xref: /netbsd-src/sys/dev/pci/if_sip.c (revision 7f21db1c0118155e0dd40b75182e30c589d9f63e)
1 /*	$NetBSD: if_sip.c,v 1.145 2010/01/19 22:07:01 pooka Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1999 Network Computer, Inc.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of Network Computer, Inc. nor the names of its
45  *    contributors may be used to endorse or promote products derived
46  *    from this software without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
49  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
50  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
51  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
52  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
53  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
54  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
55  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
56  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
57  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
58  * POSSIBILITY OF SUCH DAMAGE.
59  */
60 
61 /*
62  * Device driver for the Silicon Integrated Systems SiS 900,
63  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
64  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
65  * controllers.
66  *
67  * Originally written to support the SiS 900 by Jason R. Thorpe for
68  * Network Computer, Inc.
69  *
70  * TODO:
71  *
72  *	- Reduce the Rx interrupt load.
73  */
74 
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.145 2010/01/19 22:07:01 pooka Exp $");
77 
78 #include "rnd.h"
79 
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/mbuf.h>
84 #include <sys/malloc.h>
85 #include <sys/kernel.h>
86 #include <sys/socket.h>
87 #include <sys/ioctl.h>
88 #include <sys/errno.h>
89 #include <sys/device.h>
90 #include <sys/queue.h>
91 
92 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
93 
94 #if NRND > 0
95 #include <sys/rnd.h>
96 #endif
97 
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_ether.h>
102 
103 #include <net/bpf.h>
104 
105 #include <sys/bus.h>
106 #include <sys/intr.h>
107 #include <machine/endian.h>
108 
109 #include <dev/mii/mii.h>
110 #include <dev/mii/miivar.h>
111 #include <dev/mii/mii_bitbang.h>
112 
113 #include <dev/pci/pcireg.h>
114 #include <dev/pci/pcivar.h>
115 #include <dev/pci/pcidevs.h>
116 
117 #include <dev/pci/if_sipreg.h>
118 
119 /*
120  * Transmit descriptor list size.  This is arbitrary, but allocate
121  * enough descriptors for 128 pending transmissions, and 8 segments
122  * per packet (64 for DP83820 for jumbo frames).
123  *
124  * This MUST work out to a power of 2.
125  */
126 #define	GSIP_NTXSEGS_ALLOC 16
127 #define	SIP_NTXSEGS_ALLOC 8
128 
129 #define	SIP_TXQUEUELEN		256
130 #define	MAX_SIP_NTXDESC	\
131     (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
132 
133 /*
134  * Receive descriptor list size.  We have one Rx buffer per incoming
135  * packet, so this logic is a little simpler.
136  *
137  * Actually, on the DP83820, we allow the packet to consume more than
138  * one buffer, in order to support jumbo Ethernet frames.  In that
139  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
140  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
141  * so we'd better be quick about handling receive interrupts.
142  */
143 #define	GSIP_NRXDESC		256
144 #define	SIP_NRXDESC		128
145 
146 #define	MAX_SIP_NRXDESC	MAX(GSIP_NRXDESC, SIP_NRXDESC)
147 
148 /*
149  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
150  * a single clump that maps to a single DMA segment to make several things
151  * easier.
152  */
153 struct sip_control_data {
154 	/*
155 	 * The transmit descriptors.
156 	 */
157 	struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
158 
159 	/*
160 	 * The receive descriptors.
161 	 */
162 	struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
163 };
164 
165 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
166 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
167 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
168 
169 /*
170  * Software state for transmit jobs.
171  */
172 struct sip_txsoft {
173 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
174 	bus_dmamap_t txs_dmamap;	/* our DMA map */
175 	int txs_firstdesc;		/* first descriptor in packet */
176 	int txs_lastdesc;		/* last descriptor in packet */
177 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
178 };
179 
180 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
181 
182 /*
183  * Software state for receive jobs.
184  */
185 struct sip_rxsoft {
186 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
187 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
188 };
189 
190 enum sip_attach_stage {
191 	  SIP_ATTACH_FIN = 0
192 	, SIP_ATTACH_CREATE_RXMAP
193 	, SIP_ATTACH_CREATE_TXMAP
194 	, SIP_ATTACH_LOAD_MAP
195 	, SIP_ATTACH_CREATE_MAP
196 	, SIP_ATTACH_MAP_MEM
197 	, SIP_ATTACH_ALLOC_MEM
198 	, SIP_ATTACH_INTR
199 	, SIP_ATTACH_MAP
200 };
201 
202 /*
203  * Software state per device.
204  */
205 struct sip_softc {
206 	device_t sc_dev;		/* generic device information */
207 	struct device_suspensor		sc_suspensor;
208 	struct pmf_qual			sc_qual;
209 
210 	bus_space_tag_t sc_st;		/* bus space tag */
211 	bus_space_handle_t sc_sh;	/* bus space handle */
212 	bus_size_t sc_sz;		/* bus space size */
213 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
214 	pci_chipset_tag_t sc_pc;
215 	bus_dma_segment_t sc_seg;
216 	struct ethercom sc_ethercom;	/* ethernet common data */
217 
218 	const struct sip_product *sc_model; /* which model are we? */
219 	int sc_gigabit;			/* 1: 83820, 0: other */
220 	int sc_rev;			/* chip revision */
221 
222 	void *sc_ih;			/* interrupt cookie */
223 
224 	struct mii_data sc_mii;		/* MII/media information */
225 
226 	callout_t sc_tick_ch;		/* tick callout */
227 
228 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
229 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
230 
231 	/*
232 	 * Software state for transmit and receive descriptors.
233 	 */
234 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
235 	struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
236 
237 	/*
238 	 * Control data structures.
239 	 */
240 	struct sip_control_data *sc_control_data;
241 #define	sc_txdescs	sc_control_data->scd_txdescs
242 #define	sc_rxdescs	sc_control_data->scd_rxdescs
243 
244 #ifdef SIP_EVENT_COUNTERS
245 	/*
246 	 * Event counters.
247 	 */
248 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
249 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
250 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
251 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
252 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
253 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
254 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
255 	struct evcnt sc_ev_rxpause;	/* PAUSE received */
256 	/* DP83820 only */
257 	struct evcnt sc_ev_txpause;	/* PAUSE transmitted */
258 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
259 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
260 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
261 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
262 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
263 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
264 #endif /* SIP_EVENT_COUNTERS */
265 
266 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
267 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
268 	u_int32_t sc_imr;		/* prototype IMR register */
269 	u_int32_t sc_rfcr;		/* prototype RFCR register */
270 
271 	u_int32_t sc_cfg;		/* prototype CFG register */
272 
273 	u_int32_t sc_gpior;		/* prototype GPIOR register */
274 
275 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
276 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
277 
278 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
279 
280 	int	sc_flowflags;		/* 802.3x flow control flags */
281 	int	sc_rx_flow_thresh;	/* Rx FIFO threshold for flow control */
282 	int	sc_paused;		/* paused indication */
283 
284 	int	sc_txfree;		/* number of free Tx descriptors */
285 	int	sc_txnext;		/* next ready Tx descriptor */
286 	int	sc_txwin;		/* Tx descriptors since last intr */
287 
288 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
289 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
290 
291 	/* values of interface state at last init */
292 	struct {
293 		/* if_capenable */
294 		uint64_t	if_capenable;
295 		/* ec_capenable */
296 		int		ec_capenable;
297 		/* VLAN_ATTACHED */
298 		int		is_vlan;
299 	}	sc_prev;
300 
301 	short	sc_if_flags;
302 
303 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
304 	int	sc_rxdiscard;
305 	int	sc_rxlen;
306 	struct mbuf *sc_rxhead;
307 	struct mbuf *sc_rxtail;
308 	struct mbuf **sc_rxtailp;
309 
310 	int sc_ntxdesc;
311 	int sc_ntxdesc_mask;
312 
313 	int sc_nrxdesc_mask;
314 
315 	const struct sip_parm {
316 		const struct sip_regs {
317 			int r_rxcfg;
318 			int r_txcfg;
319 		} p_regs;
320 
321 		const struct sip_bits {
322 			uint32_t b_txcfg_mxdma_8;
323 			uint32_t b_txcfg_mxdma_16;
324 			uint32_t b_txcfg_mxdma_32;
325 			uint32_t b_txcfg_mxdma_64;
326 			uint32_t b_txcfg_mxdma_128;
327 			uint32_t b_txcfg_mxdma_256;
328 			uint32_t b_txcfg_mxdma_512;
329 			uint32_t b_txcfg_flth_mask;
330 			uint32_t b_txcfg_drth_mask;
331 
332 			uint32_t b_rxcfg_mxdma_8;
333 			uint32_t b_rxcfg_mxdma_16;
334 			uint32_t b_rxcfg_mxdma_32;
335 			uint32_t b_rxcfg_mxdma_64;
336 			uint32_t b_rxcfg_mxdma_128;
337 			uint32_t b_rxcfg_mxdma_256;
338 			uint32_t b_rxcfg_mxdma_512;
339 
340 			uint32_t b_isr_txrcmp;
341 			uint32_t b_isr_rxrcmp;
342 			uint32_t b_isr_dperr;
343 			uint32_t b_isr_sserr;
344 			uint32_t b_isr_rmabt;
345 			uint32_t b_isr_rtabt;
346 
347 			uint32_t b_cmdsts_size_mask;
348 		} p_bits;
349 		int		p_filtmem;
350 		int		p_rxbuf_len;
351 		bus_size_t	p_tx_dmamap_size;
352 		int		p_ntxsegs;
353 		int		p_ntxsegs_alloc;
354 		int		p_nrxdesc;
355 	} *sc_parm;
356 
357 	void (*sc_rxintr)(struct sip_softc *);
358 
359 #if NRND > 0
360 	rndsource_element_t rnd_source;	/* random source */
361 #endif
362 };
363 
364 #define	sc_bits	sc_parm->p_bits
365 #define	sc_regs	sc_parm->p_regs
366 
367 static const struct sip_parm sip_parm = {
368 	  .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
369 	, .p_rxbuf_len = MCLBYTES - 1	/* field width */
370 	, .p_tx_dmamap_size = MCLBYTES
371 	, .p_ntxsegs = 16
372 	, .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
373 	, .p_nrxdesc = SIP_NRXDESC
374 	, .p_bits = {
375 		  .b_txcfg_mxdma_8	= 0x00200000	/*       8 bytes */
376 		, .b_txcfg_mxdma_16	= 0x00300000	/*      16 bytes */
377 		, .b_txcfg_mxdma_32	= 0x00400000	/*      32 bytes */
378 		, .b_txcfg_mxdma_64	= 0x00500000	/*      64 bytes */
379 		, .b_txcfg_mxdma_128	= 0x00600000	/*     128 bytes */
380 		, .b_txcfg_mxdma_256	= 0x00700000	/*     256 bytes */
381 		, .b_txcfg_mxdma_512	= 0x00000000	/*     512 bytes */
382 		, .b_txcfg_flth_mask	= 0x00003f00	/* Tx fill threshold */
383 		, .b_txcfg_drth_mask	= 0x0000003f	/* Tx drain threshold */
384 
385 		, .b_rxcfg_mxdma_8	= 0x00200000	/*       8 bytes */
386 		, .b_rxcfg_mxdma_16	= 0x00300000	/*      16 bytes */
387 		, .b_rxcfg_mxdma_32	= 0x00400000	/*      32 bytes */
388 		, .b_rxcfg_mxdma_64	= 0x00500000	/*      64 bytes */
389 		, .b_rxcfg_mxdma_128	= 0x00600000	/*     128 bytes */
390 		, .b_rxcfg_mxdma_256	= 0x00700000	/*     256 bytes */
391 		, .b_rxcfg_mxdma_512	= 0x00000000	/*     512 bytes */
392 
393 		, .b_isr_txrcmp	= 0x02000000	/* transmit reset complete */
394 		, .b_isr_rxrcmp	= 0x01000000	/* receive reset complete */
395 		, .b_isr_dperr	= 0x00800000	/* detected parity error */
396 		, .b_isr_sserr	= 0x00400000	/* signalled system error */
397 		, .b_isr_rmabt	= 0x00200000	/* received master abort */
398 		, .b_isr_rtabt	= 0x00100000	/* received target abort */
399 		, .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
400 	}
401 	, .p_regs = {
402 		.r_rxcfg = OTHER_SIP_RXCFG,
403 		.r_txcfg = OTHER_SIP_TXCFG
404 	}
405 }, gsip_parm = {
406 	  .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
407 	, .p_rxbuf_len = MCLBYTES - 8
408 	, .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
409 	, .p_ntxsegs = 64
410 	, .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
411 	, .p_nrxdesc = GSIP_NRXDESC
412 	, .p_bits = {
413 		  .b_txcfg_mxdma_8	= 0x00100000	/*       8 bytes */
414 		, .b_txcfg_mxdma_16	= 0x00200000	/*      16 bytes */
415 		, .b_txcfg_mxdma_32	= 0x00300000	/*      32 bytes */
416 		, .b_txcfg_mxdma_64	= 0x00400000	/*      64 bytes */
417 		, .b_txcfg_mxdma_128	= 0x00500000	/*     128 bytes */
418 		, .b_txcfg_mxdma_256	= 0x00600000	/*     256 bytes */
419 		, .b_txcfg_mxdma_512	= 0x00700000	/*     512 bytes */
420 		, .b_txcfg_flth_mask	= 0x0000ff00	/* Fx fill threshold */
421 		, .b_txcfg_drth_mask	= 0x000000ff	/* Tx drain threshold */
422 
423 		, .b_rxcfg_mxdma_8	= 0x00100000	/*       8 bytes */
424 		, .b_rxcfg_mxdma_16	= 0x00200000	/*      16 bytes */
425 		, .b_rxcfg_mxdma_32	= 0x00300000	/*      32 bytes */
426 		, .b_rxcfg_mxdma_64	= 0x00400000	/*      64 bytes */
427 		, .b_rxcfg_mxdma_128	= 0x00500000	/*     128 bytes */
428 		, .b_rxcfg_mxdma_256	= 0x00600000	/*     256 bytes */
429 		, .b_rxcfg_mxdma_512	= 0x00700000	/*     512 bytes */
430 
431 		, .b_isr_txrcmp	= 0x00400000	/* transmit reset complete */
432 		, .b_isr_rxrcmp	= 0x00200000	/* receive reset complete */
433 		, .b_isr_dperr	= 0x00100000	/* detected parity error */
434 		, .b_isr_sserr	= 0x00080000	/* signalled system error */
435 		, .b_isr_rmabt	= 0x00040000	/* received master abort */
436 		, .b_isr_rtabt	= 0x00020000	/* received target abort */
437 		, .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
438 	}
439 	, .p_regs = {
440 		.r_rxcfg = DP83820_SIP_RXCFG,
441 		.r_txcfg = DP83820_SIP_TXCFG
442 	}
443 };
444 
