xref: /netbsd-src/sys/dev/pci/if_sip.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*	$NetBSD: if_sip.c,v 1.121 2007/12/15 07:05:57 dyoung Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*-
40  * Copyright (c) 1999 Network Computer, Inc.
41  * All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of Network Computer, Inc. nor the names of its
52  *    contributors may be used to endorse or promote products derived
53  *    from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65  * POSSIBILITY OF SUCH DAMAGE.
66  */
67 
68 /*
69  * Device driver for the Silicon Integrated Systems SiS 900,
70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72  * controllers.
73  *
74  * Originally written to support the SiS 900 by Jason R. Thorpe for
75  * Network Computer, Inc.
76  *
77  * TODO:
78  *
79  *	- Reduce the Rx interrupt load.
80  */
81 
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.121 2007/12/15 07:05:57 dyoung Exp $");
84 
85 #include "bpfilter.h"
86 #include "rnd.h"
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99 
100 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
101 
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105 
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110 
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114 
115 #include <sys/bus.h>
116 #include <sys/intr.h>
117 #include <machine/endian.h>
118 
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/mii_bitbang.h>
122 
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 #include <dev/pci/pcidevs.h>
126 
127 #include <dev/pci/if_sipreg.h>
128 
129 /*
130  * Transmit descriptor list size.  This is arbitrary, but allocate
131  * enough descriptors for 128 pending transmissions, and 8 segments
132  * per packet (64 for DP83820 for jumbo frames).
133  *
134  * This MUST work out to a power of 2.
135  */
136 #define	GSIP_NTXSEGS_ALLOC 16
137 #define	SIP_NTXSEGS_ALLOC 8
138 
139 #define	SIP_TXQUEUELEN		256
140 #define	MAX_SIP_NTXDESC	\
141     (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
142 
143 /*
144  * Receive descriptor list size.  We have one Rx buffer per incoming
145  * packet, so this logic is a little simpler.
146  *
147  * Actually, on the DP83820, we allow the packet to consume more than
148  * one buffer, in order to support jumbo Ethernet frames.  In that
149  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
150  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
151  * so we'd better be quick about handling receive interrupts.
152  */
153 #define	GSIP_NRXDESC		256
154 #define	SIP_NRXDESC		128
155 
156 #define	MAX_SIP_NRXDESC	MAX(GSIP_NRXDESC, SIP_NRXDESC)
157 
158 /*
159  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
160  * a single clump that maps to a single DMA segment to make several things
161  * easier.
162  */
163 struct sip_control_data {
164 	/*
165 	 * The transmit descriptors.
166 	 */
167 	struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
168 
169 	/*
170 	 * The receive descriptors.
171 	 */
172 	struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
173 };
174 
175 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
176 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
177 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
178 
179 /*
180  * Software state for transmit jobs.
181  */
182 struct sip_txsoft {
183 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
184 	bus_dmamap_t txs_dmamap;	/* our DMA map */
185 	int txs_firstdesc;		/* first descriptor in packet */
186 	int txs_lastdesc;		/* last descriptor in packet */
187 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
188 };
189 
190 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
191 
192 /*
193  * Software state for receive jobs.
194  */
195 struct sip_rxsoft {
196 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
197 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
198 };
199 
200 enum sip_attach_stage {
201 	  SIP_ATTACH_FIN = 0
202 	, SIP_ATTACH_CREATE_RXMAP
203 	, SIP_ATTACH_CREATE_TXMAP
204 	, SIP_ATTACH_LOAD_MAP
205 	, SIP_ATTACH_CREATE_MAP
206 	, SIP_ATTACH_MAP_MEM
207 	, SIP_ATTACH_ALLOC_MEM
208 	, SIP_ATTACH_INTR
209 	, SIP_ATTACH_MAP
210 };
211 
212 /*
213  * Software state per device.
214  */
215 struct sip_softc {
216 	struct device sc_dev;		/* generic device information */
217 	bus_space_tag_t sc_st;		/* bus space tag */
218 	bus_space_handle_t sc_sh;	/* bus space handle */
219 	bus_size_t sc_sz;		/* bus space size */
220 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
221 	pci_chipset_tag_t sc_pc;
222 	bus_dma_segment_t sc_seg;
223 	struct ethercom sc_ethercom;	/* ethernet common data */
224 	void *sc_sdhook;		/* shutdown hook */
225 
226 	const struct sip_product *sc_model; /* which model are we? */
227 	int sc_gigabit;			/* 1: 83820, 0: other */
228 	int sc_rev;			/* chip revision */
229 
230 	void *sc_ih;			/* interrupt cookie */
231 
232 	struct mii_data sc_mii;		/* MII/media information */
233 
234 	callout_t sc_tick_ch;		/* tick callout */
235 
236 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
237 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
238 
239 	/*
240 	 * Software state for transmit and receive descriptors.
241 	 */
242 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
243 	struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
244 
245 	/*
246 	 * Control data structures.
247 	 */
248 	struct sip_control_data *sc_control_data;
249 #define	sc_txdescs	sc_control_data->scd_txdescs
250 #define	sc_rxdescs	sc_control_data->scd_rxdescs
251 
252 #ifdef SIP_EVENT_COUNTERS
253 	/*
254 	 * Event counters.
255 	 */
256 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
257 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
258 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
259 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
260 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
261 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
262 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
263 	struct evcnt sc_ev_rxpause;	/* PAUSE received */
264 	/* DP83820 only */
265 	struct evcnt sc_ev_txpause;	/* PAUSE transmitted */
266 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
267 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
268 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
269 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
270 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
271 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
272 #endif /* SIP_EVENT_COUNTERS */
273 
274 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
275 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
276 	u_int32_t sc_imr;		/* prototype IMR register */
277 	u_int32_t sc_rfcr;		/* prototype RFCR register */
278 
279 	u_int32_t sc_cfg;		/* prototype CFG register */
280 
281 	u_int32_t sc_gpior;		/* prototype GPIOR register */
282 
283 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
284 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
285 
286 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
287 
288 	int	sc_flowflags;		/* 802.3x flow control flags */
289 	int	sc_rx_flow_thresh;	/* Rx FIFO threshold for flow control */
290 	int	sc_paused;		/* paused indication */
291 
292 	int	sc_txfree;		/* number of free Tx descriptors */
293 	int	sc_txnext;		/* next ready Tx descriptor */
294 	int	sc_txwin;		/* Tx descriptors since last intr */
295 
296 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
297 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
298 
299 	/* values of interface state at last init */
300 	struct {
301 		/* if_capenable */
302 		uint64_t	if_capenable;
303 		/* ec_capenable */
304 		int		ec_capenable;
305 		/* VLAN_ATTACHED */
306 		int		is_vlan;
307 	}	sc_prev;
308 
309 	short	sc_if_flags;
310 
311 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
312 	int	sc_rxdiscard;
313 	int	sc_rxlen;
314 	struct mbuf *sc_rxhead;
315 	struct mbuf *sc_rxtail;
316 	struct mbuf **sc_rxtailp;
317 
318 	int sc_ntxdesc;
319 	int sc_ntxdesc_mask;
320 
321 	int sc_nrxdesc_mask;
322 
323 	const struct sip_parm {
324 		const struct sip_regs {
325 			int r_rxcfg;
326 			int r_txcfg;
327 		} p_regs;
328 
329 		const struct sip_bits {
330 			uint32_t b_txcfg_mxdma_8;
331 			uint32_t b_txcfg_mxdma_16;
332 			uint32_t b_txcfg_mxdma_32;
333 			uint32_t b_txcfg_mxdma_64;
334 			uint32_t b_txcfg_mxdma_128;
335 			uint32_t b_txcfg_mxdma_256;
336 			uint32_t b_txcfg_mxdma_512;
337 			uint32_t b_txcfg_flth_mask;
338 			uint32_t b_txcfg_drth_mask;
339 
340 			uint32_t b_rxcfg_mxdma_8;
341 			uint32_t b_rxcfg_mxdma_16;
342 			uint32_t b_rxcfg_mxdma_32;
343 			uint32_t b_rxcfg_mxdma_64;
344 			uint32_t b_rxcfg_mxdma_128;
345 			uint32_t b_rxcfg_mxdma_256;
346 			uint32_t b_rxcfg_mxdma_512;
347 
348 			uint32_t b_isr_txrcmp;
349 			uint32_t b_isr_rxrcmp;
350 			uint32_t b_isr_dperr;
351 			uint32_t b_isr_sserr;
352 			uint32_t b_isr_rmabt;
353 			uint32_t b_isr_rtabt;
354 
355 			uint32_t b_cmdsts_size_mask;
356 		} p_bits;
357 		int		p_filtmem;
358 		int		p_rxbuf_len;
359 		bus_size_t	p_tx_dmamap_size;
360 		int		p_ntxsegs;
361 		int		p_ntxsegs_alloc;
362 		int		p_nrxdesc;
363 	} *sc_parm;
364 
365 	void (*sc_rxintr)(struct sip_softc *);
366 
367 #if NRND > 0
368 	rndsource_element_t rnd_source;	/* random source */
369 #endif
370 };
371 
372 #define	sc_bits	sc_parm->p_bits
373 #define	sc_regs	sc_parm->p_regs
374 
375 static const struct sip_parm sip_parm = {
376 	  .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
377 	, .p_rxbuf_len = MCLBYTES - 1	/* field width */
378 	, .p_tx_dmamap_size = MCLBYTES
379 	, .p_ntxsegs = 16
380 	, .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
381 	, .p_nrxdesc = SIP_NRXDESC
382 	, .p_bits = {
383 		  .b_txcfg_mxdma_8	= 0x00200000	/*       8 bytes */
384 		, .b_txcfg_mxdma_16	= 0x00300000	/*      16 bytes */
385 		, .b_txcfg_mxdma_32	= 0x00400000	/*      32 bytes */
386 		, .b_txcfg_mxdma_64	= 0x00500000	/*      64 bytes */
387 		, .b_txcfg_mxdma_128	= 0x00600000	/*     128 bytes */
388 		, .b_txcfg_mxdma_256	= 0x00700000	/*     256 bytes */
389 		, .b_txcfg_mxdma_512	= 0x00000000	/*     512 bytes */
390 		, .b_txcfg_flth_mask	= 0x00003f00	/* Tx fill threshold */
391 		, .b_txcfg_drth_mask	= 0x0000003f	/* Tx drain threshold */
392 
393 		, .b_rxcfg_mxdma_8	= 0x00200000	/*       8 bytes */
394 		, .b_rxcfg_mxdma_16	= 0x00300000	/*      16 bytes */
395 		, .b_rxcfg_mxdma_32	= 0x00400000	/*      32 bytes */
396 		, .b_rxcfg_mxdma_64	= 0x00500000	/*      64 bytes */
397 		, .b_rxcfg_mxdma_128	= 0x00600000	/*     128 bytes */
398 		, .b_rxcfg_mxdma_256	= 0x00700000	/*     256 bytes */
399 		, .b_rxcfg_mxdma_512	= 0x00000000	/*     512 bytes */
400 
401 		, .b_isr_txrcmp	= 0x02000000	/* transmit reset complete */
402 		, .b_isr_rxrcmp	= 0x01000000	/* receive reset complete */
403 		, .b_isr_dperr	= 0x00800000	/* detected parity error */
404 		, .b_isr_sserr	= 0x00400000	/* signalled system error */
405 		, .b_isr_rmabt	= 0x00200000	/* received master abort */
406 		, .b_isr_rtabt	= 0x00100000	/* received target abort */
407 		, .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
408 	}
409 	, .p_regs = {
410 		.r_rxcfg = OTHER_SIP_RXCFG,
411 		.r_txcfg = OTHER_SIP_TXCFG
412 	}
413 }, gsip_parm = {
414 	  .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
415 	, .p_rxbuf_len = MCLBYTES - 8
416 	, .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
417 	, .p_ntxsegs = 64
418 	, .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
419 	, .p_nrxdesc = GSIP_NRXDESC
420 	, .p_bits = {
421 		  .b_txcfg_mxdma_8	= 0x00100000	/*       8 bytes */
422 		, .b_txcfg_mxdma_16	= 0x00200000	/*      16 bytes */
423 		, .b_txcfg_mxdma_32	= 0x00300000	/*      32 bytes */
424 		, .b_txcfg_mxdma_64	= 0x00400000	/*      64 bytes */
425 		, .b_txcfg_mxdma_128	= 0x00500000	/*     128 bytes */
426 		, .b_txcfg_mxdma_256	= 0x00600000	/*     256 bytes */
427 		, .b_txcfg_mxdma_512	= 0x00700000	/*     512 bytes */
428 		, .b_txcfg_flth_mask	= 0x0000ff00	/* Fx fill threshold */
429 		, .b_txcfg_drth_mask	= 0x000000ff	/* Tx drain threshold */
430 
431 		, .b_rxcfg_mxdma_8	= 0x00100000	/*       8 bytes */
432 		, .b_rxcfg_mxdma_16	= 0x00200000	/*      16 bytes */
433 		, .b_rxcfg_mxdma_32	= 0x00300000	/*      32 bytes */
434 		, .b_rxcfg_mxdma_64	= 0x00400000	/*      64 bytes */
435 		, .b_rxcfg_mxdma_128	= 0x00500000	/*     128 bytes */
436 		, .b_rxcfg_mxdma_256	= 0x00600000	/*     256 bytes */
437 		, .b_rxcfg_mxdma_512	= 0x00700000	/*     512 bytes */
438 
439 		, .b_isr_txrcmp	= 0x00400000	/* transmit reset complete */
440 		, .b_isr_rxrcmp	= 0x00200000	/* receive reset complete */
441 		, .b_isr_dperr	= 0x00100000	/* detected parity error */
442 		, .b_isr_sserr	= 0x00080000	/* signalled system error */
443 		, .b_isr_rmabt	= 0x00040000	/* received master abort */
444 		, .b_isr_rtabt	= 0x00020000	/* received target abort */
445 		, .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
446 	}
447 	, .p_regs = {
448 		.r_rxcfg = DP83820_SIP_RXCFG,
449 		.r_txcfg = DP83820_SIP_TXCFG
450 	}
451 };
452 
453 static inline int
454 sip_nexttx(const struct sip_softc *sc, int x)
455 {
456 	return (x + 1) & sc->sc_ntxdesc_mask;
457 }
458 
459 static inline int
460 sip_nextrx(const struct sip_softc *sc, int x)
461 {
462 	return (x + 1) & sc->sc_nrxdesc_mask;
463 }
464 
465 /* 83820 only */
466 #define	SIP_RXCHAIN_RESET(sc)						\
467 do {									\
468 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
469 	*(sc)->sc_rxtailp = NULL;					\
470 	(sc)->sc_rxlen = 0;						\
471 } while (/*CONSTCOND*/0)
472 
473 /* 83820 only */
