xref: /netbsd-src/sys/dev/pci/if_sip.c (revision 95d875fb90b1458e4f1de6950286ddcd6644bc61)
1 /*	$NetBSD: if_sip.c,v 1.4 1999/11/12 18:14:19 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999 Network Computer, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of Network Computer, Inc. nor the names of its
16  *    contributors may be used to endorse or promote products derived
17  *    from this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Device driver for the Silicon Integrated Systems SiS900 10/100 PCI
34  * Ethernet controller.
35  *
36  * Written by Jason R. Thorpe for Network Computer, Inc.
37  */
38 
39 #include "opt_inet.h"
40 #include "opt_ns.h"
41 #include "bpfilter.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/mbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/kernel.h>
48 #include <sys/socket.h>
49 #include <sys/ioctl.h>
50 #include <sys/errno.h>
51 #include <sys/device.h>
52 #include <sys/queue.h>
53 
54 #include <vm/vm.h>		/* for PAGE_SIZE */
55 
56 #include <net/if.h>
57 #include <net/if_dl.h>
58 #include <net/if_media.h>
59 #include <net/if_ether.h>
60 
61 #if NBPFILTER > 0
62 #include <net/bpf.h>
63 #endif
64 
65 #ifdef INET
66 #include <netinet/in.h>
67 #include <netinet/if_inarp.h>
68 #endif
69 
70 #ifdef NS
71 #include <netns/ns.h>
72 #include <netns/ns_if.h>
73 #endif
74 
75 #include <machine/bus.h>
76 #include <machine/intr.h>
77 
78 #include <dev/mii/miivar.h>
79 
80 #include <dev/pci/pcireg.h>
81 #include <dev/pci/pcivar.h>
82 #include <dev/pci/pcidevs.h>
83 
84 #include <dev/pci/if_sipreg.h>
85 
86 /*
87  * Devices supported by this driver.
88  */
89 const struct sip_product {
90 	pci_vendor_id_t		sip_vendor;
91 	pci_product_id_t	sip_product;
92 	const char		*sip_name;
93 } sip_products[] = {
94 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
95 	  "SiS 900 10/100 Ethernet" },
96 
97 	{ 0,			0,
98 	  NULL },
99 };
100 
101 /*
102  * Transmit descriptor list size.  This is arbitrary, but allocate
103  * enough descriptors for 64 pending transmissions, and 16 segments
104  * per packet.  This MUST work out to a power of 2.
105  */
106 #define	SIP_NTXSEGS		16
107 
108 #define	SIP_TXQUEUELEN		64
109 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS)
110 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
111 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
112 
113 /*
114  * Receive descriptor list size.  We have one Rx buffer per incoming
115  * packet, so this logic is a little simpler.
116  */
117 #define	SIP_NRXDESC		64
118 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
119 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
120 
121 /*
122  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
123  * a single clump that maps to a single DMA segment to make several things
124  * easier.
125  */
126 struct sip_control_data {
127 	/*
128 	 * The transmit descriptors.
129 	 */
130 	struct sip_desc scd_txdescs[SIP_NTXDESC];
131 
132 	/*
133 	 * The receive descriptors.
134 	 */
135 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
136 };
137 
138 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
139 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
140 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
141 
142 /*
143  * Software state for transmit jobs.
144  */
145 struct sip_txsoft {
146 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
147 	bus_dmamap_t txs_dmamap;	/* our DMA map */
148 	int txs_firstdesc;		/* first descriptor in packet */
149 	int txs_lastdesc;		/* last descriptor in packet */
150 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
151 };
152 
153 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
154 
155 /*
156  * Software state for receive jobs.
157  */
158 struct sip_rxsoft {
159 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
160 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
161 };
162 
163 /*
164  * Software state per device.
165  */
166 struct sip_softc {
167 	struct device sc_dev;		/* generic device information */
168 	bus_space_tag_t sc_st;		/* bus space tag */
169 	bus_space_handle_t sc_sh;	/* bus space handle */
170 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
171 	struct ethercom sc_ethercom;	/* ethernet common data */
172 	void *sc_sdhook;		/* shutdown hook */
173 
174 	void *sc_ih;			/* interrupt cookie */
175 
176 	struct mii_data sc_mii;		/* MII/media information */
177 
178 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
179 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
180 
181 	/*
182 	 * Software state for transmit and receive descriptors.
183 	 */
184 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
185 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
186 
187 	/*
188 	 * Control data structures.
189 	 */
190 	struct sip_control_data *sc_control_data;
191 #define	sc_txdescs	sc_control_data->scd_txdescs
192 #define	sc_rxdescs	sc_control_data->scd_rxdescs
193 
194 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
195 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
196 	u_int32_t sc_imr;		/* prototype IMR register */
197 	u_int32_t sc_rfcr;		/* prototype RFCR register */
198 
199 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
200 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
201 
202 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
203 
204 	int	sc_flags;		/* misc. flags; see below */
205 
206 	int	sc_txfree;		/* number of free Tx descriptors */
207 	int	sc_txnext;		/* next ready Tx descriptor */
208 
209 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
210 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
211 
212 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
213 };
214 
215 /* sc_flags */
216 #define	SIPF_PAUSED	0x00000001	/* paused (802.3x flow control) */
217 
218 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
219 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
220 
221 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
222 do {									\
223 	int __x, __n;							\
224 									\
225 	__x = (x);							\
226 	__n = (n);							\
227 									\
228 	/* If it will wrap around, sync to the end of the ring. */	\
229 	if ((__x + __n) > SIP_NTXDESC) {				\
230 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
231 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
232 		    (SIP_NTXDESC - __x), (ops));			\
233 		__n -= (SIP_NTXDESC - __x);				\
234 		__x = 0;						\
235 	}								\
236 									\
237 	/* Now sync whatever is left. */				\
238 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
239 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
240 } while (0)
241 
242 #define	SIP_CDRXSYNC(sc, x, ops)					\
243 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
244 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
245 
246 /*
247  * Note we rely on MCLBYTES being a power of two below.
