xref: /netbsd-src/sys/dev/pci/if_sip.c (revision 5dd36a3bc8bf2a9dec29ceb6349550414570c447)
1 /*	$NetBSD: if_sip.c,v 1.178 2020/02/07 00:04:28 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1999 Network Computer, Inc.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of Network Computer, Inc. nor the names of its
45  *    contributors may be used to endorse or promote products derived
46  *    from this software without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
49  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
50  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
51  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
52  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
53  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
54  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
55  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
56  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
57  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
58  * POSSIBILITY OF SUCH DAMAGE.
59  */
60 
61 /*
62  * Device driver for the Silicon Integrated Systems SiS 900,
63  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
64  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
65  * controllers.
66  *
67  * Originally written to support the SiS 900 by Jason R. Thorpe for
68  * Network Computer, Inc.
69  *
70  * TODO:
71  *
72  *	- Reduce the Rx interrupt load.
73  */
74 
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.178 2020/02/07 00:04:28 thorpej Exp $");
77 
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/callout.h>
81 #include <sys/mbuf.h>
82 #include <sys/malloc.h>
83 #include <sys/kernel.h>
84 #include <sys/socket.h>
85 #include <sys/ioctl.h>
86 #include <sys/errno.h>
87 #include <sys/device.h>
88 #include <sys/queue.h>
89 #include <sys/rndsource.h>
90 
91 #include <net/if.h>
92 #include <net/if_dl.h>
93 #include <net/if_media.h>
94 #include <net/if_ether.h>
95 #include <net/bpf.h>
96 
97 #include <sys/bus.h>
98 #include <sys/intr.h>
99 #include <machine/endian.h>
100 
101 #include <dev/mii/mii.h>
102 #include <dev/mii/miivar.h>
103 #include <dev/mii/mii_bitbang.h>
104 
105 #include <dev/pci/pcireg.h>
106 #include <dev/pci/pcivar.h>
107 #include <dev/pci/pcidevs.h>
108 
109 #include <dev/pci/if_sipreg.h>
110 
111 /*
112  * Transmit descriptor list size.  This is arbitrary, but allocate
113  * enough descriptors for 128 pending transmissions, and 8 segments
114  * per packet (64 for DP83820 for jumbo frames).
115  *
116  * This MUST work out to a power of 2.
117  */
118 #define	GSIP_NTXSEGS_ALLOC	16
119 #define	SIP_NTXSEGS_ALLOC	8
120 
121 #define	SIP_TXQUEUELEN		256
122 #define	MAX_SIP_NTXDESC	\
123     (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
124 
125 /*
126  * Receive descriptor list size.  We have one Rx buffer per incoming
127  * packet, so this logic is a little simpler.
128  *
129  * Actually, on the DP83820, we allow the packet to consume more than
130  * one buffer, in order to support jumbo Ethernet frames.  In that
131  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
132  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
133  * so we'd better be quick about handling receive interrupts.
134  */
135 #define	GSIP_NRXDESC		256
136 #define	SIP_NRXDESC		128
137 
138 #define	MAX_SIP_NRXDESC	MAX(GSIP_NRXDESC, SIP_NRXDESC)
139 
140 /*
141  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
142  * a single clump that maps to a single DMA segment to make several things
143  * easier.
144  */
145 struct sip_control_data {
146 	/*
147 	 * The transmit descriptors.
148 	 */
149 	struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
150 
151 	/*
152 	 * The receive descriptors.
153 	 */
154 	struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
155 };
156 
157 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
158 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
159 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
160 
161 /*
162  * Software state for transmit jobs.
163  */
164 struct sip_txsoft {
165 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
166 	bus_dmamap_t txs_dmamap;	/* our DMA map */
167 	int txs_firstdesc;		/* first descriptor in packet */
168 	int txs_lastdesc;		/* last descriptor in packet */
169 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
170 };
171 
172 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
173 
174 /*
175  * Software state for receive jobs.
176  */
177 struct sip_rxsoft {
178 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
179 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
180 };
181 
182 enum sip_attach_stage {
183 	  SIP_ATTACH_FIN = 0
184 	, SIP_ATTACH_CREATE_RXMAP
185 	, SIP_ATTACH_CREATE_TXMAP
186 	, SIP_ATTACH_LOAD_MAP
187 	, SIP_ATTACH_CREATE_MAP
188 	, SIP_ATTACH_MAP_MEM
189 	, SIP_ATTACH_ALLOC_MEM
190 	, SIP_ATTACH_INTR
191 	, SIP_ATTACH_MAP
192 };
193 
194 /*
195  * Software state per device.
196  */
197 struct sip_softc {
198 	device_t sc_dev;		/* generic device information */
199 	device_suspensor_t		sc_suspensor;
200 	pmf_qual_t			sc_qual;
201 
202 	bus_space_tag_t sc_st;		/* bus space tag */
203 	bus_space_handle_t sc_sh;	/* bus space handle */
204 	bus_size_t sc_sz;		/* bus space size */
205 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
206 	pci_chipset_tag_t sc_pc;
207 	bus_dma_segment_t sc_seg;
208 	struct ethercom sc_ethercom;	/* ethernet common data */
209 
210 	const struct sip_product *sc_model; /* which model are we? */
211 	int sc_gigabit;			/* 1: 83820, 0: other */
212 	int sc_rev;			/* chip revision */
213 
214 	void *sc_ih;			/* interrupt cookie */
215 
216 	struct mii_data sc_mii;		/* MII/media information */
217 
218 	callout_t sc_tick_ch;		/* tick callout */
219 
220 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
221 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
222 
223 	/*
224 	 * Software state for transmit and receive descriptors.
225 	 */
226 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
227 	struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
228 
229 	/*
230 	 * Control data structures.
231 	 */
232 	struct sip_control_data *sc_control_data;
233 #define	sc_txdescs	sc_control_data->scd_txdescs
234 #define	sc_rxdescs	sc_control_data->scd_rxdescs
235 
236 #ifdef SIP_EVENT_COUNTERS
237 	/*
238 	 * Event counters.
239 	 */
240 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
241 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
242 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
243 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
244 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
245 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
246 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
247 	struct evcnt sc_ev_rxpause;	/* PAUSE received */
248 	/* DP83820 only */
249 	struct evcnt sc_ev_txpause;	/* PAUSE transmitted */
250 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
251 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
252 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
253 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
254 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
255 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
256 #endif /* SIP_EVENT_COUNTERS */
257 
258 	uint32_t sc_txcfg;		/* prototype TXCFG register */
259 	uint32_t sc_rxcfg;		/* prototype RXCFG register */
260 	uint32_t sc_imr;		/* prototype IMR register */
261 	uint32_t sc_rfcr;		/* prototype RFCR register */
262 
263 	uint32_t sc_cfg;		/* prototype CFG register */
264 
265 	uint32_t sc_gpior;		/* prototype GPIOR register */
266 
267 	uint32_t sc_tx_fill_thresh;	/* transmit fill threshold */
268 	uint32_t sc_tx_drain_thresh;	/* transmit drain threshold */
269 
270 	uint32_t sc_rx_drain_thresh;	/* receive drain threshold */
271 
272 	int	sc_flowflags;		/* 802.3x flow control flags */
273 	int	sc_rx_flow_thresh;	/* Rx FIFO threshold for flow control */
274 	int	sc_paused;		/* paused indication */
275 
276 	int	sc_txfree;		/* number of free Tx descriptors */
277 	int	sc_txnext;		/* next ready Tx descriptor */
278 	int	sc_txwin;		/* Tx descriptors since last intr */
279 
280 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
281 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
282 
283 	/* values of interface state at last init */
284 	struct {
285 		/* if_capenable */
286 		uint64_t	if_capenable;
287 		/* ec_capenable */
288 		int		ec_capenable;
289 		/* VLAN_ATTACHED */
290 		int		is_vlan;
291 	}	sc_prev;
292 
293 	u_short	sc_if_flags;
294 
295 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
296 	int	sc_rxdiscard;
297 	int	sc_rxlen;
298 	struct mbuf *sc_rxhead;
299 	struct mbuf *sc_rxtail;
300 	struct mbuf **sc_rxtailp;
301 
302 	int sc_ntxdesc;
303 	int sc_ntxdesc_mask;
304 
305 	int sc_nrxdesc_mask;
306 
307 	const struct sip_parm {
308 		const struct sip_regs {
309 			int r_rxcfg;
310 			int r_txcfg;
311 		} p_regs;
312 
313 		const struct sip_bits {
314 			uint32_t b_txcfg_mxdma_8;
315 			uint32_t b_txcfg_mxdma_16;
316 			uint32_t b_txcfg_mxdma_32;
317 			uint32_t b_txcfg_mxdma_64;
318 			uint32_t b_txcfg_mxdma_128;
319 			uint32_t b_txcfg_mxdma_256;
320 			uint32_t b_txcfg_mxdma_512;
321 			uint32_t b_txcfg_flth_mask;
322 			uint32_t b_txcfg_drth_mask;
323 
324 			uint32_t b_rxcfg_mxdma_8;
325 			uint32_t b_rxcfg_mxdma_16;
326 			uint32_t b_rxcfg_mxdma_32;
327 			uint32_t b_rxcfg_mxdma_64;
328 			uint32_t b_rxcfg_mxdma_128;
329 			uint32_t b_rxcfg_mxdma_256;
330 			uint32_t b_rxcfg_mxdma_512;
331 
332 			uint32_t b_isr_txrcmp;
333 			uint32_t b_isr_rxrcmp;
334 			uint32_t b_isr_dperr;
335 			uint32_t b_isr_sserr;
336 			uint32_t b_isr_rmabt;
337 			uint32_t b_isr_rtabt;
338 
339 			uint32_t b_cmdsts_size_mask;
340 		} p_bits;
341 		int		p_filtmem;
342 		int		p_rxbuf_len;
343 		bus_size_t	p_tx_dmamap_size;
344 		int		p_ntxsegs;
345 		int		p_ntxsegs_alloc;
346 		int		p_nrxdesc;
347 	} *sc_parm;
348 
349 	void (*sc_rxintr)(struct sip_softc *);
350 
351 	krndsource_t rnd_source;	/* random source */
352 };
353 
354 #define	sc_bits	sc_parm->p_bits
355 #define	sc_regs	sc_parm->p_regs
356 
357 static const struct sip_parm sip_parm = {
358 	  .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
359 	, .p_rxbuf_len = MCLBYTES - 1	/* field width */
360 	, .p_tx_dmamap_size = MCLBYTES
361 	, .p_ntxsegs = 16
362 	, .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
363 	, .p_nrxdesc = SIP_NRXDESC
364 	, .p_bits = {
365 		  .b_txcfg_mxdma_8	= 0x00200000	/*	 8 bytes */
366 		, .b_txcfg_mxdma_16	= 0x00300000	/*	16 bytes */
367 		, .b_txcfg_mxdma_32	= 0x00400000	/*	32 bytes */
368 		, .b_txcfg_mxdma_64	= 0x00500000	/*	64 bytes */
369 		, .b_txcfg_mxdma_128	= 0x00600000	/*     128 bytes */
370 		, .b_txcfg_mxdma_256	= 0x00700000	/*     256 bytes */
371 		, .b_txcfg_mxdma_512	= 0x00000000	/*     512 bytes */
372 		, .b_txcfg_flth_mask	= 0x00003f00	/* Tx fill threshold */
373 		, .b_txcfg_drth_mask	= 0x0000003f	/* Tx drain threshold */
374 
375 		, .b_rxcfg_mxdma_8	= 0x00200000	/*	 8 bytes */
376 		, .b_rxcfg_mxdma_16	= 0x00300000	/*	16 bytes */
377 		, .b_rxcfg_mxdma_32	= 0x00400000	/*	32 bytes */
378 		, .b_rxcfg_mxdma_64	= 0x00500000	/*	64 bytes */
379 		, .b_rxcfg_mxdma_128	= 0x00600000	/*     128 bytes */
380 		, .b_rxcfg_mxdma_256	= 0x00700000	/*     256 bytes */
381 		, .b_rxcfg_mxdma_512	= 0x00000000	/*     512 bytes */
382 
383 		, .b_isr_txrcmp	= 0x02000000	/* transmit reset complete */
384 		, .b_isr_rxrcmp	= 0x01000000	/* receive reset complete */
385 		, .b_isr_dperr	= 0x00800000	/* detected parity error */
386 		, .b_isr_sserr	= 0x00400000	/* signalled system error */
387 		, .b_isr_rmabt	= 0x00200000	/* received master abort */
388 		, .b_isr_rtabt	= 0x00100000	/* received target abort */
389 		, .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
390 	}
391 	, .p_regs = {
392 		.r_rxcfg = OTHER_SIP_RXCFG,
393 		.r_txcfg = OTHER_SIP_TXCFG
394 	}
395 }, gsip_parm = {
396 	  .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
397 	, .p_rxbuf_len = MCLBYTES - 8
398 	, .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
399 	, .p_ntxsegs = 64
400 	, .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
401 	, .p_nrxdesc = GSIP_NRXDESC
402 	, .p_bits = {
403 		  .b_txcfg_mxdma_8	= 0x00100000	/*	 8 bytes */
404 		, .b_txcfg_mxdma_16	= 0x00200000	/*	16 bytes */
405 		, .b_txcfg_mxdma_32	= 0x00300000	/*	32 bytes */
406 		, .b_txcfg_mxdma_64	= 0x00400000	/*	64 bytes */
407 		, .b_txcfg_mxdma_128	= 0x00500000	/*     128 bytes */
408 		, .b_txcfg_mxdma_256	= 0x00600000	/*     256 bytes */
409 		, .b_txcfg_mxdma_512	= 0x00700000	/*     512 bytes */
410 		, .b_txcfg_flth_mask	= 0x0000ff00	/* Fx fill threshold */
411 		, .b_txcfg_drth_mask	= 0x000000ff	/* Tx drain threshold */
412 
413 		, .b_rxcfg_mxdma_8	= 0x00100000	/*	 8 bytes */
414 		, .b_rxcfg_mxdma_16	= 0x00200000	/*	16 bytes */
415 		, .b_rxcfg_mxdma_32	= 0x00300000	/*	32 bytes */
416 		, .b_rxcfg_mxdma_64	= 0x00400000	/*	64 bytes */
417 		, .b_rxcfg_mxdma_128	= 0x00500000	/*     128 bytes */
418 		, .b_rxcfg_mxdma_256	= 0x00600000	/*     256 bytes */
419 		, .b_rxcfg_mxdma_512	= 0x00700000	/*     512 bytes */
420 
421 		, .b_isr_txrcmp	= 0x00400000	/* transmit reset complete */
422 		, .b_isr_rxrcmp	= 0x00200000	/* receive reset complete */
423 		, .b_isr_dperr	= 0x00100000	/* detected parity error */
424 		, .b_isr_sserr	= 0x00080000	/* signalled system error */
425 		, .b_isr_rmabt	= 0x00040000	/* received master abort */
426 		, .b_isr_rtabt	= 0x00020000	/* received target abort */
427 		, .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
428 	}
429 	, .p_regs = {
430 		.r_rxcfg = DP83820_SIP_RXCFG,
431 		.r_txcfg = DP83820_SIP_TXCFG
432 	}
433 };
434 
435 static inline int
436 sip_nexttx(const struct sip_softc *sc, int x)
437 {
438 	return (x + 1) & sc->sc_ntxdesc_mask;
439 }
440 
441 static inline int