445 static inline int
446 sip_nexttx(const struct sip_softc *sc, int x)
447 {
448 	return (x + 1) & sc->sc_ntxdesc_mask;
449 }
450 
451 static inline int
452 sip_nextrx(const struct sip_softc *sc, int x)
453 {
454 	return (x + 1) & sc->sc_nrxdesc_mask;
455 }
456 
457 /* 83820 only */
458 static inline void
459 sip_rxchain_reset(struct sip_softc *sc)
460 {
461 	sc->sc_rxtailp = &sc->sc_rxhead;
462 	*sc->sc_rxtailp = NULL;
463 	sc->sc_rxlen = 0;
464 }
465 
466 /* 83820 only */
467 static inline void
468 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
469 {
470 	*sc->sc_rxtailp = sc->sc_rxtail = m;
471 	sc->sc_rxtailp = &m->m_next;
472 }
473 
474 #ifdef SIP_EVENT_COUNTERS
475 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
476 #else
477 #define	SIP_EVCNT_INCR(ev)	/* nothing */
478 #endif
479 
480 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
481 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
482 
483 static inline void
484 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
485 {
486 	int x, n;
487 
488 	x = x0;
489 	n = n0;
490 
491 	/* If it will wrap around, sync to the end of the ring. */
492 	if (x + n > sc->sc_ntxdesc) {
493 		bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
494 		    SIP_CDTXOFF(x), sizeof(struct sip_desc) *
495 		    (sc->sc_ntxdesc - x), ops);
496 		n -= (sc->sc_ntxdesc - x);
497 		x = 0;
498 	}
499 
500 	/* Now sync whatever is left. */
501 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
502 	    SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
503 }
504 
505 static inline void
506 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
507 {
508 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
509 	    SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
510 }
511 
512 #if 0
513 #ifdef DP83820
514 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
515 	u_int32_t	sipd_cmdsts;	/* command/status word */
516 #else
517 	u_int32_t	sipd_cmdsts;	/* command/status word */
518 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
519 #endif /* DP83820 */
520 #endif /* 0 */
521 
522 static inline volatile uint32_t *
523 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
524 {
525 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
526 }
527 
528 static inline volatile uint32_t *
529 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
530 {
531 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
532 }
533 
534 static inline void
535 sip_init_rxdesc(struct sip_softc *sc, int x)
536 {
537 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
538 	struct sip_desc *sipd = &sc->sc_rxdescs[x];
539 
540 	sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
541 	*sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
542 	*sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
543 	    (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
544 	sipd->sipd_extsts = 0;
545 	sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
546 }
547 
548 #define	SIP_CHIP_VERS(sc, v, p, r)					\
549 	((sc)->sc_model->sip_vendor == (v) &&				\
550 	 (sc)->sc_model->sip_product == (p) &&				\
551 	 (sc)->sc_rev == (r))
552 
553 #define	SIP_CHIP_MODEL(sc, v, p)					\
554 	((sc)->sc_model->sip_vendor == (v) &&				\
555 	 (sc)->sc_model->sip_product == (p))
556 
557 #define	SIP_SIS900_REV(sc, rev)						\
558 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
559 
560 #define SIP_TIMEOUT 1000
561 
562 static int	sip_ifflags_cb(struct ethercom *);
563 static void	sipcom_start(struct ifnet *);
564 static void	sipcom_watchdog(struct ifnet *);
565 static int	sipcom_ioctl(struct ifnet *, u_long, void *);
566 static int	sipcom_init(struct ifnet *);
567 static void	sipcom_stop(struct ifnet *, int);
568 
569 static bool	sipcom_reset(struct sip_softc *);
570 static void	sipcom_rxdrain(struct sip_softc *);
571 static int	sipcom_add_rxbuf(struct sip_softc *, int);
572 static void	sipcom_read_eeprom(struct sip_softc *, int, int,
573 				      u_int16_t *);
574 static void	sipcom_tick(void *);
575 
576 static void	sipcom_sis900_set_filter(struct sip_softc *);
577 static void	sipcom_dp83815_set_filter(struct sip_softc *);
578 
579 static void	sipcom_dp83820_read_macaddr(struct sip_softc *,
580 		    const struct pci_attach_args *, u_int8_t *);
581 static void	sipcom_sis900_eeprom_delay(struct sip_softc *sc);
582 static void	sipcom_sis900_read_macaddr(struct sip_softc *,
583 		    const struct pci_attach_args *, u_int8_t *);
584 static void	sipcom_dp83815_read_macaddr(struct sip_softc *,
585 		    const struct pci_attach_args *, u_int8_t *);
586 
587 static int	sipcom_intr(void *);
588 static void	sipcom_txintr(struct sip_softc *);
589 static void	sip_rxintr(struct sip_softc *);
590 static void	gsip_rxintr(struct sip_softc *);
591 
592 static int	sipcom_dp83820_mii_readreg(device_t, int, int);
593 static void	sipcom_dp83820_mii_writereg(device_t, int, int, int);
594 static void	sipcom_dp83820_mii_statchg(device_t);
595 
596 static int	sipcom_sis900_mii_readreg(device_t, int, int);
597 static void	sipcom_sis900_mii_writereg(device_t, int, int, int);
598 static void	sipcom_sis900_mii_statchg(device_t);
599 
600 static int	sipcom_dp83815_mii_readreg(device_t, int, int);
601 static void	sipcom_dp83815_mii_writereg(device_t, int, int, int);
602 static void	sipcom_dp83815_mii_statchg(device_t);
603 
604 static void	sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
605 
606 static int	sipcom_match(device_t, cfdata_t, void *);
607 static void	sipcom_attach(device_t, device_t, void *);
608 static void	sipcom_do_detach(device_t, enum sip_attach_stage);
609 static int	sipcom_detach(device_t, int);
610 static bool	sipcom_resume(device_t, pmf_qual_t);
611 static bool	sipcom_suspend(device_t, pmf_qual_t);
612 
613 int	gsip_copy_small = 0;
614 int	sip_copy_small = 0;
615 
616 CFATTACH_DECL3_NEW(gsip, sizeof(struct sip_softc),
617     sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
618     DVF_DETACH_SHUTDOWN);
619 CFATTACH_DECL3_NEW(sip, sizeof(struct sip_softc),
620     sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
621     DVF_DETACH_SHUTDOWN);
622 
623 /*
624  * Descriptions of the variants of the SiS900.
625  */
626 struct sip_variant {
627 	int	(*sipv_mii_readreg)(device_t, int, int);
628 	void	(*sipv_mii_writereg)(device_t, int, int, int);
629 	void	(*sipv_mii_statchg)(device_t);
630 	void	(*sipv_set_filter)(struct sip_softc *);
631 	void	(*sipv_read_macaddr)(struct sip_softc *,
632 		    const struct pci_attach_args *, u_int8_t *);
633 };
634 
635 static u_int32_t sipcom_mii_bitbang_read(device_t);
636 static void	sipcom_mii_bitbang_write(device_t, u_int32_t);
637 
638 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
639 	sipcom_mii_bitbang_read,
640 	sipcom_mii_bitbang_write,
641 	{
642 		EROMAR_MDIO,		/* MII_BIT_MDO */
643 		EROMAR_MDIO,		/* MII_BIT_MDI */
644 		EROMAR_MDC,		/* MII_BIT_MDC */
645 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
646 		0,			/* MII_BIT_DIR_PHY_HOST */
647 	}
648 };
649 
650 static const struct sip_variant sipcom_variant_dp83820 = {
651 	sipcom_dp83820_mii_readreg,
652 	sipcom_dp83820_mii_writereg,
653 	sipcom_dp83820_mii_statchg,
654 	sipcom_dp83815_set_filter,
655 	sipcom_dp83820_read_macaddr,
656 };
657 
658 static const struct sip_variant sipcom_variant_sis900 = {
659 	sipcom_sis900_mii_readreg,
660 	sipcom_sis900_mii_writereg,
661 	sipcom_sis900_mii_statchg,
662 	sipcom_sis900_set_filter,
663 	sipcom_sis900_read_macaddr,
664 };
665 
666 static const struct sip_variant sipcom_variant_dp83815 = {
667 	sipcom_dp83815_mii_readreg,
668 	sipcom_dp83815_mii_writereg,
669 	sipcom_dp83815_mii_statchg,
670 	sipcom_dp83815_set_filter,
671 	sipcom_dp83815_read_macaddr,
672 };
673 
674 
675 /*
676  * Devices supported by this driver.
677  */
678 static const struct sip_product {
679 	pci_vendor_id_t		sip_vendor;
680 	pci_product_id_t	sip_product;
681 	const char		*sip_name;
682 	const struct sip_variant *sip_variant;
683 	int			sip_gigabit;
684 } sipcom_products[] = {
685 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
686 	  "NatSemi DP83820 Gigabit Ethernet",
687 	  &sipcom_variant_dp83820, 1 },
688 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
689 	  "SiS 900 10/100 Ethernet",
690 	  &sipcom_variant_sis900, 0 },
691 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
692 	  "SiS 7016 10/100 Ethernet",
693 	  &sipcom_variant_sis900, 0 },
694 
695 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
696 	  "NatSemi DP83815 10/100 Ethernet",
697 	  &sipcom_variant_dp83815, 0 },
698 
699 	{ 0,			0,
700 	  NULL,
701 	  NULL, 0 },
702 };
703 
704 static const struct sip_product *
705 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
706 {
707 	const struct sip_product *sip;
708 
709 	for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
710 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
711 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
712 		    sip->sip_gigabit == gigabit)
713 			return sip;
714 	}
715 	return NULL;
716 }
717 
718 /*
719  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
720  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
721  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
722  * which means we try to use 64-bit data transfers on those cards if we
723  * happen to be plugged into a 32-bit slot.
724  *
725  * What we do is use this table of cards known to be 64-bit cards.  If
726  * you have a 64-bit card who's subsystem ID is not listed in this table,
727  * send the output of "pcictl dump ..." of the device to me so that your
728  * card will use the 64-bit data path when plugged into a 64-bit slot.
729  *
730  *	-- Jason R. Thorpe <thorpej@NetBSD.org>
731  *	   June 30, 2002
732  */
733 static int
734 sipcom_check_64bit(const struct pci_attach_args *pa)
735 {
736 	static const struct {
737 		pci_vendor_id_t c64_vendor;
738 		pci_product_id_t c64_product;
739 	} card64[] = {
740 		/* Asante GigaNIX */
741 		{ 0x128a,	0x0002 },
742 
743 		/* Accton EN1407-T, Planex GN-1000TE */
744 		{ 0x1113,	0x1407 },
745 
746 		/* Netgear GA-621 */
747 		{ 0x1385,	0x621a },
748 
749 		/* SMC EZ Card */
750 		{ 0x10b8,	0x9462 },
751 
752 		{ 0, 0}
753 	};
754 	pcireg_t subsys;
755 	int i;
756 
757 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
758 
759 	for (i = 0; card64[i].c64_vendor != 0; i++) {
760 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
761 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
762 			return (1);
763 	}
764 
765 	return (0);
766 }
767 
768 static int
769 sipcom_match(device_t parent, cfdata_t cf, void *aux)
770 {
771 	struct pci_attach_args *pa = aux;
772 
773 	if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
774 		return 1;
775 
776 	return 0;
777 }
778 
779 static void
780 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
781 {
782 	u_int32_t reg;
783 	int i;
784 
785 	/*
786 	 * Cause the chip to load configuration data from the EEPROM.
787 	 */
788 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
789 	for (i = 0; i < 10000; i++) {
790 		delay(10);
791 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
792 		    PTSCR_EELOAD_EN) == 0)
793 			break;
794 	}
795 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
796 	    PTSCR_EELOAD_EN) {
797 		printf("%s: timeout loading configuration from EEPROM\n",
798 		    device_xname(sc->sc_dev));
799 		return;
800 	}
801 
802 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
803 
804 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
805 	if (reg & CFG_PCI64_DET) {
806 		printf("%s: 64-bit PCI slot detected", device_xname(sc->sc_dev));
807 		/*
808 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
809 		 * data transfers.
810 		 *
811 		 * We can't use the DATA64_EN bit in the EEPROM, because
812 		 * vendors of 32-bit cards fail to clear that bit in many
813 		 * cases (yet the card still detects that it's in a 64-bit
814 		 * slot; go figure).
815 		 */
816 		if (sipcom_check_64bit(pa)) {
817 			sc->sc_cfg |= CFG_DATA64_EN;
818 			printf(", using 64-bit data transfers");
819 		}
820 		printf("\n");
821 	}
822 
823 	/*
824 	 * XXX Need some PCI flags indicating support for
825 	 * XXX 64-bit addressing.
826 	 */
827 #if 0
828 	if (reg & CFG_M64ADDR)
829 		sc->sc_cfg |= CFG_M64ADDR;
830 	if (reg & CFG_T64ADDR)
831 		sc->sc_cfg |= CFG_T64ADDR;
832 #endif
833 
834 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
835 		const char *sep = "";
836 		printf("%s: using ", device_xname(sc->sc_dev));
837 		if (reg & CFG_EXT_125) {
838 			sc->sc_cfg |= CFG_EXT_125;
839 			printf("%s125MHz clock", sep);
840 			sep = ", ";
841 		}
842 		if (reg & CFG_TBI_EN) {
843 			sc->sc_cfg |= CFG_TBI_EN;
844 			printf("%sten-bit interface", sep);
845 			sep = ", ";
846 		}
847 		printf("\n");
848 	}
849 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
850 	    (reg & CFG_MRM_DIS) != 0)
851 		sc->sc_cfg |= CFG_MRM_DIS;
852 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
853 	    (reg & CFG_MWI_DIS) != 0)
854 		sc->sc_cfg |= CFG_MWI_DIS;
855 
856 	/*
857 	 * Use the extended descriptor format on the DP83820.  This
858 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
859 	 * checksumming.
860 	 */
861 	sc->sc_cfg |= CFG_EXTSTS_EN;
862 }
863 
864 static int
865 sipcom_detach(device_t self, int flags)
866 {
867 	int s;
868 
869 	s = splnet();
870 	sipcom_do_detach(self, SIP_ATTACH_FIN);
871 	splx(s);
872 
873 	return 0;
874 }
875 
876 static void
877 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
878 {
879 	int i;
880 	struct sip_softc *sc = device_private(self);
881 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
882 
883 	/*
884 	 * Free any resources we've allocated during attach.
885 	 * Do this in reverse order and fall through.
886 	 */
887 	switch (stage) {
888 	case SIP_ATTACH_FIN:
889 		sipcom_stop(ifp, 1);
890 		pmf_device_deregister(self);
891 #ifdef SIP_EVENT_COUNTERS
892 		/*
893 		 * Attach event counters.
