1 /* $NetBSD: if_sip.c,v 1.101 2005/02/27 00:27:33 perry Exp $ */ 2 3 /*- 4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /*- 40 * Copyright (c) 1999 Network Computer, Inc. 41 * All rights reserved. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. Neither the name of Network Computer, Inc. nor the names of its 52 * contributors may be used to endorse or promote products derived 53 * from this software without specific prior written permission. 54 * 55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS 56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 65 * POSSIBILITY OF SUCH DAMAGE. 66 */ 67 68 /* 69 * Device driver for the Silicon Integrated Systems SiS 900, 70 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and 71 * National Semiconductor DP83820 10/100/1000 PCI Ethernet 72 * controllers. 73 * 74 * Originally written to support the SiS 900 by Jason R. Thorpe for 75 * Network Computer, Inc. 76 * 77 * TODO: 78 * 79 * - Reduce the Rx interrupt load. 80 */ 81 82 #include <sys/cdefs.h> 83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.101 2005/02/27 00:27:33 perry Exp $"); 84 85 #include "bpfilter.h" 86 #include "rnd.h" 87 88 #include <sys/param.h> 89 #include <sys/systm.h> 90 #include <sys/callout.h> 91 #include <sys/mbuf.h> 92 #include <sys/malloc.h> 93 #include <sys/kernel.h> 94 #include <sys/socket.h> 95 #include <sys/ioctl.h> 96 #include <sys/errno.h> 97 #include <sys/device.h> 98 #include <sys/queue.h> 99 100 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */ 101 102 #if NRND > 0 103 #include <sys/rnd.h> 104 #endif 105 106 #include <net/if.h> 107 #include <net/if_dl.h> 108 #include <net/if_media.h> 109 #include <net/if_ether.h> 110 111 #if NBPFILTER > 0 112 #include <net/bpf.h> 113 #endif 114 115 #include <machine/bus.h> 116 #include <machine/intr.h> 117 #include <machine/endian.h> 118 119 #include <dev/mii/mii.h> 120 #include <dev/mii/miivar.h> 121 #include <dev/mii/mii_bitbang.h> 122 123 #include <dev/pci/pcireg.h> 124 #include <dev/pci/pcivar.h> 125 #include <dev/pci/pcidevs.h> 126 127 #include <dev/pci/if_sipreg.h> 128 129 #ifdef DP83820 /* DP83820 Gigabit Ethernet */ 130 #define SIP_DECL(x) __CONCAT(gsip_,x) 131 #else /* SiS900 and DP83815 */ 132 #define SIP_DECL(x) __CONCAT(sip_,x) 133 #endif 134 135 #define SIP_STR(x) __STRING(SIP_DECL(x)) 136 137 /* 138 * Transmit descriptor list size. This is arbitrary, but allocate 139 * enough descriptors for 128 pending transmissions, and 8 segments 140 * per packet (64 for DP83820 for jumbo frames). 141 * 142 * This MUST work out to a power of 2. 143 */ 144 #ifdef DP83820 145 #define SIP_NTXSEGS 64 146 #define SIP_NTXSEGS_ALLOC 16 147 #else 148 #define SIP_NTXSEGS 16 149 #define SIP_NTXSEGS_ALLOC 8 150 #endif 151 152 #define SIP_TXQUEUELEN 256 153 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC) 154 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1) 155 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK) 156 157 #if defined(DP83820) 158 #define TX_DMAMAP_SIZE ETHER_MAX_LEN_JUMBO 159 #else 160 #define TX_DMAMAP_SIZE MCLBYTES 161 #endif 162 163 /* 164 * Receive descriptor list size. We have one Rx buffer per incoming 165 * packet, so this logic is a little simpler. 166 * 167 * Actually, on the DP83820, we allow the packet to consume more than 168 * one buffer, in order to support jumbo Ethernet frames. In that 169 * case, a packet may consume up to 5 buffers (assuming a 2048 byte 170 * mbuf cluster). 256 receive buffers is only 51 maximum size packets, 171 * so we'd better be quick about handling receive interrupts. 172 */ 173 #if defined(DP83820) 174 #define SIP_NRXDESC 256 175 #else 176 #define SIP_NRXDESC 128 177 #endif /* DP83820 */ 178 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1) 179 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK) 180 181 /* 182 * Control structures are DMA'd to the SiS900 chip. We allocate them in 183 * a single clump that maps to a single DMA segment to make several things 184 * easier. 185 */ 186 struct sip_control_data { 187 /* 188 * The transmit descriptors. 189 */ 190 struct sip_desc scd_txdescs[SIP_NTXDESC]; 191 192 /* 193 * The receive descriptors. 194 */ 195 struct sip_desc scd_rxdescs[SIP_NRXDESC]; 196 }; 197 198 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x) 199 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)]) 200 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)]) 201 202 /* 203 * Software state for transmit jobs. 204 */ 205 struct sip_txsoft { 206 struct mbuf *txs_mbuf; /* head of our mbuf chain */ 207 bus_dmamap_t txs_dmamap; /* our DMA map */ 208 int txs_firstdesc; /* first descriptor in packet */ 209 int txs_lastdesc; /* last descriptor in packet */ 210 SIMPLEQ_ENTRY(sip_txsoft) txs_q; 211 }; 212 213 SIMPLEQ_HEAD(sip_txsq, sip_txsoft); 214 215 /* 216 * Software state for receive jobs. 217 */ 218 struct sip_rxsoft { 219 struct mbuf *rxs_mbuf; /* head of our mbuf chain */ 220 bus_dmamap_t rxs_dmamap; /* our DMA map */ 221 }; 222 223 /* 224 * Software state per device. 225 */ 226 struct sip_softc { 227 struct device sc_dev; /* generic device information */ 228 bus_space_tag_t sc_st; /* bus space tag */ 229 bus_space_handle_t sc_sh; /* bus space handle */ 230 bus_dma_tag_t sc_dmat; /* bus DMA tag */ 231 struct ethercom sc_ethercom; /* ethernet common data */ 232 void *sc_sdhook; /* shutdown hook */ 233 234 const struct sip_product *sc_model; /* which model are we? */ 235 int sc_rev; /* chip revision */ 236 237 void *sc_ih; /* interrupt cookie */ 238 239 struct mii_data sc_mii; /* MII/media information */ 240 241 struct callout sc_tick_ch; /* tick callout */ 242 243 bus_dmamap_t sc_cddmamap; /* control data DMA map */ 244 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr 245 246 /* 247 * Software state for transmit and receive descriptors. 248 */ 249 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN]; 250 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC]; 251 252 /* 253 * Control data structures. 254 */ 255 struct sip_control_data *sc_control_data; 256 #define sc_txdescs sc_control_data->scd_txdescs 257 #define sc_rxdescs sc_control_data->scd_rxdescs 258 259 #ifdef SIP_EVENT_COUNTERS 260 /* 261 * Event counters. 262 */ 263 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */ 264 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */ 265 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */ 266 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */ 267 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */ 268 struct evcnt sc_ev_rxintr; /* Rx interrupts */ 269 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */ 270 struct evcnt sc_ev_rxpause; /* PAUSE received */ 271 #ifdef DP83820 272 struct evcnt sc_ev_txpause; /* PAUSE transmitted */ 273 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */ 274 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */ 275 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */ 276 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */ 277 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */ 278 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */ 279 #endif /* DP83820 */ 280 #endif /* SIP_EVENT_COUNTERS */ 281 282 u_int32_t sc_txcfg; /* prototype TXCFG register */ 283 u_int32_t sc_rxcfg; /* prototype RXCFG register */ 284 u_int32_t sc_imr; /* prototype IMR register */ 285 u_int32_t sc_rfcr; /* prototype RFCR register */ 286 287 u_int32_t sc_cfg; /* prototype CFG register */ 288 289 #ifdef DP83820 290 u_int32_t sc_gpior; /* prototype GPIOR register */ 291 #endif /* DP83820 */ 292 293 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */ 294 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */ 295 296 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */ 297 298 int sc_flowflags; /* 802.3x flow control flags */ 299 #ifdef DP83820 300 int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */ 301 #else 302 int sc_paused; /* paused indication */ 303 #endif 304 305 int sc_txfree; /* number of free Tx descriptors */ 306 int sc_txnext; /* next ready Tx descriptor */ 307 int sc_txwin; /* Tx descriptors since last intr */ 308 309 struct sip_txsq sc_txfreeq; /* free Tx descsofts */ 310 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */ 311 312 short sc_if_flags; 313 314 int sc_rxptr; /* next ready Rx descriptor/descsoft */ 315 #if defined(DP83820) 316 int sc_rxdiscard; 317 int sc_rxlen; 318 struct mbuf *sc_rxhead; 319 struct mbuf *sc_rxtail; 320 struct mbuf **sc_rxtailp; 321 #endif /* DP83820 */ 322 323 #if NRND > 0 324 rndsource_element_t rnd_source; /* random source */ 325 #endif 326 }; 327 328 #ifdef DP83820 329 #define SIP_RXCHAIN_RESET(sc) \ 330 do { \ 331 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \ 332 *(sc)->sc_rxtailp = NULL; \ 333 (sc)->sc_rxlen = 0; \ 334 } while (/*CONSTCOND*/0) 335 336 #define SIP_RXCHAIN_LINK(sc, m) \ 337 do { \ 338 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \ 339 (sc)->sc_rxtailp = &(m)->m_next; \ 340 } while (/*CONSTCOND*/0) 341 #endif /* DP83820 */ 342 343 #ifdef SIP_EVENT_COUNTERS 344 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++ 345 #else 346 #define SIP_EVCNT_INCR(ev) /* nothing */ 347 #endif 348 349 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x))) 350 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x))) 351 352 #define SIP_CDTXSYNC(sc, x, n, ops) \ 353 do { \ 354 int __x, __n; \ 355 \ 356 __x = (x); \ 357 __n = (n); \ 358 \ 359 /* If it will wrap around, sync to the end of the ring. */ \ 360 if ((__x + __n) > SIP_NTXDESC) { \ 361 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 362 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \ 363 (SIP_NTXDESC - __x), (ops)); \ 364 __n -= (SIP_NTXDESC - __x); \ 365 __x = 0; \ 366 } \ 367 \ 368 /* Now sync whatever is left. */ \ 369 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 370 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \ 371 } while (0) 372 373 #define SIP_CDRXSYNC(sc, x, ops) \ 374 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 375 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops)) 376 377 #ifdef DP83820 378 #define SIP_INIT_RXDESC_EXTSTS __sipd->sipd_extsts = 0; 379 #define SIP_RXBUF_LEN (MCLBYTES - 8) 380 #else 381 #define SIP_INIT_RXDESC_EXTSTS /* nothing */ 382 #define SIP_RXBUF_LEN (MCLBYTES - 1) /* field width */ 383 #endif 384 #define SIP_INIT_RXDESC(sc, x) \ 385 do { \ 386 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \ 387 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \ 388 \ 389 __sipd->sipd_link = \ 390 htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \ 391 __sipd->sipd_bufptr = \ 392 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \ 393 __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \ 394 (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK)); \ 395 SIP_INIT_RXDESC_EXTSTS \ 396 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \ 397 } while (0) 398 399 #define SIP_CHIP_VERS(sc, v, p, r) \ 400 ((sc)->sc_model->sip_vendor == (v) && \ 401 (sc)->sc_model->sip_product == (p) && \ 402 (sc)->sc_rev == (r)) 403 404 #define SIP_CHIP_MODEL(sc, v, p) \ 405 ((sc)->sc_model->sip_vendor == (v) && \ 406 (sc)->sc_model->sip_product == (p)) 407 408 #if !defined(DP83820) 409 #define SIP_SIS900_REV(sc, rev) \ 410 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev)) 411 #endif 412 413 #define SIP_TIMEOUT 1000 414 415 static void SIP_DECL(start)(struct ifnet *); 416 static void SIP_DECL(watchdog)(struct ifnet *); 417 static int SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t); 418 static int SIP_DECL(init)(struct ifnet *); 419 static void SIP_DECL(stop)(struct ifnet *, int); 420 421 static void SIP_DECL(shutdown)(void *); 422 423 static void SIP_DECL(reset)(struct sip_softc *); 424 static void SIP_DECL(rxdrain)(struct sip_softc *); 425 static int SIP_DECL(add_rxbuf)(struct sip_softc *, int); 426 static void SIP_DECL(read_eeprom)(struct sip_softc *, int, int, 427 u_int16_t *); 428 static void SIP_DECL(tick)(void *); 429 430 #if !defined(DP83820) 431 static void SIP_DECL(sis900_set_filter)(struct sip_softc *); 432 #endif /* ! DP83820 */ 433 static void SIP_DECL(dp83815_set_filter)(struct sip_softc *); 434 435 #if defined(DP83820) 436 static void SIP_DECL(dp83820_read_macaddr)(struct sip_softc *, 437 const struct pci_attach_args *, u_int8_t *); 438 #else 439 static void SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc); 440 static void SIP_DECL(sis900_read_macaddr)(struct sip_softc *, 441 const struct pci_attach_args *, u_int8_t *); 442 static void SIP_DECL(dp83815_read_macaddr)(struct sip_softc *, 443 const struct pci_attach_args *, u_int8_t *); 444 #endif /* DP83820 */ 445 446 static int SIP_DECL(intr)(void *); 447 static void SIP_DECL(txintr)(struct sip_softc *); 448 static void SIP_DECL(rxintr)(struct sip_softc *); 449 450 #if defined(DP83820) 451 static int SIP_DECL(dp83820_mii_readreg)(struct device *, int, int); 452 static void SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int); 453 static void SIP_DECL(dp83820_mii_statchg)(struct device *); 454 #else 455 static int SIP_DECL(sis900_mii_readreg)(struct device *, int, int); 456 static void SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int); 457 static void SIP_DECL(sis900_mii_statchg)(struct device *); 458 459 static int SIP_DECL(dp83815_mii_readreg)(struct device *, int, int); 460 static void SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int); 461 static void SIP_DECL(dp83815_mii_statchg)(struct device *); 462 #endif /* DP83820 */ 463 464 static int SIP_DECL(mediachange)(struct ifnet *); 465 static void SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *); 466 467 static int SIP_DECL(match)(struct device *, struct cfdata *, void *); 468 static void SIP_DECL(attach)(struct device *, struct device *, void *); 469 470 int SIP_DECL(copy_small) = 0; 471 472 #ifdef DP83820 473 CFATTACH_DECL(gsip, sizeof(struct sip_softc), 474 gsip_match, gsip_attach, NULL, NULL); 475 #else 476 CFATTACH_DECL(sip, sizeof(struct sip_softc), 477 sip_match, sip_attach, NULL, NULL); 478 #endif 479 480 /* 481 * Descriptions of the variants of the SiS900. 