442 sip_nextrx(const struct sip_softc *sc, int x)
443 {
444 	return (x + 1) & sc->sc_nrxdesc_mask;
445 }
446 
447 /* 83820 only */
448 static inline void
449 sip_rxchain_reset(struct sip_softc *sc)
450 {
451 	sc->sc_rxtailp = &sc->sc_rxhead;
452 	*sc->sc_rxtailp = NULL;
453 	sc->sc_rxlen = 0;
454 }
455 
456 /* 83820 only */
457 static inline void
458 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
459 {
460 	*sc->sc_rxtailp = sc->sc_rxtail = m;
461 	sc->sc_rxtailp = &m->m_next;
462 }
463 
464 #ifdef SIP_EVENT_COUNTERS
465 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
466 #else
467 #define	SIP_EVCNT_INCR(ev)	/* nothing */
468 #endif
469 
470 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
471 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
472 
473 static inline void
474 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
475 {
476 	int x, n;
477 
478 	x = x0;
479 	n = n0;
480 
481 	/* If it will wrap around, sync to the end of the ring. */
482 	if (x + n > sc->sc_ntxdesc) {
483 		bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
484 		    SIP_CDTXOFF(x), sizeof(struct sip_desc) *
485 		    (sc->sc_ntxdesc - x), ops);
486 		n -= (sc->sc_ntxdesc - x);
487 		x = 0;
488 	}
489 
490 	/* Now sync whatever is left. */
491 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
492 	    SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
493 }
494 
495 static inline void
496 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
497 {
498 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
499 	    SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
500 }
501 
502 #if 0
503 #ifdef DP83820
504 	uint32_t	sipd_bufptr;	/* pointer to DMA segment */
505 	uint32_t	sipd_cmdsts;	/* command/status word */
506 #else
507 	uint32_t	sipd_cmdsts;	/* command/status word */
508 	uint32_t	sipd_bufptr;	/* pointer to DMA segment */
509 #endif /* DP83820 */
510 #endif /* 0 */
511 
512 static inline volatile uint32_t *
513 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
514 {
515 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
516 }
517 
518 static inline volatile uint32_t *
519 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
520 {
521 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
522 }
523 
524 static inline void
525 sip_init_rxdesc(struct sip_softc *sc, int x)
526 {
527 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
528 	struct sip_desc *sipd = &sc->sc_rxdescs[x];
529 
530 	sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
531 	*sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
532 	*sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
533 	    (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
534 	sipd->sipd_extsts = 0;
535 	sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
536 }
537 
538 #define	SIP_CHIP_VERS(sc, v, p, r)					\
539 	((sc)->sc_model->sip_vendor == (v) &&				\
540 	 (sc)->sc_model->sip_product == (p) &&				\
541 	 (sc)->sc_rev == (r))
542 
543 #define	SIP_CHIP_MODEL(sc, v, p)					\
544 	((sc)->sc_model->sip_vendor == (v) &&				\
545 	 (sc)->sc_model->sip_product == (p))
546 
547 #define	SIP_SIS900_REV(sc, rev)						\
548 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
549 
550 #define SIP_TIMEOUT 1000
551 
552 static int	sip_ifflags_cb(struct ethercom *);
553 static void	sipcom_start(struct ifnet *);
554 static void	sipcom_watchdog(struct ifnet *);
555 static int	sipcom_ioctl(struct ifnet *, u_long, void *);
556 static int	sipcom_init(struct ifnet *);
557 static void	sipcom_stop(struct ifnet *, int);
558 
559 static bool	sipcom_reset(struct sip_softc *);
560 static void	sipcom_rxdrain(struct sip_softc *);
561 static int	sipcom_add_rxbuf(struct sip_softc *, int);
562 static void	sipcom_read_eeprom(struct sip_softc *, int, int,
563 				      uint16_t *);
564 static void	sipcom_tick(void *);
565 
566 static void	sipcom_sis900_set_filter(struct sip_softc *);
567 static void	sipcom_dp83815_set_filter(struct sip_softc *);
568 
569 static void	sipcom_dp83820_read_macaddr(struct sip_softc *,
570 		    const struct pci_attach_args *, uint8_t *);
571 static void	sipcom_sis900_eeprom_delay(struct sip_softc *sc);
572 static void	sipcom_sis900_read_macaddr(struct sip_softc *,
573 		    const struct pci_attach_args *, uint8_t *);
574 static void	sipcom_dp83815_read_macaddr(struct sip_softc *,
575 		    const struct pci_attach_args *, uint8_t *);
576 
577 static int	sipcom_intr(void *);
578 static void	sipcom_txintr(struct sip_softc *);
579 static void	sip_rxintr(struct sip_softc *);
580 static void	gsip_rxintr(struct sip_softc *);
581 
582 static int	sipcom_dp83820_mii_readreg(device_t, int, int, uint16_t *);
583 static int	sipcom_dp83820_mii_writereg(device_t, int, int, uint16_t);
584 static void	sipcom_dp83820_mii_statchg(struct ifnet *);
585 
586 static int	sipcom_sis900_mii_readreg(device_t, int, int, uint16_t *);
587 static int	sipcom_sis900_mii_writereg(device_t, int, int, uint16_t);
588 static void	sipcom_sis900_mii_statchg(struct ifnet *);
589 
590 static int	sipcom_dp83815_mii_readreg(device_t, int, int, uint16_t *);
591 static int	sipcom_dp83815_mii_writereg(device_t, int, int, uint16_t);
592 static void	sipcom_dp83815_mii_statchg(struct ifnet *);
593 
594 static void	sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
595 
596 static int	sipcom_match(device_t, cfdata_t, void *);
597 static void	sipcom_attach(device_t, device_t, void *);
598 static void	sipcom_do_detach(device_t, enum sip_attach_stage);
599 static int	sipcom_detach(device_t, int);
600 static bool	sipcom_resume(device_t, const pmf_qual_t *);
601 static bool	sipcom_suspend(device_t, const pmf_qual_t *);
602 
603 int	gsip_copy_small = 0;
604 int	sip_copy_small = 0;
605 
606 CFATTACH_DECL3_NEW(gsip, sizeof(struct sip_softc),
607     sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
608     DVF_DETACH_SHUTDOWN);
609 CFATTACH_DECL3_NEW(sip, sizeof(struct sip_softc),
610     sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
611     DVF_DETACH_SHUTDOWN);
612 
613 /*
614  * Descriptions of the variants of the SiS900.
615  */
616 struct sip_variant {
617 	int	(*sipv_mii_readreg)(device_t, int, int, uint16_t *);
618 	int	(*sipv_mii_writereg)(device_t, int, int, uint16_t);
619 	void	(*sipv_mii_statchg)(struct ifnet *);
620 	void	(*sipv_set_filter)(struct sip_softc *);
621 	void	(*sipv_read_macaddr)(struct sip_softc *,
622 		    const struct pci_attach_args *, uint8_t *);
623 };
624 
625 static uint32_t sipcom_mii_bitbang_read(device_t);
626 static void	sipcom_mii_bitbang_write(device_t, uint32_t);
627 
628 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
629 	sipcom_mii_bitbang_read,
630 	sipcom_mii_bitbang_write,
631 	{
632 		EROMAR_MDIO,		/* MII_BIT_MDO */
633 		EROMAR_MDIO,		/* MII_BIT_MDI */
634 		EROMAR_MDC,		/* MII_BIT_MDC */
635 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
636 		0,			/* MII_BIT_DIR_PHY_HOST */
637 	}
638 };
639 
640 static const struct sip_variant sipcom_variant_dp83820 = {
641 	sipcom_dp83820_mii_readreg,
642 	sipcom_dp83820_mii_writereg,
643 	sipcom_dp83820_mii_statchg,
644 	sipcom_dp83815_set_filter,
645 	sipcom_dp83820_read_macaddr,
646 };
647 
648 static const struct sip_variant sipcom_variant_sis900 = {
649 	sipcom_sis900_mii_readreg,
650 	sipcom_sis900_mii_writereg,
651 	sipcom_sis900_mii_statchg,
652 	sipcom_sis900_set_filter,
653 	sipcom_sis900_read_macaddr,
654 };
655 
656 static const struct sip_variant sipcom_variant_dp83815 = {
657 	sipcom_dp83815_mii_readreg,
658 	sipcom_dp83815_mii_writereg,
659 	sipcom_dp83815_mii_statchg,
660 	sipcom_dp83815_set_filter,
661 	sipcom_dp83815_read_macaddr,
662 };
663 
664 
665 /*
666  * Devices supported by this driver.
667  */
668 static const struct sip_product {
669 	pci_vendor_id_t		sip_vendor;
670 	pci_product_id_t	sip_product;
671 	const char		*sip_name;
672 	const struct sip_variant *sip_variant;
673 	int			sip_gigabit;
674 } sipcom_products[] = {
675 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
676 	  "NatSemi DP83820 Gigabit Ethernet",
677 	  &sipcom_variant_dp83820, 1 },
678 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
679 	  "SiS 900 10/100 Ethernet",
680 	  &sipcom_variant_sis900, 0 },
681 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
682 	  "SiS 7016 10/100 Ethernet",
683 	  &sipcom_variant_sis900, 0 },
684 
685 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
686 	  "NatSemi DP83815 10/100 Ethernet",
687 	  &sipcom_variant_dp83815, 0 },
688 
689 	{ 0,			0,
690 	  NULL,
691 	  NULL, 0 },
692 };
693 
694 static const struct sip_product *
695 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
696 {
697 	const struct sip_product *sip;
698 
699 	for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
700 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
701 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
702 		    sip->sip_gigabit == gigabit)
703 			return sip;
704 	}
705 	return NULL;
706 }
707 
708 /*
709  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
710  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
711  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
712  * which means we try to use 64-bit data transfers on those cards if we
713  * happen to be plugged into a 32-bit slot.
714  *
715  * What we do is use this table of cards known to be 64-bit cards.  If
716  * you have a 64-bit card who's subsystem ID is not listed in this table,
717  * send the output of "pcictl dump ..." of the device to me so that your
718  * card will use the 64-bit data path when plugged into a 64-bit slot.
719  *
720  *	-- Jason R. Thorpe <thorpej@NetBSD.org>
721  *	   June 30, 2002
722  */
723 static int
724 sipcom_check_64bit(const struct pci_attach_args *pa)
725 {
726 	static const struct {
727 		pci_vendor_id_t c64_vendor;
728 		pci_product_id_t c64_product;
729 	} card64[] = {
730 		/* Asante GigaNIX */
731 		{ 0x128a,	0x0002 },
732 
733 		/* Accton EN1407-T, Planex GN-1000TE */
734 		{ 0x1113,	0x1407 },
735 
736 		/* Netgear GA621 */
737 		{ 0x1385,	0x621a },
738 
739 		/* Netgear GA622 */
740 		{ 0x1385,	0x622a },
741 
742 		/* SMC EZ Card 1000 (9462TX) */
743 		{ 0x10b8,	0x9462 },
744 
745 		{ 0, 0}
746 	};
747 	pcireg_t subsys;
748 	int i;
749 
750 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
751 
752 	for (i = 0; card64[i].c64_vendor != 0; i++) {
753 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
754 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
755 			return 1;
756 	}
757 
758 	return 0;
759 }
760 
761 static int
762 sipcom_match(device_t parent, cfdata_t cf, void *aux)
763 {
764 	struct pci_attach_args *pa = aux;
765 
766 	if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
767 		return 1;
768 
769 	return 0;
770 }
771 
772 static void
773 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
774 {
775 	uint32_t reg;
776 	int i;
777 
778 	/*
779 	 * Cause the chip to load configuration data from the EEPROM.
780 	 */
781 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
782 	for (i = 0; i < 10000; i++) {
783 		delay(10);
784 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
785 		    PTSCR_EELOAD_EN) == 0)
786 			break;
787 	}
788 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
789 	    PTSCR_EELOAD_EN) {
790 		printf("%s: timeout loading configuration from EEPROM\n",
791 		    device_xname(sc->sc_dev));
792 		return;
793 	}
794 
795 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
796 
797 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
798 	if (reg & CFG_PCI64_DET) {
799 		printf("%s: 64-bit PCI slot detected", device_xname(sc->sc_dev));
800 		/*
801 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
802 		 * data transfers.
803 		 *
804 		 * We can't use the DATA64_EN bit in the EEPROM, because
805 		 * vendors of 32-bit cards fail to clear that bit in many
806 		 * cases (yet the card still detects that it's in a 64-bit
807 		 * slot; go figure).
808 		 */
809 		if (sipcom_check_64bit(pa)) {
810 			sc->sc_cfg |= CFG_DATA64_EN;
811 			printf(", using 64-bit data transfers");
812 		}
813 		printf("\n");
814 	}
815 
816 	/*
817 	 * XXX Need some PCI flags indicating support for
818 	 * XXX 64-bit addressing.
819 	 */
820 #if 0
821 	if (reg & CFG_M64ADDR)
822 		sc->sc_cfg |= CFG_M64ADDR;
823 	if (reg & CFG_T64ADDR)
824 		sc->sc_cfg |= CFG_T64ADDR;
825 #endif
826 
827 	if (reg & (CFG_TBI_EN | CFG_EXT_125)) {
828 		const char *sep = "";
829 		printf("%s: using ", device_xname(sc->sc_dev));
830 		if (reg & CFG_EXT_125) {
831 			sc->sc_cfg |= CFG_EXT_125;
832 			printf("%s125MHz clock", sep);
833 			sep = ", ";
834 		}
835 		if (reg & CFG_TBI_EN) {
836 			sc->sc_cfg |= CFG_TBI_EN;
837 			printf("%sten-bit interface", sep);
838 			sep = ", ";
839 		}
840 		printf("\n");
841 	}
842 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
843 	    (reg & CFG_MRM_DIS) != 0)
844 		sc->sc_cfg |= CFG_MRM_DIS;
845 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
846 	    (reg & CFG_MWI_DIS) != 0)
847 		sc->sc_cfg |= CFG_MWI_DIS;
848 
849 	/*
850 	 * Use the extended descriptor format on the DP83820.  This
851 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
852 	 * checksumming.
853 	 */
854 	sc->sc_cfg |= CFG_EXTSTS_EN;
855 }
856 
857 static int
858 sipcom_detach(device_t self, int flags)
859 {
860 	int s;
861 
862 	s = splnet();
863 	sipcom_do_detach(self, SIP_ATTACH_FIN);
864 	splx(s);
865 
866 	return 0;
867 }
868 
869 static void
870 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
871 {
872 	int i;
873 	struct sip_softc *sc = device_private(self);
874 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
875 
876 	/*
877 	 * Free any resources we've allocated during attach.
878 	 * Do this in reverse order and fall through.
879 	 */
880 	switch (stage) {
881 	case SIP_ATTACH_FIN:
882 		sipcom_stop(ifp, 1);
883 		pmf_device_deregister(self);
884 #ifdef SIP_EVENT_COUNTERS
885 		/*
886 		 * Attach event counters.
