xref: /netbsd-src/sys/dev/pci/if_sip.c (revision 7c3f385475147b6e1c4753f2bee961630e2dfc40)
1 /*	$NetBSD: if_sip.c,v 1.132 2008/04/10 19:13:37 cegger Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*-
40  * Copyright (c) 1999 Network Computer, Inc.
41  * All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of Network Computer, Inc. nor the names of its
52  *    contributors may be used to endorse or promote products derived
53  *    from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65  * POSSIBILITY OF SUCH DAMAGE.
66  */
67 
68 /*
69  * Device driver for the Silicon Integrated Systems SiS 900,
70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72  * controllers.
73  *
74  * Originally written to support the SiS 900 by Jason R. Thorpe for
75  * Network Computer, Inc.
76  *
77  * TODO:
78  *
79  *	- Reduce the Rx interrupt load.
80  */
81 
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.132 2008/04/10 19:13:37 cegger Exp $");
84 
85 #include "bpfilter.h"
86 #include "rnd.h"
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99 
100 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
101 
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105 
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110 
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114 
115 #include <sys/bus.h>
116 #include <sys/intr.h>
117 #include <machine/endian.h>
118 
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/mii_bitbang.h>
122 
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 #include <dev/pci/pcidevs.h>
126 
127 #include <dev/pci/if_sipreg.h>
128 
129 /*
130  * Transmit descriptor list size.  This is arbitrary, but allocate
131  * enough descriptors for 128 pending transmissions, and 8 segments
132  * per packet (64 for DP83820 for jumbo frames).
133  *
134  * This MUST work out to a power of 2.
135  */
136 #define	GSIP_NTXSEGS_ALLOC 16
137 #define	SIP_NTXSEGS_ALLOC 8
138 
139 #define	SIP_TXQUEUELEN		256
140 #define	MAX_SIP_NTXDESC	\
141     (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
142 
143 /*
144  * Receive descriptor list size.  We have one Rx buffer per incoming
145  * packet, so this logic is a little simpler.
146  *
147  * Actually, on the DP83820, we allow the packet to consume more than
148  * one buffer, in order to support jumbo Ethernet frames.  In that
149  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
150  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
151  * so we'd better be quick about handling receive interrupts.
152  */
153 #define	GSIP_NRXDESC		256
154 #define	SIP_NRXDESC		128
155 
156 #define	MAX_SIP_NRXDESC	MAX(GSIP_NRXDESC, SIP_NRXDESC)
157 
158 /*
159  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
160  * a single clump that maps to a single DMA segment to make several things
161  * easier.
162  */
163 struct sip_control_data {
164 	/*
165 	 * The transmit descriptors.
166 	 */
167 	struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
168 
169 	/*
170 	 * The receive descriptors.
171 	 */
172 	struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
173 };
174 
175 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
176 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
177 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
178 
179 /*
180  * Software state for transmit jobs.
181  */
182 struct sip_txsoft {
183 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
184 	bus_dmamap_t txs_dmamap;	/* our DMA map */
185 	int txs_firstdesc;		/* first descriptor in packet */
186 	int txs_lastdesc;		/* last descriptor in packet */
187 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
188 };
189 
190 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
191 
192 /*
193  * Software state for receive jobs.
194  */
195 struct sip_rxsoft {
196 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
197 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
198 };
199 
200 enum sip_attach_stage {
201 	  SIP_ATTACH_FIN = 0
202 	, SIP_ATTACH_CREATE_RXMAP
203 	, SIP_ATTACH_CREATE_TXMAP
204 	, SIP_ATTACH_LOAD_MAP
205 	, SIP_ATTACH_CREATE_MAP
206 	, SIP_ATTACH_MAP_MEM
207 	, SIP_ATTACH_ALLOC_MEM
208 	, SIP_ATTACH_INTR
209 	, SIP_ATTACH_MAP
210 };
211 
212 /*
213  * Software state per device.
214  */
215 struct sip_softc {
216 	struct device sc_dev;		/* generic device information */
217 	bus_space_tag_t sc_st;		/* bus space tag */
218 	bus_space_handle_t sc_sh;	/* bus space handle */
219 	bus_size_t sc_sz;		/* bus space size */
220 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
221 	pci_chipset_tag_t sc_pc;
222 	bus_dma_segment_t sc_seg;
223 	struct ethercom sc_ethercom;	/* ethernet common data */
224 
225 	const struct sip_product *sc_model; /* which model are we? */
226 	int sc_gigabit;			/* 1: 83820, 0: other */
227 	int sc_rev;			/* chip revision */
228 
229 	void *sc_ih;			/* interrupt cookie */
230 
231 	struct mii_data sc_mii;		/* MII/media information */
232 
233 	callout_t sc_tick_ch;		/* tick callout */
234 
235 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
236 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
237 
238 	/*
239 	 * Software state for transmit and receive descriptors.
240 	 */
241 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
242 	struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
243 
244 	/*
245 	 * Control data structures.
246 	 */
247 	struct sip_control_data *sc_control_data;
248 #define	sc_txdescs	sc_control_data->scd_txdescs
249 #define	sc_rxdescs	sc_control_data->scd_rxdescs
250 
251 #ifdef SIP_EVENT_COUNTERS
252 	/*
253 	 * Event counters.
254 	 */
255 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
256 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
257 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
258 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
259 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
260 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
261 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
262 	struct evcnt sc_ev_rxpause;	/* PAUSE received */
263 	/* DP83820 only */
264 	struct evcnt sc_ev_txpause;	/* PAUSE transmitted */
265 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
266 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
267 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
268 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
269 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
270 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
271 #endif /* SIP_EVENT_COUNTERS */
272 
273 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
274 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
275 	u_int32_t sc_imr;		/* prototype IMR register */
276 	u_int32_t sc_rfcr;		/* prototype RFCR register */
277 
278 	u_int32_t sc_cfg;		/* prototype CFG register */
279 
280 	u_int32_t sc_gpior;		/* prototype GPIOR register */
281 
282 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
283 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
284 
285 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
286 
287 	int	sc_flowflags;		/* 802.3x flow control flags */
288 	int	sc_rx_flow_thresh;	/* Rx FIFO threshold for flow control */
289 	int	sc_paused;		/* paused indication */
290 
291 	int	sc_txfree;		/* number of free Tx descriptors */
292 	int	sc_txnext;		/* next ready Tx descriptor */
293 	int	sc_txwin;		/* Tx descriptors since last intr */
294 
295 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
296 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
297 
298 	/* values of interface state at last init */
299 	struct {
300 		/* if_capenable */
301 		uint64_t	if_capenable;
302 		/* ec_capenable */
303 		int		ec_capenable;
304 		/* VLAN_ATTACHED */
305 		int		is_vlan;
306 	}	sc_prev;
307 
308 	short	sc_if_flags;
309 
310 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
311 	int	sc_rxdiscard;
312 	int	sc_rxlen;
313 	struct mbuf *sc_rxhead;
314 	struct mbuf *sc_rxtail;
315 	struct mbuf **sc_rxtailp;
316 
317 	int sc_ntxdesc;
318 	int sc_ntxdesc_mask;
319 
320 	int sc_nrxdesc_mask;
321 
322 	const struct sip_parm {
323 		const struct sip_regs {
324 			int r_rxcfg;
325 			int r_txcfg;
326 		} p_regs;
327 
328 		const struct sip_bits {
329 			uint32_t b_txcfg_mxdma_8;
330 			uint32_t b_txcfg_mxdma_16;
331 			uint32_t b_txcfg_mxdma_32;
332 			uint32_t b_txcfg_mxdma_64;
333 			uint32_t b_txcfg_mxdma_128;
334 			uint32_t b_txcfg_mxdma_256;
335 			uint32_t b_txcfg_mxdma_512;
336 			uint32_t b_txcfg_flth_mask;
337 			uint32_t b_txcfg_drth_mask;
338 
339 			uint32_t b_rxcfg_mxdma_8;
340 			uint32_t b_rxcfg_mxdma_16;
341 			uint32_t b_rxcfg_mxdma_32;
342 			uint32_t b_rxcfg_mxdma_64;
343 			uint32_t b_rxcfg_mxdma_128;
344 			uint32_t b_rxcfg_mxdma_256;
345 			uint32_t b_rxcfg_mxdma_512;
346 
347 			uint32_t b_isr_txrcmp;
348 			uint32_t b_isr_rxrcmp;
349 			uint32_t b_isr_dperr;
350 			uint32_t b_isr_sserr;
351 			uint32_t b_isr_rmabt;
352 			uint32_t b_isr_rtabt;
353 
354 			uint32_t b_cmdsts_size_mask;
355 		} p_bits;
356 		int		p_filtmem;
357 		int		p_rxbuf_len;
358 		bus_size_t	p_tx_dmamap_size;
359 		int		p_ntxsegs;
360 		int		p_ntxsegs_alloc;
361 		int		p_nrxdesc;
362 	} *sc_parm;
363 
364 	void (*sc_rxintr)(struct sip_softc *);
365 
366 #if NRND > 0
367 	rndsource_element_t rnd_source;	/* random source */
368 #endif
369 };
370 
371 #define	sc_bits	sc_parm->p_bits
372 #define	sc_regs	sc_parm->p_regs
373 
374 static const struct sip_parm sip_parm = {
375 	  .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
376 	, .p_rxbuf_len = MCLBYTES - 1	/* field width */
377 	, .p_tx_dmamap_size = MCLBYTES
378 	, .p_ntxsegs = 16
379 	, .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
380 	, .p_nrxdesc = SIP_NRXDESC
381 	, .p_bits = {
382 		  .b_txcfg_mxdma_8	= 0x00200000	/*       8 bytes */
383 		, .b_txcfg_mxdma_16	= 0x00300000	/*      16 bytes */
384 		, .b_txcfg_mxdma_32	= 0x00400000	/*      32 bytes */
385 		, .b_txcfg_mxdma_64	= 0x00500000	/*      64 bytes */
386 		, .b_txcfg_mxdma_128	= 0x00600000	/*     128 bytes */
387 		, .b_txcfg_mxdma_256	= 0x00700000	/*     256 bytes */
388 		, .b_txcfg_mxdma_512	= 0x00000000	/*     512 bytes */
389 		, .b_txcfg_flth_mask	= 0x00003f00	/* Tx fill threshold */
390 		, .b_txcfg_drth_mask	= 0x0000003f	/* Tx drain threshold */
391 
392 		, .b_rxcfg_mxdma_8	= 0x00200000	/*       8 bytes */
393 		, .b_rxcfg_mxdma_16	= 0x00300000	/*      16 bytes */
394 		, .b_rxcfg_mxdma_32	= 0x00400000	/*      32 bytes */
395 		, .b_rxcfg_mxdma_64	= 0x00500000	/*      64 bytes */
396 		, .b_rxcfg_mxdma_128	= 0x00600000	/*     128 bytes */
397 		, .b_rxcfg_mxdma_256	= 0x00700000	/*     256 bytes */
398 		, .b_rxcfg_mxdma_512	= 0x00000000	/*     512 bytes */
399 
400 		, .b_isr_txrcmp	= 0x02000000	/* transmit reset complete */
401 		, .b_isr_rxrcmp	= 0x01000000	/* receive reset complete */
402 		, .b_isr_dperr	= 0x00800000	/* detected parity error */
403 		, .b_isr_sserr	= 0x00400000	/* signalled system error */
404 		, .b_isr_rmabt	= 0x00200000	/* received master abort */
405 		, .b_isr_rtabt	= 0x00100000	/* received target abort */
406 		, .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
407 	}
408 	, .p_regs = {
409 		.r_rxcfg = OTHER_SIP_RXCFG,
410 		.r_txcfg = OTHER_SIP_TXCFG
411 	}
412 }, gsip_parm = {
413 	  .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
414 	, .p_rxbuf_len = MCLBYTES - 8
415 	, .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
416 	, .p_ntxsegs = 64
417 	, .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
418 	, .p_nrxdesc = GSIP_NRXDESC
419 	, .p_bits = {
420 		  .b_txcfg_mxdma_8	= 0x00100000	/*       8 bytes */
421 		, .b_txcfg_mxdma_16	= 0x00200000	/*      16 bytes */
422 		, .b_txcfg_mxdma_32	= 0x00300000	/*      32 bytes */
423 		, .b_txcfg_mxdma_64	= 0x00400000	/*      64 bytes */
424 		, .b_txcfg_mxdma_128	= 0x00500000	/*     128 bytes */
425 		, .b_txcfg_mxdma_256	= 0x00600000	/*     256 bytes */
426 		, .b_txcfg_mxdma_512	= 0x00700000	/*     512 bytes */
427 		, .b_txcfg_flth_mask	= 0x0000ff00	/* Fx fill threshold */
428 		, .b_txcfg_drth_mask	= 0x000000ff	/* Tx drain threshold */
429 
430 		, .b_rxcfg_mxdma_8	= 0x00100000	/*       8 bytes */
431 		, .b_rxcfg_mxdma_16	= 0x00200000	/*      16 bytes */
432 		, .b_rxcfg_mxdma_32	= 0x00300000	/*      32 bytes */
433 		, .b_rxcfg_mxdma_64	= 0x00400000	/*      64 bytes */
434 		, .b_rxcfg_mxdma_128	= 0x00500000	/*     128 bytes */
435 		, .b_rxcfg_mxdma_256	= 0x00600000	/*     256 bytes */
436 		, .b_rxcfg_mxdma_512	= 0x00700000	/*     512 bytes */
437 
438 		, .b_isr_txrcmp	= 0x00400000	/* transmit reset complete */
439 		, .b_isr_rxrcmp	= 0x00200000	/* receive reset complete */
440 		, .b_isr_dperr	= 0x00100000	/* detected parity error */
441 		, .b_isr_sserr	= 0x00080000	/* signalled system error */
442 		, .b_isr_rmabt	= 0x00040000	/* received master abort */
443 		, .b_isr_rtabt	= 0x00020000	/* received target abort */
444 		, .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
445 	}
446 	, .p_regs = {
447 		.r_rxcfg = DP83820_SIP_RXCFG,
448 		.r_txcfg = DP83820_SIP_TXCFG
449 	}
450 };
451 
452 static inline int
453 sip_nexttx(const struct sip_softc *sc, int x)
454 {
455 	return (x + 1) & sc->sc_ntxdesc_mask;
456 }
457 
458 static inline int
459 sip_nextrx(const struct sip_softc *sc, int x)
460 {
461 	return (x + 1) & sc->sc_nrxdesc_mask;
462 }
463 
464 /* 83820 only */
465 static inline void
466 sip_rxchain_reset(struct sip_softc *sc)
467 {
