xref: /netbsd-src/sys/dev/pci/if_sip.c (revision 5bbd2a12505d72a8177929a37b5cee489d0a1cfd)
1 /*	$NetBSD: if_sip.c,v 1.154 2012/07/22 14:33:03 matt Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1999 Network Computer, Inc.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of Network Computer, Inc. nor the names of its
45  *    contributors may be used to endorse or promote products derived
46  *    from this software without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
49  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
50  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
51  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
52  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
53  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
54  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
55  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
56  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
57  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
58  * POSSIBILITY OF SUCH DAMAGE.
59  */
60 
61 /*
62  * Device driver for the Silicon Integrated Systems SiS 900,
63  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
64  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
65  * controllers.
66  *
67  * Originally written to support the SiS 900 by Jason R. Thorpe for
68  * Network Computer, Inc.
69  *
70  * TODO:
71  *
72  *	- Reduce the Rx interrupt load.
73  */
74 
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.154 2012/07/22 14:33:03 matt Exp $");
77 
78 
79 
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/callout.h>
83 #include <sys/mbuf.h>
84 #include <sys/malloc.h>
85 #include <sys/kernel.h>
86 #include <sys/socket.h>
87 #include <sys/ioctl.h>
88 #include <sys/errno.h>
89 #include <sys/device.h>
90 #include <sys/queue.h>
91 
92 #include <sys/rnd.h>
93 
94 #include <net/if.h>
95 #include <net/if_dl.h>
96 #include <net/if_media.h>
97 #include <net/if_ether.h>
98 
99 #include <net/bpf.h>
100 
101 #include <sys/bus.h>
102 #include <sys/intr.h>
103 #include <machine/endian.h>
104 
105 #include <dev/mii/mii.h>
106 #include <dev/mii/miivar.h>
107 #include <dev/mii/mii_bitbang.h>
108 
109 #include <dev/pci/pcireg.h>
110 #include <dev/pci/pcivar.h>
111 #include <dev/pci/pcidevs.h>
112 
113 #include <dev/pci/if_sipreg.h>
114 
115 /*
116  * Transmit descriptor list size.  This is arbitrary, but allocate
117  * enough descriptors for 128 pending transmissions, and 8 segments
118  * per packet (64 for DP83820 for jumbo frames).
119  *
120  * This MUST work out to a power of 2.
121  */
122 #define	GSIP_NTXSEGS_ALLOC 16
123 #define	SIP_NTXSEGS_ALLOC 8
124 
125 #define	SIP_TXQUEUELEN		256
126 #define	MAX_SIP_NTXDESC	\
127     (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
128 
129 /*
130  * Receive descriptor list size.  We have one Rx buffer per incoming
131  * packet, so this logic is a little simpler.
132  *
133  * Actually, on the DP83820, we allow the packet to consume more than
134  * one buffer, in order to support jumbo Ethernet frames.  In that
135  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
136  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
137  * so we'd better be quick about handling receive interrupts.
138  */
139 #define	GSIP_NRXDESC		256
140 #define	SIP_NRXDESC		128
141 
142 #define	MAX_SIP_NRXDESC	MAX(GSIP_NRXDESC, SIP_NRXDESC)
143 
144 /*
145  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
146  * a single clump that maps to a single DMA segment to make several things
147  * easier.
148  */
149 struct sip_control_data {
150 	/*
151 	 * The transmit descriptors.
152 	 */
153 	struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
154 
155 	/*
156 	 * The receive descriptors.
157 	 */
158 	struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
159 };
160 
161 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
162 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
163 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
164 
165 /*
166  * Software state for transmit jobs.
167  */
168 struct sip_txsoft {
169 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
170 	bus_dmamap_t txs_dmamap;	/* our DMA map */
171 	int txs_firstdesc;		/* first descriptor in packet */
172 	int txs_lastdesc;		/* last descriptor in packet */
173 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
174 };
175 
176 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
177 
178 /*
179  * Software state for receive jobs.
180  */
181 struct sip_rxsoft {
182 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
183 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
184 };
185 
186 enum sip_attach_stage {
187 	  SIP_ATTACH_FIN = 0
188 	, SIP_ATTACH_CREATE_RXMAP
189 	, SIP_ATTACH_CREATE_TXMAP
190 	, SIP_ATTACH_LOAD_MAP
191 	, SIP_ATTACH_CREATE_MAP
192 	, SIP_ATTACH_MAP_MEM
193 	, SIP_ATTACH_ALLOC_MEM
194 	, SIP_ATTACH_INTR
195 	, SIP_ATTACH_MAP
196 };
197 
198 /*
199  * Software state per device.
200  */
201 struct sip_softc {
202 	device_t sc_dev;		/* generic device information */
203 	device_suspensor_t		sc_suspensor;
204 	pmf_qual_t			sc_qual;
205 
206 	bus_space_tag_t sc_st;		/* bus space tag */
207 	bus_space_handle_t sc_sh;	/* bus space handle */
208 	bus_size_t sc_sz;		/* bus space size */
209 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
210 	pci_chipset_tag_t sc_pc;
211 	bus_dma_segment_t sc_seg;
212 	struct ethercom sc_ethercom;	/* ethernet common data */
213 
214 	const struct sip_product *sc_model; /* which model are we? */
215 	int sc_gigabit;			/* 1: 83820, 0: other */
216 	int sc_rev;			/* chip revision */
217 
218 	void *sc_ih;			/* interrupt cookie */
219 
220 	struct mii_data sc_mii;		/* MII/media information */
221 
222 	callout_t sc_tick_ch;		/* tick callout */
223 
224 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
225 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
226 
227 	/*
228 	 * Software state for transmit and receive descriptors.
229 	 */
230 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
231 	struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
232 
233 	/*
234 	 * Control data structures.
235 	 */
236 	struct sip_control_data *sc_control_data;
237 #define	sc_txdescs	sc_control_data->scd_txdescs
238 #define	sc_rxdescs	sc_control_data->scd_rxdescs
239 
240 #ifdef SIP_EVENT_COUNTERS
241 	/*
242 	 * Event counters.