894 		 */
895 		evcnt_detach(&sc->sc_ev_txforceintr);
896 		evcnt_detach(&sc->sc_ev_txdstall);
897 		evcnt_detach(&sc->sc_ev_txsstall);
898 		evcnt_detach(&sc->sc_ev_hiberr);
899 		evcnt_detach(&sc->sc_ev_rxintr);
900 		evcnt_detach(&sc->sc_ev_txiintr);
901 		evcnt_detach(&sc->sc_ev_txdintr);
902 		if (!sc->sc_gigabit) {
903 			evcnt_detach(&sc->sc_ev_rxpause);
904 		} else {
905 			evcnt_detach(&sc->sc_ev_txudpsum);
906 			evcnt_detach(&sc->sc_ev_txtcpsum);
907 			evcnt_detach(&sc->sc_ev_txipsum);
908 			evcnt_detach(&sc->sc_ev_rxudpsum);
909 			evcnt_detach(&sc->sc_ev_rxtcpsum);
910 			evcnt_detach(&sc->sc_ev_rxipsum);
911 			evcnt_detach(&sc->sc_ev_txpause);
912 			evcnt_detach(&sc->sc_ev_rxpause);
913 		}
914 #endif /* SIP_EVENT_COUNTERS */
915 
916 #if NRND > 0
917 		rnd_detach_source(&sc->rnd_source);
918 #endif
919 
920 		ether_ifdetach(ifp);
921 		if_detach(ifp);
922 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
923 
924 		/*FALLTHROUGH*/
925 	case SIP_ATTACH_CREATE_RXMAP:
926 		for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
927 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
928 				bus_dmamap_destroy(sc->sc_dmat,
929 				    sc->sc_rxsoft[i].rxs_dmamap);
930 		}
931 		/*FALLTHROUGH*/
932 	case SIP_ATTACH_CREATE_TXMAP:
933 		for (i = 0; i < SIP_TXQUEUELEN; i++) {
934 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
935 				bus_dmamap_destroy(sc->sc_dmat,
936 				    sc->sc_txsoft[i].txs_dmamap);
937 		}
938 		/*FALLTHROUGH*/
939 	case SIP_ATTACH_LOAD_MAP:
940 		bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
941 		/*FALLTHROUGH*/
942 	case SIP_ATTACH_CREATE_MAP:
943 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
944 		/*FALLTHROUGH*/
945 	case SIP_ATTACH_MAP_MEM:
946 		bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
947 		    sizeof(struct sip_control_data));
948 		/*FALLTHROUGH*/
949 	case SIP_ATTACH_ALLOC_MEM:
950 		bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
951 		/* FALLTHROUGH*/
952 	case SIP_ATTACH_INTR:
953 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
954 		/* FALLTHROUGH*/
955 	case SIP_ATTACH_MAP:
956 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
957 		break;
958 	default:
959 		break;
960 	}
961 	return;
962 }
963 
964 static bool
965 sipcom_resume(device_t self, pmf_qual_t qual)
966 {
967 	struct sip_softc *sc = device_private(self);
968 
969 	return sipcom_reset(sc);
970 }
971 
972 static bool
973 sipcom_suspend(device_t self, pmf_qual_t qual)
974 {
975 	struct sip_softc *sc = device_private(self);
976 
977 	sipcom_rxdrain(sc);
978 	return true;
979 }
980 
981 static void
982 sipcom_attach(device_t parent, device_t self, void *aux)
983 {
984 	struct sip_softc *sc = device_private(self);
985 	struct pci_attach_args *pa = aux;
986 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
987 	pci_chipset_tag_t pc = pa->pa_pc;
988 	pci_intr_handle_t ih;
989 	const char *intrstr = NULL;
990 	bus_space_tag_t iot, memt;
991 	bus_space_handle_t ioh, memh;
992 	bus_size_t iosz, memsz;
993 	int ioh_valid, memh_valid;
994 	int i, rseg, error;
995 	const struct sip_product *sip;
996 	u_int8_t enaddr[ETHER_ADDR_LEN];
997 	pcireg_t csr;
998 	pcireg_t memtype;
999 	bus_size_t tx_dmamap_size;
1000 	int ntxsegs_alloc;
1001 	cfdata_t cf = device_cfdata(self);
1002 
1003 	callout_init(&sc->sc_tick_ch, 0);
1004 
1005 	sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
1006 	if (sip == NULL) {
1007 		printf("\n");
1008 		panic("%s: impossible", __func__);
1009 	}
1010 	sc->sc_dev = self;
1011 	sc->sc_gigabit = sip->sip_gigabit;
1012 	pmf_self_suspensor_init(self, &sc->sc_suspensor, &sc->sc_qual);
1013 	sc->sc_pc = pc;
1014 
1015 	if (sc->sc_gigabit) {
1016 		sc->sc_rxintr = gsip_rxintr;
1017 		sc->sc_parm = &gsip_parm;
1018 	} else {
1019 		sc->sc_rxintr = sip_rxintr;
1020 		sc->sc_parm = &sip_parm;
1021 	}
1022 	tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
1023 	ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
1024 	sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
1025 	sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
1026 	sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
1027 
1028 	sc->sc_rev = PCI_REVISION(pa->pa_class);
1029 
1030 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
1031 
1032 	sc->sc_model = sip;
1033 
1034 	/*
1035 	 * XXX Work-around broken PXE firmware on some boards.
1036 	 *
1037 	 * The DP83815 shares an address decoder with the MEM BAR
1038 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
1039 	 * so that memory mapped access works.
1040 	 */
1041 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
1042 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
1043 	    ~PCI_MAPREG_ROM_ENABLE);
1044 
1045 	/*
1046 	 * Map the device.
1047 	 */
1048 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
1049 	    PCI_MAPREG_TYPE_IO, 0,
1050 	    &iot, &ioh, NULL, &iosz) == 0);
1051 	if (sc->sc_gigabit) {
1052 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
1053 		switch (memtype) {
1054 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1055 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1056 			memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1057 			    memtype, 0, &memt, &memh, NULL, &memsz) == 0);
1058 			break;
1059 		default:
1060 			memh_valid = 0;
1061 		}
1062 	} else {
1063 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1064 		    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
1065 		    &memt, &memh, NULL, &memsz) == 0);
1066 	}
1067 
1068 	if (memh_valid) {
1069 		sc->sc_st = memt;
1070 		sc->sc_sh = memh;
1071 		sc->sc_sz = memsz;
1072 	} else if (ioh_valid) {
1073 		sc->sc_st = iot;
1074 		sc->sc_sh = ioh;
1075 		sc->sc_sz = iosz;
1076 	} else {
1077 		printf("%s: unable to map device registers\n",
1078 		    device_xname(sc->sc_dev));
1079 		return;
1080 	}
1081 
1082 	sc->sc_dmat = pa->pa_dmat;
1083 
1084 	/*
1085 	 * Make sure bus mastering is enabled.  Also make sure
1086 	 * Write/Invalidate is enabled if we're allowed to use it.
1087 	 */
1088 	csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1089 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
1090 		csr |= PCI_COMMAND_INVALIDATE_ENABLE;
1091 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
1092 	    csr | PCI_COMMAND_MASTER_ENABLE);
1093 
1094 	/* power up chip */
1095 	error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null);
1096 	if (error != 0 && error != EOPNOTSUPP) {
1097 		aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
1098 		return;
1099 	}
1100 
1101 	/*
1102 	 * Map and establish our interrupt.
1103 	 */
1104 	if (pci_intr_map(pa, &ih)) {
1105 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
1106 		return;
1107 	}
1108 	intrstr = pci_intr_string(pc, ih);
1109 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc);
1110 	if (sc->sc_ih == NULL) {
1111 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
1112 		if (intrstr != NULL)
1113 			aprint_error(" at %s", intrstr);
1114 		aprint_error("\n");
1115 		return sipcom_do_detach(self, SIP_ATTACH_MAP);
1116 	}
1117 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1118 
1119 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1120 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1121 
1122 	/*
1123 	 * Allocate the control data structures, and create and load the
1124 	 * DMA map for it.
1125 	 */
1126 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
1127 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
1128 	    &rseg, 0)) != 0) {
1129 		aprint_error_dev(sc->sc_dev, "unable to allocate control data, error = %d\n",
1130 		    error);
1131 		return sipcom_do_detach(self, SIP_ATTACH_INTR);
1132 	}
1133 
1134 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
1135 	    sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
1136 	    BUS_DMA_COHERENT|BUS_DMA_NOCACHE)) != 0) {
1137 		aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n",
1138 		    error);
1139 		sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
1140 	}
1141 
1142 	if ((error = bus_dmamap_create(sc->sc_dmat,
1143 	    sizeof(struct sip_control_data), 1,
1144 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
1145 		aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, "
1146 		    "error = %d\n", error);
1147 		sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
1148 	}
1149 
1150 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1151 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
1152 	    0)) != 0) {
1153 		aprint_error_dev(sc->sc_dev, "unable to load control data DMA map, error = %d\n",
1154 		    error);
1155 		sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
1156 	}
1157 
1158 	/*
1159 	 * Create the transmit buffer DMA maps.
1160 	 */
1161 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
1162 		if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
1163 		    sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
1164 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1165 			aprint_error_dev(sc->sc_dev, "unable to create tx DMA map %d, "
1166 			    "error = %d\n", i, error);
1167 			sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1168 		}
1169 	}
1170 
1171 	/*
1172 	 * Create the receive buffer DMA maps.
1173 	 */
1174 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1175 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1176 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1177 			aprint_error_dev(sc->sc_dev, "unable to create rx DMA map %d, "
1178 			    "error = %d\n", i, error);
1179 			sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1180 		}
1181 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
1182 	}
1183 
1184 	/*
1185 	 * Reset the chip to a known state.
1186 	 */
1187 	sipcom_reset(sc);
1188 
1189 	/*
1190 	 * Read the Ethernet address from the EEPROM.  This might
1191 	 * also fetch other stuff from the EEPROM and stash it
1192 	 * in the softc.
1193 	 */
1194 	sc->sc_cfg = 0;
1195 	if (!sc->sc_gigabit) {
1196 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1197 		    SIP_SIS900_REV(sc,SIS_REV_900B))
1198 			sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1199 
1200 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1201 		    SIP_SIS900_REV(sc,SIS_REV_960) ||
1202 		    SIP_SIS900_REV(sc,SIS_REV_900B))
1203 			sc->sc_cfg |=
1204 			    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1205 			     CFG_EDBMASTEN);
1206 	}
1207 
1208 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1209 
1210 	printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
1211 	    ether_sprintf(enaddr));
1212 
1213 	/*
1214 	 * Initialize the configuration register: aggressive PCI
1215 	 * bus request algorithm, default backoff, default OW timer,
1216 	 * default parity error detection.
1217 	 *
1218 	 * NOTE: "Big endian mode" is useless on the SiS900 and
1219 	 * friends -- it affects packet data, not descriptors.
1220 	 */
1221 	if (sc->sc_gigabit)
1222 		sipcom_dp83820_attach(sc, pa);
1223 
1224 	/*
1225 	 * Initialize our media structures and probe the MII.
1226 	 */
1227 	sc->sc_mii.mii_ifp = ifp;
1228 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
1229 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
1230 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
1231 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
1232 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
1233 	    sipcom_mediastatus);
1234 
1235 	/*
1236 	 * XXX We cannot handle flow control on the DP83815.
1237 	 */
1238 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1239 		mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1240 			   MII_OFFSET_ANY, 0);
1241 	else
1242 		mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1243 			   MII_OFFSET_ANY, MIIF_DOPAUSE);
1244 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1245 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1246 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1247 	} else
1248 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1249 
1250 	ifp = &sc->sc_ethercom.ec_if;
1251 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1252 	ifp->if_softc = sc;
1253 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1254 	sc->sc_if_flags = ifp->if_flags;
1255 	ifp->if_ioctl = sipcom_ioctl;
1256 	ifp->if_start = sipcom_start;
1257 	ifp->if_watchdog = sipcom_watchdog;
1258 	ifp->if_init = sipcom_init;
1259 	ifp->if_stop = sipcom_stop;
1260 	IFQ_SET_READY(&ifp->if_snd);
1261 
1262 	/*
1263 	 * We can support 802.1Q VLAN-sized frames.
1264 	 */
1265 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1266 
1267 	if (sc->sc_gigabit) {
1268 		/*
1269 		 * And the DP83820 can do VLAN tagging in hardware, and
1270 		 * support the jumbo Ethernet MTU.
1271 		 */
1272 		sc->sc_ethercom.ec_capabilities |=
1273 		    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1274 
1275 		/*
1276 		 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1277 		 * in hardware.
1278 		 */
1279 		ifp->if_capabilities |=
1280 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1281 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1282 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1283 	}
1284 
1285 	/*
1286 	 * Attach the interface.
1287 	 */
1288 	if_attach(ifp);
1289 	ether_ifattach(ifp, enaddr);
1290 	ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb);
1291 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1292 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1293 	sc->sc_prev.if_capenable = ifp->if_capenable;
1294 #if NRND > 0
1295 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
1296 	    RND_TYPE_NET, 0);
1297 #endif
1298 
1299 	/*
1300 	 * The number of bytes that must be available in
1301 	 * the Tx FIFO before the bus master can DMA more
1302 	 * data into the FIFO.
1303 	 */
1304 	sc->sc_tx_fill_thresh = 64 / 32;
1305 
1306 	/*
1307 	 * Start at a drain threshold of 512 bytes.  We will
1308 	 * increase it if a DMA underrun occurs.
1309 	 *
1310 	 * XXX The minimum value of this variable should be
1311 	 * tuned.  We may be able to improve performance
1312 	 * by starting with a lower value.  That, however,
1313 	 * may trash the first few outgoing packets if the
1314 	 * PCI bus is saturated.
1315 	 */
1316 	if (sc->sc_gigabit)
1317 		sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1318 	else
1319 		sc->sc_tx_drain_thresh = 1504 / 32;
1320 
1321 	/*
1322 	 * Initialize the Rx FIFO drain threshold.
1323 	 *
1324 	 * This is in units of 8 bytes.
1325 	 *
1326 	 * We should never set this value lower than 2; 14 bytes are
1327 	 * required to filter the packet.
1328 	 */
1329 	sc->sc_rx_drain_thresh = 128 / 8;
1330 
1331 #ifdef SIP_EVENT_COUNTERS
1332 	/*
1333 	 * Attach event counters.
1334 	 */
1335 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1336 	    NULL, device_xname(sc->sc_dev), "txsstall");
1337 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1338 	    NULL, device_xname(sc->sc_dev), "txdstall");
1339 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1340 	    NULL, device_xname(sc->sc_dev), "txforceintr");
1341 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1342 	    NULL, device_xname(sc->sc_dev), "txdintr");
1343 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1344 	    NULL, device_xname(sc->sc_dev), "txiintr");
1345 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1346 	    NULL, device_xname(sc->sc_dev), "rxintr");
1347 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1348 	    NULL, device_xname(sc->sc_dev), "hiberr");
1349 	if (!sc->sc_gigabit) {
1350 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1351 		    NULL, device_xname(sc->sc_dev), "rxpause");
1352 	} else {
1353 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1354 		    NULL, device_xname(sc->sc_dev), "rxpause");
1355 		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1356 		    NULL, device_xname(sc->sc_dev), "txpause");
1357 		evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1358 		    NULL, device_xname(sc->sc_dev), "rxipsum");
1359 		evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1360 		    NULL, device_xname(sc->sc_dev), "rxtcpsum");
1361 		evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1362 		    NULL, device_xname(sc->sc_dev), "rxudpsum");
1363 		evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1364 		    NULL, device_xname(sc->sc_dev), "txipsum");
1365 		evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1366 		    NULL, device_xname(sc->sc_dev), "txtcpsum");
1367 		evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1368 		    NULL, device_xname(sc->sc_dev), "txudpsum");
1369 	}
1370 #endif /* SIP_EVENT_COUNTERS */
1371 
1372 	if (pmf_device_register(self, sipcom_suspend, sipcom_resume))
1373 		pmf_class_network_register(self, ifp);
1374 	else
1375 		aprint_error_dev(self, "couldn't establish power handler\n");
1376 }
1377 
1378 static inline void
1379 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1380     uint64_t capenable)
1381 {
1382 	struct m_tag *mtag;
1383 	u_int32_t extsts;
1384 #ifdef DEBUG
1385 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1386 #endif
1387 	/*
1388 	 * If VLANs are enabled and the packet has a VLAN tag, set
1389 	 * up the descriptor to encapsulate the packet for us.
1390 	 *
1391 	 * This apparently has to be on the last descriptor of
1392 	 * the packet.
1393 	 */
1394 
1395 	/*
1396 	 * Byte swapping is tricky. We need to provide the tag
1397 	 * in a network byte order. On a big-endian machine,
1398 	 * the byteorder is correct, but we need to swap it
1399 	 * anyway, because this will be undone by the outside
1400 	 * htole32(). That's why there must be an
1401 	 * unconditional swap instead of htons() inside.
