SIP_DECL(lookup)(pa) != NULL) 535 return (1); 536 537 return (0); 538 } 539 540 void 541 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux) 542 { 543 struct sip_softc *sc = (struct sip_softc *) self; 544 struct pci_attach_args *pa = aux; 545 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 546 pci_chipset_tag_t pc = pa->pa_pc; 547 pci_intr_handle_t ih; 548 const char *intrstr = NULL; 549 bus_space_tag_t iot, memt; 550 bus_space_handle_t ioh, memh; 551 bus_dma_segment_t seg; 552 int ioh_valid, memh_valid; 553 int i, rseg, error; 554 const struct sip_product *sip; 555 pcireg_t pmode; 556 u_int8_t enaddr[ETHER_ADDR_LEN]; 557 int pmreg; 558 #ifdef DP83820 559 pcireg_t memtype; 560 u_int32_t reg; 561 #endif /* DP83820 */ 562 563 callout_init(&sc->sc_tick_ch); 564 565 sip = SIP_DECL(lookup)(pa); 566 if (sip == NULL) { 567 printf("\n"); 568 panic(SIP_STR(attach) ": impossible"); 569 } 570 571 printf(": %s\n", sip->sip_name); 572 573 sc->sc_model = sip; 574 575 /* 576 * Map the device. 577 */ 578 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA, 579 PCI_MAPREG_TYPE_IO, 0, 580 &iot, &ioh, NULL, NULL) == 0); 581 #ifdef DP83820 582 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA); 583 switch (memtype) { 584 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT: 585 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT: 586 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA, 587 memtype, 0, &memt, &memh, NULL, NULL) == 0); 588 break; 589 default: 590 memh_valid = 0; 591 } 592 #else 593 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA, 594 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0, 595 &memt, &memh, NULL, NULL) == 0); 596 #endif /* DP83820 */ 597 598 if (memh_valid) { 599 sc->sc_st = memt; 600 sc->sc_sh = memh; 601 } else if (ioh_valid) { 602 sc->sc_st = iot; 603 sc->sc_sh = ioh; 604 } else { 605 printf("%s: unable to map device registers\n", 606 sc->sc_dev.dv_xname); 607 return; 608 } 609 610 sc->sc_dmat = pa->pa_dmat; 611 612 /* Enable bus mastering. */ 613 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, 614 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) | 615 PCI_COMMAND_MASTER_ENABLE); 616 617 /* Get it out of power save mode if needed. */ 618 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) { 619 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3; 620 if (pmode == 3) { 621 /* 622 * The card has lost all configuration data in 623 * this state, so punt. 624 */ 625 printf("%s: unable to wake up from power state D3\n", 626 sc->sc_dev.dv_xname); 627 return; 628 } 629 if (pmode != 0) { 630 printf("%s: waking up from power state D%d\n", 631 sc->sc_dev.dv_xname, pmode); 632 pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0); 633 } 634 } 635 636 /* 637 * Map and establish our interrupt. 638 */ 639 if (pci_intr_map(pa, &ih)) { 640 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname); 641 return; 642 } 643 intrstr = pci_intr_string(pc, ih); 644 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc); 645 if (sc->sc_ih == NULL) { 646 printf("%s: unable to establish interrupt", 647 sc->sc_dev.dv_xname); 648 if (intrstr != NULL) 649 printf(" at %s", intrstr); 650 printf("\n"); 651 return; 652 } 653 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr); 654 655 SIMPLEQ_INIT(&sc->sc_txfreeq); 656 SIMPLEQ_INIT(&sc->sc_txdirtyq); 657 658 /* 659 * Allocate the control data structures, and create and load the 660 * DMA map for it. 661 */ 662 if ((error = bus_dmamem_alloc(sc->sc_dmat, 663 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg, 664 0)) != 0) { 665 printf("%s: unable to allocate control data, error = %d\n", 666 sc->sc_dev.dv_xname, error); 667 goto fail_0; 668 } 669 670 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, 671 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data, 672 BUS_DMA_COHERENT)) != 0) { 673 printf("%s: unable to map control data, error = %d\n", 674 sc->sc_dev.dv_xname, error); 675 goto fail_1; 676 } 677 678 if ((error = bus_dmamap_create(sc->sc_dmat, 679 sizeof(struct sip_control_data), 1, 680 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) { 681 printf("%s: unable to create control data DMA map, " 682 "error = %d\n", sc->sc_dev.dv_xname, error); 683 goto fail_2; 684 } 685 686 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap, 687 sc->sc_control_data, sizeof(struct sip_control_data), NULL, 688 0)) != 0) { 689 printf("%s: unable to load control data DMA map, error = %d\n", 690 sc->sc_dev.dv_xname, error); 691 goto fail_3; 692 } 693 694 /* 695 * Create the transmit buffer DMA maps. 696 */ 697 for (i = 0; i < SIP_TXQUEUELEN; i++) { 698 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 699 SIP_NTXSEGS, MCLBYTES, 0, 0, 700 &sc->sc_txsoft[i].txs_dmamap)) != 0) { 701 printf("%s: unable to create tx DMA map %d, " 702 "error = %d\n", sc->sc_dev.dv_xname, i, error); 703 goto fail_4; 704 } 705 } 706 707 /* 708 * Create the receive buffer DMA maps. 709 */ 710 for (i = 0; i < SIP_NRXDESC; i++) { 711 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, 712 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) { 713 printf("%s: unable to create rx DMA map %d, " 714 "error = %d\n", sc->sc_dev.dv_xname, i, error); 715 goto fail_5; 716 } 717 sc->sc_rxsoft[i].rxs_mbuf = NULL; 718 } 719 720 /* 721 * Reset the chip to a known state. 722 */ 723 SIP_DECL(reset)(sc); 724 725 /* 726 * Read the Ethernet address from the EEPROM. This might 727 * also fetch other stuff from the EEPROM and stash it 728 * in the softc. 729 */ 730 sc->sc_cfg = 0; 731 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr); 732 733 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname, 734 ether_sprintf(enaddr)); 735 736 /* 737 * Initialize the configuration register: aggressive PCI 738 * bus request algorithm, default backoff, default OW timer, 739 * default parity error detection. 740 * 741 * NOTE: "Big endian mode" is useless on the SiS900 and 742 * friends -- it affects packet data, not descriptors. 743 */ 744 #ifdef DP83820 745 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG); 746 if (reg & CFG_PCI64_DET) { 747 printf("%s: 64-bit PCI slot detected\n", sc->sc_dev.dv_xname); 748 /* 749 * XXX Need some PCI flags indicating support for 750 * XXX 64-bit addressing (SAC or DAC) and 64-bit 751 * XXX data path. 752 */ 753 } 754 if (sc->sc_cfg & (CFG_TBI_EN|CFG_EXT_125)) { 755 const char *sep = ""; 756 printf("%s: using ", sc->sc_dev.dv_xname); 757 if (sc->sc_cfg & CFG_EXT_125) { 758 printf("%s125MHz clock", sep); 759 sep = ", "; 760 } 761 if (sc->sc_cfg & CFG_TBI_EN) { 762 printf("%sten-bit interface", sep); 763 sep = ", "; 764 } 765 printf("\n"); 766 } 767 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0) 768 sc->sc_cfg |= CFG_MRM_DIS; 769 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0) 770 sc->sc_cfg |= CFG_MWI_DIS; 771 772 /* 773 * Use the extended descriptor format on the DP83820. This 774 * gives us an interface to VLAN tagging and IPv4/TCP/UDP 775 * checksumming. 776 */ 777 sc->sc_cfg |= CFG_EXTSTS_EN; 778 #endif /* DP83820 */ 779 780 /* 781 * Initialize our media structures and probe the MII. 782 */ 783 sc->sc_mii.mii_ifp = ifp; 784 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg; 785 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg; 786 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg; 787 ifmedia_init(&sc->sc_mii.mii_media, 0, SIP_DECL(mediachange), 788 SIP_DECL(mediastatus)); 789 #ifdef DP83820 790 if (sc->sc_cfg & CFG_TBI_EN) { 791 /* Using ten-bit interface. */ 792 printf("%s: TBI -- FIXME\n", sc->sc_dev.dv_xname); 793 } else { 794 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, 795 MII_OFFSET_ANY, 0); 796 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { 797 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 798 0, NULL); 799 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE); 800 } else 801 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); 802 } 803 #else 804 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, 805 MII_OFFSET_ANY, 0); 806 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { 807 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL); 808 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE); 809 } else 810 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); 811 #endif /* DP83820 */ 812 813 ifp = &sc->sc_ethercom.ec_if; 814 strcpy(ifp->if_xname, sc->sc_dev.dv_xname); 815 ifp->if_softc = sc; 816 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 817 ifp->if_ioctl = SIP_DECL(ioctl); 818 ifp->if_start = SIP_DECL(start); 819 ifp->if_watchdog = SIP_DECL(watchdog); 820 ifp->if_init = SIP_DECL(init); 821 ifp->if_stop = SIP_DECL(stop); 822 IFQ_SET_READY(&ifp->if_snd); 823 824 /* 825 * We can support 802.1Q VLAN-sized frames. 826 */ 827 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU; 828 829 #ifdef DP83820 830 /* 831 * And the DP83820 can do VLAN tagging in hardware, and 832 * support the jumbo Ethernet MTU. 833 */ 834 sc->sc_ethercom.ec_capabilities |= 835 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU; 836 837 /* 838 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums 839 * in hardware. 840 */ 841 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | 842 IFCAP_CSUM_UDPv4; 843 #endif /* DP83820 */ 844 845 /* 846 * Attach the interface. 847 */ 848 if_attach(ifp); 849 ether_ifattach(ifp, enaddr); 850 851 #ifdef SIP_EVENT_COUNTERS 852 /* 853 * Attach event counters. 