243 	 */
244 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
245 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
246 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
247 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
248 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
249 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
250 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
251 	struct evcnt sc_ev_rxpause;	/* PAUSE received */
252 	/* DP83820 only */
253 	struct evcnt sc_ev_txpause;	/* PAUSE transmitted */
254 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
255 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
256 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
257 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
258 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
259 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
260 #endif /* SIP_EVENT_COUNTERS */
261 
262 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
263 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
264 	u_int32_t sc_imr;		/* prototype IMR register */
265 	u_int32_t sc_rfcr;		/* prototype RFCR register */
266 
267 	u_int32_t sc_cfg;		/* prototype CFG register */
268 
269 	u_int32_t sc_gpior;		/* prototype GPIOR register */
270 
271 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
272 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
273 
274 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
275 
276 	int	sc_flowflags;		/* 802.3x flow control flags */
277 	int	sc_rx_flow_thresh;	/* Rx FIFO threshold for flow control */
278 	int	sc_paused;		/* paused indication */
279 
280 	int	sc_txfree;		/* number of free Tx descriptors */
281 	int	sc_txnext;		/* next ready Tx descriptor */
282 	int	sc_txwin;		/* Tx descriptors since last intr */
283 
284 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
285 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
286 
287 	/* values of interface state at last init */
288 	struct {
289 		/* if_capenable */
290 		uint64_t	if_capenable;
291 		/* ec_capenable */
292 		int		ec_capenable;
293 		/* VLAN_ATTACHED */
294 		int		is_vlan;
295 	}	sc_prev;
296 
297 	short	sc_if_flags;
298 
299 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
300 	int	sc_rxdiscard;
301 	int	sc_rxlen;
302 	struct mbuf *sc_rxhead;
303 	struct mbuf *sc_rxtail;
304 	struct mbuf **sc_rxtailp;
305 
306 	int sc_ntxdesc;
307 	int sc_ntxdesc_mask;
308 
309 	int sc_nrxdesc_mask;
310 
311 	const struct sip_parm {
312 		const struct sip_regs {
313 			int r_rxcfg;
314 			int r_txcfg;
315 		} p_regs;
316 
317 		const struct sip_bits {
318 			uint32_t b_txcfg_mxdma_8;
319 			uint32_t b_txcfg_mxdma_16;
320 			uint32_t b_txcfg_mxdma_32;
321 			uint32_t b_txcfg_mxdma_64;
322 			uint32_t b_txcfg_mxdma_128;
323 			uint32_t b_txcfg_mxdma_256;
324 			uint32_t b_txcfg_mxdma_512;
325 			uint32_t b_txcfg_flth_mask;
326 			uint32_t b_txcfg_drth_mask;
327 
328 			uint32_t b_rxcfg_mxdma_8;
329 			uint32_t b_rxcfg_mxdma_16;
330 			uint32_t b_rxcfg_mxdma_32;
331 			uint32_t b_rxcfg_mxdma_64;
332 			uint32_t b_rxcfg_mxdma_128;
333 			uint32_t b_rxcfg_mxdma_256;
334 			uint32_t b_rxcfg_mxdma_512;
335 
336 			uint32_t b_isr_txrcmp;
337 			uint32_t b_isr_rxrcmp;
338 			uint32_t b_isr_dperr;
339 			uint32_t b_isr_sserr;
340 			uint32_t b_isr_rmabt;
341 			uint32_t b_isr_rtabt;
342 
343 			uint32_t b_cmdsts_size_mask;
344 		} p_bits;
345 		int		p_filtmem;
346 		int		p_rxbuf_len;
347 		bus_size_t	p_tx_dmamap_size;
348 		int		p_ntxsegs;
349 		int		p_ntxsegs_alloc;
350 		int		p_nrxdesc;
351 	} *sc_parm;
352 
353 	void (*sc_rxintr)(struct sip_softc *);
354 
355 	krndsource_t rnd_source;	/* random source */
356 };
357 
358 #define	sc_bits	sc_parm->p_bits
359 #define	sc_regs	sc_parm->p_regs
360 
361 static const struct sip_parm sip_parm = {
362 	  .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
363 	, .p_rxbuf_len = MCLBYTES - 1	/* field width */
364 	, .p_tx_dmamap_size = MCLBYTES
365 	, .p_ntxsegs = 16
366 	, .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
367 	, .p_nrxdesc = SIP_NRXDESC
368 	, .p_bits = {
369 		  .b_txcfg_mxdma_8	= 0x00200000	/*       8 bytes */
370 		, .b_txcfg_mxdma_16	= 0x00300000	/*      16 bytes */
371 		, .b_txcfg_mxdma_32	= 0x00400000	/*      32 bytes */
372 		, .b_txcfg_mxdma_64	= 0x00500000	/*      64 bytes */
373 		, .b_txcfg_mxdma_128	= 0x00600000	/*     128 bytes */
374 		, .b_txcfg_mxdma_256	= 0x00700000	/*     256 bytes */
375 		, .b_txcfg_mxdma_512	= 0x00000000	/*     512 bytes */
376 		, .b_txcfg_flth_mask	= 0x00003f00	/* Tx fill threshold */
377 		, .b_txcfg_drth_mask	= 0x0000003f	/* Tx drain threshold */
378 
379 		, .b_rxcfg_mxdma_8	= 0x00200000	/*       8 bytes */
380 		, .b_rxcfg_mxdma_16	= 0x00300000	/*      16 bytes */
381 		, .b_rxcfg_mxdma_32	= 0x00400000	/*      32 bytes */
382 		, .b_rxcfg_mxdma_64	= 0x00500000	/*      64 bytes */
383 		, .b_rxcfg_mxdma_128	= 0x00600000	/*     128 bytes */
384 		, .b_rxcfg_mxdma_256	= 0x00700000	/*     256 bytes */
385 		, .b_rxcfg_mxdma_512	= 0x00000000	/*     512 bytes */
386 
387 		, .b_isr_txrcmp	= 0x02000000	/* transmit reset complete */
388 		, .b_isr_rxrcmp	= 0x01000000	/* receive reset complete */
389 		, .b_isr_dperr	= 0x00800000	/* detected parity error */
390 		, .b_isr_sserr	= 0x00400000	/* signalled system error */
391 		, .b_isr_rmabt	= 0x00200000	/* received master abort */
392 		, .b_isr_rtabt	= 0x00100000	/* received target abort */
393 		, .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
394 	}
395 	, .p_regs = {
396 		.r_rxcfg = OTHER_SIP_RXCFG,
397 		.r_txcfg = OTHER_SIP_TXCFG
398 	}
399 }, gsip_parm = {
400 	  .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
401 	, .p_rxbuf_len = MCLBYTES - 8
402 	, .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
403 	, .p_ntxsegs = 64
404 	, .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
405 	, .p_nrxdesc = GSIP_NRXDESC
406 	, .p_bits = {
407 		  .b_txcfg_mxdma_8	= 0x00100000	/*       8 bytes */
408 		, .b_txcfg_mxdma_16	= 0x00200000	/*      16 bytes */
409 		, .b_txcfg_mxdma_32	= 0x00300000	/*      32 bytes */
410 		, .b_txcfg_mxdma_64	= 0x00400000	/*      64 bytes */
411 		, .b_txcfg_mxdma_128	= 0x00500000	/*     128 bytes */
412 		, .b_txcfg_mxdma_256	= 0x00600000	/*     256 bytes */
413 		, .b_txcfg_mxdma_512	= 0x00700000	/*     512 bytes */
414 		, .b_txcfg_flth_mask	= 0x0000ff00	/* Fx fill threshold */
415 		, .b_txcfg_drth_mask	= 0x000000ff	/* Tx drain threshold */
416 
417 		, .b_rxcfg_mxdma_8	= 0x00100000	/*       8 bytes */
418 		, .b_rxcfg_mxdma_16	= 0x00200000	/*      16 bytes */
419 		, .b_rxcfg_mxdma_32	= 0x00300000	/*      32 bytes */
420 		, .b_rxcfg_mxdma_64	= 0x00400000	/*      64 bytes */
421 		, .b_rxcfg_mxdma_128	= 0x00500000	/*     128 bytes */
422 		, .b_rxcfg_mxdma_256	= 0x00600000	/*     256 bytes */
423 		, .b_rxcfg_mxdma_512	= 0x00700000	/*     512 bytes */
424 
425 		, .b_isr_txrcmp	= 0x00400000	/* transmit reset complete */
426 		, .b_isr_rxrcmp	= 0x00200000	/* receive reset complete */
427 		, .b_isr_dperr	= 0x00100000	/* detected parity error */
428 		, .b_isr_sserr	= 0x00080000	/* signalled system error */
429 		, .b_isr_rmabt	= 0x00040000	/* received master abort */
430 		, .b_isr_rtabt	= 0x00020000	/* received target abort */
431 		, .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
432 	}
433 	, .p_regs = {
434 		.r_rxcfg = DP83820_SIP_RXCFG,
435 		.r_txcfg = DP83820_SIP_TXCFG
436 	}
437 };
438 
439 static inline int
440 sip_nexttx(const struct sip_softc *sc, int x)
441 {
442 	return (x + 1) & sc->sc_ntxdesc_mask;
443 }
444 
445 static inline int