248  */
249 #define	SIP_INIT_RXDESC(sc, x)						\
250 do {									\
251 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
252 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
253 									\
254 	__sipd->sipd_link = SIP_CDRXADDR((sc), SIP_NEXTRX((x)));	\
255 	__sipd->sipd_bufptr = __rxs->rxs_dmamap->dm_segs[0].ds_addr;	\
256 	__sipd->sipd_cmdsts = CMDSTS_INTR |				\
257 	    ((MCLBYTES - 1) & CMDSTS_SIZE_MASK);			\
258 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
259 } while (0)
260 
261 void	sip_start __P((struct ifnet *));
262 void	sip_watchdog __P((struct ifnet *));
263 int	sip_ioctl __P((struct ifnet *, u_long, caddr_t));
264 
265 void	sip_shutdown __P((void *));
266 
267 void	sip_reset __P((struct sip_softc *));
268 int	sip_init __P((struct sip_softc *));
269 void	sip_stop __P((struct sip_softc *, int));
270 void	sip_rxdrain __P((struct sip_softc *));
271 int	sip_add_rxbuf __P((struct sip_softc *, int));
272 void	sip_read_eeprom __P((struct sip_softc *, int, int, u_int16_t *));
273 void	sip_set_filter __P((struct sip_softc *));
274 void	sip_tick __P((void *));
275 
276 int	sip_intr __P((void *));
277 void	sip_txintr __P((struct sip_softc *));
278 void	sip_rxintr __P((struct sip_softc *));
279 
280 int	sip_mii_readreg __P((struct device *, int, int));
281 void	sip_mii_writereg __P((struct device *, int, int, int));
282 void	sip_mii_statchg __P((struct device *));
283 
284 int	sip_mediachange __P((struct ifnet *));
285 void	sip_mediastatus __P((struct ifnet *, struct ifmediareq *));
286 
287 int	sip_match __P((struct device *, struct cfdata *, void *));
288 void	sip_attach __P((struct device *, struct device *, void *));
289 
290 int	sip_copy_small = 0;
291 
292 struct cfattach sip_ca = {
293 	sizeof(struct sip_softc), sip_match, sip_attach,
294 };
295 
296 const struct sip_product *sip_lookup __P((const struct pci_attach_args *));
297 
298 const struct sip_product *
299 sip_lookup(pa)
300 	const struct pci_attach_args *pa;
301 {
302 	const struct sip_product *sip;
303 
304 	for (sip = sip_products; sip->sip_name != NULL; sip++) {
305 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
306 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
307 			return (sip);
308 	}
309 	return (NULL);
310 }
311 
312 int
313 sip_match(parent, cf, aux)
314 	struct device *parent;
315 	struct cfdata *cf;
316 	void *aux;
317 {
318 	struct pci_attach_args *pa = aux;
319 
320 	if (sip_lookup(pa) != NULL)
321 		return (1);
322 
323 	return (0);
324 }
325 
326 void
327 sip_attach(parent, self, aux)
328 	struct device *parent, *self;
329 	void *aux;
330 {
331 	struct sip_softc *sc = (struct sip_softc *) self;
332 	struct pci_attach_args *pa = aux;
333 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
334 	pci_chipset_tag_t pc = pa->pa_pc;
335 	pci_intr_handle_t ih;
336 	const char *intrstr = NULL;
337 	bus_space_tag_t iot, memt;
338 	bus_space_handle_t ioh, memh;
339 	bus_dma_segment_t seg;
340 	int ioh_valid, memh_valid;
341 	int i, rseg, error;
342 	const struct sip_product *sip;
343 	pcireg_t pmode;
344 	u_int16_t enaddr[ETHER_ADDR_LEN / 2];
345 
346 	sip = sip_lookup(pa);
347 	if (sip == NULL) {
348 		printf("\n");
349 		panic("sip_attach: impossible");
350 	}
351 
352 	printf(": %s\n", sip->sip_name);
353 
354 	/*
355 	 * Map the device.
356 	 */
357 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
358 	    PCI_MAPREG_TYPE_IO, 0,
359 	    &iot, &ioh, NULL, NULL) == 0);
360 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
361 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
362 	    &memt, &memh, NULL, NULL) == 0);
363 
364 	if (memh_valid) {
365 		sc->sc_st = memt;
366 		sc->sc_sh = memh;
367 	} else if (ioh_valid) {
368 		sc->sc_st = iot;
369 		sc->sc_sh = ioh;
370 	} else {
371 		printf("%s: unable to map device registers\n",
372 		    sc->sc_dev.dv_xname);
373 		return;
374 	}
375 
376 	sc->sc_dmat = pa->pa_dmat;
377 
378 	/* Enable bus mastering. */
379 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
380 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
381 	    PCI_COMMAND_MASTER_ENABLE);
382 
383 	/* Get it out of power save mode if needed. */
384 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, 0, 0)) {
385 		pmode = pci_conf_read(pc, pa->pa_tag, SIP_PCI_CFGPMCSR) & 0x3;
386 		if (pmode == 3) {
387 			/*
388 			 * The card has lost all configuration data in
389 			 * this state, so punt.
390 			 */
391 			printf("%s: unable to wake up from power state D3\n",
392 			    sc->sc_dev.dv_xname);
393 			return;
394 		}
395 		if (pmode != 0) {
396 			printf("%s: waking up from power state D%d\n",
397 			    sc->sc_dev.dv_xname, pmode);
398 			pci_conf_write(pc, pa->pa_tag, SIP_PCI_CFGPMCSR, 0);
399 		}
400 	}
401 
402 	/*
403 	 * Map and establish our interrupt.
404 	 */
405 	if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
406 	    pa->pa_intrline, &ih)) {
407 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
408 		return;
409 	}
410 	intrstr = pci_intr_string(pc, ih);
411 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sip_intr, sc);
412 	if (sc->sc_ih == NULL) {
413 		printf("%s: unable to establish interrupt",
414 		    sc->sc_dev.dv_xname);
415 		if (intrstr != NULL)
416 			printf(" at %s", intrstr);
417 		printf("\n");
418 		return;
419 	}
420 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
421 
422 	SIMPLEQ_INIT(&sc->sc_txfreeq);
423 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
424 
425 	/*
426 	 * Allocate the control data structures, and create and load the
427 	 * DMA map for it.
428 	 */
429 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
430 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
431 	    0)) != 0) {
432 		printf("%s: unable to allocate control data, error = %d\n",
433 		    sc->sc_dev.dv_xname, error);
434 		goto fail_0;
435 	}
436 
437 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
438 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
439 	    BUS_DMA_COHERENT)) != 0) {
440 		printf("%s: unable to map control data, error = %d\n",
441 		    sc->sc_dev.dv_xname, error);
442 		goto fail_1;
443 	}
444 
445 	if ((error = bus_dmamap_create(sc->sc_dmat,
446 	    sizeof(struct sip_control_data), 1,
447 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
448 		printf("%s: unable to create control data DMA map, "
449 		    "error = %d\n", sc->sc_dev.dv_xname, error);
450 		goto fail_2;
451 	}
452 
453 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
454 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
455 	    0)) != 0) {
456 		printf("%s: unable to load control data DMA map, error = %d\n",
457 		    sc->sc_dev.dv_xname, error);
458 		goto fail_3;
459 	}
460 
461 	/*
462 	 * Create the transmit buffer DMA maps.
463 	 */
464 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
465 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
466 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
467 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
468 			printf("%s: unable to create tx DMA map %d, "
469 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
470 			goto fail_4;
471 		}
472 	}
473 
474 	/*
475 	 * Create the receive buffer DMA maps.
476 	 */
477 	for (i = 0; i < SIP_NRXDESC; i++) {
478 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
479 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
480 			printf("%s: unable to create rx DMA map %d, "
481 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
482 			goto fail_5;
483 		}
484 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
485 	}
486 
487 	/*
488 	 * Reset the chip to a known state.
489 	 */
490 	sip_reset(sc);
491 
492 	/*
493 	 * Read the Ethernet address from the EEPROM.
494 	 */
495 	sip_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
496 	    sizeof(enaddr) / sizeof(enaddr[0]), enaddr);
497 
498 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
499 	    ether_sprintf((u_int8_t *)enaddr));
500 
501 	/*
502 	 * Initialize our media structures and probe the MII.
503 	 */
504 	sc->sc_mii.mii_ifp = ifp;
505 	sc->sc_mii.mii_readreg = sip_mii_readreg;
506 	sc->sc_mii.mii_writereg = sip_mii_writereg;
507 	sc->sc_mii.mii_statchg = sip_mii_statchg;
508 	ifmedia_init(&sc->sc_mii.mii_media, 0, sip_mediachange,
509 	    sip_mediastatus);
510 	mii_phy_probe(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
511 	    MII_OFFSET_ANY);
512 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
513 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
514 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
515 	} else
516 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
517 
518 	ifp = &sc->sc_ethercom.ec_if;
519 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
520 	ifp->if_softc = sc;
521 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
522 	ifp->if_ioctl = sip_ioctl;
523 	ifp->if_start = sip_start;
524 	ifp->if_watchdog = sip_watchdog;
525 
526 	/*
527 	 * Attach the interface.