1402 	 */
1403 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1404 		sc->sc_txdescs[lasttx].sipd_extsts |=
1405 		    htole32(EXTSTS_VPKT |
1406 				(bswap16(VLAN_TAG_VALUE(mtag)) &
1407 				 EXTSTS_VTCI));
1408 	}
1409 
1410 	/*
1411 	 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1412 	 * checksumming, set up the descriptor to do this work
1413 	 * for us.
1414 	 *
1415 	 * This apparently has to be on the first descriptor of
1416 	 * the packet.
1417 	 *
1418 	 * Byte-swap constants so the compiler can optimize.
1419 	 */
1420 	extsts = 0;
1421 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1422 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1423 		SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1424 		extsts |= htole32(EXTSTS_IPPKT);
1425 	}
1426 	if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1427 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1428 		SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1429 		extsts |= htole32(EXTSTS_TCPPKT);
1430 	} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1431 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1432 		SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1433 		extsts |= htole32(EXTSTS_UDPPKT);
1434 	}
1435 	sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1436 }
1437 
1438 /*
1439  * sip_start:		[ifnet interface function]
1440  *
1441  *	Start packet transmission on the interface.
1442  */
1443 static void
1444 sipcom_start(struct ifnet *ifp)
1445 {
1446 	struct sip_softc *sc = ifp->if_softc;
1447 	struct mbuf *m0;
1448 	struct mbuf *m;
1449 	struct sip_txsoft *txs;
1450 	bus_dmamap_t dmamap;
1451 	int error, nexttx, lasttx, seg;
1452 	int ofree = sc->sc_txfree;
1453 #if 0
1454 	int firsttx = sc->sc_txnext;
1455 #endif
1456 
1457 	/*
1458 	 * If we've been told to pause, don't transmit any more packets.
1459 	 */
1460 	if (!sc->sc_gigabit && sc->sc_paused)
1461 		ifp->if_flags |= IFF_OACTIVE;
1462 
1463 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1464 		return;
1465 
1466 	/*
1467 	 * Loop through the send queue, setting up transmit descriptors
1468 	 * until we drain the queue, or use up all available transmit
1469 	 * descriptors.
1470 	 */
1471 	for (;;) {
1472 		/* Get a work queue entry. */
1473 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1474 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1475 			break;
1476 		}
1477 
1478 		/*
1479 		 * Grab a packet off the queue.
1480 		 */
1481 		IFQ_POLL(&ifp->if_snd, m0);
1482 		if (m0 == NULL)
1483 			break;
1484 		m = NULL;
1485 
1486 		dmamap = txs->txs_dmamap;
1487 
1488 		/*
1489 		 * Load the DMA map.  If this fails, the packet either
1490 		 * didn't fit in the alloted number of segments, or we
1491 		 * were short on resources.
1492 		 */
1493 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1494 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1495 		/* In the non-gigabit case, we'll copy and try again. */
1496 		if (error != 0 && !sc->sc_gigabit) {
1497 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1498 			if (m == NULL) {
1499 				printf("%s: unable to allocate Tx mbuf\n",
1500 				    device_xname(sc->sc_dev));
1501 				break;
1502 			}
1503 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1504 			if (m0->m_pkthdr.len > MHLEN) {
1505 				MCLGET(m, M_DONTWAIT);
1506 				if ((m->m_flags & M_EXT) == 0) {
1507 					printf("%s: unable to allocate Tx "
1508 					    "cluster\n", device_xname(sc->sc_dev));
1509 					m_freem(m);
1510 					break;
1511 				}
1512 			}
1513 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1514 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1515 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1516 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1517 			if (error) {
1518 				printf("%s: unable to load Tx buffer, "
1519 				    "error = %d\n", device_xname(sc->sc_dev), error);
1520 				break;
1521 			}
1522 		} else if (error == EFBIG) {
1523 			/*
1524 			 * For the too-many-segments case, we simply
1525 			 * report an error and drop the packet,
1526 			 * since we can't sanely copy a jumbo packet
1527 			 * to a single buffer.
1528 			 */
1529 			printf("%s: Tx packet consumes too many "
1530 			    "DMA segments, dropping...\n", device_xname(sc->sc_dev));
1531 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1532 			m_freem(m0);
1533 			continue;
1534 		} else if (error != 0) {
1535 			/*
1536 			 * Short on resources, just stop for now.
1537 			 */
1538 			break;
1539 		}
1540 
1541 		/*
1542 		 * Ensure we have enough descriptors free to describe
1543 		 * the packet.  Note, we always reserve one descriptor
1544 		 * at the end of the ring as a termination point, to
1545 		 * prevent wrap-around.
1546 		 */
1547 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1548 			/*
1549 			 * Not enough free descriptors to transmit this
1550 			 * packet.  We haven't committed anything yet,
1551 			 * so just unload the DMA map, put the packet
1552 			 * back on the queue, and punt.  Notify the upper
1553 			 * layer that there are not more slots left.
1554 			 *
1555 			 * XXX We could allocate an mbuf and copy, but
1556 			 * XXX is it worth it?
1557 			 */
1558 			ifp->if_flags |= IFF_OACTIVE;
1559 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1560 			if (m != NULL)
1561 				m_freem(m);
1562 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1563 			break;
1564 		}
1565 
1566 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1567 		if (m != NULL) {
1568 			m_freem(m0);
1569 			m0 = m;
1570 		}
1571 
1572 		/*
1573 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1574 		 */
1575 
1576 		/* Sync the DMA map. */
1577 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1578 		    BUS_DMASYNC_PREWRITE);
1579 
1580 		/*
1581 		 * Initialize the transmit descriptors.
1582 		 */
1583 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1584 		     seg < dmamap->dm_nsegs;
1585 		     seg++, nexttx = sip_nexttx(sc, nexttx)) {
1586 			/*
1587 			 * If this is the first descriptor we're
1588 			 * enqueueing, don't set the OWN bit just
1589 			 * yet.  That could cause a race condition.
1590 			 * We'll do it below.
1591 			 */
1592 			*sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
1593 			    htole32(dmamap->dm_segs[seg].ds_addr);
1594 			*sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
1595 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1596 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1597 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
1598 			lasttx = nexttx;
1599 		}
1600 
1601 		/* Clear the MORE bit on the last segment. */
1602 		*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
1603 		    htole32(~CMDSTS_MORE);
1604 
1605 		/*
1606 		 * If we're in the interrupt delay window, delay the
1607 		 * interrupt.
1608 		 */
1609 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1610 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1611 			*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
1612 			    htole32(CMDSTS_INTR);
1613 			sc->sc_txwin = 0;
1614 		}
1615 
1616 		if (sc->sc_gigabit)
1617 			sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1618 
1619 		/* Sync the descriptors we're using. */
1620 		sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
1621 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1622 
1623 		/*
1624 		 * The entire packet is set up.  Give the first descrptor
1625 		 * to the chip now.
1626 		 */
1627 		*sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
1628 		    htole32(CMDSTS_OWN);
1629 		sip_cdtxsync(sc, sc->sc_txnext, 1,
1630 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1631 
1632 		/*
1633 		 * Store a pointer to the packet so we can free it later,
1634 		 * and remember what txdirty will be once the packet is
1635 		 * done.
1636 		 */
1637 		txs->txs_mbuf = m0;
1638 		txs->txs_firstdesc = sc->sc_txnext;
1639 		txs->txs_lastdesc = lasttx;
1640 
1641 		/* Advance the tx pointer. */
1642 		sc->sc_txfree -= dmamap->dm_nsegs;
1643 		sc->sc_txnext = nexttx;
1644 
1645 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1646 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1647 
1648 		/*
1649 		 * Pass the packet to any BPF listeners.
1650 		 */
1651 		if (ifp->if_bpf)
1652 			bpf_ops->bpf_mtap(ifp->if_bpf, m0);
1653 	}
1654 
1655 	if (txs == NULL || sc->sc_txfree == 0) {
1656 		/* No more slots left; notify upper layer. */
1657 		ifp->if_flags |= IFF_OACTIVE;
1658 	}
1659 
1660 	if (sc->sc_txfree != ofree) {
1661 		/*
1662 		 * Start the transmit process.  Note, the manual says
1663 		 * that if there are no pending transmissions in the
1664 		 * chip's internal queue (indicated by TXE being clear),
1665 		 * then the driver software must set the TXDP to the
1666 		 * first descriptor to be transmitted.  However, if we
1667 		 * do this, it causes serious performance degredation on
1668 		 * the DP83820 under load, not setting TXDP doesn't seem
1669 		 * to adversely affect the SiS 900 or DP83815.
1670 		 *
1671 		 * Well, I guess it wouldn't be the first time a manual
1672 		 * has lied -- and they could be speaking of the NULL-
1673 		 * terminated descriptor list case, rather than OWN-
1674 		 * terminated rings.
1675 		 */
1676 #if 0
1677 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1678 		     CR_TXE) == 0) {
1679 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1680 			    SIP_CDTXADDR(sc, firsttx));
1681 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1682 		}
1683 #else
1684 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1685 #endif
1686 
1687 		/* Set a watchdog timer in case the chip flakes out. */
1688 		/* Gigabit autonegotiation takes 5 seconds. */
1689 		ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1690 	}
1691 }
1692 
1693 /*
1694  * sip_watchdog:	[ifnet interface function]
1695  *
1696  *	Watchdog timer handler.
1697  */
1698 static void
1699 sipcom_watchdog(struct ifnet *ifp)
1700 {
1701 	struct sip_softc *sc = ifp->if_softc;
1702 
1703 	/*
1704 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1705 	 * If we get a timeout, try and sweep up transmit descriptors.
1706 	 * If we manage to sweep them all up, ignore the lack of
1707 	 * interrupt.
1708 	 */
1709 	sipcom_txintr(sc);
1710 
1711 	if (sc->sc_txfree != sc->sc_ntxdesc) {
1712 		printf("%s: device timeout\n", device_xname(sc->sc_dev));
1713 		ifp->if_oerrors++;
1714 
1715 		/* Reset the interface. */
1716 		(void) sipcom_init(ifp);
1717 	} else if (ifp->if_flags & IFF_DEBUG)
1718 		printf("%s: recovered from device timeout\n",
1719 		    device_xname(sc->sc_dev));
1720 
1721 	/* Try to get more packets going. */
1722 	sipcom_start(ifp);
1723 }
1724 
1725 /* If the interface is up and running, only modify the receive
1726  * filter when setting promiscuous or debug mode.  Otherwise fall
1727  * through to ether_ioctl, which will reset the chip.
1728  */
1729 static int
1730 sip_ifflags_cb(struct ethercom *ec)
1731 {
1732 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable			\
1733 			 == (sc)->sc_ethercom.ec_capenable)		\
1734 			&& ((sc)->sc_prev.is_vlan ==			\
1735 			    VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1736 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1737 	struct ifnet *ifp = &ec->ec_if;
1738 	struct sip_softc *sc = ifp->if_softc;
1739 	int change = ifp->if_flags ^ sc->sc_if_flags;
1740 
1741 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0 || !COMPARE_EC(sc) ||
1742 	    !COMPARE_IC(sc, ifp))
1743 		return ENETRESET;
1744 	/* Set up the receive filter. */
1745 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1746 	return 0;
1747 }
1748 
1749 /*
1750  * sip_ioctl:		[ifnet interface function]
1751  *
1752  *	Handle control requests from the operator.
1753  */
1754 static int
1755 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1756 {
1757 	struct sip_softc *sc = ifp->if_softc;
1758 	struct ifreq *ifr = (struct ifreq *)data;
1759 	int s, error;
1760 
1761 	s = splnet();
1762 
1763 	switch (cmd) {
1764 	case SIOCSIFMEDIA:
1765 		/* Flow control requires full-duplex mode. */
1766 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1767 		    (ifr->ifr_media & IFM_FDX) == 0)
1768 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
1769 
1770 		/* XXX */
1771 		if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1772 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1773 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1774 			if (sc->sc_gigabit &&
1775 			    (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1776 				/* We can do both TXPAUSE and RXPAUSE. */
1777 				ifr->ifr_media |=
1778 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1779 			} else if (ifr->ifr_media & IFM_FLOW) {
1780 				/*
1781 				 * Both TXPAUSE and RXPAUSE must be set.
1782 				 * (SiS900 and DP83815 don't have PAUSE_ASYM
1783 				 * feature.)
1784 				 *
1785 				 * XXX Can SiS900 and DP83815 send PAUSE?
1786 				 */
1787 				ifr->ifr_media |=
1788 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1789 			}
1790 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1791 		}
1792 		/*FALLTHROUGH*/
1793 	default:
1794 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1795 			break;
1796 
1797 		error = 0;
1798 
1799 		if (cmd == SIOCSIFCAP)
1800 			error = (*ifp->if_init)(ifp);
1801 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1802 			;
1803 		else if (ifp->if_flags & IFF_RUNNING) {
1804 			/*
1805 			 * Multicast list has changed; set the hardware filter
1806 			 * accordingly.
1807 			 */
1808 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1809 		}
1810 		break;
1811 	}
1812 
1813 	/* Try to get more packets going. */
1814 	sipcom_start(ifp);
1815 
1816 	sc->sc_if_flags = ifp->if_flags;
1817 	splx(s);
1818 	return (error);
1819 }
1820 
1821 /*
1822  * sip_intr:
1823  *
1824  *	Interrupt service routine.
1825  */
1826 static int
1827 sipcom_intr(void *arg)
1828 {
1829 	struct sip_softc *sc = arg;
1830 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1831 	u_int32_t isr;
1832 	int handled = 0;
1833 
1834 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
1835 		return 0;
1836 
1837 	/* Disable interrupts. */
1838 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1839 
1840 	for (;;) {
1841 		/* Reading clears interrupt. */
1842 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1843 		if ((isr & sc->sc_imr) == 0)
1844 			break;
1845 
1846 #if NRND > 0
1847 		if (RND_ENABLED(&sc->rnd_source))
1848 			rnd_add_uint32(&sc->rnd_source, isr);
1849 #endif
1850 
1851 		handled = 1;
1852 
1853 		if ((ifp->if_flags & IFF_RUNNING) == 0)
1854 			break;
1855 
1856 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1857 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1858 
1859 			/* Grab any new packets. */
1860 			(*sc->sc_rxintr)(sc);
1861 
1862 			if (isr & ISR_RXORN) {
1863 				printf("%s: receive FIFO overrun\n",
1864 				    device_xname(sc->sc_dev));
1865 
1866 				/* XXX adjust rx_drain_thresh? */
1867 			}
1868 
1869 			if (isr & ISR_RXIDLE) {
1870 				printf("%s: receive ring overrun\n",
1871 				    device_xname(sc->sc_dev));
1872 
1873 				/* Get the receive process going again. */
1874 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1875 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1876 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1877 				    SIP_CR, CR_RXE);
1878 			}
1879 		}
1880 
1881 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1882 #ifdef SIP_EVENT_COUNTERS
1883 			if (isr & ISR_TXDESC)
1884 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1885 			else if (isr & ISR_TXIDLE)
1886 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1887 #endif
1888 
1889 			/* Sweep up transmit descriptors. */
1890 			sipcom_txintr(sc);
1891 
1892 			if (isr & ISR_TXURN) {
1893 				u_int32_t thresh;
1894 				int txfifo_size = (sc->sc_gigabit)
1895 				    ? DP83820_SIP_TXFIFO_SIZE
1896 				    : OTHER_SIP_TXFIFO_SIZE;
1897 
1898 				printf("%s: transmit FIFO underrun",
1899 				    device_xname(sc->sc_dev));
1900 				thresh = sc->sc_tx_drain_thresh + 1;
1901 				if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
1902 				&& (thresh * 32) <= (txfifo_size -
1903 				     (sc->sc_tx_fill_thresh * 32))) {
1904 					printf("; increasing Tx drain "
1905 					    "threshold to %u bytes\n",
1906 					    thresh * 32);
1907 					sc->sc_tx_drain_thresh = thresh;
1908 					(void) sipcom_init(ifp);
1909 				} else {
1910 					(void) sipcom_init(ifp);
1911 					printf("\n");
1912 				}
1913 			}
1914 		}
1915 
1916 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1917 			if (isr & ISR_PAUSE_ST) {
1918 				sc->sc_paused = 1;
1919 				SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1920 				ifp->if_flags |= IFF_OACTIVE;
1921 			}
1922 			if (isr & ISR_PAUSE_END) {
1923 				sc->sc_paused = 0;
1924 				ifp->if_flags &= ~IFF_OACTIVE;
1925 			}
1926 		}
1927 
1928 		if (isr & ISR_HIBERR) {
1929 			int want_init = 0;
1930 
1931 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1932 
1933 #define	PRINTERR(bit, str)						\
1934 			do {						\
1935 				if ((isr & (bit)) != 0) {		\
1936 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
1937 						printf("%s: %s\n",	\
1938 						    device_xname(sc->sc_dev), str); \
1939 					want_init = 1;			\
1940 				}					\
1941 			} while (/*CONSTCOND*/0)
1942 
1943 			PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
1944 			PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
1945 			PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
1946 			PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
1947 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1948 			/*
1949 			 * Ignore:
1950 			 *	Tx reset complete
1951 			 *	Rx reset complete
1952 			 */
1953 			if (want_init)
1954 				(void) sipcom_init(ifp);
1955 #undef PRINTERR
1956 		}
1957 	}
1958 
1959 	/* Re-enable interrupts. */
1960 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1961 
1962 	/* Try to get more packets going. */
1963 	sipcom_start(ifp);
1964 
1965 	return (handled);
1966 }
1967 
1968 /*
1969  * sip_txintr:
1970  *
1971  *	Helper; handle transmit interrupts.