887 		 */
888 		evcnt_detach(&sc->sc_ev_txforceintr);
889 		evcnt_detach(&sc->sc_ev_txdstall);
890 		evcnt_detach(&sc->sc_ev_txsstall);
891 		evcnt_detach(&sc->sc_ev_hiberr);
892 		evcnt_detach(&sc->sc_ev_rxintr);
893 		evcnt_detach(&sc->sc_ev_txiintr);
894 		evcnt_detach(&sc->sc_ev_txdintr);
895 		if (!sc->sc_gigabit) {
896 			evcnt_detach(&sc->sc_ev_rxpause);
897 		} else {
898 			evcnt_detach(&sc->sc_ev_txudpsum);
899 			evcnt_detach(&sc->sc_ev_txtcpsum);
900 			evcnt_detach(&sc->sc_ev_txipsum);
901 			evcnt_detach(&sc->sc_ev_rxudpsum);
902 			evcnt_detach(&sc->sc_ev_rxtcpsum);
903 			evcnt_detach(&sc->sc_ev_rxipsum);
904 			evcnt_detach(&sc->sc_ev_txpause);
905 			evcnt_detach(&sc->sc_ev_rxpause);
906 		}
907 #endif /* SIP_EVENT_COUNTERS */
908 
909 		rnd_detach_source(&sc->rnd_source);
910 
911 		ether_ifdetach(ifp);
912 		if_detach(ifp);
913 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
914 		ifmedia_fini(&sc->sc_mii.mii_media);
915 
916 		/*FALLTHROUGH*/
917 	case SIP_ATTACH_CREATE_RXMAP:
918 		for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
919 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
920 				bus_dmamap_destroy(sc->sc_dmat,
921 				    sc->sc_rxsoft[i].rxs_dmamap);
922 		}
923 		/*FALLTHROUGH*/
924 	case SIP_ATTACH_CREATE_TXMAP:
925 		for (i = 0; i < SIP_TXQUEUELEN; i++) {
926 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
927 				bus_dmamap_destroy(sc->sc_dmat,
928 				    sc->sc_txsoft[i].txs_dmamap);
929 		}
930 		/*FALLTHROUGH*/
931 	case SIP_ATTACH_LOAD_MAP:
932 		bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
933 		/*FALLTHROUGH*/
934 	case SIP_ATTACH_CREATE_MAP:
935 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
936 		/*FALLTHROUGH*/
937 	case SIP_ATTACH_MAP_MEM:
938 		bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
939 		    sizeof(struct sip_control_data));
940 		/*FALLTHROUGH*/
941 	case SIP_ATTACH_ALLOC_MEM:
942 		bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
943 		/* FALLTHROUGH*/
944 	case SIP_ATTACH_INTR:
945 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
946 		/* FALLTHROUGH*/
947 	case SIP_ATTACH_MAP:
948 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
949 		break;
950 	default:
951 		break;
952 	}
953 	return;
954 }
955 
956 static bool
957 sipcom_resume(device_t self, const pmf_qual_t *qual)
958 {
959 	struct sip_softc *sc = device_private(self);
960 
961 	return sipcom_reset(sc);
962 }
963 
964 static bool
965 sipcom_suspend(device_t self, const pmf_qual_t *qual)
966 {
967 	struct sip_softc *sc = device_private(self);
968 
969 	sipcom_rxdrain(sc);
970 	return true;
971 }
972 
973 static void
974 sipcom_attach(device_t parent, device_t self, void *aux)
975 {
976 	struct sip_softc *sc = device_private(self);
977 	struct pci_attach_args *pa = aux;
978 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
979 	struct mii_data * const mii = &sc->sc_mii;
980 	pci_chipset_tag_t pc = pa->pa_pc;
981 	pci_intr_handle_t ih;
982 	const char *intrstr = NULL;
983 	bus_space_tag_t iot, memt;
984 	bus_space_handle_t ioh, memh;
985 	bus_size_t iosz, memsz;
986 	int ioh_valid, memh_valid;
987 	int i, rseg, error;
988 	const struct sip_product *sip;
989 	uint8_t enaddr[ETHER_ADDR_LEN];
990 	pcireg_t csr;
991 	pcireg_t memtype;
992 	bus_size_t tx_dmamap_size;
993 	int ntxsegs_alloc;
994 	cfdata_t cf = device_cfdata(self);
995 	char intrbuf[PCI_INTRSTR_LEN];
996 
997 	callout_init(&sc->sc_tick_ch, 0);
998 	callout_setfunc(&sc->sc_tick_ch, sipcom_tick, sc);
999 
1000 	sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
1001 	if (sip == NULL) {
1002 		aprint_error("\n");
1003 		panic("%s: impossible", __func__);
1004 	}
1005 	sc->sc_dev = self;
1006 	sc->sc_gigabit = sip->sip_gigabit;
1007 	pmf_self_suspensor_init(self, &sc->sc_suspensor, &sc->sc_qual);
1008 	sc->sc_pc = pc;
1009 
1010 	if (sc->sc_gigabit) {
1011 		sc->sc_rxintr = gsip_rxintr;
1012 		sc->sc_parm = &gsip_parm;
1013 	} else {
1014 		sc->sc_rxintr = sip_rxintr;
1015 		sc->sc_parm = &sip_parm;
1016 	}
1017 	tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
1018 	ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
1019 	sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
1020 	sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
1021 	sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
1022 
1023 	sc->sc_rev = PCI_REVISION(pa->pa_class);
1024 
1025 	aprint_naive("\n");
1026 	aprint_normal(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
1027 
1028 	sc->sc_model = sip;
1029 
1030 	/*
1031 	 * XXX Work-around broken PXE firmware on some boards.
1032 	 *
1033 	 * The DP83815 shares an address decoder with the MEM BAR
1034 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
1035 	 * so that memory mapped access works.
1036 	 */
1037 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
1038 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
1039 	    ~PCI_MAPREG_ROM_ENABLE);
1040 
1041 	/*
1042 	 * Map the device.
1043 	 */
1044 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
1045 	    PCI_MAPREG_TYPE_IO, 0,
1046 	    &iot, &ioh, NULL, &iosz) == 0);
1047 	if (sc->sc_gigabit) {
1048 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
1049 		switch (memtype) {
1050 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1051 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1052 			memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1053 			    memtype, 0, &memt, &memh, NULL, &memsz) == 0);
1054 			break;
1055 		default:
1056 			memh_valid = 0;
1057 		}
1058 	} else {
1059 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1060 		    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
1061 		    &memt, &memh, NULL, &memsz) == 0);
1062 	}
1063 
1064 	if (memh_valid) {
1065 		sc->sc_st = memt;
1066 		sc->sc_sh = memh;
1067 		sc->sc_sz = memsz;
1068 	} else if (ioh_valid) {
1069 		sc->sc_st = iot;
1070 		sc->sc_sh = ioh;
1071 		sc->sc_sz = iosz;
1072 	} else {
1073 		aprint_error_dev(self, "unable to map device registers\n");
1074 		return;
1075 	}
1076 
1077 	sc->sc_dmat = pa->pa_dmat;
1078 
1079 	/*
1080 	 * Make sure bus mastering is enabled.  Also make sure
1081 	 * Write/Invalidate is enabled if we're allowed to use it.
1082 	 */
1083 	csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1084 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
1085 		csr |= PCI_COMMAND_INVALIDATE_ENABLE;
1086 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
1087 	    csr | PCI_COMMAND_MASTER_ENABLE);
1088 
1089 	/* Power up chip */
1090 	error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null);
1091 	if (error != 0 && error != EOPNOTSUPP) {
1092 		aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
1093 		return;
1094 	}
1095 
1096 	/*
1097 	 * Map and establish our interrupt.
1098 	 */
1099 	if (pci_intr_map(pa, &ih)) {
1100 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
1101 		return;
1102 	}
1103 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1104 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, sipcom_intr, sc,
1105 	    device_xname(self));
1106 	if (sc->sc_ih == NULL) {
1107 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
1108 		if (intrstr != NULL)
1109 			aprint_error(" at %s", intrstr);
1110 		aprint_error("\n");
1111 		sipcom_do_detach(self, SIP_ATTACH_MAP);
1112 		return;
1113 	}
1114 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1115 
1116 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1117 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1118 
1119 	/*
1120 	 * Allocate the control data structures, and create and load the
1121 	 * DMA map for it.
1122 	 */
1123 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
1124 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
1125 	    &rseg, 0)) != 0) {
1126 		aprint_error_dev(sc->sc_dev,
1127 		    "unable to allocate control data, error = %d\n", error);
1128 		sipcom_do_detach(self, SIP_ATTACH_INTR);
1129 		return;
1130 	}
1131 
1132 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
1133 	    sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
1134 	    BUS_DMA_COHERENT)) != 0) {
1135 		aprint_error_dev(sc->sc_dev,
1136 		    "unable to map control data, error = %d\n", error);
1137 		sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
1138 	}
1139 
1140 	if ((error = bus_dmamap_create(sc->sc_dmat,
1141 	    sizeof(struct sip_control_data), 1,
1142 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
1143 		aprint_error_dev(self, "unable to create control data DMA map"
1144 		    ", error = %d\n", error);
1145 		sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
1146 	}
1147 
1148 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1149 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
1150 	    0)) != 0) {
1151 		aprint_error_dev(self, "unable to load control data DMA map"
1152 		    ", error = %d\n", error);
1153 		sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
1154 	}
1155 
1156 	/*
1157 	 * Create the transmit buffer DMA maps.
1158 	 */
1159 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
1160 		if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
1161 		    sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
1162 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1163 			aprint_error_dev(self, "unable to create tx DMA map %d"
1164 			    ", error = %d\n", i, error);
1165 			sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1166 		}
1167 	}
1168 
1169 	/*
1170 	 * Create the receive buffer DMA maps.
1171 	 */
1172 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1173 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1174 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1175 			aprint_error_dev(self, "unable to create rx DMA map %d"
1176 			    ", error = %d\n", i, error);
1177 			sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1178 		}
1179 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
1180 	}
1181 
1182 	/*
1183 	 * Reset the chip to a known state.
1184 	 */
1185 	sipcom_reset(sc);
1186 
1187 	/*
1188 	 * Read the Ethernet address from the EEPROM.  This might
1189 	 * also fetch other stuff from the EEPROM and stash it
1190 	 * in the softc.
1191 	 */
1192 	sc->sc_cfg = 0;
1193 	if (!sc->sc_gigabit) {
1194 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
1195 		    SIP_SIS900_REV(sc, SIS_REV_900B))
1196 			sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1197 
1198 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
1199 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
1200 		    SIP_SIS900_REV(sc, SIS_REV_900B))
1201 			sc->sc_cfg |=
1202 			    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1203 			     CFG_EDBMASTEN);
1204 	}
1205 
1206 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1207 
1208 	aprint_normal_dev(self, "Ethernet address %s\n",ether_sprintf(enaddr));
1209 
1210 	/*
1211 	 * Initialize the configuration register: aggressive PCI
1212 	 * bus request algorithm, default backoff, default OW timer,
1213 	 * default parity error detection.
1214 	 *
1215 	 * NOTE: "Big endian mode" is useless on the SiS900 and
1216 	 * friends -- it affects packet data, not descriptors.
1217 	 */
1218 	if (sc->sc_gigabit)
1219 		sipcom_dp83820_attach(sc, pa);
1220 
1221 	/*
1222 	 * Initialize our media structures and probe the MII.
1223 	 */
1224 	mii->mii_ifp = ifp;
1225 	mii->mii_readreg = sip->sip_variant->sipv_mii_readreg;
1226 	mii->mii_writereg = sip->sip_variant->sipv_mii_writereg;
1227 	mii->mii_statchg = sip->sip_variant->sipv_mii_statchg;
1228 	sc->sc_ethercom.ec_mii = mii;
1229 	ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
1230 	    sipcom_mediastatus);
1231 
1232 	/*
1233 	 * XXX We cannot handle flow control on the DP83815.
1234 	 */
1235 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1236 		mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
1237 			   MII_OFFSET_ANY, 0);
1238 	else
1239 		mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
1240 			   MII_OFFSET_ANY, MIIF_DOPAUSE);
1241 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
1242 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
1243 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
1244 	} else
1245 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1246 
1247 	ifp = &sc->sc_ethercom.ec_if;
1248 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1249 	ifp->if_softc = sc;
1250 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1251 	sc->sc_if_flags = ifp->if_flags;
1252 	ifp->if_ioctl = sipcom_ioctl;
1253 	ifp->if_start = sipcom_start;
1254 	ifp->if_watchdog = sipcom_watchdog;
1255 	ifp->if_init = sipcom_init;
1256 	ifp->if_stop = sipcom_stop;
1257 	IFQ_SET_READY(&ifp->if_snd);
1258 
1259 	/*
1260 	 * We can support 802.1Q VLAN-sized frames.
1261 	 */
1262 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1263 
1264 	if (sc->sc_gigabit) {
1265 		/*
1266 		 * And the DP83820 can do VLAN tagging in hardware, and
1267 		 * support the jumbo Ethernet MTU.
1268 		 */
1269 		sc->sc_ethercom.ec_capabilities |=
1270 		    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1271 		sc->sc_ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
1272 
1273 		/*
1274 		 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1275 		 * in hardware.
1276 		 */
1277 		ifp->if_capabilities |=
1278 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1279 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1280 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1281 	}
1282 
1283 	/*
1284 	 * Attach the interface.
1285 	 */
1286 	if_attach(ifp);
1287 	if_deferred_start_init(ifp, NULL);
1288 	ether_ifattach(ifp, enaddr);
1289 	ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb);
1290 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1291 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1292 	sc->sc_prev.if_capenable = ifp->if_capenable;
1293 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
1294 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
1295 
1296 	/*
1297 	 * The number of bytes that must be available in
1298 	 * the Tx FIFO before the bus master can DMA more
1299 	 * data into the FIFO.
1300 	 */
1301 	sc->sc_tx_fill_thresh = 64 / 32;
1302 
1303 	/*
1304 	 * Start at a drain threshold of 512 bytes.  We will
1305 	 * increase it if a DMA underrun occurs.
1306 	 *
1307 	 * XXX The minimum value of this variable should be
1308 	 * tuned.  We may be able to improve performance
1309 	 * by starting with a lower value.  That, however,
1310 	 * may trash the first few outgoing packets if the
1311 	 * PCI bus is saturated.
1312 	 */
1313 	if (sc->sc_gigabit)
1314 		sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1315 	else
1316 		sc->sc_tx_drain_thresh = 1504 / 32;
1317 
1318 	/*
1319 	 * Initialize the Rx FIFO drain threshold.
1320 	 *
1321 	 * This is in units of 8 bytes.
1322 	 *
1323 	 * We should never set this value lower than 2; 14 bytes are
1324 	 * required to filter the packet.
1325 	 */
1326 	sc->sc_rx_drain_thresh = 128 / 8;
1327 
1328 #ifdef SIP_EVENT_COUNTERS
1329 	/*
1330 	 * Attach event counters.
1331 	 */
1332 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1333 	    NULL, device_xname(sc->sc_dev), "txsstall");
1334 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1335 	    NULL, device_xname(sc->sc_dev), "txdstall");
1336 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1337 	    NULL, device_xname(sc->sc_dev), "txforceintr");
1338 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1339 	    NULL, device_xname(sc->sc_dev), "txdintr");
1340 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1341 	    NULL, device_xname(sc->sc_dev), "txiintr");
1342 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1343 	    NULL, device_xname(sc->sc_dev), "rxintr");
1344 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1345 	    NULL, device_xname(sc->sc_dev), "hiberr");
1346 	if (!sc->sc_gigabit) {
1347 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1348 		    NULL, device_xname(sc->sc_dev), "rxpause");
1349 	} else {
1350 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1351 		    NULL, device_xname(sc->sc_dev), "rxpause");
1352 		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1353 		    NULL, device_xname(sc->sc_dev), "txpause");
1354 		evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1355 		    NULL, device_xname(sc->sc_dev), "rxipsum");
1356 		evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1357 		    NULL, device_xname(sc->sc_dev), "rxtcpsum");
1358 		evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1359 		    NULL, device_xname(sc->sc_dev), "rxudpsum");
1360 		evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1361 		    NULL, device_xname(sc->sc_dev), "txipsum");
1362 		evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1363 		    NULL, device_xname(sc->sc_dev), "txtcpsum");
1364 		evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1365 		    NULL, device_xname(sc->sc_dev), "txudpsum");
1366 	}
1367 #endif /* SIP_EVENT_COUNTERS */
1368 
1369 	if (pmf_device_register(self, sipcom_suspend, sipcom_resume))
1370 		pmf_class_network_register(self, ifp);
1371 	else
1372 		aprint_error_dev(self, "couldn't establish power handler\n");
1373 }
1374 
1375 static inline void
1376 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1377     uint64_t capenable)
1378 {
1379 	uint32_t extsts;
1380 #ifdef DEBUG
1381 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1382 #endif
1383 	/*
1384 	 * If VLANs are enabled and the packet has a VLAN tag, set
1385 	 * up the descriptor to encapsulate the packet for us.
1386 	 *
1387 	 * This apparently has to be on the last descriptor of
1388 	 * the packet.
1389 	 */
1390 
1391 	/*
1392 	 * Byte swapping is tricky. We need to provide the tag
1393 	 * in a network byte order. On a big-endian machine,
1394 	 * the byteorder is correct, but we need to swap it
1395 	 * anyway, because this will be undone by the outside
1396 	 * htole32(). That's why there must be an
1397 	 * unconditional swap instead of htons() inside.