854 */ 855 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC, 856 NULL, sc->sc_dev.dv_xname, "txsstall"); 857 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC, 858 NULL, sc->sc_dev.dv_xname, "txdstall"); 859 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR, 860 NULL, sc->sc_dev.dv_xname, "txintr"); 861 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR, 862 NULL, sc->sc_dev.dv_xname, "rxintr"); 863 #ifdef DP83820 864 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC, 865 NULL, sc->sc_dev.dv_xname, "rxipsum"); 866 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC, 867 NULL, sc->sc_dev.dv_xname, "rxtcpsum"); 868 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC, 869 NULL, sc->sc_dev.dv_xname, "rxudpsum"); 870 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC, 871 NULL, sc->sc_dev.dv_xname, "txipsum"); 872 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC, 873 NULL, sc->sc_dev.dv_xname, "txtcpsum"); 874 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC, 875 NULL, sc->sc_dev.dv_xname, "txudpsum"); 876 #endif /* DP83820 */ 877 #endif /* SIP_EVENT_COUNTERS */ 878 879 /* 880 * Make sure the interface is shutdown during reboot. 881 */ 882 sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc); 883 if (sc->sc_sdhook == NULL) 884 printf("%s: WARNING: unable to establish shutdown hook\n", 885 sc->sc_dev.dv_xname); 886 return; 887 888 /* 889 * Free any resources we've allocated during the failed attach 890 * attempt. Do this in reverse order and fall through. 891 */ 892 fail_5: 893 for (i = 0; i < SIP_NRXDESC; i++) { 894 if (sc->sc_rxsoft[i].rxs_dmamap != NULL) 895 bus_dmamap_destroy(sc->sc_dmat, 896 sc->sc_rxsoft[i].rxs_dmamap); 897 } 898 fail_4: 899 for (i = 0; i < SIP_TXQUEUELEN; i++) { 900 if (sc->sc_txsoft[i].txs_dmamap != NULL) 901 bus_dmamap_destroy(sc->sc_dmat, 902 sc->sc_txsoft[i].txs_dmamap); 903 } 904 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap); 905 fail_3: 906 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap); 907 fail_2: 908 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data, 909 sizeof(struct sip_control_data)); 910 fail_1: 911 bus_dmamem_free(sc->sc_dmat, &seg, rseg); 912 fail_0: 913 return; 914 } 915 916 /* 917 * sip_shutdown: 918 * 919 * Make sure the interface is stopped at reboot time. 920 */ 921 void 922 SIP_DECL(shutdown)(void *arg) 923 { 924 struct sip_softc *sc = arg; 925 926 SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1); 927 } 928 929 /* 930 * sip_start: [ifnet interface function] 931 * 932 * Start packet transmission on the interface. 933 */ 934 void 935 SIP_DECL(start)(struct ifnet *ifp) 936 { 937 struct sip_softc *sc = ifp->if_softc; 938 struct mbuf *m0, *m; 939 struct sip_txsoft *txs; 940 bus_dmamap_t dmamap; 941 int error, firsttx, nexttx, lasttx, ofree, seg; 942 #ifdef DP83820 943 u_int32_t extsts; 944 #endif 945 946 /* 947 * If we've been told to pause, don't transmit any more packets. 948 */ 949 if (sc->sc_flags & SIPF_PAUSED) 950 ifp->if_flags |= IFF_OACTIVE; 951 952 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) 953 return; 954 955 /* 956 * Remember the previous number of free descriptors and 957 * the first descriptor we'll use. 958 */ 959 ofree = sc->sc_txfree; 960 firsttx = sc->sc_txnext; 961 962 /* 963 * Loop through the send queue, setting up transmit descriptors 964 * until we drain the queue, or use up all available transmit 965 * descriptors. 966 */ 967 for (;;) { 968 /* Get a work queue entry. */ 969 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) { 970 SIP_EVCNT_INCR(&sc->sc_ev_txsstall); 971 break; 972 } 973 974 /* 975 * Grab a packet off the queue. 976 */ 977 IFQ_POLL(&ifp->if_snd, m0); 978 if (m0 == NULL) 979 break; 980 #ifndef DP83820 981 m = NULL; 982 #endif 983 984 dmamap = txs->txs_dmamap; 985 986 #ifdef DP83820 987 /* 988 * Load the DMA map. If this fails, the packet either 989 * didn't fit in the allotted number of segments, or we 990 * were short on resources. For the too-many-segments 991 * case, we simply report an error and drop the packet, 992 * since we can't sanely copy a jumbo packet to a single 993 * buffer. 994 */ 995 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0, 996 BUS_DMA_WRITE|BUS_DMA_NOWAIT); 997 if (error) { 998 if (error == EFBIG) { 999 printf("%s: Tx packet consumes too many " 1000 "DMA segments, dropping...\n", 1001 sc->sc_dev.dv_xname); 1002 IFQ_DEQUEUE(&ifp->if_snd, m0); 1003 m_freem(m0); 1004 continue; 1005 } 1006 /* 1007 * Short on resources, just stop for now. 1008 */ 1009 break; 1010 } 1011 #else /* DP83820 */ 1012 /* 1013 * Load the DMA map. If this fails, the packet either 1014 * didn't fit in the alloted number of segments, or we 1015 * were short on resources. In this case, we'll copy 1016 * and try again. 1017 */ 1018 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0, 1019 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) { 1020 MGETHDR(m, M_DONTWAIT, MT_DATA); 1021 if (m == NULL) { 1022 printf("%s: unable to allocate Tx mbuf\n", 1023 sc->sc_dev.dv_xname); 1024 break; 1025 } 1026 if (m0->m_pkthdr.len > MHLEN) { 1027 MCLGET(m, M_DONTWAIT); 1028 if ((m->m_flags & M_EXT) == 0) { 1029 printf("%s: unable to allocate Tx " 1030 "cluster\n", sc->sc_dev.dv_xname); 1031 m_freem(m); 1032 break; 1033 } 1034 } 1035 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t)); 1036 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len; 1037 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, 1038 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT); 1039 if (error) { 1040 printf("%s: unable to load Tx buffer, " 1041 "error = %d\n", sc->sc_dev.dv_xname, error); 1042 break; 1043 } 1044 } 1045 #endif /* DP83820 */ 1046 1047 /* 1048 * Ensure we have enough descriptors free to describe 1049 * the packet. Note, we always reserve one descriptor 1050 * at the end of the ring as a termination point, to 1051 * prevent wrap-around. 1052 */ 1053 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) { 1054 /* 1055 * Not enough free descriptors to transmit this 1056 * packet. We haven't committed anything yet, 1057 * so just unload the DMA map, put the packet 1058 * back on the queue, and punt. Notify the upper 1059 * layer that there are not more slots left. 1060 * 1061 * XXX We could allocate an mbuf and copy, but 1062 * XXX is it worth it? 1063 */ 1064 ifp->if_flags |= IFF_OACTIVE; 1065 bus_dmamap_unload(sc->sc_dmat, dmamap); 1066 #ifndef DP83820 1067 if (m != NULL) 1068 m_freem(m); 1069 #endif 1070 SIP_EVCNT_INCR(&sc->sc_ev_txdstall); 1071 break; 1072 } 1073 1074 IFQ_DEQUEUE(&ifp->if_snd, m0); 1075 #ifndef DP83820 1076 if (m != NULL) { 1077 m_freem(m0); 1078 m0 = m; 1079 } 1080 #endif 1081 1082 /* 1083 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. 1084 */ 1085 1086 /* Sync the DMA map. */ 1087 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, 1088 BUS_DMASYNC_PREWRITE); 1089 1090 /* 1091 * Initialize the transmit descriptors. 1092 */ 1093 for (nexttx = sc->sc_txnext, seg = 0; 1094 seg < dmamap->dm_nsegs; 1095 seg++, nexttx = SIP_NEXTTX(nexttx)) { 1096 /* 1097 * If this is the first descriptor we're 1098 * enqueueing, don't set the OWN bit just 1099 * yet. That could cause a race condition. 1100 * We'll do it below. 1101 */ 1102 sc->sc_txdescs[nexttx].sipd_bufptr = 1103 htole32(dmamap->dm_segs[seg].ds_addr); 1104 sc->sc_txdescs[nexttx].sipd_cmdsts = 1105 htole32((nexttx == firsttx ? 0 : CMDSTS_OWN) | 1106 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len); 1107 #ifdef DP83820 1108 sc->sc_txdescs[nexttx].sipd_extsts = 0; 1109 #endif /* DP83820 */ 1110 lasttx = nexttx; 1111 } 1112 1113 /* Clear the MORE bit on the last segment. */ 1114 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE); 1115 1116 #ifdef DP83820 1117 /* 1118 * If VLANs are enabled and the packet has a VLAN tag, set 1119 * up the descriptor to encapsulate the packet for us. 1120 * 1121 * This apparently has to be on the last descriptor of 1122 * the packet. 1123 */ 1124 if (sc->sc_ethercom.ec_nvlans != 0 && 1125 (m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) { 1126 sc->sc_txdescs[lasttx].sipd_extsts |= 1127 htole32(EXTSTS_VPKT | 1128 htons(*mtod(m, int *) & EXTSTS_VTCI)); 1129 } 1130 1131 /* 1132 * If the upper-layer has requested IPv4/TCPv4/UDPv4 1133 * checksumming, set up the descriptor to do this work 1134 * for us. 1135 * 1136 * This apparently has to be on the first descriptor of 1137 * the packet. 1138 * 1139 * Byte-swap constants so the compiler can optimize. 1140 */ 1141 extsts = 0; 1142 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) { 1143 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4); 1144 SIP_EVCNT_INCR(&sc->sc_ev_txipsum); 1145 extsts |= htole32(EXTSTS_IPPKT); 1146 } 1147 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) { 1148 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4); 1149 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum); 1150 extsts |= htole32(EXTSTS_TCPPKT); 1151 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) { 1152 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4); 1153 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum); 1154 extsts |= htole32(EXTSTS_UDPPKT); 1155 } 1156 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts; 1157 #endif /* DP83820 */ 1158 1159 /* Sync the descriptors we're using. */ 1160 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs, 1161 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1162 1163 /* 1164 * Store a pointer to the packet so we can free it later, 1165 * and remember what txdirty will be once the packet is 1166 * done. 1167 */ 1168 txs->txs_mbuf = m0; 1169 txs->txs_firstdesc = sc->sc_txnext; 1170 txs->txs_lastdesc = lasttx; 1171 1172 /* Advance the tx pointer. */ 1173 sc->sc_txfree -= dmamap->dm_nsegs; 1174 sc->sc_txnext = nexttx; 1175 1176 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q); 1177 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q); 1178 1179 #if NBPFILTER > 0 1180 /* 1181 * Pass the packet to any BPF listeners. 