468 	sc->sc_rxtailp = &sc->sc_rxhead;
469 	*sc->sc_rxtailp = NULL;
470 	sc->sc_rxlen = 0;
471 }
472 
473 /* 83820 only */
474 static inline void
475 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
476 {
477 	*sc->sc_rxtailp = sc->sc_rxtail = m;
478 	sc->sc_rxtailp = &m->m_next;
479 }
480 
481 #ifdef SIP_EVENT_COUNTERS
482 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
483 #else
484 #define	SIP_EVCNT_INCR(ev)	/* nothing */
485 #endif
486 
487 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
488 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
489 
490 static inline void
491 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
492 {
493 	int x, n;
494 
495 	x = x0;
496 	n = n0;
497 
498 	/* If it will wrap around, sync to the end of the ring. */
499 	if (x + n > sc->sc_ntxdesc) {
500 		bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
501 		    SIP_CDTXOFF(x), sizeof(struct sip_desc) *
502 		    (sc->sc_ntxdesc - x), ops);
503 		n -= (sc->sc_ntxdesc - x);
504 		x = 0;
505 	}
506 
507 	/* Now sync whatever is left. */
508 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
509 	    SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
510 }
511 
512 static inline void
513 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
514 {
515 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
516 	    SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
517 }
518 
519 #if 0
520 #ifdef DP83820
521 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
522 	u_int32_t	sipd_cmdsts;	/* command/status word */
523 #else
524 	u_int32_t	sipd_cmdsts;	/* command/status word */
525 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
526 #endif /* DP83820 */
527 #endif /* 0 */
528 
529 static inline volatile uint32_t *
530 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
531 {
532 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
533 }
534 
535 static inline volatile uint32_t *
536 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
537 {
538 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
539 }
540 
541 static inline void
542 sip_init_rxdesc(struct sip_softc *sc, int x)
543 {
544 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
545 	struct sip_desc *sipd = &sc->sc_rxdescs[x];
546 
547 	sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
548 	*sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
549 	*sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
550 	    (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
551 	sipd->sipd_extsts = 0;
552 	sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
553 }
554 
555 #define	SIP_CHIP_VERS(sc, v, p, r)					\
556 	((sc)->sc_model->sip_vendor == (v) &&				\
557 	 (sc)->sc_model->sip_product == (p) &&				\
558 	 (sc)->sc_rev == (r))
559 
560 #define	SIP_CHIP_MODEL(sc, v, p)					\
561 	((sc)->sc_model->sip_vendor == (v) &&				\
562 	 (sc)->sc_model->sip_product == (p))
563 
564 #define	SIP_SIS900_REV(sc, rev)						\
565 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
566 
567 #define SIP_TIMEOUT 1000
568 
569 static void	sipcom_start(struct ifnet *);
570 static void	sipcom_watchdog(struct ifnet *);
571 static int	sipcom_ioctl(struct ifnet *, u_long, void *);
572 static int	sipcom_init(struct ifnet *);
573 static void	sipcom_stop(struct ifnet *, int);
574 
575 static bool	sipcom_reset(struct sip_softc *);
576 static void	sipcom_rxdrain(struct sip_softc *);
577 static int	sipcom_add_rxbuf(struct sip_softc *, int);
578 static void	sipcom_read_eeprom(struct sip_softc *, int, int,
579 				      u_int16_t *);
580 static void	sipcom_tick(void *);
581 
582 static void	sipcom_sis900_set_filter(struct sip_softc *);
583 static void	sipcom_dp83815_set_filter(struct sip_softc *);
584 
585 static void	sipcom_dp83820_read_macaddr(struct sip_softc *,
586 		    const struct pci_attach_args *, u_int8_t *);
587 static void	sipcom_sis900_eeprom_delay(struct sip_softc *sc);
588 static void	sipcom_sis900_read_macaddr(struct sip_softc *,
589 		    const struct pci_attach_args *, u_int8_t *);
590 static void	sipcom_dp83815_read_macaddr(struct sip_softc *,
591 		    const struct pci_attach_args *, u_int8_t *);
592 
593 static int	sipcom_intr(void *);
594 static void	sipcom_txintr(struct sip_softc *);
595 static void	sip_rxintr(struct sip_softc *);
596 static void	gsip_rxintr(struct sip_softc *);
597 
598 static int	sipcom_dp83820_mii_readreg(device_t, int, int);
599 static void	sipcom_dp83820_mii_writereg(device_t, int, int, int);
600 static void	sipcom_dp83820_mii_statchg(device_t);
601 
602 static int	sipcom_sis900_mii_readreg(device_t, int, int);
603 static void	sipcom_sis900_mii_writereg(device_t, int, int, int);
604 static void	sipcom_sis900_mii_statchg(device_t);
605 
606 static int	sipcom_dp83815_mii_readreg(device_t, int, int);
607 static void	sipcom_dp83815_mii_writereg(device_t, int, int, int);
608 static void	sipcom_dp83815_mii_statchg(device_t);
609 
610 static void	sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
611 
612 static int	sipcom_match(device_t, struct cfdata *, void *);
613 static void	sipcom_attach(device_t, device_t, void *);
614 static void	sipcom_do_detach(device_t, enum sip_attach_stage);
615 static int	sipcom_detach(device_t, int);
616 static bool	sipcom_resume(device_t PMF_FN_PROTO);
617 static bool	sipcom_suspend(device_t PMF_FN_PROTO);
618 
619 int	gsip_copy_small = 0;
620 int	sip_copy_small = 0;
621 
622 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
623     sipcom_match, sipcom_attach, sipcom_detach, NULL);
624 CFATTACH_DECL(sip, sizeof(struct sip_softc),
625     sipcom_match, sipcom_attach, sipcom_detach, NULL);
626 
627 /*
628  * Descriptions of the variants of the SiS900.
629  */
630 struct sip_variant {
631 	int	(*sipv_mii_readreg)(device_t, int, int);
632 	void	(*sipv_mii_writereg)(device_t, int, int, int);
633 	void	(*sipv_mii_statchg)(device_t);
634 	void	(*sipv_set_filter)(struct sip_softc *);
635 	void	(*sipv_read_macaddr)(struct sip_softc *,
636 		    const struct pci_attach_args *, u_int8_t *);
637 };
638 
639 static u_int32_t sipcom_mii_bitbang_read(device_t);
640 static void	sipcom_mii_bitbang_write(device_t, u_int32_t);
641 
642 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
643 	sipcom_mii_bitbang_read,
644 	sipcom_mii_bitbang_write,
645 	{
646 		EROMAR_MDIO,		/* MII_BIT_MDO */
647 		EROMAR_MDIO,		/* MII_BIT_MDI */
648 		EROMAR_MDC,		/* MII_BIT_MDC */
649 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
650 		0,			/* MII_BIT_DIR_PHY_HOST */
651 	}
652 };
653 
654 static const struct sip_variant sipcom_variant_dp83820 = {
655 	sipcom_dp83820_mii_readreg,
656 	sipcom_dp83820_mii_writereg,
657 	sipcom_dp83820_mii_statchg,
658 	sipcom_dp83815_set_filter,
659 	sipcom_dp83820_read_macaddr,
660 };
661 
662 static const struct sip_variant sipcom_variant_sis900 = {
663 	sipcom_sis900_mii_readreg,
664 	sipcom_sis900_mii_writereg,
665 	sipcom_sis900_mii_statchg,
666 	sipcom_sis900_set_filter,
667 	sipcom_sis900_read_macaddr,
668 };
669 
670 static const struct sip_variant sipcom_variant_dp83815 = {
671 	sipcom_dp83815_mii_readreg,
672 	sipcom_dp83815_mii_writereg,
673 	sipcom_dp83815_mii_statchg,
674 	sipcom_dp83815_set_filter,
675 	sipcom_dp83815_read_macaddr,
676 };
677 
678 
679 /*
680  * Devices supported by this driver.
681  */
682 static const struct sip_product {
683 	pci_vendor_id_t		sip_vendor;
684 	pci_product_id_t	sip_product;
685 	const char		*sip_name;
686 	const struct sip_variant *sip_variant;
687 	int			sip_gigabit;
688 } sipcom_products[] = {
689 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
690 	  "NatSemi DP83820 Gigabit Ethernet",
691 	  &sipcom_variant_dp83820, 1 },
692 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
693 	  "SiS 900 10/100 Ethernet",
694 	  &sipcom_variant_sis900, 0 },
695 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
696 	  "SiS 7016 10/100 Ethernet",
697 	  &sipcom_variant_sis900, 0 },
698 
699 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
700 	  "NatSemi DP83815 10/100 Ethernet",
701 	  &sipcom_variant_dp83815, 0 },
702 
703 	{ 0,			0,
704 	  NULL,
705 	  NULL, 0 },
706 };
707 
708 static const struct sip_product *
709 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
710 {
711 	const struct sip_product *sip;
712 
713 	for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
714 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
715 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
716 		    sip->sip_gigabit == gigabit)
717 			return sip;
718 	}
719 	return NULL;
720 }
721 
722 /*
723  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
724  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
725  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
726  * which means we try to use 64-bit data transfers on those cards if we
727  * happen to be plugged into a 32-bit slot.
728  *
729  * What we do is use this table of cards known to be 64-bit cards.  If
730  * you have a 64-bit card who's subsystem ID is not listed in this table,
731  * send the output of "pcictl dump ..." of the device to me so that your
732  * card will use the 64-bit data path when plugged into a 64-bit slot.
733  *
734  *	-- Jason R. Thorpe <thorpej@NetBSD.org>
735  *	   June 30, 2002
736  */
737 static int
738 sipcom_check_64bit(const struct pci_attach_args *pa)
739 {
740 	static const struct {
741 		pci_vendor_id_t c64_vendor;
742 		pci_product_id_t c64_product;
743 	} card64[] = {
744 		/* Asante GigaNIX */
745 		{ 0x128a,	0x0002 },
746 
747 		/* Accton EN1407-T, Planex GN-1000TE */
748 		{ 0x1113,	0x1407 },
749 
750 		/* Netgear GA-621 */
751 		{ 0x1385,	0x621a },
752 
753 		/* SMC EZ Card */
754 		{ 0x10b8,	0x9462 },
755 
756 		{ 0, 0}
757 	};
758 	pcireg_t subsys;
759 	int i;
760 
761 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
762 
763 	for (i = 0; card64[i].c64_vendor != 0; i++) {
764 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
765 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
766 			return (1);
767 	}
768 
769 	return (0);
770 }
771 
772 static int
773 sipcom_match(device_t parent, struct cfdata *cf, void *aux)
774 {
775 	struct pci_attach_args *pa = aux;
776 
777 	if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
778 		return 1;
779 
780 	return 0;
781 }
782 
783 static void
784 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
785 {
786 	u_int32_t reg;
787 	int i;
788 
789 	/*
790 	 * Cause the chip to load configuration data from the EEPROM.
791 	 */
792 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
793 	for (i = 0; i < 10000; i++) {
794 		delay(10);
795 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
796 		    PTSCR_EELOAD_EN) == 0)
797 			break;
798 	}
799 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
800 	    PTSCR_EELOAD_EN) {
801 		printf("%s: timeout loading configuration from EEPROM\n",
802 		    device_xname(&sc->sc_dev));
803 		return;
804 	}
805 
806 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
807 
808 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
809 	if (reg & CFG_PCI64_DET) {
810 		printf("%s: 64-bit PCI slot detected", device_xname(&sc->sc_dev));
811 		/*
812 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
813 		 * data transfers.
814 		 *
815 		 * We can't use the DATA64_EN bit in the EEPROM, because
816 		 * vendors of 32-bit cards fail to clear that bit in many
817 		 * cases (yet the card still detects that it's in a 64-bit
818 		 * slot; go figure).
819 		 */
820 		if (sipcom_check_64bit(pa)) {
821 			sc->sc_cfg |= CFG_DATA64_EN;
822 			printf(", using 64-bit data transfers");
823 		}
824 		printf("\n");
825 	}
826 
827 	/*
828 	 * XXX Need some PCI flags indicating support for
829 	 * XXX 64-bit addressing.
830 	 */
831 #if 0
832 	if (reg & CFG_M64ADDR)
833 		sc->sc_cfg |= CFG_M64ADDR;
834 	if (reg & CFG_T64ADDR)
835 		sc->sc_cfg |= CFG_T64ADDR;
836 #endif
837 
838 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
839 		const char *sep = "";
840 		printf("%s: using ", device_xname(&sc->sc_dev));
841 		if (reg & CFG_EXT_125) {
842 			sc->sc_cfg |= CFG_EXT_125;
843 			printf("%s125MHz clock", sep);
844 			sep = ", ";
845 		}
846 		if (reg & CFG_TBI_EN) {
847 			sc->sc_cfg |= CFG_TBI_EN;
848 			printf("%sten-bit interface", sep);
849 			sep = ", ";
850 		}
851 		printf("\n");
852 	}
853 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
854 	    (reg & CFG_MRM_DIS) != 0)
855 		sc->sc_cfg |= CFG_MRM_DIS;
856 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
857 	    (reg & CFG_MWI_DIS) != 0)
858 		sc->sc_cfg |= CFG_MWI_DIS;
859 
860 	/*
861 	 * Use the extended descriptor format on the DP83820.  This
862 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
863 	 * checksumming.
864 	 */
865 	sc->sc_cfg |= CFG_EXTSTS_EN;
866 }
867 
868 static int
869 sipcom_detach(device_t self, int flags)
870 {
871 	int s;
872 
873 	s = splnet();
874 	sipcom_do_detach(self, SIP_ATTACH_FIN);
875 	splx(s);
876 
877 	return 0;
878 }
879 
880 static void
881 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
882 {
883 	int i;
884 	struct sip_softc *sc = device_private(self);
885 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
886 
887 	/*
888 	 * Free any resources we've allocated during attach.
889 	 * Do this in reverse order and fall through.
890 	 */
891 	switch (stage) {
892 	case SIP_ATTACH_FIN:
893 		sipcom_stop(ifp, 1);
894 		pmf_device_deregister(self);
895 #ifdef SIP_EVENT_COUNTERS
896 		/*
897 		 * Attach event counters.