482 */ 483 struct sip_variant { 484 int (*sipv_mii_readreg)(struct device *, int, int); 485 void (*sipv_mii_writereg)(struct device *, int, int, int); 486 void (*sipv_mii_statchg)(struct device *); 487 void (*sipv_set_filter)(struct sip_softc *); 488 void (*sipv_read_macaddr)(struct sip_softc *, 489 const struct pci_attach_args *, u_int8_t *); 490 }; 491 492 static u_int32_t SIP_DECL(mii_bitbang_read)(struct device *); 493 static void SIP_DECL(mii_bitbang_write)(struct device *, u_int32_t); 494 495 static const struct mii_bitbang_ops SIP_DECL(mii_bitbang_ops) = { 496 SIP_DECL(mii_bitbang_read), 497 SIP_DECL(mii_bitbang_write), 498 { 499 EROMAR_MDIO, /* MII_BIT_MDO */ 500 EROMAR_MDIO, /* MII_BIT_MDI */ 501 EROMAR_MDC, /* MII_BIT_MDC */ 502 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */ 503 0, /* MII_BIT_DIR_PHY_HOST */ 504 } 505 }; 506 507 #if defined(DP83820) 508 static const struct sip_variant SIP_DECL(variant_dp83820) = { 509 SIP_DECL(dp83820_mii_readreg), 510 SIP_DECL(dp83820_mii_writereg), 511 SIP_DECL(dp83820_mii_statchg), 512 SIP_DECL(dp83815_set_filter), 513 SIP_DECL(dp83820_read_macaddr), 514 }; 515 #else 516 static const struct sip_variant SIP_DECL(variant_sis900) = { 517 SIP_DECL(sis900_mii_readreg), 518 SIP_DECL(sis900_mii_writereg), 519 SIP_DECL(sis900_mii_statchg), 520 SIP_DECL(sis900_set_filter), 521 SIP_DECL(sis900_read_macaddr), 522 }; 523 524 static const struct sip_variant SIP_DECL(variant_dp83815) = { 525 SIP_DECL(dp83815_mii_readreg), 526 SIP_DECL(dp83815_mii_writereg), 527 SIP_DECL(dp83815_mii_statchg), 528 SIP_DECL(dp83815_set_filter), 529 SIP_DECL(dp83815_read_macaddr), 530 }; 531 #endif /* DP83820 */ 532 533 /* 534 * Devices supported by this driver. 535 */ 536 static const struct sip_product { 537 pci_vendor_id_t sip_vendor; 538 pci_product_id_t sip_product; 539 const char *sip_name; 540 const struct sip_variant *sip_variant; 541 } SIP_DECL(products)[] = { 542 #if defined(DP83820) 543 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820, 544 "NatSemi DP83820 Gigabit Ethernet", 545 &SIP_DECL(variant_dp83820) }, 546 #else 547 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, 548 "SiS 900 10/100 Ethernet", 549 &SIP_DECL(variant_sis900) }, 550 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016, 551 "SiS 7016 10/100 Ethernet", 552 &SIP_DECL(variant_sis900) }, 553 554 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815, 555 "NatSemi DP83815 10/100 Ethernet", 556 &SIP_DECL(variant_dp83815) }, 557 #endif /* DP83820 */ 558 559 { 0, 0, 560 NULL, 561 NULL }, 562 }; 563 564 static const struct sip_product * 565 SIP_DECL(lookup)(const struct pci_attach_args *pa) 566 { 567 const struct sip_product *sip; 568 569 for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) { 570 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor && 571 PCI_PRODUCT(pa->pa_id) == sip->sip_product) 572 return (sip); 573 } 574 return (NULL); 575 } 576 577 #ifdef DP83820 578 /* 579 * I really hate stupid hardware vendors. There's a bit in the EEPROM 580 * which indicates if the card can do 64-bit data transfers. Unfortunately, 581 * several vendors of 32-bit cards fail to clear this bit in the EEPROM, 582 * which means we try to use 64-bit data transfers on those cards if we 583 * happen to be plugged into a 32-bit slot. 584 * 585 * What we do is use this table of cards known to be 64-bit cards. If 586 * you have a 64-bit card who's subsystem ID is not listed in this table, 587 * send the output of "pcictl dump ..." of the device to me so that your 588 * card will use the 64-bit data path when plugged into a 64-bit slot. 589 * 590 * -- Jason R. Thorpe <thorpej@NetBSD.org> 591 * June 30, 2002 592 */ 593 static int 594 SIP_DECL(check_64bit)(const struct pci_attach_args *pa) 595 { 596 static const struct { 597 pci_vendor_id_t c64_vendor; 598 pci_product_id_t c64_product; 599 } card64[] = { 600 /* Asante GigaNIX */ 601 { 0x128a, 0x0002 }, 602 603 /* Accton EN1407-T, Planex GN-1000TE */ 604 { 0x1113, 0x1407 }, 605 606 /* Netgear GA-621 */ 607 { 0x1385, 0x621a }, 608 609 /* SMC EZ Card */ 610 { 0x10b8, 0x9462 }, 611 612 { 0, 0} 613 }; 614 pcireg_t subsys; 615 int i; 616 617 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG); 618 619 for (i = 0; card64[i].c64_vendor != 0; i++) { 620 if (PCI_VENDOR(subsys) == card64[i].c64_vendor && 621 PCI_PRODUCT(subsys) == card64[i].c64_product) 622 return (1); 623 } 624 625 return (0); 626 } 627 #endif /* DP83820 */ 628 629 static int 630 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux) 631 { 632 struct pci_attach_args *pa = aux; 633 634 if (SIP_DECL(lookup)(pa) != NULL) 635 return (1); 636 637 return (0); 638 } 639 640 static void 641 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux) 642 { 643 struct sip_softc *sc = (struct sip_softc *) self; 644 struct pci_attach_args *pa = aux; 645 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 646 pci_chipset_tag_t pc = pa->pa_pc; 647 pci_intr_handle_t ih; 648 const char *intrstr = NULL; 649 bus_space_tag_t iot, memt; 650 bus_space_handle_t ioh, memh; 651 bus_dma_segment_t seg; 652 int ioh_valid, memh_valid; 653 int i, rseg, error; 654 const struct sip_product *sip; 655 pcireg_t pmode; 656 u_int8_t enaddr[ETHER_ADDR_LEN]; 657 int pmreg; 658 #ifdef DP83820 659 pcireg_t memtype; 660 u_int32_t reg; 661 #endif /* DP83820 */ 662 663 callout_init(&sc->sc_tick_ch); 664 665 sip = SIP_DECL(lookup)(pa); 666 if (sip == NULL) { 667 printf("\n"); 668 panic(SIP_STR(attach) ": impossible"); 669 } 670 sc->sc_rev = PCI_REVISION(pa->pa_class); 671 672 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev); 673 674 sc->sc_model = sip; 675 676 /* 677 * XXX Work-around broken PXE firmware on some boards. 678 * 679 * The DP83815 shares an address decoder with the MEM BAR 680 * and the ROM BAR. Make sure the ROM BAR is disabled, 681 * so that memory mapped access works. 682 */ 683 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, 684 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) & 685 ~PCI_MAPREG_ROM_ENABLE); 686 687 /* 688 * Map the device. 689 */ 690 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA, 691 PCI_MAPREG_TYPE_IO, 0, 692 &iot, &ioh, NULL, NULL) == 0); 693 #ifdef DP83820 694 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA); 695 switch (memtype) { 696 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT: 697 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT: 698 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA, 699 memtype, 0, &memt, &memh, NULL, NULL) == 0); 700 break; 701 default: 702 memh_valid = 0; 703 } 704 #else 705 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA, 706 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0, 707 &memt, &memh, NULL, NULL) == 0); 708 #endif /* DP83820 */ 709 710 if (memh_valid) { 711 sc->sc_st = memt; 712 sc->sc_sh = memh; 713 } else if (ioh_valid) { 714 sc->sc_st = iot; 715 sc->sc_sh = ioh; 716 } else { 717 printf("%s: unable to map device registers\n", 718 sc->sc_dev.dv_xname); 719 return; 720 } 721 722 sc->sc_dmat = pa->pa_dmat; 723 724 /* 725 * Make sure bus mastering is enabled. Also make sure 726 * Write/Invalidate is enabled if we're allowed to use it. 727 */ 728 pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 729 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY) 730 pmreg |= PCI_COMMAND_INVALIDATE_ENABLE; 731 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, 732 pmreg | PCI_COMMAND_MASTER_ENABLE); 733 734 /* Get it out of power save mode if needed. */ 735 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) { 736 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) & 737 PCI_PMCSR_STATE_MASK; 738 if (pmode == PCI_PMCSR_STATE_D3) { 739 /* 740 * The card has lost all configuration data in 741 * this state, so punt. 742 */ 743 printf("%s: unable to wake up from power state D3\n", 744 sc->sc_dev.dv_xname); 745 return; 746 } 747 if (pmode != PCI_PMCSR_STATE_D0) { 748 printf("%s: waking up from power state D%d\n", 749 sc->sc_dev.dv_xname, pmode); 750 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR, 751 PCI_PMCSR_STATE_D0); 752 } 753 } 754 755 /* 756 * Map and establish our interrupt. 757 */ 758 if (pci_intr_map(pa, &ih)) { 759 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname); 760 return; 761 } 762 intrstr = pci_intr_string(pc, ih); 763 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc); 764 if (sc->sc_ih == NULL) { 765 printf("%s: unable to establish interrupt", 766 sc->sc_dev.dv_xname); 767 if (intrstr != NULL) 768 printf(" at %s", intrstr); 769 printf("\n"); 770 return; 771 } 772 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr); 773 774 SIMPLEQ_INIT(&sc->sc_txfreeq); 775 SIMPLEQ_INIT(&sc->sc_txdirtyq); 776 777 /* 778 * Allocate the control data structures, and create and load the 779 * DMA map for it. 780 */ 781 if ((error = bus_dmamem_alloc(sc->sc_dmat, 782 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg, 783 0)) != 0) { 784 printf("%s: unable to allocate control data, error = %d\n", 785 sc->sc_dev.dv_xname, error); 786 goto fail_0; 787 } 788 789 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, 790 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data, 791 BUS_DMA_COHERENT)) != 0) { 792 printf("%s: unable to map control data, error = %d\n", 793 sc->sc_dev.dv_xname, error); 794 goto fail_1; 795 } 796 797 if ((error = bus_dmamap_create(sc->sc_dmat, 798 sizeof(struct sip_control_data), 1, 799 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) { 800 printf("%s: unable to create control data DMA map, " 801 "error = %d\n", sc->sc_dev.dv_xname, error); 802 goto fail_2; 803 } 804 805 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap, 806 sc->sc_control_data, sizeof(struct sip_control_data), NULL, 807 0)) != 0) { 808 printf("%s: unable to load control data DMA map, error = %d\n", 809 sc->sc_dev.dv_xname, error); 810 goto fail_3; 811 } 812 813 /* 814 * Create the transmit buffer DMA maps. 815 */ 816 for (i = 0; i < SIP_TXQUEUELEN; i++) { 817 if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE, 818 SIP_NTXSEGS, MCLBYTES, 0, 0, 819 &sc->sc_txsoft[i].txs_dmamap)) != 0) { 820 printf("%s: unable to create tx DMA map %d, " 821 "error = %d\n", sc->sc_dev.dv_xname, i, error); 822 goto fail_4; 823 } 824 } 825 826 /* 827 * Create the receive buffer DMA maps. 828 */ 829 for (i = 0; i < SIP_NRXDESC; i++) { 830 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, 831 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) { 832 printf("%s: unable to create rx DMA map %d, " 833 "error = %d\n", sc->sc_dev.dv_xname, i, error); 834 goto fail_5; 835 } 836 sc->sc_rxsoft[i].rxs_mbuf = NULL; 837 } 838 839 /* 840 * Reset the chip to a known state. 841 */ 842 SIP_DECL(reset)(sc); 843 844 /* 845 * Read the Ethernet address from the EEPROM. This might 846 * also fetch other stuff from the EEPROM and stash it 847 * in the softc. 848 */ 849 sc->sc_cfg = 0; 850 #if !defined(DP83820) 851 if (SIP_SIS900_REV(sc,SIS_REV_635) || 852 SIP_SIS900_REV(sc,SIS_REV_900B)) 853 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT); 854 855 if (SIP_SIS900_REV(sc,SIS_REV_635) || 856 SIP_SIS900_REV(sc,SIS_REV_960) || 857 SIP_SIS900_REV(sc,SIS_REV_900B)) 858 sc->sc_cfg |= (bus_space_read_4(sc->sc_st, sc->sc_sh, 859 SIP_CFG) & CFG_EDBMASTEN); 860 #endif 861 862 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr); 863 864 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname, 865 ether_sprintf(enaddr)); 866 867 /* 868 * Initialize the configuration register: aggressive PCI 869 * bus request algorithm, default backoff, default OW timer, 870 * default parity error detection. 871 * 872 * NOTE: "Big endian mode" is useless on the SiS900 and 873 * friends -- it affects packet data, not descriptors. 874 */ 875 #ifdef DP83820 876 /* 877 * Cause the chip to load configuration data from the EEPROM. 878 */ 879 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN); 880 for (i = 0; i < 10000; i++) { 881 delay(10); 882 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) & 883 PTSCR_EELOAD_EN) == 0) 884 break; 885 } 886 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) & 887 PTSCR_EELOAD_EN) { 888 printf("%s: timeout loading configuration from EEPROM\n", 889 sc->sc_dev.dv_xname); 890 return; 891 } 892 893 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR); 894 895 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG); 896 if (reg & CFG_PCI64_DET) { 897 printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname); 898 /* 899 * Check to see if this card is 64-bit. If so, enable 64-bit 900 * data transfers. 901 * 902 * We can't use the DATA64_EN bit in the EEPROM, because 903 * vendors of 32-bit cards fail to clear that bit in many 904 * cases (yet the card still detects that it's in a 64-bit 905 * slot; go figure). 906 */ 907 if (SIP_DECL(check_64bit)(pa)) { 908 sc->sc_cfg |= CFG_DATA64_EN; 909 printf(", using 64-bit data transfers"); 910 } 911 printf("\n"); 912 } 913 914 /* 915 * XXX Need some PCI flags indicating support for 916 * XXX 64-bit addressing. 