1182 */ 1183 if (ifp->if_bpf) 1184 bpf_mtap(ifp->if_bpf, m0); 1185 #endif /* NBPFILTER > 0 */ 1186 } 1187 1188 if (txs == NULL || sc->sc_txfree == 0) { 1189 /* No more slots left; notify upper layer. */ 1190 ifp->if_flags |= IFF_OACTIVE; 1191 } 1192 1193 if (sc->sc_txfree != ofree) { 1194 /* 1195 * Cause a descriptor interrupt to happen on the 1196 * last packet we enqueued. 1197 */ 1198 sc->sc_txdescs[lasttx].sipd_cmdsts |= htole32(CMDSTS_INTR); 1199 SIP_CDTXSYNC(sc, lasttx, 1, 1200 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1201 1202 /* 1203 * The entire packet chain is set up. Give the 1204 * first descrptor to the chip now. 1205 */ 1206 sc->sc_txdescs[firsttx].sipd_cmdsts |= htole32(CMDSTS_OWN); 1207 SIP_CDTXSYNC(sc, firsttx, 1, 1208 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1209 1210 /* 1211 * Start the transmit process. Note, the manual says 1212 * that if there are no pending transmissions in the 1213 * chip's internal queue (indicated by TXE being clear), 1214 * then the driver software must set the TXDP to the 1215 * first descriptor to be transmitted. However, if we 1216 * do this, it causes serious performance degredation on 1217 * the DP83820 under load, not setting TXDP doesn't seem 1218 * to adversely affect the SiS 900 or DP83815. 1219 * 1220 * Well, I guess it wouldn't be the first time a manual 1221 * has lied -- and they could be speaking of the NULL- 1222 * terminated descriptor list case, rather than OWN- 1223 * terminated rings. 1224 */ 1225 #if 0 1226 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) & 1227 CR_TXE) == 0) { 1228 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP, 1229 SIP_CDTXADDR(sc, firsttx)); 1230 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE); 1231 } 1232 #else 1233 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE); 1234 #endif 1235 1236 /* Set a watchdog timer in case the chip flakes out. */ 1237 ifp->if_timer = 5; 1238 } 1239 } 1240 1241 /* 1242 * sip_watchdog: [ifnet interface function] 1243 * 1244 * Watchdog timer handler. 1245 */ 1246 void 1247 SIP_DECL(watchdog)(struct ifnet *ifp) 1248 { 1249 struct sip_softc *sc = ifp->if_softc; 1250 1251 /* 1252 * The chip seems to ignore the CMDSTS_INTR bit sometimes! 1253 * If we get a timeout, try and sweep up transmit descriptors. 1254 * If we manage to sweep them all up, ignore the lack of 1255 * interrupt. 1256 */ 1257 SIP_DECL(txintr)(sc); 1258 1259 if (sc->sc_txfree != SIP_NTXDESC) { 1260 printf("%s: device timeout\n", sc->sc_dev.dv_xname); 1261 ifp->if_oerrors++; 1262 1263 /* Reset the interface. */ 1264 (void) SIP_DECL(init)(ifp); 1265 } else if (ifp->if_flags & IFF_DEBUG) 1266 printf("%s: recovered from device timeout\n", 1267 sc->sc_dev.dv_xname); 1268 1269 /* Try to get more packets going. */ 1270 SIP_DECL(start)(ifp); 1271 } 1272 1273 /* 1274 * sip_ioctl: [ifnet interface function] 1275 * 1276 * Handle control requests from the operator. 1277 */ 1278 int 1279 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data) 1280 { 1281 struct sip_softc *sc = ifp->if_softc; 1282 struct ifreq *ifr = (struct ifreq *)data; 1283 int s, error; 1284 1285 s = splnet(); 1286 1287 switch (cmd) { 1288 case SIOCSIFMEDIA: 1289 case SIOCGIFMEDIA: 1290 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd); 1291 break; 1292 1293 default: 1294 error = ether_ioctl(ifp, cmd, data); 1295 if (error == ENETRESET) { 1296 /* 1297 * Multicast list has changed; set the hardware filter 1298 * accordingly. 1299 */ 1300 (*sc->sc_model->sip_variant->sipv_set_filter)(sc); 1301 error = 0; 1302 } 1303 break; 1304 } 1305 1306 /* Try to get more packets going. */ 1307 SIP_DECL(start)(ifp); 1308 1309 splx(s); 1310 return (error); 1311 } 1312 1313 /* 1314 * sip_intr: 1315 * 1316 * Interrupt service routine. 1317 */ 1318 int 1319 SIP_DECL(intr)(void *arg) 1320 { 1321 struct sip_softc *sc = arg; 1322 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1323 u_int32_t isr; 1324 int handled = 0; 1325 1326 for (;;) { 1327 /* Reading clears interrupt. */ 1328 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR); 1329 if ((isr & sc->sc_imr) == 0) 1330 break; 1331 1332 handled = 1; 1333 1334 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) { 1335 SIP_EVCNT_INCR(&sc->sc_ev_rxintr); 1336 1337 /* Grab any new packets. */ 1338 SIP_DECL(rxintr)(sc); 1339 1340 if (isr & ISR_RXORN) { 1341 printf("%s: receive FIFO overrun\n", 1342 sc->sc_dev.dv_xname); 1343 1344 /* XXX adjust rx_drain_thresh? */ 1345 } 1346 1347 if (isr & ISR_RXIDLE) { 1348 printf("%s: receive ring overrun\n", 1349 sc->sc_dev.dv_xname); 1350 1351 /* Get the receive process going again. */ 1352 bus_space_write_4(sc->sc_st, sc->sc_sh, 1353 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr)); 1354 bus_space_write_4(sc->sc_st, sc->sc_sh, 1355 SIP_CR, CR_RXE); 1356 } 1357 } 1358 1359 if (isr & (ISR_TXURN|ISR_TXDESC)) { 1360 SIP_EVCNT_INCR(&sc->sc_ev_txintr); 1361 1362 /* Sweep up transmit descriptors. */ 1363 SIP_DECL(txintr)(sc); 1364 1365 if (isr & ISR_TXURN) { 1366 u_int32_t thresh; 1367 1368 printf("%s: transmit FIFO underrun", 1369 sc->sc_dev.dv_xname); 1370 1371 thresh = sc->sc_tx_drain_thresh + 1; 1372 if (thresh <= TXCFG_DRTH && 1373 (thresh * 32) <= (SIP_TXFIFO_SIZE - 1374 (sc->sc_tx_fill_thresh * 32))) { 1375 printf("; increasing Tx drain " 1376 "threshold to %u bytes\n", 1377 thresh * 32); 1378 sc->sc_tx_drain_thresh = thresh; 1379 (void) SIP_DECL(init)(ifp); 1380 } else { 1381 (void) SIP_DECL(init)(ifp); 1382 printf("\n"); 1383 } 1384 } 1385 } 1386 1387 #if !defined(DP83820) 1388 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) { 1389 if (isr & ISR_PAUSE_ST) { 1390 sc->sc_flags |= SIPF_PAUSED; 1391 ifp->if_flags |= IFF_OACTIVE; 1392 } 1393 if (isr & ISR_PAUSE_END) { 1394 sc->sc_flags &= ~SIPF_PAUSED; 1395 ifp->if_flags &= ~IFF_OACTIVE; 1396 } 1397 } 1398 #endif /* ! DP83820 */ 1399 1400 if (isr & ISR_HIBERR) { 1401 #define PRINTERR(bit, str) \ 1402 if (isr & (bit)) \ 1403 printf("%s: %s\n", sc->sc_dev.dv_xname, str) 1404 PRINTERR(ISR_DPERR, "parity error"); 1405 PRINTERR(ISR_SSERR, "system error"); 1406 PRINTERR(ISR_RMABT, "master abort"); 1407 PRINTERR(ISR_RTABT, "target abort"); 1408 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun"); 1409 (void) SIP_DECL(init)(ifp); 1410 #undef PRINTERR 1411 } 1412 } 1413 1414 /* Try to get more packets going. */ 1415 SIP_DECL(start)(ifp); 1416 1417 return (handled); 1418 } 1419 1420 /* 1421 * sip_txintr: 1422 * 1423 * Helper; handle transmit interrupts. 1424 */ 1425 void 1426 SIP_DECL(txintr)(struct sip_softc *sc) 1427 { 1428 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1429 struct sip_txsoft *txs; 1430 u_int32_t cmdsts; 1431 1432 if ((sc->sc_flags & SIPF_PAUSED) == 0) 1433 ifp->if_flags &= ~IFF_OACTIVE; 1434 1435 /* 1436 * Go through our Tx list and free mbufs for those 1437 * frames which have been transmitted. 1438 */ 1439 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) { 1440 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs, 1441 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1442 1443 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts); 1444 if (cmdsts & CMDSTS_OWN) 1445 break; 1446 1447 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q); 1448 1449 sc->sc_txfree += txs->txs_dmamap->dm_nsegs; 1450 1451 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 1452 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1453 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); 1454 m_freem(txs->txs_mbuf); 1455 txs->txs_mbuf = NULL; 1456 1457 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 1458 1459 /* 1460 * Check for errors and collisions. 1461 */ 1462 if (cmdsts & 1463 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) { 1464 ifp->if_oerrors++; 1465 if (cmdsts & CMDSTS_Tx_EC) 1466 ifp->if_collisions += 16; 1467 if (ifp->if_flags & IFF_DEBUG) { 1468 if (cmdsts & CMDSTS_Tx_ED) 1469 printf("%s: excessive deferral\n", 1470 sc->sc_dev.dv_xname); 1471 if (cmdsts & CMDSTS_Tx_EC) 1472 printf("%s: excessive collisions\n", 1473 sc->sc_dev.dv_xname); 1474 } 1475 } else { 1476 /* Packet was transmitted successfully. */ 1477 ifp->if_opackets++; 1478 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts); 1479 } 1480 } 1481 1482 /* 1483 * If there are no more pending transmissions, cancel the watchdog 1484 * timer. 1485 */ 1486 if (txs == NULL) 1487 ifp->if_timer = 0; 1488 } 1489 1490 #if defined(DP83820) 1491 /* 1492 * sip_rxintr: 1493 * 1494 * Helper; handle receive interrupts. 