1398 	 */
1399 	if (vlan_has_tag(m0)) {
1400 		sc->sc_txdescs[lasttx].sipd_extsts |=
1401 		    htole32(EXTSTS_VPKT |
1402 				(bswap16(vlan_get_tag(m0)) &
1403 				 EXTSTS_VTCI));
1404 	}
1405 
1406 	/*
1407 	 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1408 	 * checksumming, set up the descriptor to do this work
1409 	 * for us.
1410 	 *
1411 	 * This apparently has to be on the first descriptor of
1412 	 * the packet.
1413 	 *
1414 	 * Byte-swap constants so the compiler can optimize.
1415 	 */
1416 	extsts = 0;
1417 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1418 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1419 		SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1420 		extsts |= htole32(EXTSTS_IPPKT);
1421 	}
1422 	if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1423 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1424 		SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1425 		extsts |= htole32(EXTSTS_TCPPKT);
1426 	} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1427 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1428 		SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1429 		extsts |= htole32(EXTSTS_UDPPKT);
1430 	}
1431 	sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1432 }
1433 
1434 /*
1435  * sip_start:		[ifnet interface function]
1436  *
1437  *	Start packet transmission on the interface.
1438  */
1439 static void
1440 sipcom_start(struct ifnet *ifp)
1441 {
1442 	struct sip_softc *sc = ifp->if_softc;
1443 	struct mbuf *m0;
1444 	struct mbuf *m;
1445 	struct sip_txsoft *txs;
1446 	bus_dmamap_t dmamap;
1447 	int error, nexttx, lasttx, seg;
1448 	int ofree = sc->sc_txfree;
1449 #if 0
1450 	int firsttx = sc->sc_txnext;
1451 #endif
1452 
1453 	/*
1454 	 * If we've been told to pause, don't transmit any more packets.
1455 	 */
1456 	if (!sc->sc_gigabit && sc->sc_paused)
1457 		ifp->if_flags |= IFF_OACTIVE;
1458 
1459 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1460 		return;
1461 
1462 	/*
1463 	 * Loop through the send queue, setting up transmit descriptors
1464 	 * until we drain the queue, or use up all available transmit
1465 	 * descriptors.
1466 	 */
1467 	for (;;) {
1468 		/* Get a work queue entry. */
1469 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1470 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1471 			break;
1472 		}
1473 
1474 		/*
1475 		 * Grab a packet off the queue.
1476 		 */
1477 		IFQ_POLL(&ifp->if_snd, m0);
1478 		if (m0 == NULL)
1479 			break;
1480 		m = NULL;
1481 
1482 		dmamap = txs->txs_dmamap;
1483 
1484 		/*
1485 		 * Load the DMA map.  If this fails, the packet either
1486 		 * didn't fit in the alloted number of segments, or we
1487 		 * were short on resources.
1488 		 */
1489 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1490 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1491 		/* In the non-gigabit case, we'll copy and try again. */
1492 		if (error != 0 && !sc->sc_gigabit) {
1493 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1494 			if (m == NULL) {
1495 				printf("%s: unable to allocate Tx mbuf\n",
1496 				    device_xname(sc->sc_dev));
1497 				break;
1498 			}
1499 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1500 			if (m0->m_pkthdr.len > MHLEN) {
1501 				MCLGET(m, M_DONTWAIT);
1502 				if ((m->m_flags & M_EXT) == 0) {
1503 					printf("%s: unable to allocate Tx "
1504 					    "cluster\n",
1505 					    device_xname(sc->sc_dev));
1506 					m_freem(m);
1507 					break;
1508 				}
1509 			}
1510 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1511 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1512 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1513 			    m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1514 			if (error) {
1515 				printf("%s: unable to load Tx buffer, error = "
1516 				    "%d\n", device_xname(sc->sc_dev), error);
1517 				break;
1518 			}
1519 		} else if (error == EFBIG) {
1520 			/*
1521 			 * For the too-many-segments case, we simply
1522 			 * report an error and drop the packet,
1523 			 * since we can't sanely copy a jumbo packet
1524 			 * to a single buffer.
1525 			 */
1526 			printf("%s: Tx packet consumes too many DMA segments, "
1527 			    "dropping...\n", device_xname(sc->sc_dev));
1528 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1529 			m_freem(m0);
1530 			continue;
1531 		} else if (error != 0) {
1532 			/*
1533 			 * Short on resources, just stop for now.
1534 			 */
1535 			break;
1536 		}
1537 
1538 		/*
1539 		 * Ensure we have enough descriptors free to describe
1540 		 * the packet.  Note, we always reserve one descriptor
1541 		 * at the end of the ring as a termination point, to
1542 		 * prevent wrap-around.
1543 		 */
1544 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1545 			/*
1546 			 * Not enough free descriptors to transmit this
1547 			 * packet.  We haven't committed anything yet,
1548 			 * so just unload the DMA map, put the packet
1549 			 * back on the queue, and punt.  Notify the upper
1550 			 * layer that there are not more slots left.
1551 			 *
1552 			 * XXX We could allocate an mbuf and copy, but
1553 			 * XXX is it worth it?
1554 			 */
1555 			ifp->if_flags |= IFF_OACTIVE;
1556 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1557 			if (m != NULL)
1558 				m_freem(m);
1559 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1560 			break;
1561 		}
1562 
1563 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1564 		if (m != NULL) {
1565 			m_freem(m0);
1566 			m0 = m;
1567 		}
1568 
1569 		/*
1570 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1571 		 */
1572 
1573 		/* Sync the DMA map. */
1574 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1575 		    BUS_DMASYNC_PREWRITE);
1576 
1577 		/*
1578 		 * Initialize the transmit descriptors.
1579 		 */
1580 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1581 		     seg < dmamap->dm_nsegs;
1582 		     seg++, nexttx = sip_nexttx(sc, nexttx)) {
1583 			/*
1584 			 * If this is the first descriptor we're
1585 			 * enqueueing, don't set the OWN bit just
1586 			 * yet.  That could cause a race condition.
1587 			 * We'll do it below.
1588 			 */
1589 			*sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
1590 			    htole32(dmamap->dm_segs[seg].ds_addr);
1591 			*sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
1592 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN)
1593 				| CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1594 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
1595 			lasttx = nexttx;
1596 		}
1597 
1598 		/* Clear the MORE bit on the last segment. */
1599 		*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
1600 		    htole32(~CMDSTS_MORE);
1601 
1602 		/*
1603 		 * If we're in the interrupt delay window, delay the
1604 		 * interrupt.
1605 		 */
1606 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1607 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1608 			*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
1609 			    htole32(CMDSTS_INTR);
1610 			sc->sc_txwin = 0;
1611 		}
1612 
1613 		if (sc->sc_gigabit)
1614 			sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1615 
1616 		/* Sync the descriptors we're using. */
1617 		sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
1618 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1619 
1620 		/*
1621 		 * The entire packet is set up.  Give the first descrptor
1622 		 * to the chip now.
1623 		 */
1624 		*sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
1625 		    htole32(CMDSTS_OWN);
1626 		sip_cdtxsync(sc, sc->sc_txnext, 1,
1627 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1628 
1629 		/*
1630 		 * Store a pointer to the packet so we can free it later,
1631 		 * and remember what txdirty will be once the packet is
1632 		 * done.
1633 		 */
1634 		txs->txs_mbuf = m0;
1635 		txs->txs_firstdesc = sc->sc_txnext;
1636 		txs->txs_lastdesc = lasttx;
1637 
1638 		/* Advance the tx pointer. */
1639 		sc->sc_txfree -= dmamap->dm_nsegs;
1640 		sc->sc_txnext = nexttx;
1641 
1642 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1643 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1644 
1645 		/* Pass the packet to any BPF listeners. */
1646 		bpf_mtap(ifp, m0, BPF_D_OUT);
1647 	}
1648 
1649 	if (txs == NULL || sc->sc_txfree == 0) {
1650 		/* No more slots left; notify upper layer. */
1651 		ifp->if_flags |= IFF_OACTIVE;
1652 	}
1653 
1654 	if (sc->sc_txfree != ofree) {
1655 		/*
1656 		 * Start the transmit process.  Note, the manual says
1657 		 * that if there are no pending transmissions in the
1658 		 * chip's internal queue (indicated by TXE being clear),
1659 		 * then the driver software must set the TXDP to the
1660 		 * first descriptor to be transmitted.  However, if we
1661 		 * do this, it causes serious performance degredation on
1662 		 * the DP83820 under load, not setting TXDP doesn't seem
1663 		 * to adversely affect the SiS 900 or DP83815.
1664 		 *
1665 		 * Well, I guess it wouldn't be the first time a manual
1666 		 * has lied -- and they could be speaking of the NULL-
1667 		 * terminated descriptor list case, rather than OWN-
1668 		 * terminated rings.
1669 		 */
1670 #if 0
1671 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1672 		     CR_TXE) == 0) {
1673 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1674 			    SIP_CDTXADDR(sc, firsttx));
1675 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1676 		}
1677 #else
1678 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1679 #endif
1680 
1681 		/* Set a watchdog timer in case the chip flakes out. */
1682 		/* Gigabit autonegotiation takes 5 seconds. */
1683 		ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1684 	}
1685 }
1686 
1687 /*
1688  * sip_watchdog:	[ifnet interface function]
1689  *
1690  *	Watchdog timer handler.
1691  */
1692 static void
1693 sipcom_watchdog(struct ifnet *ifp)
1694 {
1695 	struct sip_softc *sc = ifp->if_softc;
1696 
1697 	/*
1698 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1699 	 * If we get a timeout, try and sweep up transmit descriptors.
1700 	 * If we manage to sweep them all up, ignore the lack of
1701 	 * interrupt.
1702 	 */
1703 	sipcom_txintr(sc);
1704 
1705 	if (sc->sc_txfree != sc->sc_ntxdesc) {
1706 		printf("%s: device timeout\n", device_xname(sc->sc_dev));
1707 		if_statinc(ifp, if_oerrors);
1708 
1709 		/* Reset the interface. */
1710 		(void) sipcom_init(ifp);
1711 	} else if (ifp->if_flags & IFF_DEBUG)
1712 		printf("%s: recovered from device timeout\n",
1713 		    device_xname(sc->sc_dev));
1714 
1715 	/* Try to get more packets going. */
1716 	sipcom_start(ifp);
1717 }
1718 
1719 /* If the interface is up and running, only modify the receive
1720  * filter when setting promiscuous or debug mode.  Otherwise fall
1721  * through to ether_ioctl, which will reset the chip.
1722  */
1723 static int
1724 sip_ifflags_cb(struct ethercom *ec)
1725 {
1726 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable			\
1727 			 == (sc)->sc_ethercom.ec_capenable)		\
1728 			&& ((sc)->sc_prev.is_vlan ==			\
1729 			    VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1730 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1731 	struct ifnet *ifp = &ec->ec_if;
1732 	struct sip_softc *sc = ifp->if_softc;
1733 	u_short change = ifp->if_flags ^ sc->sc_if_flags;
1734 
1735 	if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0 || !COMPARE_EC(sc) ||
1736 	    !COMPARE_IC(sc, ifp))
1737 		return ENETRESET;
1738 	/* Set up the receive filter. */
1739 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1740 	return 0;
1741 }
1742 
1743 /*
1744  * sip_ioctl:		[ifnet interface function]
1745  *
1746  *	Handle control requests from the operator.
1747  */
1748 static int
1749 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1750 {
1751 	struct sip_softc *sc = ifp->if_softc;
1752 	struct ifreq *ifr = (struct ifreq *)data;
1753 	int s, error;
1754 
1755 	s = splnet();
1756 
1757 	switch (cmd) {
1758 	case SIOCSIFMEDIA:
1759 		/* Flow control requires full-duplex mode. */
1760 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1761 		    (ifr->ifr_media & IFM_FDX) == 0)
1762 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1763 
1764 		/* XXX */
1765 		if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1766 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1767 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1768 			if (sc->sc_gigabit &&
1769 			    (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1770 				/* We can do both TXPAUSE and RXPAUSE. */
1771 				ifr->ifr_media |=
1772 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1773 			} else if (ifr->ifr_media & IFM_FLOW) {
1774 				/*
1775 				 * Both TXPAUSE and RXPAUSE must be set.
1776 				 * (SiS900 and DP83815 don't have PAUSE_ASYM
1777 				 * feature.)
1778 				 *
1779 				 * XXX Can SiS900 and DP83815 send PAUSE?
1780 				 */
1781 				ifr->ifr_media |=
1782 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1783 			}
1784 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1785 		}
1786 		/*FALLTHROUGH*/
1787 	default:
1788 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1789 			break;
1790 
1791 		error = 0;
1792 
1793 		if (cmd == SIOCSIFCAP)
1794 			error = (*ifp->if_init)(ifp);
1795 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1796 			;
1797 		else if (ifp->if_flags & IFF_RUNNING) {
1798 			/*
1799 			 * Multicast list has changed; set the hardware filter
1800 			 * accordingly.
1801 			 */
1802 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1803 		}
1804 		break;
1805 	}
1806 
1807 	/* Try to get more packets going. */
1808 	sipcom_start(ifp);
1809 
1810 	sc->sc_if_flags = ifp->if_flags;
1811 	splx(s);
1812 	return error;
1813 }
1814 
1815 /*
1816  * sip_intr:
1817  *
1818  *	Interrupt service routine.
1819  */
1820 static int
1821 sipcom_intr(void *arg)
1822 {
1823 	struct sip_softc *sc = arg;
1824 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1825 	uint32_t isr;
1826 	int handled = 0;
1827 
1828 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
1829 		return 0;
1830 
1831 	/* Disable interrupts. */
1832 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1833 
1834 	for (;;) {
1835 		/* Reading clears interrupt. */
1836 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1837 		if ((isr & sc->sc_imr) == 0)
1838 			break;
1839 
1840 		rnd_add_uint32(&sc->rnd_source, isr);
1841 
1842 		handled = 1;
1843 
1844 		if ((ifp->if_flags & IFF_RUNNING) == 0)
1845 			break;
1846 
1847 		if (isr & (ISR_RXORN | ISR_RXIDLE | ISR_RXDESC)) {
1848 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1849 
1850 			/* Grab any new packets. */
1851 			(*sc->sc_rxintr)(sc);
1852 
1853 			if (isr & ISR_RXORN) {
1854 				printf("%s: receive FIFO overrun\n",
1855 				    device_xname(sc->sc_dev));
1856 
1857 				/* XXX adjust rx_drain_thresh? */
1858 			}
1859 
1860 			if (isr & ISR_RXIDLE) {
1861 				printf("%s: receive ring overrun\n",
1862 				    device_xname(sc->sc_dev));
1863 
1864 				/* Get the receive process going again. */
1865 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1866 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1867 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1868 				    SIP_CR, CR_RXE);
1869 			}
1870 		}
1871 
1872 		if (isr & (ISR_TXURN | ISR_TXDESC | ISR_TXIDLE)) {
1873 #ifdef SIP_EVENT_COUNTERS
1874 			if (isr & ISR_TXDESC)
1875 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1876 			else if (isr & ISR_TXIDLE)
1877 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1878 #endif
1879 
1880 			/* Sweep up transmit descriptors. */
1881 			sipcom_txintr(sc);
1882 
1883 			if (isr & ISR_TXURN) {
1884 				uint32_t thresh;
1885 				int txfifo_size = (sc->sc_gigabit)
1886 				    ? DP83820_SIP_TXFIFO_SIZE
1887 				    : OTHER_SIP_TXFIFO_SIZE;
1888 
1889 				printf("%s: transmit FIFO underrun",
1890 				    device_xname(sc->sc_dev));
1891 				thresh = sc->sc_tx_drain_thresh + 1;
1892 				if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
1893 				&& (thresh * 32) <= (txfifo_size -
1894 				     (sc->sc_tx_fill_thresh * 32))) {
1895 					printf("; increasing Tx drain "
1896 					    "threshold to %u bytes\n",
1897 					    thresh * 32);
1898 					sc->sc_tx_drain_thresh = thresh;
1899 					(void) sipcom_init(ifp);
1900 				} else {
1901 					(void) sipcom_init(ifp);
1902 					printf("\n");
1903 				}
1904 			}
1905 		}
1906 
1907 		if (sc->sc_imr & (ISR_PAUSE_END | ISR_PAUSE_ST)) {
1908 			if (isr & ISR_PAUSE_ST) {
1909 				sc->sc_paused = 1;
1910 				SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1911 				ifp->if_flags |= IFF_OACTIVE;
1912 			}
1913 			if (isr & ISR_PAUSE_END) {
1914 				sc->sc_paused = 0;
1915 				ifp->if_flags &= ~IFF_OACTIVE;
1916 			}
1917 		}
1918 
1919 		if (isr & ISR_HIBERR) {
1920 			int want_init = 0;
1921 
1922 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1923 
1924 #define	PRINTERR(bit, str)						\
1925 			do {						\
1926 				if ((isr & (bit)) != 0) {		\
1927 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
1928 						printf("%s: %s\n",	\
1929 						    device_xname(sc->sc_dev), str); \
1930 					want_init = 1;			\
1931 				}					\
1932 			} while (/*CONSTCOND*/0)
1933 
1934 			PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
1935 			PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
1936 			PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
1937 			PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
1938 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1939 			/*
1940 			 * Ignore:
1941 			 *	Tx reset complete
1942 			 *	Rx reset complete
1943 			 */
1944 			if (want_init)
1945 				(void) sipcom_init(ifp);
1946 #undef PRINTERR
1947 		}
1948 	}
1949 
1950 	/* Re-enable interrupts. */
1951 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1952 
1953 	/* Try to get more packets going. */
1954 	if_schedule_deferred_start(ifp);
1955 
1956 	return handled;
1957 }
1958 
1959 /*
1960  * sip_txintr:
1961  *
1962  *	Helper; handle transmit interrupts.
