xref: /netbsd-src/sys/dev/pci/if_sip.c (revision 7cc2f76925f078d01ddc9e640a98f4ccfc9f8c3b)
1 /*	$NetBSD: if_sip.c,v 1.21 2000/12/14 06:42:57 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999 Network Computer, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of Network Computer, Inc. nor the names of its
16  *    contributors may be used to endorse or promote products derived
17  *    from this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Device driver for the Silicon Integrated Systems SiS 900 and
34  * SiS 7016 10/100 PCI Ethernet controllers.
35  *
36  * Written by Jason R. Thorpe for Network Computer, Inc.
37  */
38 
39 #include "opt_inet.h"
40 #include "opt_ns.h"
41 #include "bpfilter.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/callout.h>
46 #include <sys/mbuf.h>
47 #include <sys/malloc.h>
48 #include <sys/kernel.h>
49 #include <sys/socket.h>
50 #include <sys/ioctl.h>
51 #include <sys/errno.h>
52 #include <sys/device.h>
53 #include <sys/queue.h>
54 
55 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
56 
57 #include <net/if.h>
58 #include <net/if_dl.h>
59 #include <net/if_media.h>
60 #include <net/if_ether.h>
61 
62 #if NBPFILTER > 0
63 #include <net/bpf.h>
64 #endif
65 
66 #ifdef INET
67 #include <netinet/in.h>
68 #include <netinet/if_inarp.h>
69 #endif
70 
71 #ifdef NS
72 #include <netns/ns.h>
73 #include <netns/ns_if.h>
74 #endif
75 
76 #include <machine/bus.h>
77 #include <machine/intr.h>
78 #include <machine/endian.h>
79 
80 #include <dev/mii/mii.h>
81 #include <dev/mii/miivar.h>
82 
83 #include <dev/pci/pcireg.h>
84 #include <dev/pci/pcivar.h>
85 #include <dev/pci/pcidevs.h>
86 
87 #include <dev/pci/if_sipreg.h>
88 
89 /*
90  * Transmit descriptor list size.  This is arbitrary, but allocate
91  * enough descriptors for 64 pending transmissions, and 16 segments
92  * per packet.  This MUST work out to a power of 2.
93  */
94 #define	SIP_NTXSEGS		16
95 
96 #define	SIP_TXQUEUELEN		64
97 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS)
98 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
99 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
100 
101 /*
102  * Receive descriptor list size.  We have one Rx buffer per incoming
103  * packet, so this logic is a little simpler.
104  */
105 #define	SIP_NRXDESC		64
106 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
107 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
108 
109 /*
110  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
111  * a single clump that maps to a single DMA segment to make several things
112  * easier.
113  */
114 struct sip_control_data {
115 	/*
116 	 * The transmit descriptors.
117 	 */
118 	struct sip_desc scd_txdescs[SIP_NTXDESC];
119 
120 	/*
121 	 * The receive descriptors.
122 	 */
123 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
124 };
125 
126 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
127 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
128 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
129 
130 /*
131  * Software state for transmit jobs.
132  */
133 struct sip_txsoft {
134 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
135 	bus_dmamap_t txs_dmamap;	/* our DMA map */
136 	int txs_firstdesc;		/* first descriptor in packet */
137 	int txs_lastdesc;		/* last descriptor in packet */
138 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
139 };
140 
141 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
142 
143 /*
144  * Software state for receive jobs.
145  */
146 struct sip_rxsoft {
147 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
148 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
149 };
150 
151 /*
152  * Software state per device.
153  */
154 struct sip_softc {
155 	struct device sc_dev;		/* generic device information */
156 	bus_space_tag_t sc_st;		/* bus space tag */
157 	bus_space_handle_t sc_sh;	/* bus space handle */
158 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
159 	struct ethercom sc_ethercom;	/* ethernet common data */
160 	void *sc_sdhook;		/* shutdown hook */
161 
162 	const struct sip_product *sc_model; /* which model are we? */
163 
164 	void *sc_ih;			/* interrupt cookie */
165 
166 	struct mii_data sc_mii;		/* MII/media information */
167 
168 	struct callout sc_tick_ch;	/* tick callout */
169 
170 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
171 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
172 
173 	/*
174 	 * Software state for transmit and receive descriptors.
175 	 */
176 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
177 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
178 
179 	/*
180 	 * Control data structures.
181 	 */
182 	struct sip_control_data *sc_control_data;
183 #define	sc_txdescs	sc_control_data->scd_txdescs
184 #define	sc_rxdescs	sc_control_data->scd_rxdescs
185 
186 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
187 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
188 	u_int32_t sc_imr;		/* prototype IMR register */
189 	u_int32_t sc_rfcr;		/* prototype RFCR register */
190 
191 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
192 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
193 
194 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
195 
196 	int	sc_flags;		/* misc. flags; see below */
197 
198 	int	sc_txfree;		/* number of free Tx descriptors */
199 	int	sc_txnext;		/* next ready Tx descriptor */
200 
201 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
202 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
203 
204 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
205 };
206 
207 /* sc_flags */
208 #define	SIPF_PAUSED	0x00000001	/* paused (802.3x flow control) */
209 
210 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
211 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
212 
213 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
214 do {									\
215 	int __x, __n;							\
216 									\
217 	__x = (x);							\
218 	__n = (n);							\
219 									\
220 	/* If it will wrap around, sync to the end of the ring. */	\
221 	if ((__x + __n) > SIP_NTXDESC) {				\
222 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
223 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
224 		    (SIP_NTXDESC - __x), (ops));			\
225 		__n -= (SIP_NTXDESC - __x);				\
226 		__x = 0;						\
227 	}								\
228 									\
229 	/* Now sync whatever is left. */				\
230 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
231 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
232 } while (0)
233 
234 #define	SIP_CDRXSYNC(sc, x, ops)					\
235 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
236 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
237 
238 /*
239  * Note we rely on MCLBYTES being a power of two below.
240  */
241 #define	SIP_INIT_RXDESC(sc, x)						\
242 do {									\
243 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
244 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
245 									\
246 	__sipd->sipd_link = htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \
247 	__sipd->sipd_bufptr = htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \
248 	__sipd->sipd_cmdsts = htole32(CMDSTS_INTR |			\
249 	    ((MCLBYTES - 1) & CMDSTS_SIZE_MASK));			\
250 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
251 } while (0)
252 
253 #define SIP_TIMEOUT 1000
254 
255 void	sip_start __P((struct ifnet *));
256 void	sip_watchdog __P((struct ifnet *));
257 int	sip_ioctl __P((struct ifnet *, u_long, caddr_t));
258 int	sip_init __P((struct ifnet *));
259 void	sip_stop __P((struct ifnet *, int));
260 
261 void	sip_shutdown __P((void *));
262 
263 void	sip_reset __P((struct sip_softc *));
264 void	sip_rxdrain __P((struct sip_softc *));
265 int	sip_add_rxbuf __P((struct sip_softc *, int));
266 void	sip_read_eeprom __P((struct sip_softc *, int, int, u_int16_t *));
267 void	sip_tick __P((void *));
268 
269 void	sip_sis900_set_filter __P((struct sip_softc *));
270 void	sip_dp83815_set_filter __P((struct sip_softc *));
271 
272 int	sip_intr __P((void *));
273 void	sip_txintr __P((struct sip_softc *));
274 void	sip_rxintr __P((struct sip_softc *));
275 
276 int	sip_sis900_mii_readreg __P((struct device *, int, int));
277 void	sip_sis900_mii_writereg __P((struct device *, int, int, int));
278 void	sip_sis900_mii_statchg __P((struct device *));
279 
280 int	sip_dp83815_mii_readreg __P((struct device *, int, int));
281 void	sip_dp83815_mii_writereg __P((struct device *, int, int, int));
282 void	sip_dp83815_mii_statchg __P((struct device *));
283 
284 int	sip_mediachange __P((struct ifnet *));
285 void	sip_mediastatus __P((struct ifnet *, struct ifmediareq *));
286 
287 int	sip_match __P((struct device *, struct cfdata *, void *));
288 void	sip_attach __P((struct device *, struct device *, void *));
289 
290 int	sip_copy_small = 0;
291 
292 struct cfattach sip_ca = {
293 	sizeof(struct sip_softc), sip_match, sip_attach,
294 };
295 
296 /*
297  * Descriptions of the variants of the SiS900.