528 	 */
529 	if_attach(ifp);
530 	ether_ifattach(ifp, (u_int8_t *)enaddr);
531 #if NBPFILTER > 0
532 	bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
533 	    sizeof(struct ether_header));
534 #endif
535 
536 	/*
537 	 * Make sure the interface is shutdown during reboot.
538 	 */
539 	sc->sc_sdhook = shutdownhook_establish(sip_shutdown, sc);
540 	if (sc->sc_sdhook == NULL)
541 		printf("%s: WARNING: unable to establish shutdown hook\n",
542 		    sc->sc_dev.dv_xname);
543 	return;
544 
545 	/*
546 	 * Free any resources we've allocated during the failed attach
547 	 * attempt.  Do this in reverse order and fall through.
548 	 */
549  fail_5:
550 	for (i = 0; i < SIP_NRXDESC; i++) {
551 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
552 			bus_dmamap_destroy(sc->sc_dmat,
553 			    sc->sc_rxsoft[i].rxs_dmamap);
554 	}
555  fail_4:
556 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
557 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
558 			bus_dmamap_destroy(sc->sc_dmat,
559 			    sc->sc_txsoft[i].txs_dmamap);
560 	}
561 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
562  fail_3:
563 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
564  fail_2:
565 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
566 	    sizeof(struct sip_control_data));
567  fail_1:
568 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
569  fail_0:
570 	return;
571 }
572 
573 /*
574  * sip_shutdown:
575  *
576  *	Make sure the interface is stopped at reboot time.
577  */
578 void
579 sip_shutdown(arg)
580 	void *arg;
581 {
582 	struct sip_softc *sc = arg;
583 
584 	sip_stop(sc, 1);
585 }
586 
587 /*
588  * sip_start:		[ifnet interface function]
589  *
590  *	Start packet transmission on the interface.
591  */
592 void
593 sip_start(ifp)
594 	struct ifnet *ifp;
595 {
596 	struct sip_softc *sc = ifp->if_softc;
597 	struct mbuf *m0, *m;
598 	struct sip_txsoft *txs;
599 	bus_dmamap_t dmamap;
600 	int error, firsttx, nexttx, lasttx, ofree, seg;
601 
602 	/*
603 	 * If we've been told to pause, don't transmit any more packets.
604 	 */
605 	if (sc->sc_flags & SIPF_PAUSED)
606 		ifp->if_flags |= IFF_OACTIVE;
607 
608 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
609 		return;
610 
611 	/*
612 	 * Remember the previous number of free descriptors and
613 	 * the first descriptor we'll use.
614 	 */
615 	ofree = sc->sc_txfree;
616 	firsttx = sc->sc_txnext;
617 
618 	/*
619 	 * Loop through the send queue, setting up transmit descriptors
620 	 * until we drain the queue, or use up all available transmit
621 	 * descriptors.
622 	 */
623 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
624 	       sc->sc_txfree != 0) {
625 		/*
626 		 * Grab a packet off the queue.
627 		 */
628 		IF_DEQUEUE(&ifp->if_snd, m0);
629 		if (m0 == NULL)
630 			break;
631 
632 		dmamap = txs->txs_dmamap;
633 
634 		/*
635 		 * Load the DMA map.  If this fails, the packet either
636 		 * didn't fit in the alloted number of segments, or we
637 		 * were short on resources.  In this case, we'll copy
638 		 * and try again.
639 		 */
640 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
641 		    BUS_DMA_NOWAIT) != 0) {
642 			MGETHDR(m, M_DONTWAIT, MT_DATA);
643 			if (m == NULL) {
644 				printf("%s: unable to allocate Tx mbuf\n",
645 				    sc->sc_dev.dv_xname);
646 				IF_PREPEND(&ifp->if_snd, m0);
647 				break;
648 			}
649 			if (m0->m_pkthdr.len > MHLEN) {
650 				MCLGET(m, M_DONTWAIT);
651 				if ((m->m_flags & M_EXT) == 0) {
652 					printf("%s: unable to allocate Tx "
653 					    "cluster\n", sc->sc_dev.dv_xname);
654 					m_freem(m);
655 					IF_PREPEND(&ifp->if_snd, m0);
656 					break;
657 				}
658 			}
659 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
660 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
661 			m_freem(m0);
662 			m0 = m;
663 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
664 			    m0, BUS_DMA_NOWAIT);
665 			if (error) {
666 				printf("%s: unable to load Tx buffer, "
667 				    "error = %d\n", sc->sc_dev.dv_xname, error);
668 				IF_PREPEND(&ifp->if_snd, m0);
669 				break;
670 			}
671 		}
672 
673 		/*
674 		 * Ensure we have enough descriptors free to describe
675 		 * the packet.
676 		 */
677 		if (dmamap->dm_nsegs > sc->sc_txfree) {
678 			/*
679 			 * Not enough free descriptors to transmit this
680 			 * packet.  We haven't committed anything yet,
681 			 * so just unload the DMA map, put the packet
682 			 * back on the queue, and punt.  Notify the upper
683 			 * layer that there are not more slots left.
684 			 *
685 			 * XXX We could allocate an mbuf and copy, but
686 			 * XXX is it worth it?
687 			 */
688 			ifp->if_flags |= IFF_OACTIVE;
689 			bus_dmamap_unload(sc->sc_dmat, dmamap);
690 			IF_PREPEND(&ifp->if_snd, m0);
691 			break;
692 		}
693 
694 		/*
695 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
696 		 */
697 
698 		/* Sync the DMA map. */
699 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
700 		    BUS_DMASYNC_PREWRITE);
701 
702 		/*
703 		 * Initialize the transmit descriptors.
704 		 */
705 		for (nexttx = sc->sc_txnext, seg = 0;
706 		     seg < dmamap->dm_nsegs;
707 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
708 			/*
709 			 * If this is the first descriptor we're
710 			 * enqueueing, don't set the OWN bit just
711 			 * yet.  That could cause a race condition.
712 			 * We'll do it below.
713 			 */
714 			sc->sc_txdescs[nexttx].sipd_bufptr =
715 			    dmamap->dm_segs[seg].ds_addr;
716 			sc->sc_txdescs[nexttx].sipd_cmdsts =
717 			    (nexttx == firsttx ? 0 : CMDSTS_OWN) |
718 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len;
719 			lasttx = nexttx;
720 		}
721 
722 		/* Clear the MORE bit on the last segment. */
723 		sc->sc_txdescs[lasttx].sipd_cmdsts &= ~CMDSTS_MORE;
724 
725 		/* Sync the descriptors we're using. */
726 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
727 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
728 
729 		/*
730 		 * Store a pointer to the packet so we can free it later,
731 		 * and remember what txdirty will be once the packet is
732 		 * done.
733 		 */
734 		txs->txs_mbuf = m0;
735 		txs->txs_firstdesc = sc->sc_txnext;
736 		txs->txs_lastdesc = lasttx;
737 
738 		/* Advance the tx pointer. */
739 		sc->sc_txfree -= dmamap->dm_nsegs;
740 		sc->sc_txnext = nexttx;
741 
742 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
743 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
744 
745 #if NBPFILTER > 0
746 		/*
747 		 * Pass the packet to any BPF listeners.
748 		 */
749 		if (ifp->if_bpf)
750 			bpf_mtap(ifp->if_bpf, m0);
751 #endif /* NBPFILTER > 0 */
752 	}
753 
754 	if (txs == NULL || sc->sc_txfree == 0) {
755 		/* No more slots left; notify upper layer. */
756 		ifp->if_flags |= IFF_OACTIVE;
757 	}
758 
759 	if (sc->sc_txfree != ofree) {
760 		/*
761 		 * Cause a descriptor interrupt to happen on the
762 		 * last packet we enqueued.