1963  */
1964 static void
1965 sipcom_txintr(struct sip_softc *sc)
1966 {
1967 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1968 	struct sip_txsoft *txs;
1969 	uint32_t cmdsts;
1970 
1971 	if (sc->sc_paused == 0)
1972 		ifp->if_flags &= ~IFF_OACTIVE;
1973 
1974 	/*
1975 	 * Go through our Tx list and free mbufs for those
1976 	 * frames which have been transmitted.
1977 	 */
1978 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1979 		sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1980 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1981 
1982 		cmdsts = le32toh(*sipd_cmdsts(sc,
1983 			&sc->sc_txdescs[txs->txs_lastdesc]));
1984 		if (cmdsts & CMDSTS_OWN)
1985 			break;
1986 
1987 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1988 
1989 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1990 
1991 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1992 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1993 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1994 		m_freem(txs->txs_mbuf);
1995 		txs->txs_mbuf = NULL;
1996 
1997 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1998 
1999 		/* Check for errors and collisions. */
2000 		net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
2001 		if (cmdsts & (CMDSTS_Tx_TXA | CMDSTS_Tx_TFU | CMDSTS_Tx_ED |
2002 		    CMDSTS_Tx_EC)) {
2003 			if_statinc_ref(nsr, if_oerrors);
2004 			if (cmdsts & CMDSTS_Tx_EC)
2005 				if_statadd_ref(nsr, if_collisions, 16);
2006 			if (ifp->if_flags & IFF_DEBUG) {
2007 				if (cmdsts & CMDSTS_Tx_ED)
2008 					printf("%s: excessive deferral\n",
2009 					    device_xname(sc->sc_dev));
2010 				if (cmdsts & CMDSTS_Tx_EC)
2011 					printf("%s: excessive collisions\n",
2012 					    device_xname(sc->sc_dev));
2013 			}
2014 		} else {
2015 			/* Packet was transmitted successfully. */
2016 			if_statinc_ref(nsr, if_opackets);
2017 			if (CMDSTS_COLLISIONS(cmdsts))
2018 				if_statadd_ref(nsr, if_collisions,
2019 				    CMDSTS_COLLISIONS(cmdsts));
2020 		}
2021 		IF_STAT_PUTREF(ifp);
2022 	}
2023 
2024 	/*
2025 	 * If there are no more pending transmissions, cancel the watchdog
2026 	 * timer.
2027 	 */
2028 	if (txs == NULL) {
2029 		ifp->if_timer = 0;
2030 		sc->sc_txwin = 0;
2031 	}
2032 }
2033 
2034 /*
2035  * gsip_rxintr:
2036  *
2037  *	Helper; handle receive interrupts on gigabit parts.
2038  */
2039 static void
2040 gsip_rxintr(struct sip_softc *sc)
2041 {
2042 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2043 	struct sip_rxsoft *rxs;
2044 	struct mbuf *m;
2045 	uint32_t cmdsts, extsts;
2046 	int i, len;
2047 
2048 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2049 		rxs = &sc->sc_rxsoft[i];
2050 
2051 		sip_cdrxsync(sc, i,
2052 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2053 
2054 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2055 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
2056 		len = CMDSTS_SIZE(sc, cmdsts);
2057 
2058 		/*
2059 		 * NOTE: OWN is set if owned by _consumer_.  We're the
2060 		 * consumer of the receive ring, so if the bit is clear,
2061 		 * we have processed all of the packets.
2062 		 */
2063 		if ((cmdsts & CMDSTS_OWN) == 0) {
2064 			/*
2065 			 * We have processed all of the receive buffers.
2066 			 */
2067 			break;
2068 		}
2069 
2070 		if (__predict_false(sc->sc_rxdiscard)) {
2071 			sip_init_rxdesc(sc, i);
2072 			if ((cmdsts & CMDSTS_MORE) == 0) {
2073 				/* Reset our state. */
2074 				sc->sc_rxdiscard = 0;
2075 			}
2076 			continue;
2077 		}
2078 
2079 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2080 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2081 
2082 		m = rxs->rxs_mbuf;
2083 
2084 		/*
2085 		 * Add a new receive buffer to the ring.
2086 		 */
2087 		if (sipcom_add_rxbuf(sc, i) != 0) {
2088 			/*
2089 			 * Failed, throw away what we've done so
2090 			 * far, and discard the rest of the packet.
2091 			 */
2092 			if_statinc(ifp, if_ierrors);
2093 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2094 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2095 			sip_init_rxdesc(sc, i);
2096 			if (cmdsts & CMDSTS_MORE)
2097 				sc->sc_rxdiscard = 1;
2098 			if (sc->sc_rxhead != NULL)
2099 				m_freem(sc->sc_rxhead);
2100 			sip_rxchain_reset(sc);
2101 			continue;
2102 		}
2103 
2104 		sip_rxchain_link(sc, m);
2105 
2106 		m->m_len = len;
2107 
2108 		/*
2109 		 * If this is not the end of the packet, keep
2110 		 * looking.
2111 		 */
2112 		if (cmdsts & CMDSTS_MORE) {
2113 			sc->sc_rxlen += len;
2114 			continue;
2115 		}
2116 
2117 		/*
2118 		 * Okay, we have the entire packet now.  The chip includes
2119 		 * the FCS, so we need to trim it.
2120 		 */
2121 		m->m_len -= ETHER_CRC_LEN;
2122 
2123 		*sc->sc_rxtailp = NULL;
2124 		len = m->m_len + sc->sc_rxlen;
2125 		m = sc->sc_rxhead;
2126 
2127 		sip_rxchain_reset(sc);
2128 
2129 		/* If an error occurred, update stats and drop the packet. */
2130 		if (cmdsts & (CMDSTS_Rx_RXA | CMDSTS_Rx_RUNT |
2131 		    CMDSTS_Rx_ISE | CMDSTS_Rx_CRCE | CMDSTS_Rx_FAE)) {
2132 			if_statinc(ifp, if_ierrors);
2133 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2134 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
2135 				/* Receive overrun handled elsewhere. */
2136 				printf("%s: receive descriptor error\n",
2137 				    device_xname(sc->sc_dev));
2138 			}
2139 #define	PRINTERR(bit, str)						\
2140 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
2141 			    (cmdsts & (bit)) != 0)			\
2142 				printf("%s: %s\n", device_xname(sc->sc_dev), str)
2143 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2144 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2145 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2146 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2147 #undef PRINTERR
2148 			m_freem(m);
2149 			continue;
2150 		}
2151 
2152 		/*
2153 		 * If the packet is small enough to fit in a
2154 		 * single header mbuf, allocate one and copy
2155 		 * the data into it.  This greatly reduces
2156 		 * memory consumption when we receive lots
2157 		 * of small packets.
2158 		 */
2159 		if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
2160 			struct mbuf *nm;
2161 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
2162 			if (nm == NULL) {
2163 				if_statinc(ifp, if_ierrors);
2164 				m_freem(m);
2165 				continue;
2166 			}
2167 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2168 			nm->m_data += 2;
2169 			nm->m_pkthdr.len = nm->m_len = len;
2170 			m_copydata(m, 0, len, mtod(nm, void *));
2171 			m_freem(m);
2172 			m = nm;
2173 		}
2174 #ifndef __NO_STRICT_ALIGNMENT
2175 		else {
2176 			/*
2177 			 * The DP83820's receive buffers must be 4-byte
2178 			 * aligned.  But this means that the data after
2179 			 * the Ethernet header is misaligned.  To compensate,
2180 			 * we have artificially shortened the buffer size
2181 			 * in the descriptor, and we do an overlapping copy
2182 			 * of the data two bytes further in (in the first
2183 			 * buffer of the chain only).
2184 			 */
2185 			memmove(mtod(m, char *) + 2, mtod(m, void *),
2186 			    m->m_len);
2187 			m->m_data += 2;
2188 		}
2189 #endif /* ! __NO_STRICT_ALIGNMENT */
2190 
2191 		/*
2192 		 * If VLANs are enabled, VLAN packets have been unwrapped
2193 		 * for us.  Associate the tag with the packet.
2194 		 */
2195 
2196 		/*
2197 		 * Again, byte swapping is tricky. Hardware provided
2198 		 * the tag in the network byte order, but extsts was
2199 		 * passed through le32toh() in the meantime. On a
2200 		 * big-endian machine, we need to swap it again. On a
2201 		 * little-endian machine, we need to convert from the
2202 		 * network to host byte order. This means that we must
2203 		 * swap it in any case, so unconditional swap instead
2204 		 * of htons() is used.
2205 		 */
2206 		if ((extsts & EXTSTS_VPKT) != 0) {
2207 			vlan_set_tag(m, bswap16(extsts & EXTSTS_VTCI));
2208 		}
2209 
2210 		/*
2211 		 * Set the incoming checksum information for the
2212 		 * packet.
2213 		 */
2214 		if ((extsts & EXTSTS_IPPKT) != 0) {
2215 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2216 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2217 			if (extsts & EXTSTS_Rx_IPERR)
2218 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2219 			if (extsts & EXTSTS_TCPPKT) {
2220 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2221 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2222 				if (extsts & EXTSTS_Rx_TCPERR)
2223 					m->m_pkthdr.csum_flags |=
2224 					    M_CSUM_TCP_UDP_BAD;
2225 			} else if (extsts & EXTSTS_UDPPKT) {
2226 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2227 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2228 				if (extsts & EXTSTS_Rx_UDPERR)
2229 					m->m_pkthdr.csum_flags |=
2230 					    M_CSUM_TCP_UDP_BAD;
2231 			}
2232 		}
2233 
2234 		m_set_rcvif(m, ifp);
2235 		m->m_pkthdr.len = len;
2236 
2237 		/* Pass it on. */
2238 		if_percpuq_enqueue(ifp->if_percpuq, m);
2239 	}
2240 
2241 	/* Update the receive pointer. */
2242 	sc->sc_rxptr = i;
2243 }
2244 
2245 /*
2246  * sip_rxintr:
2247  *
2248  *	Helper; handle receive interrupts on 10/100 parts.
2249  */
2250 static void
2251 sip_rxintr(struct sip_softc *sc)
2252 {
2253 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2254 	struct sip_rxsoft *rxs;
2255 	struct mbuf *m;
2256 	uint32_t cmdsts;
2257 	int i, len;
2258 
2259 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2260 		rxs = &sc->sc_rxsoft[i];
2261 
2262 		sip_cdrxsync(sc, i,
2263 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2264 
2265 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2266 
2267 		/*
2268 		 * NOTE: OWN is set if owned by _consumer_.  We're the
2269 		 * consumer of the receive ring, so if the bit is clear,
2270 		 * we have processed all of the packets.
2271 		 */
2272 		if ((cmdsts & CMDSTS_OWN) == 0) {
2273 			/*
2274 			 * We have processed all of the receive buffers.
2275 			 */
2276 			break;
2277 		}
2278 
2279 		/* If any collisions were seen on the wire, count one. */
2280 		if (cmdsts & CMDSTS_Rx_COL)
2281 			if_statinc(ifp, if_collisions);
2282 
2283 		/*
2284 		 * If an error occurred, update stats, clear the status
2285 		 * word, and leave the packet buffer in place.  It will
2286 		 * simply be reused the next time the ring comes around.
2287 		 */
2288 		if (cmdsts & (CMDSTS_Rx_RXA | CMDSTS_Rx_RUNT |
2289 		    CMDSTS_Rx_ISE | CMDSTS_Rx_CRCE | CMDSTS_Rx_FAE)) {
2290 			if_statinc(ifp, if_ierrors);
2291 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2292 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
2293 				/* Receive overrun handled elsewhere. */
2294 				printf("%s: receive descriptor error\n",
2295 				    device_xname(sc->sc_dev));
2296 			}
2297 #define	PRINTERR(bit, str)						\
2298 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
2299 			    (cmdsts & (bit)) != 0)			\
2300 				printf("%s: %s\n", device_xname(sc->sc_dev), str)
2301 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2302 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2303 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2304 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2305 #undef PRINTERR
2306 			sip_init_rxdesc(sc, i);
2307 			continue;
2308 		}
2309 
2310 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2311 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2312 
2313 		/*
2314 		 * No errors; receive the packet.  Note, the SiS 900
2315 		 * includes the CRC with every packet.
2316 		 */
2317 		len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
2318 
2319 #ifdef __NO_STRICT_ALIGNMENT
2320 		/*
2321 		 * If the packet is small enough to fit in a
2322 		 * single header mbuf, allocate one and copy
2323 		 * the data into it.  This greatly reduces
2324 		 * memory consumption when we receive lots
2325 		 * of small packets.
2326 		 *
2327 		 * Otherwise, we add a new buffer to the receive
2328 		 * chain.  If this fails, we drop the packet and
2329 		 * recycle the old buffer.
2330 		 */
2331 		if (sip_copy_small != 0 && len <= MHLEN) {
2332 			MGETHDR(m, M_DONTWAIT, MT_DATA);
2333 			if (m == NULL)
2334 				goto dropit;
2335 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2336 			memcpy(mtod(m, void *),
2337 			    mtod(rxs->rxs_mbuf, void *), len);
2338 			sip_init_rxdesc(sc, i);
2339 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2340 			    rxs->rxs_dmamap->dm_mapsize,
2341 			    BUS_DMASYNC_PREREAD);
2342 		} else {
2343 			m = rxs->rxs_mbuf;
2344 			if (sipcom_add_rxbuf(sc, i) != 0) {
2345  dropit:
2346 				if_statinc(ifp, if_ierrors);
2347 				sip_init_rxdesc(sc, i);
2348 				bus_dmamap_sync(sc->sc_dmat,
2349 				    rxs->rxs_dmamap, 0,
2350 				    rxs->rxs_dmamap->dm_mapsize,
2351 				    BUS_DMASYNC_PREREAD);
2352 				continue;
2353 			}
2354 		}
2355 #else
2356 		/*
2357 		 * The SiS 900's receive buffers must be 4-byte aligned.
2358 		 * But this means that the data after the Ethernet header
2359 		 * is misaligned.  We must allocate a new buffer and
2360 		 * copy the data, shifted forward 2 bytes.