298  */
299 struct sip_variant {
300 	int	(*sipv_mii_readreg) __P((struct device *, int, int));
301 	void	(*sipv_mii_writereg) __P((struct device *, int, int, int));
302 	void	(*sipv_mii_statchg) __P((struct device *));
303 	void	(*sipv_set_filter) __P((struct sip_softc *));
304 };
305 
306 const struct sip_variant sip_variant_sis900 = {
307 	sip_sis900_mii_readreg, sip_sis900_mii_writereg,
308 	    sip_sis900_mii_statchg, sip_sis900_set_filter
309 };
310 
311 const struct sip_variant sip_variant_dp83815 = {
312 	sip_dp83815_mii_readreg, sip_dp83815_mii_writereg,
313 	    sip_dp83815_mii_statchg, sip_dp83815_set_filter
314 };
315 
316 /*
317  * Devices supported by this driver.
318  */
319 const struct sip_product {
320 	pci_vendor_id_t		sip_vendor;
321 	pci_product_id_t	sip_product;
322 	const char		*sip_name;
323 	const struct sip_variant *sip_variant;
324 } sip_products[] = {
325 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
326 	  "SiS 900 10/100 Ethernet",
327 	  &sip_variant_sis900 },
328 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
329 	  "SiS 7016 10/100 Ethernet",
330 	  &sip_variant_sis900 },
331 
332 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
333 	  "NatSemi DP83815 10/100 Ethernet",
334 	  &sip_variant_dp83815 },
335 
336 	{ 0,			0,
337 	  NULL,
338 	  NULL },
339 };
340 
341 const struct sip_product *sip_lookup __P((const struct pci_attach_args *));
342 
343 const struct sip_product *
344 sip_lookup(pa)
345 	const struct pci_attach_args *pa;
346 {
347 	const struct sip_product *sip;
348 
349 	for (sip = sip_products; sip->sip_name != NULL; sip++) {
350 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
351 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
352 			return (sip);
353 	}
354 	return (NULL);
355 }
356 
357 int
358 sip_match(parent, cf, aux)
359 	struct device *parent;
360 	struct cfdata *cf;
361 	void *aux;
362 {
363 	struct pci_attach_args *pa = aux;
364 
365 	if (sip_lookup(pa) != NULL)
366 		return (1);
367 
368 	return (0);
369 }
370 
371 void
372 sip_attach(parent, self, aux)
373 	struct device *parent, *self;
374 	void *aux;
375 {
376 	struct sip_softc *sc = (struct sip_softc *) self;
377 	struct pci_attach_args *pa = aux;
378 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
379 	pci_chipset_tag_t pc = pa->pa_pc;
380 	pci_intr_handle_t ih;
381 	const char *intrstr = NULL;
382 	bus_space_tag_t iot, memt;
383 	bus_space_handle_t ioh, memh;
384 	bus_dma_segment_t seg;
385 	int ioh_valid, memh_valid;
386 	int i, rseg, error;
387 	const struct sip_product *sip;
388 	pcireg_t pmode;
389 	u_int16_t myea[ETHER_ADDR_LEN / 2];
390 	u_int8_t enaddr[ETHER_ADDR_LEN];
391 	int pmreg;
392 
393 	callout_init(&sc->sc_tick_ch);
394 
395 	sip = sip_lookup(pa);
396 	if (sip == NULL) {
397 		printf("\n");
398 		panic("sip_attach: impossible");
399 	}
400 
401 	printf(": %s\n", sip->sip_name);
402 
403 	sc->sc_model = sip;
404 
405 	/*
406 	 * Map the device.
407 	 */
408 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
409 	    PCI_MAPREG_TYPE_IO, 0,
410 	    &iot, &ioh, NULL, NULL) == 0);
411 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
412 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
413 	    &memt, &memh, NULL, NULL) == 0);
414 
415 	if (memh_valid) {
416 		sc->sc_st = memt;
417 		sc->sc_sh = memh;
418 	} else if (ioh_valid) {
419 		sc->sc_st = iot;
420 		sc->sc_sh = ioh;
421 	} else {
422 		printf("%s: unable to map device registers\n",
423 		    sc->sc_dev.dv_xname);
424 		return;
425 	}
426 
427 	sc->sc_dmat = pa->pa_dmat;
428 
429 	/* Enable bus mastering. */
430 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
431 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
432 	    PCI_COMMAND_MASTER_ENABLE);
433 
434 	/* Get it out of power save mode if needed. */
435 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
436 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
437 		if (pmode == 3) {
438 			/*
439 			 * The card has lost all configuration data in
440 			 * this state, so punt.
441 			 */
442 			printf("%s: unable to wake up from power state D3\n",
443 			    sc->sc_dev.dv_xname);
444 			return;
445 		}
446 		if (pmode != 0) {
447 			printf("%s: waking up from power state D%d\n",
448 			    sc->sc_dev.dv_xname, pmode);
449 			pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
450 		}
451 	}
452 
453 	/*
454 	 * Map and establish our interrupt.
455 	 */
456 	if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
457 	    pa->pa_intrline, &ih)) {
458 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
459 		return;
460 	}
461 	intrstr = pci_intr_string(pc, ih);
462 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sip_intr, sc);
463 	if (sc->sc_ih == NULL) {
464 		printf("%s: unable to establish interrupt",
465 		    sc->sc_dev.dv_xname);
466 		if (intrstr != NULL)
467 			printf(" at %s", intrstr);
468 		printf("\n");
469 		return;
470 	}
471 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
472 
473 	SIMPLEQ_INIT(&sc->sc_txfreeq);
474 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
475 
476 	/*
477 	 * Allocate the control data structures, and create and load the
478 	 * DMA map for it.
479 	 */
480 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
481 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
482 	    0)) != 0) {
483 		printf("%s: unable to allocate control data, error = %d\n",
484 		    sc->sc_dev.dv_xname, error);
485 		goto fail_0;
486 	}
487 
488 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
489 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
490 	    BUS_DMA_COHERENT)) != 0) {
491 		printf("%s: unable to map control data, error = %d\n",
492 		    sc->sc_dev.dv_xname, error);
493 		goto fail_1;
494 	}
495 
496 	if ((error = bus_dmamap_create(sc->sc_dmat,
497 	    sizeof(struct sip_control_data), 1,
498 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
499 		printf("%s: unable to create control data DMA map, "
500 		    "error = %d\n", sc->sc_dev.dv_xname, error);
501 		goto fail_2;
502 	}
503 
504 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
505 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
506 	    0)) != 0) {
507 		printf("%s: unable to load control data DMA map, error = %d\n",
508 		    sc->sc_dev.dv_xname, error);
509 		goto fail_3;
510 	}
511 
512 	/*
513 	 * Create the transmit buffer DMA maps.
514 	 */
515 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
516 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
517 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
518 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
519 			printf("%s: unable to create tx DMA map %d, "
520 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
521 			goto fail_4;
522 		}
523 	}
524 
525 	/*
526 	 * Create the receive buffer DMA maps.
527 	 */
528 	for (i = 0; i < SIP_NRXDESC; i++) {
529 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
530 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
531 			printf("%s: unable to create rx DMA map %d, "
532 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
533 			goto fail_5;
534 		}
535 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
536 	}
537 
538 	/*
539 	 * Reset the chip to a known state.
540 	 */
541 	sip_reset(sc);
542 
543 	/*
544 	 * Read the Ethernet address from the EEPROM.
545 	 */
546 	sip_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
547 	    sizeof(myea) / sizeof(myea[0]), myea);
548 
549 	enaddr[0] = myea[0] & 0xff;
550 	enaddr[1] = myea[0] >> 8;
551 	enaddr[2] = myea[1] & 0xff;
552 	enaddr[3] = myea[1] >> 8;
553 	enaddr[4] = myea[2] & 0xff;
554 	enaddr[5] = myea[2] >> 8;
555 
556 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
557 	    ether_sprintf(enaddr));
558 
559 	/*
560 	 * Initialize our media structures and probe the MII.