446 sip_nextrx(const struct sip_softc *sc, int x)
447 {
448 	return (x + 1) & sc->sc_nrxdesc_mask;
449 }
450 
451 /* 83820 only */
452 static inline void
453 sip_rxchain_reset(struct sip_softc *sc)
454 {
455 	sc->sc_rxtailp = &sc->sc_rxhead;
456 	*sc->sc_rxtailp = NULL;
457 	sc->sc_rxlen = 0;
458 }
459 
460 /* 83820 only */
461 static inline void
462 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
463 {
464 	*sc->sc_rxtailp = sc->sc_rxtail = m;
465 	sc->sc_rxtailp = &m->m_next;
466 }
467 
468 #ifdef SIP_EVENT_COUNTERS
469 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
470 #else
471 #define	SIP_EVCNT_INCR(ev)	/* nothing */
472 #endif
473 
474 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
475 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
476 
477 static inline void
478 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
479 {
480 	int x, n;
481 
482 	x = x0;
483 	n = n0;
484 
485 	/* If it will wrap around, sync to the end of the ring. */
486 	if (x + n > sc->sc_ntxdesc) {
487 		bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
488 		    SIP_CDTXOFF(x), sizeof(struct sip_desc) *
489 		    (sc->sc_ntxdesc - x), ops);
490 		n -= (sc->sc_ntxdesc - x);
491 		x = 0;
492 	}
493 
494 	/* Now sync whatever is left. */
495 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
496 	    SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
497 }
498 
499 static inline void
500 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
501 {
502 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
503 	    SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
504 }
505 
506 #if 0
507 #ifdef DP83820
508 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
509 	u_int32_t	sipd_cmdsts;	/* command/status word */
510 #else
511 	u_int32_t	sipd_cmdsts;	/* command/status word */
512 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
513 #endif /* DP83820 */
514 #endif /* 0 */
515 
516 static inline volatile uint32_t *
517 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
518 {
519 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
520 }
521 
522 static inline volatile uint32_t *
523 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
524 {
525 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
526 }
527 
528 static inline void
529 sip_init_rxdesc(struct sip_softc *sc, int x)
530 {
531 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
532 	struct sip_desc *sipd = &sc->sc_rxdescs[x];
533 
534 	sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
535 	*sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
536 	*sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
537 	    (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
538 	sipd->sipd_extsts = 0;
539 	sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
540 }
541 
542 #define	SIP_CHIP_VERS(sc, v, p, r)					\
543 	((sc)->sc_model->sip_vendor == (v) &&				\
544 	 (sc)->sc_model->sip_product == (p) &&				\
545 	 (sc)->sc_rev == (r))
546 
547 #define	SIP_CHIP_MODEL(sc, v, p)					\
548 	((sc)->sc_model->sip_vendor == (v) &&				\
549 	 (sc)->sc_model->sip_product == (p))
550 
551 #define	SIP_SIS900_REV(sc, rev)						\
552 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
553 
554 #define SIP_TIMEOUT 1000
555 
556 static int	sip_ifflags_cb(struct ethercom *);
557 static void	sipcom_start(struct ifnet *);
558 static void	sipcom_watchdog(struct ifnet *);
559 static int	sipcom_ioctl(struct ifnet *, u_long, void *);
560 static int	sipcom_init(struct ifnet *);
561 static void	sipcom_stop(struct ifnet *, int);
562 
563 static bool	sipcom_reset(struct sip_softc *);
564 static void	sipcom_rxdrain(struct sip_softc *);
565 static int	sipcom_add_rxbuf(struct sip_softc *, int);
566 static void	sipcom_read_eeprom(struct sip_softc *, int, int,
567 				      u_int16_t *);
568 static void	sipcom_tick(void *);
569 
570 static void	sipcom_sis900_set_filter(struct sip_softc *);
571 static void	sipcom_dp83815_set_filter(struct sip_softc *);
572 
573 static void	sipcom_dp83820_read_macaddr(struct sip_softc *,
574 		    const struct pci_attach_args *, u_int8_t *);
575 static void	sipcom_sis900_eeprom_delay(struct sip_softc *sc);
576 static void	sipcom_sis900_read_macaddr(struct sip_softc *,
577 		    const struct pci_attach_args *, u_int8_t *);
578 static void	sipcom_dp83815_read_macaddr(struct sip_softc *,
579 		    const struct pci_attach_args *, u_int8_t *);
580 
581 static int	sipcom_intr(void *);
582 static void	sipcom_txintr(struct sip_softc *);
583 static void	sip_rxintr(struct sip_softc *);
584 static void	gsip_rxintr(struct sip_softc *);
585 
586 static int	sipcom_dp83820_mii_readreg(device_t, int, int);
587 static void	sipcom_dp83820_mii_writereg(device_t, int, int, int);
588 static void	sipcom_dp83820_mii_statchg(struct ifnet *);
589 
590 static int	sipcom_sis900_mii_readreg(device_t, int, int);
591 static void	sipcom_sis900_mii_writereg(device_t, int, int, int);
592 static void	sipcom_sis900_mii_statchg(struct ifnet *);
593 
594 static int	sipcom_dp83815_mii_readreg(device_t, int, int);
595 static void	sipcom_dp83815_mii_writereg(device_t, int, int, int);
596 static void	sipcom_dp83815_mii_statchg(struct ifnet *);
597 
598 static void	sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
599 
600 static int	sipcom_match(device_t, cfdata_t, void *);
601 static void	sipcom_attach(device_t, device_t, void *);
602 static void	sipcom_do_detach(device_t, enum sip_attach_stage);
603 static int	sipcom_detach(device_t, int);
604 static bool	sipcom_resume(device_t, const pmf_qual_t *);
605 static bool	sipcom_suspend(device_t, const pmf_qual_t *);
606 
607 int	gsip_copy_small = 0;
608 int	sip_copy_small = 0;
609 
610 CFATTACH_DECL3_NEW(gsip, sizeof(struct sip_softc),
611     sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
612     DVF_DETACH_SHUTDOWN);
613 CFATTACH_DECL3_NEW(sip, sizeof(struct sip_softc),
614     sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
615     DVF_DETACH_SHUTDOWN);
616 
617 /*
618  * Descriptions of the variants of the SiS900.
619  */
620 struct sip_variant {
621 	int	(*sipv_mii_readreg)(device_t, int, int);
622 	void	(*sipv_mii_writereg)(device_t, int, int, int);
623 	void	(*sipv_mii_statchg)(struct ifnet *);
624 	void	(*sipv_set_filter)(struct sip_softc *);
625 	void	(*sipv_read_macaddr)(struct sip_softc *,
626 		    const struct pci_attach_args *, u_int8_t *);
627 };
628 
629 static u_int32_t sipcom_mii_bitbang_read(device_t);
630 static void	sipcom_mii_bitbang_write(device_t, u_int32_t);
631 
632 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
633 	sipcom_mii_bitbang_read,
634 	sipcom_mii_bitbang_write,
635 	{
636 		EROMAR_MDIO,		/* MII_BIT_MDO */
637 		EROMAR_MDIO,		/* MII_BIT_MDI */
638 		EROMAR_MDC,		/* MII_BIT_MDC */
639 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
640 		0,			/* MII_BIT_DIR_PHY_HOST */
641 	}
642 };
643 
644 static const struct sip_variant sipcom_variant_dp83820 = {
645 	sipcom_dp83820_mii_readreg,
646 	sipcom_dp83820_mii_writereg,
647 	sipcom_dp83820_mii_statchg,
648 	sipcom_dp83815_set_filter,
649 	sipcom_dp83820_read_macaddr,
650 };
651 
652 static const struct sip_variant sipcom_variant_sis900 = {
653 	sipcom_sis900_mii_readreg,
654 	sipcom_sis900_mii_writereg,
655 	sipcom_sis900_mii_statchg,
656 	sipcom_sis900_set_filter,
657 	sipcom_sis900_read_macaddr,
658 };
659 
660 static const struct sip_variant sipcom_variant_dp83815 = {
661 	sipcom_dp83815_mii_readreg,
662 	sipcom_dp83815_mii_writereg,
663 	sipcom_dp83815_mii_statchg,
664 	sipcom_dp83815_set_filter,
665 	sipcom_dp83815_read_macaddr,
666 };
667 
668 
669 /*
670  * Devices supported by this driver.