474 #define	SIP_RXCHAIN_LINK(sc, m)						\
475 do {									\
476 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
477 	(sc)->sc_rxtailp = &(m)->m_next;				\
478 } while (/*CONSTCOND*/0)
479 
480 #ifdef SIP_EVENT_COUNTERS
481 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
482 #else
483 #define	SIP_EVCNT_INCR(ev)	/* nothing */
484 #endif
485 
486 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
487 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
488 
489 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
490 do {									\
491 	int __x, __n;							\
492 									\
493 	__x = (x);							\
494 	__n = (n);							\
495 									\
496 	/* If it will wrap around, sync to the end of the ring. */	\
497 	if ((__x + __n) > sc->sc_ntxdesc) {				\
498 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
499 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
500 		    (sc->sc_ntxdesc - __x), (ops));			\
501 		__n -= (sc->sc_ntxdesc - __x);				\
502 		__x = 0;						\
503 	}								\
504 									\
505 	/* Now sync whatever is left. */				\
506 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
507 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
508 } while (0)
509 
510 #define	SIP_CDRXSYNC(sc, x, ops)					\
511 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
512 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
513 
514 #if 0
515 #ifdef DP83820
516 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
517 	u_int32_t	sipd_cmdsts;	/* command/status word */
518 #else
519 	u_int32_t	sipd_cmdsts;	/* command/status word */
520 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
521 #endif /* DP83820 */
522 #endif /* 0 */
523 
524 static inline volatile uint32_t *
525 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
526 {
527 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
528 }
529 
530 static inline volatile uint32_t *
531 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
532 {
533 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
534 }
535 
536 static inline void
537 SIP_INIT_RXDESC(struct sip_softc *sc, int x)
538 {
539 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
540 	struct sip_desc *sipd = &sc->sc_rxdescs[x];
541 
542 	sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
543 	*sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
544 	*sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
545 	    (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
546 	sipd->sipd_extsts = 0;
547 	SIP_CDRXSYNC(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
548 }
549 
550 #define	SIP_CHIP_VERS(sc, v, p, r)					\
551 	((sc)->sc_model->sip_vendor == (v) &&				\
552 	 (sc)->sc_model->sip_product == (p) &&				\
553 	 (sc)->sc_rev == (r))
554 
555 #define	SIP_CHIP_MODEL(sc, v, p)					\
556 	((sc)->sc_model->sip_vendor == (v) &&				\
557 	 (sc)->sc_model->sip_product == (p))
558 
559 #define	SIP_SIS900_REV(sc, rev)						\
560 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
561 
562 #define SIP_TIMEOUT 1000
563 
564 static void	sipcom_start(struct ifnet *);
565 static void	sipcom_watchdog(struct ifnet *);
566 static int	sipcom_ioctl(struct ifnet *, u_long, void *);
567 static int	sipcom_init(struct ifnet *);
568 static void	sipcom_stop(struct ifnet *, int);
569 
570 static void	sipcom_shutdown(void *);
571 
572 static bool	sipcom_reset(struct sip_softc *);
573 static void	sipcom_rxdrain(struct sip_softc *);
574 static int	sipcom_add_rxbuf(struct sip_softc *, int);
575 static void	sipcom_read_eeprom(struct sip_softc *, int, int,
576 				      u_int16_t *);
577 static void	sipcom_tick(void *);
578 
579 static void	sipcom_sis900_set_filter(struct sip_softc *);
580 static void	sipcom_dp83815_set_filter(struct sip_softc *);
581 
582 static void	sipcom_dp83820_read_macaddr(struct sip_softc *,
583 		    const struct pci_attach_args *, u_int8_t *);
584 static void	sipcom_sis900_eeprom_delay(struct sip_softc *sc);
585 static void	sipcom_sis900_read_macaddr(struct sip_softc *,
586 		    const struct pci_attach_args *, u_int8_t *);
587 static void	sipcom_dp83815_read_macaddr(struct sip_softc *,
588 		    const struct pci_attach_args *, u_int8_t *);
589 
590 static int	sipcom_intr(void *);
591 static void	sipcom_txintr(struct sip_softc *);
592 static void	sip_rxintr(struct sip_softc *);
593 static void	gsip_rxintr(struct sip_softc *);
594 
595 static int	sipcom_dp83820_mii_readreg(struct device *, int, int);
596 static void	sipcom_dp83820_mii_writereg(struct device *, int, int, int);
597 static void	sipcom_dp83820_mii_statchg(struct device *);
598 
599 static int	sipcom_sis900_mii_readreg(struct device *, int, int);
600 static void	sipcom_sis900_mii_writereg(struct device *, int, int, int);
601 static void	sipcom_sis900_mii_statchg(struct device *);
602 
603 static int	sipcom_dp83815_mii_readreg(struct device *, int, int);
604 static void	sipcom_dp83815_mii_writereg(struct device *, int, int, int);
605 static void	sipcom_dp83815_mii_statchg(struct device *);
606 
607 static int	sipcom_mediachange(struct ifnet *);
608 static void	sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
609 
610 static int	sipcom_match(struct device *, struct cfdata *, void *);
611 static void	sipcom_attach(struct device *, struct device *, void *);
612 static void	sipcom_do_detach(device_t, enum sip_attach_stage);
613 static int	sipcom_detach(device_t, int);
614 static bool	sipcom_resume(device_t);
615 
616 static int	gsip_copy_small = 0; /* XXX make non-static! */
617 static int	sip_copy_small = 0; /* XXX make non-static! */
618 
619 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
620     sipcom_match, sipcom_attach, sipcom_detach, NULL);
621 CFATTACH_DECL(sip, sizeof(struct sip_softc),
622     sipcom_match, sipcom_attach, sipcom_detach, NULL);
623 
624 /*
625  * Descriptions of the variants of the SiS900.
626  */
627 struct sip_variant {
628 	int	(*sipv_mii_readreg)(struct device *, int, int);
629 	void	(*sipv_mii_writereg)(struct device *, int, int, int);
630 	void	(*sipv_mii_statchg)(struct device *);
631 	void	(*sipv_set_filter)(struct sip_softc *);
632 	void	(*sipv_read_macaddr)(struct sip_softc *,
633 		    const struct pci_attach_args *, u_int8_t *);
634 };
635 
636 static u_int32_t sipcom_mii_bitbang_read(struct device *);
637 static void	sipcom_mii_bitbang_write(struct device *, u_int32_t);
638 
639 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
640 	sipcom_mii_bitbang_read,
641 	sipcom_mii_bitbang_write,
642 	{
643 		EROMAR_MDIO,		/* MII_BIT_MDO */
644 		EROMAR_MDIO,		/* MII_BIT_MDI */
645 		EROMAR_MDC,		/* MII_BIT_MDC */
646 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
647 		0,			/* MII_BIT_DIR_PHY_HOST */
648 	}
649 };
650 
651 static const struct sip_variant sipcom_variant_dp83820 = {
652 	sipcom_dp83820_mii_readreg,
653 	sipcom_dp83820_mii_writereg,
654 	sipcom_dp83820_mii_statchg,
655 	sipcom_dp83815_set_filter,
656 	sipcom_dp83820_read_macaddr,
657 };
658 
659 static const struct sip_variant sipcom_variant_sis900 = {
660 	sipcom_sis900_mii_readreg,
661 	sipcom_sis900_mii_writereg,
662 	sipcom_sis900_mii_statchg,
663 	sipcom_sis900_set_filter,
664 	sipcom_sis900_read_macaddr,
665 };
666 
667 static const struct sip_variant sipcom_variant_dp83815 = {
668 	sipcom_dp83815_mii_readreg,
669 	sipcom_dp83815_mii_writereg,
670 	sipcom_dp83815_mii_statchg,
671 	sipcom_dp83815_set_filter,
672 	sipcom_dp83815_read_macaddr,
673 };
674 
675 
676 /*
677  * Devices supported by this driver.
678  */
679 static const struct sip_product {
680 	pci_vendor_id_t		sip_vendor;
681 	pci_product_id_t	sip_product;
682 	const char		*sip_name;
683 	const struct sip_variant *sip_variant;
684 	int			sip_gigabit;
685 } sipcom_products[] = {
686 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
687 	  "NatSemi DP83820 Gigabit Ethernet",
688 	  &sipcom_variant_dp83820, 1 },
689 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
690 	  "SiS 900 10/100 Ethernet",
691 	  &sipcom_variant_sis900, 0 },
692 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
693 	  "SiS 7016 10/100 Ethernet",
694 	  &sipcom_variant_sis900, 0 },
695 
696 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
697 	  "NatSemi DP83815 10/100 Ethernet",
698 	  &sipcom_variant_dp83815, 0 },
699 
700 	{ 0,			0,
701 	  NULL,
702 	  NULL, 0 },
703 };
704 
705 static const struct sip_product *
706 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
707 {
708 	const struct sip_product *sip;
709 
710 	for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
711 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
712 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
713 		    sip->sip_gigabit == gigabit)
714 			return sip;
715 	}
716 	return NULL;
717 }
718 
719 /*
720  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
721  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
722  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
723  * which means we try to use 64-bit data transfers on those cards if we
724  * happen to be plugged into a 32-bit slot.
725  *
726  * What we do is use this table of cards known to be 64-bit cards.  If
727  * you have a 64-bit card who's subsystem ID is not listed in this table,
728  * send the output of "pcictl dump ..." of the device to me so that your
729  * card will use the 64-bit data path when plugged into a 64-bit slot.
730  *
731  *	-- Jason R. Thorpe <thorpej@NetBSD.org>
732  *	   June 30, 2002
733  */
734 static int
735 sipcom_check_64bit(const struct pci_attach_args *pa)
736 {
737 	static const struct {
738 		pci_vendor_id_t c64_vendor;
739 		pci_product_id_t c64_product;
740 	} card64[] = {
741 		/* Asante GigaNIX */
742 		{ 0x128a,	0x0002 },
743 
744 		/* Accton EN1407-T, Planex GN-1000TE */
745 		{ 0x1113,	0x1407 },
746 
747 		/* Netgear GA-621 */
748 		{ 0x1385,	0x621a },
749 
750 		/* SMC EZ Card */
751 		{ 0x10b8,	0x9462 },
752 
753 		{ 0, 0}
754 	};
755 	pcireg_t subsys;
756 	int i;
757 
758 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
759 
760 	for (i = 0; card64[i].c64_vendor != 0; i++) {
761 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
762 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
763 			return (1);
764 	}
765 
766 	return (0);
767 }
768 
769 static int
770 sipcom_match(struct device *parent, struct cfdata *cf, void *aux)
771 {
772 	struct pci_attach_args *pa = aux;
773 
774 	if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
775 		return 1;
776 
777 	return 0;
778 }
779 
780 static void
781 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
782 {
783 	u_int32_t reg;
784 	int i;
785 
786 	/*
787 	 * Cause the chip to load configuration data from the EEPROM.
788 	 */
789 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
790 	for (i = 0; i < 10000; i++) {
791 		delay(10);
792 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
793 		    PTSCR_EELOAD_EN) == 0)
794 			break;
795 	}
796 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
797 	    PTSCR_EELOAD_EN) {
798 		printf("%s: timeout loading configuration from EEPROM\n",
799 		    sc->sc_dev.dv_xname);
800 		return;
801 	}
802 
803 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
804 
805 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
806 	if (reg & CFG_PCI64_DET) {
807 		printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
808 		/*
809 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
810 		 * data transfers.
811 		 *
812 		 * We can't use the DATA64_EN bit in the EEPROM, because
813 		 * vendors of 32-bit cards fail to clear that bit in many
814 		 * cases (yet the card still detects that it's in a 64-bit
815 		 * slot; go figure).
816 		 */
817 		if (sipcom_check_64bit(pa)) {
818 			sc->sc_cfg |= CFG_DATA64_EN;
819 			printf(", using 64-bit data transfers");
820 		}
821 		printf("\n");
822 	}
823 
824 	/*
825 	 * XXX Need some PCI flags indicating support for
826 	 * XXX 64-bit addressing.
827 	 */
828 #if 0
829 	if (reg & CFG_M64ADDR)
830 		sc->sc_cfg |= CFG_M64ADDR;
831 	if (reg & CFG_T64ADDR)
832 		sc->sc_cfg |= CFG_T64ADDR;
833 #endif
834 
835 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
836 		const char *sep = "";
837 		printf("%s: using ", sc->sc_dev.dv_xname);
838 		if (reg & CFG_EXT_125) {
839 			sc->sc_cfg |= CFG_EXT_125;
840 			printf("%s125MHz clock", sep);
841 			sep = ", ";
842 		}
843 		if (reg & CFG_TBI_EN) {
844 			sc->sc_cfg |= CFG_TBI_EN;
845 			printf("%sten-bit interface", sep);
846 			sep = ", ";
847 		}
848 		printf("\n");
849 	}
850 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
851 	    (reg & CFG_MRM_DIS) != 0)
852 		sc->sc_cfg |= CFG_MRM_DIS;
853 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
854 	    (reg & CFG_MWI_DIS) != 0)
855 		sc->sc_cfg |= CFG_MWI_DIS;
856 
857 	/*
858 	 * Use the extended descriptor format on the DP83820.  This
859 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
860 	 * checksumming.
861 	 */
862 	sc->sc_cfg |= CFG_EXTSTS_EN;
863 }
864 
865 static int
866 sipcom_detach(device_t self, int flags)
867 {
868 	int s;
869 
870 	s = splnet();
871 	sipcom_do_detach(self, SIP_ATTACH_FIN);
872 	splx(s);
873 
874 	return 0;
875 }
876 
877 static void
878 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
879 {
880 	int i;
881 	struct sip_softc *sc = device_private(self);
882 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
883 
884 	/*
885 	 * Free any resources we've allocated during attach.
886 	 * Do this in reverse order and fall through.
887 	 */
888 	switch (stage) {
889 	case SIP_ATTACH_FIN:
890 		sipcom_stop(ifp, 1);
891 		pmf_device_deregister(self);
892 #ifdef SIP_EVENT_COUNTERS
893 		/*
894 		 * Attach event counters.