561 	 */
562 	sc->sc_mii.mii_ifp = ifp;
563 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
564 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
565 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
566 	ifmedia_init(&sc->sc_mii.mii_media, 0, sip_mediachange,
567 	    sip_mediastatus);
568 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
569 	    MII_OFFSET_ANY, 0);
570 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
571 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
572 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
573 	} else
574 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
575 
576 	ifp = &sc->sc_ethercom.ec_if;
577 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
578 	ifp->if_softc = sc;
579 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
580 	ifp->if_ioctl = sip_ioctl;
581 	ifp->if_start = sip_start;
582 	ifp->if_watchdog = sip_watchdog;
583 	ifp->if_init = sip_init;
584 	ifp->if_stop = sip_stop;
585 	IFQ_SET_READY(&ifp->if_snd);
586 
587 	/*
588 	 * Attach the interface.
589 	 */
590 	if_attach(ifp);
591 	ether_ifattach(ifp, enaddr);
592 
593 	/*
594 	 * Make sure the interface is shutdown during reboot.
595 	 */
596 	sc->sc_sdhook = shutdownhook_establish(sip_shutdown, sc);
597 	if (sc->sc_sdhook == NULL)
598 		printf("%s: WARNING: unable to establish shutdown hook\n",
599 		    sc->sc_dev.dv_xname);
600 	return;
601 
602 	/*
603 	 * Free any resources we've allocated during the failed attach
604 	 * attempt.  Do this in reverse order and fall through.
605 	 */
606  fail_5:
607 	for (i = 0; i < SIP_NRXDESC; i++) {
608 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
609 			bus_dmamap_destroy(sc->sc_dmat,
610 			    sc->sc_rxsoft[i].rxs_dmamap);
611 	}
612  fail_4:
613 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
614 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
615 			bus_dmamap_destroy(sc->sc_dmat,
616 			    sc->sc_txsoft[i].txs_dmamap);
617 	}
618 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
619  fail_3:
620 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
621  fail_2:
622 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
623 	    sizeof(struct sip_control_data));
624  fail_1:
625 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
626  fail_0:
627 	return;
628 }
629 
630 /*
631  * sip_shutdown:
632  *
633  *	Make sure the interface is stopped at reboot time.
634  */
635 void
636 sip_shutdown(arg)
637 	void *arg;
638 {
639 	struct sip_softc *sc = arg;
640 
641 	sip_stop(&sc->sc_ethercom.ec_if, 1);
642 }
643 
644 /*
645  * sip_start:		[ifnet interface function]
646  *
647  *	Start packet transmission on the interface.
648  */
649 void
650 sip_start(ifp)
651 	struct ifnet *ifp;
652 {
653 	struct sip_softc *sc = ifp->if_softc;
654 	struct mbuf *m0, *m;
655 	struct sip_txsoft *txs;
656 	bus_dmamap_t dmamap;
657 	int error, firsttx, nexttx, lasttx, ofree, seg;
658 
659 	/*
660 	 * If we've been told to pause, don't transmit any more packets.
661 	 */
662 	if (sc->sc_flags & SIPF_PAUSED)
663 		ifp->if_flags |= IFF_OACTIVE;
664 
665 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
666 		return;
667 
668 	/*
669 	 * Remember the previous number of free descriptors and
670 	 * the first descriptor we'll use.
671 	 */
672 	ofree = sc->sc_txfree;
673 	firsttx = sc->sc_txnext;
674 
675 	/*
676 	 * Loop through the send queue, setting up transmit descriptors
677 	 * until we drain the queue, or use up all available transmit
678 	 * descriptors.
679 	 */
680 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
681 	       sc->sc_txfree != 0) {
682 		/*
683 		 * Grab a packet off the queue.
684 		 */
685 		IFQ_POLL(&ifp->if_snd, m0);
686 		if (m0 == NULL)
687 			break;
688 
689 		dmamap = txs->txs_dmamap;
690 
691 		/*
692 		 * Load the DMA map.  If this fails, the packet either
693 		 * didn't fit in the alloted number of segments, or we
694 		 * were short on resources.  In this case, we'll copy
695 		 * and try again.
696 		 */
697 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
698 		    BUS_DMA_NOWAIT) != 0) {
699 			MGETHDR(m, M_DONTWAIT, MT_DATA);
700 			if (m == NULL) {
701 				printf("%s: unable to allocate Tx mbuf\n",
702 				    sc->sc_dev.dv_xname);
703 				break;
704 			}
705 			if (m0->m_pkthdr.len > MHLEN) {
706 				MCLGET(m, M_DONTWAIT);
707 				if ((m->m_flags & M_EXT) == 0) {
708 					printf("%s: unable to allocate Tx "
709 					    "cluster\n", sc->sc_dev.dv_xname);
710 					m_freem(m);
711 					break;
712 				}
713 			}
714 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
715 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
716 			m_freem(m0);
717 			m0 = m;
718 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
719 			    m0, BUS_DMA_NOWAIT);
720 			if (error) {
721 				printf("%s: unable to load Tx buffer, "
722 				    "error = %d\n", sc->sc_dev.dv_xname, error);
723 				break;
724 			}
725 		}
726 
727 		IFQ_DEQUEUE(&ifp->if_snd, m0);
728 
729 		/*
730 		 * Ensure we have enough descriptors free to describe
731 		 * the packet.
732 		 */
733 		if (dmamap->dm_nsegs > sc->sc_txfree) {
734 			/*
735 			 * Not enough free descriptors to transmit this
736 			 * packet.  We haven't committed anything yet,
737 			 * so just unload the DMA map, put the packet
738 			 * back on the queue, and punt.  Notify the upper
739 			 * layer that there are not more slots left.
740 			 *
741 			 * XXX We could allocate an mbuf and copy, but
742 			 * XXX is it worth it?
743 			 */
744 			ifp->if_flags |= IFF_OACTIVE;
745 			bus_dmamap_unload(sc->sc_dmat, dmamap);
746 			IF_PREPEND(&ifp->if_snd, m0);
747 			break;
748 		}
749 
750 		/*
751 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
752 		 */
753 
754 		/* Sync the DMA map. */
755 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
756 		    BUS_DMASYNC_PREWRITE);
757 
758 		/*
759 		 * Initialize the transmit descriptors.
760 		 */
761 		for (nexttx = sc->sc_txnext, seg = 0;
762 		     seg < dmamap->dm_nsegs;
763 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
764 			/*
765 			 * If this is the first descriptor we're
766 			 * enqueueing, don't set the OWN bit just
767 			 * yet.  That could cause a race condition.
768 			 * We'll do it below.
769 			 */
770 			sc->sc_txdescs[nexttx].sipd_bufptr =
771 			    htole32(dmamap->dm_segs[seg].ds_addr);
772 			sc->sc_txdescs[nexttx].sipd_cmdsts =
773 			    htole32((nexttx == firsttx ? 0 : CMDSTS_OWN) |
774 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
775 			lasttx = nexttx;
776 		}
777 
778 		/* Clear the MORE bit on the last segment. */
779 		sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
780 
781 		/* Sync the descriptors we're using. */
782 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
783 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
784 
785 		/*
786 		 * Store a pointer to the packet so we can free it later,
787 		 * and remember what txdirty will be once the packet is
788 		 * done.
789 		 */
790 		txs->txs_mbuf = m0;
791 		txs->txs_firstdesc = sc->sc_txnext;
792 		txs->txs_lastdesc = lasttx;
793 
794 		/* Advance the tx pointer. */
795 		sc->sc_txfree -= dmamap->dm_nsegs;
796 		sc->sc_txnext = nexttx;
797 
798 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
799 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
800 
801 #if NBPFILTER > 0
802 		/*
803 		 * Pass the packet to any BPF listeners.
804 		 */
805 		if (ifp->if_bpf)
806 			bpf_mtap(ifp->if_bpf, m0);
807 #endif /* NBPFILTER > 0 */
808 	}
809 
810 	if (txs == NULL || sc->sc_txfree == 0) {
811 		/* No more slots left; notify upper layer. */
812 		ifp->if_flags |= IFF_OACTIVE;
813 	}
814 
815 	if (sc->sc_txfree != ofree) {
816 		/*
817 		 * Cause a descriptor interrupt to happen on the
818 		 * last packet we enqueued.