671  */
672 static const struct sip_product {
673 	pci_vendor_id_t		sip_vendor;
674 	pci_product_id_t	sip_product;
675 	const char		*sip_name;
676 	const struct sip_variant *sip_variant;
677 	int			sip_gigabit;
678 } sipcom_products[] = {
679 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
680 	  "NatSemi DP83820 Gigabit Ethernet",
681 	  &sipcom_variant_dp83820, 1 },
682 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
683 	  "SiS 900 10/100 Ethernet",
684 	  &sipcom_variant_sis900, 0 },
685 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
686 	  "SiS 7016 10/100 Ethernet",
687 	  &sipcom_variant_sis900, 0 },
688 
689 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
690 	  "NatSemi DP83815 10/100 Ethernet",
691 	  &sipcom_variant_dp83815, 0 },
692 
693 	{ 0,			0,
694 	  NULL,
695 	  NULL, 0 },
696 };
697 
698 static const struct sip_product *
699 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
700 {
701 	const struct sip_product *sip;
702 
703 	for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
704 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
705 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
706 		    sip->sip_gigabit == gigabit)
707 			return sip;
708 	}
709 	return NULL;
710 }
711 
712 /*
713  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
714  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
715  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
716  * which means we try to use 64-bit data transfers on those cards if we
717  * happen to be plugged into a 32-bit slot.
718  *
719  * What we do is use this table of cards known to be 64-bit cards.  If
720  * you have a 64-bit card who's subsystem ID is not listed in this table,
721  * send the output of "pcictl dump ..." of the device to me so that your
722  * card will use the 64-bit data path when plugged into a 64-bit slot.
723  *
724  *	-- Jason R. Thorpe <thorpej@NetBSD.org>
725  *	   June 30, 2002
726  */
727 static int
728 sipcom_check_64bit(const struct pci_attach_args *pa)
729 {
730 	static const struct {
731 		pci_vendor_id_t c64_vendor;
732 		pci_product_id_t c64_product;
733 	} card64[] = {
734 		/* Asante GigaNIX */
735 		{ 0x128a,	0x0002 },
736 
737 		/* Accton EN1407-T, Planex GN-1000TE */
738 		{ 0x1113,	0x1407 },
739 
740 		/* Netgear GA-621 */
741 		{ 0x1385,	0x621a },
742 
743 		/* SMC EZ Card */
744 		{ 0x10b8,	0x9462 },
745 
746 		{ 0, 0}
747 	};
748 	pcireg_t subsys;
749 	int i;
750 
751 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
752 
753 	for (i = 0; card64[i].c64_vendor != 0; i++) {
754 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
755 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
756 			return (1);
757 	}
758 
759 	return (0);
760 }
761 
762 static int
763 sipcom_match(device_t parent, cfdata_t cf, void *aux)
764 {
765 	struct pci_attach_args *pa = aux;
766 
767 	if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
768 		return 1;
769 
770 	return 0;
771 }
772 
773 static void
774 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
775 {
776 	u_int32_t reg;
777 	int i;
778 
779 	/*
780 	 * Cause the chip to load configuration data from the EEPROM.
781 	 */
782 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
783 	for (i = 0; i < 10000; i++) {
784 		delay(10);
785 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
786 		    PTSCR_EELOAD_EN) == 0)
787 			break;
788 	}
789 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
790 	    PTSCR_EELOAD_EN) {
791 		printf("%s: timeout loading configuration from EEPROM\n",
792 		    device_xname(sc->sc_dev));
793 		return;
794 	}
795 
796 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
797 
798 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
799 	if (reg & CFG_PCI64_DET) {
800 		printf("%s: 64-bit PCI slot detected", device_xname(sc->sc_dev));
801 		/*
802 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
803 		 * data transfers.
804 		 *
805 		 * We can't use the DATA64_EN bit in the EEPROM, because
806 		 * vendors of 32-bit cards fail to clear that bit in many
807 		 * cases (yet the card still detects that it's in a 64-bit
808 		 * slot; go figure).
809 		 */
810 		if (sipcom_check_64bit(pa)) {
811 			sc->sc_cfg |= CFG_DATA64_EN;
812 			printf(", using 64-bit data transfers");
813 		}
814 		printf("\n");
815 	}
816 
817 	/*
818 	 * XXX Need some PCI flags indicating support for
819 	 * XXX 64-bit addressing.
820 	 */
821 #if 0
822 	if (reg & CFG_M64ADDR)
823 		sc->sc_cfg |= CFG_M64ADDR;
824 	if (reg & CFG_T64ADDR)
825 		sc->sc_cfg |= CFG_T64ADDR;
826 #endif
827 
828 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
829 		const char *sep = "";
830 		printf("%s: using ", device_xname(sc->sc_dev));
831 		if (reg & CFG_EXT_125) {
832 			sc->sc_cfg |= CFG_EXT_125;
833 			printf("%s125MHz clock", sep);
834 			sep = ", ";
835 		}
836 		if (reg & CFG_TBI_EN) {
837 			sc->sc_cfg |= CFG_TBI_EN;
838 			printf("%sten-bit interface", sep);
839 			sep = ", ";
840 		}
841 		printf("\n");
842 	}
843 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
844 	    (reg & CFG_MRM_DIS) != 0)
845 		sc->sc_cfg |= CFG_MRM_DIS;
846 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
847 	    (reg & CFG_MWI_DIS) != 0)
848 		sc->sc_cfg |= CFG_MWI_DIS;
849 
850 	/*
851 	 * Use the extended descriptor format on the DP83820.  This
852 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
853 	 * checksumming.
854 	 */
855 	sc->sc_cfg |= CFG_EXTSTS_EN;
856 }
857 
858 static int
859 sipcom_detach(device_t self, int flags)
860 {
861 	int s;
862 
863 	s = splnet();
864 	sipcom_do_detach(self, SIP_ATTACH_FIN);
865 	splx(s);
866 
867 	return 0;
868 }
869 
870 static void
871 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
872 {
873 	int i;
874 	struct sip_softc *sc = device_private(self);
875 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
876 
877 	/*
878 	 * Free any resources we've allocated during attach.
879 	 * Do this in reverse order and fall through.
880 	 */
881 	switch (stage) {
882 	case SIP_ATTACH_FIN:
883 		sipcom_stop(ifp, 1);
884 		pmf_device_deregister(self);
885 #ifdef SIP_EVENT_COUNTERS
886 		/*
887 		 * Attach event counters.