917 */ 918 #if 0 919 if (reg & CFG_M64ADDR) 920 sc->sc_cfg |= CFG_M64ADDR; 921 if (reg & CFG_T64ADDR) 922 sc->sc_cfg |= CFG_T64ADDR; 923 #endif 924 925 if (reg & (CFG_TBI_EN|CFG_EXT_125)) { 926 const char *sep = ""; 927 printf("%s: using ", sc->sc_dev.dv_xname); 928 if (reg & CFG_EXT_125) { 929 sc->sc_cfg |= CFG_EXT_125; 930 printf("%s125MHz clock", sep); 931 sep = ", "; 932 } 933 if (reg & CFG_TBI_EN) { 934 sc->sc_cfg |= CFG_TBI_EN; 935 printf("%sten-bit interface", sep); 936 sep = ", "; 937 } 938 printf("\n"); 939 } 940 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 || 941 (reg & CFG_MRM_DIS) != 0) 942 sc->sc_cfg |= CFG_MRM_DIS; 943 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 || 944 (reg & CFG_MWI_DIS) != 0) 945 sc->sc_cfg |= CFG_MWI_DIS; 946 947 /* 948 * Use the extended descriptor format on the DP83820. This 949 * gives us an interface to VLAN tagging and IPv4/TCP/UDP 950 * checksumming. 951 */ 952 sc->sc_cfg |= CFG_EXTSTS_EN; 953 #endif /* DP83820 */ 954 955 /* 956 * Initialize our media structures and probe the MII. 957 */ 958 sc->sc_mii.mii_ifp = ifp; 959 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg; 960 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg; 961 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg; 962 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, SIP_DECL(mediachange), 963 SIP_DECL(mediastatus)); 964 965 /* 966 * XXX We cannot handle flow control on the DP83815. 967 */ 968 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) 969 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, 970 MII_OFFSET_ANY, 0); 971 else 972 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, 973 MII_OFFSET_ANY, MIIF_DOPAUSE); 974 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { 975 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL); 976 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE); 977 } else 978 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); 979 980 ifp = &sc->sc_ethercom.ec_if; 981 strcpy(ifp->if_xname, sc->sc_dev.dv_xname); 982 ifp->if_softc = sc; 983 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 984 sc->sc_if_flags = ifp->if_flags; 985 ifp->if_ioctl = SIP_DECL(ioctl); 986 ifp->if_start = SIP_DECL(start); 987 ifp->if_watchdog = SIP_DECL(watchdog); 988 ifp->if_init = SIP_DECL(init); 989 ifp->if_stop = SIP_DECL(stop); 990 IFQ_SET_READY(&ifp->if_snd); 991 992 /* 993 * We can support 802.1Q VLAN-sized frames. 994 */ 995 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU; 996 997 #ifdef DP83820 998 /* 999 * And the DP83820 can do VLAN tagging in hardware, and 1000 * support the jumbo Ethernet MTU. 1001 */ 1002 sc->sc_ethercom.ec_capabilities |= 1003 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU; 1004 1005 /* 1006 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums 1007 * in hardware. 1008 */ 1009 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | 1010 IFCAP_CSUM_UDPv4; 1011 #endif /* DP83820 */ 1012 1013 /* 1014 * Attach the interface. 1015 */ 1016 if_attach(ifp); 1017 ether_ifattach(ifp, enaddr); 1018 #if NRND > 0 1019 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname, 1020 RND_TYPE_NET, 0); 1021 #endif 1022 1023 /* 1024 * The number of bytes that must be available in 1025 * the Tx FIFO before the bus master can DMA more 1026 * data into the FIFO. 1027 */ 1028 sc->sc_tx_fill_thresh = 64 / 32; 1029 1030 /* 1031 * Start at a drain threshold of 512 bytes. We will 1032 * increase it if a DMA underrun occurs. 1033 * 1034 * XXX The minimum value of this variable should be 1035 * tuned. We may be able to improve performance 1036 * by starting with a lower value. That, however, 1037 * may trash the first few outgoing packets if the 1038 * PCI bus is saturated. 1039 */ 1040 #ifdef DP83820 1041 sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */ 1042 #else 1043 sc->sc_tx_drain_thresh = 1504 / 32; 1044 #endif 1045 1046 /* 1047 * Initialize the Rx FIFO drain threshold. 1048 * 1049 * This is in units of 8 bytes. 1050 * 1051 * We should never set this value lower than 2; 14 bytes are 1052 * required to filter the packet. 1053 */ 1054 sc->sc_rx_drain_thresh = 128 / 8; 1055 1056 #ifdef SIP_EVENT_COUNTERS 1057 /* 1058 * Attach event counters. 1059 */ 1060 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC, 1061 NULL, sc->sc_dev.dv_xname, "txsstall"); 1062 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC, 1063 NULL, sc->sc_dev.dv_xname, "txdstall"); 1064 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR, 1065 NULL, sc->sc_dev.dv_xname, "txforceintr"); 1066 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR, 1067 NULL, sc->sc_dev.dv_xname, "txdintr"); 1068 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR, 1069 NULL, sc->sc_dev.dv_xname, "txiintr"); 1070 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR, 1071 NULL, sc->sc_dev.dv_xname, "rxintr"); 1072 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR, 1073 NULL, sc->sc_dev.dv_xname, "hiberr"); 1074 #ifndef DP83820 1075 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR, 1076 NULL, sc->sc_dev.dv_xname, "rxpause"); 1077 #endif /* !DP83820 */ 1078 #ifdef DP83820 1079 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC, 1080 NULL, sc->sc_dev.dv_xname, "rxpause"); 1081 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC, 1082 NULL, sc->sc_dev.dv_xname, "txpause"); 1083 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC, 1084 NULL, sc->sc_dev.dv_xname, "rxipsum"); 1085 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC, 1086 NULL, sc->sc_dev.dv_xname, "rxtcpsum"); 1087 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC, 1088 NULL, sc->sc_dev.dv_xname, "rxudpsum"); 1089 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC, 1090 NULL, sc->sc_dev.dv_xname, "txipsum"); 1091 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC, 1092 NULL, sc->sc_dev.dv_xname, "txtcpsum"); 1093 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC, 1094 NULL, sc->sc_dev.dv_xname, "txudpsum"); 1095 #endif /* DP83820 */ 1096 #endif /* SIP_EVENT_COUNTERS */ 1097 1098 /* 1099 * Make sure the interface is shutdown during reboot. 1100 */ 1101 sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc); 1102 if (sc->sc_sdhook == NULL) 1103 printf("%s: WARNING: unable to establish shutdown hook\n", 1104 sc->sc_dev.dv_xname); 1105 return; 1106 1107 /* 1108 * Free any resources we've allocated during the failed attach 1109 * attempt. Do this in reverse order and fall through. 1110 */ 1111 fail_5: 1112 for (i = 0; i < SIP_NRXDESC; i++) { 1113 if (sc->sc_rxsoft[i].rxs_dmamap != NULL) 1114 bus_dmamap_destroy(sc->sc_dmat, 1115 sc->sc_rxsoft[i].rxs_dmamap); 1116 } 1117 fail_4: 1118 for (i = 0; i < SIP_TXQUEUELEN; i++) { 1119 if (sc->sc_txsoft[i].txs_dmamap != NULL) 1120 bus_dmamap_destroy(sc->sc_dmat, 1121 sc->sc_txsoft[i].txs_dmamap); 1122 } 1123 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap); 1124 fail_3: 1125 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap); 1126 fail_2: 1127 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data, 1128 sizeof(struct sip_control_data)); 1129 fail_1: 1130 bus_dmamem_free(sc->sc_dmat, &seg, rseg); 1131 fail_0: 1132 return; 1133 } 1134 1135 /* 1136 * sip_shutdown: 1137 * 1138 * Make sure the interface is stopped at reboot time. 1139 */ 1140 static void 1141 SIP_DECL(shutdown)(void *arg) 1142 { 1143 struct sip_softc *sc = arg; 1144 1145 SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1); 1146 } 1147 1148 /* 1149 * sip_start: [ifnet interface function] 1150 * 1151 * Start packet transmission on the interface. 1152 */ 1153 static void 1154 SIP_DECL(start)(struct ifnet *ifp) 1155 { 1156 struct sip_softc *sc = ifp->if_softc; 1157 struct mbuf *m0; 1158 #ifndef DP83820 1159 struct mbuf *m; 1160 #endif 1161 struct sip_txsoft *txs; 1162 bus_dmamap_t dmamap; 1163 int error, nexttx, lasttx, seg; 1164 int ofree = sc->sc_txfree; 1165 #if 0 1166 int firsttx = sc->sc_txnext; 1167 #endif 1168 #ifdef DP83820 1169 struct m_tag *mtag; 1170 u_int32_t extsts; 1171 #endif 1172 1173 #ifndef DP83820 1174 /* 1175 * If we've been told to pause, don't transmit any more packets. 1176 */ 1177 if (sc->sc_paused) 1178 ifp->if_flags |= IFF_OACTIVE; 1179 #endif 1180 1181 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) 1182 return; 1183 1184 /* 1185 * Loop through the send queue, setting up transmit descriptors 1186 * until we drain the queue, or use up all available transmit 1187 * descriptors. 1188 */ 1189 for (;;) { 1190 /* Get a work queue entry. */ 1191 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) { 1192 SIP_EVCNT_INCR(&sc->sc_ev_txsstall); 1193 break; 1194 } 1195 1196 /* 1197 * Grab a packet off the queue. 1198 */ 1199 IFQ_POLL(&ifp->if_snd, m0); 1200 if (m0 == NULL) 1201 break; 1202 #ifndef DP83820 1203 m = NULL; 1204 #endif 1205 1206 dmamap = txs->txs_dmamap; 1207 1208 #ifdef DP83820 1209 /* 1210 * Load the DMA map. If this fails, the packet either 1211 * didn't fit in the allotted number of segments, or we 1212 * were short on resources. For the too-many-segments 1213 * case, we simply report an error and drop the packet, 1214 * since we can't sanely copy a jumbo packet to a single 1215 * buffer. 1216 */ 1217 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0, 1218 BUS_DMA_WRITE|BUS_DMA_NOWAIT); 1219 if (error) { 1220 if (error == EFBIG) { 1221 printf("%s: Tx packet consumes too many " 1222 "DMA segments, dropping...\n", 1223 sc->sc_dev.dv_xname); 1224 IFQ_DEQUEUE(&ifp->if_snd, m0); 1225 m_freem(m0); 1226 continue; 1227 } 1228 /* 1229 * Short on resources, just stop for now. 1230 */ 1231 break; 1232 } 1233 #else /* DP83820 */ 1234 /* 1235 * Load the DMA map. If this fails, the packet either 1236 * didn't fit in the alloted number of segments, or we 1237 * were short on resources. In this case, we'll copy 1238 * and try again. 1239 */ 1240 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0, 1241 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) { 1242 MGETHDR(m, M_DONTWAIT, MT_DATA); 1243 if (m == NULL) { 1244 printf("%s: unable to allocate Tx mbuf\n", 1245 sc->sc_dev.dv_xname); 1246 break; 1247 } 1248 if (m0->m_pkthdr.len > MHLEN) { 1249 MCLGET(m, M_DONTWAIT); 1250 if ((m->m_flags & M_EXT) == 0) { 1251 printf("%s: unable to allocate Tx " 1252 "cluster\n", sc->sc_dev.dv_xname); 1253 m_freem(m); 1254 break; 1255 } 1256 } 1257 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t)); 1258 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len; 1259 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, 1260 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT); 1261 if (error) { 1262 printf("%s: unable to load Tx buffer, " 1263 "error = %d\n", sc->sc_dev.dv_xname, error); 1264 break; 1265 } 1266 } 1267 #endif /* DP83820 */ 1268 1269 /* 1270 * Ensure we have enough descriptors free to describe 1271 * the packet. Note, we always reserve one descriptor 1272 * at the end of the ring as a termination point, to 1273 * prevent wrap-around. 1274 */ 1275 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) { 1276 /* 1277 * Not enough free descriptors to transmit this 1278 * packet. We haven't committed anything yet, 1279 * so just unload the DMA map, put the packet 1280 * back on the queue, and punt. Notify the upper 1281 * layer that there are not more slots left. 1282 * 1283 * XXX We could allocate an mbuf and copy, but 1284 * XXX is it worth it? 1285 */ 1286 ifp->if_flags |= IFF_OACTIVE; 1287 bus_dmamap_unload(sc->sc_dmat, dmamap); 1288 #ifndef DP83820 1289 if (m != NULL) 1290 m_freem(m); 1291 #endif 1292 SIP_EVCNT_INCR(&sc->sc_ev_txdstall); 1293 break; 1294 } 1295 1296 IFQ_DEQUEUE(&ifp->if_snd, m0); 1297 #ifndef DP83820 1298 if (m != NULL) { 1299 m_freem(m0); 1300 m0 = m; 1301 } 1302 #endif 1303 1304 /* 1305 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. 1306 */ 1307 1308 /* Sync the DMA map. */ 1309 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, 1310 BUS_DMASYNC_PREWRITE); 1311 1312 /* 1313 * Initialize the transmit descriptors. 1314 */ 1315 for (nexttx = lasttx = sc->sc_txnext, seg = 0; 1316 seg < dmamap->dm_nsegs; 1317 seg++, nexttx = SIP_NEXTTX(nexttx)) { 1318 /* 1319 * If this is the first descriptor we're 1320 * enqueueing, don't set the OWN bit just 1321 * yet. That could cause a race condition. 1322 * We'll do it below. 1323 */ 1324 sc->sc_txdescs[nexttx].sipd_bufptr = 1325 htole32(dmamap->dm_segs[seg].ds_addr); 1326 sc->sc_txdescs[nexttx].sipd_cmdsts = 1327 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) | 1328 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len); 1329 #ifdef DP83820 1330 sc->sc_txdescs[nexttx].sipd_extsts = 0; 1331 #endif /* DP83820 */ 1332 lasttx = nexttx; 1333 } 1334 1335 /* Clear the MORE bit on the last segment. */ 1336 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE); 1337 1338 /* 1339 * If we're in the interrupt delay window, delay the 1340 * interrupt. 1341 */ 1342 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) { 1343 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr); 1344 sc->sc_txdescs[lasttx].sipd_cmdsts |= 1345 htole32(CMDSTS_INTR); 1346 sc->sc_txwin = 0; 1347 } 1348 1349 #ifdef DP83820 1350 /* 1351 * If VLANs are enabled and the packet has a VLAN tag, set 1352 * up the descriptor to encapsulate the packet for us. 1353 * 1354 * This apparently has to be on the last descriptor of 1355 * the packet. 1356 */ 1357 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) { 1358 sc->sc_txdescs[lasttx].sipd_extsts |= 1359 htole32(EXTSTS_VPKT | 1360 (VLAN_TAG_VALUE(mtag) & EXTSTS_VTCI)); 1361 } 1362 1363 /* 1364 * If the upper-layer has requested IPv4/TCPv4/UDPv4 1365 * checksumming, set up the descriptor to do this work 1366 * for us. 1367 * 1368 * This apparently has to be on the first descriptor of 1369 * the packet. 1370 * 1371 * Byte-swap constants so the compiler can optimize. 