763 		 */
764 		sc->sc_txdescs[lasttx].sipd_cmdsts |= CMDSTS_INTR;
765 		SIP_CDTXSYNC(sc, lasttx, 1,
766 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
767 
768 		/*
769 		 * The entire packet chain is set up.  Give the
770 		 * first descrptor to the chip now.
771 		 */
772 		sc->sc_txdescs[firsttx].sipd_cmdsts |= CMDSTS_OWN;
773 		SIP_CDTXSYNC(sc, firsttx, 1,
774 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
775 
776 		/* Start the transmit process. */
777 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
778 		     CR_TXE) == 0) {
779 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
780 			    SIP_CDTXADDR(sc, firsttx));
781 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
782 		}
783 
784 		/* Set a watchdog timer in case the chip flakes out. */
785 		ifp->if_timer = 5;
786 	}
787 }
788 
789 /*
790  * sip_watchdog:	[ifnet interface function]
791  *
792  *	Watchdog timer handler.
793  */
794 void
795 sip_watchdog(ifp)
796 	struct ifnet *ifp;
797 {
798 	struct sip_softc *sc = ifp->if_softc;
799 
800 	/*
801 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
802 	 * If we get a timeout, try and sweep up transmit descriptors.
803 	 * If we manage to sweep them all up, ignore the lack of
804 	 * interrupt.
805 	 */
806 	sip_txintr(sc);
807 
808 	if (sc->sc_txfree != SIP_NTXDESC) {
809 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
810 		ifp->if_oerrors++;
811 
812 		/* Reset the interface. */
813 		(void) sip_init(sc);
814 	} else if (ifp->if_flags & IFF_DEBUG)
815 		printf("%s: recovered from device timeout\n",
816 		    sc->sc_dev.dv_xname);
817 
818 	/* Try to get more packets going. */
819 	sip_start(ifp);
820 }
821 
822 /*
823  * sip_ioctl:		[ifnet interface function]
824  *
825  *	Handle control requests from the operator.
826  */
827 int
828 sip_ioctl(ifp, cmd, data)
829 	struct ifnet *ifp;
830 	u_long cmd;
831 	caddr_t data;
832 {
833 	struct sip_softc *sc = ifp->if_softc;
834 	struct ifreq *ifr = (struct ifreq *)data;
835 	struct ifaddr *ifa = (struct ifaddr *)data;
836 	int s, error = 0;
837 
838 	s = splnet();
839 
840 	switch (cmd) {
841 	case SIOCSIFADDR:
842 		ifp->if_flags |= IFF_UP;
843 
844 		switch (ifa->ifa_addr->sa_family) {
845 #ifdef INET
846 		case AF_INET:
847 			if ((error = sip_init(sc)) != 0)
848 				break;
849 			arp_ifinit(ifp, ifa);
850 			break;
851 #endif /* INET */
852 #ifdef NS
853 		case AF_NS:
854 		    {
855 			struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
856 
857 			if (ns_nullhost(*ina))
858 				ina->x_host = *(union ns_host *)
859 				    LLADDR(ifp->if_sadl);
860 			else
861 				memcpy(LLADDR(ifp->if_sadl),
862 				    ina->x_host.c_host, ifp->if_addrlen);
863 			error = sip_init(sc);
864 			break;
865 		    }
866 #endif /* NS */
867 		default:
868 			error = sip_init(sc);
869 			break;
870 		}
871 		break;
872 
873 	case SIOCSIFMTU:
874 		if (ifr->ifr_mtu > ETHERMTU)
875 			error = EINVAL;
876 		else
877 			ifp->if_mtu = ifr->ifr_mtu;
878 		break;
879 
880 	case SIOCSIFFLAGS:
881 		if ((ifp->if_flags & IFF_UP) == 0 &&
882 		    (ifp->if_flags & IFF_RUNNING) != 0) {
883 			/*
884 			 * If interface is marked down and it is running, then
885 			 * stop it.
886 			 */
887 			sip_stop(sc, 1);
888 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
889 			   (ifp->if_flags & IFF_RUNNING) == 0) {
890 			/*
891 			 * If interfase it marked up and it is stopped, then
892 			 * start it.
893 			 */
894 			error = sip_init(sc);
895 		} else if ((ifp->if_flags & IFF_UP) != 0) {
896 			/*
897 			 * Reset the interface to pick up changes in any other
898 			 * flags that affect the hardware state.
899 			 */
900 			error = sip_init(sc);
901 		}
902 		break;
903 
904 	case SIOCADDMULTI:
905 	case SIOCDELMULTI:
906 		error = (cmd == SIOCADDMULTI) ?
907 		    ether_addmulti(ifr, &sc->sc_ethercom) :
908 		    ether_delmulti(ifr, &sc->sc_ethercom);
909 
910 		if (error == ENETRESET) {
911 			/*
912 			 * Multicast list has changed; set the hardware filter
913 			 * accordingly.
914 			 */
915 			sip_set_filter(sc);
916 			error = 0;
917 		}
918 		break;
919 
920 	case SIOCSIFMEDIA:
921 	case SIOCGIFMEDIA:
922 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
923 		break;
924 
925 	default:
926 		error = EINVAL;
927 		break;
928 	}
929 
930 	/* Try to get more packets going. */
931 	sip_start(ifp);
932 
933 	splx(s);
934 	return (error);
935 }
936 
937 /*
938  * sip_intr:
939  *
940  *	Interrupt service routine.
941  */
942 int
943 sip_intr(arg)
944 	void *arg;
945 {
946 	struct sip_softc *sc = arg;
947 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
948 	u_int32_t isr;
949 	int handled = 0;
950 
951 	for (;;) {
952 		/* Reading clears interrupt. */
953 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
954 		if ((isr & sc->sc_imr) == 0)
955 			break;
956 
957 		handled = 1;
958 
959 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
960 			/* Grab any new packets. */
961 			sip_rxintr(sc);
962 
963 			if (isr & ISR_RXORN) {
964 				printf("%s: receive FIFO overrun\n",
965 				    sc->sc_dev.dv_xname);
966 
967 				/* XXX adjust rx_drain_thresh? */
968 			}
969 
970 			if (isr & ISR_RXIDLE) {
971 				printf("%s: receive ring overrun\n",
972 				    sc->sc_dev.dv_xname);
973 
974 				/* Get the receive process going again. */
975 				bus_space_write_4(sc->sc_st, sc->sc_sh,
976 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
977 				bus_space_write_4(sc->sc_st, sc->sc_sh,
978 				    SIP_CR, CR_RXE);
979 			}
980 		}
981 
982 		if (isr & (ISR_TXURN|ISR_TXDESC)) {
983 			/* Sweep up transmit descriptors. */
984 			sip_txintr(sc);
985 
986 			if (isr & ISR_TXURN) {
987 				u_int32_t thresh;
988 
989 				printf("%s: transmit FIFO underrun",
990 				    sc->sc_dev.dv_xname);
991 
992 				thresh = sc->sc_tx_drain_thresh + 1;
993 				if (thresh <= TXCFG_DRTH &&
994 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
995 				     (sc->sc_tx_fill_thresh * 32))) {
996 					printf("; increasing Tx drain "
997 					    "threshold to %u bytes\n",
998 					    thresh * 32);
999 					sc->sc_tx_drain_thresh = thresh;
1000 					(void) sip_init(sc);
1001 				} else {
1002 					(void) sip_init(sc);
1003 					printf("\n");
1004 				}
1005 			}
1006 		}
1007 
1008 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1009 			if (isr & ISR_PAUSE_ST) {
1010 				sc->sc_flags |= SIPF_PAUSED;
1011 				ifp->if_flags |= IFF_OACTIVE;
1012 			}
1013 			if (isr & ISR_PAUSE_END) {
1014 				sc->sc_flags &= ~SIPF_PAUSED;
1015 				ifp->if_flags &= ~IFF_OACTIVE;
1016 			}
1017 		}
1018 
1019 		if (isr & ISR_HIBERR) {
1020 #define	PRINTERR(bit, str)						\
1021 			if (isr & (bit))				\
1022 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1023 			PRINTERR(ISR_DPERR, "parity error");
1024 			PRINTERR(ISR_SSERR, "system error");
1025 			PRINTERR(ISR_RMABT, "master abort");
1026 			PRINTERR(ISR_RTABT, "target abort");
1027 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1028 			(void) sip_init(sc);
1029 #undef PRINTERR
1030 		}
1031 	}
1032 
1033 	/* Try to get more packets going. */
1034 	sip_start(ifp);
1035 
1036 	return (handled);
1037 }
1038 
1039 /*
1040  * sip_txintr:
1041  *
1042  *	Helper; handle transmit interrupts.