895 		 */
896 		evcnt_detach(&sc->sc_ev_txforceintr);
897 		evcnt_detach(&sc->sc_ev_txdstall);
898 		evcnt_detach(&sc->sc_ev_txsstall);
899 		evcnt_detach(&sc->sc_ev_hiberr);
900 		evcnt_detach(&sc->sc_ev_rxintr);
901 		evcnt_detach(&sc->sc_ev_txiintr);
902 		evcnt_detach(&sc->sc_ev_txdintr);
903 		if (!sc->sc_gigabit) {
904 			evcnt_detach(&sc->sc_ev_rxpause);
905 		} else {
906 			evcnt_detach(&sc->sc_ev_txudpsum);
907 			evcnt_detach(&sc->sc_ev_txtcpsum);
908 			evcnt_detach(&sc->sc_ev_txipsum);
909 			evcnt_detach(&sc->sc_ev_rxudpsum);
910 			evcnt_detach(&sc->sc_ev_rxtcpsum);
911 			evcnt_detach(&sc->sc_ev_rxipsum);
912 			evcnt_detach(&sc->sc_ev_txpause);
913 			evcnt_detach(&sc->sc_ev_rxpause);
914 		}
915 #endif /* SIP_EVENT_COUNTERS */
916 
917 #if NRND > 0
918 		rnd_detach_source(&sc->rnd_source);
919 #endif
920 
921 		ether_ifdetach(ifp);
922 		if_detach(ifp);
923 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
924 
925 		if (sc->sc_sdhook != NULL)
926 			shutdownhook_disestablish(sc->sc_sdhook);
927 
928 		/*FALLTHROUGH*/
929 	case SIP_ATTACH_CREATE_RXMAP:
930 		for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
931 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
932 				bus_dmamap_destroy(sc->sc_dmat,
933 				    sc->sc_rxsoft[i].rxs_dmamap);
934 		}
935 		/*FALLTHROUGH*/
936 	case SIP_ATTACH_CREATE_TXMAP:
937 		for (i = 0; i < SIP_TXQUEUELEN; i++) {
938 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
939 				bus_dmamap_destroy(sc->sc_dmat,
940 				    sc->sc_txsoft[i].txs_dmamap);
941 		}
942 		/*FALLTHROUGH*/
943 	case SIP_ATTACH_LOAD_MAP:
944 		bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
945 		/*FALLTHROUGH*/
946 	case SIP_ATTACH_CREATE_MAP:
947 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
948 		/*FALLTHROUGH*/
949 	case SIP_ATTACH_MAP_MEM:
950 		bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
951 		    sizeof(struct sip_control_data));
952 		/*FALLTHROUGH*/
953 	case SIP_ATTACH_ALLOC_MEM:
954 		bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
955 		/* FALLTHROUGH*/
956 	case SIP_ATTACH_INTR:
957 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
958 		/* FALLTHROUGH*/
959 	case SIP_ATTACH_MAP:
960 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
961 		break;
962 	default:
963 		break;
964 	}
965 	return;
966 }
967 
968 static bool
969 sipcom_resume(device_t self)
970 {
971 	struct sip_softc *sc = device_private(self);
972 
973 	return sipcom_reset(sc);
974 }
975 
976 static void
977 sipcom_attach(device_t parent, device_t self, void *aux)
978 {
979 	struct sip_softc *sc = (struct sip_softc *) self;
980 	struct pci_attach_args *pa = aux;
981 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
982 	pci_chipset_tag_t pc = pa->pa_pc;
983 	pci_intr_handle_t ih;
984 	const char *intrstr = NULL;
985 	bus_space_tag_t iot, memt;
986 	bus_space_handle_t ioh, memh;
987 	bus_size_t iosz, memsz;
988 	int ioh_valid, memh_valid;
989 	int i, rseg, error;
990 	const struct sip_product *sip;
991 	u_int8_t enaddr[ETHER_ADDR_LEN];
992 	pcireg_t pmreg;
993 	pcireg_t memtype;
994 	bus_size_t tx_dmamap_size;
995 	int ntxsegs_alloc;
996 	cfdata_t cf = device_cfdata(self);
997 
998 	callout_init(&sc->sc_tick_ch, 0);
999 
1000 	sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
1001 	if (sip == NULL) {
1002 		printf("\n");
1003 		panic("%s: impossible", __func__);
1004 	}
1005 	sc->sc_gigabit = sip->sip_gigabit;
1006 
1007 	sc->sc_pc = pc;
1008 
1009 	if (sc->sc_gigabit) {
1010 		sc->sc_rxintr = gsip_rxintr;
1011 		sc->sc_parm = &gsip_parm;
1012 	} else {
1013 		sc->sc_rxintr = sip_rxintr;
1014 		sc->sc_parm = &sip_parm;
1015 	}
1016 	tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
1017 	ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
1018 	sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
1019 	sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
1020 	sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
1021 
1022 	sc->sc_rev = PCI_REVISION(pa->pa_class);
1023 
1024 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
1025 
1026 	sc->sc_model = sip;
1027 
1028 	/*
1029 	 * XXX Work-around broken PXE firmware on some boards.
1030 	 *
1031 	 * The DP83815 shares an address decoder with the MEM BAR
1032 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
1033 	 * so that memory mapped access works.
1034 	 */
1035 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
1036 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
1037 	    ~PCI_MAPREG_ROM_ENABLE);
1038 
1039 	/*
1040 	 * Map the device.
1041 	 */
1042 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
1043 	    PCI_MAPREG_TYPE_IO, 0,
1044 	    &iot, &ioh, NULL, &iosz) == 0);
1045 	if (sc->sc_gigabit) {
1046 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
1047 		switch (memtype) {
1048 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1049 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1050 			memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1051 			    memtype, 0, &memt, &memh, NULL, &memsz) == 0);
1052 			break;
1053 		default:
1054 			memh_valid = 0;
1055 		}
1056 	} else {
1057 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1058 		    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
1059 		    &memt, &memh, NULL, &memsz) == 0);
1060 	}
1061 
1062 	if (memh_valid) {
1063 		sc->sc_st = memt;
1064 		sc->sc_sh = memh;
1065 		sc->sc_sz = memsz;
1066 	} else if (ioh_valid) {
1067 		sc->sc_st = iot;
1068 		sc->sc_sh = ioh;
1069 		sc->sc_sz = iosz;
1070 	} else {
1071 		printf("%s: unable to map device registers\n",
1072 		    sc->sc_dev.dv_xname);
1073 		return;
1074 	}
1075 
1076 	sc->sc_dmat = pa->pa_dmat;
1077 
1078 	/*
1079 	 * Make sure bus mastering is enabled.  Also make sure
1080 	 * Write/Invalidate is enabled if we're allowed to use it.
1081 	 */
1082 	pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1083 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
1084 		pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
1085 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
1086 	    pmreg | PCI_COMMAND_MASTER_ENABLE);
1087 
1088 	/* power up chip */
1089 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
1090 	    NULL)) && error != EOPNOTSUPP) {
1091 		aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname,
1092 		    error);
1093 		return;
1094 	}
1095 
1096 	/*
1097 	 * Map and establish our interrupt.
1098 	 */
1099 	if (pci_intr_map(pa, &ih)) {
1100 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
1101 		return;
1102 	}
1103 	intrstr = pci_intr_string(pc, ih);
1104 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc);
1105 	if (sc->sc_ih == NULL) {
1106 		printf("%s: unable to establish interrupt",
1107 		    sc->sc_dev.dv_xname);
1108 		if (intrstr != NULL)
1109 			printf(" at %s", intrstr);
1110 		printf("\n");
1111 		return sipcom_do_detach(self, SIP_ATTACH_MAP);
1112 	}
1113 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
1114 
1115 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1116 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1117 
1118 	/*
1119 	 * Allocate the control data structures, and create and load the
1120 	 * DMA map for it.
1121 	 */
1122 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
1123 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
1124 	    &rseg, 0)) != 0) {
1125 		printf("%s: unable to allocate control data, error = %d\n",
1126 		    sc->sc_dev.dv_xname, error);
1127 		return sipcom_do_detach(self, SIP_ATTACH_INTR);
1128 	}
1129 
1130 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
1131 	    sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
1132 	    BUS_DMA_COHERENT|BUS_DMA_NOCACHE)) != 0) {
1133 		printf("%s: unable to map control data, error = %d\n",
1134 		    sc->sc_dev.dv_xname, error);
1135 		sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
1136 	}
1137 
1138 	if ((error = bus_dmamap_create(sc->sc_dmat,
1139 	    sizeof(struct sip_control_data), 1,
1140 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
1141 		printf("%s: unable to create control data DMA map, "
1142 		    "error = %d\n", sc->sc_dev.dv_xname, error);
1143 		sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
1144 	}
1145 
1146 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1147 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
1148 	    0)) != 0) {
1149 		printf("%s: unable to load control data DMA map, error = %d\n",
1150 		    sc->sc_dev.dv_xname, error);
1151 		sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
1152 	}
1153 
1154 	/*
1155 	 * Create the transmit buffer DMA maps.
1156 	 */
1157 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
1158 		if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
1159 		    sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
1160 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1161 			printf("%s: unable to create tx DMA map %d, "
1162 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
1163 			sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1164 		}
1165 	}
1166 
1167 	/*
1168 	 * Create the receive buffer DMA maps.
1169 	 */
1170 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1171 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1172 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1173 			printf("%s: unable to create rx DMA map %d, "
1174 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
1175 			sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1176 		}
1177 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
1178 	}
1179 
1180 	/*
1181 	 * Reset the chip to a known state.
1182 	 */
1183 	sipcom_reset(sc);
1184 
1185 	/*
1186 	 * Read the Ethernet address from the EEPROM.  This might
1187 	 * also fetch other stuff from the EEPROM and stash it
1188 	 * in the softc.
1189 	 */
1190 	sc->sc_cfg = 0;
1191 	if (!sc->sc_gigabit) {
1192 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1193 		    SIP_SIS900_REV(sc,SIS_REV_900B))
1194 			sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1195 
1196 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1197 		    SIP_SIS900_REV(sc,SIS_REV_960) ||
1198 		    SIP_SIS900_REV(sc,SIS_REV_900B))
1199 			sc->sc_cfg |=
1200 			    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1201 			     CFG_EDBMASTEN);
1202 	}
1203 
1204 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1205 
1206 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
1207 	    ether_sprintf(enaddr));
1208 
1209 	/*
1210 	 * Initialize the configuration register: aggressive PCI
1211 	 * bus request algorithm, default backoff, default OW timer,
1212 	 * default parity error detection.
1213 	 *
1214 	 * NOTE: "Big endian mode" is useless on the SiS900 and
1215 	 * friends -- it affects packet data, not descriptors.
1216 	 */
1217 	if (sc->sc_gigabit)
1218 		sipcom_dp83820_attach(sc, pa);
1219 
1220 	/*
1221 	 * Initialize our media structures and probe the MII.
1222 	 */
1223 	sc->sc_mii.mii_ifp = ifp;
1224 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
1225 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
1226 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
1227 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, sipcom_mediachange,
1228 	    sipcom_mediastatus);
1229 
1230 	/*
1231 	 * XXX We cannot handle flow control on the DP83815.
1232 	 */
1233 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1234 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1235 			   MII_OFFSET_ANY, 0);
1236 	else
1237 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1238 			   MII_OFFSET_ANY, MIIF_DOPAUSE);
1239 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1240 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1241 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1242 	} else
1243 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1244 
1245 	ifp = &sc->sc_ethercom.ec_if;
1246 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1247 	ifp->if_softc = sc;
1248 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1249 	sc->sc_if_flags = ifp->if_flags;
1250 	ifp->if_ioctl = sipcom_ioctl;
1251 	ifp->if_start = sipcom_start;
1252 	ifp->if_watchdog = sipcom_watchdog;
1253 	ifp->if_init = sipcom_init;
1254 	ifp->if_stop = sipcom_stop;
1255 	IFQ_SET_READY(&ifp->if_snd);
1256 
1257 	/*
1258 	 * We can support 802.1Q VLAN-sized frames.
1259 	 */
1260 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1261 
1262 	if (sc->sc_gigabit) {
1263 		/*
1264 		 * And the DP83820 can do VLAN tagging in hardware, and
1265 		 * support the jumbo Ethernet MTU.
1266 		 */
1267 		sc->sc_ethercom.ec_capabilities |=
1268 		    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1269 
1270 		/*
1271 		 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1272 		 * in hardware.
1273 		 */
1274 		ifp->if_capabilities |=
1275 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1276 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1277 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1278 	}
1279 
1280 	/*
1281 	 * Attach the interface.
1282 	 */
1283 	if_attach(ifp);
1284 	ether_ifattach(ifp, enaddr);
1285 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1286 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1287 	sc->sc_prev.if_capenable = ifp->if_capenable;
1288 #if NRND > 0
1289 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1290 	    RND_TYPE_NET, 0);
1291 #endif
1292 
1293 	/*
1294 	 * The number of bytes that must be available in
1295 	 * the Tx FIFO before the bus master can DMA more
1296 	 * data into the FIFO.
1297 	 */
1298 	sc->sc_tx_fill_thresh = 64 / 32;
1299 
1300 	/*
1301 	 * Start at a drain threshold of 512 bytes.  We will
1302 	 * increase it if a DMA underrun occurs.
1303 	 *
1304 	 * XXX The minimum value of this variable should be
1305 	 * tuned.  We may be able to improve performance
1306 	 * by starting with a lower value.  That, however,
1307 	 * may trash the first few outgoing packets if the
1308 	 * PCI bus is saturated.
1309 	 */
1310 	if (sc->sc_gigabit)
1311 		sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1312 	else
1313 		sc->sc_tx_drain_thresh = 1504 / 32;
1314 
1315 	/*
1316 	 * Initialize the Rx FIFO drain threshold.
1317 	 *
1318 	 * This is in units of 8 bytes.
1319 	 *
1320 	 * We should never set this value lower than 2; 14 bytes are
1321 	 * required to filter the packet.
1322 	 */
1323 	sc->sc_rx_drain_thresh = 128 / 8;
1324 
1325 #ifdef SIP_EVENT_COUNTERS
1326 	/*
1327 	 * Attach event counters.
1328 	 */
1329 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1330 	    NULL, sc->sc_dev.dv_xname, "txsstall");
1331 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1332 	    NULL, sc->sc_dev.dv_xname, "txdstall");
1333 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1334 	    NULL, sc->sc_dev.dv_xname, "txforceintr");
1335 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1336 	    NULL, sc->sc_dev.dv_xname, "txdintr");
1337 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1338 	    NULL, sc->sc_dev.dv_xname, "txiintr");
1339 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1340 	    NULL, sc->sc_dev.dv_xname, "rxintr");
1341 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1342 	    NULL, sc->sc_dev.dv_xname, "hiberr");
1343 	if (!sc->sc_gigabit) {
1344 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1345 		    NULL, sc->sc_dev.dv_xname, "rxpause");
1346 	} else {
1347 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1348 		    NULL, sc->sc_dev.dv_xname, "rxpause");
1349 		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1350 		    NULL, sc->sc_dev.dv_xname, "txpause");
1351 		evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1352 		    NULL, sc->sc_dev.dv_xname, "rxipsum");
1353 		evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1354 		    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
1355 		evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1356 		    NULL, sc->sc_dev.dv_xname, "rxudpsum");
1357 		evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1358 		    NULL, sc->sc_dev.dv_xname, "txipsum");
1359 		evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1360 		    NULL, sc->sc_dev.dv_xname, "txtcpsum");
1361 		evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1362 		    NULL, sc->sc_dev.dv_xname, "txudpsum");
1363 	}
1364 #endif /* SIP_EVENT_COUNTERS */
1365 
1366 	if (!pmf_device_register(self, NULL, sipcom_resume))
1367 		aprint_error_dev(self, "couldn't establish power handler\n");
1368 	else
1369 		pmf_class_network_register(self, ifp);
1370 
1371 	/*
1372 	 * Make sure the interface is shutdown during reboot.
1373 	 */
1374 	sc->sc_sdhook = shutdownhook_establish(sipcom_shutdown, sc);
1375 	if (sc->sc_sdhook == NULL)
1376 		printf("%s: WARNING: unable to establish shutdown hook\n",
1377 		    sc->sc_dev.dv_xname);
1378 }
1379 
1380 /*
1381  * sip_shutdown:
1382  *
1383  *	Make sure the interface is stopped at reboot time.
1384  */
1385 static void
1386 sipcom_shutdown(void *arg)
1387 {
1388 	struct sip_softc *sc = arg;
1389 
1390 	sipcom_stop(&sc->sc_ethercom.ec_if, 1);
1391 }
1392 
1393 static inline void
1394 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1395     uint64_t capenable)
1396 {
1397 	struct m_tag *mtag;
1398 	u_int32_t extsts;
1399 #ifdef DEBUG
1400 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1401 #endif
1402 	/*
1403 	 * If VLANs are enabled and the packet has a VLAN tag, set
1404 	 * up the descriptor to encapsulate the packet for us.
1405 	 *
1406 	 * This apparently has to be on the last descriptor of
1407 	 * the packet.
1408 	 */
1409 
1410 	/*
1411 	 * Byte swapping is tricky. We need to provide the tag
1412 	 * in a network byte order. On a big-endian machine,
1413 	 * the byteorder is correct, but we need to swap it
1414 	 * anyway, because this will be undone by the outside
1415 	 * htole32(). That's why there must be an
1416 	 * unconditional swap instead of htons() inside.
1417 	 */
1418 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1419 		sc->sc_txdescs[lasttx].sipd_extsts |=
1420 		    htole32(EXTSTS_VPKT |
1421 				(bswap16(VLAN_TAG_VALUE(mtag)) &
1422 				 EXTSTS_VTCI));
1423 	}
1424 
1425 	/*
1426 	 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1427 	 * checksumming, set up the descriptor to do this work
1428 	 * for us.