1372 */ 1373 extsts = 0; 1374 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) { 1375 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4); 1376 SIP_EVCNT_INCR(&sc->sc_ev_txipsum); 1377 extsts |= htole32(EXTSTS_IPPKT); 1378 } 1379 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) { 1380 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4); 1381 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum); 1382 extsts |= htole32(EXTSTS_TCPPKT); 1383 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) { 1384 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4); 1385 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum); 1386 extsts |= htole32(EXTSTS_UDPPKT); 1387 } 1388 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts; 1389 #endif /* DP83820 */ 1390 1391 /* Sync the descriptors we're using. */ 1392 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs, 1393 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1394 1395 /* 1396 * The entire packet is set up. Give the first descrptor 1397 * to the chip now. 1398 */ 1399 sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |= 1400 htole32(CMDSTS_OWN); 1401 SIP_CDTXSYNC(sc, sc->sc_txnext, 1, 1402 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1403 1404 /* 1405 * Store a pointer to the packet so we can free it later, 1406 * and remember what txdirty will be once the packet is 1407 * done. 1408 */ 1409 txs->txs_mbuf = m0; 1410 txs->txs_firstdesc = sc->sc_txnext; 1411 txs->txs_lastdesc = lasttx; 1412 1413 /* Advance the tx pointer. */ 1414 sc->sc_txfree -= dmamap->dm_nsegs; 1415 sc->sc_txnext = nexttx; 1416 1417 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q); 1418 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q); 1419 1420 #if NBPFILTER > 0 1421 /* 1422 * Pass the packet to any BPF listeners. 1423 */ 1424 if (ifp->if_bpf) 1425 bpf_mtap(ifp->if_bpf, m0); 1426 #endif /* NBPFILTER > 0 */ 1427 } 1428 1429 if (txs == NULL || sc->sc_txfree == 0) { 1430 /* No more slots left; notify upper layer. */ 1431 ifp->if_flags |= IFF_OACTIVE; 1432 } 1433 1434 if (sc->sc_txfree != ofree) { 1435 /* 1436 * Start the transmit process. Note, the manual says 1437 * that if there are no pending transmissions in the 1438 * chip's internal queue (indicated by TXE being clear), 1439 * then the driver software must set the TXDP to the 1440 * first descriptor to be transmitted. However, if we 1441 * do this, it causes serious performance degredation on 1442 * the DP83820 under load, not setting TXDP doesn't seem 1443 * to adversely affect the SiS 900 or DP83815. 1444 * 1445 * Well, I guess it wouldn't be the first time a manual 1446 * has lied -- and they could be speaking of the NULL- 1447 * terminated descriptor list case, rather than OWN- 1448 * terminated rings. 1449 */ 1450 #if 0 1451 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) & 1452 CR_TXE) == 0) { 1453 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP, 1454 SIP_CDTXADDR(sc, firsttx)); 1455 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE); 1456 } 1457 #else 1458 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE); 1459 #endif 1460 1461 /* Set a watchdog timer in case the chip flakes out. */ 1462 #ifdef DP83820 1463 /* Gigabit autonegotiation takes 5 seconds. */ 1464 ifp->if_timer = 10; 1465 #else 1466 ifp->if_timer = 5; 1467 #endif 1468 } 1469 } 1470 1471 /* 1472 * sip_watchdog: [ifnet interface function] 1473 * 1474 * Watchdog timer handler. 1475 */ 1476 static void 1477 SIP_DECL(watchdog)(struct ifnet *ifp) 1478 { 1479 struct sip_softc *sc = ifp->if_softc; 1480 1481 /* 1482 * The chip seems to ignore the CMDSTS_INTR bit sometimes! 1483 * If we get a timeout, try and sweep up transmit descriptors. 1484 * If we manage to sweep them all up, ignore the lack of 1485 * interrupt. 1486 */ 1487 SIP_DECL(txintr)(sc); 1488 1489 if (sc->sc_txfree != SIP_NTXDESC) { 1490 printf("%s: device timeout\n", sc->sc_dev.dv_xname); 1491 ifp->if_oerrors++; 1492 1493 /* Reset the interface. */ 1494 (void) SIP_DECL(init)(ifp); 1495 } else if (ifp->if_flags & IFF_DEBUG) 1496 printf("%s: recovered from device timeout\n", 1497 sc->sc_dev.dv_xname); 1498 1499 /* Try to get more packets going. */ 1500 SIP_DECL(start)(ifp); 1501 } 1502 1503 /* 1504 * sip_ioctl: [ifnet interface function] 1505 * 1506 * Handle control requests from the operator. 1507 */ 1508 static int 1509 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data) 1510 { 1511 struct sip_softc *sc = ifp->if_softc; 1512 struct ifreq *ifr = (struct ifreq *)data; 1513 int s, error; 1514 1515 s = splnet(); 1516 1517 switch (cmd) { 1518 case SIOCSIFMEDIA: 1519 /* Flow control requires full-duplex mode. */ 1520 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO || 1521 (ifr->ifr_media & IFM_FDX) == 0) 1522 ifr->ifr_media &= ~IFM_ETH_FMASK; 1523 #ifdef DP83820 1524 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) { 1525 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) { 1526 /* We can do both TXPAUSE and RXPAUSE. */ 1527 ifr->ifr_media |= 1528 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE; 1529 } 1530 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK; 1531 } 1532 #else 1533 /* XXX */ 1534 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) 1535 ifr->ifr_media &= ~IFM_ETH_FMASK; 1536 1537 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) { 1538 if (ifr->ifr_media & IFM_FLOW) { 1539 /* 1540 * Both TXPAUSE and RXPAUSE must be set. 1541 * (SiS900 and DP83815 don't have PAUSE_ASYM 1542 * feature.) 1543 * 1544 * XXX Can SiS900 and DP83815 send PAUSE? 1545 */ 1546 ifr->ifr_media |= 1547 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE; 1548 } 1549 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK; 1550 } 1551 #endif 1552 /* FALLTHROUGH */ 1553 case SIOCGIFMEDIA: 1554 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd); 1555 break; 1556 case SIOCSIFFLAGS: 1557 /* If the interface is up and running, only modify the receive 1558 * filter when setting promiscuous or debug mode. Otherwise 1559 * fall through to ether_ioctl, which will reset the chip. 1560 */ 1561 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG) 1562 if (((ifp->if_flags & (IFF_UP|IFF_RUNNING)) 1563 == (IFF_UP|IFF_RUNNING)) 1564 && ((ifp->if_flags & (~RESETIGN)) 1565 == (sc->sc_if_flags & (~RESETIGN)))) { 1566 /* Set up the receive filter. */ 1567 (*sc->sc_model->sip_variant->sipv_set_filter)(sc); 1568 error = 0; 1569 break; 1570 #undef RESETIGN 1571 } 1572 /* FALLTHROUGH */ 1573 default: 1574 error = ether_ioctl(ifp, cmd, data); 1575 if (error == ENETRESET) { 1576 /* 1577 * Multicast list has changed; set the hardware filter 1578 * accordingly. 1579 */ 1580 if (ifp->if_flags & IFF_RUNNING) 1581 (*sc->sc_model->sip_variant->sipv_set_filter)(sc); 1582 error = 0; 1583 } 1584 break; 1585 } 1586 1587 /* Try to get more packets going. */ 1588 SIP_DECL(start)(ifp); 1589 1590 sc->sc_if_flags = ifp->if_flags; 1591 splx(s); 1592 return (error); 1593 } 1594 1595 /* 1596 * sip_intr: 1597 * 1598 * Interrupt service routine. 1599 */ 1600 static int 1601 SIP_DECL(intr)(void *arg) 1602 { 1603 struct sip_softc *sc = arg; 1604 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1605 u_int32_t isr; 1606 int handled = 0; 1607 1608 /* Disable interrupts. */ 1609 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0); 1610 1611 for (;;) { 1612 /* Reading clears interrupt. */ 1613 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR); 1614 if ((isr & sc->sc_imr) == 0) 1615 break; 1616 1617 #if NRND > 0 1618 if (RND_ENABLED(&sc->rnd_source)) 1619 rnd_add_uint32(&sc->rnd_source, isr); 1620 #endif 1621 1622 handled = 1; 1623 1624 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) { 1625 SIP_EVCNT_INCR(&sc->sc_ev_rxintr); 1626 1627 /* Grab any new packets. */ 1628 SIP_DECL(rxintr)(sc); 1629 1630 if (isr & ISR_RXORN) { 1631 printf("%s: receive FIFO overrun\n", 1632 sc->sc_dev.dv_xname); 1633 1634 /* XXX adjust rx_drain_thresh? */ 1635 } 1636 1637 if (isr & ISR_RXIDLE) { 1638 printf("%s: receive ring overrun\n", 1639 sc->sc_dev.dv_xname); 1640 1641 /* Get the receive process going again. */ 1642 bus_space_write_4(sc->sc_st, sc->sc_sh, 1643 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr)); 1644 bus_space_write_4(sc->sc_st, sc->sc_sh, 1645 SIP_CR, CR_RXE); 1646 } 1647 } 1648 1649 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) { 1650 #ifdef SIP_EVENT_COUNTERS 1651 if (isr & ISR_TXDESC) 1652 SIP_EVCNT_INCR(&sc->sc_ev_txdintr); 1653 else if (isr & ISR_TXIDLE) 1654 SIP_EVCNT_INCR(&sc->sc_ev_txiintr); 1655 #endif 1656 1657 /* Sweep up transmit descriptors. */ 1658 SIP_DECL(txintr)(sc); 1659 1660 if (isr & ISR_TXURN) { 1661 u_int32_t thresh; 1662 1663 printf("%s: transmit FIFO underrun", 1664 sc->sc_dev.dv_xname); 1665 1666 thresh = sc->sc_tx_drain_thresh + 1; 1667 if (thresh <= TXCFG_DRTH && 1668 (thresh * 32) <= (SIP_TXFIFO_SIZE - 1669 (sc->sc_tx_fill_thresh * 32))) { 1670 printf("; increasing Tx drain " 1671 "threshold to %u bytes\n", 1672 thresh * 32); 1673 sc->sc_tx_drain_thresh = thresh; 1674 (void) SIP_DECL(init)(ifp); 1675 } else { 1676 (void) SIP_DECL(init)(ifp); 1677 printf("\n"); 1678 } 1679 } 1680 } 1681 1682 #if !defined(DP83820) 1683 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) { 1684 if (isr & ISR_PAUSE_ST) { 1685 sc->sc_paused = 1; 1686 SIP_EVCNT_INCR(&sc->sc_ev_rxpause); 1687 ifp->if_flags |= IFF_OACTIVE; 1688 } 1689 if (isr & ISR_PAUSE_END) { 1690 sc->sc_paused = 0; 1691 ifp->if_flags &= ~IFF_OACTIVE; 1692 } 1693 } 1694 #endif /* ! DP83820 */ 1695 1696 if (isr & ISR_HIBERR) { 1697 int want_init = 0; 1698 1699 SIP_EVCNT_INCR(&sc->sc_ev_hiberr); 1700 1701 #define PRINTERR(bit, str) \ 1702 do { \ 1703 if ((isr & (bit)) != 0) { \ 1704 if ((ifp->if_flags & IFF_DEBUG) != 0) \ 1705 printf("%s: %s\n", \ 1706 sc->sc_dev.dv_xname, str); \ 1707 want_init = 1; \ 1708 } \ 1709 } while (/*CONSTCOND*/0) 1710 1711 PRINTERR(ISR_DPERR, "parity error"); 1712 PRINTERR(ISR_SSERR, "system error"); 1713 PRINTERR(ISR_RMABT, "master abort"); 1714 PRINTERR(ISR_RTABT, "target abort"); 1715 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun"); 1716 /* 1717 * Ignore: 1718 * Tx reset complete 1719 * Rx reset complete 1720 */ 1721 if (want_init) 1722 (void) SIP_DECL(init)(ifp); 1723 #undef PRINTERR 1724 } 1725 } 1726 1727 /* Re-enable interrupts. */ 1728 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE); 1729 1730 /* Try to get more packets going. */ 1731 SIP_DECL(start)(ifp); 1732 1733 return (handled); 1734 } 1735 1736 /* 1737 * sip_txintr: 1738 * 1739 * Helper; handle transmit interrupts. 1740 */ 1741 static void 1742 SIP_DECL(txintr)(struct sip_softc *sc) 1743 { 1744 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1745 struct sip_txsoft *txs; 1746 u_int32_t cmdsts; 1747 1748 #ifndef DP83820 1749 if (sc->sc_paused == 0) 1750 #endif 1751 ifp->if_flags &= ~IFF_OACTIVE; 1752 1753 /* 1754 * Go through our Tx list and free mbufs for those 1755 * frames which have been transmitted. 1756 */ 1757 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) { 1758 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs, 1759 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1760 1761 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts); 1762 if (cmdsts & CMDSTS_OWN) 1763 break; 1764 1765 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); 1766 1767 sc->sc_txfree += txs->txs_dmamap->dm_nsegs; 1768 1769 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 1770 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1771 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); 1772 m_freem(txs->txs_mbuf); 1773 txs->txs_mbuf = NULL; 1774 1775 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 1776 1777 /* 1778 * Check for errors and collisions. 1779 */ 1780 if (cmdsts & 1781 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) { 1782 ifp->if_oerrors++; 1783 if (cmdsts & CMDSTS_Tx_EC) 1784 ifp->if_collisions += 16; 1785 if (ifp->if_flags & IFF_DEBUG) { 1786 if (cmdsts & CMDSTS_Tx_ED) 1787 printf("%s: excessive deferral\n", 1788 sc->sc_dev.dv_xname); 1789 if (cmdsts & CMDSTS_Tx_EC) 1790 printf("%s: excessive collisions\n", 1791 sc->sc_dev.dv_xname); 1792 } 1793 } else { 1794 /* Packet was transmitted successfully. */ 1795 ifp->if_opackets++; 1796 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts); 1797 } 1798 } 1799 1800 /* 1801 * If there are no more pending transmissions, cancel the watchdog 1802 * timer. 1803 */ 1804 if (txs == NULL) { 1805 ifp->if_timer = 0; 1806 sc->sc_txwin = 0; 1807 } 1808 } 1809 1810 #if defined(DP83820) 1811 /* 1812 * sip_rxintr: 1813 * 1814 * Helper; handle receive interrupts. 1815 */ 1816 static void 1817 SIP_DECL(rxintr)(struct sip_softc *sc) 1818 { 1819 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1820 struct sip_rxsoft *rxs; 1821 struct mbuf *m; 1822 u_int32_t cmdsts, extsts; 1823 int i, len; 1824 1825 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) { 1826 rxs = &sc->sc_rxsoft[i]; 1827 1828 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1829 1830 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts); 1831 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts); 1832 len = CMDSTS_SIZE(cmdsts); 1833 1834 /* 1835 * NOTE: OWN is set if owned by _consumer_. We're the 1836 * consumer of the receive ring, so if the bit is clear, 1837 * we have processed all of the packets. 1838 */ 1839 if ((cmdsts & CMDSTS_OWN) == 0) { 1840 /* 1841 * We have processed all of the receive buffers. 1842 */ 1843 break; 1844 } 1845 1846 if (__predict_false(sc->sc_rxdiscard)) { 1847 SIP_INIT_RXDESC(sc, i); 1848 if ((cmdsts & CMDSTS_MORE) == 0) { 1849 /* Reset our state. */ 1850 sc->sc_rxdiscard = 0; 1851 } 1852 continue; 1853 } 1854 1855 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 1856 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 1857 1858 m = rxs->rxs_mbuf; 1859 1860 /* 1861 * Add a new receive buffer to the ring. 1862 */ 1863 if (SIP_DECL(add_rxbuf)(sc, i) != 0) { 1864 /* 1865 * Failed, throw away what we've done so 1866 * far, and discard the rest of the packet. 