1495 */ 1496 void 1497 SIP_DECL(rxintr)(struct sip_softc *sc) 1498 { 1499 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1500 struct sip_rxsoft *rxs; 1501 struct mbuf *m, *tailm; 1502 u_int32_t cmdsts, extsts; 1503 int i, len; 1504 1505 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) { 1506 rxs = &sc->sc_rxsoft[i]; 1507 1508 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1509 1510 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts); 1511 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts); 1512 1513 /* 1514 * NOTE: OWN is set if owned by _consumer_. We're the 1515 * consumer of the receive ring, so if the bit is clear, 1516 * we have processed all of the packets. 1517 */ 1518 if ((cmdsts & CMDSTS_OWN) == 0) { 1519 /* 1520 * We have processed all of the receive buffers. 1521 */ 1522 break; 1523 } 1524 1525 if (__predict_false(sc->sc_rxdiscard)) { 1526 SIP_INIT_RXDESC(sc, i); 1527 if ((cmdsts & CMDSTS_MORE) == 0) { 1528 /* Reset our state. */ 1529 sc->sc_rxdiscard = 0; 1530 } 1531 continue; 1532 } 1533 1534 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 1535 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 1536 1537 m = rxs->rxs_mbuf; 1538 1539 /* 1540 * Add a new receive buffer to the ring. 1541 */ 1542 if (SIP_DECL(add_rxbuf)(sc, i) != 0) { 1543 /* 1544 * Failed, throw away what we've done so 1545 * far, and discard the rest of the packet. 1546 */ 1547 ifp->if_ierrors++; 1548 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 1549 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 1550 SIP_INIT_RXDESC(sc, i); 1551 if (cmdsts & CMDSTS_MORE) 1552 sc->sc_rxdiscard = 1; 1553 if (sc->sc_rxhead != NULL) 1554 m_freem(sc->sc_rxhead); 1555 SIP_RXCHAIN_RESET(sc); 1556 continue; 1557 } 1558 1559 SIP_RXCHAIN_LINK(sc, m); 1560 1561 /* 1562 * If this is not the end of the packet, keep 1563 * looking. 1564 */ 1565 if (cmdsts & CMDSTS_MORE) { 1566 sc->sc_rxlen += m->m_len; 1567 continue; 1568 } 1569 1570 /* 1571 * Okay, we have the entire packet now... 1572 */ 1573 *sc->sc_rxtailp = NULL; 1574 m = sc->sc_rxhead; 1575 tailm = sc->sc_rxtail; 1576 1577 SIP_RXCHAIN_RESET(sc); 1578 1579 /* 1580 * If an error occurred, update stats and drop the packet. 1581 */ 1582 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT| 1583 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) { 1584 ifp->if_ierrors++; 1585 if ((cmdsts & CMDSTS_Rx_RXA) != 0 && 1586 (cmdsts & CMDSTS_Rx_RXO) == 0) { 1587 /* Receive overrun handled elsewhere. */ 1588 printf("%s: receive descriptor error\n", 1589 sc->sc_dev.dv_xname); 1590 } 1591 #define PRINTERR(bit, str) \ 1592 if (cmdsts & (bit)) \ 1593 printf("%s: %s\n", sc->sc_dev.dv_xname, str) 1594 PRINTERR(CMDSTS_Rx_RUNT, "runt packet"); 1595 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error"); 1596 PRINTERR(CMDSTS_Rx_CRCE, "CRC error"); 1597 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error"); 1598 #undef PRINTERR 1599 m_freem(m); 1600 continue; 1601 } 1602 1603 /* 1604 * No errors. 1605 * 1606 * Note, the DP83820 includes the CRC with 1607 * every packet. 1608 */ 1609 len = CMDSTS_SIZE(cmdsts); 1610 tailm->m_len = len - sc->sc_rxlen; 1611 1612 /* 1613 * If the packet is small enough to fit in a 1614 * single header mbuf, allocate one and copy 1615 * the data into it. This greatly reduces 1616 * memory consumption when we receive lots 1617 * of small packets. 1618 */ 1619 if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) { 1620 struct mbuf *nm; 1621 MGETHDR(nm, M_DONTWAIT, MT_DATA); 1622 if (nm == NULL) { 1623 ifp->if_ierrors++; 1624 m_freem(m); 1625 continue; 1626 } 1627 nm->m_data += 2; 1628 nm->m_pkthdr.len = nm->m_len = len; 1629 m_copydata(m, 0, len, mtod(nm, caddr_t)); 1630 m_freem(m); 1631 m = nm; 1632 } 1633 #ifndef __NO_STRICT_ALIGNMENT 1634 else { 1635 /* 1636 * The DP83820's receive buffers must be 4-byte 1637 * aligned. But this means that the data after 1638 * the Ethernet header is misaligned. To compensate, 1639 * we have artificially shortened the buffer size 1640 * in the descriptor, and we do an overlapping copy 1641 * of the data two bytes further in (in the first 1642 * buffer of the chain only). 1643 */ 1644 memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t), 1645 m->m_len); 1646 m->m_data += 2; 1647 } 1648 #endif /* ! __NO_STRICT_ALIGNMENT */ 1649 1650 /* 1651 * If VLANs are enabled, VLAN packets have been unwrapped 1652 * for us. Associate the tag with the packet. 1653 */ 1654 if (sc->sc_ethercom.ec_nvlans != 0 && 1655 (extsts & EXTSTS_VPKT) != 0) { 1656 struct mbuf *vtag; 1657 1658 vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN); 1659 if (vtag == NULL) { 1660 ifp->if_ierrors++; 1661 printf("%s: unable to allocate VLAN tag\n", 1662 sc->sc_dev.dv_xname); 1663 m_freem(m); 1664 continue; 1665 } 1666 1667 *mtod(vtag, int *) = ntohs(extsts & EXTSTS_VTCI); 1668 vtag->m_len = sizeof(int); 1669 } 1670 1671 /* 1672 * Set the incoming checksum information for the 1673 * packet. 1674 */ 1675 if ((extsts & EXTSTS_IPPKT) != 0) { 1676 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum); 1677 m->m_pkthdr.csum_flags |= M_CSUM_IPv4; 1678 if (extsts & EXTSTS_Rx_IPERR) 1679 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD; 1680 if (extsts & EXTSTS_TCPPKT) { 1681 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum); 1682 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4; 1683 if (extsts & EXTSTS_Rx_TCPERR) 1684 m->m_pkthdr.csum_flags |= 1685 M_CSUM_TCP_UDP_BAD; 1686 } else if (extsts & EXTSTS_UDPPKT) { 1687 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum); 1688 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4; 1689 if (extsts & EXTSTS_Rx_UDPERR) 1690 m->m_pkthdr.csum_flags |= 1691 M_CSUM_TCP_UDP_BAD; 1692 } 1693 } 1694 1695 ifp->if_ipackets++; 1696 m->m_flags |= M_HASFCS; 1697 m->m_pkthdr.rcvif = ifp; 1698 m->m_pkthdr.len = len; 1699 1700 #if NBPFILTER > 0 1701 /* 1702 * Pass this up to any BPF listeners, but only 1703 * pass if up the stack if it's for us. 1704 */ 1705 if (ifp->if_bpf) 1706 bpf_mtap(ifp->if_bpf, m); 1707 #endif /* NBPFILTER > 0 */ 1708 1709 /* Pass it on. */ 1710 (*ifp->if_input)(ifp, m); 1711 } 1712 1713 /* Update the receive pointer. */ 1714 sc->sc_rxptr = i; 1715 } 1716 #else /* ! DP83820 */ 1717 /* 1718 * sip_rxintr: 1719 * 1720 * Helper; handle receive interrupts. 1721 */ 1722 void 1723 SIP_DECL(rxintr)(struct sip_softc *sc) 1724 { 1725 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1726 struct sip_rxsoft *rxs; 1727 struct mbuf *m; 1728 u_int32_t cmdsts; 1729 int i, len; 1730 1731 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) { 1732 rxs = &sc->sc_rxsoft[i]; 1733 1734 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1735 1736 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts); 1737 1738 /* 1739 * NOTE: OWN is set if owned by _consumer_. We're the 1740 * consumer of the receive ring, so if the bit is clear, 1741 * we have processed all of the packets. 1742 */ 1743 if ((cmdsts & CMDSTS_OWN) == 0) { 1744 /* 1745 * We have processed all of the receive buffers. 1746 */ 1747 break; 1748 } 1749 1750 /* 1751 * If any collisions were seen on the wire, count one. 1752 */ 1753 if (cmdsts & CMDSTS_Rx_COL) 1754 ifp->if_collisions++; 1755 1756 /* 1757 * If an error occurred, update stats, clear the status 1758 * word, and leave the packet buffer in place. It will 1759 * simply be reused the next time the ring comes around. 1760 */ 1761 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT| 1762 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) { 1763 ifp->if_ierrors++; 1764 if ((cmdsts & CMDSTS_Rx_RXA) != 0 && 1765 (cmdsts & CMDSTS_Rx_RXO) == 0) { 1766 /* Receive overrun handled elsewhere. */ 1767 printf("%s: receive descriptor error\n", 1768 sc->sc_dev.dv_xname); 1769 } 1770 #define PRINTERR(bit, str) \ 1771 if (cmdsts & (bit)) \ 1772 printf("%s: %s\n", sc->sc_dev.dv_xname, str) 1773 PRINTERR(CMDSTS_Rx_RUNT, "runt packet"); 1774 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error"); 1775 PRINTERR(CMDSTS_Rx_CRCE, "CRC error"); 1776 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error"); 1777 #undef PRINTERR 1778 SIP_INIT_RXDESC(sc, i); 1779 continue; 1780 } 1781 1782 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 1783 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 1784 1785 /* 1786 * No errors; receive the packet. Note, the SiS 900 1787 * includes the CRC with every packet. 1788 */ 1789 len = CMDSTS_SIZE(cmdsts); 1790 1791 #ifdef __NO_STRICT_ALIGNMENT 1792 /* 1793 * If the packet is small enough to fit in a 1794 * single header mbuf, allocate one and copy 1795 * the data into it. This greatly reduces 1796 * memory consumption when we receive lots 1797 * of small packets. 1798 * 1799 * Otherwise, we add a new buffer to the receive 1800 * chain. If this fails, we drop the packet and 1801 * recycle the old buffer. 1802 */ 1803 if (SIP_DECL(copy_small) != 0 && len <= MHLEN) { 1804 MGETHDR(m, M_DONTWAIT, MT_DATA); 1805 if (m == NULL) 1806 goto dropit; 1807 memcpy(mtod(m, caddr_t), 1808 mtod(rxs->rxs_mbuf, caddr_t), len); 1809 SIP_INIT_RXDESC(sc, i); 1810 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 1811 rxs->rxs_dmamap->dm_mapsize, 1812 BUS_DMASYNC_PREREAD); 1813 } else { 1814 m = rxs->rxs_mbuf; 1815 if (SIP_DECL(add_rxbuf)(sc, i) != 0) { 1816 dropit: 1817 ifp->if_ierrors++; 1818 SIP_INIT_RXDESC(sc, i); 1819 bus_dmamap_sync(sc->sc_dmat, 1820 rxs->rxs_dmamap, 0, 1821 rxs->rxs_dmamap->dm_mapsize, 1822 BUS_DMASYNC_PREREAD); 1823 continue; 1824 } 1825 } 1826 #else 1827 /* 1828 * The SiS 900's receive buffers must be 4-byte aligned. 