1429 	 *
1430 	 * This apparently has to be on the first descriptor of
1431 	 * the packet.
1432 	 *
1433 	 * Byte-swap constants so the compiler can optimize.
1434 	 */
1435 	extsts = 0;
1436 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1437 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1438 		SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1439 		extsts |= htole32(EXTSTS_IPPKT);
1440 	}
1441 	if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1442 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1443 		SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1444 		extsts |= htole32(EXTSTS_TCPPKT);
1445 	} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1446 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1447 		SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1448 		extsts |= htole32(EXTSTS_UDPPKT);
1449 	}
1450 	sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1451 }
1452 
1453 /*
1454  * sip_start:		[ifnet interface function]
1455  *
1456  *	Start packet transmission on the interface.
1457  */
1458 static void
1459 sipcom_start(struct ifnet *ifp)
1460 {
1461 	struct sip_softc *sc = ifp->if_softc;
1462 	struct mbuf *m0;
1463 	struct mbuf *m;
1464 	struct sip_txsoft *txs;
1465 	bus_dmamap_t dmamap;
1466 	int error, nexttx, lasttx, seg;
1467 	int ofree = sc->sc_txfree;
1468 #if 0
1469 	int firsttx = sc->sc_txnext;
1470 #endif
1471 
1472 	/*
1473 	 * If we've been told to pause, don't transmit any more packets.
1474 	 */
1475 	if (!sc->sc_gigabit && sc->sc_paused)
1476 		ifp->if_flags |= IFF_OACTIVE;
1477 
1478 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1479 		return;
1480 
1481 	/*
1482 	 * Loop through the send queue, setting up transmit descriptors
1483 	 * until we drain the queue, or use up all available transmit
1484 	 * descriptors.
1485 	 */
1486 	for (;;) {
1487 		/* Get a work queue entry. */
1488 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1489 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1490 			break;
1491 		}
1492 
1493 		/*
1494 		 * Grab a packet off the queue.
1495 		 */
1496 		IFQ_POLL(&ifp->if_snd, m0);
1497 		if (m0 == NULL)
1498 			break;
1499 		m = NULL;
1500 
1501 		dmamap = txs->txs_dmamap;
1502 
1503 		/*
1504 		 * Load the DMA map.  If this fails, the packet either
1505 		 * didn't fit in the alloted number of segments, or we
1506 		 * were short on resources.
1507 		 */
1508 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1509 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1510 		/* In the non-gigabit case, we'll copy and try again. */
1511 		if (error != 0 && !sc->sc_gigabit) {
1512 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1513 			if (m == NULL) {
1514 				printf("%s: unable to allocate Tx mbuf\n",
1515 				    sc->sc_dev.dv_xname);
1516 				break;
1517 			}
1518 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1519 			if (m0->m_pkthdr.len > MHLEN) {
1520 				MCLGET(m, M_DONTWAIT);
1521 				if ((m->m_flags & M_EXT) == 0) {
1522 					printf("%s: unable to allocate Tx "
1523 					    "cluster\n", sc->sc_dev.dv_xname);
1524 					m_freem(m);
1525 					break;
1526 				}
1527 			}
1528 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1529 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1530 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1531 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1532 			if (error) {
1533 				printf("%s: unable to load Tx buffer, "
1534 				    "error = %d\n", sc->sc_dev.dv_xname, error);
1535 				break;
1536 			}
1537 		} else if (error == EFBIG) {
1538 			/*
1539 			 * For the too-many-segments case, we simply
1540 			 * report an error and drop the packet,
1541 			 * since we can't sanely copy a jumbo packet
1542 			 * to a single buffer.
1543 			 */
1544 			printf("%s: Tx packet consumes too many "
1545 			    "DMA segments, dropping...\n", sc->sc_dev.dv_xname);
1546 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1547 			m_freem(m0);
1548 			continue;
1549 		} else if (error != 0) {
1550 			/*
1551 			 * Short on resources, just stop for now.
1552 			 */
1553 			break;
1554 		}
1555 
1556 		/*
1557 		 * Ensure we have enough descriptors free to describe
1558 		 * the packet.  Note, we always reserve one descriptor
1559 		 * at the end of the ring as a termination point, to
1560 		 * prevent wrap-around.
1561 		 */
1562 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1563 			/*
1564 			 * Not enough free descriptors to transmit this
1565 			 * packet.  We haven't committed anything yet,
1566 			 * so just unload the DMA map, put the packet
1567 			 * back on the queue, and punt.  Notify the upper
1568 			 * layer that there are not more slots left.
1569 			 *
1570 			 * XXX We could allocate an mbuf and copy, but
1571 			 * XXX is it worth it?
1572 			 */
1573 			ifp->if_flags |= IFF_OACTIVE;
1574 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1575 			if (m != NULL)
1576 				m_freem(m);
1577 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1578 			break;
1579 		}
1580 
1581 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1582 		if (m != NULL) {
1583 			m_freem(m0);
1584 			m0 = m;
1585 		}
1586 
1587 		/*
1588 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1589 		 */
1590 
1591 		/* Sync the DMA map. */
1592 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1593 		    BUS_DMASYNC_PREWRITE);
1594 
1595 		/*
1596 		 * Initialize the transmit descriptors.
1597 		 */
1598 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1599 		     seg < dmamap->dm_nsegs;
1600 		     seg++, nexttx = sip_nexttx(sc, nexttx)) {
1601 			/*
1602 			 * If this is the first descriptor we're
1603 			 * enqueueing, don't set the OWN bit just
1604 			 * yet.  That could cause a race condition.
1605 			 * We'll do it below.
1606 			 */
1607 			*sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
1608 			    htole32(dmamap->dm_segs[seg].ds_addr);
1609 			*sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
1610 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1611 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1612 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
1613 			lasttx = nexttx;
1614 		}
1615 
1616 		/* Clear the MORE bit on the last segment. */
1617 		*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
1618 		    htole32(~CMDSTS_MORE);
1619 
1620 		/*
1621 		 * If we're in the interrupt delay window, delay the
1622 		 * interrupt.
1623 		 */
1624 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1625 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1626 			*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
1627 			    htole32(CMDSTS_INTR);
1628 			sc->sc_txwin = 0;
1629 		}
1630 
1631 		if (sc->sc_gigabit)
1632 			sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1633 
1634 		/* Sync the descriptors we're using. */
1635 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1636 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1637 
1638 		/*
1639 		 * The entire packet is set up.  Give the first descrptor
1640 		 * to the chip now.
1641 		 */
1642 		*sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
1643 		    htole32(CMDSTS_OWN);
1644 		SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
1645 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1646 
1647 		/*
1648 		 * Store a pointer to the packet so we can free it later,
1649 		 * and remember what txdirty will be once the packet is
1650 		 * done.
1651 		 */
1652 		txs->txs_mbuf = m0;
1653 		txs->txs_firstdesc = sc->sc_txnext;
1654 		txs->txs_lastdesc = lasttx;
1655 
1656 		/* Advance the tx pointer. */
1657 		sc->sc_txfree -= dmamap->dm_nsegs;
1658 		sc->sc_txnext = nexttx;
1659 
1660 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1661 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1662 
1663 #if NBPFILTER > 0
1664 		/*
1665 		 * Pass the packet to any BPF listeners.
1666 		 */
1667 		if (ifp->if_bpf)
1668 			bpf_mtap(ifp->if_bpf, m0);
1669 #endif /* NBPFILTER > 0 */
1670 	}
1671 
1672 	if (txs == NULL || sc->sc_txfree == 0) {
1673 		/* No more slots left; notify upper layer. */
1674 		ifp->if_flags |= IFF_OACTIVE;
1675 	}
1676 
1677 	if (sc->sc_txfree != ofree) {
1678 		/*
1679 		 * Start the transmit process.  Note, the manual says
1680 		 * that if there are no pending transmissions in the
1681 		 * chip's internal queue (indicated by TXE being clear),
1682 		 * then the driver software must set the TXDP to the
1683 		 * first descriptor to be transmitted.  However, if we
1684 		 * do this, it causes serious performance degredation on
1685 		 * the DP83820 under load, not setting TXDP doesn't seem
1686 		 * to adversely affect the SiS 900 or DP83815.
1687 		 *
1688 		 * Well, I guess it wouldn't be the first time a manual
1689 		 * has lied -- and they could be speaking of the NULL-
1690 		 * terminated descriptor list case, rather than OWN-
1691 		 * terminated rings.
1692 		 */
1693 #if 0
1694 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1695 		     CR_TXE) == 0) {
1696 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1697 			    SIP_CDTXADDR(sc, firsttx));
1698 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1699 		}
1700 #else
1701 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1702 #endif
1703 
1704 		/* Set a watchdog timer in case the chip flakes out. */
1705 		/* Gigabit autonegotiation takes 5 seconds. */
1706 		ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1707 	}
1708 }
1709 
1710 /*
1711  * sip_watchdog:	[ifnet interface function]
1712  *
1713  *	Watchdog timer handler.
1714  */
1715 static void
1716 sipcom_watchdog(struct ifnet *ifp)
1717 {
1718 	struct sip_softc *sc = ifp->if_softc;
1719 
1720 	/*
1721 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1722 	 * If we get a timeout, try and sweep up transmit descriptors.
1723 	 * If we manage to sweep them all up, ignore the lack of
1724 	 * interrupt.
1725 	 */
1726 	sipcom_txintr(sc);
1727 
1728 	if (sc->sc_txfree != sc->sc_ntxdesc) {
1729 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1730 		ifp->if_oerrors++;
1731 
1732 		/* Reset the interface. */
1733 		(void) sipcom_init(ifp);
1734 	} else if (ifp->if_flags & IFF_DEBUG)
1735 		printf("%s: recovered from device timeout\n",
1736 		    sc->sc_dev.dv_xname);
1737 
1738 	/* Try to get more packets going. */
1739 	sipcom_start(ifp);
1740 }
1741 
1742 /*
1743  * sip_ioctl:		[ifnet interface function]
1744  *
1745  *	Handle control requests from the operator.
1746  */
1747 static int
1748 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1749 {
1750 	struct sip_softc *sc = ifp->if_softc;
1751 	struct ifreq *ifr = (struct ifreq *)data;
1752 	int s, error;
1753 
1754 	s = splnet();
1755 
1756 	switch (cmd) {
1757 	case SIOCSIFMEDIA:
1758 		/* Flow control requires full-duplex mode. */
1759 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1760 		    (ifr->ifr_media & IFM_FDX) == 0)
1761 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
1762 
1763 		/* XXX */
1764 		if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1765 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1766 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1767 			if (sc->sc_gigabit &&
1768 			    (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1769 				/* We can do both TXPAUSE and RXPAUSE. */
1770 				ifr->ifr_media |=
1771 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1772 			} else if (ifr->ifr_media & IFM_FLOW) {
1773 				/*
1774 				 * Both TXPAUSE and RXPAUSE must be set.
1775 				 * (SiS900 and DP83815 don't have PAUSE_ASYM
1776 				 * feature.)
1777 				 *
1778 				 * XXX Can SiS900 and DP83815 send PAUSE?
1779 				 */
1780 				ifr->ifr_media |=
1781 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1782 			}
1783 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1784 		}
1785 		/* FALLTHROUGH */
1786 	case SIOCGIFMEDIA:
1787 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1788 		break;
1789 	case SIOCSIFFLAGS:
1790 		/* If the interface is up and running, only modify the receive
1791 		 * filter when setting promiscuous or debug mode.  Otherwise
1792 		 * fall through to ether_ioctl, which will reset the chip.
1793 		 */
1794 
1795 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable			\
1796 			 == (sc)->sc_ethercom.ec_capenable)		\
1797 			&& ((sc)->sc_prev.is_vlan ==			\
1798 			    VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1799 
1800 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1801 
1802 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
1803 		if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
1804 		    == (IFF_UP|IFF_RUNNING))
1805 		    && ((ifp->if_flags & (~RESETIGN))
1806 		    == (sc->sc_if_flags & (~RESETIGN)))
1807 		    && COMPARE_EC(sc) && COMPARE_IC(sc, ifp)) {
1808 			/* Set up the receive filter. */
1809 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1810 			error = 0;
1811 			break;
1812 #undef RESETIGN
1813 		}
1814 		/* FALLTHROUGH */
1815 	default:
1816 		error = ether_ioctl(ifp, cmd, data);
1817 		if (error == ENETRESET) {
1818 			/*
1819 			 * Multicast list has changed; set the hardware filter
1820 			 * accordingly.
1821 			 */
1822 			if (ifp->if_flags & IFF_RUNNING)
1823 			    (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1824 			error = 0;
1825 		}
1826 		break;
1827 	}
1828 
1829 	/* Try to get more packets going. */
1830 	sipcom_start(ifp);
1831 
1832 	sc->sc_if_flags = ifp->if_flags;
1833 	splx(s);
1834 	return (error);
1835 }
1836 
1837 /*
1838  * sip_intr:
1839  *
1840  *	Interrupt service routine.
1841  */
1842 static int
1843 sipcom_intr(void *arg)
1844 {
1845 	struct sip_softc *sc = arg;
1846 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1847 	u_int32_t isr;
1848 	int handled = 0;
1849 
1850 	/* Disable interrupts. */
1851 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1852 
1853 	for (;;) {
1854 		/* Reading clears interrupt. */
1855 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1856 		if ((isr & sc->sc_imr) == 0)
1857 			break;
1858 
1859 #if NRND > 0
1860 		if (RND_ENABLED(&sc->rnd_source))
1861 			rnd_add_uint32(&sc->rnd_source, isr);
1862 #endif
1863 
1864 		handled = 1;
1865 
1866 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1867 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1868 
1869 			/* Grab any new packets. */
1870 			(*sc->sc_rxintr)(sc);
1871 
1872 			if (isr & ISR_RXORN) {
1873 				printf("%s: receive FIFO overrun\n",
1874 				    sc->sc_dev.dv_xname);
1875 
1876 				/* XXX adjust rx_drain_thresh? */
1877 			}
1878 
1879 			if (isr & ISR_RXIDLE) {
1880 				printf("%s: receive ring overrun\n",
1881 				    sc->sc_dev.dv_xname);
1882 
1883 				/* Get the receive process going again. */
1884 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1885 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1886 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1887 				    SIP_CR, CR_RXE);
1888 			}
1889 		}
1890 
1891 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1892 #ifdef SIP_EVENT_COUNTERS
1893 			if (isr & ISR_TXDESC)
1894 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1895 			else if (isr & ISR_TXIDLE)
1896 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1897 #endif
1898 
1899 			/* Sweep up transmit descriptors. */
1900 			sipcom_txintr(sc);
1901 
1902 			if (isr & ISR_TXURN) {
1903 				u_int32_t thresh;
1904 				int txfifo_size = (sc->sc_gigabit)
1905 				    ? DP83820_SIP_TXFIFO_SIZE
1906 				    : OTHER_SIP_TXFIFO_SIZE;
1907 
1908 				printf("%s: transmit FIFO underrun",
1909 				    sc->sc_dev.dv_xname);
1910 				thresh = sc->sc_tx_drain_thresh + 1;
1911 				if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
1912 				&& (thresh * 32) <= (txfifo_size -
1913 				     (sc->sc_tx_fill_thresh * 32))) {
1914 					printf("; increasing Tx drain "
1915 					    "threshold to %u bytes\n",
1916 					    thresh * 32);
1917 					sc->sc_tx_drain_thresh = thresh;
1918 					(void) sipcom_init(ifp);
1919 				} else {
1920 					(void) sipcom_init(ifp);
1921 					printf("\n");
1922 				}
1923 			}
1924 		}
1925 
1926 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1927 			if (isr & ISR_PAUSE_ST) {
1928 				sc->sc_paused = 1;
1929 				SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1930 				ifp->if_flags |= IFF_OACTIVE;
1931 			}
1932 			if (isr & ISR_PAUSE_END) {
1933 				sc->sc_paused = 0;
1934 				ifp->if_flags &= ~IFF_OACTIVE;
1935 			}
1936 		}
1937 
1938 		if (isr & ISR_HIBERR) {
1939 			int want_init = 0;
1940 
1941 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1942 
1943 #define	PRINTERR(bit, str)						\
1944 			do {						\
1945 				if ((isr & (bit)) != 0) {		\
1946 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
1947 						printf("%s: %s\n",	\
1948 						    sc->sc_dev.dv_xname, str); \
1949 					want_init = 1;			\
1950 				}					\
1951 			} while (/*CONSTCOND*/0)
1952 
1953 			PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
1954 			PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
1955 			PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
1956 			PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
1957 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1958 			/*
1959 			 * Ignore:
1960 			 *	Tx reset complete
1961 			 *	Rx reset complete
1962 			 */
1963 			if (want_init)
1964 				(void) sipcom_init(ifp);
1965 #undef PRINTERR
1966 		}
1967 	}
1968 
1969 	/* Re-enable interrupts. */
1970 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1971 
1972 	/* Try to get more packets going. */
1973 	sipcom_start(ifp);
1974 
1975 	return (handled);
1976 }
1977 
1978 /*
1979  * sip_txintr:
1980  *
1981  *	Helper; handle transmit interrupts.