2361 		 */
2362 		MGETHDR(m, M_DONTWAIT, MT_DATA);
2363 		if (m == NULL) {
2364  dropit:
2365 			if_statinc(ifp, if_ierrors);
2366 			sip_init_rxdesc(sc, i);
2367 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2368 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2369 			continue;
2370 		}
2371 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2372 		if (len > (MHLEN - 2)) {
2373 			MCLGET(m, M_DONTWAIT);
2374 			if ((m->m_flags & M_EXT) == 0) {
2375 				m_freem(m);
2376 				goto dropit;
2377 			}
2378 		}
2379 		m->m_data += 2;
2380 
2381 		/*
2382 		 * Note that we use clusters for incoming frames, so the
2383 		 * buffer is virtually contiguous.
2384 		 */
2385 		memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2386 
2387 		/* Allow the receive descriptor to continue using its mbuf. */
2388 		sip_init_rxdesc(sc, i);
2389 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2390 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2391 #endif /* __NO_STRICT_ALIGNMENT */
2392 
2393 		m_set_rcvif(m, ifp);
2394 		m->m_pkthdr.len = m->m_len = len;
2395 
2396 		/* Pass it on. */
2397 		if_percpuq_enqueue(ifp->if_percpuq, m);
2398 	}
2399 
2400 	/* Update the receive pointer. */
2401 	sc->sc_rxptr = i;
2402 }
2403 
2404 /*
2405  * sip_tick:
2406  *
2407  *	One second timer, used to tick the MII.
2408  */
2409 static void
2410 sipcom_tick(void *arg)
2411 {
2412 	struct sip_softc *sc = arg;
2413 	int s;
2414 
2415 	s = splnet();
2416 #ifdef SIP_EVENT_COUNTERS
2417 	if (sc->sc_gigabit) {
2418 		/* Read PAUSE related counts from MIB registers. */
2419 		sc->sc_ev_rxpause.ev_count +=
2420 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
2421 				     SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2422 		sc->sc_ev_txpause.ev_count +=
2423 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
2424 				     SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2425 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2426 	}
2427 #endif /* SIP_EVENT_COUNTERS */
2428 	mii_tick(&sc->sc_mii);
2429 	splx(s);
2430 
2431 	callout_schedule(&sc->sc_tick_ch, hz);
2432 }
2433 
2434 /*
2435  * sip_reset:
2436  *
2437  *	Perform a soft reset on the SiS 900.
2438  */
2439 static bool
2440 sipcom_reset(struct sip_softc *sc)
2441 {
2442 	bus_space_tag_t st = sc->sc_st;
2443 	bus_space_handle_t sh = sc->sc_sh;
2444 	int i;
2445 
2446 	bus_space_write_4(st, sh, SIP_IER, 0);
2447 	bus_space_write_4(st, sh, SIP_IMR, 0);
2448 	bus_space_write_4(st, sh, SIP_RFCR, 0);
2449 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
2450 
2451 	for (i = 0; i < SIP_TIMEOUT; i++) {
2452 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2453 			break;
2454 		delay(2);
2455 	}
2456 
2457 	if (i == SIP_TIMEOUT) {
2458 		printf("%s: reset failed to complete\n",
2459 		    device_xname(sc->sc_dev));
2460 		return false;
2461 	}
2462 
2463 	delay(1000);
2464 
2465 	if (sc->sc_gigabit) {
2466 		/*
2467 		 * Set the general purpose I/O bits.  Do it here in case we
2468 		 * need to have GPIO set up to talk to the media interface.
2469 		 */
2470 		bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2471 		delay(1000);
2472 	}
2473 	return true;
2474 }
2475 
2476 static void
2477 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2478 {
2479 	uint32_t reg;
2480 	bus_space_tag_t st = sc->sc_st;
2481 	bus_space_handle_t sh = sc->sc_sh;
2482 	/*
2483 	 * Initialize the VLAN/IP receive control register.
2484 	 * We enable checksum computation on all incoming
2485 	 * packets, and do not reject packets w/ bad checksums.
2486 	 */
2487 	reg = 0;
2488 	if (capenable &
2489 	    (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
2490 		reg |= VRCR_IPEN;
2491 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2492 		reg |= VRCR_VTDEN | VRCR_VTREN;
2493 	bus_space_write_4(st, sh, SIP_VRCR, reg);
2494 
2495 	/*
2496 	 * Initialize the VLAN/IP transmit control register.
2497 	 * We enable outgoing checksum computation on a
2498 	 * per-packet basis.
2499 	 */
2500 	reg = 0;
2501 	if (capenable &
2502 	    (IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx))
2503 		reg |= VTCR_PPCHK;
2504 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2505 		reg |= VTCR_VPPTI;
2506 	bus_space_write_4(st, sh, SIP_VTCR, reg);
2507 
2508 	/*
2509 	 * If we're using VLANs, initialize the VLAN data register.
2510 	 * To understand why we bswap the VLAN Ethertype, see section
2511 	 * 4.2.36 of the DP83820 manual.
2512 	 */
2513 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2514 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2515 }
2516 
2517 /*
2518  * sip_init:		[ ifnet interface function ]
2519  *
2520  *	Initialize the interface.  Must be called at splnet().
2521  */
2522 static int
2523 sipcom_init(struct ifnet *ifp)
2524 {
2525 	struct sip_softc *sc = ifp->if_softc;
2526 	bus_space_tag_t st = sc->sc_st;
2527 	bus_space_handle_t sh = sc->sc_sh;
2528 	struct sip_txsoft *txs;
2529 	struct sip_rxsoft *rxs;
2530 	struct sip_desc *sipd;
2531 	int i, error = 0;
2532 
2533 	if (device_is_active(sc->sc_dev)) {
2534 		/*
2535 		 * Cancel any pending I/O.
2536 		 */
2537 		sipcom_stop(ifp, 0);
2538 	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
2539 		   !device_is_active(sc->sc_dev))
2540 		return 0;
2541 
2542 	/*
2543 	 * Reset the chip to a known state.
2544 	 */
2545 	if (!sipcom_reset(sc))
2546 		return EBUSY;
2547 
2548 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2549 		/*
2550 		 * DP83815 manual, page 78:
2551 		 *    4.4 Recommended Registers Configuration
2552 		 *    For optimum performance of the DP83815, version noted
2553 		 *    as DP83815CVNG (SRR = 203h), the listed register
2554 		 *    modifications must be followed in sequence...
2555 		 *
2556 		 * It's not clear if this should be 302h or 203h because that
2557 		 * chip name is listed as SRR 302h in the description of the
2558 		 * SRR register.  However, my revision 302h DP83815 on the
2559 		 * Netgear FA311 purchased in 02/2001 needs these settings
2560 		 * to avoid tons of errors in AcceptPerfectMatch (non-
2561 		 * IFF_PROMISC) mode.  I do not know if other revisions need
2562 		 * this set or not.  [briggs -- 09 March 2001]
2563 		 *
2564 		 * Note that only the low-order 12 bits of 0xe4 are documented
2565 		 * and that this sets reserved bits in that register.
2566 		 */
2567 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
2568 
2569 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
2570 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
2571 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
2572 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
2573 
2574 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
2575 	}
2576 
2577 	/*
2578 	 * Initialize the transmit descriptor ring.
2579 	 */
2580 	for (i = 0; i < sc->sc_ntxdesc; i++) {
2581 		sipd = &sc->sc_txdescs[i];
2582 		memset(sipd, 0, sizeof(struct sip_desc));
2583 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
2584 	}
2585 	sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
2586 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2587 	sc->sc_txfree = sc->sc_ntxdesc;
2588 	sc->sc_txnext = 0;
2589 	sc->sc_txwin = 0;
2590 
2591 	/*
2592 	 * Initialize the transmit job descriptors.
2593 	 */
2594 	SIMPLEQ_INIT(&sc->sc_txfreeq);
2595 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
2596 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
2597 		txs = &sc->sc_txsoft[i];
2598 		txs->txs_mbuf = NULL;
2599 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2600 	}
2601 
2602 	/*
2603 	 * Initialize the receive descriptor and receive job
2604 	 * descriptor rings.
2605 	 */
2606 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2607 		rxs = &sc->sc_rxsoft[i];
2608 		if (rxs->rxs_mbuf == NULL) {
2609 			if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
2610 				printf("%s: unable to allocate or map rx "
2611 				    "buffer %d, error = %d\n",
2612 				    device_xname(sc->sc_dev), i, error);
2613 				/*
2614 				 * XXX Should attempt to run with fewer receive
2615 				 * XXX buffers instead of just failing.
2616 				 */
2617 				sipcom_rxdrain(sc);
2618 				goto out;
2619 			}
2620 		} else
2621 			sip_init_rxdesc(sc, i);
2622 	}
2623 	sc->sc_rxptr = 0;
2624 	sc->sc_rxdiscard = 0;
2625 	sip_rxchain_reset(sc);
2626 
2627 	/*
2628 	 * Set the configuration register; it's already initialized
2629 	 * in sip_attach().
2630 	 */
2631 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2632 
2633 	/*
2634 	 * Initialize the prototype TXCFG register.
2635 	 */
2636 	if (sc->sc_gigabit) {
2637 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2638 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2639 	} else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2640 	     SIP_SIS900_REV(sc, SIS_REV_960) ||
2641 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2642 	    (sc->sc_cfg & CFG_EDBMASTEN)) {
2643 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
2644 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
2645 	} else {
2646 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2647 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2648 	}
2649 
2650 	sc->sc_txcfg |= TXCFG_ATP |
2651 	    __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
2652 	    sc->sc_tx_drain_thresh;
2653 	bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
2654 
2655 	/*
2656 	 * Initialize the receive drain threshold if we have never
2657 	 * done so.
2658 	 */
2659 	if (sc->sc_rx_drain_thresh == 0) {
2660 		/*
2661 		 * XXX This value should be tuned.  This is set to the
2662 		 * maximum of 248 bytes, and we may be able to improve
2663 		 * performance by decreasing it (although we should never
2664 		 * set this value lower than 2; 14 bytes are required to
2665 		 * filter the packet).
2666 		 */
2667 		sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
2668 	}
2669 
2670 	/*
2671 	 * Initialize the prototype RXCFG register.
2672 	 */
2673 	sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
2674 	/*
2675 	 * Accept long packets (including FCS) so we can handle
2676 	 * 802.1q-tagged frames and jumbo frames properly.
2677 	 */
2678 	if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2679 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2680 		sc->sc_rxcfg |= RXCFG_ALP;
2681 
2682 	/*
2683 	 * Checksum offloading is disabled if the user selects an MTU
2684 	 * larger than 8109.  (FreeBSD says 8152, but there is emperical
2685 	 * evidence that >8109 does not work on some boards, such as the
2686 	 * Planex GN-1000TE).
2687 	 */
2688 	if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2689 	    (ifp->if_capenable &
2690 	     (IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2691 	      IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2692 	      IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx))) {
2693 		printf("%s: Checksum offloading does not work if MTU > 8109 - "
2694 		       "disabled.\n", device_xname(sc->sc_dev));
2695 		ifp->if_capenable &=
2696 		    ~(IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2697 		     IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2698 		     IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx);
2699 		ifp->if_csum_flags_tx = 0;
2700 		ifp->if_csum_flags_rx = 0;
2701 	}
2702 
2703 	bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
2704 
2705 	if (sc->sc_gigabit)
2706 		sipcom_dp83820_init(sc, ifp->if_capenable);
2707 
2708 	/*
2709 	 * Give the transmit and receive rings to the chip.
2710 	 */
2711 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2712 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2713 
2714 	/*
2715 	 * Initialize the interrupt mask.
2716 	 */
2717 	sc->sc_imr = sc->sc_bits.b_isr_dperr |
2718 		     sc->sc_bits.b_isr_sserr |
2719 		     sc->sc_bits.b_isr_rmabt |
2720 		     sc->sc_bits.b_isr_rtabt |
2721 	    ISR_RXSOVR | ISR_TXURN | ISR_TXDESC | ISR_TXIDLE | ISR_RXORN |
2722 	    ISR_RXIDLE | ISR_RXDESC;
2723 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2724 
2725 	/* Set up the receive filter. */
2726 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2727 
2728 	/*
2729 	 * Tune sc_rx_flow_thresh.
2730 	 * XXX "More than 8KB" is too short for jumbo frames.
2731 	 * XXX TODO: Threshold value should be user-settable.
2732 	 */
2733 	sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2734 				 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2735 				 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2736 
2737 	/*
2738 	 * Set the current media.  Do this after initializing the prototype
2739 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2740 	 * control.
2741 	 */
2742 	if ((error = ether_mediachange(ifp)) != 0)
2743 		goto out;
2744 
2745 	/*
2746 	 * Set the interrupt hold-off timer to 100us.
2747 	 */
2748 	if (sc->sc_gigabit)
2749 		bus_space_write_4(st, sh, SIP_IHR, 0x01);
2750 
2751 	/*
2752 	 * Enable interrupts.
2753 	 */
2754 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
2755 
2756 	/*
2757 	 * Start the transmit and receive processes.
2758 	 */
2759 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2760 
2761 	/*
2762 	 * Start the one second MII clock.
2763 	 */
2764 	callout_schedule(&sc->sc_tick_ch, hz);
2765 
2766 	/*
2767 	 * ...all done!
2768 	 */
2769 	ifp->if_flags |= IFF_RUNNING;
2770 	ifp->if_flags &= ~IFF_OACTIVE;
2771 	sc->sc_if_flags = ifp->if_flags;
2772 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2773 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2774 	sc->sc_prev.if_capenable = ifp->if_capenable;
2775 
2776  out:
2777 	if (error)
2778 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
2779 	return error;
2780 }
2781 
2782 /*
2783  * sip_drain:
2784  *
2785  *	Drain the receive queue.
2786  */
2787 static void
2788 sipcom_rxdrain(struct sip_softc *sc)
2789 {
2790 	struct sip_rxsoft *rxs;
2791 	int i;
2792 
2793 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2794 		rxs = &sc->sc_rxsoft[i];
2795 		if (rxs->rxs_mbuf != NULL) {
2796 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2797 			m_freem(rxs->rxs_mbuf);
2798 			rxs->rxs_mbuf = NULL;
2799 		}
2800 	}
2801 }
2802 
2803 /*
2804  * sip_stop:		[ ifnet interface function ]
2805  *
2806  *	Stop transmission on the interface.
2807  */
2808 static void
2809 sipcom_stop(struct ifnet *ifp, int disable)
2810 {
2811 	struct sip_softc *sc = ifp->if_softc;
2812 	bus_space_tag_t st = sc->sc_st;
2813 	bus_space_handle_t sh = sc->sc_sh;
2814 	struct sip_txsoft *txs;
2815 	uint32_t cmdsts = 0;		/* DEBUG */
2816 
2817 	/*
2818 	 * Stop the one second clock.
2819 	 */
2820 	callout_stop(&sc->sc_tick_ch);
2821 
2822 	/* Down the MII. */
2823 	mii_down(&sc->sc_mii);
2824 
2825 	if (device_is_active(sc->sc_dev)) {
2826 		/*
2827 		 * Disable interrupts.
2828 		 */
2829 		bus_space_write_4(st, sh, SIP_IER, 0);
2830 
2831 		/*
2832 		 * Stop receiver and transmitter.
2833 		 */
2834 		bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2835 	}
2836 
2837 	/*
2838 	 * Release any queued transmit buffers.
2839 	 */
2840 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2841 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2842 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2843 		    (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
2844 		     CMDSTS_INTR) == 0)
2845 			printf("%s: sip_stop: last descriptor does not "
2846 			    "have INTR bit set\n", device_xname(sc->sc_dev));
2847 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2848 #ifdef DIAGNOSTIC
2849 		if (txs->txs_mbuf == NULL) {
2850 			printf("%s: dirty txsoft with no mbuf chain\n",
2851 			    device_xname(sc->sc_dev));
2852 			panic("sip_stop");
2853 		}
2854 #endif
2855 		cmdsts |=		/* DEBUG */
2856 		    le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
2857 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2858 		m_freem(txs->txs_mbuf);
2859 		txs->txs_mbuf = NULL;
2860 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2861 	}
2862 
2863 	/*
2864 	 * Mark the interface down and cancel the watchdog timer.