1972  */
1973 static void
1974 sipcom_txintr(struct sip_softc *sc)
1975 {
1976 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1977 	struct sip_txsoft *txs;
1978 	u_int32_t cmdsts;
1979 
1980 	if (sc->sc_paused == 0)
1981 		ifp->if_flags &= ~IFF_OACTIVE;
1982 
1983 	/*
1984 	 * Go through our Tx list and free mbufs for those
1985 	 * frames which have been transmitted.
1986 	 */
1987 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1988 		sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1989 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1990 
1991 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
1992 		if (cmdsts & CMDSTS_OWN)
1993 			break;
1994 
1995 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1996 
1997 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1998 
1999 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
2000 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2001 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2002 		m_freem(txs->txs_mbuf);
2003 		txs->txs_mbuf = NULL;
2004 
2005 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2006 
2007 		/*
2008 		 * Check for errors and collisions.
2009 		 */
2010 		if (cmdsts &
2011 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
2012 			ifp->if_oerrors++;
2013 			if (cmdsts & CMDSTS_Tx_EC)
2014 				ifp->if_collisions += 16;
2015 			if (ifp->if_flags & IFF_DEBUG) {
2016 				if (cmdsts & CMDSTS_Tx_ED)
2017 					printf("%s: excessive deferral\n",
2018 					    device_xname(sc->sc_dev));
2019 				if (cmdsts & CMDSTS_Tx_EC)
2020 					printf("%s: excessive collisions\n",
2021 					    device_xname(sc->sc_dev));
2022 			}
2023 		} else {
2024 			/* Packet was transmitted successfully. */
2025 			ifp->if_opackets++;
2026 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
2027 		}
2028 	}
2029 
2030 	/*
2031 	 * If there are no more pending transmissions, cancel the watchdog
2032 	 * timer.
2033 	 */
2034 	if (txs == NULL) {
2035 		ifp->if_timer = 0;
2036 		sc->sc_txwin = 0;
2037 	}
2038 }
2039 
2040 /*
2041  * gsip_rxintr:
2042  *
2043  *	Helper; handle receive interrupts on gigabit parts.
2044  */
2045 static void
2046 gsip_rxintr(struct sip_softc *sc)
2047 {
2048 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2049 	struct sip_rxsoft *rxs;
2050 	struct mbuf *m;
2051 	u_int32_t cmdsts, extsts;
2052 	int i, len;
2053 
2054 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2055 		rxs = &sc->sc_rxsoft[i];
2056 
2057 		sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2058 
2059 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2060 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
2061 		len = CMDSTS_SIZE(sc, cmdsts);
2062 
2063 		/*
2064 		 * NOTE: OWN is set if owned by _consumer_.  We're the
2065 		 * consumer of the receive ring, so if the bit is clear,
2066 		 * we have processed all of the packets.
2067 		 */
2068 		if ((cmdsts & CMDSTS_OWN) == 0) {
2069 			/*
2070 			 * We have processed all of the receive buffers.
2071 			 */
2072 			break;
2073 		}
2074 
2075 		if (__predict_false(sc->sc_rxdiscard)) {
2076 			sip_init_rxdesc(sc, i);
2077 			if ((cmdsts & CMDSTS_MORE) == 0) {
2078 				/* Reset our state. */
2079 				sc->sc_rxdiscard = 0;
2080 			}
2081 			continue;
2082 		}
2083 
2084 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2085 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2086 
2087 		m = rxs->rxs_mbuf;
2088 
2089 		/*
2090 		 * Add a new receive buffer to the ring.
2091 		 */
2092 		if (sipcom_add_rxbuf(sc, i) != 0) {
2093 			/*
2094 			 * Failed, throw away what we've done so
2095 			 * far, and discard the rest of the packet.
2096 			 */
2097 			ifp->if_ierrors++;
2098 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2099 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2100 			sip_init_rxdesc(sc, i);
2101 			if (cmdsts & CMDSTS_MORE)
2102 				sc->sc_rxdiscard = 1;
2103 			if (sc->sc_rxhead != NULL)
2104 				m_freem(sc->sc_rxhead);
2105 			sip_rxchain_reset(sc);
2106 			continue;
2107 		}
2108 
2109 		sip_rxchain_link(sc, m);
2110 
2111 		m->m_len = len;
2112 
2113 		/*
2114 		 * If this is not the end of the packet, keep
2115 		 * looking.
2116 		 */
2117 		if (cmdsts & CMDSTS_MORE) {
2118 			sc->sc_rxlen += len;
2119 			continue;
2120 		}
2121 
2122 		/*
2123 		 * Okay, we have the entire packet now.  The chip includes
2124 		 * the FCS, so we need to trim it.
2125 		 */
2126 		m->m_len -= ETHER_CRC_LEN;
2127 
2128 		*sc->sc_rxtailp = NULL;
2129 		len = m->m_len + sc->sc_rxlen;
2130 		m = sc->sc_rxhead;
2131 
2132 		sip_rxchain_reset(sc);
2133 
2134 		/*
2135 		 * If an error occurred, update stats and drop the packet.
2136 		 */
2137 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2138 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2139 			ifp->if_ierrors++;
2140 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2141 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
2142 				/* Receive overrun handled elsewhere. */
2143 				printf("%s: receive descriptor error\n",
2144 				    device_xname(sc->sc_dev));
2145 			}
2146 #define	PRINTERR(bit, str)						\
2147 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
2148 			    (cmdsts & (bit)) != 0)			\
2149 				printf("%s: %s\n", device_xname(sc->sc_dev), str)
2150 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2151 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2152 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2153 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2154 #undef PRINTERR
2155 			m_freem(m);
2156 			continue;
2157 		}
2158 
2159 		/*
2160 		 * If the packet is small enough to fit in a
2161 		 * single header mbuf, allocate one and copy
2162 		 * the data into it.  This greatly reduces
2163 		 * memory consumption when we receive lots
2164 		 * of small packets.
2165 		 */
2166 		if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
2167 			struct mbuf *nm;
2168 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
2169 			if (nm == NULL) {
2170 				ifp->if_ierrors++;
2171 				m_freem(m);
2172 				continue;
2173 			}
2174 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2175 			nm->m_data += 2;
2176 			nm->m_pkthdr.len = nm->m_len = len;
2177 			m_copydata(m, 0, len, mtod(nm, void *));
2178 			m_freem(m);
2179 			m = nm;
2180 		}
2181 #ifndef __NO_STRICT_ALIGNMENT
2182 		else {
2183 			/*
2184 			 * The DP83820's receive buffers must be 4-byte
2185 			 * aligned.  But this means that the data after
2186 			 * the Ethernet header is misaligned.  To compensate,
2187 			 * we have artificially shortened the buffer size
2188 			 * in the descriptor, and we do an overlapping copy
2189 			 * of the data two bytes further in (in the first
2190 			 * buffer of the chain only).
2191 			 */
2192 			memmove(mtod(m, char *) + 2, mtod(m, void *),
2193 			    m->m_len);
2194 			m->m_data += 2;
2195 		}
2196 #endif /* ! __NO_STRICT_ALIGNMENT */
2197 
2198 		/*
2199 		 * If VLANs are enabled, VLAN packets have been unwrapped
2200 		 * for us.  Associate the tag with the packet.
2201 		 */
2202 
2203 		/*
2204 		 * Again, byte swapping is tricky. Hardware provided
2205 		 * the tag in the network byte order, but extsts was
2206 		 * passed through le32toh() in the meantime. On a
2207 		 * big-endian machine, we need to swap it again. On a
2208 		 * little-endian machine, we need to convert from the
2209 		 * network to host byte order. This means that we must
2210 		 * swap it in any case, so unconditional swap instead
2211 		 * of htons() is used.
2212 		 */
2213 		if ((extsts & EXTSTS_VPKT) != 0) {
2214 			VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
2215 			    continue);
2216 		}
2217 
2218 		/*
2219 		 * Set the incoming checksum information for the
2220 		 * packet.
2221 		 */
2222 		if ((extsts & EXTSTS_IPPKT) != 0) {
2223 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2224 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2225 			if (extsts & EXTSTS_Rx_IPERR)
2226 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2227 			if (extsts & EXTSTS_TCPPKT) {
2228 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2229 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2230 				if (extsts & EXTSTS_Rx_TCPERR)
2231 					m->m_pkthdr.csum_flags |=
2232 					    M_CSUM_TCP_UDP_BAD;
2233 			} else if (extsts & EXTSTS_UDPPKT) {
2234 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2235 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2236 				if (extsts & EXTSTS_Rx_UDPERR)
2237 					m->m_pkthdr.csum_flags |=
2238 					    M_CSUM_TCP_UDP_BAD;
2239 			}
2240 		}
2241 
2242 		ifp->if_ipackets++;
2243 		m->m_pkthdr.rcvif = ifp;
2244 		m->m_pkthdr.len = len;
2245 
2246 		/*
2247 		 * Pass this up to any BPF listeners, but only
2248 		 * pass if up the stack if it's for us.
2249 		 */
2250 		if (ifp->if_bpf)
2251 			bpf_ops->bpf_mtap(ifp->if_bpf, m);
2252 
2253 		/* Pass it on. */
2254 		(*ifp->if_input)(ifp, m);
2255 	}
2256 
2257 	/* Update the receive pointer. */
2258 	sc->sc_rxptr = i;
2259 }
2260 
2261 /*
2262  * sip_rxintr:
2263  *
2264  *	Helper; handle receive interrupts on 10/100 parts.
2265  */
2266 static void
2267 sip_rxintr(struct sip_softc *sc)
2268 {
2269 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2270 	struct sip_rxsoft *rxs;
2271 	struct mbuf *m;
2272 	u_int32_t cmdsts;
2273 	int i, len;
2274 
2275 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2276 		rxs = &sc->sc_rxsoft[i];
2277 
2278 		sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2279 
2280 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2281 
2282 		/*
2283 		 * NOTE: OWN is set if owned by _consumer_.  We're the
2284 		 * consumer of the receive ring, so if the bit is clear,
2285 		 * we have processed all of the packets.
2286 		 */
2287 		if ((cmdsts & CMDSTS_OWN) == 0) {
2288 			/*
2289 			 * We have processed all of the receive buffers.
2290 			 */
2291 			break;
2292 		}
2293 
2294 		/*
2295 		 * If any collisions were seen on the wire, count one.
2296 		 */
2297 		if (cmdsts & CMDSTS_Rx_COL)
2298 			ifp->if_collisions++;
2299 
2300 		/*
2301 		 * If an error occurred, update stats, clear the status
2302 		 * word, and leave the packet buffer in place.  It will
2303 		 * simply be reused the next time the ring comes around.
2304 		 */
2305 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2306 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2307 			ifp->if_ierrors++;
2308 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2309 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
2310 				/* Receive overrun handled elsewhere. */
2311 				printf("%s: receive descriptor error\n",
2312 				    device_xname(sc->sc_dev));
2313 			}
2314 #define	PRINTERR(bit, str)						\
2315 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
2316 			    (cmdsts & (bit)) != 0)			\
2317 				printf("%s: %s\n", device_xname(sc->sc_dev), str)
2318 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2319 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2320 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2321 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2322 #undef PRINTERR
2323 			sip_init_rxdesc(sc, i);
2324 			continue;
2325 		}
2326 
2327 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2328 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2329 
2330 		/*
2331 		 * No errors; receive the packet.  Note, the SiS 900
2332 		 * includes the CRC with every packet.
2333 		 */
2334 		len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
2335 
2336 #ifdef __NO_STRICT_ALIGNMENT
2337 		/*
2338 		 * If the packet is small enough to fit in a
2339 		 * single header mbuf, allocate one and copy
2340 		 * the data into it.  This greatly reduces
2341 		 * memory consumption when we receive lots
2342 		 * of small packets.
2343 		 *
2344 		 * Otherwise, we add a new buffer to the receive
2345 		 * chain.  If this fails, we drop the packet and
2346 		 * recycle the old buffer.
2347 		 */
2348 		if (sip_copy_small != 0 && len <= MHLEN) {
2349 			MGETHDR(m, M_DONTWAIT, MT_DATA);
2350 			if (m == NULL)
2351 				goto dropit;
2352 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2353 			memcpy(mtod(m, void *),
2354 			    mtod(rxs->rxs_mbuf, void *), len);
2355 			sip_init_rxdesc(sc, i);
2356 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2357 			    rxs->rxs_dmamap->dm_mapsize,
2358 			    BUS_DMASYNC_PREREAD);
2359 		} else {
2360 			m = rxs->rxs_mbuf;
2361 			if (sipcom_add_rxbuf(sc, i) != 0) {
2362  dropit:
2363 				ifp->if_ierrors++;
2364 				sip_init_rxdesc(sc, i);
2365 				bus_dmamap_sync(sc->sc_dmat,
2366 				    rxs->rxs_dmamap, 0,
2367 				    rxs->rxs_dmamap->dm_mapsize,
2368 				    BUS_DMASYNC_PREREAD);
2369 				continue;
2370 			}
2371 		}
2372 #else
2373 		/*
2374 		 * The SiS 900's receive buffers must be 4-byte aligned.
2375 		 * But this means that the data after the Ethernet header
2376 		 * is misaligned.  We must allocate a new buffer and
2377 		 * copy the data, shifted forward 2 bytes.