888 		 */
889 		evcnt_detach(&sc->sc_ev_txforceintr);
890 		evcnt_detach(&sc->sc_ev_txdstall);
891 		evcnt_detach(&sc->sc_ev_txsstall);
892 		evcnt_detach(&sc->sc_ev_hiberr);
893 		evcnt_detach(&sc->sc_ev_rxintr);
894 		evcnt_detach(&sc->sc_ev_txiintr);
895 		evcnt_detach(&sc->sc_ev_txdintr);
896 		if (!sc->sc_gigabit) {
897 			evcnt_detach(&sc->sc_ev_rxpause);
898 		} else {
899 			evcnt_detach(&sc->sc_ev_txudpsum);
900 			evcnt_detach(&sc->sc_ev_txtcpsum);
901 			evcnt_detach(&sc->sc_ev_txipsum);
902 			evcnt_detach(&sc->sc_ev_rxudpsum);
903 			evcnt_detach(&sc->sc_ev_rxtcpsum);
904 			evcnt_detach(&sc->sc_ev_rxipsum);
905 			evcnt_detach(&sc->sc_ev_txpause);
906 			evcnt_detach(&sc->sc_ev_rxpause);
907 		}
908 #endif /* SIP_EVENT_COUNTERS */
909 
910 		rnd_detach_source(&sc->rnd_source);
911 
912 		ether_ifdetach(ifp);
913 		if_detach(ifp);
914 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
915 
916 		/*FALLTHROUGH*/
917 	case SIP_ATTACH_CREATE_RXMAP:
918 		for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
919 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
920 				bus_dmamap_destroy(sc->sc_dmat,
921 				    sc->sc_rxsoft[i].rxs_dmamap);
922 		}
923 		/*FALLTHROUGH*/
924 	case SIP_ATTACH_CREATE_TXMAP:
925 		for (i = 0; i < SIP_TXQUEUELEN; i++) {
926 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
927 				bus_dmamap_destroy(sc->sc_dmat,
928 				    sc->sc_txsoft[i].txs_dmamap);
929 		}
930 		/*FALLTHROUGH*/
931 	case SIP_ATTACH_LOAD_MAP:
932 		bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
933 		/*FALLTHROUGH*/
934 	case SIP_ATTACH_CREATE_MAP:
935 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
936 		/*FALLTHROUGH*/
937 	case SIP_ATTACH_MAP_MEM:
938 		bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
939 		    sizeof(struct sip_control_data));
940 		/*FALLTHROUGH*/
941 	case SIP_ATTACH_ALLOC_MEM:
942 		bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
943 		/* FALLTHROUGH*/
944 	case SIP_ATTACH_INTR:
945 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
946 		/* FALLTHROUGH*/
947 	case SIP_ATTACH_MAP:
948 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
949 		break;
950 	default:
951 		break;
952 	}
953 	return;
954 }
955 
956 static bool
957 sipcom_resume(device_t self, const pmf_qual_t *qual)
958 {
959 	struct sip_softc *sc = device_private(self);
960 
961 	return sipcom_reset(sc);
962 }
963 
964 static bool
965 sipcom_suspend(device_t self, const pmf_qual_t *qual)
966 {
967 	struct sip_softc *sc = device_private(self);
968 
969 	sipcom_rxdrain(sc);
970 	return true;
971 }
972 
973 static void
974 sipcom_attach(device_t parent, device_t self, void *aux)
975 {
976 	struct sip_softc *sc = device_private(self);
977 	struct pci_attach_args *pa = aux;
978 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
979 	pci_chipset_tag_t pc = pa->pa_pc;
980 	pci_intr_handle_t ih;
981 	const char *intrstr = NULL;
982 	bus_space_tag_t iot, memt;
983 	bus_space_handle_t ioh, memh;
984 	bus_size_t iosz, memsz;
985 	int ioh_valid, memh_valid;
986 	int i, rseg, error;
987 	const struct sip_product *sip;
988 	u_int8_t enaddr[ETHER_ADDR_LEN];
989 	pcireg_t csr;
990 	pcireg_t memtype;
991 	bus_size_t tx_dmamap_size;
992 	int ntxsegs_alloc;
993 	cfdata_t cf = device_cfdata(self);
994 
995 	callout_init(&sc->sc_tick_ch, 0);
996 
997 	sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
998 	if (sip == NULL) {
999 		printf("\n");
1000 		panic("%s: impossible", __func__);
1001 	}
1002 	sc->sc_dev = self;
1003 	sc->sc_gigabit = sip->sip_gigabit;
1004 	pmf_self_suspensor_init(self, &sc->sc_suspensor, &sc->sc_qual);
1005 	sc->sc_pc = pc;
1006 
1007 	if (sc->sc_gigabit) {
1008 		sc->sc_rxintr = gsip_rxintr;
1009 		sc->sc_parm = &gsip_parm;
1010 	} else {
1011 		sc->sc_rxintr = sip_rxintr;
1012 		sc->sc_parm = &sip_parm;
1013 	}
1014 	tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
1015 	ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
1016 	sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
1017 	sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
1018 	sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
1019 
1020 	sc->sc_rev = PCI_REVISION(pa->pa_class);
1021 
1022 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
1023 
1024 	sc->sc_model = sip;
1025 
1026 	/*
1027 	 * XXX Work-around broken PXE firmware on some boards.
1028 	 *
1029 	 * The DP83815 shares an address decoder with the MEM BAR
1030 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
1031 	 * so that memory mapped access works.
1032 	 */
1033 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
1034 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
1035 	    ~PCI_MAPREG_ROM_ENABLE);
1036 
1037 	/*
1038 	 * Map the device.
1039 	 */
1040 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
1041 	    PCI_MAPREG_TYPE_IO, 0,
1042 	    &iot, &ioh, NULL, &iosz) == 0);
1043 	if (sc->sc_gigabit) {
1044 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
1045 		switch (memtype) {
1046 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1047 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1048 			memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1049 			    memtype, 0, &memt, &memh, NULL, &memsz) == 0);
1050 			break;
1051 		default:
1052 			memh_valid = 0;
1053 		}
1054 	} else {
1055 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1056 		    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
1057 		    &memt, &memh, NULL, &memsz) == 0);
1058 	}
1059 
1060 	if (memh_valid) {
1061 		sc->sc_st = memt;
1062 		sc->sc_sh = memh;
1063 		sc->sc_sz = memsz;
1064 	} else if (ioh_valid) {
1065 		sc->sc_st = iot;
1066 		sc->sc_sh = ioh;
1067 		sc->sc_sz = iosz;
1068 	} else {
1069 		printf("%s: unable to map device registers\n",
1070 		    device_xname(sc->sc_dev));
1071 		return;
1072 	}
1073 
1074 	sc->sc_dmat = pa->pa_dmat;
1075 
1076 	/*
1077 	 * Make sure bus mastering is enabled.  Also make sure
1078 	 * Write/Invalidate is enabled if we're allowed to use it.
1079 	 */
1080 	csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1081 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
1082 		csr |= PCI_COMMAND_INVALIDATE_ENABLE;
1083 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
1084 	    csr | PCI_COMMAND_MASTER_ENABLE);
1085 
1086 	/* power up chip */
1087 	error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null);
1088 	if (error != 0 && error != EOPNOTSUPP) {
1089 		aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
1090 		return;
1091 	}
1092 
1093 	/*
1094 	 * Map and establish our interrupt.
1095 	 */
1096 	if (pci_intr_map(pa, &ih)) {
1097 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
1098 		return;
1099 	}
1100 	intrstr = pci_intr_string(pc, ih);
1101 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc);
1102 	if (sc->sc_ih == NULL) {
1103 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
1104 		if (intrstr != NULL)
1105 			aprint_error(" at %s", intrstr);
1106 		aprint_error("\n");
1107 		sipcom_do_detach(self, SIP_ATTACH_MAP);
1108 		return;
1109 	}
1110 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1111 
1112 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1113 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1114 
1115 	/*
1116 	 * Allocate the control data structures, and create and load the
1117 	 * DMA map for it.