1043  */
1044 void
1045 sip_txintr(sc)
1046 	struct sip_softc *sc;
1047 {
1048 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1049 	struct sip_txsoft *txs;
1050 	u_int32_t cmdsts;
1051 
1052 	if ((sc->sc_flags & SIPF_PAUSED) == 0)
1053 		ifp->if_flags &= ~IFF_OACTIVE;
1054 
1055 	/*
1056 	 * Go through our Tx list and free mbufs for those
1057 	 * frames which have been transmitted.
1058 	 */
1059 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1060 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1061 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1062 
1063 		cmdsts = sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts;
1064 		if (cmdsts & CMDSTS_OWN)
1065 			break;
1066 
1067 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1068 
1069 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1070 
1071 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1072 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1073 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1074 		m_freem(txs->txs_mbuf);
1075 		txs->txs_mbuf = NULL;
1076 
1077 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1078 
1079 		/*
1080 		 * Check for errors and collisions.
1081 		 */
1082 		if (cmdsts &
1083 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1084 			if (ifp->if_flags & IFF_DEBUG) {
1085 				if (CMDSTS_Tx_ED)
1086 					printf("%s: excessive deferral\n",
1087 					    sc->sc_dev.dv_xname);
1088 				if (CMDSTS_Tx_EC) {
1089 					printf("%s: excessive collisions\n",
1090 					    sc->sc_dev.dv_xname);
1091 					ifp->if_collisions += 16;
1092 				}
1093 			}
1094 		} else {
1095 			/* Packet was transmitted successfully. */
1096 			ifp->if_opackets++;
1097 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1098 		}
1099 	}
1100 
1101 	/*
1102 	 * If there are no more pending transmissions, cancel the watchdog
1103 	 * timer.
1104 	 */
1105 	if (txs == NULL)
1106 		ifp->if_timer = 0;
1107 }
1108 
1109 /*
1110  * sip_rxintr:
1111  *
1112  *	Helper; handle receive interrupts.
1113  */
1114 void
1115 sip_rxintr(sc)
1116 	struct sip_softc *sc;
1117 {
1118 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1119 	struct ether_header *eh;
1120 	struct sip_rxsoft *rxs;
1121 	struct mbuf *m;
1122 	u_int32_t cmdsts;
1123 	int i, len;
1124 
1125 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1126 		rxs = &sc->sc_rxsoft[i];
1127 
1128 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1129 
1130 		cmdsts = sc->sc_rxdescs[i].sipd_cmdsts;
1131 
1132 		/*
1133 		 * NOTE: OWN is set if owned by _consumer_.  We're the
1134 		 * consumer of the receive ring, so if the bit is clear,
1135 		 * we have processed all of the packets.
1136 		 */
1137 		if ((cmdsts & CMDSTS_OWN) == 0) {
1138 			/*
1139 			 * We have processed all of the receive buffers.
1140 			 */
1141 			break;
1142 		}
1143 
1144 		/*
1145 		 * If any collisions were seen on the wire, count one.
1146 		 */
1147 		if (cmdsts & CMDSTS_Rx_COL)
1148 			ifp->if_collisions++;
1149 
1150 		/*
1151 		 * If an error occurred, update stats, clear the status
1152 		 * word, and leave the packet buffer in place.  It will
1153 		 * simply be reused the next time the ring comes around.
1154 		 */
1155 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_LONG|CMDSTS_Rx_RUNT|
1156 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1157 			ifp->if_ierrors++;
1158 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1159 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
1160 				/* Receive overrun handled elsewhere. */
1161 				printf("%s: receive descriptor error\n",
1162 				    sc->sc_dev.dv_xname);
1163 			}
1164 #define	PRINTERR(bit, str)						\
1165 			if (cmdsts & (bit))				\
1166 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1167 			PRINTERR(CMDSTS_Rx_LONG, "packet too long");
1168 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1169 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1170 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1171 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1172 #undef PRINTERR
1173 			SIP_INIT_RXDESC(sc, i);
1174 			continue;
1175 		}
1176 
1177 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1178 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1179 
1180 		/*
1181 		 * No errors; receive the packet.  Note, the SiS 900
1182 		 * includes the CRC with every packet; trim it.
1183 		 */
1184 		len = CMDSTS_SIZE(cmdsts) - ETHER_CRC_LEN;
1185 
1186 #ifdef __NO_STRICT_ALIGNMENT
1187 		/*
1188 		 * If the packet is small enough to fit in a
1189 		 * single header mbuf, allocate one and copy
1190 		 * the data into it.  This greatly reduces
1191 		 * memory consumption when we receive lots
1192 		 * of small packets.
1193 		 *
1194 		 * Otherwise, we add a new buffer to the receive
1195 		 * chain.  If this fails, we drop the packet and
1196 		 * recycle the old buffer.
1197 		 */
1198 		if (sip_copy_small != 0 && len <= MHLEN) {
1199 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1200 			if (m == NULL)
1201 				goto dropit;
1202 			memcpy(mtod(m, caddr_t),
1203 			    mtod(rxs->rxs_mbuf, caddr_t), len);
1204 			SIP_INIT_RXDESC(sc, i);
1205 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1206 			    rxs->rxs_dmamap->dm_mapsize,
1207 			    BUS_DMASYNC_PREREAD);
1208 		} else {
1209 			m = rxs->rxs_mbuf;
1210 			if (sip_add_rxbuf(sc, i) != 0) {
1211  dropit:
1212 				ifp->if_ierrors++;
1213 				SIP_INIT_RXDESC(sc, i);
1214 				bus_dmamap_sync(sc->sc_dmat,
1215 				    rxs->rxs_dmamap, 0,
1216 				    rxs->rxs_dmamap->dm_mapsize,
1217 				    BUS_DMASYNC_PREREAD);
1218 				continue;
1219 			}
1220 		}
1221 #else
1222 		/*
1223 		 * The SiS 900's receive buffers must be 4-byte aligned.
1224 		 * But this means that the data after the Ethernet header
1225 		 * is misaligned.  We must allocate a new buffer and
1226 		 * copy the data, shifted forward 2 bytes.
1227 		 */
1228 		MGETHDR(m, M_DONTWAIT, MT_DATA);
1229 		if (m == NULL) {
1230  dropit:
1231 			ifp->if_ierrors++;
1232 			SIP_INIT_RXDESC(sc, i);
1233 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1234 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1235 			continue;
1236 		}
1237 		if (len > (MHLEN - 2)) {
1238 			MCLGET(m, M_DONTWAIT);
1239 			if ((m->m_flags & M_EXT) == 0) {
1240 				m_freem(m);
1241 				goto dropit;
1242 			}
1243 		}
1244 		m->m_data += 2;
1245 
1246 		/*
1247 		 * Note that we use clusters for incoming frames, so the
1248 		 * buffer is virtually contiguous.