1867 */ 1868 ifp->if_ierrors++; 1869 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 1870 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 1871 SIP_INIT_RXDESC(sc, i); 1872 if (cmdsts & CMDSTS_MORE) 1873 sc->sc_rxdiscard = 1; 1874 if (sc->sc_rxhead != NULL) 1875 m_freem(sc->sc_rxhead); 1876 SIP_RXCHAIN_RESET(sc); 1877 continue; 1878 } 1879 1880 SIP_RXCHAIN_LINK(sc, m); 1881 1882 m->m_len = len; 1883 1884 /* 1885 * If this is not the end of the packet, keep 1886 * looking. 1887 */ 1888 if (cmdsts & CMDSTS_MORE) { 1889 sc->sc_rxlen += len; 1890 continue; 1891 } 1892 1893 /* 1894 * Okay, we have the entire packet now. The chip includes 1895 * the FCS, so we need to trim it. 1896 */ 1897 m->m_len -= ETHER_CRC_LEN; 1898 1899 *sc->sc_rxtailp = NULL; 1900 m = sc->sc_rxhead; 1901 len = m->m_len + sc->sc_rxlen; 1902 1903 SIP_RXCHAIN_RESET(sc); 1904 1905 /* 1906 * If an error occurred, update stats and drop the packet. 1907 */ 1908 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT| 1909 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) { 1910 ifp->if_ierrors++; 1911 if ((cmdsts & CMDSTS_Rx_RXA) != 0 && 1912 (cmdsts & CMDSTS_Rx_RXO) == 0) { 1913 /* Receive overrun handled elsewhere. */ 1914 printf("%s: receive descriptor error\n", 1915 sc->sc_dev.dv_xname); 1916 } 1917 #define PRINTERR(bit, str) \ 1918 if ((ifp->if_flags & IFF_DEBUG) != 0 && \ 1919 (cmdsts & (bit)) != 0) \ 1920 printf("%s: %s\n", sc->sc_dev.dv_xname, str) 1921 PRINTERR(CMDSTS_Rx_RUNT, "runt packet"); 1922 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error"); 1923 PRINTERR(CMDSTS_Rx_CRCE, "CRC error"); 1924 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error"); 1925 #undef PRINTERR 1926 m_freem(m); 1927 continue; 1928 } 1929 1930 /* 1931 * If the packet is small enough to fit in a 1932 * single header mbuf, allocate one and copy 1933 * the data into it. This greatly reduces 1934 * memory consumption when we receive lots 1935 * of small packets. 1936 */ 1937 if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) { 1938 struct mbuf *nm; 1939 MGETHDR(nm, M_DONTWAIT, MT_DATA); 1940 if (nm == NULL) { 1941 ifp->if_ierrors++; 1942 m_freem(m); 1943 continue; 1944 } 1945 nm->m_data += 2; 1946 nm->m_pkthdr.len = nm->m_len = len; 1947 m_copydata(m, 0, len, mtod(nm, caddr_t)); 1948 m_freem(m); 1949 m = nm; 1950 } 1951 #ifndef __NO_STRICT_ALIGNMENT 1952 else { 1953 /* 1954 * The DP83820's receive buffers must be 4-byte 1955 * aligned. But this means that the data after 1956 * the Ethernet header is misaligned. To compensate, 1957 * we have artificially shortened the buffer size 1958 * in the descriptor, and we do an overlapping copy 1959 * of the data two bytes further in (in the first 1960 * buffer of the chain only). 1961 */ 1962 memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t), 1963 m->m_len); 1964 m->m_data += 2; 1965 } 1966 #endif /* ! __NO_STRICT_ALIGNMENT */ 1967 1968 /* 1969 * If VLANs are enabled, VLAN packets have been unwrapped 1970 * for us. Associate the tag with the packet. 1971 */ 1972 if ((extsts & EXTSTS_VPKT) != 0) { 1973 VLAN_INPUT_TAG(ifp, m, ntohs(extsts & EXTSTS_VTCI), 1974 continue); 1975 } 1976 1977 /* 1978 * Set the incoming checksum information for the 1979 * packet. 1980 */ 1981 if ((extsts & EXTSTS_IPPKT) != 0) { 1982 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum); 1983 m->m_pkthdr.csum_flags |= M_CSUM_IPv4; 1984 if (extsts & EXTSTS_Rx_IPERR) 1985 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD; 1986 if (extsts & EXTSTS_TCPPKT) { 1987 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum); 1988 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4; 1989 if (extsts & EXTSTS_Rx_TCPERR) 1990 m->m_pkthdr.csum_flags |= 1991 M_CSUM_TCP_UDP_BAD; 1992 } else if (extsts & EXTSTS_UDPPKT) { 1993 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum); 1994 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4; 1995 if (extsts & EXTSTS_Rx_UDPERR) 1996 m->m_pkthdr.csum_flags |= 1997 M_CSUM_TCP_UDP_BAD; 1998 } 1999 } 2000 2001 ifp->if_ipackets++; 2002 m->m_pkthdr.rcvif = ifp; 2003 m->m_pkthdr.len = len; 2004 2005 #if NBPFILTER > 0 2006 /* 2007 * Pass this up to any BPF listeners, but only 2008 * pass if up the stack if it's for us. 2009 */ 2010 if (ifp->if_bpf) 2011 bpf_mtap(ifp->if_bpf, m); 2012 #endif /* NBPFILTER > 0 */ 2013 2014 /* Pass it on. */ 2015 (*ifp->if_input)(ifp, m); 2016 } 2017 2018 /* Update the receive pointer. */ 2019 sc->sc_rxptr = i; 2020 } 2021 #else /* ! DP83820 */ 2022 /* 2023 * sip_rxintr: 2024 * 2025 * Helper; handle receive interrupts. 2026 */ 2027 static void 2028 SIP_DECL(rxintr)(struct sip_softc *sc) 2029 { 2030 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2031 struct sip_rxsoft *rxs; 2032 struct mbuf *m; 2033 u_int32_t cmdsts; 2034 int i, len; 2035 2036 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) { 2037 rxs = &sc->sc_rxsoft[i]; 2038 2039 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 2040 2041 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts); 2042 2043 /* 2044 * NOTE: OWN is set if owned by _consumer_. We're the 2045 * consumer of the receive ring, so if the bit is clear, 2046 * we have processed all of the packets. 2047 */ 2048 if ((cmdsts & CMDSTS_OWN) == 0) { 2049 /* 2050 * We have processed all of the receive buffers. 2051 */ 2052 break; 2053 } 2054 2055 /* 2056 * If any collisions were seen on the wire, count one. 2057 */ 2058 if (cmdsts & CMDSTS_Rx_COL) 2059 ifp->if_collisions++; 2060 2061 /* 2062 * If an error occurred, update stats, clear the status 2063 * word, and leave the packet buffer in place. It will 2064 * simply be reused the next time the ring comes around. 2065 */ 2066 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT| 2067 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) { 2068 ifp->if_ierrors++; 2069 if ((cmdsts & CMDSTS_Rx_RXA) != 0 && 2070 (cmdsts & CMDSTS_Rx_RXO) == 0) { 2071 /* Receive overrun handled elsewhere. */ 2072 printf("%s: receive descriptor error\n", 2073 sc->sc_dev.dv_xname); 2074 } 2075 #define PRINTERR(bit, str) \ 2076 if ((ifp->if_flags & IFF_DEBUG) != 0 && \ 2077 (cmdsts & (bit)) != 0) \ 2078 printf("%s: %s\n", sc->sc_dev.dv_xname, str) 2079 PRINTERR(CMDSTS_Rx_RUNT, "runt packet"); 2080 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error"); 2081 PRINTERR(CMDSTS_Rx_CRCE, "CRC error"); 2082 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error"); 2083 #undef PRINTERR 2084 SIP_INIT_RXDESC(sc, i); 2085 continue; 2086 } 2087 2088 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 2089 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 2090 2091 /* 2092 * No errors; receive the packet. Note, the SiS 900 2093 * includes the CRC with every packet. 2094 */ 2095 len = CMDSTS_SIZE(cmdsts) - ETHER_CRC_LEN; 2096 2097 #ifdef __NO_STRICT_ALIGNMENT 2098 /* 2099 * If the packet is small enough to fit in a 2100 * single header mbuf, allocate one and copy 2101 * the data into it. This greatly reduces 2102 * memory consumption when we receive lots 2103 * of small packets. 2104 * 2105 * Otherwise, we add a new buffer to the receive 2106 * chain. If this fails, we drop the packet and 2107 * recycle the old buffer. 2108 */ 2109 if (SIP_DECL(copy_small) != 0 && len <= MHLEN) { 2110 MGETHDR(m, M_DONTWAIT, MT_DATA); 2111 if (m == NULL) 2112 goto dropit; 2113 memcpy(mtod(m, caddr_t), 2114 mtod(rxs->rxs_mbuf, caddr_t), len); 2115 SIP_INIT_RXDESC(sc, i); 2116 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 2117 rxs->rxs_dmamap->dm_mapsize, 2118 BUS_DMASYNC_PREREAD); 2119 } else { 2120 m = rxs->rxs_mbuf; 2121 if (SIP_DECL(add_rxbuf)(sc, i) != 0) { 2122 dropit: 2123 ifp->if_ierrors++; 2124 SIP_INIT_RXDESC(sc, i); 2125 bus_dmamap_sync(sc->sc_dmat, 2126 rxs->rxs_dmamap, 0, 2127 rxs->rxs_dmamap->dm_mapsize, 2128 BUS_DMASYNC_PREREAD); 2129 continue; 2130 } 2131 } 2132 #else 2133 /* 2134 * The SiS 900's receive buffers must be 4-byte aligned. 2135 * But this means that the data after the Ethernet header 2136 * is misaligned. We must allocate a new buffer and 2137 * copy the data, shifted forward 2 bytes. 2138 */ 2139 MGETHDR(m, M_DONTWAIT, MT_DATA); 2140 if (m == NULL) { 2141 dropit: 2142 ifp->if_ierrors++; 2143 SIP_INIT_RXDESC(sc, i); 2144 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 2145 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 2146 continue; 2147 } 2148 if (len > (MHLEN - 2)) { 2149 MCLGET(m, M_DONTWAIT); 2150 if ((m->m_flags & M_EXT) == 0) { 2151 m_freem(m); 2152 goto dropit; 2153 } 2154 } 2155 m->m_data += 2; 2156 2157 /* 2158 * Note that we use clusters for incoming frames, so the 2159 * buffer is virtually contiguous. 2160 */ 2161 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len); 2162 2163 /* Allow the receive descriptor to continue using its mbuf. */ 2164 SIP_INIT_RXDESC(sc, i); 2165 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 2166 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 2167 #endif /* __NO_STRICT_ALIGNMENT */ 2168 2169 ifp->if_ipackets++; 2170 m->m_pkthdr.rcvif = ifp; 2171 m->m_pkthdr.len = m->m_len = len; 2172 2173 #if NBPFILTER > 0 2174 /* 2175 * Pass this up to any BPF listeners, but only 2176 * pass if up the stack if it's for us. 2177 */ 2178 if (ifp->if_bpf) 2179 bpf_mtap(ifp->if_bpf, m); 2180 #endif /* NBPFILTER > 0 */ 2181 2182 /* Pass it on. */ 2183 (*ifp->if_input)(ifp, m); 2184 } 2185 2186 /* Update the receive pointer. */ 2187 sc->sc_rxptr = i; 2188 } 2189 #endif /* DP83820 */ 2190 2191 /* 2192 * sip_tick: 2193 * 2194 * One second timer, used to tick the MII. 2195 */ 2196 static void 2197 SIP_DECL(tick)(void *arg) 2198 { 2199 struct sip_softc *sc = arg; 2200 int s; 2201 2202 s = splnet(); 2203 #ifdef DP83820 2204 #ifdef SIP_EVENT_COUNTERS 2205 /* Read PAUSE related counts from MIB registers. */ 2206 sc->sc_ev_rxpause.ev_count += 2207 bus_space_read_4(sc->sc_st, sc->sc_sh, 2208 SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff; 2209 sc->sc_ev_txpause.ev_count += 2210 bus_space_read_4(sc->sc_st, sc->sc_sh, 2211 SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff; 2212 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR); 2213 #endif /* SIP_EVENT_COUNTERS */ 2214 #endif /* DP83820 */ 2215 mii_tick(&sc->sc_mii); 2216 splx(s); 2217 2218 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc); 2219 } 2220 2221 /* 2222 * sip_reset: 2223 * 2224 * Perform a soft reset on the SiS 900. 2225 */ 2226 static void 2227 SIP_DECL(reset)(struct sip_softc *sc) 2228 { 2229 bus_space_tag_t st = sc->sc_st; 2230 bus_space_handle_t sh = sc->sc_sh; 2231 int i; 2232 2233 bus_space_write_4(st, sh, SIP_IER, 0); 2234 bus_space_write_4(st, sh, SIP_IMR, 0); 2235 bus_space_write_4(st, sh, SIP_RFCR, 0); 2236 bus_space_write_4(st, sh, SIP_CR, CR_RST); 2237 2238 for (i = 0; i < SIP_TIMEOUT; i++) { 2239 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0) 2240 break; 2241 delay(2); 2242 } 2243 2244 if (i == SIP_TIMEOUT) 2245 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname); 2246 2247 delay(1000); 2248 2249 #ifdef DP83820 2250 /* 2251 * Set the general purpose I/O bits. Do it here in case we 2252 * need to have GPIO set up to talk to the media interface. 2253 */ 2254 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior); 2255 delay(1000); 2256 #endif /* DP83820 */ 2257 } 2258 2259 /* 2260 * sip_init: [ ifnet interface function ] 2261 * 2262 * Initialize the interface. Must be called at splnet(). 2263 */ 2264 static int 2265 SIP_DECL(init)(struct ifnet *ifp) 2266 { 2267 struct sip_softc *sc = ifp->if_softc; 2268 bus_space_tag_t st = sc->sc_st; 2269 bus_space_handle_t sh = sc->sc_sh; 2270 struct sip_txsoft *txs; 2271 struct sip_rxsoft *rxs; 2272 struct sip_desc *sipd; 2273 #if defined(DP83820) 2274 u_int32_t reg; 2275 #endif 2276 int i, error = 0; 2277 2278 /* 2279 * Cancel any pending I/O. 2280 */ 2281 SIP_DECL(stop)(ifp, 0); 2282 2283 /* 2284 * Reset the chip to a known state. 2285 */ 2286 SIP_DECL(reset)(sc); 2287 2288 #if !defined(DP83820) 2289 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) { 2290 /* 2291 * DP83815 manual, page 78: 2292 * 4.4 Recommended Registers Configuration 2293 * For optimum performance of the DP83815, version noted 2294 * as DP83815CVNG (SRR = 203h), the listed register 2295 * modifications must be followed in sequence... 2296 * 2297 * It's not clear if this should be 302h or 203h because that 2298 * chip name is listed as SRR 302h in the description of the 2299 * SRR register. However, my revision 302h DP83815 on the 2300 * Netgear FA311 purchased in 02/2001 needs these settings 2301 * to avoid tons of errors in AcceptPerfectMatch (non- 2302 * IFF_PROMISC) mode. I do not know if other revisions need 2303 * this set or not. [briggs -- 09 March 2001] 2304 * 2305 * Note that only the low-order 12 bits of 0xe4 are documented 2306 * and that this sets reserved bits in that register. 2307 */ 2308 bus_space_write_4(st, sh, 0x00cc, 0x0001); 2309 2310 bus_space_write_4(st, sh, 0x00e4, 0x189C); 2311 bus_space_write_4(st, sh, 0x00fc, 0x0000); 2312 bus_space_write_4(st, sh, 0x00f4, 0x5040); 2313 bus_space_write_4(st, sh, 0x00f8, 0x008c); 2314 2315 bus_space_write_4(st, sh, 0x00cc, 0x0000); 2316 } 2317 #endif /* ! DP83820 */ 2318 2319 /* 2320 * Initialize the transmit descriptor ring. 2321 */ 2322 for (i = 0; i < SIP_NTXDESC; i++) { 2323 sipd = &sc->sc_txdescs[i]; 2324 memset(sipd, 0, sizeof(struct sip_desc)); 2325 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i))); 2326 } 2327 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC, 2328 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 2329 sc->sc_txfree = SIP_NTXDESC; 2330 sc->sc_txnext = 0; 2331 sc->sc_txwin = 0; 2332 2333 /* 2334 * Initialize the transmit job descriptors. 