1982  */
1983 static void
1984 sipcom_txintr(struct sip_softc *sc)
1985 {
1986 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1987 	struct sip_txsoft *txs;
1988 	u_int32_t cmdsts;
1989 
1990 	if (sc->sc_paused == 0)
1991 		ifp->if_flags &= ~IFF_OACTIVE;
1992 
1993 	/*
1994 	 * Go through our Tx list and free mbufs for those
1995 	 * frames which have been transmitted.
1996 	 */
1997 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1998 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1999 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2000 
2001 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
2002 		if (cmdsts & CMDSTS_OWN)
2003 			break;
2004 
2005 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2006 
2007 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
2008 
2009 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
2010 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2011 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2012 		m_freem(txs->txs_mbuf);
2013 		txs->txs_mbuf = NULL;
2014 
2015 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2016 
2017 		/*
2018 		 * Check for errors and collisions.
2019 		 */
2020 		if (cmdsts &
2021 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
2022 			ifp->if_oerrors++;
2023 			if (cmdsts & CMDSTS_Tx_EC)
2024 				ifp->if_collisions += 16;
2025 			if (ifp->if_flags & IFF_DEBUG) {
2026 				if (cmdsts & CMDSTS_Tx_ED)
2027 					printf("%s: excessive deferral\n",
2028 					    sc->sc_dev.dv_xname);
2029 				if (cmdsts & CMDSTS_Tx_EC)
2030 					printf("%s: excessive collisions\n",
2031 					    sc->sc_dev.dv_xname);
2032 			}
2033 		} else {
2034 			/* Packet was transmitted successfully. */
2035 			ifp->if_opackets++;
2036 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
2037 		}
2038 	}
2039 
2040 	/*
2041 	 * If there are no more pending transmissions, cancel the watchdog
2042 	 * timer.
2043 	 */
2044 	if (txs == NULL) {
2045 		ifp->if_timer = 0;
2046 		sc->sc_txwin = 0;
2047 	}
2048 }
2049 
2050 /*
2051  * gsip_rxintr:
2052  *
2053  *	Helper; handle receive interrupts on gigabit parts.
2054  */
2055 static void
2056 gsip_rxintr(struct sip_softc *sc)
2057 {
2058 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2059 	struct sip_rxsoft *rxs;
2060 	struct mbuf *m;
2061 	u_int32_t cmdsts, extsts;
2062 	int i, len;
2063 
2064 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2065 		rxs = &sc->sc_rxsoft[i];
2066 
2067 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2068 
2069 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2070 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
2071 		len = CMDSTS_SIZE(sc, cmdsts);
2072 
2073 		/*
2074 		 * NOTE: OWN is set if owned by _consumer_.  We're the
2075 		 * consumer of the receive ring, so if the bit is clear,
2076 		 * we have processed all of the packets.
2077 		 */
2078 		if ((cmdsts & CMDSTS_OWN) == 0) {
2079 			/*
2080 			 * We have processed all of the receive buffers.
2081 			 */
2082 			break;
2083 		}
2084 
2085 		if (__predict_false(sc->sc_rxdiscard)) {
2086 			SIP_INIT_RXDESC(sc, i);
2087 			if ((cmdsts & CMDSTS_MORE) == 0) {
2088 				/* Reset our state. */
2089 				sc->sc_rxdiscard = 0;
2090 			}
2091 			continue;
2092 		}
2093 
2094 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2095 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2096 
2097 		m = rxs->rxs_mbuf;
2098 
2099 		/*
2100 		 * Add a new receive buffer to the ring.
2101 		 */
2102 		if (sipcom_add_rxbuf(sc, i) != 0) {
2103 			/*
2104 			 * Failed, throw away what we've done so
2105 			 * far, and discard the rest of the packet.
2106 			 */
2107 			ifp->if_ierrors++;
2108 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2109 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2110 			SIP_INIT_RXDESC(sc, i);
2111 			if (cmdsts & CMDSTS_MORE)
2112 				sc->sc_rxdiscard = 1;
2113 			if (sc->sc_rxhead != NULL)
2114 				m_freem(sc->sc_rxhead);
2115 			SIP_RXCHAIN_RESET(sc);
2116 			continue;
2117 		}
2118 
2119 		SIP_RXCHAIN_LINK(sc, m);
2120 
2121 		m->m_len = len;
2122 
2123 		/*
2124 		 * If this is not the end of the packet, keep
2125 		 * looking.
2126 		 */
2127 		if (cmdsts & CMDSTS_MORE) {
2128 			sc->sc_rxlen += len;
2129 			continue;
2130 		}
2131 
2132 		/*
2133 		 * Okay, we have the entire packet now.  The chip includes
2134 		 * the FCS, so we need to trim it.
2135 		 */
2136 		m->m_len -= ETHER_CRC_LEN;
2137 
2138 		*sc->sc_rxtailp = NULL;
2139 		len = m->m_len + sc->sc_rxlen;
2140 		m = sc->sc_rxhead;
2141 
2142 		SIP_RXCHAIN_RESET(sc);
2143 
2144 		/*
2145 		 * If an error occurred, update stats and drop the packet.
2146 		 */
2147 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2148 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2149 			ifp->if_ierrors++;
2150 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2151 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
2152 				/* Receive overrun handled elsewhere. */
2153 				printf("%s: receive descriptor error\n",
2154 				    sc->sc_dev.dv_xname);
2155 			}
2156 #define	PRINTERR(bit, str)						\
2157 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
2158 			    (cmdsts & (bit)) != 0)			\
2159 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
2160 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2161 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2162 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2163 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2164 #undef PRINTERR
2165 			m_freem(m);
2166 			continue;
2167 		}
2168 
2169 		/*
2170 		 * If the packet is small enough to fit in a
2171 		 * single header mbuf, allocate one and copy
2172 		 * the data into it.  This greatly reduces
2173 		 * memory consumption when we receive lots
2174 		 * of small packets.
2175 		 */
2176 		if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
2177 			struct mbuf *nm;
2178 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
2179 			if (nm == NULL) {
2180 				ifp->if_ierrors++;
2181 				m_freem(m);
2182 				continue;
2183 			}
2184 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2185 			nm->m_data += 2;
2186 			nm->m_pkthdr.len = nm->m_len = len;
2187 			m_copydata(m, 0, len, mtod(nm, void *));
2188 			m_freem(m);
2189 			m = nm;
2190 		}
2191 #ifndef __NO_STRICT_ALIGNMENT
2192 		else {
2193 			/*
2194 			 * The DP83820's receive buffers must be 4-byte
2195 			 * aligned.  But this means that the data after
2196 			 * the Ethernet header is misaligned.  To compensate,
2197 			 * we have artificially shortened the buffer size
2198 			 * in the descriptor, and we do an overlapping copy
2199 			 * of the data two bytes further in (in the first
2200 			 * buffer of the chain only).
2201 			 */
2202 			memmove(mtod(m, char *) + 2, mtod(m, void *),
2203 			    m->m_len);
2204 			m->m_data += 2;
2205 		}
2206 #endif /* ! __NO_STRICT_ALIGNMENT */
2207 
2208 		/*
2209 		 * If VLANs are enabled, VLAN packets have been unwrapped
2210 		 * for us.  Associate the tag with the packet.
2211 		 */
2212 
2213 		/*
2214 		 * Again, byte swapping is tricky. Hardware provided
2215 		 * the tag in the network byte order, but extsts was
2216 		 * passed through le32toh() in the meantime. On a
2217 		 * big-endian machine, we need to swap it again. On a
2218 		 * little-endian machine, we need to convert from the
2219 		 * network to host byte order. This means that we must
2220 		 * swap it in any case, so unconditional swap instead
2221 		 * of htons() is used.
2222 		 */
2223 		if ((extsts & EXTSTS_VPKT) != 0) {
2224 			VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
2225 			    continue);
2226 		}
2227 
2228 		/*
2229 		 * Set the incoming checksum information for the
2230 		 * packet.
2231 		 */
2232 		if ((extsts & EXTSTS_IPPKT) != 0) {
2233 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2234 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2235 			if (extsts & EXTSTS_Rx_IPERR)
2236 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2237 			if (extsts & EXTSTS_TCPPKT) {
2238 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2239 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2240 				if (extsts & EXTSTS_Rx_TCPERR)
2241 					m->m_pkthdr.csum_flags |=
2242 					    M_CSUM_TCP_UDP_BAD;
2243 			} else if (extsts & EXTSTS_UDPPKT) {
2244 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2245 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2246 				if (extsts & EXTSTS_Rx_UDPERR)
2247 					m->m_pkthdr.csum_flags |=
2248 					    M_CSUM_TCP_UDP_BAD;
2249 			}
2250 		}
2251 
2252 		ifp->if_ipackets++;
2253 		m->m_pkthdr.rcvif = ifp;
2254 		m->m_pkthdr.len = len;
2255 
2256 #if NBPFILTER > 0
2257 		/*
2258 		 * Pass this up to any BPF listeners, but only
2259 		 * pass if up the stack if it's for us.
2260 		 */
2261 		if (ifp->if_bpf)
2262 			bpf_mtap(ifp->if_bpf, m);
2263 #endif /* NBPFILTER > 0 */
2264 
2265 		/* Pass it on. */
2266 		(*ifp->if_input)(ifp, m);
2267 	}
2268 
2269 	/* Update the receive pointer. */
2270 	sc->sc_rxptr = i;
2271 }
2272 
2273 /*
2274  * sip_rxintr:
2275  *
2276  *	Helper; handle receive interrupts on 10/100 parts.
2277  */
2278 static void
2279 sip_rxintr(struct sip_softc *sc)
2280 {
2281 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2282 	struct sip_rxsoft *rxs;
2283 	struct mbuf *m;
2284 	u_int32_t cmdsts;
2285 	int i, len;
2286 
2287 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2288 		rxs = &sc->sc_rxsoft[i];
2289 
2290 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2291 
2292 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2293 
2294 		/*
2295 		 * NOTE: OWN is set if owned by _consumer_.  We're the
2296 		 * consumer of the receive ring, so if the bit is clear,
2297 		 * we have processed all of the packets.
2298 		 */
2299 		if ((cmdsts & CMDSTS_OWN) == 0) {
2300 			/*
2301 			 * We have processed all of the receive buffers.
2302 			 */
2303 			break;
2304 		}
2305 
2306 		/*
2307 		 * If any collisions were seen on the wire, count one.
2308 		 */
2309 		if (cmdsts & CMDSTS_Rx_COL)
2310 			ifp->if_collisions++;
2311 
2312 		/*
2313 		 * If an error occurred, update stats, clear the status
2314 		 * word, and leave the packet buffer in place.  It will
2315 		 * simply be reused the next time the ring comes around.
2316 		 */
2317 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2318 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2319 			ifp->if_ierrors++;
2320 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2321 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
2322 				/* Receive overrun handled elsewhere. */
2323 				printf("%s: receive descriptor error\n",
2324 				    sc->sc_dev.dv_xname);
2325 			}
2326 #define	PRINTERR(bit, str)						\
2327 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
2328 			    (cmdsts & (bit)) != 0)			\
2329 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
2330 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2331 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2332 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2333 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2334 #undef PRINTERR
2335 			SIP_INIT_RXDESC(sc, i);
2336 			continue;
2337 		}
2338 
2339 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2340 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2341 
2342 		/*
2343 		 * No errors; receive the packet.  Note, the SiS 900
2344 		 * includes the CRC with every packet.
2345 		 */
2346 		len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
2347 
2348 #ifdef __NO_STRICT_ALIGNMENT
2349 		/*
2350 		 * If the packet is small enough to fit in a
2351 		 * single header mbuf, allocate one and copy
2352 		 * the data into it.  This greatly reduces
2353 		 * memory consumption when we receive lots
2354 		 * of small packets.
2355 		 *
2356 		 * Otherwise, we add a new buffer to the receive
2357 		 * chain.  If this fails, we drop the packet and
2358 		 * recycle the old buffer.
2359 		 */
2360 		if (sip_copy_small != 0 && len <= MHLEN) {
2361 			MGETHDR(m, M_DONTWAIT, MT_DATA);
2362 			if (m == NULL)
2363 				goto dropit;
2364 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2365 			memcpy(mtod(m, void *),
2366 			    mtod(rxs->rxs_mbuf, void *), len);
2367 			SIP_INIT_RXDESC(sc, i);
2368 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2369 			    rxs->rxs_dmamap->dm_mapsize,
2370 			    BUS_DMASYNC_PREREAD);
2371 		} else {
2372 			m = rxs->rxs_mbuf;
2373 			if (sipcom_add_rxbuf(sc, i) != 0) {
2374  dropit:
2375 				ifp->if_ierrors++;
2376 				SIP_INIT_RXDESC(sc, i);
2377 				bus_dmamap_sync(sc->sc_dmat,
2378 				    rxs->rxs_dmamap, 0,
2379 				    rxs->rxs_dmamap->dm_mapsize,
2380 				    BUS_DMASYNC_PREREAD);
2381 				continue;
2382 			}
2383 		}
2384 #else
2385 		/*
2386 		 * The SiS 900's receive buffers must be 4-byte aligned.
2387 		 * But this means that the data after the Ethernet header
2388 		 * is misaligned.  We must allocate a new buffer and
2389 		 * copy the data, shifted forward 2 bytes.
2390 		 */
2391 		MGETHDR(m, M_DONTWAIT, MT_DATA);
2392 		if (m == NULL) {
2393  dropit:
2394 			ifp->if_ierrors++;
2395 			SIP_INIT_RXDESC(sc, i);
2396 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2397 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2398 			continue;
2399 		}
2400 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2401 		if (len > (MHLEN - 2)) {
2402 			MCLGET(m, M_DONTWAIT);
2403 			if ((m->m_flags & M_EXT) == 0) {
2404 				m_freem(m);
2405 				goto dropit;
2406 			}
2407 		}
2408 		m->m_data += 2;
2409 
2410 		/*
2411 		 * Note that we use clusters for incoming frames, so the
2412 		 * buffer is virtually contiguous.