2378 		 */
2379 		MGETHDR(m, M_DONTWAIT, MT_DATA);
2380 		if (m == NULL) {
2381  dropit:
2382 			ifp->if_ierrors++;
2383 			sip_init_rxdesc(sc, i);
2384 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2385 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2386 			continue;
2387 		}
2388 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2389 		if (len > (MHLEN - 2)) {
2390 			MCLGET(m, M_DONTWAIT);
2391 			if ((m->m_flags & M_EXT) == 0) {
2392 				m_freem(m);
2393 				goto dropit;
2394 			}
2395 		}
2396 		m->m_data += 2;
2397 
2398 		/*
2399 		 * Note that we use clusters for incoming frames, so the
2400 		 * buffer is virtually contiguous.
2401 		 */
2402 		memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2403 
2404 		/* Allow the receive descriptor to continue using its mbuf. */
2405 		sip_init_rxdesc(sc, i);
2406 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2407 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2408 #endif /* __NO_STRICT_ALIGNMENT */
2409 
2410 		ifp->if_ipackets++;
2411 		m->m_pkthdr.rcvif = ifp;
2412 		m->m_pkthdr.len = m->m_len = len;
2413 
2414 		/*
2415 		 * Pass this up to any BPF listeners, but only
2416 		 * pass if up the stack if it's for us.
2417 		 */
2418 		if (ifp->if_bpf)
2419 			bpf_ops->bpf_mtap(ifp->if_bpf, m);
2420 
2421 		/* Pass it on. */
2422 		(*ifp->if_input)(ifp, m);
2423 	}
2424 
2425 	/* Update the receive pointer. */
2426 	sc->sc_rxptr = i;
2427 }
2428 
2429 /*
2430  * sip_tick:
2431  *
2432  *	One second timer, used to tick the MII.
2433  */
2434 static void
2435 sipcom_tick(void *arg)
2436 {
2437 	struct sip_softc *sc = arg;
2438 	int s;
2439 
2440 	s = splnet();
2441 #ifdef SIP_EVENT_COUNTERS
2442 	if (sc->sc_gigabit) {
2443 		/* Read PAUSE related counts from MIB registers. */
2444 		sc->sc_ev_rxpause.ev_count +=
2445 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
2446 				     SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2447 		sc->sc_ev_txpause.ev_count +=
2448 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
2449 				     SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2450 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2451 	}
2452 #endif /* SIP_EVENT_COUNTERS */
2453 	mii_tick(&sc->sc_mii);
2454 	splx(s);
2455 
2456 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2457 }
2458 
2459 /*
2460  * sip_reset:
2461  *
2462  *	Perform a soft reset on the SiS 900.
2463  */
2464 static bool
2465 sipcom_reset(struct sip_softc *sc)
2466 {
2467 	bus_space_tag_t st = sc->sc_st;
2468 	bus_space_handle_t sh = sc->sc_sh;
2469 	int i;
2470 
2471 	bus_space_write_4(st, sh, SIP_IER, 0);
2472 	bus_space_write_4(st, sh, SIP_IMR, 0);
2473 	bus_space_write_4(st, sh, SIP_RFCR, 0);
2474 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
2475 
2476 	for (i = 0; i < SIP_TIMEOUT; i++) {
2477 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2478 			break;
2479 		delay(2);
2480 	}
2481 
2482 	if (i == SIP_TIMEOUT) {
2483 		printf("%s: reset failed to complete\n", device_xname(sc->sc_dev));
2484 		return false;
2485 	}
2486 
2487 	delay(1000);
2488 
2489 	if (sc->sc_gigabit) {
2490 		/*
2491 		 * Set the general purpose I/O bits.  Do it here in case we
2492 		 * need to have GPIO set up to talk to the media interface.
2493 		 */
2494 		bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2495 		delay(1000);
2496 	}
2497 	return true;
2498 }
2499 
2500 static void
2501 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2502 {
2503 	u_int32_t reg;
2504 	bus_space_tag_t st = sc->sc_st;
2505 	bus_space_handle_t sh = sc->sc_sh;
2506 	/*
2507 	 * Initialize the VLAN/IP receive control register.
2508 	 * We enable checksum computation on all incoming
2509 	 * packets, and do not reject packets w/ bad checksums.
2510 	 */
2511 	reg = 0;
2512 	if (capenable &
2513 	    (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
2514 		reg |= VRCR_IPEN;
2515 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2516 		reg |= VRCR_VTDEN|VRCR_VTREN;
2517 	bus_space_write_4(st, sh, SIP_VRCR, reg);
2518 
2519 	/*
2520 	 * Initialize the VLAN/IP transmit control register.
2521 	 * We enable outgoing checksum computation on a
2522 	 * per-packet basis.
2523 	 */
2524 	reg = 0;
2525 	if (capenable &
2526 	    (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2527 		reg |= VTCR_PPCHK;
2528 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2529 		reg |= VTCR_VPPTI;
2530 	bus_space_write_4(st, sh, SIP_VTCR, reg);
2531 
2532 	/*
2533 	 * If we're using VLANs, initialize the VLAN data register.
2534 	 * To understand why we bswap the VLAN Ethertype, see section
2535 	 * 4.2.36 of the DP83820 manual.
2536 	 */
2537 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2538 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2539 }
2540 
2541 /*
2542  * sip_init:		[ ifnet interface function ]
2543  *
2544  *	Initialize the interface.  Must be called at splnet().
2545  */
2546 static int
2547 sipcom_init(struct ifnet *ifp)
2548 {
2549 	struct sip_softc *sc = ifp->if_softc;
2550 	bus_space_tag_t st = sc->sc_st;
2551 	bus_space_handle_t sh = sc->sc_sh;
2552 	struct sip_txsoft *txs;
2553 	struct sip_rxsoft *rxs;
2554 	struct sip_desc *sipd;
2555 	int i, error = 0;
2556 
2557 	if (device_is_active(sc->sc_dev)) {
2558 		/*
2559 		 * Cancel any pending I/O.
2560 		 */
2561 		sipcom_stop(ifp, 0);
2562 	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
2563 	           !device_is_active(sc->sc_dev))
2564 		return 0;
2565 
2566 	/*
2567 	 * Reset the chip to a known state.
2568 	 */
2569 	if (!sipcom_reset(sc))
2570 		return EBUSY;
2571 
2572 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2573 		/*
2574 		 * DP83815 manual, page 78:
2575 		 *    4.4 Recommended Registers Configuration
2576 		 *    For optimum performance of the DP83815, version noted
2577 		 *    as DP83815CVNG (SRR = 203h), the listed register
2578 		 *    modifications must be followed in sequence...
2579 		 *
2580 		 * It's not clear if this should be 302h or 203h because that
2581 		 * chip name is listed as SRR 302h in the description of the
2582 		 * SRR register.  However, my revision 302h DP83815 on the
2583 		 * Netgear FA311 purchased in 02/2001 needs these settings
2584 		 * to avoid tons of errors in AcceptPerfectMatch (non-
2585 		 * IFF_PROMISC) mode.  I do not know if other revisions need
2586 		 * this set or not.  [briggs -- 09 March 2001]
2587 		 *
2588 		 * Note that only the low-order 12 bits of 0xe4 are documented
2589 		 * and that this sets reserved bits in that register.
2590 		 */
2591 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
2592 
2593 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
2594 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
2595 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
2596 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
2597 
2598 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
2599 	}
2600 
2601 	/*
2602 	 * Initialize the transmit descriptor ring.
2603 	 */
2604 	for (i = 0; i < sc->sc_ntxdesc; i++) {
2605 		sipd = &sc->sc_txdescs[i];
2606 		memset(sipd, 0, sizeof(struct sip_desc));
2607 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
2608 	}
2609 	sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
2610 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2611 	sc->sc_txfree = sc->sc_ntxdesc;
2612 	sc->sc_txnext = 0;
2613 	sc->sc_txwin = 0;
2614 
2615 	/*
2616 	 * Initialize the transmit job descriptors.
2617 	 */
2618 	SIMPLEQ_INIT(&sc->sc_txfreeq);
2619 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
2620 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
2621 		txs = &sc->sc_txsoft[i];
2622 		txs->txs_mbuf = NULL;
2623 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2624 	}
2625 
2626 	/*
2627 	 * Initialize the receive descriptor and receive job
2628 	 * descriptor rings.
2629 	 */
2630 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2631 		rxs = &sc->sc_rxsoft[i];
2632 		if (rxs->rxs_mbuf == NULL) {
2633 			if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
2634 				printf("%s: unable to allocate or map rx "
2635 				    "buffer %d, error = %d\n",
2636 				    device_xname(sc->sc_dev), i, error);
2637 				/*
2638 				 * XXX Should attempt to run with fewer receive
2639 				 * XXX buffers instead of just failing.
2640 				 */
2641 				sipcom_rxdrain(sc);
2642 				goto out;
2643 			}
2644 		} else
2645 			sip_init_rxdesc(sc, i);
2646 	}
2647 	sc->sc_rxptr = 0;
2648 	sc->sc_rxdiscard = 0;
2649 	sip_rxchain_reset(sc);
2650 
2651 	/*
2652 	 * Set the configuration register; it's already initialized
2653 	 * in sip_attach().
2654 	 */
2655 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2656 
2657 	/*
2658 	 * Initialize the prototype TXCFG register.
2659 	 */
2660 	if (sc->sc_gigabit) {
2661 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2662 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2663 	} else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2664 	     SIP_SIS900_REV(sc, SIS_REV_960) ||
2665 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2666 	    (sc->sc_cfg & CFG_EDBMASTEN)) {
2667 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
2668 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
2669 	} else {
2670 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2671 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2672 	}
2673 
2674 	sc->sc_txcfg |= TXCFG_ATP |
2675 	    __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
2676 	    sc->sc_tx_drain_thresh;
2677 	bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
2678 
2679 	/*
2680 	 * Initialize the receive drain threshold if we have never
2681 	 * done so.
2682 	 */
2683 	if (sc->sc_rx_drain_thresh == 0) {
2684 		/*
2685 		 * XXX This value should be tuned.  This is set to the
2686 		 * maximum of 248 bytes, and we may be able to improve
2687 		 * performance by decreasing it (although we should never
2688 		 * set this value lower than 2; 14 bytes are required to
2689 		 * filter the packet).
2690 		 */
2691 		sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
2692 	}
2693 
2694 	/*
2695 	 * Initialize the prototype RXCFG register.
2696 	 */
2697 	sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
2698 	/*
2699 	 * Accept long packets (including FCS) so we can handle
2700 	 * 802.1q-tagged frames and jumbo frames properly.
2701 	 */
2702 	if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2703 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2704 		sc->sc_rxcfg |= RXCFG_ALP;
2705 
2706 	/*
2707 	 * Checksum offloading is disabled if the user selects an MTU
2708 	 * larger than 8109.  (FreeBSD says 8152, but there is emperical
2709 	 * evidence that >8109 does not work on some boards, such as the
2710 	 * Planex GN-1000TE).
2711 	 */
2712 	if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2713 	    (ifp->if_capenable &
2714 	     (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2715 	      IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2716 	      IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
2717 		printf("%s: Checksum offloading does not work if MTU > 8109 - "
2718 		       "disabled.\n", device_xname(sc->sc_dev));
2719 		ifp->if_capenable &=
2720 		    ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2721 		     IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2722 		     IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
2723 		ifp->if_csum_flags_tx = 0;
2724 		ifp->if_csum_flags_rx = 0;
2725 	}
2726 
2727 	bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
2728 
2729 	if (sc->sc_gigabit)
2730 		sipcom_dp83820_init(sc, ifp->if_capenable);
2731 
2732 	/*
2733 	 * Give the transmit and receive rings to the chip.
2734 	 */
2735 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2736 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2737 
2738 	/*
2739 	 * Initialize the interrupt mask.
2740 	 */
2741 	sc->sc_imr = sc->sc_bits.b_isr_dperr |
2742 	             sc->sc_bits.b_isr_sserr |
2743 		     sc->sc_bits.b_isr_rmabt |
2744 		     sc->sc_bits.b_isr_rtabt | ISR_RXSOVR |
2745 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2746 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2747 
2748 	/* Set up the receive filter. */
2749 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2750 
2751 	/*
2752 	 * Tune sc_rx_flow_thresh.
2753 	 * XXX "More than 8KB" is too short for jumbo frames.
2754 	 * XXX TODO: Threshold value should be user-settable.
2755 	 */
2756 	sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2757 				 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2758 				 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2759 
2760 	/*
2761 	 * Set the current media.  Do this after initializing the prototype
2762 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2763 	 * control.
2764 	 */
2765 	if ((error = ether_mediachange(ifp)) != 0)
2766 		goto out;
2767 
2768 	/*
2769 	 * Set the interrupt hold-off timer to 100us.
2770 	 */
2771 	if (sc->sc_gigabit)
2772 		bus_space_write_4(st, sh, SIP_IHR, 0x01);
2773 
2774 	/*
2775 	 * Enable interrupts.
2776 	 */
2777 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
2778 
2779 	/*
2780 	 * Start the transmit and receive processes.
2781 	 */
2782 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2783 
2784 	/*
2785 	 * Start the one second MII clock.
2786 	 */
2787 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2788 
2789 	/*
2790 	 * ...all done!
2791 	 */
2792 	ifp->if_flags |= IFF_RUNNING;
2793 	ifp->if_flags &= ~IFF_OACTIVE;
2794 	sc->sc_if_flags = ifp->if_flags;
2795 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2796 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2797 	sc->sc_prev.if_capenable = ifp->if_capenable;
2798 
2799  out:
2800 	if (error)
2801 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
2802 	return (error);
2803 }
2804 
2805 /*
2806  * sip_drain:
2807  *
2808  *	Drain the receive queue.
2809  */
2810 static void
2811 sipcom_rxdrain(struct sip_softc *sc)
2812 {
2813 	struct sip_rxsoft *rxs;
2814 	int i;
2815 
2816 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2817 		rxs = &sc->sc_rxsoft[i];
2818 		if (rxs->rxs_mbuf != NULL) {
2819 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2820 			m_freem(rxs->rxs_mbuf);
2821 			rxs->rxs_mbuf = NULL;
2822 		}
2823 	}
2824 }
2825 
2826 /*
2827  * sip_stop:		[ ifnet interface function ]
2828  *
2829  *	Stop transmission on the interface.
2830  */
2831 static void
2832 sipcom_stop(struct ifnet *ifp, int disable)
2833 {
2834 	struct sip_softc *sc = ifp->if_softc;
2835 	bus_space_tag_t st = sc->sc_st;
2836 	bus_space_handle_t sh = sc->sc_sh;
2837 	struct sip_txsoft *txs;
2838 	u_int32_t cmdsts = 0;		/* DEBUG */
2839 
2840 	/*
2841 	 * Stop the one second clock.
2842 	 */
2843 	callout_stop(&sc->sc_tick_ch);
2844 
2845 	/* Down the MII. */
2846 	mii_down(&sc->sc_mii);
2847 
2848 	if (device_is_active(sc->sc_dev)) {
2849 		/*
2850 		 * Disable interrupts.
2851 		 */
2852 		bus_space_write_4(st, sh, SIP_IER, 0);
2853 
2854 		/*
2855 		 * Stop receiver and transmitter.
2856 		 */
2857 		bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2858 	}
2859 
2860 	/*
2861 	 * Release any queued transmit buffers.