819 		 */
820 		sc->sc_txdescs[lasttx].sipd_cmdsts |= htole32(CMDSTS_INTR);
821 		SIP_CDTXSYNC(sc, lasttx, 1,
822 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
823 
824 		/*
825 		 * The entire packet chain is set up.  Give the
826 		 * first descrptor to the chip now.
827 		 */
828 		sc->sc_txdescs[firsttx].sipd_cmdsts |= htole32(CMDSTS_OWN);
829 		SIP_CDTXSYNC(sc, firsttx, 1,
830 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
831 
832 		/* Start the transmit process. */
833 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
834 		     CR_TXE) == 0) {
835 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
836 			    SIP_CDTXADDR(sc, firsttx));
837 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
838 		}
839 
840 		/* Set a watchdog timer in case the chip flakes out. */
841 		ifp->if_timer = 5;
842 	}
843 }
844 
845 /*
846  * sip_watchdog:	[ifnet interface function]
847  *
848  *	Watchdog timer handler.
849  */
850 void
851 sip_watchdog(ifp)
852 	struct ifnet *ifp;
853 {
854 	struct sip_softc *sc = ifp->if_softc;
855 
856 	/*
857 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
858 	 * If we get a timeout, try and sweep up transmit descriptors.
859 	 * If we manage to sweep them all up, ignore the lack of
860 	 * interrupt.
861 	 */
862 	sip_txintr(sc);
863 
864 	if (sc->sc_txfree != SIP_NTXDESC) {
865 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
866 		ifp->if_oerrors++;
867 
868 		/* Reset the interface. */
869 		(void) sip_init(ifp);
870 	} else if (ifp->if_flags & IFF_DEBUG)
871 		printf("%s: recovered from device timeout\n",
872 		    sc->sc_dev.dv_xname);
873 
874 	/* Try to get more packets going. */
875 	sip_start(ifp);
876 }
877 
878 /*
879  * sip_ioctl:		[ifnet interface function]
880  *
881  *	Handle control requests from the operator.
882  */
883 int
884 sip_ioctl(ifp, cmd, data)
885 	struct ifnet *ifp;
886 	u_long cmd;
887 	caddr_t data;
888 {
889 	struct sip_softc *sc = ifp->if_softc;
890 	struct ifreq *ifr = (struct ifreq *)data;
891 	int s, error;
892 
893 	s = splnet();
894 
895 	switch (cmd) {
896 	case SIOCSIFMEDIA:
897 	case SIOCGIFMEDIA:
898 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
899 		break;
900 
901 	default:
902 		error = ether_ioctl(ifp, cmd, data);
903 		if (error == ENETRESET) {
904 			/*
905 			 * Multicast list has changed; set the hardware filter
906 			 * accordingly.
907 			 */
908 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
909 			error = 0;
910 		}
911 		break;
912 	}
913 
914 	/* Try to get more packets going. */
915 	sip_start(ifp);
916 
917 	splx(s);
918 	return (error);
919 }
920 
921 /*
922  * sip_intr:
923  *
924  *	Interrupt service routine.
925  */
926 int
927 sip_intr(arg)
928 	void *arg;
929 {
930 	struct sip_softc *sc = arg;
931 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
932 	u_int32_t isr;
933 	int handled = 0;
934 
935 	for (;;) {
936 		/* Reading clears interrupt. */
937 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
938 		if ((isr & sc->sc_imr) == 0)
939 			break;
940 
941 		handled = 1;
942 
943 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
944 			/* Grab any new packets. */
945 			sip_rxintr(sc);
946 
947 			if (isr & ISR_RXORN) {
948 				printf("%s: receive FIFO overrun\n",
949 				    sc->sc_dev.dv_xname);
950 
951 				/* XXX adjust rx_drain_thresh? */
952 			}
953 
954 			if (isr & ISR_RXIDLE) {
955 				printf("%s: receive ring overrun\n",
956 				    sc->sc_dev.dv_xname);
957 
958 				/* Get the receive process going again. */
959 				bus_space_write_4(sc->sc_st, sc->sc_sh,
960 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
961 				bus_space_write_4(sc->sc_st, sc->sc_sh,
962 				    SIP_CR, CR_RXE);
963 			}
964 		}
965 
966 		if (isr & (ISR_TXURN|ISR_TXDESC)) {
967 			/* Sweep up transmit descriptors. */
968 			sip_txintr(sc);
969 
970 			if (isr & ISR_TXURN) {
971 				u_int32_t thresh;
972 
973 				printf("%s: transmit FIFO underrun",
974 				    sc->sc_dev.dv_xname);
975 
976 				thresh = sc->sc_tx_drain_thresh + 1;
977 				if (thresh <= TXCFG_DRTH &&
978 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
979 				     (sc->sc_tx_fill_thresh * 32))) {
980 					printf("; increasing Tx drain "
981 					    "threshold to %u bytes\n",
982 					    thresh * 32);
983 					sc->sc_tx_drain_thresh = thresh;
984 					(void) sip_init(ifp);
985 				} else {
986 					(void) sip_init(ifp);
987 					printf("\n");
988 				}
989 			}
990 		}
991 
992 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
993 			if (isr & ISR_PAUSE_ST) {
994 				sc->sc_flags |= SIPF_PAUSED;
995 				ifp->if_flags |= IFF_OACTIVE;
996 			}
997 			if (isr & ISR_PAUSE_END) {
998 				sc->sc_flags &= ~SIPF_PAUSED;
999 				ifp->if_flags &= ~IFF_OACTIVE;
1000 			}
1001 		}
1002 
1003 		if (isr & ISR_HIBERR) {
1004 #define	PRINTERR(bit, str)						\
1005 			if (isr & (bit))				\
1006 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1007 			PRINTERR(ISR_DPERR, "parity error");
1008 			PRINTERR(ISR_SSERR, "system error");
1009 			PRINTERR(ISR_RMABT, "master abort");
1010 			PRINTERR(ISR_RTABT, "target abort");
1011 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1012 			(void) sip_init(ifp);
1013 #undef PRINTERR
1014 		}
1015 	}
1016 
1017 	/* Try to get more packets going. */
1018 	sip_start(ifp);
1019 
1020 	return (handled);
1021 }
1022 
1023 /*
1024  * sip_txintr:
1025  *
1026  *	Helper; handle transmit interrupts.
1027  */
1028 void
1029 sip_txintr(sc)
1030 	struct sip_softc *sc;
1031 {
1032 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1033 	struct sip_txsoft *txs;
1034 	u_int32_t cmdsts;
1035 
1036 	if ((sc->sc_flags & SIPF_PAUSED) == 0)
1037 		ifp->if_flags &= ~IFF_OACTIVE;
1038 
1039 	/*
1040 	 * Go through our Tx list and free mbufs for those
1041 	 * frames which have been transmitted.
1042 	 */
1043 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1044 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1045 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1046 
1047 		cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1048 		if (cmdsts & CMDSTS_OWN)
1049 			break;
1050 
1051 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1052 
1053 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1054 
1055 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1056 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1057 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1058 		m_freem(txs->txs_mbuf);
1059 		txs->txs_mbuf = NULL;
1060 
1061 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1062 
1063 		/*
1064 		 * Check for errors and collisions.
1065 		 */
1066 		if (cmdsts &
1067 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1068 			if (ifp->if_flags & IFF_DEBUG) {
1069 				if (CMDSTS_Tx_ED)
1070 					printf("%s: excessive deferral\n",
1071 					    sc->sc_dev.dv_xname);
1072 				if (CMDSTS_Tx_EC) {
1073 					printf("%s: excessive collisions\n",
1074 					    sc->sc_dev.dv_xname);
1075 					ifp->if_collisions += 16;
1076 				}
1077 			}
1078 		} else {
1079 			/* Packet was transmitted successfully. */
1080 			ifp->if_opackets++;
1081 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1082 		}
1083 	}
1084 
1085 	/*
1086 	 * If there are no more pending transmissions, cancel the watchdog
1087 	 * timer.
1088 	 */
1089 	if (txs == NULL)
1090 		ifp->if_timer = 0;
1091 }
1092 
1093 /*
1094  * sip_rxintr:
1095  *
1096  *	Helper; handle receive interrupts.