1249 		 */
1250 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
1251 
1252 		/* Allow the receive descriptor to continue using its mbuf. */
1253 		SIP_INIT_RXDESC(sc, i);
1254 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1255 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1256 #endif /* __NO_STRICT_ALIGNMENT */
1257 
1258 		ifp->if_ipackets++;
1259 		eh = mtod(m, struct ether_header *);
1260 		m->m_pkthdr.rcvif = ifp;
1261 		m->m_pkthdr.len = m->m_len = len;
1262 
1263 #if NBPFILTER > 0
1264 		/*
1265 		 * Pass this up to any BPF listeners, but only
1266 		 * pass if up the stack if it's for us.
1267 		 */
1268 		if (ifp->if_bpf) {
1269 			bpf_mtap(ifp->if_bpf, m);
1270 			if ((ifp->if_flags & IFF_PROMISC) != 0 &&
1271 			    (cmdsts & CMDSTS_Rx_DEST) == CMDSTS_Rx_DEST_REJ) {
1272 				m_freem(m);
1273 				continue;
1274 			}
1275 		}
1276 #endif /* NBPFILTER > 0 */
1277 
1278 		/* Pass it on. */
1279 		(*ifp->if_input)(ifp, m);
1280 	}
1281 
1282 	/* Update the receive pointer. */
1283 	sc->sc_rxptr = i;
1284 }
1285 
1286 /*
1287  * sip_tick:
1288  *
1289  *	One second timer, used to tick the MII.
1290  */
1291 void
1292 sip_tick(arg)
1293 	void *arg;
1294 {
1295 	struct sip_softc *sc = arg;
1296 	int s;
1297 
1298 	s = splnet();
1299 	mii_tick(&sc->sc_mii);
1300 	splx(s);
1301 
1302 	timeout(sip_tick, sc, hz);
1303 }
1304 
1305 /*
1306  * sip_reset:
1307  *
1308  *	Perform a soft reset on the SiS 900.
1309  */
1310 void
1311 sip_reset(sc)
1312 	struct sip_softc *sc;
1313 {
1314 	bus_space_tag_t st = sc->sc_st;
1315 	bus_space_handle_t sh = sc->sc_sh;
1316 	int i;
1317 
1318 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
1319 
1320 	for (i = 0; i < 1000; i++) {
1321 		if ((bus_space_read_4(st, sh, SIP_ISR) &
1322 		     (ISR_TXRCMP|ISR_RXRCMP)) == (ISR_TXRCMP|ISR_RXRCMP))
1323 			return;
1324 		delay(2);
1325 	}
1326 
1327 	printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1328 }
1329 
1330 /*
1331  * sip_init:
1332  *
1333  *	Initialize the interface.  Must be called at splnet().
1334  */
1335 int
1336 sip_init(sc)
1337 	struct sip_softc *sc;
1338 {
1339 	bus_space_tag_t st = sc->sc_st;
1340 	bus_space_handle_t sh = sc->sc_sh;
1341 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1342 	struct sip_txsoft *txs;
1343 	struct sip_rxsoft *rxs;
1344 	struct sip_desc *sipd;
1345 	u_int32_t cfg;
1346 	int i, error = 0;
1347 
1348 	/*
1349 	 * Cancel any pending I/O.
1350 	 */
1351 	sip_stop(sc, 0);
1352 
1353 	/*
1354 	 * Reset the chip to a known state.
1355 	 */
1356 	sip_reset(sc);
1357 
1358 	/*
1359 	 * Initialize the transmit descriptor ring.
1360 	 */
1361 	for (i = 0; i < SIP_NTXDESC; i++) {
1362 		sipd = &sc->sc_txdescs[i];
1363 		memset(sipd, 0, sizeof(struct sip_desc));
1364 		sipd->sipd_link = SIP_CDTXADDR(sc, SIP_NEXTTX(i));
1365 	}
1366 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
1367 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1368 	sc->sc_txfree = SIP_NTXDESC;
1369 	sc->sc_txnext = 0;
1370 
1371 	/*
1372 	 * Initialize the transmit job descriptors.
1373 	 */
1374 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1375 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1376 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
1377 		txs = &sc->sc_txsoft[i];
1378 		txs->txs_mbuf = NULL;
1379 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1380 	}
1381 
1382 	/*
1383 	 * Initialize the receive descriptor and receive job
1384 	 * descriptor rings.
1385 	 */
1386 	for (i = 0; i < SIP_NRXDESC; i++) {
1387 		rxs = &sc->sc_rxsoft[i];
1388 		if (rxs->rxs_mbuf == NULL) {
1389 			if ((error = sip_add_rxbuf(sc, i)) != 0) {
1390 				printf("%s: unable to allocate or map rx "
1391 				    "buffer %d, error = %d\n",
1392 				    sc->sc_dev.dv_xname, i, error);
1393 				/*
1394 				 * XXX Should attempt to run with fewer receive
1395 				 * XXX buffers instead of just failing.
1396 				 */
1397 				sip_rxdrain(sc);
1398 				goto out;
1399 			}
1400 		}
1401 	}
1402 	sc->sc_rxptr = 0;
1403 
1404 	/*
1405 	 * Initialize the configuration register: aggressive PCI
1406 	 * bus request algorithm, default backoff, default OW timer,
1407 	 * default parity error detection.
1408 	 */
1409 	cfg = 0;
1410 #if BYTE_ORDER == BIG_ENDIAN
1411 	/*
1412 	 * ...descriptors in big-endian mode.
1413 	 */
1414 	cfg |= CFG_BEM;
1415 #endif
1416 	bus_space_write_4(st, sh, SIP_CFG, cfg);
1417 
1418 	/*
1419 	 * Initialize the transmit fill and drain thresholds if
1420 	 * we have never done so.
1421 	 */
1422 	if (sc->sc_tx_fill_thresh == 0) {
1423 		/*
1424 		 * XXX This value should be tuned.  This is the
1425 		 * minimum (32 bytes), and we may be able to
1426 		 * improve performance by increasing it.
1427 		 */
1428 		sc->sc_tx_fill_thresh = 1;
1429 	}
1430 	if (sc->sc_tx_drain_thresh == 0) {
1431 		/*
1432 		 * Start at a drain threshold of 128 bytes.  We will
1433 		 * increase it if a DMA underrun occurs.
1434 		 *
1435 		 * XXX The minimum value of this variable should be
1436 		 * tuned.  We may be able to improve performance
1437 		 * by starting with a lower value.  That, however,
1438 		 * may trash the first few outgoing packets if the
1439 		 * PCI bus is saturated.
1440 		 */
1441 		sc->sc_tx_drain_thresh = 4;
1442 	}
1443 
1444 	/*
1445 	 * Initialize the prototype TXCFG register.
1446 	 */
1447 	sc->sc_txcfg = TXCFG_ATP | TXCFG_MXDMA_512 |
1448 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
1449 	    sc->sc_tx_drain_thresh;
1450 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
1451 
1452 	/*
1453 	 * Initialize the receive drain threshold if we have never
1454 	 * done so.
1455 	 */
1456 	if (sc->sc_rx_drain_thresh == 0) {
1457 		/*
1458 		 * XXX This value should be tuned.  This is set to the
1459 		 * maximum of 248 bytes, and we may be able to improve
1460 		 * performance by decreasing it (although we should never
1461 		 * set this value lower than 2; 14 bytes are required to
1462 		 * filter the packet).