1829 * But this means that the data after the Ethernet header 1830 * is misaligned. We must allocate a new buffer and 1831 * copy the data, shifted forward 2 bytes. 1832 */ 1833 MGETHDR(m, M_DONTWAIT, MT_DATA); 1834 if (m == NULL) { 1835 dropit: 1836 ifp->if_ierrors++; 1837 SIP_INIT_RXDESC(sc, i); 1838 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 1839 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 1840 continue; 1841 } 1842 if (len > (MHLEN - 2)) { 1843 MCLGET(m, M_DONTWAIT); 1844 if ((m->m_flags & M_EXT) == 0) { 1845 m_freem(m); 1846 goto dropit; 1847 } 1848 } 1849 m->m_data += 2; 1850 1851 /* 1852 * Note that we use clusters for incoming frames, so the 1853 * buffer is virtually contiguous. 1854 */ 1855 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len); 1856 1857 /* Allow the receive descriptor to continue using its mbuf. */ 1858 SIP_INIT_RXDESC(sc, i); 1859 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 1860 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 1861 #endif /* __NO_STRICT_ALIGNMENT */ 1862 1863 ifp->if_ipackets++; 1864 m->m_flags |= M_HASFCS; 1865 m->m_pkthdr.rcvif = ifp; 1866 m->m_pkthdr.len = m->m_len = len; 1867 1868 #if NBPFILTER > 0 1869 /* 1870 * Pass this up to any BPF listeners, but only 1871 * pass if up the stack if it's for us. 1872 */ 1873 if (ifp->if_bpf) 1874 bpf_mtap(ifp->if_bpf, m); 1875 #endif /* NBPFILTER > 0 */ 1876 1877 /* Pass it on. */ 1878 (*ifp->if_input)(ifp, m); 1879 } 1880 1881 /* Update the receive pointer. */ 1882 sc->sc_rxptr = i; 1883 } 1884 #endif /* DP83820 */ 1885 1886 /* 1887 * sip_tick: 1888 * 1889 * One second timer, used to tick the MII. 1890 */ 1891 void 1892 SIP_DECL(tick)(void *arg) 1893 { 1894 struct sip_softc *sc = arg; 1895 int s; 1896 1897 s = splnet(); 1898 mii_tick(&sc->sc_mii); 1899 splx(s); 1900 1901 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc); 1902 } 1903 1904 /* 1905 * sip_reset: 1906 * 1907 * Perform a soft reset on the SiS 900. 1908 */ 1909 void 1910 SIP_DECL(reset)(struct sip_softc *sc) 1911 { 1912 bus_space_tag_t st = sc->sc_st; 1913 bus_space_handle_t sh = sc->sc_sh; 1914 int i; 1915 1916 bus_space_write_4(st, sh, SIP_CR, CR_RST); 1917 1918 for (i = 0; i < SIP_TIMEOUT; i++) { 1919 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0) 1920 break; 1921 delay(2); 1922 } 1923 1924 if (i == SIP_TIMEOUT) 1925 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname); 1926 1927 delay(1000); 1928 1929 #ifdef DP83820 1930 /* 1931 * Set the general purpose I/O bits. Do it here in case we 1932 * need to have GPIO set up to talk to the media interface. 1933 */ 1934 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior); 1935 delay(1000); 1936 #endif /* DP83820 */ 1937 } 1938 1939 /* 1940 * sip_init: [ ifnet interface function ] 1941 * 1942 * Initialize the interface. Must be called at splnet(). 1943 */ 1944 int 1945 SIP_DECL(init)(struct ifnet *ifp) 1946 { 1947 struct sip_softc *sc = ifp->if_softc; 1948 bus_space_tag_t st = sc->sc_st; 1949 bus_space_handle_t sh = sc->sc_sh; 1950 struct sip_txsoft *txs; 1951 struct sip_rxsoft *rxs; 1952 struct sip_desc *sipd; 1953 u_int32_t reg; 1954 int i, error = 0; 1955 1956 /* 1957 * Cancel any pending I/O. 1958 */ 1959 SIP_DECL(stop)(ifp, 0); 1960 1961 /* 1962 * Reset the chip to a known state. 1963 */ 1964 SIP_DECL(reset)(sc); 1965 1966 #if !defined(DP83820) 1967 if (sc->sc_model->sip_vendor == PCI_VENDOR_NS && 1968 sc->sc_model->sip_product == PCI_PRODUCT_NS_DP83815) { 1969 /* 1970 * DP83815 manual, page 78: 1971 * 4.4 Recommended Registers Configuration 1972 * For optimum performance of the DP83815, version noted 1973 * as DP83815CVNG (SRR = 203h), the listed register 1974 * modifications must be followed in sequence... 1975 * 1976 * It's not clear if this should be 302h or 203h because that 1977 * chip name is listed as SRR 302h in the description of the 1978 * SRR register. However, my revision 302h DP83815 on the 1979 * Netgear FA311 purchased in 02/2001 needs these settings 1980 * to avoid tons of errors in AcceptPerfectMatch (non- 1981 * IFF_PROMISC) mode. I do not know if other revisions need 1982 * this set or not. [briggs -- 09 March 2001] 1983 * 1984 * Note that only the low-order 12 bits of 0xe4 are documented 1985 * and that this sets reserved bits in that register. 1986 */ 1987 reg = bus_space_read_4(st, sh, SIP_NS_SRR); 1988 if (reg == 0x302) { 1989 bus_space_write_4(st, sh, 0x00cc, 0x0001); 1990 bus_space_write_4(st, sh, 0x00e4, 0x189C); 1991 bus_space_write_4(st, sh, 0x00fc, 0x0000); 1992 bus_space_write_4(st, sh, 0x00f4, 0x5040); 1993 bus_space_write_4(st, sh, 0x00f8, 0x008c); 1994 } 1995 } 1996 #endif /* ! DP83820 */ 1997 1998 /* 1999 * Initialize the transmit descriptor ring. 2000 */ 2001 for (i = 0; i < SIP_NTXDESC; i++) { 2002 sipd = &sc->sc_txdescs[i]; 2003 memset(sipd, 0, sizeof(struct sip_desc)); 2004 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i))); 2005 } 2006 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC, 2007 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 2008 sc->sc_txfree = SIP_NTXDESC; 2009 sc->sc_txnext = 0; 2010 2011 /* 2012 * Initialize the transmit job descriptors. 2013 */ 2014 SIMPLEQ_INIT(&sc->sc_txfreeq); 2015 SIMPLEQ_INIT(&sc->sc_txdirtyq); 2016 for (i = 0; i < SIP_TXQUEUELEN; i++) { 2017 txs = &sc->sc_txsoft[i]; 2018 txs->txs_mbuf = NULL; 2019 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 2020 } 2021 2022 /* 2023 * Initialize the receive descriptor and receive job 2024 * descriptor rings. 2025 */ 2026 for (i = 0; i < SIP_NRXDESC; i++) { 2027 rxs = &sc->sc_rxsoft[i]; 2028 if (rxs->rxs_mbuf == NULL) { 2029 if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) { 2030 printf("%s: unable to allocate or map rx " 2031 "buffer %d, error = %d\n", 2032 sc->sc_dev.dv_xname, i, error); 2033 /* 2034 * XXX Should attempt to run with fewer receive 2035 * XXX buffers instead of just failing. 2036 */ 2037 SIP_DECL(rxdrain)(sc); 2038 goto out; 2039 } 2040 } else 2041 SIP_INIT_RXDESC(sc, i); 2042 } 2043 sc->sc_rxptr = 0; 2044 #ifdef DP83820 2045 sc->sc_rxdiscard = 0; 2046 SIP_RXCHAIN_RESET(sc); 2047 #endif /* DP83820 */ 2048 2049 /* 2050 * Set the configuration register; it's already initialized 2051 * in sip_attach(). 2052 */ 2053 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg); 2054 2055 /* 2056 * Initialize the transmit fill and drain thresholds if 2057 * we have never done so. 2058 */ 2059 if (sc->sc_tx_fill_thresh == 0) { 2060 /* 2061 * XXX This value should be tuned. This is the 2062 * minimum (32 bytes), and we may be able to 2063 * improve performance by increasing it. 2064 */ 2065 sc->sc_tx_fill_thresh = 1; 2066 } 2067 if (sc->sc_tx_drain_thresh == 0) { 2068 /* 2069 * Start at a drain threshold of 512 bytes. We will 2070 * increase it if a DMA underrun occurs. 2071 * 2072 * XXX The minimum value of this variable should be 2073 * tuned. We may be able to improve performance 2074 * by starting with a lower value. That, however, 2075 * may trash the first few outgoing packets if the 2076 * PCI bus is saturated. 2077 */ 2078 sc->sc_tx_drain_thresh = 512 / 32; 2079 } 2080 2081 /* 2082 * Initialize the prototype TXCFG register. 2083 */ 2084 sc->sc_txcfg = TXCFG_ATP | TXCFG_MXDMA_512 | 2085 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) | 2086 sc->sc_tx_drain_thresh; 2087 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg); 2088 2089 /* 2090 * Initialize the receive drain threshold if we have never 2091 * done so. 2092 */ 2093 if (sc->sc_rx_drain_thresh == 0) { 2094 /* 2095 * XXX This value should be tuned. This is set to the 2096 * maximum of 248 bytes, and we may be able to improve 2097 * performance by decreasing it (although we should never 2098 * set this value lower than 2; 14 bytes are required to 2099 * filter the packet). 2100 */ 2101 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT; 2102 } 2103 2104 /* 2105 * Initialize the prototype RXCFG register. 2106 */ 2107 sc->sc_rxcfg = RXCFG_MXDMA_512 | 2108 (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT); 2109 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg); 2110 2111 /* Set up the receive filter. */ 2112 (*sc->sc_model->sip_variant->sipv_set_filter)(sc); 2113 2114 #ifdef DP83820 2115 /* 2116 * Initialize the VLAN/IP receive control register. 2117 * We enable checksum computation on all incoming 2118 * packets, and do not reject packets w/ bad checksums. 2119 */ 2120 reg = 0; 2121 if (ifp->if_capenable & 2122 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4)) 2123 reg |= VRCR_IPEN; 2124 if (sc->sc_ethercom.ec_nvlans != 0) 2125 reg |= VRCR_VTDEN|VRCR_VTREN; 2126 bus_space_write_4(st, sh, SIP_VRCR, reg); 2127 2128 /* 2129 * Initialize the VLAN/IP transmit control register. 2130 * We enable outgoing checksum computation on a 2131 * per-packet basis. 2132 */ 2133 reg = 0; 2134 if (ifp->if_capenable & 2135 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4)) 2136 reg |= VTCR_PPCHK; 2137 if (sc->sc_ethercom.ec_nvlans != 0) 2138 reg |= VTCR_VPPTI; 2139 bus_space_write_4(st, sh, SIP_VTCR, reg); 2140 2141 /* 2142 * If we're using VLANs, initialize the VLAN data register. 2143 * To understand why we bswap the VLAN Ethertype, see section 2144 * 4.2.36 of the DP83820 manual. 