1097  */
1098 void
1099 sip_rxintr(sc)
1100 	struct sip_softc *sc;
1101 {
1102 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1103 	struct sip_rxsoft *rxs;
1104 	struct mbuf *m;
1105 	u_int32_t cmdsts;
1106 	int i, len;
1107 
1108 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1109 		rxs = &sc->sc_rxsoft[i];
1110 
1111 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1112 
1113 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1114 
1115 		/*
1116 		 * NOTE: OWN is set if owned by _consumer_.  We're the
1117 		 * consumer of the receive ring, so if the bit is clear,
1118 		 * we have processed all of the packets.
1119 		 */
1120 		if ((cmdsts & CMDSTS_OWN) == 0) {
1121 			/*
1122 			 * We have processed all of the receive buffers.
1123 			 */
1124 			break;
1125 		}
1126 
1127 		/*
1128 		 * If any collisions were seen on the wire, count one.
1129 		 */
1130 		if (cmdsts & CMDSTS_Rx_COL)
1131 			ifp->if_collisions++;
1132 
1133 		/*
1134 		 * If an error occurred, update stats, clear the status
1135 		 * word, and leave the packet buffer in place.  It will
1136 		 * simply be reused the next time the ring comes around.
1137 		 */
1138 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_LONG|CMDSTS_Rx_RUNT|
1139 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1140 			ifp->if_ierrors++;
1141 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1142 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
1143 				/* Receive overrun handled elsewhere. */
1144 				printf("%s: receive descriptor error\n",
1145 				    sc->sc_dev.dv_xname);
1146 			}
1147 #define	PRINTERR(bit, str)						\
1148 			if (cmdsts & (bit))				\
1149 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1150 			PRINTERR(CMDSTS_Rx_LONG, "packet too long");
1151 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1152 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1153 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1154 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1155 #undef PRINTERR
1156 			SIP_INIT_RXDESC(sc, i);
1157 			continue;
1158 		}
1159 
1160 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1161 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1162 
1163 		/*
1164 		 * No errors; receive the packet.  Note, the SiS 900
1165 		 * includes the CRC with every packet.
1166 		 */
1167 		len = CMDSTS_SIZE(cmdsts);
1168 
1169 #ifdef __NO_STRICT_ALIGNMENT
1170 		/*
1171 		 * If the packet is small enough to fit in a
1172 		 * single header mbuf, allocate one and copy
1173 		 * the data into it.  This greatly reduces
1174 		 * memory consumption when we receive lots
1175 		 * of small packets.
1176 		 *
1177 		 * Otherwise, we add a new buffer to the receive
1178 		 * chain.  If this fails, we drop the packet and
1179 		 * recycle the old buffer.
1180 		 */
1181 		if (sip_copy_small != 0 && len <= MHLEN) {
1182 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1183 			if (m == NULL)
1184 				goto dropit;
1185 			memcpy(mtod(m, caddr_t),
1186 			    mtod(rxs->rxs_mbuf, caddr_t), len);
1187 			SIP_INIT_RXDESC(sc, i);
1188 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1189 			    rxs->rxs_dmamap->dm_mapsize,
1190 			    BUS_DMASYNC_PREREAD);
1191 		} else {
1192 			m = rxs->rxs_mbuf;
1193 			if (sip_add_rxbuf(sc, i) != 0) {
1194  dropit:
1195 				ifp->if_ierrors++;
1196 				SIP_INIT_RXDESC(sc, i);
1197 				bus_dmamap_sync(sc->sc_dmat,
1198 				    rxs->rxs_dmamap, 0,
1199 				    rxs->rxs_dmamap->dm_mapsize,
1200 				    BUS_DMASYNC_PREREAD);
1201 				continue;
1202 			}
1203 		}
1204 #else
1205 		/*
1206 		 * The SiS 900's receive buffers must be 4-byte aligned.
1207 		 * But this means that the data after the Ethernet header
1208 		 * is misaligned.  We must allocate a new buffer and
1209 		 * copy the data, shifted forward 2 bytes.
1210 		 */
1211 		MGETHDR(m, M_DONTWAIT, MT_DATA);
1212 		if (m == NULL) {
1213  dropit:
1214 			ifp->if_ierrors++;
1215 			SIP_INIT_RXDESC(sc, i);
1216 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1217 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1218 			continue;
1219 		}
1220 		if (len > (MHLEN - 2)) {
1221 			MCLGET(m, M_DONTWAIT);
1222 			if ((m->m_flags & M_EXT) == 0) {
1223 				m_freem(m);
1224 				goto dropit;
1225 			}
1226 		}
1227 		m->m_data += 2;
1228 
1229 		/*
1230 		 * Note that we use clusters for incoming frames, so the
1231 		 * buffer is virtually contiguous.
1232 		 */
1233 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
1234 
1235 		/* Allow the receive descriptor to continue using its mbuf. */
1236 		SIP_INIT_RXDESC(sc, i);
1237 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1238 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1239 #endif /* __NO_STRICT_ALIGNMENT */
1240 
1241 		ifp->if_ipackets++;
1242 		m->m_flags |= M_HASFCS;
1243 		m->m_pkthdr.rcvif = ifp;
1244 		m->m_pkthdr.len = m->m_len = len;
1245 
1246 #if NBPFILTER > 0
1247 		/*
1248 		 * Pass this up to any BPF listeners, but only
1249 		 * pass if up the stack if it's for us.
1250 		 */
1251 		if (ifp->if_bpf)
1252 			bpf_mtap(ifp->if_bpf, m);
1253 #endif /* NBPFILTER > 0 */
1254 
1255 		/* Pass it on. */
1256 		(*ifp->if_input)(ifp, m);
1257 	}
1258 
1259 	/* Update the receive pointer. */
1260 	sc->sc_rxptr = i;
1261 }
1262 
1263 /*
1264  * sip_tick:
1265  *
1266  *	One second timer, used to tick the MII.
1267  */
1268 void
1269 sip_tick(arg)
1270 	void *arg;
1271 {
1272 	struct sip_softc *sc = arg;
1273 	int s;
1274 
1275 	s = splnet();
1276 	mii_tick(&sc->sc_mii);
1277 	splx(s);
1278 
1279 	callout_reset(&sc->sc_tick_ch, hz, sip_tick, sc);
1280 }
1281 
1282 /*
1283  * sip_reset:
1284  *
1285  *	Perform a soft reset on the SiS 900.
1286  */
1287 void
1288 sip_reset(sc)
1289 	struct sip_softc *sc;
1290 {
1291 	bus_space_tag_t st = sc->sc_st;
1292 	bus_space_handle_t sh = sc->sc_sh;
1293 	int i;
1294 
1295 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
1296 
1297 	for (i = 0; i < SIP_TIMEOUT; i++) {
1298 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
1299 			break;
1300 		delay(2);
1301 	}
1302 
1303 	if (i == SIP_TIMEOUT)
1304 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1305 
1306 	delay(1000);
1307 }
1308 
1309 /*
1310  * sip_init:		[ ifnet interface function ]
1311  *
1312  *	Initialize the interface.  Must be called at splnet().
1313  */
1314 int
1315 sip_init(ifp)
1316 	struct ifnet *ifp;
1317 {
1318 	struct sip_softc *sc = ifp->if_softc;
1319 	bus_space_tag_t st = sc->sc_st;
1320 	bus_space_handle_t sh = sc->sc_sh;
1321 	struct sip_txsoft *txs;
1322 	struct sip_rxsoft *rxs;
1323 	struct sip_desc *sipd;
1324 	u_int32_t cfg;
1325 	int i, error = 0;
1326 
1327 	/*
1328 	 * Cancel any pending I/O.
1329 	 */
1330 	sip_stop(ifp, 0);
1331 
1332 	/*
1333 	 * Reset the chip to a known state.
1334 	 */
1335 	sip_reset(sc);
1336 
1337 	/*
1338 	 * Initialize the transmit descriptor ring.
1339 	 */
1340 	for (i = 0; i < SIP_NTXDESC; i++) {
1341 		sipd = &sc->sc_txdescs[i];
1342 		memset(sipd, 0, sizeof(struct sip_desc));
1343 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
1344 	}
1345 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
1346 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1347 	sc->sc_txfree = SIP_NTXDESC;
1348 	sc->sc_txnext = 0;
1349 
1350 	/*
1351 	 * Initialize the transmit job descriptors.