2335 */ 2336 SIMPLEQ_INIT(&sc->sc_txfreeq); 2337 SIMPLEQ_INIT(&sc->sc_txdirtyq); 2338 for (i = 0; i < SIP_TXQUEUELEN; i++) { 2339 txs = &sc->sc_txsoft[i]; 2340 txs->txs_mbuf = NULL; 2341 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 2342 } 2343 2344 /* 2345 * Initialize the receive descriptor and receive job 2346 * descriptor rings. 2347 */ 2348 for (i = 0; i < SIP_NRXDESC; i++) { 2349 rxs = &sc->sc_rxsoft[i]; 2350 if (rxs->rxs_mbuf == NULL) { 2351 if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) { 2352 printf("%s: unable to allocate or map rx " 2353 "buffer %d, error = %d\n", 2354 sc->sc_dev.dv_xname, i, error); 2355 /* 2356 * XXX Should attempt to run with fewer receive 2357 * XXX buffers instead of just failing. 2358 */ 2359 SIP_DECL(rxdrain)(sc); 2360 goto out; 2361 } 2362 } else 2363 SIP_INIT_RXDESC(sc, i); 2364 } 2365 sc->sc_rxptr = 0; 2366 #ifdef DP83820 2367 sc->sc_rxdiscard = 0; 2368 SIP_RXCHAIN_RESET(sc); 2369 #endif /* DP83820 */ 2370 2371 /* 2372 * Set the configuration register; it's already initialized 2373 * in sip_attach(). 2374 */ 2375 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg); 2376 2377 /* 2378 * Initialize the prototype TXCFG register. 2379 */ 2380 #if defined(DP83820) 2381 sc->sc_txcfg = TXCFG_MXDMA_512; 2382 sc->sc_rxcfg = RXCFG_MXDMA_512; 2383 #else 2384 if ((SIP_SIS900_REV(sc, SIS_REV_635) || 2385 SIP_SIS900_REV(sc, SIS_REV_960) || 2386 SIP_SIS900_REV(sc, SIS_REV_900B)) && 2387 (sc->sc_cfg & CFG_EDBMASTEN)) { 2388 sc->sc_txcfg = TXCFG_MXDMA_64; 2389 sc->sc_rxcfg = RXCFG_MXDMA_64; 2390 } else { 2391 sc->sc_txcfg = TXCFG_MXDMA_512; 2392 sc->sc_rxcfg = RXCFG_MXDMA_512; 2393 } 2394 #endif /* DP83820 */ 2395 2396 sc->sc_txcfg |= TXCFG_ATP | 2397 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) | 2398 sc->sc_tx_drain_thresh; 2399 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg); 2400 2401 /* 2402 * Initialize the receive drain threshold if we have never 2403 * done so. 2404 */ 2405 if (sc->sc_rx_drain_thresh == 0) { 2406 /* 2407 * XXX This value should be tuned. This is set to the 2408 * maximum of 248 bytes, and we may be able to improve 2409 * performance by decreasing it (although we should never 2410 * set this value lower than 2; 14 bytes are required to 2411 * filter the packet). 2412 */ 2413 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT; 2414 } 2415 2416 /* 2417 * Initialize the prototype RXCFG register. 2418 */ 2419 sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT); 2420 #ifdef DP83820 2421 /* 2422 * Accept long packets (including FCS) so we can handle 2423 * 802.1q-tagged frames and jumbo frames properly. 2424 */ 2425 if (ifp->if_mtu > ETHERMTU || 2426 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)) 2427 sc->sc_rxcfg |= RXCFG_ALP; 2428 2429 /* 2430 * Checksum offloading is disabled if the user selects an MTU 2431 * larger than 8109. (FreeBSD says 8152, but there is emperical 2432 * evidence that >8109 does not work on some boards, such as the 2433 * Planex GN-1000TE). 2434 */ 2435 if (ifp->if_mtu > 8109 && 2436 (ifp->if_capenable & 2437 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))) { 2438 printf("%s: Checksum offloading does not work if MTU > 8109 - " 2439 "disabled.\n", sc->sc_dev.dv_xname); 2440 ifp->if_capenable &= ~(IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4| 2441 IFCAP_CSUM_UDPv4); 2442 ifp->if_csum_flags_tx = 0; 2443 ifp->if_csum_flags_rx = 0; 2444 } 2445 #else 2446 /* 2447 * Accept packets >1518 bytes (including FCS) so we can handle 2448 * 802.1q-tagged frames properly. 2449 */ 2450 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) 2451 sc->sc_rxcfg |= RXCFG_ALP; 2452 #endif 2453 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg); 2454 2455 #ifdef DP83820 2456 /* 2457 * Initialize the VLAN/IP receive control register. 2458 * We enable checksum computation on all incoming 2459 * packets, and do not reject packets w/ bad checksums. 2460 */ 2461 reg = 0; 2462 if (ifp->if_capenable & 2463 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4)) 2464 reg |= VRCR_IPEN; 2465 if (VLAN_ATTACHED(&sc->sc_ethercom)) 2466 reg |= VRCR_VTDEN|VRCR_VTREN; 2467 bus_space_write_4(st, sh, SIP_VRCR, reg); 2468 2469 /* 2470 * Initialize the VLAN/IP transmit control register. 2471 * We enable outgoing checksum computation on a 2472 * per-packet basis. 2473 */ 2474 reg = 0; 2475 if (ifp->if_capenable & 2476 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4)) 2477 reg |= VTCR_PPCHK; 2478 if (VLAN_ATTACHED(&sc->sc_ethercom)) 2479 reg |= VTCR_VPPTI; 2480 bus_space_write_4(st, sh, SIP_VTCR, reg); 2481 2482 /* 2483 * If we're using VLANs, initialize the VLAN data register. 2484 * To understand why we bswap the VLAN Ethertype, see section 2485 * 4.2.36 of the DP83820 manual. 2486 */ 2487 if (VLAN_ATTACHED(&sc->sc_ethercom)) 2488 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN)); 2489 #endif /* DP83820 */ 2490 2491 /* 2492 * Give the transmit and receive rings to the chip. 2493 */ 2494 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext)); 2495 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr)); 2496 2497 /* 2498 * Initialize the interrupt mask. 2499 */ 2500 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR| 2501 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC; 2502 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr); 2503 2504 /* Set up the receive filter. */ 2505 (*sc->sc_model->sip_variant->sipv_set_filter)(sc); 2506 2507 #ifdef DP83820 2508 /* 2509 * Tune sc_rx_flow_thresh. 2510 * XXX "More than 8KB" is too short for jumbo frames. 2511 * XXX TODO: Threshold value should be user-settable. 2512 */ 2513 sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 | 2514 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 | 2515 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK)); 2516 #endif 2517 2518 /* 2519 * Set the current media. Do this after initializing the prototype 2520 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow 2521 * control. 2522 */ 2523 mii_mediachg(&sc->sc_mii); 2524 2525 #ifdef DP83820 2526 /* 2527 * Set the interrupt hold-off timer to 100us. 2528 */ 2529 bus_space_write_4(st, sh, SIP_IHR, 0x01); 2530 #endif 2531 2532 /* 2533 * Enable interrupts. 2534 */ 2535 bus_space_write_4(st, sh, SIP_IER, IER_IE); 2536 2537 /* 2538 * Start the transmit and receive processes. 2539 */ 2540 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE); 2541 2542 /* 2543 * Start the one second MII clock. 2544 */ 2545 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc); 2546 2547 /* 2548 * ...all done! 2549 */ 2550 ifp->if_flags |= IFF_RUNNING; 2551 ifp->if_flags &= ~IFF_OACTIVE; 2552 sc->sc_if_flags = ifp->if_flags; 2553 2554 out: 2555 if (error) 2556 printf("%s: interface not running\n", sc->sc_dev.dv_xname); 2557 return (error); 2558 } 2559 2560 /* 2561 * sip_drain: 2562 * 2563 * Drain the receive queue. 2564 */ 2565 static void 2566 SIP_DECL(rxdrain)(struct sip_softc *sc) 2567 { 2568 struct sip_rxsoft *rxs; 2569 int i; 2570 2571 for (i = 0; i < SIP_NRXDESC; i++) { 2572 rxs = &sc->sc_rxsoft[i]; 2573 if (rxs->rxs_mbuf != NULL) { 2574 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 2575 m_freem(rxs->rxs_mbuf); 2576 rxs->rxs_mbuf = NULL; 2577 } 2578 } 2579 } 2580 2581 /* 2582 * sip_stop: [ ifnet interface function ] 2583 * 2584 * Stop transmission on the interface. 2585 */ 2586 static void 2587 SIP_DECL(stop)(struct ifnet *ifp, int disable) 2588 { 2589 struct sip_softc *sc = ifp->if_softc; 2590 bus_space_tag_t st = sc->sc_st; 2591 bus_space_handle_t sh = sc->sc_sh; 2592 struct sip_txsoft *txs; 2593 u_int32_t cmdsts = 0; /* DEBUG */ 2594 2595 /* 2596 * Stop the one second clock. 2597 */ 2598 callout_stop(&sc->sc_tick_ch); 2599 2600 /* Down the MII. */ 2601 mii_down(&sc->sc_mii); 2602 2603 /* 2604 * Disable interrupts. 2605 */ 2606 bus_space_write_4(st, sh, SIP_IER, 0); 2607 2608 /* 2609 * Stop receiver and transmitter. 2610 */ 2611 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD); 2612 2613 /* 2614 * Release any queued transmit buffers. 2615 */ 2616 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) { 2617 if ((ifp->if_flags & IFF_DEBUG) != 0 && 2618 SIMPLEQ_NEXT(txs, txs_q) == NULL && 2619 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) & 2620 CMDSTS_INTR) == 0) 2621 printf("%s: sip_stop: last descriptor does not " 2622 "have INTR bit set\n", sc->sc_dev.dv_xname); 2623 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); 2624 #ifdef DIAGNOSTIC 2625 if (txs->txs_mbuf == NULL) { 2626 printf("%s: dirty txsoft with no mbuf chain\n", 2627 sc->sc_dev.dv_xname); 2628 panic("sip_stop"); 2629 } 2630 #endif 2631 cmdsts |= /* DEBUG */ 2632 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts); 2633 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); 2634 m_freem(txs->txs_mbuf); 2635 txs->txs_mbuf = NULL; 2636 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 2637 } 2638 2639 if (disable) 2640 SIP_DECL(rxdrain)(sc); 2641 2642 /* 2643 * Mark the interface down and cancel the watchdog timer. 2644 */ 2645 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2646 ifp->if_timer = 0; 2647 2648 if ((ifp->if_flags & IFF_DEBUG) != 0 && 2649 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC) 2650 printf("%s: sip_stop: no INTR bits set in dirty tx " 2651 "descriptors\n", sc->sc_dev.dv_xname); 2652 } 2653 2654 /* 2655 * sip_read_eeprom: 2656 * 2657 * Read data from the serial EEPROM. 2658 */ 2659 static void 2660 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt, 2661 u_int16_t *data) 2662 { 2663 bus_space_tag_t st = sc->sc_st; 2664 bus_space_handle_t sh = sc->sc_sh; 2665 u_int16_t reg; 2666 int i, x; 2667 2668 for (i = 0; i < wordcnt; i++) { 2669 /* Send CHIP SELECT. */ 2670 reg = EROMAR_EECS; 2671 bus_space_write_4(st, sh, SIP_EROMAR, reg); 2672 2673 /* Shift in the READ opcode. */ 2674 for (x = 3; x > 0; x--) { 2675 if (SIP_EEPROM_OPC_READ & (1 << (x - 1))) 2676 reg |= EROMAR_EEDI; 2677 else 2678 reg &= ~EROMAR_EEDI; 2679 bus_space_write_4(st, sh, SIP_EROMAR, reg); 2680 bus_space_write_4(st, sh, SIP_EROMAR, 2681 reg | EROMAR_EESK); 2682 delay(4); 2683 bus_space_write_4(st, sh, SIP_EROMAR, reg); 2684 delay(4); 2685 } 2686 2687 /* Shift in address. */ 2688 for (x = 6; x > 0; x--) { 2689 if ((word + i) & (1 << (x - 1))) 2690 reg |= EROMAR_EEDI; 2691 else 2692 reg &= ~EROMAR_EEDI; 2693 bus_space_write_4(st, sh, SIP_EROMAR, reg); 2694 bus_space_write_4(st, sh, SIP_EROMAR, 2695 reg | EROMAR_EESK); 2696 delay(4); 2697 bus_space_write_4(st, sh, SIP_EROMAR, reg); 2698 delay(4); 2699 } 2700 2701 /* Shift out data. */ 2702 reg = EROMAR_EECS; 2703 data[i] = 0; 2704 for (x = 16; x > 0; x--) { 2705 bus_space_write_4(st, sh, SIP_EROMAR, 2706 reg | EROMAR_EESK); 2707 delay(4); 2708 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO) 2709 data[i] |= (1 << (x - 1)); 2710 bus_space_write_4(st, sh, SIP_EROMAR, reg); 2711 delay(4); 2712 } 2713 2714 /* Clear CHIP SELECT. */ 2715 bus_space_write_4(st, sh, SIP_EROMAR, 0); 2716 delay(4); 2717 } 2718 } 2719 2720 /* 2721 * sip_add_rxbuf: 2722 * 2723 * Add a receive buffer to the indicated descriptor. 2724 */ 2725 static int 2726 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx) 2727 { 2728 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx]; 2729 struct mbuf *m; 2730 int error; 2731 2732 MGETHDR(m, M_DONTWAIT, MT_DATA); 2733 if (m == NULL) 2734 return (ENOBUFS); 2735 2736 MCLGET(m, M_DONTWAIT); 2737 if ((m->m_flags & M_EXT) == 0) { 2738 m_freem(m); 2739 return (ENOBUFS); 2740 } 2741 2742 #if defined(DP83820) 2743 m->m_len = SIP_RXBUF_LEN; 2744 #endif /* DP83820 */ 2745 2746 if (rxs->rxs_mbuf != NULL) 2747 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 2748 2749 rxs->rxs_mbuf = m; 2750 2751 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, 2752 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, 2753 BUS_DMA_READ|BUS_DMA_NOWAIT); 2754 if (error) { 2755 printf("%s: can't load rx DMA map %d, error = %d\n", 2756 sc->sc_dev.dv_xname, idx, error); 2757 panic("sip_add_rxbuf"); /* XXX */ 2758 } 2759 2760 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 2761 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 2762 2763 SIP_INIT_RXDESC(sc, idx); 2764 2765 return (0); 2766 } 2767 2768 #if !defined(DP83820) 2769 /* 2770 * sip_sis900_set_filter: 2771 * 2772 * Set up the receive filter. 2773 */ 2774 static void 2775 SIP_DECL(sis900_set_filter)(struct sip_softc *sc) 2776 { 2777 bus_space_tag_t st = sc->sc_st; 2778 bus_space_handle_t sh = sc->sc_sh; 2779 struct ethercom *ec = &sc->sc_ethercom; 2780 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2781 struct ether_multi *enm; 2782 u_int8_t *cp; 2783 struct ether_multistep step; 2784 u_int32_t crc, mchash[16]; 2785 2786 /* 2787 * Initialize the prototype RFCR. 2788 */ 2789 sc->sc_rfcr = RFCR_RFEN; 2790 if (ifp->if_flags & IFF_BROADCAST) 2791 sc->sc_rfcr |= RFCR_AAB; 2792 if (ifp->if_flags & IFF_PROMISC) { 2793 sc->sc_rfcr |= RFCR_AAP; 2794 goto allmulti; 2795 } 2796 2797 /* 2798 * Set up the multicast address filter by passing all multicast 2799 * addresses through a CRC generator, and then using the high-order 2800 * 6 bits as an index into the 128 bit multicast hash table (only 2801 * the lower 16 bits of each 32 bit multicast hash register are 2802 * valid). The high order bits select the register, while the 2803 * rest of the bits select the bit within the register. 2804 */ 2805 2806 memset(mchash, 0, sizeof(mchash)); 2807 2808 /* 2809 * SiS900 (at least SiS963) requires us to register the address of 2810 * the PAUSE packet (01:80:c2:00:00:01) into the address filter. 