2413 		 */
2414 		memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2415 
2416 		/* Allow the receive descriptor to continue using its mbuf. */
2417 		SIP_INIT_RXDESC(sc, i);
2418 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2419 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2420 #endif /* __NO_STRICT_ALIGNMENT */
2421 
2422 		ifp->if_ipackets++;
2423 		m->m_pkthdr.rcvif = ifp;
2424 		m->m_pkthdr.len = m->m_len = len;
2425 
2426 #if NBPFILTER > 0
2427 		/*
2428 		 * Pass this up to any BPF listeners, but only
2429 		 * pass if up the stack if it's for us.
2430 		 */
2431 		if (ifp->if_bpf)
2432 			bpf_mtap(ifp->if_bpf, m);
2433 #endif /* NBPFILTER > 0 */
2434 
2435 		/* Pass it on. */
2436 		(*ifp->if_input)(ifp, m);
2437 	}
2438 
2439 	/* Update the receive pointer. */
2440 	sc->sc_rxptr = i;
2441 }
2442 
2443 /*
2444  * sip_tick:
2445  *
2446  *	One second timer, used to tick the MII.
2447  */
2448 static void
2449 sipcom_tick(void *arg)
2450 {
2451 	struct sip_softc *sc = arg;
2452 	int s;
2453 
2454 	s = splnet();
2455 #ifdef SIP_EVENT_COUNTERS
2456 	if (sc->sc_gigabit) {
2457 		/* Read PAUSE related counts from MIB registers. */
2458 		sc->sc_ev_rxpause.ev_count +=
2459 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
2460 				     SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2461 		sc->sc_ev_txpause.ev_count +=
2462 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
2463 				     SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2464 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2465 	}
2466 #endif /* SIP_EVENT_COUNTERS */
2467 	mii_tick(&sc->sc_mii);
2468 	splx(s);
2469 
2470 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2471 }
2472 
2473 /*
2474  * sip_reset:
2475  *
2476  *	Perform a soft reset on the SiS 900.
2477  */
2478 static bool
2479 sipcom_reset(struct sip_softc *sc)
2480 {
2481 	bus_space_tag_t st = sc->sc_st;
2482 	bus_space_handle_t sh = sc->sc_sh;
2483 	int i;
2484 
2485 	bus_space_write_4(st, sh, SIP_IER, 0);
2486 	bus_space_write_4(st, sh, SIP_IMR, 0);
2487 	bus_space_write_4(st, sh, SIP_RFCR, 0);
2488 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
2489 
2490 	for (i = 0; i < SIP_TIMEOUT; i++) {
2491 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2492 			break;
2493 		delay(2);
2494 	}
2495 
2496 	if (i == SIP_TIMEOUT) {
2497 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2498 		return false;
2499 	}
2500 
2501 	delay(1000);
2502 
2503 	if (sc->sc_gigabit) {
2504 		/*
2505 		 * Set the general purpose I/O bits.  Do it here in case we
2506 		 * need to have GPIO set up to talk to the media interface.
2507 		 */
2508 		bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2509 		delay(1000);
2510 	}
2511 	return true;
2512 }
2513 
2514 static void
2515 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2516 {
2517 	u_int32_t reg;
2518 	bus_space_tag_t st = sc->sc_st;
2519 	bus_space_handle_t sh = sc->sc_sh;
2520 	/*
2521 	 * Initialize the VLAN/IP receive control register.
2522 	 * We enable checksum computation on all incoming
2523 	 * packets, and do not reject packets w/ bad checksums.
2524 	 */
2525 	reg = 0;
2526 	if (capenable &
2527 	    (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
2528 		reg |= VRCR_IPEN;
2529 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2530 		reg |= VRCR_VTDEN|VRCR_VTREN;
2531 	bus_space_write_4(st, sh, SIP_VRCR, reg);
2532 
2533 	/*
2534 	 * Initialize the VLAN/IP transmit control register.
2535 	 * We enable outgoing checksum computation on a
2536 	 * per-packet basis.
2537 	 */
2538 	reg = 0;
2539 	if (capenable &
2540 	    (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2541 		reg |= VTCR_PPCHK;
2542 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2543 		reg |= VTCR_VPPTI;
2544 	bus_space_write_4(st, sh, SIP_VTCR, reg);
2545 
2546 	/*
2547 	 * If we're using VLANs, initialize the VLAN data register.
2548 	 * To understand why we bswap the VLAN Ethertype, see section
2549 	 * 4.2.36 of the DP83820 manual.
2550 	 */
2551 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2552 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2553 }
2554 
2555 /*
2556  * sip_init:		[ ifnet interface function ]
2557  *
2558  *	Initialize the interface.  Must be called at splnet().
2559  */
2560 static int
2561 sipcom_init(struct ifnet *ifp)
2562 {
2563 	struct sip_softc *sc = ifp->if_softc;
2564 	bus_space_tag_t st = sc->sc_st;
2565 	bus_space_handle_t sh = sc->sc_sh;
2566 	struct sip_txsoft *txs;
2567 	struct sip_rxsoft *rxs;
2568 	struct sip_desc *sipd;
2569 	int i, error = 0;
2570 
2571 	if (!device_has_power(&sc->sc_dev))
2572 		return EBUSY;
2573 
2574 	/*
2575 	 * Cancel any pending I/O.
2576 	 */
2577 	sipcom_stop(ifp, 0);
2578 
2579 	/*
2580 	 * Reset the chip to a known state.
2581 	 */
2582 	if (!sipcom_reset(sc))
2583 		return EBUSY;
2584 
2585 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2586 		/*
2587 		 * DP83815 manual, page 78:
2588 		 *    4.4 Recommended Registers Configuration
2589 		 *    For optimum performance of the DP83815, version noted
2590 		 *    as DP83815CVNG (SRR = 203h), the listed register
2591 		 *    modifications must be followed in sequence...
2592 		 *
2593 		 * It's not clear if this should be 302h or 203h because that
2594 		 * chip name is listed as SRR 302h in the description of the
2595 		 * SRR register.  However, my revision 302h DP83815 on the
2596 		 * Netgear FA311 purchased in 02/2001 needs these settings
2597 		 * to avoid tons of errors in AcceptPerfectMatch (non-
2598 		 * IFF_PROMISC) mode.  I do not know if other revisions need
2599 		 * this set or not.  [briggs -- 09 March 2001]
2600 		 *
2601 		 * Note that only the low-order 12 bits of 0xe4 are documented
2602 		 * and that this sets reserved bits in that register.
2603 		 */
2604 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
2605 
2606 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
2607 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
2608 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
2609 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
2610 
2611 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
2612 	}
2613 
2614 	/*
2615 	 * Initialize the transmit descriptor ring.
2616 	 */
2617 	for (i = 0; i < sc->sc_ntxdesc; i++) {
2618 		sipd = &sc->sc_txdescs[i];
2619 		memset(sipd, 0, sizeof(struct sip_desc));
2620 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
2621 	}
2622 	SIP_CDTXSYNC(sc, 0, sc->sc_ntxdesc,
2623 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2624 	sc->sc_txfree = sc->sc_ntxdesc;
2625 	sc->sc_txnext = 0;
2626 	sc->sc_txwin = 0;
2627 
2628 	/*
2629 	 * Initialize the transmit job descriptors.
2630 	 */
2631 	SIMPLEQ_INIT(&sc->sc_txfreeq);
2632 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
2633 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
2634 		txs = &sc->sc_txsoft[i];
2635 		txs->txs_mbuf = NULL;
2636 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2637 	}
2638 
2639 	/*
2640 	 * Initialize the receive descriptor and receive job
2641 	 * descriptor rings.
2642 	 */
2643 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2644 		rxs = &sc->sc_rxsoft[i];
2645 		if (rxs->rxs_mbuf == NULL) {
2646 			if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
2647 				printf("%s: unable to allocate or map rx "
2648 				    "buffer %d, error = %d\n",
2649 				    sc->sc_dev.dv_xname, i, error);
2650 				/*
2651 				 * XXX Should attempt to run with fewer receive
2652 				 * XXX buffers instead of just failing.
2653 				 */
2654 				sipcom_rxdrain(sc);
2655 				goto out;
2656 			}
2657 		} else
2658 			SIP_INIT_RXDESC(sc, i);
2659 	}
2660 	sc->sc_rxptr = 0;
2661 	sc->sc_rxdiscard = 0;
2662 	SIP_RXCHAIN_RESET(sc);
2663 
2664 	/*
2665 	 * Set the configuration register; it's already initialized
2666 	 * in sip_attach().
2667 	 */
2668 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2669 
2670 	/*
2671 	 * Initialize the prototype TXCFG register.
2672 	 */
2673 	if (sc->sc_gigabit) {
2674 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2675 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2676 	} else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2677 	     SIP_SIS900_REV(sc, SIS_REV_960) ||
2678 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2679 	    (sc->sc_cfg & CFG_EDBMASTEN)) {
2680 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
2681 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
2682 	} else {
2683 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2684 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2685 	}
2686 
2687 	sc->sc_txcfg |= TXCFG_ATP |
2688 	    __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
2689 	    sc->sc_tx_drain_thresh;
2690 	bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
2691 
2692 	/*
2693 	 * Initialize the receive drain threshold if we have never
2694 	 * done so.
2695 	 */
2696 	if (sc->sc_rx_drain_thresh == 0) {
2697 		/*
2698 		 * XXX This value should be tuned.  This is set to the
2699 		 * maximum of 248 bytes, and we may be able to improve
2700 		 * performance by decreasing it (although we should never
2701 		 * set this value lower than 2; 14 bytes are required to
2702 		 * filter the packet).
2703 		 */
2704 		sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
2705 	}
2706 
2707 	/*
2708 	 * Initialize the prototype RXCFG register.
2709 	 */
2710 	sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
2711 	/*
2712 	 * Accept long packets (including FCS) so we can handle
2713 	 * 802.1q-tagged frames and jumbo frames properly.
2714 	 */
2715 	if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2716 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2717 		sc->sc_rxcfg |= RXCFG_ALP;
2718 
2719 	/*
2720 	 * Checksum offloading is disabled if the user selects an MTU
2721 	 * larger than 8109.  (FreeBSD says 8152, but there is emperical
2722 	 * evidence that >8109 does not work on some boards, such as the
2723 	 * Planex GN-1000TE).
2724 	 */
2725 	if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2726 	    (ifp->if_capenable &
2727 	     (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2728 	      IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2729 	      IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
2730 		printf("%s: Checksum offloading does not work if MTU > 8109 - "
2731 		       "disabled.\n", sc->sc_dev.dv_xname);
2732 		ifp->if_capenable &=
2733 		    ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2734 		     IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2735 		     IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
2736 		ifp->if_csum_flags_tx = 0;
2737 		ifp->if_csum_flags_rx = 0;
2738 	}
2739 
2740 	bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
2741 
2742 	if (sc->sc_gigabit)
2743 		sipcom_dp83820_init(sc, ifp->if_capenable);
2744 
2745 	/*
2746 	 * Give the transmit and receive rings to the chip.
2747 	 */
2748 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2749 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2750 
2751 	/*
2752 	 * Initialize the interrupt mask.
2753 	 */
2754 	sc->sc_imr = sc->sc_bits.b_isr_dperr |
2755 	             sc->sc_bits.b_isr_sserr |
2756 		     sc->sc_bits.b_isr_rmabt |
2757 		     sc->sc_bits.b_isr_rtabt | ISR_RXSOVR |
2758 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2759 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2760 
2761 	/* Set up the receive filter. */
2762 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2763 
2764 	/*
2765 	 * Tune sc_rx_flow_thresh.
2766 	 * XXX "More than 8KB" is too short for jumbo frames.
2767 	 * XXX TODO: Threshold value should be user-settable.
2768 	 */
2769 	sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2770 				 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2771 				 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2772 
2773 	/*
2774 	 * Set the current media.  Do this after initializing the prototype
2775 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2776 	 * control.
2777 	 */
2778 	mii_mediachg(&sc->sc_mii);
2779 
2780 	/*
2781 	 * Set the interrupt hold-off timer to 100us.
2782 	 */
2783 	if (sc->sc_gigabit)
2784 		bus_space_write_4(st, sh, SIP_IHR, 0x01);
2785 
2786 	/*
2787 	 * Enable interrupts.
2788 	 */
2789 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
2790 
2791 	/*
2792 	 * Start the transmit and receive processes.
2793 	 */
2794 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2795 
2796 	/*
2797 	 * Start the one second MII clock.
2798 	 */
2799 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2800 
2801 	/*
2802 	 * ...all done!
2803 	 */
2804 	ifp->if_flags |= IFF_RUNNING;
2805 	ifp->if_flags &= ~IFF_OACTIVE;
2806 	sc->sc_if_flags = ifp->if_flags;
2807 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2808 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2809 	sc->sc_prev.if_capenable = ifp->if_capenable;
2810 
2811  out:
2812 	if (error)
2813 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2814 	return (error);
2815 }
2816 
2817 /*
2818  * sip_drain:
2819  *
2820  *	Drain the receive queue.
2821  */
2822 static void
2823 sipcom_rxdrain(struct sip_softc *sc)
2824 {
2825 	struct sip_rxsoft *rxs;
2826 	int i;
2827 
2828 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2829 		rxs = &sc->sc_rxsoft[i];
2830 		if (rxs->rxs_mbuf != NULL) {
2831 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2832 			m_freem(rxs->rxs_mbuf);
2833 			rxs->rxs_mbuf = NULL;
2834 		}
2835 	}
2836 }
2837 
2838 /*
2839  * sip_stop:		[ ifnet interface function ]
2840  *
2841  *	Stop transmission on the interface.
2842  */
2843 static void
2844 sipcom_stop(struct ifnet *ifp, int disable)
2845 {
2846 	struct sip_softc *sc = ifp->if_softc;
2847 	bus_space_tag_t st = sc->sc_st;
2848 	bus_space_handle_t sh = sc->sc_sh;
2849 	struct sip_txsoft *txs;
2850 	u_int32_t cmdsts = 0;		/* DEBUG */
2851 
2852 	/*
2853 	 * Stop the one second clock.
2854 	 */
2855 	callout_stop(&sc->sc_tick_ch);
2856 
2857 	/* Down the MII. */
2858 	mii_down(&sc->sc_mii);
2859 
2860 	/*
2861 	 * Disable interrupts.
2862 	 */
2863 	bus_space_write_4(st, sh, SIP_IER, 0);
2864 
2865 	/*
2866 	 * Stop receiver and transmitter.
2867 	 */
2868 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2869 
2870 	/*
2871 	 * Release any queued transmit buffers.
2872 	 */
2873 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2874 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2875 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2876 		    (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
2877 		     CMDSTS_INTR) == 0)
2878 			printf("%s: sip_stop: last descriptor does not "
2879 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
2880 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2881 #ifdef DIAGNOSTIC
2882 		if (txs->txs_mbuf == NULL) {
2883 			printf("%s: dirty txsoft with no mbuf chain\n",
2884 			    sc->sc_dev.dv_xname);
2885 			panic("sip_stop");
2886 		}
2887 #endif
2888 		cmdsts |=		/* DEBUG */
2889 		    le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
2890 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2891 		m_freem(txs->txs_mbuf);
2892 		txs->txs_mbuf = NULL;
2893 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2894 	}
2895 
2896 	if (disable)
2897 		sipcom_rxdrain(sc);
2898 
2899 	/*
2900 	 * Mark the interface down and cancel the watchdog timer.
2901 	 */
2902 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2903 	ifp->if_timer = 0;
2904 
2905 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2906 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2907 		printf("%s: sip_stop: no INTR bits set in dirty tx "
2908 		    "descriptors\n", sc->sc_dev.dv_xname);
2909 }
2910 
2911 /*
2912  * sip_read_eeprom:
2913  *
2914  *	Read data from the serial EEPROM.