2865 	 */
2866 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2867 	ifp->if_timer = 0;
2868 
2869 	if (disable)
2870 		pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
2871 
2872 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2873 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2874 		printf("%s: sip_stop: no INTR bits set in dirty tx "
2875 		    "descriptors\n", device_xname(sc->sc_dev));
2876 }
2877 
2878 /*
2879  * sip_read_eeprom:
2880  *
2881  *	Read data from the serial EEPROM.
2882  */
2883 static void
2884 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2885     uint16_t *data)
2886 {
2887 	bus_space_tag_t st = sc->sc_st;
2888 	bus_space_handle_t sh = sc->sc_sh;
2889 	uint16_t reg;
2890 	int i, x;
2891 
2892 	for (i = 0; i < wordcnt; i++) {
2893 		/* Send CHIP SELECT. */
2894 		reg = EROMAR_EECS;
2895 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
2896 
2897 		/* Shift in the READ opcode. */
2898 		for (x = 3; x > 0; x--) {
2899 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2900 				reg |= EROMAR_EEDI;
2901 			else
2902 				reg &= ~EROMAR_EEDI;
2903 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2904 			bus_space_write_4(st, sh, SIP_EROMAR,
2905 			    reg | EROMAR_EESK);
2906 			delay(4);
2907 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2908 			delay(4);
2909 		}
2910 
2911 		/* Shift in address. */
2912 		for (x = 6; x > 0; x--) {
2913 			if ((word + i) & (1 << (x - 1)))
2914 				reg |= EROMAR_EEDI;
2915 			else
2916 				reg &= ~EROMAR_EEDI;
2917 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2918 			bus_space_write_4(st, sh, SIP_EROMAR,
2919 			    reg | EROMAR_EESK);
2920 			delay(4);
2921 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2922 			delay(4);
2923 		}
2924 
2925 		/* Shift out data. */
2926 		reg = EROMAR_EECS;
2927 		data[i] = 0;
2928 		for (x = 16; x > 0; x--) {
2929 			bus_space_write_4(st, sh, SIP_EROMAR,
2930 			    reg | EROMAR_EESK);
2931 			delay(4);
2932 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2933 				data[i] |= (1 << (x - 1));
2934 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2935 			delay(4);
2936 		}
2937 
2938 		/* Clear CHIP SELECT. */
2939 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
2940 		delay(4);
2941 	}
2942 }
2943 
2944 /*
2945  * sipcom_add_rxbuf:
2946  *
2947  *	Add a receive buffer to the indicated descriptor.
2948  */
2949 static int
2950 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
2951 {
2952 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2953 	struct mbuf *m;
2954 	int error;
2955 
2956 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2957 	if (m == NULL)
2958 		return ENOBUFS;
2959 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2960 
2961 	MCLGET(m, M_DONTWAIT);
2962 	if ((m->m_flags & M_EXT) == 0) {
2963 		m_freem(m);
2964 		return ENOBUFS;
2965 	}
2966 
2967 	/* XXX I don't believe this is necessary. --dyoung */
2968 	if (sc->sc_gigabit)
2969 		m->m_len = sc->sc_parm->p_rxbuf_len;
2970 
2971 	if (rxs->rxs_mbuf != NULL)
2972 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2973 
2974 	rxs->rxs_mbuf = m;
2975 
2976 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2977 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2978 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
2979 	if (error) {
2980 		printf("%s: can't load rx DMA map %d, error = %d\n",
2981 		    device_xname(sc->sc_dev), idx, error);
2982 		panic("%s", __func__);		/* XXX */
2983 	}
2984 
2985 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2986 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2987 
2988 	sip_init_rxdesc(sc, idx);
2989 
2990 	return 0;
2991 }
2992 
2993 /*
2994  * sip_sis900_set_filter:
2995  *
2996  *	Set up the receive filter.
2997  */
2998 static void
2999 sipcom_sis900_set_filter(struct sip_softc *sc)
3000 {
3001 	bus_space_tag_t st = sc->sc_st;
3002 	bus_space_handle_t sh = sc->sc_sh;
3003 	struct ethercom *ec = &sc->sc_ethercom;
3004 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3005 	struct ether_multi *enm;
3006 	const uint8_t *cp;
3007 	struct ether_multistep step;
3008 	uint32_t crc, mchash[16];
3009 
3010 	/*
3011 	 * Initialize the prototype RFCR.
3012 	 */
3013 	sc->sc_rfcr = RFCR_RFEN;
3014 	if (ifp->if_flags & IFF_BROADCAST)
3015 		sc->sc_rfcr |= RFCR_AAB;
3016 	if (ifp->if_flags & IFF_PROMISC) {
3017 		sc->sc_rfcr |= RFCR_AAP;
3018 		goto allmulti;
3019 	}
3020 
3021 	/*
3022 	 * Set up the multicast address filter by passing all multicast
3023 	 * addresses through a CRC generator, and then using the high-order
3024 	 * 6 bits as an index into the 128 bit multicast hash table (only
3025 	 * the lower 16 bits of each 32 bit multicast hash register are
3026 	 * valid).  The high order bits select the register, while the
3027 	 * rest of the bits select the bit within the register.
3028 	 */
3029 
3030 	memset(mchash, 0, sizeof(mchash));
3031 
3032 	/*
3033 	 * SiS900 (at least SiS963) requires us to register the address of
3034 	 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3035 	 */
3036 	crc = 0x0ed423f9;
3037 
3038 	if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3039 	    SIP_SIS900_REV(sc, SIS_REV_960) ||
3040 	    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3041 		/* Just want the 8 most significant bits. */
3042 		crc >>= 24;
3043 	} else {
3044 		/* Just want the 7 most significant bits. */
3045 		crc >>= 25;
3046 	}
3047 
3048 	/* Set the corresponding bit in the hash table. */
3049 	mchash[crc >> 4] |= 1 << (crc & 0xf);
3050 
3051 	ETHER_LOCK(ec);
3052 	ETHER_FIRST_MULTI(step, ec, enm);
3053 	while (enm != NULL) {
3054 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3055 			/*
3056 			 * We must listen to a range of multicast addresses.
3057 			 * For now, just accept all multicasts, rather than
3058 			 * trying to set only those filter bits needed to match
3059 			 * the range.  (At this time, the only use of address
3060 			 * ranges is for IP multicast routing, for which the
3061 			 * range is big enough to require all bits set.)
3062 			 */
3063 			ETHER_UNLOCK(ec);
3064 			goto allmulti;
3065 		}
3066 
3067 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3068 
3069 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3070 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
3071 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3072 			/* Just want the 8 most significant bits. */
3073 			crc >>= 24;
3074 		} else {
3075 			/* Just want the 7 most significant bits. */
3076 			crc >>= 25;
3077 		}
3078 
3079 		/* Set the corresponding bit in the hash table. */
3080 		mchash[crc >> 4] |= 1 << (crc & 0xf);
3081 
3082 		ETHER_NEXT_MULTI(step, enm);
3083 	}
3084 	ETHER_UNLOCK(ec);
3085 
3086 	ifp->if_flags &= ~IFF_ALLMULTI;
3087 	goto setit;
3088 
3089  allmulti:
3090 	ifp->if_flags |= IFF_ALLMULTI;
3091 	sc->sc_rfcr |= RFCR_AAM;
3092 
3093  setit:
3094 #define	FILTER_EMIT(addr, data)						\
3095 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
3096 	delay(1);							\
3097 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
3098 	delay(1)
3099 
3100 	/*
3101 	 * Disable receive filter, and program the node address.
3102 	 */
3103 	cp = CLLADDR(ifp->if_sadl);
3104 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
3105 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
3106 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
3107 
3108 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3109 		/*
3110 		 * Program the multicast hash table.
3111 		 */
3112 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
3113 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
3114 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
3115 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
3116 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
3117 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
3118 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
3119 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
3120 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3121 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
3122 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3123 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
3124 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
3125 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
3126 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
3127 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
3128 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
3129 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
3130 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
3131 		}
3132 	}
3133 #undef FILTER_EMIT
3134 
3135 	/*
3136 	 * Re-enable the receiver filter.
3137 	 */
3138 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3139 }
3140 
3141 /*
3142  * sip_dp83815_set_filter:
3143  *
3144  *	Set up the receive filter.
3145  */
3146 static void
3147 sipcom_dp83815_set_filter(struct sip_softc *sc)
3148 {
3149 	bus_space_tag_t st = sc->sc_st;
3150 	bus_space_handle_t sh = sc->sc_sh;
3151 	struct ethercom *ec = &sc->sc_ethercom;
3152 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3153 	struct ether_multi *enm;
3154 	const uint8_t *cp;
3155 	struct ether_multistep step;
3156 	uint32_t crc, hash, slot, bit;
3157 #define	MCHASH_NWORDS_83820	128
3158 #define	MCHASH_NWORDS_83815	32
3159 #define	MCHASH_NWORDS	MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3160 	uint16_t mchash[MCHASH_NWORDS];
3161 	int i;
3162 
3163 	/*
3164 	 * Initialize the prototype RFCR.
3165 	 * Enable the receive filter, and accept on
3166 	 *    Perfect (destination address) Match
3167 	 * If IFF_BROADCAST, also accept all broadcast packets.
3168 	 * If IFF_PROMISC, accept all unicast packets (and later, set
3169 	 *    IFF_ALLMULTI and accept all multicast, too).
3170 	 */
3171 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3172 	if (ifp->if_flags & IFF_BROADCAST)
3173 		sc->sc_rfcr |= RFCR_AAB;
3174 	if (ifp->if_flags & IFF_PROMISC) {
3175 		sc->sc_rfcr |= RFCR_AAP;
3176 		goto allmulti;
3177 	}
3178 
3179 	/*
3180 	 * Set up the DP83820/DP83815 multicast address filter by
3181 	 * passing all multicast addresses through a CRC generator,
3182 	 * and then using the high-order 11/9 bits as an index into
3183 	 * the 2048/512 bit multicast hash table.  The high-order
3184 	 * 7/5 bits select the slot, while the low-order 4 bits
3185 	 * select the bit within the slot.  Note that only the low
3186 	 * 16-bits of each filter word are used, and there are
3187 	 * 128/32 filter words.
3188 	 */
3189 
3190 	memset(mchash, 0, sizeof(mchash));
3191 
3192 	ifp->if_flags &= ~IFF_ALLMULTI;
3193 	ETHER_FIRST_MULTI(step, ec, enm);
3194 	if (enm == NULL)
3195 		goto setit;
3196 	while (enm != NULL) {
3197 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3198 			/*
3199 			 * We must listen to a range of multicast addresses.
3200 			 * For now, just accept all multicasts, rather than
3201 			 * trying to set only those filter bits needed to match
3202 			 * the range.  (At this time, the only use of address
3203 			 * ranges is for IP multicast routing, for which the
3204 			 * range is big enough to require all bits set.)
3205 			 */
3206 			goto allmulti;
3207 		}
3208 
3209 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3210 
3211 		if (sc->sc_gigabit) {
3212 			/* Just want the 11 most significant bits. */
3213 			hash = crc >> 21;
3214 		} else {
3215 			/* Just want the 9 most significant bits. */
3216 			hash = crc >> 23;
3217 		}
3218 
3219 		slot = hash >> 4;
3220 		bit = hash & 0xf;
3221 
3222 		/* Set the corresponding bit in the hash table. */
3223 		mchash[slot] |= 1 << bit;
3224 
3225 		ETHER_NEXT_MULTI(step, enm);
3226 	}
3227 	sc->sc_rfcr |= RFCR_MHEN;
3228 	goto setit;
3229 
3230  allmulti:
3231 	ifp->if_flags |= IFF_ALLMULTI;
3232 	sc->sc_rfcr |= RFCR_AAM;
3233 
3234  setit:
3235 #define	FILTER_EMIT(addr, data)						\
3236 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
3237 	delay(1);							\
3238 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
3239 	delay(1)
3240 
3241 	/*
3242 	 * Disable receive filter, and program the node address.
3243 	 */
3244 	cp = CLLADDR(ifp->if_sadl);
3245 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3246 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3247 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3248 
3249 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3250 		int nwords =
3251 		    sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3252 		/*
3253 		 * Program the multicast hash table.
3254 		 */
3255 		for (i = 0; i < nwords; i++) {
3256 			FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
3257 		}
3258 	}
3259 #undef FILTER_EMIT
3260 #undef MCHASH_NWORDS
3261 #undef MCHASH_NWORDS_83815
3262 #undef MCHASH_NWORDS_83820
3263 
3264 	/*
3265 	 * Re-enable the receiver filter.
3266 	 */
3267 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3268 }
3269 
3270 /*
3271  * sip_dp83820_mii_readreg:	[mii interface function]
3272  *
3273  *	Read a PHY register on the MII of the DP83820.
3274  */
3275 static int
3276 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
3277 {
3278 	struct sip_softc *sc = device_private(self);
3279 
3280 	if (sc->sc_cfg & CFG_TBI_EN) {
3281 		bus_addr_t tbireg;
3282 
3283 		if (phy != 0)
3284 			return -1;
3285 
3286 		switch (reg) {
3287 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3288 		case MII_BMSR:		tbireg = SIP_TBISR; break;
3289 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3290 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3291 		case MII_ANER:		tbireg = SIP_TANER; break;
3292 		case MII_EXTSR:
3293 			/*
3294 			 * Don't even bother reading the TESR register.
3295 			 * The manual documents that the device has
3296 			 * 1000baseX full/half capability, but the
3297 			 * register itself seems read back 0 on some
3298 			 * boards.  Just hard-code the result.
3299 			 */
3300 			*val = (EXTSR_1000XFDX | EXTSR_1000XHDX);
3301 			return 0;
3302 
3303 		default:
3304 			return 0;
3305 		}
3306 
3307 		*val = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3308 		if (tbireg == SIP_TBISR) {
3309 			/* LINK and ACOMP are switched! */
3310 			int sr = *val;
3311 
3312 			*val = 0;
3313 			if (sr & TBISR_MR_LINK_STATUS)
3314 				*val |= BMSR_LINK;
3315 			if (sr & TBISR_MR_AN_COMPLETE)
3316 				*val |= BMSR_ACOMP;
3317 
3318 			/*
3319 			 * The manual claims this register reads back 0
3320 			 * on hard and soft reset.  But we want to let
3321 			 * the gentbi driver know that we support auto-
3322 			 * negotiation, so hard-code this bit in the
3323 			 * result.
3324 			 */
3325 			*val |= BMSR_ANEG | BMSR_EXTSTAT;
3326 		}
3327 
3328 		return 0;
3329 	}
3330 
3331 	return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg,
3332 	    val);
3333 }
3334 
3335 /*
3336  * sip_dp83820_mii_writereg:	[mii interface function]
3337  *
3338  *	Write a PHY register on the MII of the DP83820.
3339  */
3340 static int
3341 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, uint16_t val)
3342 {
3343 	struct sip_softc *sc = device_private(self);
3344 
3345 	if (sc->sc_cfg & CFG_TBI_EN) {
3346 		bus_addr_t tbireg;
3347 
3348 		if (phy != 0)
3349 			return -1;
3350 
3351 		switch (reg) {
3352 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3353 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3354 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3355 		default:
3356 			return 0;
3357 		}
3358 
3359 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3360 		return 0;
3361 	}
3362 
3363 	return mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg,
3364 	    val);
3365 }
3366 
3367 /*
3368  * sip_dp83820_mii_statchg:	[mii interface function]
3369  *
3370  *	Callback from MII layer when media changes.
3371  */
3372 static void
3373 sipcom_dp83820_mii_statchg(struct ifnet *ifp)
3374 {
3375 	struct sip_softc *sc = ifp->if_softc;
3376 	struct mii_data *mii = &sc->sc_mii;
3377 	uint32_t cfg, pcr;
3378 
3379 	/*
3380 	 * Get flow control negotiation result.
3381 	 */
3382 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3383 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3384 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3385 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3386 	}
3387 
3388 	/*
3389 	 * Update TXCFG for full-duplex operation.