1352 	 */
1353 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1354 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1355 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
1356 		txs = &sc->sc_txsoft[i];
1357 		txs->txs_mbuf = NULL;
1358 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1359 	}
1360 
1361 	/*
1362 	 * Initialize the receive descriptor and receive job
1363 	 * descriptor rings.
1364 	 */
1365 	for (i = 0; i < SIP_NRXDESC; i++) {
1366 		rxs = &sc->sc_rxsoft[i];
1367 		if (rxs->rxs_mbuf == NULL) {
1368 			if ((error = sip_add_rxbuf(sc, i)) != 0) {
1369 				printf("%s: unable to allocate or map rx "
1370 				    "buffer %d, error = %d\n",
1371 				    sc->sc_dev.dv_xname, i, error);
1372 				/*
1373 				 * XXX Should attempt to run with fewer receive
1374 				 * XXX buffers instead of just failing.
1375 				 */
1376 				sip_rxdrain(sc);
1377 				goto out;
1378 			}
1379 		}
1380 	}
1381 	sc->sc_rxptr = 0;
1382 
1383 	/*
1384 	 * Initialize the configuration register: aggressive PCI
1385 	 * bus request algorithm, default backoff, default OW timer,
1386 	 * default parity error detection.
1387 	 */
1388 	cfg = 0;
1389 #if BYTE_ORDER == BIG_ENDIAN
1390 	/*
1391 	 * ...descriptors in big-endian mode.
1392 	 */
1393 #if 0
1394 	/* "Big endian mode" does not work properly. */
1395 	cfg |= CFG_BEM;
1396 #endif
1397 #endif
1398 	bus_space_write_4(st, sh, SIP_CFG, cfg);
1399 
1400 	/*
1401 	 * Initialize the transmit fill and drain thresholds if
1402 	 * we have never done so.
1403 	 */
1404 	if (sc->sc_tx_fill_thresh == 0) {
1405 		/*
1406 		 * XXX This value should be tuned.  This is the
1407 		 * minimum (32 bytes), and we may be able to
1408 		 * improve performance by increasing it.
1409 		 */
1410 		sc->sc_tx_fill_thresh = 1;
1411 	}
1412 	if (sc->sc_tx_drain_thresh == 0) {
1413 		/*
1414 		 * Start at a drain threshold of 512 bytes.  We will
1415 		 * increase it if a DMA underrun occurs.
1416 		 *
1417 		 * XXX The minimum value of this variable should be
1418 		 * tuned.  We may be able to improve performance
1419 		 * by starting with a lower value.  That, however,
1420 		 * may trash the first few outgoing packets if the
1421 		 * PCI bus is saturated.
1422 		 */
1423 		sc->sc_tx_drain_thresh = 512 / 32;
1424 	}
1425 
1426 	/*
1427 	 * Initialize the prototype TXCFG register.
1428 	 */
1429 	sc->sc_txcfg = TXCFG_ATP | TXCFG_MXDMA_512 |
1430 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
1431 	    sc->sc_tx_drain_thresh;
1432 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
1433 
1434 	/*
1435 	 * Initialize the receive drain threshold if we have never
1436 	 * done so.
1437 	 */
1438 	if (sc->sc_rx_drain_thresh == 0) {
1439 		/*
1440 		 * XXX This value should be tuned.  This is set to the
1441 		 * maximum of 248 bytes, and we may be able to improve
1442 		 * performance by decreasing it (although we should never
1443 		 * set this value lower than 2; 14 bytes are required to
1444 		 * filter the packet).
1445 		 */
1446 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
1447 	}
1448 
1449 	/*
1450 	 * Initialize the prototype RXCFG register.
1451 	 */
1452 	sc->sc_rxcfg = RXCFG_MXDMA_512 |
1453 	    (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
1454 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
1455 
1456 	/* Set up the receive filter. */
1457 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1458 
1459 	/*
1460 	 * Give the transmit and receive rings to the chip.
1461 	 */
1462 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
1463 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1464 
1465 	/*
1466 	 * Initialize the interrupt mask.
1467 	 */
1468 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
1469 	    ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
1470 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
1471 
1472 	/*
1473 	 * Set the current media.  Do this after initializing the prototype
1474 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
1475 	 * control.
1476 	 */
1477 	mii_mediachg(&sc->sc_mii);
1478 
1479 	/*
1480 	 * Enable interrupts.
1481 	 */
1482 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
1483 
1484 	/*
1485 	 * Start the transmit and receive processes.
1486 	 */
1487 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
1488 
1489 	/*
1490 	 * Start the one second MII clock.
1491 	 */
1492 	callout_reset(&sc->sc_tick_ch, hz, sip_tick, sc);
1493 
1494 	/*
1495 	 * ...all done!
1496 	 */
1497 	ifp->if_flags |= IFF_RUNNING;
1498 	ifp->if_flags &= ~IFF_OACTIVE;
1499 
1500  out:
1501 	if (error)
1502 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1503 	return (error);
1504 }
1505 
1506 /*
1507  * sip_drain:
1508  *
1509  *	Drain the receive queue.
1510  */
1511 void
1512 sip_rxdrain(sc)
1513 	struct sip_softc *sc;
1514 {
1515 	struct sip_rxsoft *rxs;
1516 	int i;
1517 
1518 	for (i = 0; i < SIP_NRXDESC; i++) {
1519 		rxs = &sc->sc_rxsoft[i];
1520 		if (rxs->rxs_mbuf != NULL) {
1521 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1522 			m_freem(rxs->rxs_mbuf);
1523 			rxs->rxs_mbuf = NULL;
1524 		}
1525 	}
1526 }
1527 
1528 /*
1529  * sip_stop:		[ ifnet interface function ]
1530  *
1531  *	Stop transmission on the interface.
1532  */
1533 void
1534 sip_stop(ifp, disable)
1535 	struct ifnet *ifp;
1536 	int disable;
1537 {
1538 	struct sip_softc *sc = ifp->if_softc;
1539 	bus_space_tag_t st = sc->sc_st;
1540 	bus_space_handle_t sh = sc->sc_sh;
1541 	struct sip_txsoft *txs;
1542 	u_int32_t cmdsts = 0;		/* DEBUG */
1543 
1544 	/*
1545 	 * Stop the one second clock.
1546 	 */
1547 	callout_stop(&sc->sc_tick_ch);
1548 
1549 	/* Down the MII. */
1550 	mii_down(&sc->sc_mii);
1551 
1552 	/*
1553 	 * Disable interrupts.
1554 	 */
1555 	bus_space_write_4(st, sh, SIP_IER, 0);
1556 
1557 	/*
1558 	 * Stop receiver and transmitter.
1559 	 */
1560 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
1561 
1562 	/*
1563 	 * Release any queued transmit buffers.
1564 	 */
1565 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1566 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
1567 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
1568 		    (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
1569 		     CMDSTS_INTR) == 0)
1570 			printf("%s: sip_stop: last descriptor does not "
1571 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
1572 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1573 #ifdef DIAGNOSTIC
1574 		if (txs->txs_mbuf == NULL) {
1575 			printf("%s: dirty txsoft with no mbuf chain\n",
1576 			    sc->sc_dev.dv_xname);
1577 			panic("sip_stop");
1578 		}
1579 #endif
1580 		cmdsts |=		/* DEBUG */
1581 		    le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1582 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1583 		m_freem(txs->txs_mbuf);
1584 		txs->txs_mbuf = NULL;
1585 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1586 	}
1587 
1588 	if (disable)
1589 		sip_rxdrain(sc);
1590 
1591 	/*
1592 	 * Mark the interface down and cancel the watchdog timer.
1593 	 */
1594 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1595 	ifp->if_timer = 0;
1596 
1597 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
1598 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
1599 		printf("%s: sip_stop: no INTR bits set in dirty tx "
1600 		    "descriptors\n", sc->sc_dev.dv_xname);
1601 }
1602 
1603 /*
1604  * sip_read_eeprom:
1605  *
1606  *	Read data from the serial EEPROM.