2862 	 */
2863 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2864 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2865 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2866 		    (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
2867 		     CMDSTS_INTR) == 0)
2868 			printf("%s: sip_stop: last descriptor does not "
2869 			    "have INTR bit set\n", device_xname(sc->sc_dev));
2870 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2871 #ifdef DIAGNOSTIC
2872 		if (txs->txs_mbuf == NULL) {
2873 			printf("%s: dirty txsoft with no mbuf chain\n",
2874 			    device_xname(sc->sc_dev));
2875 			panic("sip_stop");
2876 		}
2877 #endif
2878 		cmdsts |=		/* DEBUG */
2879 		    le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
2880 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2881 		m_freem(txs->txs_mbuf);
2882 		txs->txs_mbuf = NULL;
2883 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2884 	}
2885 
2886 	/*
2887 	 * Mark the interface down and cancel the watchdog timer.
2888 	 */
2889 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2890 	ifp->if_timer = 0;
2891 
2892 	if (disable)
2893 		pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
2894 
2895 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2896 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2897 		printf("%s: sip_stop: no INTR bits set in dirty tx "
2898 		    "descriptors\n", device_xname(sc->sc_dev));
2899 }
2900 
2901 /*
2902  * sip_read_eeprom:
2903  *
2904  *	Read data from the serial EEPROM.
2905  */
2906 static void
2907 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2908     u_int16_t *data)
2909 {
2910 	bus_space_tag_t st = sc->sc_st;
2911 	bus_space_handle_t sh = sc->sc_sh;
2912 	u_int16_t reg;
2913 	int i, x;
2914 
2915 	for (i = 0; i < wordcnt; i++) {
2916 		/* Send CHIP SELECT. */
2917 		reg = EROMAR_EECS;
2918 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
2919 
2920 		/* Shift in the READ opcode. */
2921 		for (x = 3; x > 0; x--) {
2922 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2923 				reg |= EROMAR_EEDI;
2924 			else
2925 				reg &= ~EROMAR_EEDI;
2926 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2927 			bus_space_write_4(st, sh, SIP_EROMAR,
2928 			    reg | EROMAR_EESK);
2929 			delay(4);
2930 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2931 			delay(4);
2932 		}
2933 
2934 		/* Shift in address. */
2935 		for (x = 6; x > 0; x--) {
2936 			if ((word + i) & (1 << (x - 1)))
2937 				reg |= EROMAR_EEDI;
2938 			else
2939 				reg &= ~EROMAR_EEDI;
2940 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2941 			bus_space_write_4(st, sh, SIP_EROMAR,
2942 			    reg | EROMAR_EESK);
2943 			delay(4);
2944 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2945 			delay(4);
2946 		}
2947 
2948 		/* Shift out data. */
2949 		reg = EROMAR_EECS;
2950 		data[i] = 0;
2951 		for (x = 16; x > 0; x--) {
2952 			bus_space_write_4(st, sh, SIP_EROMAR,
2953 			    reg | EROMAR_EESK);
2954 			delay(4);
2955 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2956 				data[i] |= (1 << (x - 1));
2957 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2958 			delay(4);
2959 		}
2960 
2961 		/* Clear CHIP SELECT. */
2962 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
2963 		delay(4);
2964 	}
2965 }
2966 
2967 /*
2968  * sipcom_add_rxbuf:
2969  *
2970  *	Add a receive buffer to the indicated descriptor.
2971  */
2972 static int
2973 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
2974 {
2975 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2976 	struct mbuf *m;
2977 	int error;
2978 
2979 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2980 	if (m == NULL)
2981 		return (ENOBUFS);
2982 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2983 
2984 	MCLGET(m, M_DONTWAIT);
2985 	if ((m->m_flags & M_EXT) == 0) {
2986 		m_freem(m);
2987 		return (ENOBUFS);
2988 	}
2989 
2990 	/* XXX I don't believe this is necessary. --dyoung */
2991 	if (sc->sc_gigabit)
2992 		m->m_len = sc->sc_parm->p_rxbuf_len;
2993 
2994 	if (rxs->rxs_mbuf != NULL)
2995 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2996 
2997 	rxs->rxs_mbuf = m;
2998 
2999 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
3000 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
3001 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
3002 	if (error) {
3003 		printf("%s: can't load rx DMA map %d, error = %d\n",
3004 		    device_xname(sc->sc_dev), idx, error);
3005 		panic("%s", __func__);		/* XXX */
3006 	}
3007 
3008 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3009 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3010 
3011 	sip_init_rxdesc(sc, idx);
3012 
3013 	return (0);
3014 }
3015 
3016 /*
3017  * sip_sis900_set_filter:
3018  *
3019  *	Set up the receive filter.
3020  */
3021 static void
3022 sipcom_sis900_set_filter(struct sip_softc *sc)
3023 {
3024 	bus_space_tag_t st = sc->sc_st;
3025 	bus_space_handle_t sh = sc->sc_sh;
3026 	struct ethercom *ec = &sc->sc_ethercom;
3027 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3028 	struct ether_multi *enm;
3029 	const u_int8_t *cp;
3030 	struct ether_multistep step;
3031 	u_int32_t crc, mchash[16];
3032 
3033 	/*
3034 	 * Initialize the prototype RFCR.
3035 	 */
3036 	sc->sc_rfcr = RFCR_RFEN;
3037 	if (ifp->if_flags & IFF_BROADCAST)
3038 		sc->sc_rfcr |= RFCR_AAB;
3039 	if (ifp->if_flags & IFF_PROMISC) {
3040 		sc->sc_rfcr |= RFCR_AAP;
3041 		goto allmulti;
3042 	}
3043 
3044 	/*
3045 	 * Set up the multicast address filter by passing all multicast
3046 	 * addresses through a CRC generator, and then using the high-order
3047 	 * 6 bits as an index into the 128 bit multicast hash table (only
3048 	 * the lower 16 bits of each 32 bit multicast hash register are
3049 	 * valid).  The high order bits select the register, while the
3050 	 * rest of the bits select the bit within the register.
3051 	 */
3052 
3053 	memset(mchash, 0, sizeof(mchash));
3054 
3055 	/*
3056 	 * SiS900 (at least SiS963) requires us to register the address of
3057 	 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3058 	 */
3059 	crc = 0x0ed423f9;
3060 
3061 	if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3062 	    SIP_SIS900_REV(sc, SIS_REV_960) ||
3063 	    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3064 		/* Just want the 8 most significant bits. */
3065 		crc >>= 24;
3066 	} else {
3067 		/* Just want the 7 most significant bits. */
3068 		crc >>= 25;
3069 	}
3070 
3071 	/* Set the corresponding bit in the hash table. */
3072 	mchash[crc >> 4] |= 1 << (crc & 0xf);
3073 
3074 	ETHER_FIRST_MULTI(step, ec, enm);
3075 	while (enm != NULL) {
3076 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3077 			/*
3078 			 * We must listen to a range of multicast addresses.
3079 			 * For now, just accept all multicasts, rather than
3080 			 * trying to set only those filter bits needed to match
3081 			 * the range.  (At this time, the only use of address
3082 			 * ranges is for IP multicast routing, for which the
3083 			 * range is big enough to require all bits set.)
3084 			 */
3085 			goto allmulti;
3086 		}
3087 
3088 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3089 
3090 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3091 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
3092 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3093 			/* Just want the 8 most significant bits. */
3094 			crc >>= 24;
3095 		} else {
3096 			/* Just want the 7 most significant bits. */
3097 			crc >>= 25;
3098 		}
3099 
3100 		/* Set the corresponding bit in the hash table. */
3101 		mchash[crc >> 4] |= 1 << (crc & 0xf);
3102 
3103 		ETHER_NEXT_MULTI(step, enm);
3104 	}
3105 
3106 	ifp->if_flags &= ~IFF_ALLMULTI;
3107 	goto setit;
3108 
3109  allmulti:
3110 	ifp->if_flags |= IFF_ALLMULTI;
3111 	sc->sc_rfcr |= RFCR_AAM;
3112 
3113  setit:
3114 #define	FILTER_EMIT(addr, data)						\
3115 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
3116 	delay(1);							\
3117 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
3118 	delay(1)
3119 
3120 	/*
3121 	 * Disable receive filter, and program the node address.
3122 	 */
3123 	cp = CLLADDR(ifp->if_sadl);
3124 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
3125 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
3126 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
3127 
3128 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3129 		/*
3130 		 * Program the multicast hash table.
3131 		 */
3132 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
3133 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
3134 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
3135 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
3136 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
3137 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
3138 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
3139 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
3140 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3141 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
3142 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3143 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
3144 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
3145 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
3146 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
3147 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
3148 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
3149 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
3150 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
3151 		}
3152 	}
3153 #undef FILTER_EMIT
3154 
3155 	/*
3156 	 * Re-enable the receiver filter.
3157 	 */
3158 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3159 }
3160 
3161 /*
3162  * sip_dp83815_set_filter:
3163  *
3164  *	Set up the receive filter.
3165  */
3166 static void
3167 sipcom_dp83815_set_filter(struct sip_softc *sc)
3168 {
3169 	bus_space_tag_t st = sc->sc_st;
3170 	bus_space_handle_t sh = sc->sc_sh;
3171 	struct ethercom *ec = &sc->sc_ethercom;
3172 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3173 	struct ether_multi *enm;
3174 	const u_int8_t *cp;
3175 	struct ether_multistep step;
3176 	u_int32_t crc, hash, slot, bit;
3177 #define	MCHASH_NWORDS_83820	128
3178 #define	MCHASH_NWORDS_83815	32
3179 #define	MCHASH_NWORDS	MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3180 	u_int16_t mchash[MCHASH_NWORDS];
3181 	int i;
3182 
3183 	/*
3184 	 * Initialize the prototype RFCR.
3185 	 * Enable the receive filter, and accept on
3186 	 *    Perfect (destination address) Match
3187 	 * If IFF_BROADCAST, also accept all broadcast packets.
3188 	 * If IFF_PROMISC, accept all unicast packets (and later, set
3189 	 *    IFF_ALLMULTI and accept all multicast, too).
3190 	 */
3191 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3192 	if (ifp->if_flags & IFF_BROADCAST)
3193 		sc->sc_rfcr |= RFCR_AAB;
3194 	if (ifp->if_flags & IFF_PROMISC) {
3195 		sc->sc_rfcr |= RFCR_AAP;
3196 		goto allmulti;
3197 	}
3198 
3199 	/*
3200          * Set up the DP83820/DP83815 multicast address filter by
3201          * passing all multicast addresses through a CRC generator,
3202          * and then using the high-order 11/9 bits as an index into
3203          * the 2048/512 bit multicast hash table.  The high-order
3204          * 7/5 bits select the slot, while the low-order 4 bits
3205          * select the bit within the slot.  Note that only the low
3206          * 16-bits of each filter word are used, and there are
3207          * 128/32 filter words.
3208 	 */
3209 
3210 	memset(mchash, 0, sizeof(mchash));
3211 
3212 	ifp->if_flags &= ~IFF_ALLMULTI;
3213 	ETHER_FIRST_MULTI(step, ec, enm);
3214 	if (enm == NULL)
3215 		goto setit;
3216 	while (enm != NULL) {
3217 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3218 			/*
3219 			 * We must listen to a range of multicast addresses.
3220 			 * For now, just accept all multicasts, rather than
3221 			 * trying to set only those filter bits needed to match
3222 			 * the range.  (At this time, the only use of address
3223 			 * ranges is for IP multicast routing, for which the
3224 			 * range is big enough to require all bits set.)
3225 			 */
3226 			goto allmulti;
3227 		}
3228 
3229 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3230 
3231 		if (sc->sc_gigabit) {
3232 			/* Just want the 11 most significant bits. */
3233 			hash = crc >> 21;
3234 		} else {
3235 			/* Just want the 9 most significant bits. */
3236 			hash = crc >> 23;
3237 		}
3238 
3239 		slot = hash >> 4;
3240 		bit = hash & 0xf;
3241 
3242 		/* Set the corresponding bit in the hash table. */
3243 		mchash[slot] |= 1 << bit;
3244 
3245 		ETHER_NEXT_MULTI(step, enm);
3246 	}
3247 	sc->sc_rfcr |= RFCR_MHEN;
3248 	goto setit;
3249 
3250  allmulti:
3251 	ifp->if_flags |= IFF_ALLMULTI;
3252 	sc->sc_rfcr |= RFCR_AAM;
3253 
3254  setit:
3255 #define	FILTER_EMIT(addr, data)						\
3256 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
3257 	delay(1);							\
3258 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
3259 	delay(1)
3260 
3261 	/*
3262 	 * Disable receive filter, and program the node address.
3263 	 */
3264 	cp = CLLADDR(ifp->if_sadl);
3265 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3266 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3267 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3268 
3269 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3270 		int nwords =
3271 		    sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3272 		/*
3273 		 * Program the multicast hash table.
3274 		 */
3275 		for (i = 0; i < nwords; i++) {
3276 			FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
3277 		}
3278 	}
3279 #undef FILTER_EMIT
3280 #undef MCHASH_NWORDS
3281 #undef MCHASH_NWORDS_83815
3282 #undef MCHASH_NWORDS_83820
3283 
3284 	/*
3285 	 * Re-enable the receiver filter.
3286 	 */
3287 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3288 }
3289 
3290 /*
3291  * sip_dp83820_mii_readreg:	[mii interface function]
3292  *
3293  *	Read a PHY register on the MII of the DP83820.
3294  */
3295 static int
3296 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg)
3297 {
3298 	struct sip_softc *sc = device_private(self);
3299 
3300 	if (sc->sc_cfg & CFG_TBI_EN) {
3301 		bus_addr_t tbireg;
3302 		int rv;
3303 
3304 		if (phy != 0)
3305 			return (0);
3306 
3307 		switch (reg) {
3308 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3309 		case MII_BMSR:		tbireg = SIP_TBISR; break;
3310 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3311 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3312 		case MII_ANER:		tbireg = SIP_TANER; break;
3313 		case MII_EXTSR:
3314 			/*
3315 			 * Don't even bother reading the TESR register.
3316 			 * The manual documents that the device has
3317 			 * 1000baseX full/half capability, but the
3318 			 * register itself seems read back 0 on some
3319 			 * boards.  Just hard-code the result.
3320 			 */
3321 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3322 
3323 		default:
3324 			return (0);
3325 		}
3326 
3327 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3328 		if (tbireg == SIP_TBISR) {
3329 			/* LINK and ACOMP are switched! */
3330 			int val = rv;
3331 
3332 			rv = 0;
3333 			if (val & TBISR_MR_LINK_STATUS)
3334 				rv |= BMSR_LINK;
3335 			if (val & TBISR_MR_AN_COMPLETE)
3336 				rv |= BMSR_ACOMP;
3337 
3338 			/*
3339 			 * The manual claims this register reads back 0
3340 			 * on hard and soft reset.  But we want to let
3341 			 * the gentbi driver know that we support auto-
3342 			 * negotiation, so hard-code this bit in the
3343 			 * result.
3344 			 */
3345 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
3346 		}
3347 
3348 		return (rv);
3349 	}
3350 
3351 	return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
3352 }
3353 
3354 /*
3355  * sip_dp83820_mii_writereg:	[mii interface function]
3356  *
3357  *	Write a PHY register on the MII of the DP83820.
3358  */
3359 static void
3360 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, int val)
3361 {
3362 	struct sip_softc *sc = device_private(self);
3363 
3364 	if (sc->sc_cfg & CFG_TBI_EN) {
3365 		bus_addr_t tbireg;
3366 
3367 		if (phy != 0)
3368 			return;
3369 
3370 		switch (reg) {
3371 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3372 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3373 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3374 		default:
3375 			return;
3376 		}
3377 
3378 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3379 		return;
3380 	}
3381 
3382 	mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
3383 }
3384 
3385 /*
3386  * sip_dp83820_mii_statchg:	[mii interface function]
3387  *
3388  *	Callback from MII layer when media changes.