1463 		 */
1464 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
1465 	}
1466 
1467 	/*
1468 	 * Initialize the prototype RXCFG register.
1469 	 */
1470 	sc->sc_rxcfg = RXCFG_MXDMA_512 |
1471 	    (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
1472 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
1473 
1474 	/* Set up the receive filter. */
1475 	sip_set_filter(sc);
1476 
1477 	/*
1478 	 * Give the transmit and receive rings to the chip.
1479 	 */
1480 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
1481 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1482 
1483 	/*
1484 	 * Initialize the interrupt mask.
1485 	 */
1486 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
1487 	    ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
1488 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
1489 
1490 	/*
1491 	 * Set the current media.  Do this after initializing the prototype
1492 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
1493 	 * control.
1494 	 */
1495 	mii_mediachg(&sc->sc_mii);
1496 
1497 	/*
1498 	 * Enable interrupts.
1499 	 */
1500 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
1501 
1502 	/*
1503 	 * Start the transmit and receive processes.
1504 	 */
1505 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
1506 
1507 	/*
1508 	 * Start the one second MII clock.
1509 	 */
1510 	timeout(sip_tick, sc, hz);
1511 
1512 	/*
1513 	 * ...all done!
1514 	 */
1515 	ifp->if_flags |= IFF_RUNNING;
1516 	ifp->if_flags &= ~IFF_OACTIVE;
1517 
1518  out:
1519 	if (error)
1520 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1521 	return (error);
1522 }
1523 
1524 /*
1525  * sip_drain:
1526  *
1527  *	Drain the receive queue.
1528  */
1529 void
1530 sip_rxdrain(sc)
1531 	struct sip_softc *sc;
1532 {
1533 	struct sip_rxsoft *rxs;
1534 	int i;
1535 
1536 	for (i = 0; i < SIP_NRXDESC; i++) {
1537 		rxs = &sc->sc_rxsoft[i];
1538 		if (rxs->rxs_mbuf != NULL) {
1539 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1540 			m_freem(rxs->rxs_mbuf);
1541 			rxs->rxs_mbuf = NULL;
1542 		}
1543 	}
1544 }
1545 
1546 /*
1547  * sip_stop:
1548  *
1549  *	Stop transmission on the interface.
1550  */
1551 void
1552 sip_stop(sc, drain)
1553 	struct sip_softc *sc;
1554 {
1555 	bus_space_tag_t st = sc->sc_st;
1556 	bus_space_handle_t sh = sc->sc_sh;
1557 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1558 	struct sip_txsoft *txs;
1559 	u_int32_t cmdsts = 0;		/* DEBUG */
1560 
1561 	/*
1562 	 * Stop the one second clock.
1563 	 */
1564 	untimeout(sip_tick, sc);
1565 
1566 	/* Down the MII. */
1567 	mii_down(&sc->sc_mii);
1568 
1569 	/*
1570 	 * Disable interrupts.
1571 	 */
1572 	bus_space_write_4(st, sh, SIP_IER, 0);
1573 
1574 	/*
1575 	 * Stop receiver and transmitter.
1576 	 */
1577 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
1578 
1579 	/*
1580 	 * Release any queued transmit buffers.
1581 	 */
1582 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1583 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
1584 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
1585 		    (sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts &
1586 		     CMDSTS_INTR) == 0)
1587 			printf("%s: sip_stop: last descriptor does not "
1588 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
1589 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1590 #ifdef DIAGNOSTIC
1591 		if (txs->txs_mbuf == NULL) {
1592 			printf("%s: dirty txsoft with no mbuf chain\n",
1593 			    sc->sc_dev.dv_xname);
1594 			panic("sip_stop");
1595 		}
1596 #endif
1597 		cmdsts |=		/* DEBUG */
1598 		    sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts;
1599 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1600 		m_freem(txs->txs_mbuf);
1601 		txs->txs_mbuf = NULL;
1602 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1603 	}
1604 
1605 	if (drain) {
1606 		/*
1607 		 * Release the receive buffers.
1608 		 */
1609 		sip_rxdrain(sc);
1610 	}
1611 
1612 	/*
1613 	 * Mark the interface down and cancel the watchdog timer.
1614 	 */
1615 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1616 	ifp->if_timer = 0;
1617 
1618 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
1619 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
1620 		printf("%s: sip_stop: no INTR bits set in dirty tx "
1621 		    "descriptors\n", sc->sc_dev.dv_xname);
1622 }
1623 
1624 /*
1625  * sip_read_eeprom:
1626  *
1627  *	Read data from the serial EEPROM.
1628  */
1629 void
1630 sip_read_eeprom(sc, word, wordcnt, data)
1631 	struct sip_softc *sc;
1632 	int word, wordcnt;
1633 	u_int16_t *data;
1634 {
1635 	bus_space_tag_t st = sc->sc_st;
1636 	bus_space_handle_t sh = sc->sc_sh;
1637 	u_int16_t reg;
1638 	int i, x;
1639 
1640 	for (i = 0; i < wordcnt; i++) {
1641 		/* Send CHIP SELECT. */
1642 		reg = EROMAR_EECS;
1643 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
1644 
1645 		/* Shift in the READ opcode. */
1646 		for (x = 3; x > 0; x--) {
1647 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
1648 				reg |= EROMAR_EEDI;
1649 			else
1650 				reg &= ~EROMAR_EEDI;
1651 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
1652 			bus_space_write_4(st, sh, SIP_EROMAR,
1653 			    reg | EROMAR_EESK);
1654 			delay(4);
1655 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
1656 			delay(4);
1657 		}
1658 
1659 		/* Shift in address. */
1660 		for (x = 6; x > 0; x--) {
1661 			if ((word + i) & (1 << (x - 1)))
1662 				reg |= EROMAR_EEDI;
1663 			else
1664 				reg &= ~EROMAR_EEDI;
1665 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
1666 			bus_space_write_4(st, sh, SIP_EROMAR,
1667 			    reg | EROMAR_EESK);
1668 			delay(4);
1669 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
1670 			delay(4);
1671 		}
1672 
1673 		/* Shift out data. */
1674 		reg = EROMAR_EECS;
1675 		data[i] = 0;
1676 		for (x = 16; x > 0; x--) {
1677 			bus_space_write_4(st, sh, SIP_EROMAR,
1678 			    reg | EROMAR_EESK);
1679 			delay(4);
1680 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
1681 				data[i] |= (1 << (x - 1));
1682 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
1683 		}
1684 
1685 		/* Clear CHIP SELECT. */
1686 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
1687 		delay(4);
1688 	}
1689 }
1690 
1691 /*
1692  * sip_add_rxbuf:
1693  *
1694  *	Add a receive buffer to the indicated descriptor.
1695  */
1696 int
1697 sip_add_rxbuf(sc, idx)
1698 	struct sip_softc *sc;
1699 	int idx;
1700 {
1701 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
1702 	struct mbuf *m;
1703 	int error;
1704 
1705 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1706 	if (m == NULL)
1707 		return (ENOBUFS);
1708 
1709 	MCLGET(m, M_DONTWAIT);
1710 	if ((m->m_flags & M_EXT) == 0) {
1711 		m_freem(m);
1712 		return (ENOBUFS);
1713 	}
1714 
1715 	if (rxs->rxs_mbuf != NULL)
1716 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1717 
1718 	rxs->rxs_mbuf = m;
1719 
1720 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1721 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1722 	if (error) {
1723 		printf("%s: can't load rx DMA map %d, error = %d\n",
1724 		    sc->sc_dev.dv_xname, idx, error);
1725 		panic("sip_add_rxbuf");		/* XXX */
1726 	}
1727 
1728 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1729 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1730 
1731 	SIP_INIT_RXDESC(sc, idx);
1732 
1733 	return (0);
1734 }
1735 
1736 /*
1737  * sip_set_filter:
1738  *
1739  *	Set up the receive filter.