3390 	 */
3391 	if ((mii->mii_media_active & IFM_FDX) != 0)
3392 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3393 	else
3394 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3395 
3396 	/*
3397 	 * Update RXCFG for full-duplex or loopback.
3398 	 */
3399 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3400 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3401 		sc->sc_rxcfg |= RXCFG_ATX;
3402 	else
3403 		sc->sc_rxcfg &= ~RXCFG_ATX;
3404 
3405 	/*
3406 	 * Update CFG for MII/GMII.
3407 	 */
3408 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3409 		cfg = sc->sc_cfg | CFG_MODE_1000;
3410 	else
3411 		cfg = sc->sc_cfg;
3412 
3413 	/*
3414 	 * 802.3x flow control.
3415 	 */
3416 	pcr = 0;
3417 	if (sc->sc_flowflags & IFM_FLOW) {
3418 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3419 			pcr |= sc->sc_rx_flow_thresh;
3420 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3421 			pcr |= PCR_PSEN | PCR_PS_MCAST;
3422 	}
3423 
3424 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3425 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3426 	    sc->sc_txcfg);
3427 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3428 	    sc->sc_rxcfg);
3429 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3430 }
3431 
3432 /*
3433  * sip_mii_bitbang_read: [mii bit-bang interface function]
3434  *
3435  *	Read the MII serial port for the MII bit-bang module.
3436  */
3437 static uint32_t
3438 sipcom_mii_bitbang_read(device_t self)
3439 {
3440 	struct sip_softc *sc = device_private(self);
3441 
3442 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3443 }
3444 
3445 /*
3446  * sip_mii_bitbang_write: [mii big-bang interface function]
3447  *
3448  *	Write the MII serial port for the MII bit-bang module.
3449  */
3450 static void
3451 sipcom_mii_bitbang_write(device_t self, uint32_t val)
3452 {
3453 	struct sip_softc *sc = device_private(self);
3454 
3455 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3456 }
3457 
3458 /*
3459  * sip_sis900_mii_readreg:	[mii interface function]
3460  *
3461  *	Read a PHY register on the MII.
3462  */
3463 static int
3464 sipcom_sis900_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
3465 {
3466 	struct sip_softc *sc = device_private(self);
3467 	uint32_t enphy;
3468 
3469 	/*
3470 	 * The PHY of recent SiS chipsets is accessed through bitbang
3471 	 * operations.
3472 	 */
3473 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3474 		return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3475 		    phy, reg, val);
3476 
3477 #ifndef SIS900_MII_RESTRICT
3478 	/*
3479 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3480 	 * MII address 0.
3481 	 */
3482 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3483 		return -1;
3484 #endif
3485 
3486 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3487 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3488 	    ENPHY_RWCMD | ENPHY_ACCESS);
3489 	do {
3490 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3491 	} while (enphy & ENPHY_ACCESS);
3492 
3493 	*val = (enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT;
3494 	return 0;
3495 }
3496 
3497 /*
3498  * sip_sis900_mii_writereg:	[mii interface function]
3499  *
3500  *	Write a PHY register on the MII.
3501  */
3502 static int
3503 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, uint16_t val)
3504 {
3505 	struct sip_softc *sc = device_private(self);
3506 	uint32_t enphy;
3507 
3508 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3509 		return mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3510 		    phy, reg, val);
3511 	}
3512 
3513 #ifndef SIS900_MII_RESTRICT
3514 	/*
3515 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3516 	 * MII address 0.
3517 	 */
3518 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3519 		return -1;
3520 #endif
3521 
3522 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3523 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3524 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3525 	do {
3526 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3527 	} while (enphy & ENPHY_ACCESS);
3528 
3529 	return 0;
3530 }
3531 
3532 /*
3533  * sip_sis900_mii_statchg:	[mii interface function]
3534  *
3535  *	Callback from MII layer when media changes.
3536  */
3537 static void
3538 sipcom_sis900_mii_statchg(struct ifnet *ifp)
3539 {
3540 	struct sip_softc *sc = ifp->if_softc;
3541 	struct mii_data *mii = &sc->sc_mii;
3542 	uint32_t flowctl;
3543 
3544 	/*
3545 	 * Get flow control negotiation result.
3546 	 */
3547 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3548 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3549 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3550 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3551 	}
3552 
3553 	/*
3554 	 * Update TXCFG for full-duplex operation.
3555 	 */
3556 	if ((mii->mii_media_active & IFM_FDX) != 0)
3557 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3558 	else
3559 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3560 
3561 	/*
3562 	 * Update RXCFG for full-duplex or loopback.
3563 	 */
3564 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3565 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3566 		sc->sc_rxcfg |= RXCFG_ATX;
3567 	else
3568 		sc->sc_rxcfg &= ~RXCFG_ATX;
3569 
3570 	/*
3571 	 * Update IMR for use of 802.3x flow control.
3572 	 */
3573 	if (sc->sc_flowflags & IFM_FLOW) {
3574 		sc->sc_imr |= (ISR_PAUSE_END | ISR_PAUSE_ST);
3575 		flowctl = FLOWCTL_FLOWEN;
3576 	} else {
3577 		sc->sc_imr &= ~(ISR_PAUSE_END | ISR_PAUSE_ST);
3578 		flowctl = 0;
3579 	}
3580 
3581 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3582 	    sc->sc_txcfg);
3583 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3584 	    sc->sc_rxcfg);
3585 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3586 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3587 }
3588 
3589 /*
3590  * sip_dp83815_mii_readreg:	[mii interface function]
3591  *
3592  *	Read a PHY register on the MII.
3593  */
3594 static int
3595 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
3596 {
3597 	struct sip_softc *sc = device_private(self);
3598 	uint32_t data;
3599 
3600 	/*
3601 	 * The DP83815 only has an internal PHY.  Only allow
3602 	 * MII address 0.
3603 	 */
3604 	if (phy != 0)
3605 		return -1;
3606 
3607 	/*
3608 	 * Apparently, after a reset, the DP83815 can take a while
3609 	 * to respond.  During this recovery period, the BMSR returns
3610 	 * a value of 0.  Catch this -- it's not supposed to happen
3611 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3612 	 * PHY to come back to life.
3613 	 *
3614 	 * This works out because the BMSR is the first register
3615 	 * read during the PHY probe process.
3616 	 */
3617 	do {
3618 		data = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3619 	} while (reg == MII_BMSR && data == 0);
3620 
3621 	*val = data & 0xffff;
3622 	return 0;
3623 }
3624 
3625 /*
3626  * sip_dp83815_mii_writereg:	[mii interface function]
3627  *
3628  *	Write a PHY register to the MII.
3629  */
3630 static int
3631 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, uint16_t val)
3632 {
3633 	struct sip_softc *sc = device_private(self);
3634 
3635 	/*
3636 	 * The DP83815 only has an internal PHY.  Only allow
3637 	 * MII address 0.
3638 	 */
3639 	if (phy != 0)
3640 		return -1;
3641 
3642 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3643 
3644 	return 0;
3645 }
3646 
3647 /*
3648  * sip_dp83815_mii_statchg:	[mii interface function]
3649  *
3650  *	Callback from MII layer when media changes.
3651  */
3652 static void
3653 sipcom_dp83815_mii_statchg(struct ifnet *ifp)
3654 {
3655 	struct sip_softc *sc = ifp->if_softc;
3656 
3657 	/*
3658 	 * Update TXCFG for full-duplex operation.
3659 	 */
3660 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3661 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3662 	else
3663 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3664 
3665 	/*
3666 	 * Update RXCFG for full-duplex or loopback.
3667 	 */
3668 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3669 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3670 		sc->sc_rxcfg |= RXCFG_ATX;
3671 	else
3672 		sc->sc_rxcfg &= ~RXCFG_ATX;
3673 
3674 	/*
3675 	 * XXX 802.3x flow control.
3676 	 */
3677 
3678 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3679 	    sc->sc_txcfg);
3680 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3681 	    sc->sc_rxcfg);
3682 
3683 	/*
3684 	 * Some DP83815s experience problems when used with short
3685 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
3686 	 * sequence adjusts the DSP's signal attenuation to fix the
3687 	 * problem.
3688 	 */
3689 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3690 		uint32_t reg;
3691 
3692 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3693 
3694 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3695 		reg &= 0x0fff;
3696 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3697 		delay(100);
3698 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3699 		reg &= 0x00ff;
3700 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3701 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3702 			    0x00e8);
3703 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3704 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3705 			    reg | 0x20);
3706 		}
3707 
3708 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3709 	}
3710 }
3711 
3712 static void
3713 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3714     const struct pci_attach_args *pa, uint8_t *enaddr)
3715 {
3716 	uint16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3717 	uint8_t cksum, *e, match;
3718 	int i;
3719 
3720 	/*
3721 	 * EEPROM data format for the DP83820 can be found in
3722 	 * the DP83820 manual, section 4.2.4.
3723 	 */
3724 
3725 	sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3726 
3727 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3728 	match = ~(match - 1);
3729 
3730 	cksum = 0x55;
3731 	e = (uint8_t *)eeprom_data;
3732 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3733 		cksum += *e++;
3734 
3735 	if (cksum != match)
3736 		printf("%s: Checksum (%x) mismatch (%x)",
3737 		    device_xname(sc->sc_dev), cksum, match);
3738 
3739 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3740 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3741 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3742 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3743 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3744 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3745 }
3746 
3747 static void
3748 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3749 {
3750 	int i;
3751 
3752 	/*
3753 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
3754 	 * a reason, but I don't know it.
3755 	 */
3756 	for (i = 0; i < 10; i++)
3757 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3758 }
3759 
3760 static void
3761 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3762     const struct pci_attach_args *pa, uint8_t *enaddr)
3763 {
3764 	uint16_t myea[ETHER_ADDR_LEN / 2];
3765 
3766 	switch (sc->sc_rev) {
3767 	case SIS_REV_630S:
3768 	case SIS_REV_630E:
3769 	case SIS_REV_630EA1:
3770 	case SIS_REV_630ET:
3771 	case SIS_REV_635:
3772 		/*
3773 		 * The MAC address for the on-board Ethernet of
3774 		 * the SiS 630 chipset is in the NVRAM.  Kick
3775 		 * the chip into re-loading it from NVRAM, and
3776 		 * read the MAC address out of the filter registers.
3777 		 */
3778 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3779 
3780 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3781 		    RFCR_RFADDR_NODE0);
3782 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3783 		    0xffff;
3784 
3785 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3786 		    RFCR_RFADDR_NODE2);
3787 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3788 		    0xffff;
3789 
3790 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3791 		    RFCR_RFADDR_NODE4);
3792 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3793 		    0xffff;
3794 		break;
3795 
3796 	case SIS_REV_960:
3797 		{
3798 #define	SIS_SET_EROMAR(x, y)						     \
3799 		bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	     \
3800 		    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3801 
3802 #define	SIS_CLR_EROMAR(x, y)						     \
3803 		bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	     \
3804 		    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3805 
3806 			int waittime, i;
3807 
3808 			/* Allow to read EEPROM from LAN. It is shared
3809 			 * between a 1394 controller and the NIC and each
3810 			 * time we access it, we need to set SIS_EECMD_REQ.
3811 			 */
3812 			SIS_SET_EROMAR(sc, EROMAR_REQ);
3813 
3814 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3815 				/* Force EEPROM to idle state. */
3816 
3817 				/*
3818 				 * XXX-cube This is ugly.
3819 				 * I'll look for docs about it.
3820 				 */
3821 				SIS_SET_EROMAR(sc, EROMAR_EECS);
3822 				sipcom_sis900_eeprom_delay(sc);
3823 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3824 					SIS_SET_EROMAR(sc, EROMAR_EESK);
3825 					sipcom_sis900_eeprom_delay(sc);
3826 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
3827 					sipcom_sis900_eeprom_delay(sc);
3828 				}
3829 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
3830 				sipcom_sis900_eeprom_delay(sc);
3831 				bus_space_write_4(sc->sc_st, sc->sc_sh,
3832 				    SIP_EROMAR, 0);
3833 
3834 				if (bus_space_read_4(sc->sc_st, sc->sc_sh,
3835 				    SIP_EROMAR) & EROMAR_GNT) {
3836 					sipcom_read_eeprom(sc,
3837 					    SIP_EEPROM_ETHERNET_ID0 >> 1,
3838 					    sizeof(myea) / sizeof(myea[0]),
3839 					    myea);
3840 					break;
3841 				}
3842 				DELAY(1);
3843 			}
3844 
3845 			/*
3846 			 * Set SIS_EECTL_CLK to high, so a other master
3847 			 * can operate on the i2c bus.
3848 			 */
3849 			SIS_SET_EROMAR(sc, EROMAR_EESK);
3850 
3851 			/* Refuse EEPROM access by LAN */
3852 			SIS_SET_EROMAR(sc, EROMAR_DONE);
3853 		} break;
3854 
3855 	default:
3856 		sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3857 		    sizeof(myea) / sizeof(myea[0]), myea);
3858 	}
3859 
3860 	enaddr[0] = myea[0] & 0xff;
3861 	enaddr[1] = myea[0] >> 8;
3862 	enaddr[2] = myea[1] & 0xff;
3863 	enaddr[3] = myea[1] >> 8;
3864 	enaddr[4] = myea[2] & 0xff;
3865 	enaddr[5] = myea[2] >> 8;
3866 }
3867 
3868 /* Table and macro to bit-reverse an octet. */
3869 static const uint8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3870 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3871 
3872 static void
3873 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3874     const struct pci_attach_args *pa, uint8_t *enaddr)
3875 {
3876 	uint16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3877 	uint8_t cksum, *e, match;
3878 	int i;
3879 
3880 	sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3881 	    sizeof(eeprom_data[0]), eeprom_data);
3882 
3883 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3884 	match = ~(match - 1);
3885 
3886 	cksum = 0x55;
3887 	e = (uint8_t *)eeprom_data;
3888 	for (i = 0; i < SIP_DP83815_EEPROM_CHECKSUM; i++)
3889 		cksum += *e++;
3890 
3891 	if (cksum != match)
3892 		printf("%s: Checksum (%x) mismatch (%x)",
3893 		    device_xname(sc->sc_dev), cksum, match);
3894 
3895 	/*
3896 	 * Unrolled because it makes slightly more sense this way.
3897 	 * The DP83815 stores the MAC address in bit 0 of word 6
3898 	 * through bit 15 of word 8.
3899 	 */
3900 	ea = &eeprom_data[6];
3901 	enaddr[0] = ((*ea & 0x1) << 7);
3902 	ea++;
3903 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
3904 	enaddr[1] = ((*ea & 0x1FE) >> 1);
3905 	enaddr[2] = ((*ea & 0x1) << 7);
3906 	ea++;
3907 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
3908 	enaddr[3] = ((*ea & 0x1FE) >> 1);
3909 	enaddr[4] = ((*ea & 0x1) << 7);
3910 	ea++;
3911 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
3912 	enaddr[5] = ((*ea & 0x1FE) >> 1);
3913 
3914 	/*
3915 	 * In case that's not weird enough, we also need to reverse
3916 	 * the bits in each byte.  This all actually makes more sense
3917 	 * if you think about the EEPROM storage as an array of bits
3918 	 * being shifted into bytes, but that's not how we're looking
3919 	 * at it here...
3920 	 */
3921 	for (i = 0; i < 6 ;i++)
3922 		enaddr[i] = bbr(enaddr[i]);
3923 }
3924 
3925 /*
3926  * sip_mediastatus:	[ifmedia interface function]
3927  *
3928  *	Get the current interface media status.
3929  */
3930 static void
3931 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3932 {
3933 	struct sip_softc *sc = ifp->if_softc;
3934 
3935 	if (!device_is_active(sc->sc_dev)) {
3936 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
3937 		ifmr->ifm_status = 0;
3938 		return;
3939 	}
3940 	ether_mediastatus(ifp, ifmr);
3941 	ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
3942 			   sc->sc_flowflags;
3943 }
3944