1118 	 */
1119 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
1120 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
1121 	    &rseg, 0)) != 0) {
1122 		aprint_error_dev(sc->sc_dev, "unable to allocate control data, error = %d\n",
1123 		    error);
1124 		sipcom_do_detach(self, SIP_ATTACH_INTR);
1125 		return;
1126 	}
1127 
1128 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
1129 	    sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
1130 	    BUS_DMA_COHERENT)) != 0) {
1131 		aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n",
1132 		    error);
1133 		sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
1134 	}
1135 
1136 	if ((error = bus_dmamap_create(sc->sc_dmat,
1137 	    sizeof(struct sip_control_data), 1,
1138 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
1139 		aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, "
1140 		    "error = %d\n", error);
1141 		sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
1142 	}
1143 
1144 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1145 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
1146 	    0)) != 0) {
1147 		aprint_error_dev(sc->sc_dev, "unable to load control data DMA map, error = %d\n",
1148 		    error);
1149 		sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
1150 	}
1151 
1152 	/*
1153 	 * Create the transmit buffer DMA maps.
1154 	 */
1155 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
1156 		if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
1157 		    sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
1158 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1159 			aprint_error_dev(sc->sc_dev, "unable to create tx DMA map %d, "
1160 			    "error = %d\n", i, error);
1161 			sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1162 		}
1163 	}
1164 
1165 	/*
1166 	 * Create the receive buffer DMA maps.
1167 	 */
1168 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1169 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1170 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1171 			aprint_error_dev(sc->sc_dev, "unable to create rx DMA map %d, "
1172 			    "error = %d\n", i, error);
1173 			sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1174 		}
1175 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
1176 	}
1177 
1178 	/*
1179 	 * Reset the chip to a known state.
1180 	 */
1181 	sipcom_reset(sc);
1182 
1183 	/*
1184 	 * Read the Ethernet address from the EEPROM.  This might
1185 	 * also fetch other stuff from the EEPROM and stash it
1186 	 * in the softc.
1187 	 */
1188 	sc->sc_cfg = 0;
1189 	if (!sc->sc_gigabit) {
1190 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1191 		    SIP_SIS900_REV(sc,SIS_REV_900B))
1192 			sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1193 
1194 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1195 		    SIP_SIS900_REV(sc,SIS_REV_960) ||
1196 		    SIP_SIS900_REV(sc,SIS_REV_900B))
1197 			sc->sc_cfg |=
1198 			    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1199 			     CFG_EDBMASTEN);
1200 	}
1201 
1202 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1203 
1204 	printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
1205 	    ether_sprintf(enaddr));
1206 
1207 	/*
1208 	 * Initialize the configuration register: aggressive PCI
1209 	 * bus request algorithm, default backoff, default OW timer,
1210 	 * default parity error detection.
1211 	 *
1212 	 * NOTE: "Big endian mode" is useless on the SiS900 and
1213 	 * friends -- it affects packet data, not descriptors.
1214 	 */
1215 	if (sc->sc_gigabit)
1216 		sipcom_dp83820_attach(sc, pa);
1217 
1218 	/*
1219 	 * Initialize our media structures and probe the MII.
1220 	 */
1221 	sc->sc_mii.mii_ifp = ifp;
1222 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
1223 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
1224 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
1225 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
1226 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
1227 	    sipcom_mediastatus);
1228 
1229 	/*
1230 	 * XXX We cannot handle flow control on the DP83815.
1231 	 */
1232 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1233 		mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1234 			   MII_OFFSET_ANY, 0);
1235 	else
1236 		mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1237 			   MII_OFFSET_ANY, MIIF_DOPAUSE);
1238 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1239 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1240 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1241 	} else
1242 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1243 
1244 	ifp = &sc->sc_ethercom.ec_if;
1245 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1246 	ifp->if_softc = sc;
1247 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1248 	sc->sc_if_flags = ifp->if_flags;
1249 	ifp->if_ioctl = sipcom_ioctl;
1250 	ifp->if_start = sipcom_start;
1251 	ifp->if_watchdog = sipcom_watchdog;
1252 	ifp->if_init = sipcom_init;
1253 	ifp->if_stop = sipcom_stop;
1254 	IFQ_SET_READY(&ifp->if_snd);
1255 
1256 	/*
1257 	 * We can support 802.1Q VLAN-sized frames.
1258 	 */
1259 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1260 
1261 	if (sc->sc_gigabit) {
1262 		/*
1263 		 * And the DP83820 can do VLAN tagging in hardware, and
1264 		 * support the jumbo Ethernet MTU.
1265 		 */
1266 		sc->sc_ethercom.ec_capabilities |=
1267 		    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1268 
1269 		/*
1270 		 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1271 		 * in hardware.
1272 		 */
1273 		ifp->if_capabilities |=
1274 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1275 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1276 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1277 	}
1278 
1279 	/*
1280 	 * Attach the interface.
1281 	 */
1282 	if_attach(ifp);
1283 	ether_ifattach(ifp, enaddr);
1284 	ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb);
1285 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1286 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1287 	sc->sc_prev.if_capenable = ifp->if_capenable;
1288 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
1289 	    RND_TYPE_NET, 0);
1290 
1291 	/*
1292 	 * The number of bytes that must be available in
1293 	 * the Tx FIFO before the bus master can DMA more
1294 	 * data into the FIFO.
1295 	 */
1296 	sc->sc_tx_fill_thresh = 64 / 32;
1297 
1298 	/*
1299 	 * Start at a drain threshold of 512 bytes.  We will
1300 	 * increase it if a DMA underrun occurs.
1301 	 *
1302 	 * XXX The minimum value of this variable should be
1303 	 * tuned.  We may be able to improve performance
1304 	 * by starting with a lower value.  That, however,
1305 	 * may trash the first few outgoing packets if the
1306 	 * PCI bus is saturated.
1307 	 */
1308 	if (sc->sc_gigabit)
1309 		sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1310 	else
1311 		sc->sc_tx_drain_thresh = 1504 / 32;
1312 
1313 	/*
1314 	 * Initialize the Rx FIFO drain threshold.
1315 	 *
1316 	 * This is in units of 8 bytes.
1317 	 *
1318 	 * We should never set this value lower than 2; 14 bytes are
1319 	 * required to filter the packet.
1320 	 */
1321 	sc->sc_rx_drain_thresh = 128 / 8;
1322 
1323 #ifdef SIP_EVENT_COUNTERS
1324 	/*
1325 	 * Attach event counters.
1326 	 */
1327 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1328 	    NULL, device_xname(sc->sc_dev), "txsstall");
1329 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1330 	    NULL, device_xname(sc->sc_dev), "txdstall");
1331 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1332 	    NULL, device_xname(sc->sc_dev), "txforceintr");
1333 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1334 	    NULL, device_xname(sc->sc_dev), "txdintr");
1335 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1336 	    NULL, device_xname(sc->sc_dev), "txiintr");
1337 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1338 	    NULL, device_xname(sc->sc_dev), "rxintr");
1339 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1340 	    NULL, device_xname(sc->sc_dev), "hiberr");
1341 	if (!sc->sc_gigabit) {
1342 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1343 		    NULL, device_xname(sc->sc_dev), "rxpause");
1344 	} else {
1345 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1346 		    NULL, device_xname(sc->sc_dev), "rxpause");
1347 		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1348 		    NULL, device_xname(sc->sc_dev), "txpause");
1349 		evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1350 		    NULL, device_xname(sc->sc_dev), "rxipsum");
1351 		evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1352 		    NULL, device_xname(sc->sc_dev), "rxtcpsum");
1353 		evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1354 		    NULL, device_xname(sc->sc_dev), "rxudpsum");
1355 		evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1356 		    NULL, device_xname(sc->sc_dev), "txipsum");
1357 		evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1358 		    NULL, device_xname(sc->sc_dev), "txtcpsum");
1359 		evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1360 		    NULL, device_xname(sc->sc_dev), "txudpsum");
1361 	}
1362 #endif /* SIP_EVENT_COUNTERS */
1363 
1364 	if (pmf_device_register(self, sipcom_suspend, sipcom_resume))
1365 		pmf_class_network_register(self, ifp);
1366 	else
1367 		aprint_error_dev(self, "couldn't establish power handler\n");
1368 }
1369 
1370 static inline void
1371 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1372     uint64_t capenable)
1373 {
1374 	struct m_tag *mtag;
1375 	u_int32_t extsts;
1376 #ifdef DEBUG
1377 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1378 #endif
1379 	/*
1380 	 * If VLANs are enabled and the packet has a VLAN tag, set
1381 	 * up the descriptor to encapsulate the packet for us.