898 		 */
899 		evcnt_detach(&sc->sc_ev_txforceintr);
900 		evcnt_detach(&sc->sc_ev_txdstall);
901 		evcnt_detach(&sc->sc_ev_txsstall);
902 		evcnt_detach(&sc->sc_ev_hiberr);
903 		evcnt_detach(&sc->sc_ev_rxintr);
904 		evcnt_detach(&sc->sc_ev_txiintr);
905 		evcnt_detach(&sc->sc_ev_txdintr);
906 		if (!sc->sc_gigabit) {
907 			evcnt_detach(&sc->sc_ev_rxpause);
908 		} else {
909 			evcnt_detach(&sc->sc_ev_txudpsum);
910 			evcnt_detach(&sc->sc_ev_txtcpsum);
911 			evcnt_detach(&sc->sc_ev_txipsum);
912 			evcnt_detach(&sc->sc_ev_rxudpsum);
913 			evcnt_detach(&sc->sc_ev_rxtcpsum);
914 			evcnt_detach(&sc->sc_ev_rxipsum);
915 			evcnt_detach(&sc->sc_ev_txpause);
916 			evcnt_detach(&sc->sc_ev_rxpause);
917 		}
918 #endif /* SIP_EVENT_COUNTERS */
919 
920 #if NRND > 0
921 		rnd_detach_source(&sc->rnd_source);
922 #endif
923 
924 		ether_ifdetach(ifp);
925 		if_detach(ifp);
926 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
927 
928 		/*FALLTHROUGH*/
929 	case SIP_ATTACH_CREATE_RXMAP:
930 		for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
931 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
932 				bus_dmamap_destroy(sc->sc_dmat,
933 				    sc->sc_rxsoft[i].rxs_dmamap);
934 		}
935 		/*FALLTHROUGH*/
936 	case SIP_ATTACH_CREATE_TXMAP:
937 		for (i = 0; i < SIP_TXQUEUELEN; i++) {
938 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
939 				bus_dmamap_destroy(sc->sc_dmat,
940 				    sc->sc_txsoft[i].txs_dmamap);
941 		}
942 		/*FALLTHROUGH*/
943 	case SIP_ATTACH_LOAD_MAP:
944 		bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
945 		/*FALLTHROUGH*/
946 	case SIP_ATTACH_CREATE_MAP:
947 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
948 		/*FALLTHROUGH*/
949 	case SIP_ATTACH_MAP_MEM:
950 		bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
951 		    sizeof(struct sip_control_data));
952 		/*FALLTHROUGH*/
953 	case SIP_ATTACH_ALLOC_MEM:
954 		bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
955 		/* FALLTHROUGH*/
956 	case SIP_ATTACH_INTR:
957 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
958 		/* FALLTHROUGH*/
959 	case SIP_ATTACH_MAP:
960 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
961 		break;
962 	default:
963 		break;
964 	}
965 	return;
966 }
967 
968 static bool
969 sipcom_resume(device_t self PMF_FN_ARGS)
970 {
971 	struct sip_softc *sc = device_private(self);
972 
973 	return sipcom_reset(sc);
974 }
975 
976 static bool
977 sipcom_suspend(device_t self PMF_FN_ARGS)
978 {
979 	struct sip_softc *sc = device_private(self);
980 
981 	sipcom_rxdrain(sc);
982 	return true;
983 }
984 
985 static void
986 sipcom_attach(device_t parent, device_t self, void *aux)
987 {
988 	struct sip_softc *sc = device_private(self);
989 	struct pci_attach_args *pa = aux;
990 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
991 	pci_chipset_tag_t pc = pa->pa_pc;
992 	pci_intr_handle_t ih;
993 	const char *intrstr = NULL;
994 	bus_space_tag_t iot, memt;
995 	bus_space_handle_t ioh, memh;
996 	bus_size_t iosz, memsz;
997 	int ioh_valid, memh_valid;
998 	int i, rseg, error;
999 	const struct sip_product *sip;
1000 	u_int8_t enaddr[ETHER_ADDR_LEN];
1001 	pcireg_t pmreg;
1002 	pcireg_t memtype;
1003 	bus_size_t tx_dmamap_size;
1004 	int ntxsegs_alloc;
1005 	cfdata_t cf = device_cfdata(self);
1006 
1007 	callout_init(&sc->sc_tick_ch, 0);
1008 
1009 	sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
1010 	if (sip == NULL) {
1011 		printf("\n");
1012 		panic("%s: impossible", __func__);
1013 	}
1014 	sc->sc_gigabit = sip->sip_gigabit;
1015 
1016 	sc->sc_pc = pc;
1017 
1018 	if (sc->sc_gigabit) {
1019 		sc->sc_rxintr = gsip_rxintr;
1020 		sc->sc_parm = &gsip_parm;
1021 	} else {
1022 		sc->sc_rxintr = sip_rxintr;
1023 		sc->sc_parm = &sip_parm;
1024 	}
1025 	tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
1026 	ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
1027 	sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
1028 	sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
1029 	sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
1030 
1031 	sc->sc_rev = PCI_REVISION(pa->pa_class);
1032 
1033 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
1034 
1035 	sc->sc_model = sip;
1036 
1037 	/*
1038 	 * XXX Work-around broken PXE firmware on some boards.
1039 	 *
1040 	 * The DP83815 shares an address decoder with the MEM BAR
1041 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
1042 	 * so that memory mapped access works.
1043 	 */
1044 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
1045 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
1046 	    ~PCI_MAPREG_ROM_ENABLE);
1047 
1048 	/*
1049 	 * Map the device.
1050 	 */
1051 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
1052 	    PCI_MAPREG_TYPE_IO, 0,
1053 	    &iot, &ioh, NULL, &iosz) == 0);
1054 	if (sc->sc_gigabit) {
1055 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
1056 		switch (memtype) {
1057 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1058 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1059 			memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1060 			    memtype, 0, &memt, &memh, NULL, &memsz) == 0);
1061 			break;
1062 		default:
1063 			memh_valid = 0;
1064 		}
1065 	} else {
1066 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1067 		    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
1068 		    &memt, &memh, NULL, &memsz) == 0);
1069 	}
1070 
1071 	if (memh_valid) {
1072 		sc->sc_st = memt;
1073 		sc->sc_sh = memh;
1074 		sc->sc_sz = memsz;
1075 	} else if (ioh_valid) {
1076 		sc->sc_st = iot;
1077 		sc->sc_sh = ioh;
1078 		sc->sc_sz = iosz;
1079 	} else {
1080 		printf("%s: unable to map device registers\n",
1081 		    device_xname(&sc->sc_dev));
1082 		return;
1083 	}
1084 
1085 	sc->sc_dmat = pa->pa_dmat;
1086 
1087 	/*
1088 	 * Make sure bus mastering is enabled.  Also make sure
1089 	 * Write/Invalidate is enabled if we're allowed to use it.
1090 	 */
1091 	pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1092 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
1093 		pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
1094 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
1095 	    pmreg | PCI_COMMAND_MASTER_ENABLE);
1096 
1097 	/* power up chip */
1098 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self, NULL)) &&
1099 	    error != EOPNOTSUPP) {
1100 		aprint_error_dev(&sc->sc_dev, "cannot activate %d\n",
1101 		    error);
1102 		return;
1103 	}
1104 
1105 	/*
1106 	 * Map and establish our interrupt.
1107 	 */
1108 	if (pci_intr_map(pa, &ih)) {
1109 		aprint_error_dev(&sc->sc_dev, "unable to map interrupt\n");
1110 		return;
1111 	}
1112 	intrstr = pci_intr_string(pc, ih);
1113 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc);
1114 	if (sc->sc_ih == NULL) {
1115 		aprint_error_dev(&sc->sc_dev, "unable to establish interrupt");
1116 		if (intrstr != NULL)
1117 			printf(" at %s", intrstr);
1118 		printf("\n");
1119 		return sipcom_do_detach(self, SIP_ATTACH_MAP);
1120 	}
1121 	printf("%s: interrupting at %s\n", device_xname(&sc->sc_dev), intrstr);
1122 
1123 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1124 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1125 
1126 	/*
1127 	 * Allocate the control data structures, and create and load the
1128 	 * DMA map for it.
1129 	 */
1130 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
1131 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
1132 	    &rseg, 0)) != 0) {
1133 		aprint_error_dev(&sc->sc_dev, "unable to allocate control data, error = %d\n",
1134 		    error);
1135 		return sipcom_do_detach(self, SIP_ATTACH_INTR);
1136 	}
1137 
1138 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
1139 	    sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
1140 	    BUS_DMA_COHERENT|BUS_DMA_NOCACHE)) != 0) {
1141 		aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
1142 		    error);
1143 		sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
1144 	}
1145 
1146 	if ((error = bus_dmamap_create(sc->sc_dmat,
1147 	    sizeof(struct sip_control_data), 1,
1148 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
1149 		aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
1150 		    "error = %d\n", error);
1151 		sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
1152 	}
1153 
1154 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1155 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
1156 	    0)) != 0) {
1157 		aprint_error_dev(&sc->sc_dev, "unable to load control data DMA map, error = %d\n",
1158 		    error);
1159 		sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
1160 	}
1161 
1162 	/*
1163 	 * Create the transmit buffer DMA maps.
1164 	 */
1165 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
1166 		if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
1167 		    sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
1168 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1169 			aprint_error_dev(&sc->sc_dev, "unable to create tx DMA map %d, "
1170 			    "error = %d\n", i, error);
1171 			sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1172 		}
1173 	}
1174 
1175 	/*
1176 	 * Create the receive buffer DMA maps.
1177 	 */
1178 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1179 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1180 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1181 			aprint_error_dev(&sc->sc_dev, "unable to create rx DMA map %d, "
1182 			    "error = %d\n", i, error);
1183 			sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1184 		}
1185 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
1186 	}
1187 
1188 	/*
1189 	 * Reset the chip to a known state.
1190 	 */
1191 	sipcom_reset(sc);
1192 
1193 	/*
1194 	 * Read the Ethernet address from the EEPROM.  This might
1195 	 * also fetch other stuff from the EEPROM and stash it
1196 	 * in the softc.
1197 	 */
1198 	sc->sc_cfg = 0;
1199 	if (!sc->sc_gigabit) {
1200 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1201 		    SIP_SIS900_REV(sc,SIS_REV_900B))
1202 			sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1203 
1204 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1205 		    SIP_SIS900_REV(sc,SIS_REV_960) ||
1206 		    SIP_SIS900_REV(sc,SIS_REV_900B))
1207 			sc->sc_cfg |=
1208 			    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1209 			     CFG_EDBMASTEN);
1210 	}
1211 
1212 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1213 
1214 	printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
1215 	    ether_sprintf(enaddr));
1216 
1217 	/*
1218 	 * Initialize the configuration register: aggressive PCI
1219 	 * bus request algorithm, default backoff, default OW timer,
1220 	 * default parity error detection.
1221 	 *
1222 	 * NOTE: "Big endian mode" is useless on the SiS900 and
1223 	 * friends -- it affects packet data, not descriptors.
1224 	 */
1225 	if (sc->sc_gigabit)
1226 		sipcom_dp83820_attach(sc, pa);
1227 
1228 	/*
1229 	 * Initialize our media structures and probe the MII.
1230 	 */
1231 	sc->sc_mii.mii_ifp = ifp;
1232 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
1233 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
1234 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
1235 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
1236 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
1237 	    sipcom_mediastatus);
1238 
1239 	/*
1240 	 * XXX We cannot handle flow control on the DP83815.
1241 	 */
1242 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1243 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1244 			   MII_OFFSET_ANY, 0);
1245 	else
1246 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1247 			   MII_OFFSET_ANY, MIIF_DOPAUSE);
1248 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1249 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1250 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1251 	} else
1252 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1253 
1254 	ifp = &sc->sc_ethercom.ec_if;
1255 	strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
1256 	ifp->if_softc = sc;
1257 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1258 	sc->sc_if_flags = ifp->if_flags;
1259 	ifp->if_ioctl = sipcom_ioctl;
1260 	ifp->if_start = sipcom_start;
1261 	ifp->if_watchdog = sipcom_watchdog;
1262 	ifp->if_init = sipcom_init;
1263 	ifp->if_stop = sipcom_stop;
1264 	IFQ_SET_READY(&ifp->if_snd);
1265 
1266 	/*
1267 	 * We can support 802.1Q VLAN-sized frames.
1268 	 */
1269 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1270 
1271 	if (sc->sc_gigabit) {
1272 		/*
1273 		 * And the DP83820 can do VLAN tagging in hardware, and
1274 		 * support the jumbo Ethernet MTU.
1275 		 */
1276 		sc->sc_ethercom.ec_capabilities |=
1277 		    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1278 
1279 		/*
1280 		 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1281 		 * in hardware.
1282 		 */
1283 		ifp->if_capabilities |=
1284 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1285 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1286 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1287 	}
1288 
1289 	/*
1290 	 * Attach the interface.
1291 	 */
1292 	if_attach(ifp);
1293 	ether_ifattach(ifp, enaddr);
1294 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1295 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1296 	sc->sc_prev.if_capenable = ifp->if_capenable;
1297 #if NRND > 0
1298 	rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
1299 	    RND_TYPE_NET, 0);
1300 #endif
1301 
1302 	/*
1303 	 * The number of bytes that must be available in
1304 	 * the Tx FIFO before the bus master can DMA more
1305 	 * data into the FIFO.
1306 	 */
1307 	sc->sc_tx_fill_thresh = 64 / 32;
1308 
1309 	/*
1310 	 * Start at a drain threshold of 512 bytes.  We will
1311 	 * increase it if a DMA underrun occurs.
1312 	 *
1313 	 * XXX The minimum value of this variable should be
1314 	 * tuned.  We may be able to improve performance
1315 	 * by starting with a lower value.  That, however,
1316 	 * may trash the first few outgoing packets if the
1317 	 * PCI bus is saturated.
1318 	 */
1319 	if (sc->sc_gigabit)
1320 		sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1321 	else
1322 		sc->sc_tx_drain_thresh = 1504 / 32;
1323 
1324 	/*
1325 	 * Initialize the Rx FIFO drain threshold.
1326 	 *
1327 	 * This is in units of 8 bytes.
1328 	 *
1329 	 * We should never set this value lower than 2; 14 bytes are
1330 	 * required to filter the packet.
1331 	 */
1332 	sc->sc_rx_drain_thresh = 128 / 8;
1333 
1334 #ifdef SIP_EVENT_COUNTERS
1335 	/*
1336 	 * Attach event counters.
1337 	 */
1338 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1339 	    NULL, device_xname(&sc->sc_dev), "txsstall");
1340 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1341 	    NULL, device_xname(&sc->sc_dev), "txdstall");
1342 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1343 	    NULL, device_xname(&sc->sc_dev), "txforceintr");
1344 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1345 	    NULL, device_xname(&sc->sc_dev), "txdintr");
1346 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1347 	    NULL, device_xname(&sc->sc_dev), "txiintr");
1348 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1349 	    NULL, device_xname(&sc->sc_dev), "rxintr");
1350 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1351 	    NULL, device_xname(&sc->sc_dev), "hiberr");
1352 	if (!sc->sc_gigabit) {
1353 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1354 		    NULL, device_xname(&sc->sc_dev), "rxpause");
1355 	} else {
1356 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1357 		    NULL, device_xname(&sc->sc_dev), "rxpause");
1358 		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1359 		    NULL, device_xname(&sc->sc_dev), "txpause");
1360 		evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1361 		    NULL, device_xname(&sc->sc_dev), "rxipsum");
1362 		evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1363 		    NULL, device_xname(&sc->sc_dev), "rxtcpsum");
1364 		evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1365 		    NULL, device_xname(&sc->sc_dev), "rxudpsum");
1366 		evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1367 		    NULL, device_xname(&sc->sc_dev), "txipsum");
1368 		evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1369 		    NULL, device_xname(&sc->sc_dev), "txtcpsum");
1370 		evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1371 		    NULL, device_xname(&sc->sc_dev), "txudpsum");
1372 	}
1373 #endif /* SIP_EVENT_COUNTERS */
1374 
1375 	if (!pmf_device_register(self, sipcom_suspend, sipcom_resume))
1376 		aprint_error_dev(self, "couldn't establish power handler\n");
1377 	else
1378 		pmf_class_network_register(self, ifp);
1379 }
1380 
1381 static inline void
1382 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1383     uint64_t capenable)
1384 {
1385 	struct m_tag *mtag;
1386 	u_int32_t extsts;
1387 #ifdef DEBUG
1388 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1389 #endif
1390 	/*
1391 	 * If VLANs are enabled and the packet has a VLAN tag, set
1392 	 * up the descriptor to encapsulate the packet for us.
1393 	 *
1394 	 * This apparently has to be on the last descriptor of
1395 	 * the packet.
1396 	 */
1397 
1398 	/*
1399 	 * Byte swapping is tricky. We need to provide the tag
1400 	 * in a network byte order. On a big-endian machine,
1401 	 * the byteorder is correct, but we need to swap it
1402 	 * anyway, because this will be undone by the outside
1403 	 * htole32(). That's why there must be an
1404 	 * unconditional swap instead of htons() inside.
1405 	 */
1406 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1407 		sc->sc_txdescs[lasttx].sipd_extsts |=
1408 		    htole32(EXTSTS_VPKT |
1409 				(bswap16(VLAN_TAG_VALUE(mtag)) &
1410 				 EXTSTS_VTCI));
1411 	}
1412 
1413 	/*
1414 	 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1415 	 * checksumming, set up the descriptor to do this work
1416 	 * for us.
1417 	 *
1418 	 * This apparently has to be on the first descriptor of
1419 	 * the packet.