2145 */ 2146 if (sc->sc_ethercom.ec_nvlans != 0) 2147 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN)); 2148 #endif /* DP83820 */ 2149 2150 /* 2151 * Give the transmit and receive rings to the chip. 2152 */ 2153 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext)); 2154 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr)); 2155 2156 /* 2157 * Initialize the interrupt mask. 2158 */ 2159 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR| 2160 ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC; 2161 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr); 2162 2163 /* 2164 * Set the current media. Do this after initializing the prototype 2165 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow 2166 * control. 2167 */ 2168 mii_mediachg(&sc->sc_mii); 2169 2170 /* 2171 * Enable interrupts. 2172 */ 2173 bus_space_write_4(st, sh, SIP_IER, IER_IE); 2174 2175 /* 2176 * Start the transmit and receive processes. 2177 */ 2178 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE); 2179 2180 /* 2181 * Start the one second MII clock. 2182 */ 2183 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc); 2184 2185 /* 2186 * ...all done! 2187 */ 2188 ifp->if_flags |= IFF_RUNNING; 2189 ifp->if_flags &= ~IFF_OACTIVE; 2190 2191 out: 2192 if (error) 2193 printf("%s: interface not running\n", sc->sc_dev.dv_xname); 2194 return (error); 2195 } 2196 2197 /* 2198 * sip_drain: 2199 * 2200 * Drain the receive queue. 2201 */ 2202 void 2203 SIP_DECL(rxdrain)(struct sip_softc *sc) 2204 { 2205 struct sip_rxsoft *rxs; 2206 int i; 2207 2208 for (i = 0; i < SIP_NRXDESC; i++) { 2209 rxs = &sc->sc_rxsoft[i]; 2210 if (rxs->rxs_mbuf != NULL) { 2211 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 2212 m_freem(rxs->rxs_mbuf); 2213 rxs->rxs_mbuf = NULL; 2214 } 2215 } 2216 } 2217 2218 /* 2219 * sip_stop: [ ifnet interface function ] 2220 * 2221 * Stop transmission on the interface. 2222 */ 2223 void 2224 SIP_DECL(stop)(struct ifnet *ifp, int disable) 2225 { 2226 struct sip_softc *sc = ifp->if_softc; 2227 bus_space_tag_t st = sc->sc_st; 2228 bus_space_handle_t sh = sc->sc_sh; 2229 struct sip_txsoft *txs; 2230 u_int32_t cmdsts = 0; /* DEBUG */ 2231 2232 /* 2233 * Stop the one second clock. 2234 */ 2235 callout_stop(&sc->sc_tick_ch); 2236 2237 /* Down the MII. */ 2238 mii_down(&sc->sc_mii); 2239 2240 /* 2241 * Disable interrupts. 2242 */ 2243 bus_space_write_4(st, sh, SIP_IER, 0); 2244 2245 /* 2246 * Stop receiver and transmitter. 2247 */ 2248 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD); 2249 2250 /* 2251 * Release any queued transmit buffers. 2252 */ 2253 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) { 2254 if ((ifp->if_flags & IFF_DEBUG) != 0 && 2255 SIMPLEQ_NEXT(txs, txs_q) == NULL && 2256 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) & 2257 CMDSTS_INTR) == 0) 2258 printf("%s: sip_stop: last descriptor does not " 2259 "have INTR bit set\n", sc->sc_dev.dv_xname); 2260 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q); 2261 #ifdef DIAGNOSTIC 2262 if (txs->txs_mbuf == NULL) { 2263 printf("%s: dirty txsoft with no mbuf chain\n", 2264 sc->sc_dev.dv_xname); 2265 panic("sip_stop"); 2266 } 2267 #endif 2268 cmdsts |= /* DEBUG */ 2269 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts); 2270 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); 2271 m_freem(txs->txs_mbuf); 2272 txs->txs_mbuf = NULL; 2273 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 2274 } 2275 2276 if (disable) 2277 SIP_DECL(rxdrain)(sc); 2278 2279 /* 2280 * Mark the interface down and cancel the watchdog timer. 2281 */ 2282 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2283 ifp->if_timer = 0; 2284 2285 if ((ifp->if_flags & IFF_DEBUG) != 0 && 2286 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC) 2287 printf("%s: sip_stop: no INTR bits set in dirty tx " 2288 "descriptors\n", sc->sc_dev.dv_xname); 2289 } 2290 2291 /* 2292 * sip_read_eeprom: 2293 * 2294 * Read data from the serial EEPROM. 2295 */ 2296 void 2297 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt, 2298 u_int16_t *data) 2299 { 2300 bus_space_tag_t st = sc->sc_st; 2301 bus_space_handle_t sh = sc->sc_sh; 2302 u_int16_t reg; 2303 int i, x; 2304 2305 for (i = 0; i < wordcnt; i++) { 2306 /* Send CHIP SELECT. */ 2307 reg = EROMAR_EECS; 2308 bus_space_write_4(st, sh, SIP_EROMAR, reg); 2309 2310 /* Shift in the READ opcode. */ 2311 for (x = 3; x > 0; x--) { 2312 if (SIP_EEPROM_OPC_READ & (1 << (x - 1))) 2313 reg |= EROMAR_EEDI; 2314 else 2315 reg &= ~EROMAR_EEDI; 2316 bus_space_write_4(st, sh, SIP_EROMAR, reg); 2317 bus_space_write_4(st, sh, SIP_EROMAR, 2318 reg | EROMAR_EESK); 2319 delay(4); 2320 bus_space_write_4(st, sh, SIP_EROMAR, reg); 2321 delay(4); 2322 } 2323 2324 /* Shift in address. */ 2325 for (x = 6; x > 0; x--) { 2326 if ((word + i) & (1 << (x - 1))) 2327 reg |= EROMAR_EEDI; 2328 else 2329 reg &= ~EROMAR_EEDI; 2330 bus_space_write_4(st, sh, SIP_EROMAR, reg); 2331 bus_space_write_4(st, sh, SIP_EROMAR, 2332 reg | EROMAR_EESK); 2333 delay(4); 2334 bus_space_write_4(st, sh, SIP_EROMAR, reg); 2335 delay(4); 2336 } 2337 2338 /* Shift out data. */ 2339 reg = EROMAR_EECS; 2340 data[i] = 0; 2341 for (x = 16; x > 0; x--) { 2342 bus_space_write_4(st, sh, SIP_EROMAR, 2343 reg | EROMAR_EESK); 2344 delay(4); 2345 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO) 2346 data[i] |= (1 << (x - 1)); 2347 bus_space_write_4(st, sh, SIP_EROMAR, reg); 2348 delay(4); 2349 } 2350 2351 /* Clear CHIP SELECT. */ 2352 bus_space_write_4(st, sh, SIP_EROMAR, 0); 2353 delay(4); 2354 } 2355 } 2356 2357 /* 2358 * sip_add_rxbuf: 2359 * 2360 * Add a receive buffer to the indicated descriptor. 2361 */ 2362 int 2363 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx) 2364 { 2365 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx]; 2366 struct mbuf *m; 2367 int error; 2368 2369 MGETHDR(m, M_DONTWAIT, MT_DATA); 2370 if (m == NULL) 2371 return (ENOBUFS); 2372 2373 MCLGET(m, M_DONTWAIT); 2374 if ((m->m_flags & M_EXT) == 0) { 2375 m_freem(m); 2376 return (ENOBUFS); 2377 } 2378 2379 #if defined(DP83820) 2380 m->m_len = SIP_RXBUF_LEN; 2381 #endif /* DP83820 */ 2382 2383 if (rxs->rxs_mbuf != NULL) 2384 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 2385 2386 rxs->rxs_mbuf = m; 2387 2388 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, 2389 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, 2390 BUS_DMA_READ|BUS_DMA_NOWAIT); 2391 if (error) { 2392 printf("%s: can't load rx DMA map %d, error = %d\n", 2393 sc->sc_dev.dv_xname, idx, error); 2394 panic("sip_add_rxbuf"); /* XXX */ 2395 } 2396 2397 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 2398 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 2399 2400 SIP_INIT_RXDESC(sc, idx); 2401 2402 return (0); 2403 } 2404 2405 #if !defined(DP83820) 2406 /* 2407 * sip_sis900_set_filter: 2408 * 2409 * Set up the receive filter. 2410 */ 2411 void 2412 SIP_DECL(sis900_set_filter)(struct sip_softc *sc) 2413 { 2414 bus_space_tag_t st = sc->sc_st; 2415 bus_space_handle_t sh = sc->sc_sh; 2416 struct ethercom *ec = &sc->sc_ethercom; 2417 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2418 struct ether_multi *enm; 2419 u_int8_t *cp; 2420 struct ether_multistep step; 2421 u_int32_t crc, mchash[8]; 2422 2423 /* 2424 * Initialize the prototype RFCR. 2425 */ 2426 sc->sc_rfcr = RFCR_RFEN; 2427 if (ifp->if_flags & IFF_BROADCAST) 2428 sc->sc_rfcr |= RFCR_AAB; 2429 if (ifp->if_flags & IFF_PROMISC) { 2430 sc->sc_rfcr |= RFCR_AAP; 2431 goto allmulti; 2432 } 2433 2434 /* 2435 * Set up the multicast address filter by passing all multicast 2436 * addresses through a CRC generator, and then using the high-order 2437 * 6 bits as an index into the 128 bit multicast hash table (only 2438 * the lower 16 bits of each 32 bit multicast hash register are 2439 * valid). The high order bits select the register, while the 2440 * rest of the bits select the bit within the register. 2441 */ 2442 2443 memset(mchash, 0, sizeof(mchash)); 2444 2445 ETHER_FIRST_MULTI(step, ec, enm); 2446 while (enm != NULL) { 2447 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 2448 /* 2449 * We must listen to a range of multicast addresses. 2450 * For now, just accept all multicasts, rather than 2451 * trying to set only those filter bits needed to match 2452 * the range. (At this time, the only use of address 2453 * ranges is for IP multicast routing, for which the 2454 * range is big enough to require all bits set.) 2455 */ 2456 goto allmulti; 2457 } 2458 2459 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN); 2460 2461 /* Just want the 7 most significant bits. */ 2462 crc >>= 25; 2463 2464 /* Set the corresponding bit in the hash table. */ 2465 mchash[crc >> 4] |= 1 << (crc & 0xf); 2466 2467 ETHER_NEXT_MULTI(step, enm); 2468 } 2469 2470 ifp->if_flags &= ~IFF_ALLMULTI; 2471 goto setit; 2472 2473 allmulti: 2474 ifp->if_flags |= IFF_ALLMULTI; 2475 sc->sc_rfcr |= RFCR_AAM; 2476 2477 setit: 2478 #define FILTER_EMIT(addr, data) \ 2479 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \ 2480 delay(1); \ 2481 bus_space_write_4(st, sh, SIP_RFDR, (data)); \ 2482 delay(1) 2483 2484 /* 2485 * Disable receive filter, and program the node address. 2486 */ 2487 cp = LLADDR(ifp->if_sadl); 2488 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]); 2489 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]); 2490 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]); 2491 2492 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 2493 /* 2494 * Program the multicast hash table. 