2915  */
2916 static void
2917 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2918     u_int16_t *data)
2919 {
2920 	bus_space_tag_t st = sc->sc_st;
2921 	bus_space_handle_t sh = sc->sc_sh;
2922 	u_int16_t reg;
2923 	int i, x;
2924 
2925 	for (i = 0; i < wordcnt; i++) {
2926 		/* Send CHIP SELECT. */
2927 		reg = EROMAR_EECS;
2928 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
2929 
2930 		/* Shift in the READ opcode. */
2931 		for (x = 3; x > 0; x--) {
2932 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2933 				reg |= EROMAR_EEDI;
2934 			else
2935 				reg &= ~EROMAR_EEDI;
2936 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2937 			bus_space_write_4(st, sh, SIP_EROMAR,
2938 			    reg | EROMAR_EESK);
2939 			delay(4);
2940 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2941 			delay(4);
2942 		}
2943 
2944 		/* Shift in address. */
2945 		for (x = 6; x > 0; x--) {
2946 			if ((word + i) & (1 << (x - 1)))
2947 				reg |= EROMAR_EEDI;
2948 			else
2949 				reg &= ~EROMAR_EEDI;
2950 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2951 			bus_space_write_4(st, sh, SIP_EROMAR,
2952 			    reg | EROMAR_EESK);
2953 			delay(4);
2954 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2955 			delay(4);
2956 		}
2957 
2958 		/* Shift out data. */
2959 		reg = EROMAR_EECS;
2960 		data[i] = 0;
2961 		for (x = 16; x > 0; x--) {
2962 			bus_space_write_4(st, sh, SIP_EROMAR,
2963 			    reg | EROMAR_EESK);
2964 			delay(4);
2965 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2966 				data[i] |= (1 << (x - 1));
2967 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2968 			delay(4);
2969 		}
2970 
2971 		/* Clear CHIP SELECT. */
2972 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
2973 		delay(4);
2974 	}
2975 }
2976 
2977 /*
2978  * sipcom_add_rxbuf:
2979  *
2980  *	Add a receive buffer to the indicated descriptor.
2981  */
2982 static int
2983 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
2984 {
2985 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2986 	struct mbuf *m;
2987 	int error;
2988 
2989 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2990 	if (m == NULL)
2991 		return (ENOBUFS);
2992 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2993 
2994 	MCLGET(m, M_DONTWAIT);
2995 	if ((m->m_flags & M_EXT) == 0) {
2996 		m_freem(m);
2997 		return (ENOBUFS);
2998 	}
2999 
3000 	/* XXX I don't believe this is necessary. --dyoung */
3001 	if (sc->sc_gigabit)
3002 		m->m_len = sc->sc_parm->p_rxbuf_len;
3003 
3004 	if (rxs->rxs_mbuf != NULL)
3005 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
3006 
3007 	rxs->rxs_mbuf = m;
3008 
3009 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
3010 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
3011 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
3012 	if (error) {
3013 		printf("%s: can't load rx DMA map %d, error = %d\n",
3014 		    sc->sc_dev.dv_xname, idx, error);
3015 		panic("%s", __func__);		/* XXX */
3016 	}
3017 
3018 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3019 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3020 
3021 	SIP_INIT_RXDESC(sc, idx);
3022 
3023 	return (0);
3024 }
3025 
3026 /*
3027  * sip_sis900_set_filter:
3028  *
3029  *	Set up the receive filter.
3030  */
3031 static void
3032 sipcom_sis900_set_filter(struct sip_softc *sc)
3033 {
3034 	bus_space_tag_t st = sc->sc_st;
3035 	bus_space_handle_t sh = sc->sc_sh;
3036 	struct ethercom *ec = &sc->sc_ethercom;
3037 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3038 	struct ether_multi *enm;
3039 	const u_int8_t *cp;
3040 	struct ether_multistep step;
3041 	u_int32_t crc, mchash[16];
3042 
3043 	/*
3044 	 * Initialize the prototype RFCR.
3045 	 */
3046 	sc->sc_rfcr = RFCR_RFEN;
3047 	if (ifp->if_flags & IFF_BROADCAST)
3048 		sc->sc_rfcr |= RFCR_AAB;
3049 	if (ifp->if_flags & IFF_PROMISC) {
3050 		sc->sc_rfcr |= RFCR_AAP;
3051 		goto allmulti;
3052 	}
3053 
3054 	/*
3055 	 * Set up the multicast address filter by passing all multicast
3056 	 * addresses through a CRC generator, and then using the high-order
3057 	 * 6 bits as an index into the 128 bit multicast hash table (only
3058 	 * the lower 16 bits of each 32 bit multicast hash register are
3059 	 * valid).  The high order bits select the register, while the
3060 	 * rest of the bits select the bit within the register.
3061 	 */
3062 
3063 	memset(mchash, 0, sizeof(mchash));
3064 
3065 	/*
3066 	 * SiS900 (at least SiS963) requires us to register the address of
3067 	 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3068 	 */
3069 	crc = 0x0ed423f9;
3070 
3071 	if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3072 	    SIP_SIS900_REV(sc, SIS_REV_960) ||
3073 	    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3074 		/* Just want the 8 most significant bits. */
3075 		crc >>= 24;
3076 	} else {
3077 		/* Just want the 7 most significant bits. */
3078 		crc >>= 25;
3079 	}
3080 
3081 	/* Set the corresponding bit in the hash table. */
3082 	mchash[crc >> 4] |= 1 << (crc & 0xf);
3083 
3084 	ETHER_FIRST_MULTI(step, ec, enm);
3085 	while (enm != NULL) {
3086 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3087 			/*
3088 			 * We must listen to a range of multicast addresses.
3089 			 * For now, just accept all multicasts, rather than
3090 			 * trying to set only those filter bits needed to match
3091 			 * the range.  (At this time, the only use of address
3092 			 * ranges is for IP multicast routing, for which the
3093 			 * range is big enough to require all bits set.)
3094 			 */
3095 			goto allmulti;
3096 		}
3097 
3098 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3099 
3100 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3101 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
3102 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3103 			/* Just want the 8 most significant bits. */
3104 			crc >>= 24;
3105 		} else {
3106 			/* Just want the 7 most significant bits. */
3107 			crc >>= 25;
3108 		}
3109 
3110 		/* Set the corresponding bit in the hash table. */
3111 		mchash[crc >> 4] |= 1 << (crc & 0xf);
3112 
3113 		ETHER_NEXT_MULTI(step, enm);
3114 	}
3115 
3116 	ifp->if_flags &= ~IFF_ALLMULTI;
3117 	goto setit;
3118 
3119  allmulti:
3120 	ifp->if_flags |= IFF_ALLMULTI;
3121 	sc->sc_rfcr |= RFCR_AAM;
3122 
3123  setit:
3124 #define	FILTER_EMIT(addr, data)						\
3125 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
3126 	delay(1);							\
3127 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
3128 	delay(1)
3129 
3130 	/*
3131 	 * Disable receive filter, and program the node address.
3132 	 */
3133 	cp = CLLADDR(ifp->if_sadl);
3134 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
3135 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
3136 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
3137 
3138 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3139 		/*
3140 		 * Program the multicast hash table.
3141 		 */
3142 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
3143 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
3144 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
3145 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
3146 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
3147 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
3148 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
3149 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
3150 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3151 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
3152 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3153 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
3154 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
3155 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
3156 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
3157 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
3158 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
3159 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
3160 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
3161 		}
3162 	}
3163 #undef FILTER_EMIT
3164 
3165 	/*
3166 	 * Re-enable the receiver filter.
3167 	 */
3168 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3169 }
3170 
3171 /*
3172  * sip_dp83815_set_filter:
3173  *
3174  *	Set up the receive filter.
3175  */
3176 static void
3177 sipcom_dp83815_set_filter(struct sip_softc *sc)
3178 {
3179 	bus_space_tag_t st = sc->sc_st;
3180 	bus_space_handle_t sh = sc->sc_sh;
3181 	struct ethercom *ec = &sc->sc_ethercom;
3182 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3183 	struct ether_multi *enm;
3184 	const u_int8_t *cp;
3185 	struct ether_multistep step;
3186 	u_int32_t crc, hash, slot, bit;
3187 #define	MCHASH_NWORDS_83820	128
3188 #define	MCHASH_NWORDS_83815	32
3189 #define	MCHASH_NWORDS	MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3190 	u_int16_t mchash[MCHASH_NWORDS];
3191 	int i;
3192 
3193 	/*
3194 	 * Initialize the prototype RFCR.
3195 	 * Enable the receive filter, and accept on
3196 	 *    Perfect (destination address) Match
3197 	 * If IFF_BROADCAST, also accept all broadcast packets.
3198 	 * If IFF_PROMISC, accept all unicast packets (and later, set
3199 	 *    IFF_ALLMULTI and accept all multicast, too).
3200 	 */
3201 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3202 	if (ifp->if_flags & IFF_BROADCAST)
3203 		sc->sc_rfcr |= RFCR_AAB;
3204 	if (ifp->if_flags & IFF_PROMISC) {
3205 		sc->sc_rfcr |= RFCR_AAP;
3206 		goto allmulti;
3207 	}
3208 
3209 	/*
3210          * Set up the DP83820/DP83815 multicast address filter by
3211          * passing all multicast addresses through a CRC generator,
3212          * and then using the high-order 11/9 bits as an index into
3213          * the 2048/512 bit multicast hash table.  The high-order
3214          * 7/5 bits select the slot, while the low-order 4 bits
3215          * select the bit within the slot.  Note that only the low
3216          * 16-bits of each filter word are used, and there are
3217          * 128/32 filter words.
3218 	 */
3219 
3220 	memset(mchash, 0, sizeof(mchash));
3221 
3222 	ifp->if_flags &= ~IFF_ALLMULTI;
3223 	ETHER_FIRST_MULTI(step, ec, enm);
3224 	if (enm == NULL)
3225 		goto setit;
3226 	while (enm != NULL) {
3227 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3228 			/*
3229 			 * We must listen to a range of multicast addresses.
3230 			 * For now, just accept all multicasts, rather than
3231 			 * trying to set only those filter bits needed to match
3232 			 * the range.  (At this time, the only use of address
3233 			 * ranges is for IP multicast routing, for which the
3234 			 * range is big enough to require all bits set.)
3235 			 */
3236 			goto allmulti;
3237 		}
3238 
3239 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3240 
3241 		if (sc->sc_gigabit) {
3242 			/* Just want the 11 most significant bits. */
3243 			hash = crc >> 21;
3244 		} else {
3245 			/* Just want the 9 most significant bits. */
3246 			hash = crc >> 23;
3247 		}
3248 
3249 		slot = hash >> 4;
3250 		bit = hash & 0xf;
3251 
3252 		/* Set the corresponding bit in the hash table. */
3253 		mchash[slot] |= 1 << bit;
3254 
3255 		ETHER_NEXT_MULTI(step, enm);
3256 	}
3257 	sc->sc_rfcr |= RFCR_MHEN;
3258 	goto setit;
3259 
3260  allmulti:
3261 	ifp->if_flags |= IFF_ALLMULTI;
3262 	sc->sc_rfcr |= RFCR_AAM;
3263 
3264  setit:
3265 #define	FILTER_EMIT(addr, data)						\
3266 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
3267 	delay(1);							\
3268 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
3269 	delay(1)
3270 
3271 	/*
3272 	 * Disable receive filter, and program the node address.
3273 	 */
3274 	cp = CLLADDR(ifp->if_sadl);
3275 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3276 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3277 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3278 
3279 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3280 		int nwords =
3281 		    sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3282 		/*
3283 		 * Program the multicast hash table.
3284 		 */
3285 		for (i = 0; i < nwords; i++) {
3286 			FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
3287 		}
3288 	}
3289 #undef FILTER_EMIT
3290 #undef MCHASH_NWORDS
3291 #undef MCHASH_NWORDS_83815
3292 #undef MCHASH_NWORDS_83820
3293 
3294 	/*
3295 	 * Re-enable the receiver filter.
3296 	 */
3297 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3298 }
3299 
3300 /*
3301  * sip_dp83820_mii_readreg:	[mii interface function]
3302  *
3303  *	Read a PHY register on the MII of the DP83820.
3304  */
3305 static int
3306 sipcom_dp83820_mii_readreg(struct device *self, int phy, int reg)
3307 {
3308 	struct sip_softc *sc = (void *) self;
3309 
3310 	if (sc->sc_cfg & CFG_TBI_EN) {
3311 		bus_addr_t tbireg;
3312 		int rv;
3313 
3314 		if (phy != 0)
3315 			return (0);
3316 
3317 		switch (reg) {
3318 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3319 		case MII_BMSR:		tbireg = SIP_TBISR; break;
3320 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3321 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3322 		case MII_ANER:		tbireg = SIP_TANER; break;
3323 		case MII_EXTSR:
3324 			/*
3325 			 * Don't even bother reading the TESR register.
3326 			 * The manual documents that the device has
3327 			 * 1000baseX full/half capability, but the
3328 			 * register itself seems read back 0 on some
3329 			 * boards.  Just hard-code the result.
3330 			 */
3331 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3332 
3333 		default:
3334 			return (0);
3335 		}
3336 
3337 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3338 		if (tbireg == SIP_TBISR) {
3339 			/* LINK and ACOMP are switched! */
3340 			int val = rv;
3341 
3342 			rv = 0;
3343 			if (val & TBISR_MR_LINK_STATUS)
3344 				rv |= BMSR_LINK;
3345 			if (val & TBISR_MR_AN_COMPLETE)
3346 				rv |= BMSR_ACOMP;
3347 
3348 			/*
3349 			 * The manual claims this register reads back 0
3350 			 * on hard and soft reset.  But we want to let
3351 			 * the gentbi driver know that we support auto-
3352 			 * negotiation, so hard-code this bit in the
3353 			 * result.
3354 			 */
3355 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
3356 		}
3357 
3358 		return (rv);
3359 	}
3360 
3361 	return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
3362 }
3363 
3364 /*
3365  * sip_dp83820_mii_writereg:	[mii interface function]
3366  *
3367  *	Write a PHY register on the MII of the DP83820.
3368  */
3369 static void
3370 sipcom_dp83820_mii_writereg(struct device *self, int phy, int reg, int val)
3371 {
3372 	struct sip_softc *sc = (void *) self;
3373 
3374 	if (sc->sc_cfg & CFG_TBI_EN) {
3375 		bus_addr_t tbireg;
3376 
3377 		if (phy != 0)
3378 			return;
3379 
3380 		switch (reg) {
3381 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3382 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3383 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3384 		default:
3385 			return;
3386 		}
3387 
3388 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3389 		return;
3390 	}
3391 
3392 	mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
3393 }
3394 
3395 /*
3396  * sip_dp83820_mii_statchg:	[mii interface function]
3397  *
3398  *	Callback from MII layer when media changes.
3399  */
3400 static void
3401 sipcom_dp83820_mii_statchg(struct device *self)
3402 {
3403 	struct sip_softc *sc = (struct sip_softc *) self;
3404 	struct mii_data *mii = &sc->sc_mii;
3405 	u_int32_t cfg, pcr;
3406 
3407 	/*
3408 	 * Get flow control negotiation result.
3409 	 */
3410 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3411 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3412 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3413 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3414 	}
3415 
3416 	/*
3417 	 * Update TXCFG for full-duplex operation.