2811 */ 2812 crc = 0x0ed423f9; 2813 2814 if (SIP_SIS900_REV(sc, SIS_REV_635) || 2815 SIP_SIS900_REV(sc, SIS_REV_960) || 2816 SIP_SIS900_REV(sc, SIS_REV_900B)) { 2817 /* Just want the 8 most significant bits. */ 2818 crc >>= 24; 2819 } else { 2820 /* Just want the 7 most significant bits. */ 2821 crc >>= 25; 2822 } 2823 2824 /* Set the corresponding bit in the hash table. */ 2825 mchash[crc >> 4] |= 1 << (crc & 0xf); 2826 2827 ETHER_FIRST_MULTI(step, ec, enm); 2828 while (enm != NULL) { 2829 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 2830 /* 2831 * We must listen to a range of multicast addresses. 2832 * For now, just accept all multicasts, rather than 2833 * trying to set only those filter bits needed to match 2834 * the range. (At this time, the only use of address 2835 * ranges is for IP multicast routing, for which the 2836 * range is big enough to require all bits set.) 2837 */ 2838 goto allmulti; 2839 } 2840 2841 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN); 2842 2843 if (SIP_SIS900_REV(sc, SIS_REV_635) || 2844 SIP_SIS900_REV(sc, SIS_REV_960) || 2845 SIP_SIS900_REV(sc, SIS_REV_900B)) { 2846 /* Just want the 8 most significant bits. */ 2847 crc >>= 24; 2848 } else { 2849 /* Just want the 7 most significant bits. */ 2850 crc >>= 25; 2851 } 2852 2853 /* Set the corresponding bit in the hash table. */ 2854 mchash[crc >> 4] |= 1 << (crc & 0xf); 2855 2856 ETHER_NEXT_MULTI(step, enm); 2857 } 2858 2859 ifp->if_flags &= ~IFF_ALLMULTI; 2860 goto setit; 2861 2862 allmulti: 2863 ifp->if_flags |= IFF_ALLMULTI; 2864 sc->sc_rfcr |= RFCR_AAM; 2865 2866 setit: 2867 #define FILTER_EMIT(addr, data) \ 2868 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \ 2869 delay(1); \ 2870 bus_space_write_4(st, sh, SIP_RFDR, (data)); \ 2871 delay(1) 2872 2873 /* 2874 * Disable receive filter, and program the node address. 2875 */ 2876 cp = LLADDR(ifp->if_sadl); 2877 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]); 2878 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]); 2879 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]); 2880 2881 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 2882 /* 2883 * Program the multicast hash table. 2884 */ 2885 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]); 2886 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]); 2887 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]); 2888 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]); 2889 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]); 2890 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]); 2891 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]); 2892 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]); 2893 if (SIP_SIS900_REV(sc, SIS_REV_635) || 2894 SIP_SIS900_REV(sc, SIS_REV_960) || 2895 SIP_SIS900_REV(sc, SIS_REV_900B)) { 2896 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]); 2897 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]); 2898 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]); 2899 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]); 2900 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]); 2901 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]); 2902 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]); 2903 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]); 2904 } 2905 } 2906 #undef FILTER_EMIT 2907 2908 /* 2909 * Re-enable the receiver filter. 2910 */ 2911 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr); 2912 } 2913 #endif /* ! DP83820 */ 2914 2915 /* 2916 * sip_dp83815_set_filter: 2917 * 2918 * Set up the receive filter. 2919 */ 2920 static void 2921 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc) 2922 { 2923 bus_space_tag_t st = sc->sc_st; 2924 bus_space_handle_t sh = sc->sc_sh; 2925 struct ethercom *ec = &sc->sc_ethercom; 2926 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2927 struct ether_multi *enm; 2928 u_int8_t *cp; 2929 struct ether_multistep step; 2930 u_int32_t crc, hash, slot, bit; 2931 #ifdef DP83820 2932 #define MCHASH_NWORDS 128 2933 #else 2934 #define MCHASH_NWORDS 32 2935 #endif /* DP83820 */ 2936 u_int16_t mchash[MCHASH_NWORDS]; 2937 int i; 2938 2939 /* 2940 * Initialize the prototype RFCR. 2941 * Enable the receive filter, and accept on 2942 * Perfect (destination address) Match 2943 * If IFF_BROADCAST, also accept all broadcast packets. 2944 * If IFF_PROMISC, accept all unicast packets (and later, set 2945 * IFF_ALLMULTI and accept all multicast, too). 2946 */ 2947 sc->sc_rfcr = RFCR_RFEN | RFCR_APM; 2948 if (ifp->if_flags & IFF_BROADCAST) 2949 sc->sc_rfcr |= RFCR_AAB; 2950 if (ifp->if_flags & IFF_PROMISC) { 2951 sc->sc_rfcr |= RFCR_AAP; 2952 goto allmulti; 2953 } 2954 2955 #ifdef DP83820 2956 /* 2957 * Set up the DP83820 multicast address filter by passing all multicast 2958 * addresses through a CRC generator, and then using the high-order 2959 * 11 bits as an index into the 2048 bit multicast hash table. The 2960 * high-order 7 bits select the slot, while the low-order 4 bits 2961 * select the bit within the slot. Note that only the low 16-bits 2962 * of each filter word are used, and there are 128 filter words. 2963 */ 2964 #else 2965 /* 2966 * Set up the DP83815 multicast address filter by passing all multicast 2967 * addresses through a CRC generator, and then using the high-order 2968 * 9 bits as an index into the 512 bit multicast hash table. The 2969 * high-order 5 bits select the slot, while the low-order 4 bits 2970 * select the bit within the slot. Note that only the low 16-bits 2971 * of each filter word are used, and there are 32 filter words. 2972 */ 2973 #endif /* DP83820 */ 2974 2975 memset(mchash, 0, sizeof(mchash)); 2976 2977 ifp->if_flags &= ~IFF_ALLMULTI; 2978 ETHER_FIRST_MULTI(step, ec, enm); 2979 if (enm == NULL) 2980 goto setit; 2981 while (enm != NULL) { 2982 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 2983 /* 2984 * We must listen to a range of multicast addresses. 2985 * For now, just accept all multicasts, rather than 2986 * trying to set only those filter bits needed to match 2987 * the range. (At this time, the only use of address 2988 * ranges is for IP multicast routing, for which the 2989 * range is big enough to require all bits set.) 2990 */ 2991 goto allmulti; 2992 } 2993 2994 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN); 2995 2996 #ifdef DP83820 2997 /* Just want the 11 most significant bits. */ 2998 hash = crc >> 21; 2999 #else 3000 /* Just want the 9 most significant bits. */ 3001 hash = crc >> 23; 3002 #endif /* DP83820 */ 3003 3004 slot = hash >> 4; 3005 bit = hash & 0xf; 3006 3007 /* Set the corresponding bit in the hash table. */ 3008 mchash[slot] |= 1 << bit; 3009 3010 ETHER_NEXT_MULTI(step, enm); 3011 } 3012 sc->sc_rfcr |= RFCR_MHEN; 3013 goto setit; 3014 3015 allmulti: 3016 ifp->if_flags |= IFF_ALLMULTI; 3017 sc->sc_rfcr |= RFCR_AAM; 3018 3019 setit: 3020 #define FILTER_EMIT(addr, data) \ 3021 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \ 3022 delay(1); \ 3023 bus_space_write_4(st, sh, SIP_RFDR, (data)); \ 3024 delay(1) 3025 3026 /* 3027 * Disable receive filter, and program the node address. 3028 */ 3029 cp = LLADDR(ifp->if_sadl); 3030 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]); 3031 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]); 3032 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]); 3033 3034 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 3035 /* 3036 * Program the multicast hash table. 3037 */ 3038 for (i = 0; i < MCHASH_NWORDS; i++) { 3039 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2), 3040 mchash[i]); 3041 } 3042 } 3043 #undef FILTER_EMIT 3044 #undef MCHASH_NWORDS 3045 3046 /* 3047 * Re-enable the receiver filter. 3048 */ 3049 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr); 3050 } 3051 3052 #if defined(DP83820) 3053 /* 3054 * sip_dp83820_mii_readreg: [mii interface function] 3055 * 3056 * Read a PHY register on the MII of the DP83820. 3057 */ 3058 static int 3059 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg) 3060 { 3061 struct sip_softc *sc = (void *) self; 3062 3063 if (sc->sc_cfg & CFG_TBI_EN) { 3064 bus_addr_t tbireg; 3065 int rv; 3066 3067 if (phy != 0) 3068 return (0); 3069 3070 switch (reg) { 3071 case MII_BMCR: tbireg = SIP_TBICR; break; 3072 case MII_BMSR: tbireg = SIP_TBISR; break; 3073 case MII_ANAR: tbireg = SIP_TANAR; break; 3074 case MII_ANLPAR: tbireg = SIP_TANLPAR; break; 3075 case MII_ANER: tbireg = SIP_TANER; break; 3076 case MII_EXTSR: 3077 /* 3078 * Don't even bother reading the TESR register. 3079 * The manual documents that the device has 3080 * 1000baseX full/half capability, but the 3081 * register itself seems read back 0 on some 3082 * boards. Just hard-code the result. 3083 */ 3084 return (EXTSR_1000XFDX|EXTSR_1000XHDX); 3085 3086 default: 3087 return (0); 3088 } 3089 3090 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff; 3091 if (tbireg == SIP_TBISR) { 3092 /* LINK and ACOMP are switched! */ 3093 int val = rv; 3094 3095 rv = 0; 3096 if (val & TBISR_MR_LINK_STATUS) 3097 rv |= BMSR_LINK; 3098 if (val & TBISR_MR_AN_COMPLETE) 3099 rv |= BMSR_ACOMP; 3100 3101 /* 3102 * The manual claims this register reads back 0 3103 * on hard and soft reset. But we want to let 3104 * the gentbi driver know that we support auto- 3105 * negotiation, so hard-code this bit in the 3106 * result. 3107 */ 3108 rv |= BMSR_ANEG | BMSR_EXTSTAT; 3109 } 3110 3111 return (rv); 3112 } 3113 3114 return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops), 3115 phy, reg)); 3116 } 3117 3118 /* 3119 * sip_dp83820_mii_writereg: [mii interface function] 3120 * 3121 * Write a PHY register on the MII of the DP83820. 3122 */ 3123 static void 3124 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val) 3125 { 3126 struct sip_softc *sc = (void *) self; 3127 3128 if (sc->sc_cfg & CFG_TBI_EN) { 3129 bus_addr_t tbireg; 3130 3131 if (phy != 0) 3132 return; 3133 3134 switch (reg) { 3135 case MII_BMCR: tbireg = SIP_TBICR; break; 3136 case MII_ANAR: tbireg = SIP_TANAR; break; 3137 case MII_ANLPAR: tbireg = SIP_TANLPAR; break; 3138 default: 3139 return; 3140 } 3141 3142 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val); 3143 return; 3144 } 3145 3146 mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops), 3147 phy, reg, val); 3148 } 3149 3150 /* 3151 * sip_dp83820_mii_statchg: [mii interface function] 3152 * 3153 * Callback from MII layer when media changes. 3154 */ 3155 static void 3156 SIP_DECL(dp83820_mii_statchg)(struct device *self) 3157 { 3158 struct sip_softc *sc = (struct sip_softc *) self; 3159 struct mii_data *mii = &sc->sc_mii; 3160 u_int32_t cfg, pcr; 3161 3162 /* 3163 * Get flow control negotiation result. 3164 */ 3165 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO && 3166 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) { 3167 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK; 3168 mii->mii_media_active &= ~IFM_ETH_FMASK; 3169 } 3170 3171 /* 3172 * Update TXCFG for full-duplex operation. 3173 */ 3174 if ((mii->mii_media_active & IFM_FDX) != 0) 3175 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI); 3176 else 3177 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI); 3178 3179 /* 3180 * Update RXCFG for full-duplex or loopback. 3181 */ 3182 if ((mii->mii_media_active & IFM_FDX) != 0 || 3183 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP) 3184 sc->sc_rxcfg |= RXCFG_ATX; 3185 else 3186 sc->sc_rxcfg &= ~RXCFG_ATX; 3187 3188 /* 3189 * Update CFG for MII/GMII. 3190 */ 3191 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000)) 3192 cfg = sc->sc_cfg | CFG_MODE_1000; 3193 else 3194 cfg = sc->sc_cfg; 3195 3196 /* 3197 * 802.3x flow control. 3198 */ 3199 pcr = 0; 3200 if (sc->sc_flowflags & IFM_FLOW) { 3201 if (sc->sc_flowflags & IFM_ETH_TXPAUSE) 3202 pcr |= sc->sc_rx_flow_thresh; 3203 if (sc->sc_flowflags & IFM_ETH_RXPAUSE) 3204 pcr |= PCR_PSEN | PCR_PS_MCAST; 3205 } 3206 3207 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg); 3208 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg); 3209 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg); 3210 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr); 3211 } 3212 #endif /* ! DP83820 */ 3213 3214 /* 3215 * sip_mii_bitbang_read: [mii bit-bang interface function] 3216 * 3217 * Read the MII serial port for the MII bit-bang module. 3218 */ 3219 static u_int32_t 3220 SIP_DECL(mii_bitbang_read)(struct device *self) 3221 { 3222 struct sip_softc *sc = (void *) self; 3223 3224 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR)); 3225 } 3226 3227 /* 3228 * sip_mii_bitbang_write: [mii big-bang interface function] 3229 * 3230 * Write the MII serial port for the MII bit-bang module. 3231 */ 3232 static void 3233 SIP_DECL(mii_bitbang_write)(struct device *self, u_int32_t val) 3234 { 3235 struct sip_softc *sc = (void *) self; 3236 3237 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val); 3238 } 3239 3240 #ifndef DP83820 3241 /* 3242 * sip_sis900_mii_readreg: [mii interface function] 3243 * 3244 * Read a PHY register on the MII. 3245 */ 3246 static int 3247 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg) 3248 { 3249 struct sip_softc *sc = (struct sip_softc *) self; 3250 u_int32_t enphy; 3251 3252 /* 3253 * The PHY of recent SiS chipsets is accessed through bitbang 3254 * operations. 3255 */ 3256 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) 3257 return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops), 3258 phy, reg)); 3259 3260 #ifndef SIS900_MII_RESTRICT 3261 /* 3262 * The SiS 900 has only an internal PHY on the MII. Only allow 3263 * MII address 0. 