1420 	 *
1421 	 * Byte-swap constants so the compiler can optimize.
1422 	 */
1423 	extsts = 0;
1424 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1425 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1426 		SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1427 		extsts |= htole32(EXTSTS_IPPKT);
1428 	}
1429 	if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1430 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1431 		SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1432 		extsts |= htole32(EXTSTS_TCPPKT);
1433 	} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1434 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1435 		SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1436 		extsts |= htole32(EXTSTS_UDPPKT);
1437 	}
1438 	sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1439 }
1440 
1441 /*
1442  * sip_start:		[ifnet interface function]
1443  *
1444  *	Start packet transmission on the interface.
1445  */
1446 static void
1447 sipcom_start(struct ifnet *ifp)
1448 {
1449 	struct sip_softc *sc = ifp->if_softc;
1450 	struct mbuf *m0;
1451 	struct mbuf *m;
1452 	struct sip_txsoft *txs;
1453 	bus_dmamap_t dmamap;
1454 	int error, nexttx, lasttx, seg;
1455 	int ofree = sc->sc_txfree;
1456 #if 0
1457 	int firsttx = sc->sc_txnext;
1458 #endif
1459 
1460 	/*
1461 	 * If we've been told to pause, don't transmit any more packets.
1462 	 */
1463 	if (!sc->sc_gigabit && sc->sc_paused)
1464 		ifp->if_flags |= IFF_OACTIVE;
1465 
1466 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1467 		return;
1468 
1469 	/*
1470 	 * Loop through the send queue, setting up transmit descriptors
1471 	 * until we drain the queue, or use up all available transmit
1472 	 * descriptors.
1473 	 */
1474 	for (;;) {
1475 		/* Get a work queue entry. */
1476 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1477 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1478 			break;
1479 		}
1480 
1481 		/*
1482 		 * Grab a packet off the queue.
1483 		 */
1484 		IFQ_POLL(&ifp->if_snd, m0);
1485 		if (m0 == NULL)
1486 			break;
1487 		m = NULL;
1488 
1489 		dmamap = txs->txs_dmamap;
1490 
1491 		/*
1492 		 * Load the DMA map.  If this fails, the packet either
1493 		 * didn't fit in the alloted number of segments, or we
1494 		 * were short on resources.
1495 		 */
1496 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1497 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1498 		/* In the non-gigabit case, we'll copy and try again. */
1499 		if (error != 0 && !sc->sc_gigabit) {
1500 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1501 			if (m == NULL) {
1502 				printf("%s: unable to allocate Tx mbuf\n",
1503 				    device_xname(&sc->sc_dev));
1504 				break;
1505 			}
1506 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1507 			if (m0->m_pkthdr.len > MHLEN) {
1508 				MCLGET(m, M_DONTWAIT);
1509 				if ((m->m_flags & M_EXT) == 0) {
1510 					printf("%s: unable to allocate Tx "
1511 					    "cluster\n", device_xname(&sc->sc_dev));
1512 					m_freem(m);
1513 					break;
1514 				}
1515 			}
1516 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1517 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1518 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1519 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1520 			if (error) {
1521 				printf("%s: unable to load Tx buffer, "
1522 				    "error = %d\n", device_xname(&sc->sc_dev), error);
1523 				break;
1524 			}
1525 		} else if (error == EFBIG) {
1526 			/*
1527 			 * For the too-many-segments case, we simply
1528 			 * report an error and drop the packet,
1529 			 * since we can't sanely copy a jumbo packet
1530 			 * to a single buffer.
1531 			 */
1532 			printf("%s: Tx packet consumes too many "
1533 			    "DMA segments, dropping...\n", device_xname(&sc->sc_dev));
1534 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1535 			m_freem(m0);
1536 			continue;
1537 		} else if (error != 0) {
1538 			/*
1539 			 * Short on resources, just stop for now.
1540 			 */
1541 			break;
1542 		}
1543 
1544 		/*
1545 		 * Ensure we have enough descriptors free to describe
1546 		 * the packet.  Note, we always reserve one descriptor
1547 		 * at the end of the ring as a termination point, to
1548 		 * prevent wrap-around.
1549 		 */
1550 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1551 			/*
1552 			 * Not enough free descriptors to transmit this
1553 			 * packet.  We haven't committed anything yet,
1554 			 * so just unload the DMA map, put the packet
1555 			 * back on the queue, and punt.  Notify the upper
1556 			 * layer that there are not more slots left.
1557 			 *
1558 			 * XXX We could allocate an mbuf and copy, but
1559 			 * XXX is it worth it?
1560 			 */
1561 			ifp->if_flags |= IFF_OACTIVE;
1562 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1563 			if (m != NULL)
1564 				m_freem(m);
1565 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1566 			break;
1567 		}
1568 
1569 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1570 		if (m != NULL) {
1571 			m_freem(m0);
1572 			m0 = m;
1573 		}
1574 
1575 		/*
1576 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1577 		 */
1578 
1579 		/* Sync the DMA map. */
1580 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1581 		    BUS_DMASYNC_PREWRITE);
1582 
1583 		/*
1584 		 * Initialize the transmit descriptors.
1585 		 */
1586 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1587 		     seg < dmamap->dm_nsegs;
1588 		     seg++, nexttx = sip_nexttx(sc, nexttx)) {
1589 			/*
1590 			 * If this is the first descriptor we're
1591 			 * enqueueing, don't set the OWN bit just
1592 			 * yet.  That could cause a race condition.
1593 			 * We'll do it below.
1594 			 */
1595 			*sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
1596 			    htole32(dmamap->dm_segs[seg].ds_addr);
1597 			*sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
1598 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1599 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1600 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
1601 			lasttx = nexttx;
1602 		}
1603 
1604 		/* Clear the MORE bit on the last segment. */
1605 		*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
1606 		    htole32(~CMDSTS_MORE);
1607 
1608 		/*
1609 		 * If we're in the interrupt delay window, delay the
1610 		 * interrupt.
1611 		 */
1612 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1613 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1614 			*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
1615 			    htole32(CMDSTS_INTR);
1616 			sc->sc_txwin = 0;
1617 		}
1618 
1619 		if (sc->sc_gigabit)
1620 			sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1621 
1622 		/* Sync the descriptors we're using. */
1623 		sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
1624 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1625 
1626 		/*
1627 		 * The entire packet is set up.  Give the first descrptor
1628 		 * to the chip now.
1629 		 */
1630 		*sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
1631 		    htole32(CMDSTS_OWN);
1632 		sip_cdtxsync(sc, sc->sc_txnext, 1,
1633 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1634 
1635 		/*
1636 		 * Store a pointer to the packet so we can free it later,
1637 		 * and remember what txdirty will be once the packet is
1638 		 * done.
1639 		 */
1640 		txs->txs_mbuf = m0;
1641 		txs->txs_firstdesc = sc->sc_txnext;
1642 		txs->txs_lastdesc = lasttx;
1643 
1644 		/* Advance the tx pointer. */
1645 		sc->sc_txfree -= dmamap->dm_nsegs;
1646 		sc->sc_txnext = nexttx;
1647 
1648 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1649 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1650 
1651 #if NBPFILTER > 0
1652 		/*
1653 		 * Pass the packet to any BPF listeners.
1654 		 */
1655 		if (ifp->if_bpf)
1656 			bpf_mtap(ifp->if_bpf, m0);
1657 #endif /* NBPFILTER > 0 */
1658 	}
1659 
1660 	if (txs == NULL || sc->sc_txfree == 0) {
1661 		/* No more slots left; notify upper layer. */
1662 		ifp->if_flags |= IFF_OACTIVE;
1663 	}
1664 
1665 	if (sc->sc_txfree != ofree) {
1666 		/*
1667 		 * Start the transmit process.  Note, the manual says
1668 		 * that if there are no pending transmissions in the
1669 		 * chip's internal queue (indicated by TXE being clear),
1670 		 * then the driver software must set the TXDP to the
1671 		 * first descriptor to be transmitted.  However, if we
1672 		 * do this, it causes serious performance degredation on
1673 		 * the DP83820 under load, not setting TXDP doesn't seem
1674 		 * to adversely affect the SiS 900 or DP83815.
1675 		 *
1676 		 * Well, I guess it wouldn't be the first time a manual
1677 		 * has lied -- and they could be speaking of the NULL-
1678 		 * terminated descriptor list case, rather than OWN-
1679 		 * terminated rings.
1680 		 */
1681 #if 0
1682 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1683 		     CR_TXE) == 0) {
1684 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1685 			    SIP_CDTXADDR(sc, firsttx));
1686 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1687 		}
1688 #else
1689 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1690 #endif
1691 
1692 		/* Set a watchdog timer in case the chip flakes out. */
1693 		/* Gigabit autonegotiation takes 5 seconds. */
1694 		ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1695 	}
1696 }
1697 
1698 /*
1699  * sip_watchdog:	[ifnet interface function]
1700  *
1701  *	Watchdog timer handler.
1702  */
1703 static void
1704 sipcom_watchdog(struct ifnet *ifp)
1705 {
1706 	struct sip_softc *sc = ifp->if_softc;
1707 
1708 	/*
1709 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1710 	 * If we get a timeout, try and sweep up transmit descriptors.
1711 	 * If we manage to sweep them all up, ignore the lack of
1712 	 * interrupt.
1713 	 */
1714 	sipcom_txintr(sc);
1715 
1716 	if (sc->sc_txfree != sc->sc_ntxdesc) {
1717 		printf("%s: device timeout\n", device_xname(&sc->sc_dev));
1718 		ifp->if_oerrors++;
1719 
1720 		/* Reset the interface. */
1721 		(void) sipcom_init(ifp);
1722 	} else if (ifp->if_flags & IFF_DEBUG)
1723 		printf("%s: recovered from device timeout\n",
1724 		    device_xname(&sc->sc_dev));
1725 
1726 	/* Try to get more packets going. */
1727 	sipcom_start(ifp);
1728 }
1729 
1730 /*
1731  * sip_ioctl:		[ifnet interface function]
1732  *
1733  *	Handle control requests from the operator.
1734  */
1735 static int
1736 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1737 {
1738 	struct sip_softc *sc = ifp->if_softc;
1739 	struct ifreq *ifr = (struct ifreq *)data;
1740 	int s, error;
1741 
1742 	s = splnet();
1743 
1744 	switch (cmd) {
1745 	case SIOCSIFMEDIA:
1746 		/* Flow control requires full-duplex mode. */
1747 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1748 		    (ifr->ifr_media & IFM_FDX) == 0)
1749 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
1750 
1751 		/* XXX */
1752 		if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1753 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1754 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1755 			if (sc->sc_gigabit &&
1756 			    (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1757 				/* We can do both TXPAUSE and RXPAUSE. */
1758 				ifr->ifr_media |=
1759 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1760 			} else if (ifr->ifr_media & IFM_FLOW) {
1761 				/*
1762 				 * Both TXPAUSE and RXPAUSE must be set.
1763 				 * (SiS900 and DP83815 don't have PAUSE_ASYM
1764 				 * feature.)
1765 				 *
1766 				 * XXX Can SiS900 and DP83815 send PAUSE?
1767 				 */
1768 				ifr->ifr_media |=
1769 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1770 			}
1771 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1772 		}
1773 		goto ethioctl;
1774 	case SIOCSIFFLAGS:
1775 		/* If the interface is up and running, only modify the receive
1776 		 * filter when setting promiscuous or debug mode.  Otherwise
1777 		 * fall through to ether_ioctl, which will reset the chip.
1778 		 */
1779 
1780 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable			\
1781 			 == (sc)->sc_ethercom.ec_capenable)		\
1782 			&& ((sc)->sc_prev.is_vlan ==			\
1783 			    VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1784 
1785 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1786 
1787 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
1788 		if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
1789 		    == (IFF_UP|IFF_RUNNING))
1790 		    && ((ifp->if_flags & (~RESETIGN))
1791 		    == (sc->sc_if_flags & (~RESETIGN)))
1792 		    && COMPARE_EC(sc) && COMPARE_IC(sc, ifp)) {
1793 			/* Set up the receive filter. */
1794 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1795 			error = 0;
1796 			break;
1797 #undef RESETIGN
1798 		}
1799 		/* FALLTHROUGH */
1800 	ethioctl:
1801 	default:
1802 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1803 			break;
1804 
1805 		error = 0;
1806 
1807 		if (cmd == SIOCSIFCAP)
1808 			error = (*ifp->if_init)(ifp);
1809 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1810 			;
1811 		else if (ifp->if_flags & IFF_RUNNING) {
1812 			/*
1813 			 * Multicast list has changed; set the hardware filter
1814 			 * accordingly.
1815 			 */
1816 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1817 		}
1818 		break;
1819 	}
1820 
1821 	/* Try to get more packets going. */
1822 	sipcom_start(ifp);
1823 
1824 	sc->sc_if_flags = ifp->if_flags;
1825 	splx(s);
1826 	return (error);
1827 }
1828 
1829 /*
1830  * sip_intr:
1831  *
1832  *	Interrupt service routine.
1833  */
1834 static int
1835 sipcom_intr(void *arg)
1836 {
1837 	struct sip_softc *sc = arg;
1838 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1839 	u_int32_t isr;
1840 	int handled = 0;
1841 
1842 	/* Disable interrupts. */
1843 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1844 
1845 	for (;;) {
1846 		/* Reading clears interrupt. */
1847 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1848 		if ((isr & sc->sc_imr) == 0)
1849 			break;
1850 
1851 #if NRND > 0
1852 		if (RND_ENABLED(&sc->rnd_source))
1853 			rnd_add_uint32(&sc->rnd_source, isr);
1854 #endif
1855 
1856 		handled = 1;
1857 
1858 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1859 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1860 
1861 			/* Grab any new packets. */
1862 			(*sc->sc_rxintr)(sc);
1863 
1864 			if (isr & ISR_RXORN) {
1865 				printf("%s: receive FIFO overrun\n",
1866 				    device_xname(&sc->sc_dev));
1867 
1868 				/* XXX adjust rx_drain_thresh? */
1869 			}
1870 
1871 			if (isr & ISR_RXIDLE) {
1872 				printf("%s: receive ring overrun\n",
1873 				    device_xname(&sc->sc_dev));
1874 
1875 				/* Get the receive process going again. */
1876 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1877 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1878 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1879 				    SIP_CR, CR_RXE);
1880 			}
1881 		}
1882 
1883 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1884 #ifdef SIP_EVENT_COUNTERS
1885 			if (isr & ISR_TXDESC)
1886 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1887 			else if (isr & ISR_TXIDLE)
1888 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1889 #endif
1890 
1891 			/* Sweep up transmit descriptors. */
1892 			sipcom_txintr(sc);
1893 
1894 			if (isr & ISR_TXURN) {
1895 				u_int32_t thresh;
1896 				int txfifo_size = (sc->sc_gigabit)
1897 				    ? DP83820_SIP_TXFIFO_SIZE
1898 				    : OTHER_SIP_TXFIFO_SIZE;
1899 
1900 				printf("%s: transmit FIFO underrun",
1901 				    device_xname(&sc->sc_dev));
1902 				thresh = sc->sc_tx_drain_thresh + 1;
1903 				if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
1904 				&& (thresh * 32) <= (txfifo_size -
1905 				     (sc->sc_tx_fill_thresh * 32))) {
1906 					printf("; increasing Tx drain "
1907 					    "threshold to %u bytes\n",
1908 					    thresh * 32);
1909 					sc->sc_tx_drain_thresh = thresh;
1910 					(void) sipcom_init(ifp);
1911 				} else {
1912 					(void) sipcom_init(ifp);
1913 					printf("\n");
1914 				}
1915 			}
1916 		}
1917 
1918 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1919 			if (isr & ISR_PAUSE_ST) {
1920 				sc->sc_paused = 1;
1921 				SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1922 				ifp->if_flags |= IFF_OACTIVE;
1923 			}
1924 			if (isr & ISR_PAUSE_END) {
1925 				sc->sc_paused = 0;
1926 				ifp->if_flags &= ~IFF_OACTIVE;
1927 			}
1928 		}
1929 
1930 		if (isr & ISR_HIBERR) {
1931 			int want_init = 0;
1932 
1933 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1934 
1935 #define	PRINTERR(bit, str)						\
1936 			do {						\
1937 				if ((isr & (bit)) != 0) {		\
1938 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
1939 						printf("%s: %s\n",	\
1940 						    device_xname(&sc->sc_dev), str); \
1941 					want_init = 1;			\
1942 				}					\
1943 			} while (/*CONSTCOND*/0)
1944 
1945 			PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
1946 			PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
1947 			PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
1948 			PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
1949 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1950 			/*
1951 			 * Ignore:
1952 			 *	Tx reset complete
1953 			 *	Rx reset complete
1954 			 */
1955 			if (want_init)
1956 				(void) sipcom_init(ifp);
1957 #undef PRINTERR
1958 		}
1959 	}
1960 
1961 	/* Re-enable interrupts. */
1962 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1963 
1964 	/* Try to get more packets going. */
1965 	sipcom_start(ifp);
1966 
1967 	return (handled);
1968 }
1969 
1970 /*
1971  * sip_txintr:
1972  *
1973  *	Helper; handle transmit interrupts.