3389  */
3390 static void
3391 sipcom_dp83820_mii_statchg(device_t self)
3392 {
3393 	struct sip_softc *sc = device_private(self);
3394 	struct mii_data *mii = &sc->sc_mii;
3395 	u_int32_t cfg, pcr;
3396 
3397 	/*
3398 	 * Get flow control negotiation result.
3399 	 */
3400 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3401 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3402 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3403 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3404 	}
3405 
3406 	/*
3407 	 * Update TXCFG for full-duplex operation.
3408 	 */
3409 	if ((mii->mii_media_active & IFM_FDX) != 0)
3410 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3411 	else
3412 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3413 
3414 	/*
3415 	 * Update RXCFG for full-duplex or loopback.
3416 	 */
3417 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3418 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3419 		sc->sc_rxcfg |= RXCFG_ATX;
3420 	else
3421 		sc->sc_rxcfg &= ~RXCFG_ATX;
3422 
3423 	/*
3424 	 * Update CFG for MII/GMII.
3425 	 */
3426 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3427 		cfg = sc->sc_cfg | CFG_MODE_1000;
3428 	else
3429 		cfg = sc->sc_cfg;
3430 
3431 	/*
3432 	 * 802.3x flow control.
3433 	 */
3434 	pcr = 0;
3435 	if (sc->sc_flowflags & IFM_FLOW) {
3436 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3437 			pcr |= sc->sc_rx_flow_thresh;
3438 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3439 			pcr |= PCR_PSEN | PCR_PS_MCAST;
3440 	}
3441 
3442 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3443 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3444 	    sc->sc_txcfg);
3445 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3446 	    sc->sc_rxcfg);
3447 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3448 }
3449 
3450 /*
3451  * sip_mii_bitbang_read: [mii bit-bang interface function]
3452  *
3453  *	Read the MII serial port for the MII bit-bang module.
3454  */
3455 static u_int32_t
3456 sipcom_mii_bitbang_read(device_t self)
3457 {
3458 	struct sip_softc *sc = device_private(self);
3459 
3460 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3461 }
3462 
3463 /*
3464  * sip_mii_bitbang_write: [mii big-bang interface function]
3465  *
3466  *	Write the MII serial port for the MII bit-bang module.
3467  */
3468 static void
3469 sipcom_mii_bitbang_write(device_t self, u_int32_t val)
3470 {
3471 	struct sip_softc *sc = device_private(self);
3472 
3473 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3474 }
3475 
3476 /*
3477  * sip_sis900_mii_readreg:	[mii interface function]
3478  *
3479  *	Read a PHY register on the MII.
3480  */
3481 static int
3482 sipcom_sis900_mii_readreg(device_t self, int phy, int reg)
3483 {
3484 	struct sip_softc *sc = device_private(self);
3485 	u_int32_t enphy;
3486 
3487 	/*
3488 	 * The PHY of recent SiS chipsets is accessed through bitbang
3489 	 * operations.
3490 	 */
3491 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3492 		return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3493 		    phy, reg);
3494 
3495 #ifndef SIS900_MII_RESTRICT
3496 	/*
3497 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3498 	 * MII address 0.
3499 	 */
3500 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3501 		return (0);
3502 #endif
3503 
3504 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3505 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3506 	    ENPHY_RWCMD | ENPHY_ACCESS);
3507 	do {
3508 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3509 	} while (enphy & ENPHY_ACCESS);
3510 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3511 }
3512 
3513 /*
3514  * sip_sis900_mii_writereg:	[mii interface function]
3515  *
3516  *	Write a PHY register on the MII.
3517  */
3518 static void
3519 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, int val)
3520 {
3521 	struct sip_softc *sc = device_private(self);
3522 	u_int32_t enphy;
3523 
3524 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3525 		mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3526 		    phy, reg, val);
3527 		return;
3528 	}
3529 
3530 #ifndef SIS900_MII_RESTRICT
3531 	/*
3532 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3533 	 * MII address 0.
3534 	 */
3535 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3536 		return;
3537 #endif
3538 
3539 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3540 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3541 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3542 	do {
3543 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3544 	} while (enphy & ENPHY_ACCESS);
3545 }
3546 
3547 /*
3548  * sip_sis900_mii_statchg:	[mii interface function]
3549  *
3550  *	Callback from MII layer when media changes.
3551  */
3552 static void
3553 sipcom_sis900_mii_statchg(device_t self)
3554 {
3555 	struct sip_softc *sc = device_private(self);
3556 	struct mii_data *mii = &sc->sc_mii;
3557 	u_int32_t flowctl;
3558 
3559 	/*
3560 	 * Get flow control negotiation result.
3561 	 */
3562 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3563 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3564 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3565 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3566 	}
3567 
3568 	/*
3569 	 * Update TXCFG for full-duplex operation.
3570 	 */
3571 	if ((mii->mii_media_active & IFM_FDX) != 0)
3572 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3573 	else
3574 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3575 
3576 	/*
3577 	 * Update RXCFG for full-duplex or loopback.
3578 	 */
3579 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3580 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3581 		sc->sc_rxcfg |= RXCFG_ATX;
3582 	else
3583 		sc->sc_rxcfg &= ~RXCFG_ATX;
3584 
3585 	/*
3586 	 * Update IMR for use of 802.3x flow control.
3587 	 */
3588 	if (sc->sc_flowflags & IFM_FLOW) {
3589 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3590 		flowctl = FLOWCTL_FLOWEN;
3591 	} else {
3592 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3593 		flowctl = 0;
3594 	}
3595 
3596 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3597 	    sc->sc_txcfg);
3598 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3599 	    sc->sc_rxcfg);
3600 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3601 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3602 }
3603 
3604 /*
3605  * sip_dp83815_mii_readreg:	[mii interface function]
3606  *
3607  *	Read a PHY register on the MII.
3608  */
3609 static int
3610 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg)
3611 {
3612 	struct sip_softc *sc = device_private(self);
3613 	u_int32_t val;
3614 
3615 	/*
3616 	 * The DP83815 only has an internal PHY.  Only allow
3617 	 * MII address 0.
3618 	 */
3619 	if (phy != 0)
3620 		return (0);
3621 
3622 	/*
3623 	 * Apparently, after a reset, the DP83815 can take a while
3624 	 * to respond.  During this recovery period, the BMSR returns
3625 	 * a value of 0.  Catch this -- it's not supposed to happen
3626 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3627 	 * PHY to come back to life.
3628 	 *
3629 	 * This works out because the BMSR is the first register
3630 	 * read during the PHY probe process.
3631 	 */
3632 	do {
3633 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3634 	} while (reg == MII_BMSR && val == 0);
3635 
3636 	return (val & 0xffff);
3637 }
3638 
3639 /*
3640  * sip_dp83815_mii_writereg:	[mii interface function]
3641  *
3642  *	Write a PHY register to the MII.
3643  */
3644 static void
3645 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, int val)
3646 {
3647 	struct sip_softc *sc = device_private(self);
3648 
3649 	/*
3650 	 * The DP83815 only has an internal PHY.  Only allow
3651 	 * MII address 0.
3652 	 */
3653 	if (phy != 0)
3654 		return;
3655 
3656 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3657 }
3658 
3659 /*
3660  * sip_dp83815_mii_statchg:	[mii interface function]
3661  *
3662  *	Callback from MII layer when media changes.
3663  */
3664 static void
3665 sipcom_dp83815_mii_statchg(device_t self)
3666 {
3667 	struct sip_softc *sc = device_private(self);
3668 
3669 	/*
3670 	 * Update TXCFG for full-duplex operation.
3671 	 */
3672 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3673 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3674 	else
3675 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3676 
3677 	/*
3678 	 * Update RXCFG for full-duplex or loopback.
3679 	 */
3680 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3681 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3682 		sc->sc_rxcfg |= RXCFG_ATX;
3683 	else
3684 		sc->sc_rxcfg &= ~RXCFG_ATX;
3685 
3686 	/*
3687 	 * XXX 802.3x flow control.
3688 	 */
3689 
3690 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3691 	    sc->sc_txcfg);
3692 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3693 	    sc->sc_rxcfg);
3694 
3695 	/*
3696 	 * Some DP83815s experience problems when used with short
3697 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
3698 	 * sequence adjusts the DSP's signal attenuation to fix the
3699 	 * problem.
3700 	 */
3701 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3702 		uint32_t reg;
3703 
3704 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3705 
3706 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3707 		reg &= 0x0fff;
3708 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3709 		delay(100);
3710 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3711 		reg &= 0x00ff;
3712 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3713 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3714 			    0x00e8);
3715 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3716 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3717 			    reg | 0x20);
3718 		}
3719 
3720 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3721 	}
3722 }
3723 
3724 static void
3725 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3726     const struct pci_attach_args *pa, u_int8_t *enaddr)
3727 {
3728 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3729 	u_int8_t cksum, *e, match;
3730 	int i;
3731 
3732 	/*
3733 	 * EEPROM data format for the DP83820 can be found in
3734 	 * the DP83820 manual, section 4.2.4.
3735 	 */
3736 
3737 	sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3738 
3739 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3740 	match = ~(match - 1);
3741 
3742 	cksum = 0x55;
3743 	e = (u_int8_t *) eeprom_data;
3744 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3745 		cksum += *e++;
3746 
3747 	if (cksum != match)
3748 		printf("%s: Checksum (%x) mismatch (%x)",
3749 		    device_xname(sc->sc_dev), cksum, match);
3750 
3751 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3752 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3753 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3754 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3755 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3756 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3757 }
3758 
3759 static void
3760 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3761 {
3762 	int i;
3763 
3764 	/*
3765 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
3766 	 * a reason, but I don't know it.
3767 	 */
3768 	for (i = 0; i < 10; i++)
3769 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3770 }
3771 
3772 static void
3773 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3774     const struct pci_attach_args *pa, u_int8_t *enaddr)
3775 {
3776 	u_int16_t myea[ETHER_ADDR_LEN / 2];
3777 
3778 	switch (sc->sc_rev) {
3779 	case SIS_REV_630S:
3780 	case SIS_REV_630E:
3781 	case SIS_REV_630EA1:
3782 	case SIS_REV_630ET:
3783 	case SIS_REV_635:
3784 		/*
3785 		 * The MAC address for the on-board Ethernet of
3786 		 * the SiS 630 chipset is in the NVRAM.  Kick
3787 		 * the chip into re-loading it from NVRAM, and
3788 		 * read the MAC address out of the filter registers.
3789 		 */
3790 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3791 
3792 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3793 		    RFCR_RFADDR_NODE0);
3794 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3795 		    0xffff;
3796 
3797 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3798 		    RFCR_RFADDR_NODE2);
3799 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3800 		    0xffff;
3801 
3802 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3803 		    RFCR_RFADDR_NODE4);
3804 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3805 		    0xffff;
3806 		break;
3807 
3808 	case SIS_REV_960:
3809 		{
3810 #define	SIS_SET_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3811 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3812 
3813 #define	SIS_CLR_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3814 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3815 
3816 			int waittime, i;
3817 
3818 			/* Allow to read EEPROM from LAN. It is shared
3819 			 * between a 1394 controller and the NIC and each
3820 			 * time we access it, we need to set SIS_EECMD_REQ.
3821 			 */
3822 			SIS_SET_EROMAR(sc, EROMAR_REQ);
3823 
3824 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3825 				/* Force EEPROM to idle state. */
3826 
3827 				/*
3828 				 * XXX-cube This is ugly.  I'll look for docs about it.
3829 				 */
3830 				SIS_SET_EROMAR(sc, EROMAR_EECS);
3831 				sipcom_sis900_eeprom_delay(sc);
3832 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3833 					SIS_SET_EROMAR(sc, EROMAR_EESK);
3834 					sipcom_sis900_eeprom_delay(sc);
3835 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
3836 					sipcom_sis900_eeprom_delay(sc);
3837 				}
3838 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
3839 				sipcom_sis900_eeprom_delay(sc);
3840 				bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3841 
3842 				if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3843 					sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3844 					    sizeof(myea) / sizeof(myea[0]), myea);
3845 					break;
3846 				}
3847 				DELAY(1);
3848 			}
3849 
3850 			/*
3851 			 * Set SIS_EECTL_CLK to high, so a other master
3852 			 * can operate on the i2c bus.
3853 			 */
3854 			SIS_SET_EROMAR(sc, EROMAR_EESK);
3855 
3856 			/* Refuse EEPROM access by LAN */
3857 			SIS_SET_EROMAR(sc, EROMAR_DONE);
3858 		} break;
3859 
3860 	default:
3861 		sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3862 		    sizeof(myea) / sizeof(myea[0]), myea);
3863 	}
3864 
3865 	enaddr[0] = myea[0] & 0xff;
3866 	enaddr[1] = myea[0] >> 8;
3867 	enaddr[2] = myea[1] & 0xff;
3868 	enaddr[3] = myea[1] >> 8;
3869 	enaddr[4] = myea[2] & 0xff;
3870 	enaddr[5] = myea[2] >> 8;
3871 }
3872 
3873 /* Table and macro to bit-reverse an octet. */
3874 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3875 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3876 
3877 static void
3878 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3879     const struct pci_attach_args *pa, u_int8_t *enaddr)
3880 {
3881 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3882 	u_int8_t cksum, *e, match;
3883 	int i;
3884 
3885 	sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3886 	    sizeof(eeprom_data[0]), eeprom_data);
3887 
3888 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3889 	match = ~(match - 1);
3890 
3891 	cksum = 0x55;
3892 	e = (u_int8_t *) eeprom_data;
3893 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3894 		cksum += *e++;
3895 	}
3896 	if (cksum != match) {
3897 		printf("%s: Checksum (%x) mismatch (%x)",
3898 		    device_xname(sc->sc_dev), cksum, match);
3899 	}
3900 
3901 	/*
3902 	 * Unrolled because it makes slightly more sense this way.
3903 	 * The DP83815 stores the MAC address in bit 0 of word 6
3904 	 * through bit 15 of word 8.
3905 	 */
3906 	ea = &eeprom_data[6];
3907 	enaddr[0] = ((*ea & 0x1) << 7);
3908 	ea++;
3909 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
3910 	enaddr[1] = ((*ea & 0x1FE) >> 1);
3911 	enaddr[2] = ((*ea & 0x1) << 7);
3912 	ea++;
3913 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
3914 	enaddr[3] = ((*ea & 0x1FE) >> 1);
3915 	enaddr[4] = ((*ea & 0x1) << 7);
3916 	ea++;
3917 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
3918 	enaddr[5] = ((*ea & 0x1FE) >> 1);
3919 
3920 	/*
3921 	 * In case that's not weird enough, we also need to reverse
3922 	 * the bits in each byte.  This all actually makes more sense
3923 	 * if you think about the EEPROM storage as an array of bits
3924 	 * being shifted into bytes, but that's not how we're looking
3925 	 * at it here...
3926 	 */
3927 	for (i = 0; i < 6 ;i++)
3928 		enaddr[i] = bbr(enaddr[i]);
3929 }
3930 
3931 /*
3932  * sip_mediastatus:	[ifmedia interface function]
3933  *
3934  *	Get the current interface media status.
3935  */
3936 static void
3937 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3938 {
3939 	struct sip_softc *sc = ifp->if_softc;
3940 
3941 	if (!device_is_active(sc->sc_dev)) {
3942 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
3943 		ifmr->ifm_status = 0;
3944 		return;
3945 	}
3946 	ether_mediastatus(ifp, ifmr);
3947 	ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
3948 			   sc->sc_flowflags;
3949 }
3950