1382 	 *
1383 	 * This apparently has to be on the last descriptor of
1384 	 * the packet.
1385 	 */
1386 
1387 	/*
1388 	 * Byte swapping is tricky. We need to provide the tag
1389 	 * in a network byte order. On a big-endian machine,
1390 	 * the byteorder is correct, but we need to swap it
1391 	 * anyway, because this will be undone by the outside
1392 	 * htole32(). That's why there must be an
1393 	 * unconditional swap instead of htons() inside.
1394 	 */
1395 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1396 		sc->sc_txdescs[lasttx].sipd_extsts |=
1397 		    htole32(EXTSTS_VPKT |
1398 				(bswap16(VLAN_TAG_VALUE(mtag)) &
1399 				 EXTSTS_VTCI));
1400 	}
1401 
1402 	/*
1403 	 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1404 	 * checksumming, set up the descriptor to do this work
1405 	 * for us.
1406 	 *
1407 	 * This apparently has to be on the first descriptor of
1408 	 * the packet.
1409 	 *
1410 	 * Byte-swap constants so the compiler can optimize.
1411 	 */
1412 	extsts = 0;
1413 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1414 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1415 		SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1416 		extsts |= htole32(EXTSTS_IPPKT);
1417 	}
1418 	if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1419 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1420 		SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1421 		extsts |= htole32(EXTSTS_TCPPKT);
1422 	} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1423 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1424 		SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1425 		extsts |= htole32(EXTSTS_UDPPKT);
1426 	}
1427 	sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1428 }
1429 
1430 /*
1431  * sip_start:		[ifnet interface function]
1432  *
1433  *	Start packet transmission on the interface.
1434  */
1435 static void
1436 sipcom_start(struct ifnet *ifp)
1437 {
1438 	struct sip_softc *sc = ifp->if_softc;
1439 	struct mbuf *m0;
1440 	struct mbuf *m;
1441 	struct sip_txsoft *txs;
1442 	bus_dmamap_t dmamap;
1443 	int error, nexttx, lasttx, seg;
1444 	int ofree = sc->sc_txfree;
1445 #if 0
1446 	int firsttx = sc->sc_txnext;
1447 #endif
1448 
1449 	/*
1450 	 * If we've been told to pause, don't transmit any more packets.
1451 	 */
1452 	if (!sc->sc_gigabit && sc->sc_paused)
1453 		ifp->if_flags |= IFF_OACTIVE;
1454 
1455 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1456 		return;
1457 
1458 	/*
1459 	 * Loop through the send queue, setting up transmit descriptors
1460 	 * until we drain the queue, or use up all available transmit
1461 	 * descriptors.
1462 	 */
1463 	for (;;) {
1464 		/* Get a work queue entry. */
1465 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1466 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1467 			break;
1468 		}
1469 
1470 		/*
1471 		 * Grab a packet off the queue.
1472 		 */
1473 		IFQ_POLL(&ifp->if_snd, m0);
1474 		if (m0 == NULL)
1475 			break;
1476 		m = NULL;
1477 
1478 		dmamap = txs->txs_dmamap;
1479 
1480 		/*
1481 		 * Load the DMA map.  If this fails, the packet either
1482 		 * didn't fit in the alloted number of segments, or we
1483 		 * were short on resources.
1484 		 */
1485 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1486 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1487 		/* In the non-gigabit case, we'll copy and try again. */
1488 		if (error != 0 && !sc->sc_gigabit) {
1489 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1490 			if (m == NULL) {
1491 				printf("%s: unable to allocate Tx mbuf\n",
1492 				    device_xname(sc->sc_dev));
1493 				break;
1494 			}
1495 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1496 			if (m0->m_pkthdr.len > MHLEN) {
1497 				MCLGET(m, M_DONTWAIT);
1498 				if ((m->m_flags & M_EXT) == 0) {
1499 					printf("%s: unable to allocate Tx "
1500 					    "cluster\n", device_xname(sc->sc_dev));
1501 					m_freem(m);
1502 					break;
1503 				}
1504 			}
1505 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1506 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1507 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1508 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1509 			if (error) {
1510 				printf("%s: unable to load Tx buffer, "
1511 				    "error = %d\n", device_xname(sc->sc_dev), error);
1512 				break;
1513 			}
1514 		} else if (error == EFBIG) {
1515 			/*
1516 			 * For the too-many-segments case, we simply
1517 			 * report an error and drop the packet,
1518 			 * since we can't sanely copy a jumbo packet
1519 			 * to a single buffer.
1520 			 */
1521 			printf("%s: Tx packet consumes too many "
1522 			    "DMA segments, dropping...\n", device_xname(sc->sc_dev));
1523 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1524 			m_freem(m0);
1525 			continue;
1526 		} else if (error != 0) {
1527 			/*
1528 			 * Short on resources, just stop for now.
1529 			 */
1530 			break;
1531 		}
1532 
1533 		/*
1534 		 * Ensure we have enough descriptors free to describe
1535 		 * the packet.  Note, we always reserve one descriptor
1536 		 * at the end of the ring as a termination point, to
1537 		 * prevent wrap-around.
1538 		 */
1539 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1540 			/*
1541 			 * Not enough free descriptors to transmit this
1542 			 * packet.  We haven't committed anything yet,
1543 			 * so just unload the DMA map, put the packet
1544 			 * back on the queue, and punt.  Notify the upper
1545 			 * layer that there are not more slots left.
1546 			 *
1547 			 * XXX We could allocate an mbuf and copy, but
1548 			 * XXX is it worth it?
1549 			 */
1550 			ifp->if_flags |= IFF_OACTIVE;
1551 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1552 			if (m != NULL)
1553 				m_freem(m);
1554 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1555 			break;
1556 		}
1557 
1558 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1559 		if (m != NULL) {
1560 			m_freem(m0);
1561 			m0 = m;
1562 		}
1563 
1564 		/*
1565 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1566 		 */
1567 
1568 		/* Sync the DMA map. */
1569 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1570 		    BUS_DMASYNC_PREWRITE);
1571 
1572 		/*
1573 		 * Initialize the transmit descriptors.
1574 		 */
1575 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1576 		     seg < dmamap->dm_nsegs;
1577 		     seg++, nexttx = sip_nexttx(sc, nexttx)) {
1578 			/*
1579 			 * If this is the first descriptor we're
1580 			 * enqueueing, don't set the OWN bit just
1581 			 * yet.  That could cause a race condition.
1582 			 * We'll do it below.
1583 			 */
1584 			*sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
1585 			    htole32(dmamap->dm_segs[seg].ds_addr);
1586 			*sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
1587 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1588 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1589 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
1590 			lasttx = nexttx;
1591 		}
1592 
1593 		/* Clear the MORE bit on the last segment. */
1594 		*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
1595 		    htole32(~CMDSTS_MORE);
1596 
1597 		/*
1598 		 * If we're in the interrupt delay window, delay the
1599 		 * interrupt.