2495 */ 2496 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]); 2497 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]); 2498 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]); 2499 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]); 2500 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]); 2501 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]); 2502 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]); 2503 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]); 2504 } 2505 #undef FILTER_EMIT 2506 2507 /* 2508 * Re-enable the receiver filter. 2509 */ 2510 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr); 2511 } 2512 #endif /* ! DP83820 */ 2513 2514 /* 2515 * sip_dp83815_set_filter: 2516 * 2517 * Set up the receive filter. 2518 */ 2519 void 2520 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc) 2521 { 2522 bus_space_tag_t st = sc->sc_st; 2523 bus_space_handle_t sh = sc->sc_sh; 2524 struct ethercom *ec = &sc->sc_ethercom; 2525 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2526 struct ether_multi *enm; 2527 u_int8_t *cp; 2528 struct ether_multistep step; 2529 u_int32_t crc, hash, slot, bit; 2530 #ifdef DP83820 2531 #define MCHASH_NWORDS 128 2532 #else 2533 #define MCHASH_NWORDS 32 2534 #endif /* DP83820 */ 2535 u_int16_t mchash[MCHASH_NWORDS]; 2536 int i; 2537 2538 /* 2539 * Initialize the prototype RFCR. 2540 * Enable the receive filter, and accept on 2541 * Perfect (destination address) Match 2542 * If IFF_BROADCAST, also accept all broadcast packets. 2543 * If IFF_PROMISC, accept all unicast packets (and later, set 2544 * IFF_ALLMULTI and accept all multicast, too). 2545 */ 2546 sc->sc_rfcr = RFCR_RFEN | RFCR_APM; 2547 if (ifp->if_flags & IFF_BROADCAST) 2548 sc->sc_rfcr |= RFCR_AAB; 2549 if (ifp->if_flags & IFF_PROMISC) { 2550 sc->sc_rfcr |= RFCR_AAP; 2551 goto allmulti; 2552 } 2553 2554 #ifdef DP83820 2555 /* 2556 * Set up the DP83820 multicast address filter by passing all multicast 2557 * addresses through a CRC generator, and then using the high-order 2558 * 11 bits as an index into the 2048 bit multicast hash table. The 2559 * high-order 7 bits select the slot, while the low-order 4 bits 2560 * select the bit within the slot. Note that only the low 16-bits 2561 * of each filter word are used, and there are 128 filter words. 2562 */ 2563 #else 2564 /* 2565 * Set up the DP83815 multicast address filter by passing all multicast 2566 * addresses through a CRC generator, and then using the high-order 2567 * 9 bits as an index into the 512 bit multicast hash table. The 2568 * high-order 5 bits select the slot, while the low-order 4 bits 2569 * select the bit within the slot. Note that only the low 16-bits 2570 * of each filter word are used, and there are 32 filter words. 2571 */ 2572 #endif /* DP83820 */ 2573 2574 memset(mchash, 0, sizeof(mchash)); 2575 2576 ifp->if_flags &= ~IFF_ALLMULTI; 2577 ETHER_FIRST_MULTI(step, ec, enm); 2578 if (enm == NULL) 2579 goto setit; 2580 while (enm != NULL) { 2581 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 2582 /* 2583 * We must listen to a range of multicast addresses. 2584 * For now, just accept all multicasts, rather than 2585 * trying to set only those filter bits needed to match 2586 * the range. (At this time, the only use of address 2587 * ranges is for IP multicast routing, for which the 2588 * range is big enough to require all bits set.) 2589 */ 2590 goto allmulti; 2591 } 2592 2593 #ifdef DP83820 2594 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN); 2595 2596 /* Just want the 11 most significant bits. */ 2597 hash = crc >> 21; 2598 #else 2599 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN); 2600 2601 /* Just want the 9 most significant bits. */ 2602 hash = crc >> 23; 2603 #endif /* DP83820 */ 2604 slot = hash >> 4; 2605 bit = hash & 0xf; 2606 2607 /* Set the corresponding bit in the hash table. */ 2608 mchash[slot] |= 1 << bit; 2609 2610 ETHER_NEXT_MULTI(step, enm); 2611 } 2612 sc->sc_rfcr |= RFCR_MHEN; 2613 goto setit; 2614 2615 allmulti: 2616 ifp->if_flags |= IFF_ALLMULTI; 2617 sc->sc_rfcr |= RFCR_AAM; 2618 2619 setit: 2620 #define FILTER_EMIT(addr, data) \ 2621 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \ 2622 delay(1); \ 2623 bus_space_write_4(st, sh, SIP_RFDR, (data)); \ 2624 delay(1) 2625 2626 /* 2627 * Disable receive filter, and program the node address. 2628 */ 2629 cp = LLADDR(ifp->if_sadl); 2630 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]); 2631 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]); 2632 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]); 2633 2634 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 2635 /* 2636 * Program the multicast hash table. 2637 */ 2638 for (i = 0; i < MCHASH_NWORDS; i++) { 2639 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2), 2640 mchash[i]); 2641 } 2642 } 2643 #undef FILTER_EMIT 2644 #undef MCHASH_NWORDS 2645 2646 /* 2647 * Re-enable the receiver filter. 2648 */ 2649 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr); 2650 } 2651 2652 #if defined(DP83820) 2653 /* 2654 * sip_dp83820_mii_readreg: [mii interface function] 2655 * 2656 * Read a PHY register on the MII of the DP83820. 2657 */ 2658 int 2659 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg) 2660 { 2661 2662 return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops), 2663 phy, reg)); 2664 } 2665 2666 /* 2667 * sip_dp83820_mii_writereg: [mii interface function] 2668 * 2669 * Write a PHY register on the MII of the DP83820. 2670 */ 2671 void 2672 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val) 2673 { 2674 2675 mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops), 2676 phy, reg, val); 2677 } 2678 2679 /* 2680 * sip_dp83815_mii_statchg: [mii interface function] 2681 * 2682 * Callback from MII layer when media changes. 2683 */ 2684 void 2685 SIP_DECL(dp83820_mii_statchg)(struct device *self) 2686 { 2687 struct sip_softc *sc = (struct sip_softc *) self; 2688 u_int32_t cfg; 2689 2690 /* 2691 * Update TXCFG for full-duplex operation. 2692 */ 2693 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0) 2694 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI); 2695 else 2696 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI); 2697 2698 /* 2699 * Update RXCFG for full-duplex or loopback. 2700 */ 2701 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 || 2702 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP) 2703 sc->sc_rxcfg |= RXCFG_ATX; 2704 else 2705 sc->sc_rxcfg &= ~RXCFG_ATX; 2706 2707 /* 2708 * Update CFG for MII/GMII. 2709 */ 2710 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000)) 2711 cfg = sc->sc_cfg | CFG_MODE_1000; 2712 else 2713 cfg = sc->sc_cfg; 2714 2715 /* 2716 * XXX 802.3x flow control. 2717 */ 2718 2719 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg); 2720 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg); 2721 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg); 2722 } 2723 2724 /* 2725 * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function] 2726 * 2727 * Read the MII serial port for the MII bit-bang module. 2728 */ 2729 u_int32_t 2730 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self) 2731 { 2732 struct sip_softc *sc = (void *) self; 2733 2734 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR)); 2735 } 2736 2737 /* 2738 * sip_dp83820_mii_bitbang_write: [mii big-bang interface function] 2739 * 2740 * Write the MII serial port for the MII bit-bang module. 2741 */ 2742 void 2743 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val) 2744 { 2745 struct sip_softc *sc = (void *) self; 2746 2747 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val); 2748 } 2749 #else /* ! DP83820 */ 2750 /* 2751 * sip_sis900_mii_readreg: [mii interface function] 2752 * 2753 * Read a PHY register on the MII. 2754 */ 2755 int 2756 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg) 2757 { 2758 struct sip_softc *sc = (struct sip_softc *) self; 2759 u_int32_t enphy; 2760 2761 /* 2762 * The SiS 900 has only an internal PHY on the MII. Only allow 2763 * MII address 0. 2764 */ 2765 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0) 2766 return (0); 2767 2768 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY, 2769 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) | 2770 ENPHY_RWCMD | ENPHY_ACCESS); 2771 do { 2772 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY); 2773 } while (enphy & ENPHY_ACCESS); 2774 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT); 2775 } 2776 2777 /* 2778 * sip_sis900_mii_writereg: [mii interface function] 2779 * 2780 * Write a PHY register on the MII. 2781 */ 2782 void 2783 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val) 2784 { 2785 struct sip_softc *sc = (struct sip_softc *) self; 2786 u_int32_t enphy; 2787 2788 /* 2789 * The SiS 900 has only an internal PHY on the MII. Only allow 2790 * MII address 0. 2791 */ 2792 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0) 2793 return; 2794 2795 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY, 2796 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) | 2797 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS); 2798 do { 2799 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY); 2800 } while (enphy & ENPHY_ACCESS); 2801 } 2802 2803 /* 2804 * sip_sis900_mii_statchg: [mii interface function] 2805 * 2806 * Callback from MII layer when media changes. 