1740  */
1741 void
1742 sip_set_filter(sc)
1743 	struct sip_softc *sc;
1744 {
1745 	bus_space_tag_t st = sc->sc_st;
1746 	bus_space_handle_t sh = sc->sc_sh;
1747 	struct ethercom *ec = &sc->sc_ethercom;
1748 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1749 	struct ether_multi *enm;
1750 	struct ether_multistep step;
1751 	u_int8_t *cp;
1752 	u_int32_t crc, mchash[8];
1753 	int len;
1754 	static const u_int32_t crctab[] = {
1755 		0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
1756 		0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
1757 		0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
1758 		0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
1759 	};
1760 
1761 	/*
1762 	 * Initialize the prototype RFCR.
1763 	 */
1764 	sc->sc_rfcr = RFCR_RFEN;
1765 	if (ifp->if_flags & IFF_BROADCAST)
1766 		sc->sc_rfcr |= RFCR_AAB;
1767 	if (ifp->if_flags & IFF_PROMISC) {
1768 		sc->sc_rfcr |= RFCR_AAP;
1769 		goto allmulti;
1770 	}
1771 
1772 	/*
1773 	 * Set up the multicast address filter by passing all multicast
1774 	 * addresses through a CRC generator, and then using the high-order
1775 	 * 6 bits as an index into the 128 bit multicast hash table (only
1776 	 * the lower 16 bits of each 32 bit multicast hash register are
1777 	 * valid).  The high order bits select the register, while the
1778 	 * rest of the bits select the bit within the register.
1779 	 */
1780 
1781 	memset(mchash, 0, sizeof(mchash));
1782 
1783 	ETHER_FIRST_MULTI(step, ec, enm);
1784 	while (enm != NULL) {
1785 		if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1786 			/*
1787 			 * We must listen to a range of multicast addresses.
1788 			 * For now, just accept all multicasts, rather than
1789 			 * trying to set only those filter bits needed to match
1790 			 * the range.  (At this time, the only use of address
1791 			 * ranges is for IP multicast routing, for which the
1792 			 * range is big enough to require all bits set.)
1793 			 */
1794 			goto allmulti;
1795 		}
1796 
1797 		cp = enm->enm_addrlo;
1798 		crc = 0xffffffff;
1799 		for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
1800 			crc ^= *cp++;
1801 			crc = (crc >> 4) ^ crctab[crc & 0xf];
1802 			crc = (crc >> 4) ^ crctab[crc & 0xf];
1803 		}
1804 		/* Just want the 7 most significant bits. */
1805 		crc >>= 25;
1806 
1807 		/* Set the corresponding bit in the hash table. */
1808 		mchash[crc >> 4] |= 1 << (crc & 0xf);
1809 
1810 		ETHER_NEXT_MULTI(step, enm);
1811 	}
1812 
1813 	ifp->if_flags &= ~IFF_ALLMULTI;
1814 	goto setit;
1815 
1816  allmulti:
1817 	ifp->if_flags |= IFF_ALLMULTI;
1818 	sc->sc_rfcr |= RFCR_AAM;
1819 
1820  setit:
1821 #define	FILTER_EMIT(addr, data)						\
1822 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
1823 	bus_space_write_4(st, sh, SIP_RFDR, (data))
1824 
1825 	/*
1826 	 * Disable receive filter, and program the node address.
1827 	 */
1828 	cp = LLADDR(ifp->if_sadl);
1829 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
1830 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
1831 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
1832 
1833 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1834 		/*
1835 		 * Program the multicast hash table.
1836 		 */
1837 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
1838 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
1839 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
1840 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
1841 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
1842 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
1843 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
1844 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
1845 	}
1846 #undef FILTER_EMIT
1847 
1848 	/*
1849 	 * Re-enable the receiver filter.
1850 	 */
1851 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
1852 }
1853 
1854 /*
1855  * sip_mii_readreg:	[mii interface function]
1856  *
1857  *	Read a PHY register on the MII.
1858  */
1859 int
1860 sip_mii_readreg(self, phy, reg)
1861 	struct device *self;
1862 	int phy, reg;
1863 {
1864 	struct sip_softc *sc = (struct sip_softc *) self;
1865 	u_int32_t enphy;
1866 
1867 	/*
1868 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
1869 	 * MII address 0.
1870 	 */
1871 	if (phy != 0)
1872 		return (0);
1873 
1874 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
1875 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_RWCMD | ENPHY_ACCESS);
1876 	do {
1877 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
1878 	} while (enphy & ENPHY_ACCESS);
1879 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
1880 }
1881 
1882 /*
1883  * sip_mii_writereg:	[mii interface function]
1884  *
1885  *	Write a PHY register on the MII.
1886  */
1887 void
1888 sip_mii_writereg(self, phy, reg, val)
1889 	struct device *self;
1890 	int phy, reg, val;
1891 {
1892 	struct sip_softc *sc = (struct sip_softc *) self;
1893 	u_int32_t enphy;
1894 
1895 	/*
1896 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
1897 	 * MII address 0.
1898 	 */
1899 	if (phy != 0)
1900 		return;
1901 
1902 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
1903 	    (val << ENPHY_DATA_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
1904 	    ENPHY_ACCESS);
1905 	do {
1906 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
1907 	} while (enphy & ENPHY_ACCESS);
1908 }
1909 
1910 /*
1911  * sip_mii_statchg:	[mii interface function]
1912  *
1913  *	Callback from MII layer when media changes.
1914  */
1915 void
1916 sip_mii_statchg(self)
1917 	struct device *self;
1918 {
1919 	struct sip_softc *sc = (struct sip_softc *) self;
1920 	u_int32_t flowctl;
1921 
1922 	/*
1923 	 * Update TXCFG for full-duplex operation.
1924 	 */
1925 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
1926 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
1927 	else
1928 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
1929 
1930 	/*
1931 	 * Update RXCFG for full-duplex or loopback.
1932 	 */
1933 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
1934 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
1935 		sc->sc_rxcfg |= RXCFG_ATX;
1936 	else
1937 		sc->sc_rxcfg &= ~RXCFG_ATX;
1938 
1939 	/*
1940 	 * Update IMR for use of 802.3x flow control.
1941 	 */
1942 	if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
1943 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
1944 		flowctl = FLOWCTL_FLOWEN;
1945 	} else {
1946 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
1947 		flowctl = 0;
1948 	}
1949 
1950 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
1951 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
1952 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
1953 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
1954 
1955 	/* XXX Update ifp->if_baudrate */
1956 }
1957 
1958 /*
1959  * sip_mediastatus:	[ifmedia interface function]
1960  *
1961  *	Get the current interface media status.
1962  */
1963 void
1964 sip_mediastatus(ifp, ifmr)
1965 	struct ifnet *ifp;
1966 	struct ifmediareq *ifmr;
1967 {
1968 	struct sip_softc *sc = ifp->if_softc;
1969 
1970 	mii_pollstat(&sc->sc_mii);
1971 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1972 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1973 }
1974 
1975 /*
1976  * sip_mediachange:	[ifmedia interface function]
1977  *
1978  *	Set hardware to newly-selected media.
1979  */
1980 int
1981 sip_mediachange(ifp)
1982 	struct ifnet *ifp;
1983 {
1984 	struct sip_softc *sc = ifp->if_softc;
1985 
1986 	if (ifp->if_flags & IFF_UP)
1987 		mii_mediachg(&sc->sc_mii);
1988 	return (0);
1989 }
1990