3418 	 */
3419 	if ((mii->mii_media_active & IFM_FDX) != 0)
3420 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3421 	else
3422 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3423 
3424 	/*
3425 	 * Update RXCFG for full-duplex or loopback.
3426 	 */
3427 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3428 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3429 		sc->sc_rxcfg |= RXCFG_ATX;
3430 	else
3431 		sc->sc_rxcfg &= ~RXCFG_ATX;
3432 
3433 	/*
3434 	 * Update CFG for MII/GMII.
3435 	 */
3436 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3437 		cfg = sc->sc_cfg | CFG_MODE_1000;
3438 	else
3439 		cfg = sc->sc_cfg;
3440 
3441 	/*
3442 	 * 802.3x flow control.
3443 	 */
3444 	pcr = 0;
3445 	if (sc->sc_flowflags & IFM_FLOW) {
3446 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3447 			pcr |= sc->sc_rx_flow_thresh;
3448 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3449 			pcr |= PCR_PSEN | PCR_PS_MCAST;
3450 	}
3451 
3452 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3453 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3454 	    sc->sc_txcfg);
3455 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3456 	    sc->sc_rxcfg);
3457 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3458 }
3459 
3460 /*
3461  * sip_mii_bitbang_read: [mii bit-bang interface function]
3462  *
3463  *	Read the MII serial port for the MII bit-bang module.
3464  */
3465 static u_int32_t
3466 sipcom_mii_bitbang_read(struct device *self)
3467 {
3468 	struct sip_softc *sc = (void *) self;
3469 
3470 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3471 }
3472 
3473 /*
3474  * sip_mii_bitbang_write: [mii big-bang interface function]
3475  *
3476  *	Write the MII serial port for the MII bit-bang module.
3477  */
3478 static void
3479 sipcom_mii_bitbang_write(struct device *self, u_int32_t val)
3480 {
3481 	struct sip_softc *sc = (void *) self;
3482 
3483 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3484 }
3485 
3486 /*
3487  * sip_sis900_mii_readreg:	[mii interface function]
3488  *
3489  *	Read a PHY register on the MII.
3490  */
3491 static int
3492 sipcom_sis900_mii_readreg(struct device *self, int phy, int reg)
3493 {
3494 	struct sip_softc *sc = (struct sip_softc *) self;
3495 	u_int32_t enphy;
3496 
3497 	/*
3498 	 * The PHY of recent SiS chipsets is accessed through bitbang
3499 	 * operations.
3500 	 */
3501 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3502 		return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3503 		    phy, reg);
3504 
3505 #ifndef SIS900_MII_RESTRICT
3506 	/*
3507 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3508 	 * MII address 0.
3509 	 */
3510 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3511 		return (0);
3512 #endif
3513 
3514 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3515 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3516 	    ENPHY_RWCMD | ENPHY_ACCESS);
3517 	do {
3518 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3519 	} while (enphy & ENPHY_ACCESS);
3520 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3521 }
3522 
3523 /*
3524  * sip_sis900_mii_writereg:	[mii interface function]
3525  *
3526  *	Write a PHY register on the MII.
3527  */
3528 static void
3529 sipcom_sis900_mii_writereg(struct device *self, int phy, int reg, int val)
3530 {
3531 	struct sip_softc *sc = (struct sip_softc *) self;
3532 	u_int32_t enphy;
3533 
3534 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3535 		mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3536 		    phy, reg, val);
3537 		return;
3538 	}
3539 
3540 #ifndef SIS900_MII_RESTRICT
3541 	/*
3542 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3543 	 * MII address 0.
3544 	 */
3545 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3546 		return;
3547 #endif
3548 
3549 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3550 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3551 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3552 	do {
3553 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3554 	} while (enphy & ENPHY_ACCESS);
3555 }
3556 
3557 /*
3558  * sip_sis900_mii_statchg:	[mii interface function]
3559  *
3560  *	Callback from MII layer when media changes.
3561  */
3562 static void
3563 sipcom_sis900_mii_statchg(struct device *self)
3564 {
3565 	struct sip_softc *sc = (struct sip_softc *) self;
3566 	struct mii_data *mii = &sc->sc_mii;
3567 	u_int32_t flowctl;
3568 
3569 	/*
3570 	 * Get flow control negotiation result.
3571 	 */
3572 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3573 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3574 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3575 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3576 	}
3577 
3578 	/*
3579 	 * Update TXCFG for full-duplex operation.
3580 	 */
3581 	if ((mii->mii_media_active & IFM_FDX) != 0)
3582 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3583 	else
3584 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3585 
3586 	/*
3587 	 * Update RXCFG for full-duplex or loopback.
3588 	 */
3589 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3590 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3591 		sc->sc_rxcfg |= RXCFG_ATX;
3592 	else
3593 		sc->sc_rxcfg &= ~RXCFG_ATX;
3594 
3595 	/*
3596 	 * Update IMR for use of 802.3x flow control.
3597 	 */
3598 	if (sc->sc_flowflags & IFM_FLOW) {
3599 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3600 		flowctl = FLOWCTL_FLOWEN;
3601 	} else {
3602 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3603 		flowctl = 0;
3604 	}
3605 
3606 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3607 	    sc->sc_txcfg);
3608 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3609 	    sc->sc_rxcfg);
3610 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3611 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3612 }
3613 
3614 /*
3615  * sip_dp83815_mii_readreg:	[mii interface function]
3616  *
3617  *	Read a PHY register on the MII.
3618  */
3619 static int
3620 sipcom_dp83815_mii_readreg(struct device *self, int phy, int reg)
3621 {
3622 	struct sip_softc *sc = (struct sip_softc *) self;
3623 	u_int32_t val;
3624 
3625 	/*
3626 	 * The DP83815 only has an internal PHY.  Only allow
3627 	 * MII address 0.
3628 	 */
3629 	if (phy != 0)
3630 		return (0);
3631 
3632 	/*
3633 	 * Apparently, after a reset, the DP83815 can take a while
3634 	 * to respond.  During this recovery period, the BMSR returns
3635 	 * a value of 0.  Catch this -- it's not supposed to happen
3636 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3637 	 * PHY to come back to life.
3638 	 *
3639 	 * This works out because the BMSR is the first register
3640 	 * read during the PHY probe process.
3641 	 */
3642 	do {
3643 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3644 	} while (reg == MII_BMSR && val == 0);
3645 
3646 	return (val & 0xffff);
3647 }
3648 
3649 /*
3650  * sip_dp83815_mii_writereg:	[mii interface function]
3651  *
3652  *	Write a PHY register to the MII.
3653  */
3654 static void
3655 sipcom_dp83815_mii_writereg(struct device *self, int phy, int reg, int val)
3656 {
3657 	struct sip_softc *sc = (struct sip_softc *) self;
3658 
3659 	/*
3660 	 * The DP83815 only has an internal PHY.  Only allow
3661 	 * MII address 0.
3662 	 */
3663 	if (phy != 0)
3664 		return;
3665 
3666 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3667 }
3668 
3669 /*
3670  * sip_dp83815_mii_statchg:	[mii interface function]
3671  *
3672  *	Callback from MII layer when media changes.
3673  */
3674 static void
3675 sipcom_dp83815_mii_statchg(struct device *self)
3676 {
3677 	struct sip_softc *sc = (struct sip_softc *) self;
3678 
3679 	/*
3680 	 * Update TXCFG for full-duplex operation.
3681 	 */
3682 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3683 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3684 	else
3685 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3686 
3687 	/*
3688 	 * Update RXCFG for full-duplex or loopback.
3689 	 */
3690 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3691 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3692 		sc->sc_rxcfg |= RXCFG_ATX;
3693 	else
3694 		sc->sc_rxcfg &= ~RXCFG_ATX;
3695 
3696 	/*
3697 	 * XXX 802.3x flow control.
3698 	 */
3699 
3700 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3701 	    sc->sc_txcfg);
3702 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3703 	    sc->sc_rxcfg);
3704 
3705 	/*
3706 	 * Some DP83815s experience problems when used with short
3707 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
3708 	 * sequence adjusts the DSP's signal attenuation to fix the
3709 	 * problem.
3710 	 */
3711 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3712 		uint32_t reg;
3713 
3714 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3715 
3716 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3717 		reg &= 0x0fff;
3718 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3719 		delay(100);
3720 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3721 		reg &= 0x00ff;
3722 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3723 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3724 			    0x00e8);
3725 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3726 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3727 			    reg | 0x20);
3728 		}
3729 
3730 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3731 	}
3732 }
3733 
3734 static void
3735 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3736     const struct pci_attach_args *pa, u_int8_t *enaddr)
3737 {
3738 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3739 	u_int8_t cksum, *e, match;
3740 	int i;
3741 
3742 	/*
3743 	 * EEPROM data format for the DP83820 can be found in
3744 	 * the DP83820 manual, section 4.2.4.
3745 	 */
3746 
3747 	sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3748 
3749 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3750 	match = ~(match - 1);
3751 
3752 	cksum = 0x55;
3753 	e = (u_int8_t *) eeprom_data;
3754 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3755 		cksum += *e++;
3756 
3757 	if (cksum != match)
3758 		printf("%s: Checksum (%x) mismatch (%x)",
3759 		    sc->sc_dev.dv_xname, cksum, match);
3760 
3761 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3762 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3763 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3764 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3765 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3766 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3767 }
3768 
3769 static void
3770 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3771 {
3772 	int i;
3773 
3774 	/*
3775 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
3776 	 * a reason, but I don't know it.
3777 	 */
3778 	for (i = 0; i < 10; i++)
3779 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3780 }
3781 
3782 static void
3783 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3784     const struct pci_attach_args *pa, u_int8_t *enaddr)
3785 {
3786 	u_int16_t myea[ETHER_ADDR_LEN / 2];
3787 
3788 	switch (sc->sc_rev) {
3789 	case SIS_REV_630S:
3790 	case SIS_REV_630E:
3791 	case SIS_REV_630EA1:
3792 	case SIS_REV_630ET:
3793 	case SIS_REV_635:
3794 		/*
3795 		 * The MAC address for the on-board Ethernet of
3796 		 * the SiS 630 chipset is in the NVRAM.  Kick
3797 		 * the chip into re-loading it from NVRAM, and
3798 		 * read the MAC address out of the filter registers.
3799 		 */
3800 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3801 
3802 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3803 		    RFCR_RFADDR_NODE0);
3804 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3805 		    0xffff;
3806 
3807 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3808 		    RFCR_RFADDR_NODE2);
3809 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3810 		    0xffff;
3811 
3812 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3813 		    RFCR_RFADDR_NODE4);
3814 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3815 		    0xffff;
3816 		break;
3817 
3818 	case SIS_REV_960:
3819 		{
3820 #define	SIS_SET_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3821 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3822 
3823 #define	SIS_CLR_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3824 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3825 
3826 			int waittime, i;
3827 
3828 			/* Allow to read EEPROM from LAN. It is shared
3829 			 * between a 1394 controller and the NIC and each
3830 			 * time we access it, we need to set SIS_EECMD_REQ.
3831 			 */
3832 			SIS_SET_EROMAR(sc, EROMAR_REQ);
3833 
3834 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3835 				/* Force EEPROM to idle state. */
3836 
3837 				/*
3838 				 * XXX-cube This is ugly.  I'll look for docs about it.
3839 				 */
3840 				SIS_SET_EROMAR(sc, EROMAR_EECS);
3841 				sipcom_sis900_eeprom_delay(sc);
3842 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3843 					SIS_SET_EROMAR(sc, EROMAR_EESK);
3844 					sipcom_sis900_eeprom_delay(sc);
3845 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
3846 					sipcom_sis900_eeprom_delay(sc);
3847 				}
3848 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
3849 				sipcom_sis900_eeprom_delay(sc);
3850 				bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3851 
3852 				if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3853 					sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3854 					    sizeof(myea) / sizeof(myea[0]), myea);
3855 					break;
3856 				}
3857 				DELAY(1);
3858 			}
3859 
3860 			/*
3861 			 * Set SIS_EECTL_CLK to high, so a other master
3862 			 * can operate on the i2c bus.
3863 			 */
3864 			SIS_SET_EROMAR(sc, EROMAR_EESK);
3865 
3866 			/* Refuse EEPROM access by LAN */
3867 			SIS_SET_EROMAR(sc, EROMAR_DONE);
3868 		} break;
3869 
3870 	default:
3871 		sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3872 		    sizeof(myea) / sizeof(myea[0]), myea);
3873 	}
3874 
3875 	enaddr[0] = myea[0] & 0xff;
3876 	enaddr[1] = myea[0] >> 8;
3877 	enaddr[2] = myea[1] & 0xff;
3878 	enaddr[3] = myea[1] >> 8;
3879 	enaddr[4] = myea[2] & 0xff;
3880 	enaddr[5] = myea[2] >> 8;
3881 }
3882 
3883 /* Table and macro to bit-reverse an octet. */
3884 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3885 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3886 
3887 static void
3888 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3889     const struct pci_attach_args *pa, u_int8_t *enaddr)
3890 {
3891 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3892 	u_int8_t cksum, *e, match;
3893 	int i;
3894 
3895 	sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3896 	    sizeof(eeprom_data[0]), eeprom_data);
3897 
3898 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3899 	match = ~(match - 1);
3900 
3901 	cksum = 0x55;
3902 	e = (u_int8_t *) eeprom_data;
3903 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3904 		cksum += *e++;
3905 	}
3906 	if (cksum != match) {
3907 		printf("%s: Checksum (%x) mismatch (%x)",
3908 		    sc->sc_dev.dv_xname, cksum, match);
3909 	}
3910 
3911 	/*
3912 	 * Unrolled because it makes slightly more sense this way.
3913 	 * The DP83815 stores the MAC address in bit 0 of word 6
3914 	 * through bit 15 of word 8.
3915 	 */
3916 	ea = &eeprom_data[6];
3917 	enaddr[0] = ((*ea & 0x1) << 7);
3918 	ea++;
3919 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
3920 	enaddr[1] = ((*ea & 0x1FE) >> 1);
3921 	enaddr[2] = ((*ea & 0x1) << 7);
3922 	ea++;
3923 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
3924 	enaddr[3] = ((*ea & 0x1FE) >> 1);
3925 	enaddr[4] = ((*ea & 0x1) << 7);
3926 	ea++;
3927 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
3928 	enaddr[5] = ((*ea & 0x1FE) >> 1);
3929 
3930 	/*
3931 	 * In case that's not weird enough, we also need to reverse
3932 	 * the bits in each byte.  This all actually makes more sense
3933 	 * if you think about the EEPROM storage as an array of bits
3934 	 * being shifted into bytes, but that's not how we're looking
3935 	 * at it here...
3936 	 */
3937 	for (i = 0; i < 6 ;i++)
3938 		enaddr[i] = bbr(enaddr[i]);
3939 }
3940 
3941 /*
3942  * sip_mediastatus:	[ifmedia interface function]
3943  *
3944  *	Get the current interface media status.
3945  */
3946 static void
3947 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3948 {
3949 	struct sip_softc *sc = ifp->if_softc;
3950 
3951 	mii_pollstat(&sc->sc_mii);
3952 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
3953 	ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3954 			   sc->sc_flowflags;
3955 }
3956 
3957 /*
3958  * sip_mediachange:	[ifmedia interface function]
3959  *
3960  *	Set hardware to newly-selected media.
3961  */
3962 static int
3963 sipcom_mediachange(struct ifnet *ifp)
3964 {
3965 	struct sip_softc *sc = ifp->if_softc;
3966 
3967 	if (ifp->if_flags & IFF_UP)
3968 		mii_mediachg(&sc->sc_mii);
3969 	return (0);
3970 }
3971