1974  */
1975 static void
1976 sipcom_txintr(struct sip_softc *sc)
1977 {
1978 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1979 	struct sip_txsoft *txs;
1980 	u_int32_t cmdsts;
1981 
1982 	if (sc->sc_paused == 0)
1983 		ifp->if_flags &= ~IFF_OACTIVE;
1984 
1985 	/*
1986 	 * Go through our Tx list and free mbufs for those
1987 	 * frames which have been transmitted.
1988 	 */
1989 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1990 		sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1991 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1992 
1993 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
1994 		if (cmdsts & CMDSTS_OWN)
1995 			break;
1996 
1997 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1998 
1999 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
2000 
2001 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
2002 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2003 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2004 		m_freem(txs->txs_mbuf);
2005 		txs->txs_mbuf = NULL;
2006 
2007 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2008 
2009 		/*
2010 		 * Check for errors and collisions.
2011 		 */
2012 		if (cmdsts &
2013 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
2014 			ifp->if_oerrors++;
2015 			if (cmdsts & CMDSTS_Tx_EC)
2016 				ifp->if_collisions += 16;
2017 			if (ifp->if_flags & IFF_DEBUG) {
2018 				if (cmdsts & CMDSTS_Tx_ED)
2019 					printf("%s: excessive deferral\n",
2020 					    device_xname(&sc->sc_dev));
2021 				if (cmdsts & CMDSTS_Tx_EC)
2022 					printf("%s: excessive collisions\n",
2023 					    device_xname(&sc->sc_dev));
2024 			}
2025 		} else {
2026 			/* Packet was transmitted successfully. */
2027 			ifp->if_opackets++;
2028 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
2029 		}
2030 	}
2031 
2032 	/*
2033 	 * If there are no more pending transmissions, cancel the watchdog
2034 	 * timer.
2035 	 */
2036 	if (txs == NULL) {
2037 		ifp->if_timer = 0;
2038 		sc->sc_txwin = 0;
2039 	}
2040 }
2041 
2042 /*
2043  * gsip_rxintr:
2044  *
2045  *	Helper; handle receive interrupts on gigabit parts.
2046  */
2047 static void
2048 gsip_rxintr(struct sip_softc *sc)
2049 {
2050 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2051 	struct sip_rxsoft *rxs;
2052 	struct mbuf *m;
2053 	u_int32_t cmdsts, extsts;
2054 	int i, len;
2055 
2056 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2057 		rxs = &sc->sc_rxsoft[i];
2058 
2059 		sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2060 
2061 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2062 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
2063 		len = CMDSTS_SIZE(sc, cmdsts);
2064 
2065 		/*
2066 		 * NOTE: OWN is set if owned by _consumer_.  We're the
2067 		 * consumer of the receive ring, so if the bit is clear,
2068 		 * we have processed all of the packets.
2069 		 */
2070 		if ((cmdsts & CMDSTS_OWN) == 0) {
2071 			/*
2072 			 * We have processed all of the receive buffers.
2073 			 */
2074 			break;
2075 		}
2076 
2077 		if (__predict_false(sc->sc_rxdiscard)) {
2078 			sip_init_rxdesc(sc, i);
2079 			if ((cmdsts & CMDSTS_MORE) == 0) {
2080 				/* Reset our state. */
2081 				sc->sc_rxdiscard = 0;
2082 			}
2083 			continue;
2084 		}
2085 
2086 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2087 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2088 
2089 		m = rxs->rxs_mbuf;
2090 
2091 		/*
2092 		 * Add a new receive buffer to the ring.
2093 		 */
2094 		if (sipcom_add_rxbuf(sc, i) != 0) {
2095 			/*
2096 			 * Failed, throw away what we've done so
2097 			 * far, and discard the rest of the packet.
2098 			 */
2099 			ifp->if_ierrors++;
2100 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2101 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2102 			sip_init_rxdesc(sc, i);
2103 			if (cmdsts & CMDSTS_MORE)
2104 				sc->sc_rxdiscard = 1;
2105 			if (sc->sc_rxhead != NULL)
2106 				m_freem(sc->sc_rxhead);
2107 			sip_rxchain_reset(sc);
2108 			continue;
2109 		}
2110 
2111 		sip_rxchain_link(sc, m);
2112 
2113 		m->m_len = len;
2114 
2115 		/*
2116 		 * If this is not the end of the packet, keep
2117 		 * looking.
2118 		 */
2119 		if (cmdsts & CMDSTS_MORE) {
2120 			sc->sc_rxlen += len;
2121 			continue;
2122 		}
2123 
2124 		/*
2125 		 * Okay, we have the entire packet now.  The chip includes
2126 		 * the FCS, so we need to trim it.
2127 		 */
2128 		m->m_len -= ETHER_CRC_LEN;
2129 
2130 		*sc->sc_rxtailp = NULL;
2131 		len = m->m_len + sc->sc_rxlen;
2132 		m = sc->sc_rxhead;
2133 
2134 		sip_rxchain_reset(sc);
2135 
2136 		/*
2137 		 * If an error occurred, update stats and drop the packet.
2138 		 */
2139 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2140 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2141 			ifp->if_ierrors++;
2142 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2143 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
2144 				/* Receive overrun handled elsewhere. */
2145 				printf("%s: receive descriptor error\n",
2146 				    device_xname(&sc->sc_dev));
2147 			}
2148 #define	PRINTERR(bit, str)						\
2149 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
2150 			    (cmdsts & (bit)) != 0)			\
2151 				printf("%s: %s\n", device_xname(&sc->sc_dev), str)
2152 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2153 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2154 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2155 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2156 #undef PRINTERR
2157 			m_freem(m);
2158 			continue;
2159 		}
2160 
2161 		/*
2162 		 * If the packet is small enough to fit in a
2163 		 * single header mbuf, allocate one and copy
2164 		 * the data into it.  This greatly reduces
2165 		 * memory consumption when we receive lots
2166 		 * of small packets.
2167 		 */
2168 		if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
2169 			struct mbuf *nm;
2170 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
2171 			if (nm == NULL) {
2172 				ifp->if_ierrors++;
2173 				m_freem(m);
2174 				continue;
2175 			}
2176 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2177 			nm->m_data += 2;
2178 			nm->m_pkthdr.len = nm->m_len = len;
2179 			m_copydata(m, 0, len, mtod(nm, void *));
2180 			m_freem(m);
2181 			m = nm;
2182 		}
2183 #ifndef __NO_STRICT_ALIGNMENT
2184 		else {
2185 			/*
2186 			 * The DP83820's receive buffers must be 4-byte
2187 			 * aligned.  But this means that the data after
2188 			 * the Ethernet header is misaligned.  To compensate,
2189 			 * we have artificially shortened the buffer size
2190 			 * in the descriptor, and we do an overlapping copy
2191 			 * of the data two bytes further in (in the first
2192 			 * buffer of the chain only).
2193 			 */
2194 			memmove(mtod(m, char *) + 2, mtod(m, void *),
2195 			    m->m_len);
2196 			m->m_data += 2;
2197 		}
2198 #endif /* ! __NO_STRICT_ALIGNMENT */
2199 
2200 		/*
2201 		 * If VLANs are enabled, VLAN packets have been unwrapped
2202 		 * for us.  Associate the tag with the packet.
2203 		 */
2204 
2205 		/*
2206 		 * Again, byte swapping is tricky. Hardware provided
2207 		 * the tag in the network byte order, but extsts was
2208 		 * passed through le32toh() in the meantime. On a
2209 		 * big-endian machine, we need to swap it again. On a
2210 		 * little-endian machine, we need to convert from the
2211 		 * network to host byte order. This means that we must
2212 		 * swap it in any case, so unconditional swap instead
2213 		 * of htons() is used.
2214 		 */
2215 		if ((extsts & EXTSTS_VPKT) != 0) {
2216 			VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
2217 			    continue);
2218 		}
2219 
2220 		/*
2221 		 * Set the incoming checksum information for the
2222 		 * packet.
2223 		 */
2224 		if ((extsts & EXTSTS_IPPKT) != 0) {
2225 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2226 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2227 			if (extsts & EXTSTS_Rx_IPERR)
2228 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2229 			if (extsts & EXTSTS_TCPPKT) {
2230 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2231 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2232 				if (extsts & EXTSTS_Rx_TCPERR)
2233 					m->m_pkthdr.csum_flags |=
2234 					    M_CSUM_TCP_UDP_BAD;
2235 			} else if (extsts & EXTSTS_UDPPKT) {
2236 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2237 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2238 				if (extsts & EXTSTS_Rx_UDPERR)
2239 					m->m_pkthdr.csum_flags |=
2240 					    M_CSUM_TCP_UDP_BAD;
2241 			}
2242 		}
2243 
2244 		ifp->if_ipackets++;
2245 		m->m_pkthdr.rcvif = ifp;
2246 		m->m_pkthdr.len = len;
2247 
2248 #if NBPFILTER > 0
2249 		/*
2250 		 * Pass this up to any BPF listeners, but only
2251 		 * pass if up the stack if it's for us.
2252 		 */
2253 		if (ifp->if_bpf)
2254 			bpf_mtap(ifp->if_bpf, m);
2255 #endif /* NBPFILTER > 0 */
2256 
2257 		/* Pass it on. */
2258 		(*ifp->if_input)(ifp, m);
2259 	}
2260 
2261 	/* Update the receive pointer. */
2262 	sc->sc_rxptr = i;
2263 }
2264 
2265 /*
2266  * sip_rxintr:
2267  *
2268  *	Helper; handle receive interrupts on 10/100 parts.
2269  */
2270 static void
2271 sip_rxintr(struct sip_softc *sc)
2272 {
2273 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2274 	struct sip_rxsoft *rxs;
2275 	struct mbuf *m;
2276 	u_int32_t cmdsts;
2277 	int i, len;
2278 
2279 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2280 		rxs = &sc->sc_rxsoft[i];
2281 
2282 		sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2283 
2284 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2285 
2286 		/*
2287 		 * NOTE: OWN is set if owned by _consumer_.  We're the
2288 		 * consumer of the receive ring, so if the bit is clear,
2289 		 * we have processed all of the packets.
2290 		 */
2291 		if ((cmdsts & CMDSTS_OWN) == 0) {
2292 			/*
2293 			 * We have processed all of the receive buffers.
2294 			 */
2295 			break;
2296 		}
2297 
2298 		/*
2299 		 * If any collisions were seen on the wire, count one.
2300 		 */
2301 		if (cmdsts & CMDSTS_Rx_COL)
2302 			ifp->if_collisions++;
2303 
2304 		/*
2305 		 * If an error occurred, update stats, clear the status
2306 		 * word, and leave the packet buffer in place.  It will
2307 		 * simply be reused the next time the ring comes around.
2308 		 */
2309 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2310 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2311 			ifp->if_ierrors++;
2312 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2313 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
2314 				/* Receive overrun handled elsewhere. */
2315 				printf("%s: receive descriptor error\n",
2316 				    device_xname(&sc->sc_dev));
2317 			}
2318 #define	PRINTERR(bit, str)						\
2319 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
2320 			    (cmdsts & (bit)) != 0)			\
2321 				printf("%s: %s\n", device_xname(&sc->sc_dev), str)
2322 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2323 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2324 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2325 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2326 #undef PRINTERR
2327 			sip_init_rxdesc(sc, i);
2328 			continue;
2329 		}
2330 
2331 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2332 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2333 
2334 		/*
2335 		 * No errors; receive the packet.  Note, the SiS 900
2336 		 * includes the CRC with every packet.
2337 		 */
2338 		len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
2339 
2340 #ifdef __NO_STRICT_ALIGNMENT
2341 		/*
2342 		 * If the packet is small enough to fit in a
2343 		 * single header mbuf, allocate one and copy
2344 		 * the data into it.  This greatly reduces
2345 		 * memory consumption when we receive lots
2346 		 * of small packets.
2347 		 *
2348 		 * Otherwise, we add a new buffer to the receive
2349 		 * chain.  If this fails, we drop the packet and
2350 		 * recycle the old buffer.
2351 		 */
2352 		if (sip_copy_small != 0 && len <= MHLEN) {
2353 			MGETHDR(m, M_DONTWAIT, MT_DATA);
2354 			if (m == NULL)
2355 				goto dropit;
2356 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2357 			memcpy(mtod(m, void *),
2358 			    mtod(rxs->rxs_mbuf, void *), len);
2359 			sip_init_rxdesc(sc, i);
2360 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2361 			    rxs->rxs_dmamap->dm_mapsize,
2362 			    BUS_DMASYNC_PREREAD);
2363 		} else {
2364 			m = rxs->rxs_mbuf;
2365 			if (sipcom_add_rxbuf(sc, i) != 0) {
2366  dropit:
2367 				ifp->if_ierrors++;
2368 				sip_init_rxdesc(sc, i);
2369 				bus_dmamap_sync(sc->sc_dmat,
2370 				    rxs->rxs_dmamap, 0,
2371 				    rxs->rxs_dmamap->dm_mapsize,
2372 				    BUS_DMASYNC_PREREAD);
2373 				continue;
2374 			}
2375 		}
2376 #else
2377 		/*
2378 		 * The SiS 900's receive buffers must be 4-byte aligned.
2379 		 * But this means that the data after the Ethernet header
2380 		 * is misaligned.  We must allocate a new buffer and
2381 		 * copy the data, shifted forward 2 bytes.
2382 		 */
2383 		MGETHDR(m, M_DONTWAIT, MT_DATA);
2384 		if (m == NULL) {
2385  dropit:
2386 			ifp->if_ierrors++;
2387 			sip_init_rxdesc(sc, i);
2388 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2389 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2390 			continue;
2391 		}
2392 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2393 		if (len > (MHLEN - 2)) {
2394 			MCLGET(m, M_DONTWAIT);
2395 			if ((m->m_flags & M_EXT) == 0) {
2396 				m_freem(m);
2397 				goto dropit;
2398 			}
2399 		}
2400 		m->m_data += 2;
2401 
2402 		/*
2403 		 * Note that we use clusters for incoming frames, so the
2404 		 * buffer is virtually contiguous.