1607  */
1608 void
1609 sip_read_eeprom(sc, word, wordcnt, data)
1610 	struct sip_softc *sc;
1611 	int word, wordcnt;
1612 	u_int16_t *data;
1613 {
1614 	bus_space_tag_t st = sc->sc_st;
1615 	bus_space_handle_t sh = sc->sc_sh;
1616 	u_int16_t reg;
1617 	int i, x;
1618 
1619 	for (i = 0; i < wordcnt; i++) {
1620 		/* Send CHIP SELECT. */
1621 		reg = EROMAR_EECS;
1622 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
1623 
1624 		/* Shift in the READ opcode. */
1625 		for (x = 3; x > 0; x--) {
1626 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
1627 				reg |= EROMAR_EEDI;
1628 			else
1629 				reg &= ~EROMAR_EEDI;
1630 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
1631 			bus_space_write_4(st, sh, SIP_EROMAR,
1632 			    reg | EROMAR_EESK);
1633 			delay(4);
1634 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
1635 			delay(4);
1636 		}
1637 
1638 		/* Shift in address. */
1639 		for (x = 6; x > 0; x--) {
1640 			if ((word + i) & (1 << (x - 1)))
1641 				reg |= EROMAR_EEDI;
1642 			else
1643 				reg &= ~EROMAR_EEDI;
1644 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
1645 			bus_space_write_4(st, sh, SIP_EROMAR,
1646 			    reg | EROMAR_EESK);
1647 			delay(4);
1648 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
1649 			delay(4);
1650 		}
1651 
1652 		/* Shift out data. */
1653 		reg = EROMAR_EECS;
1654 		data[i] = 0;
1655 		for (x = 16; x > 0; x--) {
1656 			bus_space_write_4(st, sh, SIP_EROMAR,
1657 			    reg | EROMAR_EESK);
1658 			delay(4);
1659 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
1660 				data[i] |= (1 << (x - 1));
1661 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
1662 			delay(4);
1663 		}
1664 
1665 		/* Clear CHIP SELECT. */
1666 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
1667 		delay(4);
1668 	}
1669 }
1670 
1671 /*
1672  * sip_add_rxbuf:
1673  *
1674  *	Add a receive buffer to the indicated descriptor.
1675  */
1676 int
1677 sip_add_rxbuf(sc, idx)
1678 	struct sip_softc *sc;
1679 	int idx;
1680 {
1681 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
1682 	struct mbuf *m;
1683 	int error;
1684 
1685 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1686 	if (m == NULL)
1687 		return (ENOBUFS);
1688 
1689 	MCLGET(m, M_DONTWAIT);
1690 	if ((m->m_flags & M_EXT) == 0) {
1691 		m_freem(m);
1692 		return (ENOBUFS);
1693 	}
1694 
1695 	if (rxs->rxs_mbuf != NULL)
1696 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1697 
1698 	rxs->rxs_mbuf = m;
1699 
1700 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1701 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1702 	if (error) {
1703 		printf("%s: can't load rx DMA map %d, error = %d\n",
1704 		    sc->sc_dev.dv_xname, idx, error);
1705 		panic("sip_add_rxbuf");		/* XXX */
1706 	}
1707 
1708 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1709 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1710 
1711 	SIP_INIT_RXDESC(sc, idx);
1712 
1713 	return (0);
1714 }
1715 
1716 /*
1717  * sip_sis900_set_filter:
1718  *
1719  *	Set up the receive filter.
1720  */
1721 void
1722 sip_sis900_set_filter(sc)
1723 	struct sip_softc *sc;
1724 {
1725 	bus_space_tag_t st = sc->sc_st;
1726 	bus_space_handle_t sh = sc->sc_sh;
1727 	struct ethercom *ec = &sc->sc_ethercom;
1728 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1729 	struct ether_multi *enm;
1730 	u_int8_t *cp;
1731 	struct ether_multistep step;
1732 	u_int32_t crc, mchash[8];
1733 
1734 	/*
1735 	 * Initialize the prototype RFCR.
1736 	 */
1737 	sc->sc_rfcr = RFCR_RFEN;
1738 	if (ifp->if_flags & IFF_BROADCAST)
1739 		sc->sc_rfcr |= RFCR_AAB;
1740 	if (ifp->if_flags & IFF_PROMISC) {
1741 		sc->sc_rfcr |= RFCR_AAP;
1742 		goto allmulti;
1743 	}
1744 
1745 	/*
1746 	 * Set up the multicast address filter by passing all multicast
1747 	 * addresses through a CRC generator, and then using the high-order
1748 	 * 6 bits as an index into the 128 bit multicast hash table (only
1749 	 * the lower 16 bits of each 32 bit multicast hash register are
1750 	 * valid).  The high order bits select the register, while the
1751 	 * rest of the bits select the bit within the register.
1752 	 */
1753 
1754 	memset(mchash, 0, sizeof(mchash));
1755 
1756 	ETHER_FIRST_MULTI(step, ec, enm);
1757 	while (enm != NULL) {
1758 		if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1759 			/*
1760 			 * We must listen to a range of multicast addresses.
1761 			 * For now, just accept all multicasts, rather than
1762 			 * trying to set only those filter bits needed to match
1763 			 * the range.  (At this time, the only use of address
1764 			 * ranges is for IP multicast routing, for which the
1765 			 * range is big enough to require all bits set.)
1766 			 */
1767 			goto allmulti;
1768 		}
1769 
1770 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1771 
1772 		/* Just want the 7 most significant bits. */
1773 		crc >>= 25;
1774 
1775 		/* Set the corresponding bit in the hash table. */
1776 		mchash[crc >> 4] |= 1 << (crc & 0xf);
1777 
1778 		ETHER_NEXT_MULTI(step, enm);
1779 	}
1780 
1781 	ifp->if_flags &= ~IFF_ALLMULTI;
1782 	goto setit;
1783 
1784  allmulti:
1785 	ifp->if_flags |= IFF_ALLMULTI;
1786 	sc->sc_rfcr |= RFCR_AAM;
1787 
1788  setit:
1789 #define	FILTER_EMIT(addr, data)						\
1790 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
1791 	delay(1);							\
1792 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
1793 	delay(1)
1794 
1795 	/*
1796 	 * Disable receive filter, and program the node address.
1797 	 */
1798 	cp = LLADDR(ifp->if_sadl);
1799 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
1800 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
1801 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
1802 
1803 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1804 		/*
1805 		 * Program the multicast hash table.
1806 		 */
1807 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
1808 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
1809 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
1810 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
1811 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
1812 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
1813 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
1814 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
1815 	}
1816 #undef FILTER_EMIT
1817 
1818 	/*
1819 	 * Re-enable the receiver filter.
1820 	 */
1821 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
1822 }
1823 
1824 /*
1825  * sip_dp83815_set_filter:
1826  *
1827  *	Set up the receive filter.
1828  */
1829 void
1830 sip_dp83815_set_filter(sc)
1831 	struct sip_softc *sc;
1832 {
1833 	bus_space_tag_t st = sc->sc_st;
1834 	bus_space_handle_t sh = sc->sc_sh;
1835 	struct ethercom *ec = &sc->sc_ethercom;
1836 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1837 	struct ether_multi *enm;
1838 	u_int8_t *cp;
1839 	struct ether_multistep step;
1840 	u_int32_t crc, mchash[16];
1841 	int i;
1842 
1843 	/*
1844 	 * Initialize the prototype RFCR.
1845 	 */
1846 	sc->sc_rfcr = RFCR_RFEN | RFCR_AARP | RFCR_APM;
1847 	if (ifp->if_flags & IFF_BROADCAST)
1848 		sc->sc_rfcr |= RFCR_AAB;
1849 	if (ifp->if_flags & IFF_PROMISC) {
1850 		sc->sc_rfcr |= RFCR_AAP;
1851 		goto allmulti;
1852 	}
1853 
1854 	/*
1855 	 * Set up the multicast address filter by passing all multicast
1856 	 * addresses through a CRC generator, and then using the high-order
1857 	 * 9 bits as an index into the 512 bit multicast hash table.  The
1858 	 * high-order bits select the slot, while the rest of the bits
1859 	 * select the bit within the slot.  Note that only the low 16-bits
1860 	 * of each filter word are used, and there are 64 filter words.
1861 	 */
1862 
1863 	memset(mchash, 0, sizeof(mchash));
1864 
1865 	ETHER_FIRST_MULTI(step, ec, enm);
1866 	while (enm != NULL) {
1867 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1868 			/*
1869 			 * We must listen to a range of multicast addresses.