3264 */ 3265 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0) 3266 return (0); 3267 #endif 3268 3269 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY, 3270 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) | 3271 ENPHY_RWCMD | ENPHY_ACCESS); 3272 do { 3273 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY); 3274 } while (enphy & ENPHY_ACCESS); 3275 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT); 3276 } 3277 3278 /* 3279 * sip_sis900_mii_writereg: [mii interface function] 3280 * 3281 * Write a PHY register on the MII. 3282 */ 3283 static void 3284 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val) 3285 { 3286 struct sip_softc *sc = (struct sip_softc *) self; 3287 u_int32_t enphy; 3288 3289 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) { 3290 mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops), 3291 phy, reg, val); 3292 return; 3293 } 3294 3295 #ifndef SIS900_MII_RESTRICT 3296 /* 3297 * The SiS 900 has only an internal PHY on the MII. Only allow 3298 * MII address 0. 3299 */ 3300 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0) 3301 return; 3302 #endif 3303 3304 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY, 3305 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) | 3306 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS); 3307 do { 3308 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY); 3309 } while (enphy & ENPHY_ACCESS); 3310 } 3311 3312 /* 3313 * sip_sis900_mii_statchg: [mii interface function] 3314 * 3315 * Callback from MII layer when media changes. 3316 */ 3317 static void 3318 SIP_DECL(sis900_mii_statchg)(struct device *self) 3319 { 3320 struct sip_softc *sc = (struct sip_softc *) self; 3321 struct mii_data *mii = &sc->sc_mii; 3322 u_int32_t flowctl; 3323 3324 /* 3325 * Get flow control negotiation result. 3326 */ 3327 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO && 3328 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) { 3329 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK; 3330 mii->mii_media_active &= ~IFM_ETH_FMASK; 3331 } 3332 3333 /* 3334 * Update TXCFG for full-duplex operation. 3335 */ 3336 if ((mii->mii_media_active & IFM_FDX) != 0) 3337 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI); 3338 else 3339 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI); 3340 3341 /* 3342 * Update RXCFG for full-duplex or loopback. 3343 */ 3344 if ((mii->mii_media_active & IFM_FDX) != 0 || 3345 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP) 3346 sc->sc_rxcfg |= RXCFG_ATX; 3347 else 3348 sc->sc_rxcfg &= ~RXCFG_ATX; 3349 3350 /* 3351 * Update IMR for use of 802.3x flow control. 3352 */ 3353 if (sc->sc_flowflags & IFM_FLOW) { 3354 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST); 3355 flowctl = FLOWCTL_FLOWEN; 3356 } else { 3357 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST); 3358 flowctl = 0; 3359 } 3360 3361 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg); 3362 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg); 3363 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr); 3364 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl); 3365 } 3366 3367 /* 3368 * sip_dp83815_mii_readreg: [mii interface function] 3369 * 3370 * Read a PHY register on the MII. 3371 */ 3372 static int 3373 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg) 3374 { 3375 struct sip_softc *sc = (struct sip_softc *) self; 3376 u_int32_t val; 3377 3378 /* 3379 * The DP83815 only has an internal PHY. Only allow 3380 * MII address 0. 3381 */ 3382 if (phy != 0) 3383 return (0); 3384 3385 /* 3386 * Apparently, after a reset, the DP83815 can take a while 3387 * to respond. During this recovery period, the BMSR returns 3388 * a value of 0. Catch this -- it's not supposed to happen 3389 * (the BMSR has some hardcoded-to-1 bits), and wait for the 3390 * PHY to come back to life. 3391 * 3392 * This works out because the BMSR is the first register 3393 * read during the PHY probe process. 3394 */ 3395 do { 3396 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg)); 3397 } while (reg == MII_BMSR && val == 0); 3398 3399 return (val & 0xffff); 3400 } 3401 3402 /* 3403 * sip_dp83815_mii_writereg: [mii interface function] 3404 * 3405 * Write a PHY register to the MII. 3406 */ 3407 static void 3408 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val) 3409 { 3410 struct sip_softc *sc = (struct sip_softc *) self; 3411 3412 /* 3413 * The DP83815 only has an internal PHY. Only allow 3414 * MII address 0. 3415 */ 3416 if (phy != 0) 3417 return; 3418 3419 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val); 3420 } 3421 3422 /* 3423 * sip_dp83815_mii_statchg: [mii interface function] 3424 * 3425 * Callback from MII layer when media changes. 3426 */ 3427 static void 3428 SIP_DECL(dp83815_mii_statchg)(struct device *self) 3429 { 3430 struct sip_softc *sc = (struct sip_softc *) self; 3431 3432 /* 3433 * Update TXCFG for full-duplex operation. 3434 */ 3435 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0) 3436 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI); 3437 else 3438 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI); 3439 3440 /* 3441 * Update RXCFG for full-duplex or loopback. 3442 */ 3443 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 || 3444 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP) 3445 sc->sc_rxcfg |= RXCFG_ATX; 3446 else 3447 sc->sc_rxcfg &= ~RXCFG_ATX; 3448 3449 /* 3450 * XXX 802.3x flow control. 3451 */ 3452 3453 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg); 3454 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg); 3455 3456 /* 3457 * Some DP83815s experience problems when used with short 3458 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This 3459 * sequence adjusts the DSP's signal attenuation to fix the 3460 * problem. 3461 */ 3462 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) { 3463 uint32_t reg; 3464 3465 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001); 3466 3467 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4); 3468 reg &= 0x0fff; 3469 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000); 3470 delay(100); 3471 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc); 3472 reg &= 0x00ff; 3473 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) { 3474 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc, 3475 0x00e8); 3476 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4); 3477 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, 3478 reg | 0x20); 3479 } 3480 3481 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0); 3482 } 3483 } 3484 #endif /* DP83820 */ 3485 3486 #if defined(DP83820) 3487 static void 3488 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc, 3489 const struct pci_attach_args *pa, u_int8_t *enaddr) 3490 { 3491 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2]; 3492 u_int8_t cksum, *e, match; 3493 int i; 3494 3495 /* 3496 * EEPROM data format for the DP83820 can be found in 3497 * the DP83820 manual, section 4.2.4. 3498 */ 3499 3500 SIP_DECL(read_eeprom)(sc, 0, 3501 sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data); 3502 3503 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8; 3504 match = ~(match - 1); 3505 3506 cksum = 0x55; 3507 e = (u_int8_t *) eeprom_data; 3508 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++) 3509 cksum += *e++; 3510 3511 if (cksum != match) 3512 printf("%s: Checksum (%x) mismatch (%x)", 3513 sc->sc_dev.dv_xname, cksum, match); 3514 3515 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff; 3516 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8; 3517 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff; 3518 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8; 3519 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff; 3520 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8; 3521 } 3522 #else /* ! DP83820 */ 3523 static void 3524 SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc) 3525 { 3526 int i; 3527 3528 /* 3529 * FreeBSD goes from (300/33)+1 [10] to 0. There must be 3530 * a reason, but I don't know it. 3531 */ 3532 for (i = 0; i < 10; i++) 3533 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR); 3534 } 3535 3536 static void 3537 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc, 3538 const struct pci_attach_args *pa, u_int8_t *enaddr) 3539 { 3540 u_int16_t myea[ETHER_ADDR_LEN / 2]; 3541 3542 switch (sc->sc_rev) { 3543 case SIS_REV_630S: 3544 case SIS_REV_630E: 3545 case SIS_REV_630EA1: 3546 case SIS_REV_630ET: 3547 case SIS_REV_635: 3548 /* 3549 * The MAC address for the on-board Ethernet of 3550 * the SiS 630 chipset is in the NVRAM. Kick 3551 * the chip into re-loading it from NVRAM, and 3552 * read the MAC address out of the filter registers. 3553 */ 3554 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD); 3555 3556 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR, 3557 RFCR_RFADDR_NODE0); 3558 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) & 3559 0xffff; 3560 3561 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR, 3562 RFCR_RFADDR_NODE2); 3563 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) & 3564 0xffff; 3565 3566 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR, 3567 RFCR_RFADDR_NODE4); 3568 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) & 3569 0xffff; 3570 break; 3571 3572 case SIS_REV_960: 3573 { 3574 #define SIS_SET_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \ 3575 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y)) 3576 3577 #define SIS_CLR_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \ 3578 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y)) 3579 3580 int waittime, i; 3581 3582 /* Allow to read EEPROM from LAN. It is shared 3583 * between a 1394 controller and the NIC and each 3584 * time we access it, we need to set SIS_EECMD_REQ. 3585 */ 3586 SIS_SET_EROMAR(sc, EROMAR_REQ); 3587 3588 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */ 3589 /* Force EEPROM to idle state. */ 3590 3591 /* 3592 * XXX-cube This is ugly. I'll look for docs about it. 3593 */ 3594 SIS_SET_EROMAR(sc, EROMAR_EECS); 3595 SIP_DECL(sis900_eeprom_delay)(sc); 3596 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */ 3597 SIS_SET_EROMAR(sc, EROMAR_EESK); 3598 SIP_DECL(sis900_eeprom_delay)(sc); 3599 SIS_CLR_EROMAR(sc, EROMAR_EESK); 3600 SIP_DECL(sis900_eeprom_delay)(sc); 3601 } 3602 SIS_CLR_EROMAR(sc, EROMAR_EECS); 3603 SIP_DECL(sis900_eeprom_delay)(sc); 3604 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0); 3605 3606 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) { 3607 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1, 3608 sizeof(myea) / sizeof(myea[0]), myea); 3609 break; 3610 } 3611 DELAY(1); 3612 } 3613 3614 /* 3615 * Set SIS_EECTL_CLK to high, so a other master 3616 * can operate on the i2c bus. 3617 */ 3618 SIS_SET_EROMAR(sc, EROMAR_EESK); 3619 3620 /* Refuse EEPROM access by LAN */ 3621 SIS_SET_EROMAR(sc, EROMAR_DONE); 3622 } break; 3623 3624 default: 3625 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1, 3626 sizeof(myea) / sizeof(myea[0]), myea); 3627 } 3628 3629 enaddr[0] = myea[0] & 0xff; 3630 enaddr[1] = myea[0] >> 8; 3631 enaddr[2] = myea[1] & 0xff; 3632 enaddr[3] = myea[1] >> 8; 3633 enaddr[4] = myea[2] & 0xff; 3634 enaddr[5] = myea[2] >> 8; 3635 } 3636 3637 /* Table and macro to bit-reverse an octet. */ 3638 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15}; 3639 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf]) 3640 3641 static void 3642 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc, 3643 const struct pci_attach_args *pa, u_int8_t *enaddr) 3644 { 3645 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea; 3646 u_int8_t cksum, *e, match; 3647 int i; 3648 3649 SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) / 3650 sizeof(eeprom_data[0]), eeprom_data); 3651 3652 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8; 3653 match = ~(match - 1); 3654 3655 cksum = 0x55; 3656 e = (u_int8_t *) eeprom_data; 3657 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) { 3658 cksum += *e++; 3659 } 3660 if (cksum != match) { 3661 printf("%s: Checksum (%x) mismatch (%x)", 3662 sc->sc_dev.dv_xname, cksum, match); 3663 } 3664 3665 /* 3666 * Unrolled because it makes slightly more sense this way. 3667 * The DP83815 stores the MAC address in bit 0 of word 6 3668 * through bit 15 of word 8. 3669 */ 3670 ea = &eeprom_data[6]; 3671 enaddr[0] = ((*ea & 0x1) << 7); 3672 ea++; 3673 enaddr[0] |= ((*ea & 0xFE00) >> 9); 3674 enaddr[1] = ((*ea & 0x1FE) >> 1); 3675 enaddr[2] = ((*ea & 0x1) << 7); 3676 ea++; 3677 enaddr[2] |= ((*ea & 0xFE00) >> 9); 3678 enaddr[3] = ((*ea & 0x1FE) >> 1); 3679 enaddr[4] = ((*ea & 0x1) << 7); 3680 ea++; 3681 enaddr[4] |= ((*ea & 0xFE00) >> 9); 3682 enaddr[5] = ((*ea & 0x1FE) >> 1); 3683 3684 /* 3685 * In case that's not weird enough, we also need to reverse 3686 * the bits in each byte. This all actually makes more sense 3687 * if you think about the EEPROM storage as an array of bits 3688 * being shifted into bytes, but that's not how we're looking 3689 * at it here... 3690 */ 3691 for (i = 0; i < 6 ;i++) 3692 enaddr[i] = bbr(enaddr[i]); 3693 } 3694 #endif /* DP83820 */ 3695 3696 /* 3697 * sip_mediastatus: [ifmedia interface function] 3698 * 3699 * Get the current interface media status. 3700 */ 3701 static void 3702 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr) 3703 { 3704 struct sip_softc *sc = ifp->if_softc; 3705 3706 mii_pollstat(&sc->sc_mii); 3707 ifmr->ifm_status = sc->sc_mii.mii_media_status; 3708 ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) | 3709 sc->sc_flowflags; 3710 } 3711 3712 /* 3713 * sip_mediachange: [ifmedia interface function] 3714 * 3715 * Set hardware to newly-selected media. 3716 */ 3717 static int 3718 SIP_DECL(mediachange)(struct ifnet *ifp) 3719 { 3720 struct sip_softc *sc = ifp->if_softc; 3721 3722 if (ifp->if_flags & IFF_UP) 3723 mii_mediachg(&sc->sc_mii); 3724 return (0); 3725 } 3726