2405 		 */
2406 		memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2407 
2408 		/* Allow the receive descriptor to continue using its mbuf. */
2409 		sip_init_rxdesc(sc, i);
2410 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2411 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2412 #endif /* __NO_STRICT_ALIGNMENT */
2413 
2414 		ifp->if_ipackets++;
2415 		m->m_pkthdr.rcvif = ifp;
2416 		m->m_pkthdr.len = m->m_len = len;
2417 
2418 #if NBPFILTER > 0
2419 		/*
2420 		 * Pass this up to any BPF listeners, but only
2421 		 * pass if up the stack if it's for us.
2422 		 */
2423 		if (ifp->if_bpf)
2424 			bpf_mtap(ifp->if_bpf, m);
2425 #endif /* NBPFILTER > 0 */
2426 
2427 		/* Pass it on. */
2428 		(*ifp->if_input)(ifp, m);
2429 	}
2430 
2431 	/* Update the receive pointer. */
2432 	sc->sc_rxptr = i;
2433 }
2434 
2435 /*
2436  * sip_tick:
2437  *
2438  *	One second timer, used to tick the MII.
2439  */
2440 static void
2441 sipcom_tick(void *arg)
2442 {
2443 	struct sip_softc *sc = arg;
2444 	int s;
2445 
2446 	s = splnet();
2447 #ifdef SIP_EVENT_COUNTERS
2448 	if (sc->sc_gigabit) {
2449 		/* Read PAUSE related counts from MIB registers. */
2450 		sc->sc_ev_rxpause.ev_count +=
2451 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
2452 				     SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2453 		sc->sc_ev_txpause.ev_count +=
2454 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
2455 				     SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2456 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2457 	}
2458 #endif /* SIP_EVENT_COUNTERS */
2459 	mii_tick(&sc->sc_mii);
2460 	splx(s);
2461 
2462 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2463 }
2464 
2465 /*
2466  * sip_reset:
2467  *
2468  *	Perform a soft reset on the SiS 900.
2469  */
2470 static bool
2471 sipcom_reset(struct sip_softc *sc)
2472 {
2473 	bus_space_tag_t st = sc->sc_st;
2474 	bus_space_handle_t sh = sc->sc_sh;
2475 	int i;
2476 
2477 	bus_space_write_4(st, sh, SIP_IER, 0);
2478 	bus_space_write_4(st, sh, SIP_IMR, 0);
2479 	bus_space_write_4(st, sh, SIP_RFCR, 0);
2480 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
2481 
2482 	for (i = 0; i < SIP_TIMEOUT; i++) {
2483 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2484 			break;
2485 		delay(2);
2486 	}
2487 
2488 	if (i == SIP_TIMEOUT) {
2489 		printf("%s: reset failed to complete\n", device_xname(&sc->sc_dev));
2490 		return false;
2491 	}
2492 
2493 	delay(1000);
2494 
2495 	if (sc->sc_gigabit) {
2496 		/*
2497 		 * Set the general purpose I/O bits.  Do it here in case we
2498 		 * need to have GPIO set up to talk to the media interface.
2499 		 */
2500 		bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2501 		delay(1000);
2502 	}
2503 	return true;
2504 }
2505 
2506 static void
2507 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2508 {
2509 	u_int32_t reg;
2510 	bus_space_tag_t st = sc->sc_st;
2511 	bus_space_handle_t sh = sc->sc_sh;
2512 	/*
2513 	 * Initialize the VLAN/IP receive control register.
2514 	 * We enable checksum computation on all incoming
2515 	 * packets, and do not reject packets w/ bad checksums.
2516 	 */
2517 	reg = 0;
2518 	if (capenable &
2519 	    (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
2520 		reg |= VRCR_IPEN;
2521 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2522 		reg |= VRCR_VTDEN|VRCR_VTREN;
2523 	bus_space_write_4(st, sh, SIP_VRCR, reg);
2524 
2525 	/*
2526 	 * Initialize the VLAN/IP transmit control register.
2527 	 * We enable outgoing checksum computation on a
2528 	 * per-packet basis.
2529 	 */
2530 	reg = 0;
2531 	if (capenable &
2532 	    (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2533 		reg |= VTCR_PPCHK;
2534 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2535 		reg |= VTCR_VPPTI;
2536 	bus_space_write_4(st, sh, SIP_VTCR, reg);
2537 
2538 	/*
2539 	 * If we're using VLANs, initialize the VLAN data register.
2540 	 * To understand why we bswap the VLAN Ethertype, see section
2541 	 * 4.2.36 of the DP83820 manual.
2542 	 */
2543 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2544 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2545 }
2546 
2547 /*
2548  * sip_init:		[ ifnet interface function ]
2549  *
2550  *	Initialize the interface.  Must be called at splnet().
2551  */
2552 static int
2553 sipcom_init(struct ifnet *ifp)
2554 {
2555 	struct sip_softc *sc = ifp->if_softc;
2556 	bus_space_tag_t st = sc->sc_st;
2557 	bus_space_handle_t sh = sc->sc_sh;
2558 	struct sip_txsoft *txs;
2559 	struct sip_rxsoft *rxs;
2560 	struct sip_desc *sipd;
2561 	int i, error = 0;
2562 
2563 	if (device_is_active(&sc->sc_dev)) {
2564 		/*
2565 		 * Cancel any pending I/O.
2566 		 */
2567 		sipcom_stop(ifp, 0);
2568 	} else if (!pmf_device_resume_self(&sc->sc_dev))
2569 		return 0;
2570 
2571 	/*
2572 	 * Reset the chip to a known state.
2573 	 */
2574 	if (!sipcom_reset(sc))
2575 		return EBUSY;
2576 
2577 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2578 		/*
2579 		 * DP83815 manual, page 78:
2580 		 *    4.4 Recommended Registers Configuration
2581 		 *    For optimum performance of the DP83815, version noted
2582 		 *    as DP83815CVNG (SRR = 203h), the listed register
2583 		 *    modifications must be followed in sequence...
2584 		 *
2585 		 * It's not clear if this should be 302h or 203h because that
2586 		 * chip name is listed as SRR 302h in the description of the
2587 		 * SRR register.  However, my revision 302h DP83815 on the
2588 		 * Netgear FA311 purchased in 02/2001 needs these settings
2589 		 * to avoid tons of errors in AcceptPerfectMatch (non-
2590 		 * IFF_PROMISC) mode.  I do not know if other revisions need
2591 		 * this set or not.  [briggs -- 09 March 2001]
2592 		 *
2593 		 * Note that only the low-order 12 bits of 0xe4 are documented
2594 		 * and that this sets reserved bits in that register.
2595 		 */
2596 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
2597 
2598 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
2599 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
2600 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
2601 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
2602 
2603 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
2604 	}
2605 
2606 	/*
2607 	 * Initialize the transmit descriptor ring.
2608 	 */
2609 	for (i = 0; i < sc->sc_ntxdesc; i++) {
2610 		sipd = &sc->sc_txdescs[i];
2611 		memset(sipd, 0, sizeof(struct sip_desc));
2612 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
2613 	}
2614 	sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
2615 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2616 	sc->sc_txfree = sc->sc_ntxdesc;
2617 	sc->sc_txnext = 0;
2618 	sc->sc_txwin = 0;
2619 
2620 	/*
2621 	 * Initialize the transmit job descriptors.
2622 	 */
2623 	SIMPLEQ_INIT(&sc->sc_txfreeq);
2624 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
2625 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
2626 		txs = &sc->sc_txsoft[i];
2627 		txs->txs_mbuf = NULL;
2628 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2629 	}
2630 
2631 	/*
2632 	 * Initialize the receive descriptor and receive job
2633 	 * descriptor rings.
2634 	 */
2635 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2636 		rxs = &sc->sc_rxsoft[i];
2637 		if (rxs->rxs_mbuf == NULL) {
2638 			if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
2639 				printf("%s: unable to allocate or map rx "
2640 				    "buffer %d, error = %d\n",
2641 				    device_xname(&sc->sc_dev), i, error);
2642 				/*
2643 				 * XXX Should attempt to run with fewer receive
2644 				 * XXX buffers instead of just failing.
2645 				 */
2646 				sipcom_rxdrain(sc);
2647 				goto out;
2648 			}
2649 		} else
2650 			sip_init_rxdesc(sc, i);
2651 	}
2652 	sc->sc_rxptr = 0;
2653 	sc->sc_rxdiscard = 0;
2654 	sip_rxchain_reset(sc);
2655 
2656 	/*
2657 	 * Set the configuration register; it's already initialized
2658 	 * in sip_attach().
2659 	 */
2660 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2661 
2662 	/*
2663 	 * Initialize the prototype TXCFG register.
2664 	 */
2665 	if (sc->sc_gigabit) {
2666 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2667 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2668 	} else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2669 	     SIP_SIS900_REV(sc, SIS_REV_960) ||
2670 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2671 	    (sc->sc_cfg & CFG_EDBMASTEN)) {
2672 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
2673 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
2674 	} else {
2675 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2676 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2677 	}
2678 
2679 	sc->sc_txcfg |= TXCFG_ATP |
2680 	    __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
2681 	    sc->sc_tx_drain_thresh;
2682 	bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
2683 
2684 	/*
2685 	 * Initialize the receive drain threshold if we have never
2686 	 * done so.
2687 	 */
2688 	if (sc->sc_rx_drain_thresh == 0) {
2689 		/*
2690 		 * XXX This value should be tuned.  This is set to the
2691 		 * maximum of 248 bytes, and we may be able to improve
2692 		 * performance by decreasing it (although we should never
2693 		 * set this value lower than 2; 14 bytes are required to
2694 		 * filter the packet).
2695 		 */
2696 		sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
2697 	}
2698 
2699 	/*
2700 	 * Initialize the prototype RXCFG register.
2701 	 */
2702 	sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
2703 	/*
2704 	 * Accept long packets (including FCS) so we can handle
2705 	 * 802.1q-tagged frames and jumbo frames properly.
2706 	 */
2707 	if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2708 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2709 		sc->sc_rxcfg |= RXCFG_ALP;
2710 
2711 	/*
2712 	 * Checksum offloading is disabled if the user selects an MTU
2713 	 * larger than 8109.  (FreeBSD says 8152, but there is emperical
2714 	 * evidence that >8109 does not work on some boards, such as the
2715 	 * Planex GN-1000TE).
2716 	 */
2717 	if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2718 	    (ifp->if_capenable &
2719 	     (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2720 	      IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2721 	      IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
2722 		printf("%s: Checksum offloading does not work if MTU > 8109 - "
2723 		       "disabled.\n", device_xname(&sc->sc_dev));
2724 		ifp->if_capenable &=
2725 		    ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2726 		     IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2727 		     IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
2728 		ifp->if_csum_flags_tx = 0;
2729 		ifp->if_csum_flags_rx = 0;
2730 	}
2731 
2732 	bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
2733 
2734 	if (sc->sc_gigabit)
2735 		sipcom_dp83820_init(sc, ifp->if_capenable);
2736 
2737 	/*
2738 	 * Give the transmit and receive rings to the chip.
2739 	 */
2740 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2741 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2742 
2743 	/*
2744 	 * Initialize the interrupt mask.
2745 	 */
2746 	sc->sc_imr = sc->sc_bits.b_isr_dperr |
2747 	             sc->sc_bits.b_isr_sserr |
2748 		     sc->sc_bits.b_isr_rmabt |
2749 		     sc->sc_bits.b_isr_rtabt | ISR_RXSOVR |
2750 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2751 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2752 
2753 	/* Set up the receive filter. */
2754 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2755 
2756 	/*
2757 	 * Tune sc_rx_flow_thresh.
2758 	 * XXX "More than 8KB" is too short for jumbo frames.
2759 	 * XXX TODO: Threshold value should be user-settable.
2760 	 */
2761 	sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2762 				 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2763 				 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2764 
2765 	/*
2766 	 * Set the current media.  Do this after initializing the prototype
2767 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2768 	 * control.
2769 	 */
2770 	if ((error = ether_mediachange(ifp)) != 0)
2771 		goto out;
2772 
2773 	/*
2774 	 * Set the interrupt hold-off timer to 100us.
2775 	 */
2776 	if (sc->sc_gigabit)
2777 		bus_space_write_4(st, sh, SIP_IHR, 0x01);
2778 
2779 	/*
2780 	 * Enable interrupts.
2781 	 */
2782 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
2783 
2784 	/*
2785 	 * Start the transmit and receive processes.
2786 	 */
2787 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2788 
2789 	/*
2790 	 * Start the one second MII clock.
2791 	 */
2792 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2793 
2794 	/*
2795 	 * ...all done!
2796 	 */
2797 	ifp->if_flags |= IFF_RUNNING;
2798 	ifp->if_flags &= ~IFF_OACTIVE;
2799 	sc->sc_if_flags = ifp->if_flags;
2800 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2801 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2802 	sc->sc_prev.if_capenable = ifp->if_capenable;
2803 
2804  out:
2805 	if (error)
2806 		printf("%s: interface not running\n", device_xname(&sc->sc_dev));
2807 	return (error);
2808 }
2809 
2810 /*
2811  * sip_drain:
2812  *
2813  *	Drain the receive queue.
2814  */
2815 static void
2816 sipcom_rxdrain(struct sip_softc *sc)
2817 {
2818 	struct sip_rxsoft *rxs;
2819 	int i;
2820 
2821 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2822 		rxs = &sc->sc_rxsoft[i];
2823 		if (rxs->rxs_mbuf != NULL) {
2824 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2825 			m_freem(rxs->rxs_mbuf);
2826 			rxs->rxs_mbuf = NULL;
2827 		}
2828 	}
2829 }
2830 
2831 /*
2832  * sip_stop:		[ ifnet interface function ]
2833  *
2834  *	Stop transmission on the interface.
2835  */
2836 static void
2837 sipcom_stop(struct ifnet *ifp, int disable)
2838 {
2839 	struct sip_softc *sc = ifp->if_softc;
2840 	bus_space_tag_t st = sc->sc_st;
2841 	bus_space_handle_t sh = sc->sc_sh;
2842 	struct sip_txsoft *txs;
2843 	u_int32_t cmdsts = 0;		/* DEBUG */
2844 
2845 	/*
2846 	 * Stop the one second clock.
2847 	 */
2848 	callout_stop(&sc->sc_tick_ch);
2849 
2850 	/* Down the MII. */
2851 	mii_down(&sc->sc_mii);
2852 
2853 	/*
2854 	 * Disable interrupts.
2855 	 */
2856 	bus_space_write_4(st, sh, SIP_IER, 0);
2857 
2858 	/*
2859 	 * Stop receiver and transmitter.
2860 	 */
2861 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2862 
2863 	/*
2864 	 * Release any queued transmit buffers.
2865 	 */
2866 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2867 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2868 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2869 		    (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
2870 		     CMDSTS_INTR) == 0)
2871 			printf("%s: sip_stop: last descriptor does not "
2872 			    "have INTR bit set\n", device_xname(&sc->sc_dev));
2873 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2874 #ifdef DIAGNOSTIC
2875 		if (txs->txs_mbuf == NULL) {
2876 			printf("%s: dirty txsoft with no mbuf chain\n",
2877 			    device_xname(&sc->sc_dev));
2878 			panic("sip_stop");
2879 		}
2880 #endif
2881 		cmdsts |=		/* DEBUG */
2882 		    le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
2883 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2884 		m_freem(txs->txs_mbuf);
2885 		txs->txs_mbuf = NULL;
2886 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2887 	}
2888 
2889 	/*
2890 	 * Mark the interface down and cancel the watchdog timer.