1870 			 * For now, just accept all multicasts, rather than
1871 			 * trying to set only those filter bits needed to match
1872 			 * the range.  (At this time, the only use of address
1873 			 * ranges is for IP multicast routing, for which the
1874 			 * range is big enough to require all bits set.)
1875 			 */
1876 			goto allmulti;
1877 		}
1878 
1879 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1880 
1881 		/* Just want the 9 most significant bits. */
1882 		crc >>= 23;
1883 
1884 		/* Set the corresponding bit in the hash table. */
1885 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
1886 
1887 		ETHER_NEXT_MULTI(step, enm);
1888 	}
1889 
1890 	ifp->if_flags |= ~IFF_ALLMULTI;
1891 	sc->sc_rfcr |= RFCR_MHEN;
1892 	goto setit;
1893 
1894  allmulti:
1895 	ifp->if_flags |= IFF_ALLMULTI;
1896 	sc->sc_rfcr |= RFCR_AAM;
1897 
1898  setit:
1899 #define	FILTER_EMIT(addr, data)						\
1900 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
1901 	delay(1);							\
1902 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
1903 	delay(1);
1904 
1905 	/*
1906 	 * Disable receive filter, and program the node address.
1907 	 */
1908 	cp = LLADDR(ifp->if_sadl);
1909 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH, (cp[1] << 8) | cp[0]);
1910 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH, (cp[3] << 8) | cp[2]);
1911 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH, (cp[5] << 8) | cp[4]);
1912 
1913 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1914 		/*
1915 		 * Program the multicast hash table.
1916 		 */
1917 		for (i = 0; i < 16; i++) {
1918 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
1919 			    mchash[i] & 0xffff);
1920 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2) + 2,
1921 			    (mchash[i] >> 16) & 0xffff);
1922 		}
1923 	}
1924 #undef FILTER_EMIT
1925 
1926 	/*
1927 	 * Re-enable the receiver filter.
1928 	 */
1929 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
1930 }
1931 
1932 /*
1933  * sip_sis900_mii_readreg:	[mii interface function]
1934  *
1935  *	Read a PHY register on the MII.
1936  */
1937 int
1938 sip_sis900_mii_readreg(self, phy, reg)
1939 	struct device *self;
1940 	int phy, reg;
1941 {
1942 	struct sip_softc *sc = (struct sip_softc *) self;
1943 	u_int32_t enphy;
1944 
1945 	/*
1946 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
1947 	 * MII address 0.
1948 	 */
1949 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
1950 		return (0);
1951 
1952 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
1953 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
1954 	    ENPHY_RWCMD | ENPHY_ACCESS);
1955 	do {
1956 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
1957 	} while (enphy & ENPHY_ACCESS);
1958 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
1959 }
1960 
1961 /*
1962  * sip_sis900_mii_writereg:	[mii interface function]
1963  *
1964  *	Write a PHY register on the MII.
1965  */
1966 void
1967 sip_sis900_mii_writereg(self, phy, reg, val)
1968 	struct device *self;
1969 	int phy, reg, val;
1970 {
1971 	struct sip_softc *sc = (struct sip_softc *) self;
1972 	u_int32_t enphy;
1973 
1974 	/*
1975 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
1976 	 * MII address 0.
1977 	 */
1978 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
1979 		return;
1980 
1981 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
1982 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
1983 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
1984 	do {
1985 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
1986 	} while (enphy & ENPHY_ACCESS);
1987 }
1988 
1989 /*
1990  * sip_sis900_mii_statchg:	[mii interface function]
1991  *
1992  *	Callback from MII layer when media changes.
1993  */
1994 void
1995 sip_sis900_mii_statchg(self)
1996 	struct device *self;
1997 {
1998 	struct sip_softc *sc = (struct sip_softc *) self;
1999 	u_int32_t flowctl;
2000 
2001 	/*
2002 	 * Update TXCFG for full-duplex operation.
2003 	 */
2004 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2005 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2006 	else
2007 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2008 
2009 	/*
2010 	 * Update RXCFG for full-duplex or loopback.
2011 	 */
2012 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2013 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2014 		sc->sc_rxcfg |= RXCFG_ATX;
2015 	else
2016 		sc->sc_rxcfg &= ~RXCFG_ATX;
2017 
2018 	/*
2019 	 * Update IMR for use of 802.3x flow control.
2020 	 */
2021 	if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
2022 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
2023 		flowctl = FLOWCTL_FLOWEN;
2024 	} else {
2025 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
2026 		flowctl = 0;
2027 	}
2028 
2029 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2030 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2031 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
2032 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
2033 }
2034 
2035 /*
2036  * sip_dp83815_mii_readreg:	[mii interface function]
2037  *
2038  *	Read a PHY register on the MII.
2039  */
2040 int
2041 sip_dp83815_mii_readreg(self, phy, reg)
2042 	struct device *self;
2043 	int phy, reg;
2044 {
2045 	struct sip_softc *sc = (struct sip_softc *) self;
2046 	u_int32_t val;
2047 
2048 	/*
2049 	 * The DP83815 only has an internal PHY.  Only allow
2050 	 * MII address 0.
2051 	 */
2052 	if (phy != 0)
2053 		return (0);
2054 
2055 	/*
2056 	 * Apparently, after a reset, the DP83815 can take a while
2057 	 * to respond.  During this recovery period, the BMSR returns
2058 	 * a value of 0.  Catch this -- it's not supposed to happen
2059 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
2060 	 * PHY to come back to life.
2061 	 *
2062 	 * This works out because the BMSR is the first register
2063 	 * read during the PHY probe process.
2064 	 */
2065 	do {
2066 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
2067 	} while (reg == MII_BMSR && val == 0);
2068 
2069 	return (val & 0xffff);
2070 }
2071 
2072 /*
2073  * sip_dp83815_mii_writereg:	[mii interface function]
2074  *
2075  *	Write a PHY register to the MII.
2076  */
2077 void
2078 sip_dp83815_mii_writereg(self, phy, reg, val)
2079 	struct device *self;
2080 	int phy, reg, val;
2081 {
2082 	struct sip_softc *sc = (struct sip_softc *) self;
2083 
2084 	/*
2085 	 * The DP83815 only has an internal PHY.  Only allow
2086 	 * MII address 0.
2087 	 */
2088 	if (phy != 0)
2089 		return;
2090 
2091 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
2092 }
2093 
2094 /*
2095  * sip_dp83815_mii_statchg:	[mii interface function]
2096  *
2097  *	Callback from MII layer when media changes.
2098  */
2099 void
2100 sip_dp83815_mii_statchg(self)
2101 	struct device *self;
2102 {
2103 	struct sip_softc *sc = (struct sip_softc *) self;
2104 
2105 	/*
2106 	 * Update TXCFG for full-duplex operation.
2107 	 */
2108 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2109 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2110 	else
2111 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2112 
2113 	/*
2114 	 * Update RXCFG for full-duplex or loopback.
2115 	 */
2116 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2117 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2118 		sc->sc_rxcfg |= RXCFG_ATX;
2119 	else
2120 		sc->sc_rxcfg &= ~RXCFG_ATX;
2121 
2122 	/*
2123 	 * XXX 802.3x flow control.
2124 	 */
2125 
2126 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
2127 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
2128 }
2129 
2130 /*
2131  * sip_mediastatus:	[ifmedia interface function]
2132  *
2133  *	Get the current interface media status.
2134  */
2135 void
2136 sip_mediastatus(ifp, ifmr)
2137 	struct ifnet *ifp;
2138 	struct ifmediareq *ifmr;
2139 {
2140 	struct sip_softc *sc = ifp->if_softc;
2141 
2142 	mii_pollstat(&sc->sc_mii);
2143 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
2144 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
2145 }
2146 
2147 /*
2148  * sip_mediachange:	[ifmedia interface function]
2149  *
2150  *	Set hardware to newly-selected media.
2151  */
2152 int
2153 sip_mediachange(ifp)
2154 	struct ifnet *ifp;
2155 {
2156 	struct sip_softc *sc = ifp->if_softc;
2157 
2158 	if (ifp->if_flags & IFF_UP)
2159 		mii_mediachg(&sc->sc_mii);
2160 	return (0);
2161 }
2162