2807 */ 2808 void 2809 SIP_DECL(sis900_mii_statchg)(struct device *self) 2810 { 2811 struct sip_softc *sc = (struct sip_softc *) self; 2812 u_int32_t flowctl; 2813 2814 /* 2815 * Update TXCFG for full-duplex operation. 2816 */ 2817 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0) 2818 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI); 2819 else 2820 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI); 2821 2822 /* 2823 * Update RXCFG for full-duplex or loopback. 2824 */ 2825 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 || 2826 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP) 2827 sc->sc_rxcfg |= RXCFG_ATX; 2828 else 2829 sc->sc_rxcfg &= ~RXCFG_ATX; 2830 2831 /* 2832 * Update IMR for use of 802.3x flow control. 2833 */ 2834 if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) { 2835 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST); 2836 flowctl = FLOWCTL_FLOWEN; 2837 } else { 2838 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST); 2839 flowctl = 0; 2840 } 2841 2842 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg); 2843 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg); 2844 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr); 2845 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl); 2846 } 2847 2848 /* 2849 * sip_dp83815_mii_readreg: [mii interface function] 2850 * 2851 * Read a PHY register on the MII. 2852 */ 2853 int 2854 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg) 2855 { 2856 struct sip_softc *sc = (struct sip_softc *) self; 2857 u_int32_t val; 2858 2859 /* 2860 * The DP83815 only has an internal PHY. Only allow 2861 * MII address 0. 2862 */ 2863 if (phy != 0) 2864 return (0); 2865 2866 /* 2867 * Apparently, after a reset, the DP83815 can take a while 2868 * to respond. During this recovery period, the BMSR returns 2869 * a value of 0. Catch this -- it's not supposed to happen 2870 * (the BMSR has some hardcoded-to-1 bits), and wait for the 2871 * PHY to come back to life. 2872 * 2873 * This works out because the BMSR is the first register 2874 * read during the PHY probe process. 2875 */ 2876 do { 2877 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg)); 2878 } while (reg == MII_BMSR && val == 0); 2879 2880 return (val & 0xffff); 2881 } 2882 2883 /* 2884 * sip_dp83815_mii_writereg: [mii interface function] 2885 * 2886 * Write a PHY register to the MII. 2887 */ 2888 void 2889 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val) 2890 { 2891 struct sip_softc *sc = (struct sip_softc *) self; 2892 2893 /* 2894 * The DP83815 only has an internal PHY. Only allow 2895 * MII address 0. 2896 */ 2897 if (phy != 0) 2898 return; 2899 2900 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val); 2901 } 2902 2903 /* 2904 * sip_dp83815_mii_statchg: [mii interface function] 2905 * 2906 * Callback from MII layer when media changes. 2907 */ 2908 void 2909 SIP_DECL(dp83815_mii_statchg)(struct device *self) 2910 { 2911 struct sip_softc *sc = (struct sip_softc *) self; 2912 2913 /* 2914 * Update TXCFG for full-duplex operation. 2915 */ 2916 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0) 2917 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI); 2918 else 2919 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI); 2920 2921 /* 2922 * Update RXCFG for full-duplex or loopback. 2923 */ 2924 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 || 2925 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP) 2926 sc->sc_rxcfg |= RXCFG_ATX; 2927 else 2928 sc->sc_rxcfg &= ~RXCFG_ATX; 2929 2930 /* 2931 * XXX 802.3x flow control. 2932 */ 2933 2934 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg); 2935 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg); 2936 } 2937 #endif /* DP83820 */ 2938 2939 #if defined(DP83820) 2940 void 2941 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc, 2942 const struct pci_attach_args *pa, u_int8_t *enaddr) 2943 { 2944 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2]; 2945 u_int8_t cksum, *e, match; 2946 int i; 2947 2948 /* 2949 * EEPROM data format for the DP83820 can be found in 2950 * the DP83820 manual, section 4.2.4. 2951 */ 2952 2953 SIP_DECL(read_eeprom)(sc, 0, 2954 sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data); 2955 2956 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8; 2957 match = ~(match - 1); 2958 2959 cksum = 0x55; 2960 e = (u_int8_t *) eeprom_data; 2961 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++) 2962 cksum += *e++; 2963 2964 if (cksum != match) 2965 printf("%s: Checksum (%x) mismatch (%x)", 2966 sc->sc_dev.dv_xname, cksum, match); 2967 2968 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff; 2969 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8; 2970 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff; 2971 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8; 2972 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff; 2973 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8; 2974 2975 /* Get the GPIOR bits. */ 2976 sc->sc_gpior = eeprom_data[0x04]; 2977 2978 /* Get various CFG related bits. */ 2979 if ((eeprom_data[0x05] >> 0) & 1) 2980 sc->sc_cfg |= CFG_EXT_125; 2981 if ((eeprom_data[0x05] >> 9) & 1) 2982 sc->sc_cfg |= CFG_TBI_EN; 2983 } 2984 #else /* ! DP83820 */ 2985 void 2986 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc, 2987 const struct pci_attach_args *pa, u_int8_t *enaddr) 2988 { 2989 u_int16_t myea[ETHER_ADDR_LEN / 2]; 2990 2991 switch (PCI_REVISION(pa->pa_class)) { 2992 case SIS_REV_630S: 2993 case SIS_REV_630E: 2994 case SIS_REV_630EA1: 2995 /* 2996 * The MAC address for the on-board Ethernet of 2997 * the SiS 630 chipset is in the NVRAM. Kick 2998 * the chip into re-loading it from NVRAM, and 2999 * read the MAC address out of the filter registers. 3000 */ 3001 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD); 3002 3003 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR, 3004 RFCR_RFADDR_NODE0); 3005 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) & 3006 0xffff; 3007 3008 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR, 3009 RFCR_RFADDR_NODE2); 3010 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) & 3011 0xffff; 3012 3013 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR, 3014 RFCR_RFADDR_NODE4); 3015 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) & 3016 0xffff; 3017 break; 3018 3019 default: 3020 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1, 3021 sizeof(myea) / sizeof(myea[0]), myea); 3022 } 3023 3024 enaddr[0] = myea[0] & 0xff; 3025 enaddr[1] = myea[0] >> 8; 3026 enaddr[2] = myea[1] & 0xff; 3027 enaddr[3] = myea[1] >> 8; 3028 enaddr[4] = myea[2] & 0xff; 3029 enaddr[5] = myea[2] >> 8; 3030 } 3031 3032 /* Table and macro to bit-reverse an octet. */ 3033 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15}; 3034 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf]) 3035 3036 void 3037 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc, 3038 const struct pci_attach_args *pa, u_int8_t *enaddr) 3039 { 3040 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea; 3041 u_int8_t cksum, *e, match; 3042 int i; 3043 3044 SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) / 3045 sizeof(eeprom_data[0]), eeprom_data); 3046 3047 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8; 3048 match = ~(match - 1); 3049 3050 cksum = 0x55; 3051 e = (u_int8_t *) eeprom_data; 3052 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) { 3053 cksum += *e++; 3054 } 3055 if (cksum != match) { 3056 printf("%s: Checksum (%x) mismatch (%x)", 3057 sc->sc_dev.dv_xname, cksum, match); 3058 } 3059 3060 /* 3061 * Unrolled because it makes slightly more sense this way. 3062 * The DP83815 stores the MAC address in bit 0 of word 6 3063 * through bit 15 of word 8. 3064 */ 3065 ea = &eeprom_data[6]; 3066 enaddr[0] = ((*ea & 0x1) << 7); 3067 ea++; 3068 enaddr[0] |= ((*ea & 0xFE00) >> 9); 3069 enaddr[1] = ((*ea & 0x1FE) >> 1); 3070 enaddr[2] = ((*ea & 0x1) << 7); 3071 ea++; 3072 enaddr[2] |= ((*ea & 0xFE00) >> 9); 3073 enaddr[3] = ((*ea & 0x1FE) >> 1); 3074 enaddr[4] = ((*ea & 0x1) << 7); 3075 ea++; 3076 enaddr[4] |= ((*ea & 0xFE00) >> 9); 3077 enaddr[5] = ((*ea & 0x1FE) >> 1); 3078 3079 /* 3080 * In case that's not weird enough, we also need to reverse 3081 * the bits in each byte. This all actually makes more sense 3082 * if you think about the EEPROM storage as an array of bits 3083 * being shifted into bytes, but that's not how we're looking 3084 * at it here... 3085 */ 3086 for (i = 0; i < 6 ;i++) 3087 enaddr[i] = bbr(enaddr[i]); 3088 } 3089 #endif /* DP83820 */ 3090 3091 /* 3092 * sip_mediastatus: [ifmedia interface function] 3093 * 3094 * Get the current interface media status. 3095 */ 3096 void 3097 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr) 3098 { 3099 struct sip_softc *sc = ifp->if_softc; 3100 3101 mii_pollstat(&sc->sc_mii); 3102 ifmr->ifm_status = sc->sc_mii.mii_media_status; 3103 ifmr->ifm_active = sc->sc_mii.mii_media_active; 3104 } 3105 3106 /* 3107 * sip_mediachange: [ifmedia interface function] 3108 * 3109 * Set hardware to newly-selected media. 3110 */ 3111 int 3112 SIP_DECL(mediachange)(struct ifnet *ifp) 3113 { 3114 struct sip_softc *sc = ifp->if_softc; 3115 3116 if (ifp->if_flags & IFF_UP) 3117 mii_mediachg(&sc->sc_mii); 3118 return (0); 3119 } 3120