2891 	 */
2892 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2893 	ifp->if_timer = 0;
2894 
2895 	if (disable)
2896 		pmf_device_suspend_self(&sc->sc_dev);
2897 
2898 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2899 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2900 		printf("%s: sip_stop: no INTR bits set in dirty tx "
2901 		    "descriptors\n", device_xname(&sc->sc_dev));
2902 }
2903 
2904 /*
2905  * sip_read_eeprom:
2906  *
2907  *	Read data from the serial EEPROM.
2908  */
2909 static void
2910 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2911     u_int16_t *data)
2912 {
2913 	bus_space_tag_t st = sc->sc_st;
2914 	bus_space_handle_t sh = sc->sc_sh;
2915 	u_int16_t reg;
2916 	int i, x;
2917 
2918 	for (i = 0; i < wordcnt; i++) {
2919 		/* Send CHIP SELECT. */
2920 		reg = EROMAR_EECS;
2921 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
2922 
2923 		/* Shift in the READ opcode. */
2924 		for (x = 3; x > 0; x--) {
2925 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2926 				reg |= EROMAR_EEDI;
2927 			else
2928 				reg &= ~EROMAR_EEDI;
2929 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2930 			bus_space_write_4(st, sh, SIP_EROMAR,
2931 			    reg | EROMAR_EESK);
2932 			delay(4);
2933 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2934 			delay(4);
2935 		}
2936 
2937 		/* Shift in address. */
2938 		for (x = 6; x > 0; x--) {
2939 			if ((word + i) & (1 << (x - 1)))
2940 				reg |= EROMAR_EEDI;
2941 			else
2942 				reg &= ~EROMAR_EEDI;
2943 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2944 			bus_space_write_4(st, sh, SIP_EROMAR,
2945 			    reg | EROMAR_EESK);
2946 			delay(4);
2947 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2948 			delay(4);
2949 		}
2950 
2951 		/* Shift out data. */
2952 		reg = EROMAR_EECS;
2953 		data[i] = 0;
2954 		for (x = 16; x > 0; x--) {
2955 			bus_space_write_4(st, sh, SIP_EROMAR,
2956 			    reg | EROMAR_EESK);
2957 			delay(4);
2958 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2959 				data[i] |= (1 << (x - 1));
2960 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2961 			delay(4);
2962 		}
2963 
2964 		/* Clear CHIP SELECT. */
2965 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
2966 		delay(4);
2967 	}
2968 }
2969 
2970 /*
2971  * sipcom_add_rxbuf:
2972  *
2973  *	Add a receive buffer to the indicated descriptor.
2974  */
2975 static int
2976 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
2977 {
2978 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2979 	struct mbuf *m;
2980 	int error;
2981 
2982 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2983 	if (m == NULL)
2984 		return (ENOBUFS);
2985 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2986 
2987 	MCLGET(m, M_DONTWAIT);
2988 	if ((m->m_flags & M_EXT) == 0) {
2989 		m_freem(m);
2990 		return (ENOBUFS);
2991 	}
2992 
2993 	/* XXX I don't believe this is necessary. --dyoung */
2994 	if (sc->sc_gigabit)
2995 		m->m_len = sc->sc_parm->p_rxbuf_len;
2996 
2997 	if (rxs->rxs_mbuf != NULL)
2998 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2999 
3000 	rxs->rxs_mbuf = m;
3001 
3002 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
3003 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
3004 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
3005 	if (error) {
3006 		printf("%s: can't load rx DMA map %d, error = %d\n",
3007 		    device_xname(&sc->sc_dev), idx, error);
3008 		panic("%s", __func__);		/* XXX */
3009 	}
3010 
3011 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3012 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3013 
3014 	sip_init_rxdesc(sc, idx);
3015 
3016 	return (0);
3017 }
3018 
3019 /*
3020  * sip_sis900_set_filter:
3021  *
3022  *	Set up the receive filter.
3023  */
3024 static void
3025 sipcom_sis900_set_filter(struct sip_softc *sc)
3026 {
3027 	bus_space_tag_t st = sc->sc_st;
3028 	bus_space_handle_t sh = sc->sc_sh;
3029 	struct ethercom *ec = &sc->sc_ethercom;
3030 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3031 	struct ether_multi *enm;
3032 	const u_int8_t *cp;
3033 	struct ether_multistep step;
3034 	u_int32_t crc, mchash[16];
3035 
3036 	/*
3037 	 * Initialize the prototype RFCR.
3038 	 */
3039 	sc->sc_rfcr = RFCR_RFEN;
3040 	if (ifp->if_flags & IFF_BROADCAST)
3041 		sc->sc_rfcr |= RFCR_AAB;
3042 	if (ifp->if_flags & IFF_PROMISC) {
3043 		sc->sc_rfcr |= RFCR_AAP;
3044 		goto allmulti;
3045 	}
3046 
3047 	/*
3048 	 * Set up the multicast address filter by passing all multicast
3049 	 * addresses through a CRC generator, and then using the high-order
3050 	 * 6 bits as an index into the 128 bit multicast hash table (only
3051 	 * the lower 16 bits of each 32 bit multicast hash register are
3052 	 * valid).  The high order bits select the register, while the
3053 	 * rest of the bits select the bit within the register.
3054 	 */
3055 
3056 	memset(mchash, 0, sizeof(mchash));
3057 
3058 	/*
3059 	 * SiS900 (at least SiS963) requires us to register the address of
3060 	 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3061 	 */
3062 	crc = 0x0ed423f9;
3063 
3064 	if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3065 	    SIP_SIS900_REV(sc, SIS_REV_960) ||
3066 	    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3067 		/* Just want the 8 most significant bits. */
3068 		crc >>= 24;
3069 	} else {
3070 		/* Just want the 7 most significant bits. */
3071 		crc >>= 25;
3072 	}
3073 
3074 	/* Set the corresponding bit in the hash table. */
3075 	mchash[crc >> 4] |= 1 << (crc & 0xf);
3076 
3077 	ETHER_FIRST_MULTI(step, ec, enm);
3078 	while (enm != NULL) {
3079 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3080 			/*
3081 			 * We must listen to a range of multicast addresses.
3082 			 * For now, just accept all multicasts, rather than
3083 			 * trying to set only those filter bits needed to match
3084 			 * the range.  (At this time, the only use of address
3085 			 * ranges is for IP multicast routing, for which the
3086 			 * range is big enough to require all bits set.)
3087 			 */
3088 			goto allmulti;
3089 		}
3090 
3091 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3092 
3093 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3094 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
3095 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3096 			/* Just want the 8 most significant bits. */
3097 			crc >>= 24;
3098 		} else {
3099 			/* Just want the 7 most significant bits. */
3100 			crc >>= 25;
3101 		}
3102 
3103 		/* Set the corresponding bit in the hash table. */
3104 		mchash[crc >> 4] |= 1 << (crc & 0xf);
3105 
3106 		ETHER_NEXT_MULTI(step, enm);
3107 	}
3108 
3109 	ifp->if_flags &= ~IFF_ALLMULTI;
3110 	goto setit;
3111 
3112  allmulti:
3113 	ifp->if_flags |= IFF_ALLMULTI;
3114 	sc->sc_rfcr |= RFCR_AAM;
3115 
3116  setit:
3117 #define	FILTER_EMIT(addr, data)						\
3118 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
3119 	delay(1);							\
3120 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
3121 	delay(1)
3122 
3123 	/*
3124 	 * Disable receive filter, and program the node address.
3125 	 */
3126 	cp = CLLADDR(ifp->if_sadl);
3127 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
3128 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
3129 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
3130 
3131 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3132 		/*
3133 		 * Program the multicast hash table.
3134 		 */
3135 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
3136 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
3137 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
3138 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
3139 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
3140 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
3141 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
3142 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
3143 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3144 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
3145 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3146 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
3147 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
3148 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
3149 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
3150 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
3151 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
3152 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
3153 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
3154 		}
3155 	}
3156 #undef FILTER_EMIT
3157 
3158 	/*
3159 	 * Re-enable the receiver filter.
3160 	 */
3161 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3162 }
3163 
3164 /*
3165  * sip_dp83815_set_filter:
3166  *
3167  *	Set up the receive filter.
3168  */
3169 static void
3170 sipcom_dp83815_set_filter(struct sip_softc *sc)
3171 {
3172 	bus_space_tag_t st = sc->sc_st;
3173 	bus_space_handle_t sh = sc->sc_sh;
3174 	struct ethercom *ec = &sc->sc_ethercom;
3175 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3176 	struct ether_multi *enm;
3177 	const u_int8_t *cp;
3178 	struct ether_multistep step;
3179 	u_int32_t crc, hash, slot, bit;
3180 #define	MCHASH_NWORDS_83820	128
3181 #define	MCHASH_NWORDS_83815	32
3182 #define	MCHASH_NWORDS	MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3183 	u_int16_t mchash[MCHASH_NWORDS];
3184 	int i;
3185 
3186 	/*
3187 	 * Initialize the prototype RFCR.
3188 	 * Enable the receive filter, and accept on
3189 	 *    Perfect (destination address) Match
3190 	 * If IFF_BROADCAST, also accept all broadcast packets.
3191 	 * If IFF_PROMISC, accept all unicast packets (and later, set
3192 	 *    IFF_ALLMULTI and accept all multicast, too).
3193 	 */
3194 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3195 	if (ifp->if_flags & IFF_BROADCAST)
3196 		sc->sc_rfcr |= RFCR_AAB;
3197 	if (ifp->if_flags & IFF_PROMISC) {
3198 		sc->sc_rfcr |= RFCR_AAP;
3199 		goto allmulti;
3200 	}
3201 
3202 	/*
3203          * Set up the DP83820/DP83815 multicast address filter by
3204          * passing all multicast addresses through a CRC generator,
3205          * and then using the high-order 11/9 bits as an index into
3206          * the 2048/512 bit multicast hash table.  The high-order
3207          * 7/5 bits select the slot, while the low-order 4 bits
3208          * select the bit within the slot.  Note that only the low
3209          * 16-bits of each filter word are used, and there are
3210          * 128/32 filter words.
3211 	 */
3212 
3213 	memset(mchash, 0, sizeof(mchash));
3214 
3215 	ifp->if_flags &= ~IFF_ALLMULTI;
3216 	ETHER_FIRST_MULTI(step, ec, enm);
3217 	if (enm == NULL)
3218 		goto setit;
3219 	while (enm != NULL) {
3220 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3221 			/*
3222 			 * We must listen to a range of multicast addresses.
3223 			 * For now, just accept all multicasts, rather than
3224 			 * trying to set only those filter bits needed to match
3225 			 * the range.  (At this time, the only use of address
3226 			 * ranges is for IP multicast routing, for which the
3227 			 * range is big enough to require all bits set.)
3228 			 */
3229 			goto allmulti;
3230 		}
3231 
3232 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3233 
3234 		if (sc->sc_gigabit) {
3235 			/* Just want the 11 most significant bits. */
3236 			hash = crc >> 21;
3237 		} else {
3238 			/* Just want the 9 most significant bits. */
3239 			hash = crc >> 23;
3240 		}
3241 
3242 		slot = hash >> 4;
3243 		bit = hash & 0xf;
3244 
3245 		/* Set the corresponding bit in the hash table. */
3246 		mchash[slot] |= 1 << bit;
3247 
3248 		ETHER_NEXT_MULTI(step, enm);
3249 	}
3250 	sc->sc_rfcr |= RFCR_MHEN;
3251 	goto setit;
3252 
3253  allmulti:
3254 	ifp->if_flags |= IFF_ALLMULTI;
3255 	sc->sc_rfcr |= RFCR_AAM;
3256 
3257  setit:
3258 #define	FILTER_EMIT(addr, data)						\
3259 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
3260 	delay(1);							\
3261 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
3262 	delay(1)
3263 
3264 	/*
3265 	 * Disable receive filter, and program the node address.
3266 	 */
3267 	cp = CLLADDR(ifp->if_sadl);
3268 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3269 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3270 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3271 
3272 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3273 		int nwords =
3274 		    sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3275 		/*
3276 		 * Program the multicast hash table.
3277 		 */
3278 		for (i = 0; i < nwords; i++) {
3279 			FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
3280 		}
3281 	}
3282 #undef FILTER_EMIT
3283 #undef MCHASH_NWORDS
3284 #undef MCHASH_NWORDS_83815
3285 #undef MCHASH_NWORDS_83820
3286 
3287 	/*
3288 	 * Re-enable the receiver filter.
3289 	 */
3290 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3291 }
3292 
3293 /*
3294  * sip_dp83820_mii_readreg:	[mii interface function]
3295  *
3296  *	Read a PHY register on the MII of the DP83820.
3297  */
3298 static int
3299 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg)
3300 {
3301 	struct sip_softc *sc = device_private(self);
3302 
3303 	if (sc->sc_cfg & CFG_TBI_EN) {
3304 		bus_addr_t tbireg;
3305 		int rv;
3306 
3307 		if (phy != 0)
3308 			return (0);
3309 
3310 		switch (reg) {
3311 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3312 		case MII_BMSR:		tbireg = SIP_TBISR; break;
3313 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3314 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3315 		case MII_ANER:		tbireg = SIP_TANER; break;
3316 		case MII_EXTSR:
3317 			/*
3318 			 * Don't even bother reading the TESR register.
3319 			 * The manual documents that the device has
3320 			 * 1000baseX full/half capability, but the
3321 			 * register itself seems read back 0 on some
3322 			 * boards.  Just hard-code the result.
3323 			 */
3324 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3325 
3326 		default:
3327 			return (0);
3328 		}
3329 
3330 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3331 		if (tbireg == SIP_TBISR) {
3332 			/* LINK and ACOMP are switched! */
3333 			int val = rv;
3334 
3335 			rv = 0;
3336 			if (val & TBISR_MR_LINK_STATUS)
3337 				rv |= BMSR_LINK;
3338 			if (val & TBISR_MR_AN_COMPLETE)
3339 				rv |= BMSR_ACOMP;
3340 
3341 			/*
3342 			 * The manual claims this register reads back 0
3343 			 * on hard and soft reset.  But we want to let
3344 			 * the gentbi driver know that we support auto-
3345 			 * negotiation, so hard-code this bit in the
3346 			 * result.
3347 			 */
3348 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
3349 		}
3350 
3351 		return (rv);
3352 	}
3353 
3354 	return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
3355 }
3356 
3357 /*
3358  * sip_dp83820_mii_writereg:	[mii interface function]
3359  *
3360  *	Write a PHY register on the MII of the DP83820.
3361  */
3362 static void
3363 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, int val)
3364 {
3365 	struct sip_softc *sc = device_private(self);
3366 
3367 	if (sc->sc_cfg & CFG_TBI_EN) {
3368 		bus_addr_t tbireg;
3369 
3370 		if (phy != 0)
3371 			return;
3372 
3373 		switch (reg) {
3374 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3375 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3376 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3377 		default:
3378 			return;
3379 		}
3380 
3381 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3382 		return;
3383 	}
3384 
3385 	mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
3386 }
3387 
3388 /*
3389  * sip_dp83820_mii_statchg:	[mii interface function]
3390  *
3391  *	Callback from MII layer when media changes.
3392  */
3393 static void
3394 sipcom_dp83820_mii_statchg(device_t self)
3395 {
3396 	struct sip_softc *sc = device_private(self);
3397 	struct mii_data *mii = &sc->sc_mii;
3398 	u_int32_t cfg, pcr;
3399 
3400 	/*
3401 	 * Get flow control negotiation result.
3402 	 */
3403 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3404 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3405 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3406 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3407 	}
3408 
3409 	/*
3410 	 * Update TXCFG for full-duplex operation.
3411 	 */
3412 	if ((mii->mii_media_active & IFM_FDX) != 0)
3413 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3414 	else
3415 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3416 
3417 	/*
3418 	 * Update RXCFG for full-duplex or loopback.
3419 	 */
3420 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3421 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3422 		sc->sc_rxcfg |= RXCFG_ATX;
3423 	else
3424 		sc->sc_rxcfg &= ~RXCFG_ATX;
3425 
3426 	/*
3427 	 * Update CFG for MII/GMII.
3428 	 */
3429 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3430 		cfg = sc->sc_cfg | CFG_MODE_1000;
3431 	else
3432 		cfg = sc->sc_cfg;
3433 
3434 	/*
3435 	 * 802.3x flow control.
3436 	 */
3437 	pcr = 0;
3438 	if (sc->sc_flowflags & IFM_FLOW) {
3439 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3440 			pcr |= sc->sc_rx_flow_thresh;
3441 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3442 			pcr |= PCR_PSEN | PCR_PS_MCAST;
3443 	}
3444 
3445 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3446 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3447 	    sc->sc_txcfg);
3448 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3449 	    sc->sc_rxcfg);
3450 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3451 }
3452 
3453 /*
3454  * sip_mii_bitbang_read: [mii bit-bang interface function]
3455  *
3456  *	Read the MII serial port for the MII bit-bang module.
3457  */
3458 static u_int32_t
3459 sipcom_mii_bitbang_read(device_t self)
3460 {
3461 	struct sip_softc *sc = device_private(self);
3462 
3463 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3464 }
3465 
3466 /*
3467  * sip_mii_bitbang_write: [mii big-bang interface function]
3468  *
3469  *	Write the MII serial port for the MII bit-bang module.
3470  */
3471 static void
3472 sipcom_mii_bitbang_write(device_t self, u_int32_t val)
3473 {
3474 	struct sip_softc *sc = device_private(self);
3475 
3476 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3477 }
3478 
3479 /*
3480  * sip_sis900_mii_readreg:	[mii interface function]
3481  *
3482  *	Read a PHY register on the MII.
3483  */
3484 static int
3485 sipcom_sis900_mii_readreg(device_t self, int phy, int reg)
3486 {
3487 	struct sip_softc *sc = device_private(self);
3488 	u_int32_t enphy;
3489 
3490 	/*
3491 	 * The PHY of recent SiS chipsets is accessed through bitbang
3492 	 * operations.
3493 	 */
3494 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3495 		return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3496 		    phy, reg);
3497 
3498 #ifndef SIS900_MII_RESTRICT
3499 	/*
3500 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3501 	 * MII address 0.
3502 	 */
3503 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3504 		return (0);
3505 #endif
3506 
3507 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3508 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3509 	    ENPHY_RWCMD | ENPHY_ACCESS);
3510 	do {
3511 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3512 	} while (enphy & ENPHY_ACCESS);
3513 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3514 }
3515 
3516 /*
3517  * sip_sis900_mii_writereg:	[mii interface function]
3518  *
3519  *	Write a PHY register on the MII.
3520  */
3521 static void
3522 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, int val)
3523 {
3524 	struct sip_softc *sc = device_private(self);
3525 	u_int32_t enphy;
3526 
3527 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3528 		mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3529 		    phy, reg, val);
3530 		return;
3531 	}
3532 
3533 #ifndef SIS900_MII_RESTRICT
3534 	/*
3535 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3536 	 * MII address 0.
3537 	 */
3538 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3539 		return;
3540 #endif
3541 
3542 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3543 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3544 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3545 	do {
3546 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3547 	} while (enphy & ENPHY_ACCESS);
3548 }
3549 
3550 /*
3551  * sip_sis900_mii_statchg:	[mii interface function]
3552  *
3553  *	Callback from MII layer when media changes.
3554  */
3555 static void
3556 sipcom_sis900_mii_statchg(device_t self)
3557 {
3558 	struct sip_softc *sc = device_private(self);
3559 	struct mii_data *mii = &sc->sc_mii;
3560 	u_int32_t flowctl;
3561 
3562 	/*
3563 	 * Get flow control negotiation result.
3564 	 */
3565 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3566 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3567 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3568 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3569 	}
3570 
3571 	/*
3572 	 * Update TXCFG for full-duplex operation.
3573 	 */
3574 	if ((mii->mii_media_active & IFM_FDX) != 0)
3575 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3576 	else
3577 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3578 
3579 	/*
3580 	 * Update RXCFG for full-duplex or loopback.
3581 	 */
3582 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3583 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3584 		sc->sc_rxcfg |= RXCFG_ATX;
3585 	else
3586 		sc->sc_rxcfg &= ~RXCFG_ATX;
3587 
3588 	/*
3589 	 * Update IMR for use of 802.3x flow control.
3590 	 */
3591 	if (sc->sc_flowflags & IFM_FLOW) {
3592 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3593 		flowctl = FLOWCTL_FLOWEN;
3594 	} else {
3595 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3596 		flowctl = 0;
3597 	}
3598 
3599 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3600 	    sc->sc_txcfg);
3601 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3602 	    sc->sc_rxcfg);
3603 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3604 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3605 }
3606 
3607 /*
3608  * sip_dp83815_mii_readreg:	[mii interface function]
3609  *
3610  *	Read a PHY register on the MII.
3611  */
3612 static int
3613 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg)
3614 {
3615 	struct sip_softc *sc = device_private(self);
3616 	u_int32_t val;
3617 
3618 	/*
3619 	 * The DP83815 only has an internal PHY.  Only allow
3620 	 * MII address 0.
3621 	 */
3622 	if (phy != 0)
3623 		return (0);
3624 
3625 	/*
3626 	 * Apparently, after a reset, the DP83815 can take a while
3627 	 * to respond.  During this recovery period, the BMSR returns
3628 	 * a value of 0.  Catch this -- it's not supposed to happen
3629 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3630 	 * PHY to come back to life.
3631 	 *
3632 	 * This works out because the BMSR is the first register
3633 	 * read during the PHY probe process.
3634 	 */
3635 	do {
3636 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3637 	} while (reg == MII_BMSR && val == 0);
3638 
3639 	return (val & 0xffff);
3640 }
3641 
3642 /*
3643  * sip_dp83815_mii_writereg:	[mii interface function]
3644  *
3645  *	Write a PHY register to the MII.
3646  */
3647 static void
3648 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, int val)
3649 {
3650 	struct sip_softc *sc = device_private(self);
3651 
3652 	/*
3653 	 * The DP83815 only has an internal PHY.  Only allow
3654 	 * MII address 0.
3655 	 */
3656 	if (phy != 0)
3657 		return;
3658 
3659 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3660 }
3661 
3662 /*
3663  * sip_dp83815_mii_statchg:	[mii interface function]
3664  *
3665  *	Callback from MII layer when media changes.
3666  */
3667 static void
3668 sipcom_dp83815_mii_statchg(device_t self)
3669 {
3670 	struct sip_softc *sc = device_private(self);
3671 
3672 	/*
3673 	 * Update TXCFG for full-duplex operation.
3674 	 */
3675 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3676 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3677 	else
3678 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3679 
3680 	/*
3681 	 * Update RXCFG for full-duplex or loopback.
3682 	 */
3683 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3684 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3685 		sc->sc_rxcfg |= RXCFG_ATX;
3686 	else
3687 		sc->sc_rxcfg &= ~RXCFG_ATX;
3688 
3689 	/*
3690 	 * XXX 802.3x flow control.
3691 	 */
3692 
3693 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3694 	    sc->sc_txcfg);
3695 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3696 	    sc->sc_rxcfg);
3697 
3698 	/*
3699 	 * Some DP83815s experience problems when used with short
3700 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
3701 	 * sequence adjusts the DSP's signal attenuation to fix the
3702 	 * problem.
3703 	 */
3704 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3705 		uint32_t reg;
3706 
3707 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3708 
3709 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3710 		reg &= 0x0fff;
3711 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3712 		delay(100);
3713 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3714 		reg &= 0x00ff;
3715 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3716 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3717 			    0x00e8);
3718 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3719 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3720 			    reg | 0x20);
3721 		}
3722 
3723 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3724 	}
3725 }
3726 
3727 static void
3728 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3729     const struct pci_attach_args *pa, u_int8_t *enaddr)
3730 {
3731 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3732 	u_int8_t cksum, *e, match;
3733 	int i;
3734 
3735 	/*
3736 	 * EEPROM data format for the DP83820 can be found in
3737 	 * the DP83820 manual, section 4.2.4.
3738 	 */
3739 
3740 	sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3741 
3742 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3743 	match = ~(match - 1);
3744 
3745 	cksum = 0x55;
3746 	e = (u_int8_t *) eeprom_data;
3747 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3748 		cksum += *e++;
3749 
3750 	if (cksum != match)
3751 		printf("%s: Checksum (%x) mismatch (%x)",
3752 		    device_xname(&sc->sc_dev), cksum, match);
3753 
3754 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3755 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3756 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3757 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3758 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3759 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3760 }
3761 
3762 static void
3763 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3764 {
3765 	int i;
3766 
3767 	/*
3768 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
3769 	 * a reason, but I don't know it.
3770 	 */
3771 	for (i = 0; i < 10; i++)
3772 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3773 }
3774 
3775 static void
3776 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3777     const struct pci_attach_args *pa, u_int8_t *enaddr)
3778 {
3779 	u_int16_t myea[ETHER_ADDR_LEN / 2];
3780 
3781 	switch (sc->sc_rev) {
3782 	case SIS_REV_630S:
3783 	case SIS_REV_630E:
3784 	case SIS_REV_630EA1:
3785 	case SIS_REV_630ET:
3786 	case SIS_REV_635:
3787 		/*
3788 		 * The MAC address for the on-board Ethernet of
3789 		 * the SiS 630 chipset is in the NVRAM.  Kick
3790 		 * the chip into re-loading it from NVRAM, and
3791 		 * read the MAC address out of the filter registers.
3792 		 */
3793 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3794 
3795 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3796 		    RFCR_RFADDR_NODE0);
3797 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3798 		    0xffff;
3799 
3800 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3801 		    RFCR_RFADDR_NODE2);
3802 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3803 		    0xffff;
3804 
3805 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3806 		    RFCR_RFADDR_NODE4);
3807 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3808 		    0xffff;
3809 		break;
3810 
3811 	case SIS_REV_960:
3812 		{
3813 #define	SIS_SET_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3814 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3815 
3816 #define	SIS_CLR_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3817 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3818 
3819 			int waittime, i;
3820 
3821 			/* Allow to read EEPROM from LAN. It is shared
3822 			 * between a 1394 controller and the NIC and each
3823 			 * time we access it, we need to set SIS_EECMD_REQ.
3824 			 */
3825 			SIS_SET_EROMAR(sc, EROMAR_REQ);
3826 
3827 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3828 				/* Force EEPROM to idle state. */
3829 
3830 				/*
3831 				 * XXX-cube This is ugly.  I'll look for docs about it.
3832 				 */
3833 				SIS_SET_EROMAR(sc, EROMAR_EECS);
3834 				sipcom_sis900_eeprom_delay(sc);
3835 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3836 					SIS_SET_EROMAR(sc, EROMAR_EESK);
3837 					sipcom_sis900_eeprom_delay(sc);
3838 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
3839 					sipcom_sis900_eeprom_delay(sc);
3840 				}
3841 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
3842 				sipcom_sis900_eeprom_delay(sc);
3843 				bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3844 
3845 				if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3846 					sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3847 					    sizeof(myea) / sizeof(myea[0]), myea);
3848 					break;
3849 				}
3850 				DELAY(1);
3851 			}
3852 
3853 			/*
3854 			 * Set SIS_EECTL_CLK to high, so a other master
3855 			 * can operate on the i2c bus.
3856 			 */
3857 			SIS_SET_EROMAR(sc, EROMAR_EESK);
3858 
3859 			/* Refuse EEPROM access by LAN */
3860 			SIS_SET_EROMAR(sc, EROMAR_DONE);
3861 		} break;
3862 
3863 	default:
3864 		sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3865 		    sizeof(myea) / sizeof(myea[0]), myea);
3866 	}
3867 
3868 	enaddr[0] = myea[0] & 0xff;
3869 	enaddr[1] = myea[0] >> 8;
3870 	enaddr[2] = myea[1] & 0xff;
3871 	enaddr[3] = myea[1] >> 8;
3872 	enaddr[4] = myea[2] & 0xff;
3873 	enaddr[5] = myea[2] >> 8;
3874 }
3875 
3876 /* Table and macro to bit-reverse an octet. */
3877 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3878 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3879 
3880 static void
3881 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3882     const struct pci_attach_args *pa, u_int8_t *enaddr)
3883 {
3884 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3885 	u_int8_t cksum, *e, match;
3886 	int i;
3887 
3888 	sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3889 	    sizeof(eeprom_data[0]), eeprom_data);
3890 
3891 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3892 	match = ~(match - 1);
3893 
3894 	cksum = 0x55;
3895 	e = (u_int8_t *) eeprom_data;
3896 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3897 		cksum += *e++;
3898 	}
3899 	if (cksum != match) {
3900 		printf("%s: Checksum (%x) mismatch (%x)",
3901 		    device_xname(&sc->sc_dev), cksum, match);
3902 	}
3903 
3904 	/*
3905 	 * Unrolled because it makes slightly more sense this way.
3906 	 * The DP83815 stores the MAC address in bit 0 of word 6
3907 	 * through bit 15 of word 8.
3908 	 */
3909 	ea = &eeprom_data[6];
3910 	enaddr[0] = ((*ea & 0x1) << 7);
3911 	ea++;
3912 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
3913 	enaddr[1] = ((*ea & 0x1FE) >> 1);
3914 	enaddr[2] = ((*ea & 0x1) << 7);
3915 	ea++;
3916 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
3917 	enaddr[3] = ((*ea & 0x1FE) >> 1);
3918 	enaddr[4] = ((*ea & 0x1) << 7);
3919 	ea++;
3920 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
3921 	enaddr[5] = ((*ea & 0x1FE) >> 1);
3922 
3923 	/*
3924 	 * In case that's not weird enough, we also need to reverse
3925 	 * the bits in each byte.  This all actually makes more sense
3926 	 * if you think about the EEPROM storage as an array of bits
3927 	 * being shifted into bytes, but that's not how we're looking
3928 	 * at it here...
3929 	 */
3930 	for (i = 0; i < 6 ;i++)
3931 		enaddr[i] = bbr(enaddr[i]);
3932 }
3933 
3934 /*
3935  * sip_mediastatus:	[ifmedia interface function]
3936  *
3937  *	Get the current interface media status.
3938  */
3939 static void
3940 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3941 {
3942 	struct sip_softc *sc = ifp->if_softc;
3943 
3944 	ether_mediastatus(ifp, ifmr);
3945 	ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
3946 			   sc->sc_flowflags;
3947 }
3948