1600 		 */
1601 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1602 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1603 			*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
1604 			    htole32(CMDSTS_INTR);
1605 			sc->sc_txwin = 0;
1606 		}
1607 
1608 		if (sc->sc_gigabit)
1609 			sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1610 
1611 		/* Sync the descriptors we're using. */
1612 		sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
1613 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1614 
1615 		/*
1616 		 * The entire packet is set up.  Give the first descrptor
1617 		 * to the chip now.
1618 		 */
1619 		*sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
1620 		    htole32(CMDSTS_OWN);
1621 		sip_cdtxsync(sc, sc->sc_txnext, 1,
1622 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1623 
1624 		/*
1625 		 * Store a pointer to the packet so we can free it later,
1626 		 * and remember what txdirty will be once the packet is
1627 		 * done.
1628 		 */
1629 		txs->txs_mbuf = m0;
1630 		txs->txs_firstdesc = sc->sc_txnext;
1631 		txs->txs_lastdesc = lasttx;
1632 
1633 		/* Advance the tx pointer. */
1634 		sc->sc_txfree -= dmamap->dm_nsegs;
1635 		sc->sc_txnext = nexttx;
1636 
1637 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1638 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1639 
1640 		/*
1641 		 * Pass the packet to any BPF listeners.
1642 		 */
1643 		bpf_mtap(ifp, m0);
1644 	}
1645 
1646 	if (txs == NULL || sc->sc_txfree == 0) {
1647 		/* No more slots left; notify upper layer. */
1648 		ifp->if_flags |= IFF_OACTIVE;
1649 	}
1650 
1651 	if (sc->sc_txfree != ofree) {
1652 		/*
1653 		 * Start the transmit process.  Note, the manual says
1654 		 * that if there are no pending transmissions in the
1655 		 * chip's internal queue (indicated by TXE being clear),
1656 		 * then the driver software must set the TXDP to the
1657 		 * first descriptor to be transmitted.  However, if we
1658 		 * do this, it causes serious performance degredation on
1659 		 * the DP83820 under load, not setting TXDP doesn't seem
1660 		 * to adversely affect the SiS 900 or DP83815.
1661 		 *
1662 		 * Well, I guess it wouldn't be the first time a manual
1663 		 * has lied -- and they could be speaking of the NULL-
1664 		 * terminated descriptor list case, rather than OWN-
1665 		 * terminated rings.
1666 		 */
1667 #if 0
1668 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1669 		     CR_TXE) == 0) {
1670 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1671 			    SIP_CDTXADDR(sc, firsttx));
1672 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1673 		}
1674 #else
1675 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1676 #endif
1677 
1678 		/* Set a watchdog timer in case the chip flakes out. */
1679 		/* Gigabit autonegotiation takes 5 seconds. */
1680 		ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1681 	}
1682 }
1683 
1684 /*
1685  * sip_watchdog:	[ifnet interface function]
1686  *
1687  *	Watchdog timer handler.
1688  */
1689 static void
1690 sipcom_watchdog(struct ifnet *ifp)
1691 {
1692 	struct sip_softc *sc = ifp->if_softc;
1693 
1694 	/*
1695 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1696 	 * If we get a timeout, try and sweep up transmit descriptors.
1697 	 * If we manage to sweep them all up, ignore the lack of
1698 	 * interrupt.
1699 	 */
1700 	sipcom_txintr(sc);
1701 
1702 	if (sc->sc_txfree != sc->sc_ntxdesc) {
1703 		printf("%s: device timeout\n", device_xname(sc->sc_dev));
1704 		ifp->if_oerrors++;
1705 
1706 		/* Reset the interface. */
1707 		(void) sipcom_init(ifp);
1708 	} else if (ifp->if_flags & IFF_DEBUG)
1709 		printf("%s: recovered from device timeout\n",
1710 		    device_xname(sc->sc_dev));
1711 
1712 	/* Try to get more packets going. */
1713 	sipcom_start(ifp);
1714 }
1715 
1716 /* If the interface is up and running, only modify the receive
1717  * filter when setting promiscuous or debug mode.  Otherwise fall
1718  * through to ether_ioctl, which will reset the chip.
1719  */
1720 static int
1721 sip_ifflags_cb(struct ethercom *ec)
1722 {
1723 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable			\
1724 			 == (sc)->sc_ethercom.ec_capenable)		\
1725 			&& ((sc)->sc_prev.is_vlan ==			\
1726 			    VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1727 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1728 	struct ifnet *ifp = &ec->ec_if;
1729 	struct sip_softc *sc = ifp->if_softc;
1730 	int change = ifp->if_flags ^ sc->sc_if_flags;
1731 
1732 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0 || !COMPARE_EC(sc) ||
1733 	    !COMPARE_IC(sc, ifp))
1734 		return ENETRESET;
1735 	/* Set up the receive filter. */
1736 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1737 	return 0;
1738 }
1739 
1740 /*
1741  * sip_ioctl:		[ifnet interface function]
1742  *
1743  *	Handle control requests from the operator.
1744  */
1745 static int
1746 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1747 {
1748 	struct sip_softc *sc = ifp->if_softc;
1749 	struct ifreq *ifr = (struct ifreq *)data;
1750 	int s, error;
1751 
1752 	s = splnet();
1753 
1754 	switch (cmd) {
1755 	case SIOCSIFMEDIA:
1756 		/* Flow control requires full-duplex mode. */
1757 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1758 		    (ifr->ifr_media & IFM_FDX) == 0)
1759 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
1760 
1761 		/* XXX */
1762 		if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1763 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1764 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1765 			if (sc->sc_gigabit &&
1766 			    (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1767 				/* We can do both TXPAUSE and RXPAUSE. */
1768 				ifr->ifr_media |=
1769 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1770 			} else if (ifr->ifr_media & IFM_FLOW) {
1771 				/*
1772 				 * Both TXPAUSE and RXPAUSE must be set.
1773 				 * (SiS900 and DP83815 don't have PAUSE_ASYM
1774 				 * feature.)
1775 				 *
1776 				 * XXX Can SiS900 and DP83815 send PAUSE?
1777 				 */
1778 				ifr->ifr_media |=
1779 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1780 			}
1781 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1782 		}
1783 		/*FALLTHROUGH*/
1784 	default:
1785 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1786 			break;
1787 
1788 		error = 0;
1789 
1790 		if (cmd == SIOCSIFCAP)
1791 			error = (*ifp->if_init)(ifp);
1792 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1793 			;
1794 		else if (ifp->if_flags & IFF_RUNNING) {
1795 			/*
1796 			 * Multicast list has changed; set the hardware filter
1797 			 * accordingly.
1798 			 */
1799 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1800 		}
1801 		break;
1802 	}
1803 
1804 	/* Try to get more packets going. */
1805 	sipcom_start(ifp);
1806 
1807 	sc->sc_if_flags = ifp->if_flags;
1808 	splx(s);
1809 	return (error);
1810 }
1811 
1812 /*
1813  * sip_intr:
1814  *
1815  *	Interrupt service routine.
1816  */
1817 static int
1818 sipcom_intr(void *arg)
1819 {
1820 	struct sip_softc *sc = arg;
1821 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1822 	u_int32_t isr;
1823 	int handled = 0;
1824 
1825 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
1826 		return 0;
1827 
1828 	/* Disable interrupts. */
1829 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1830 
1831 	for (;;) {
1832 		/* Reading clears interrupt. */
1833 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1834 		if ((isr & sc->sc_imr) == 0)
1835 			break;
1836 
1837 		rnd_add_uint32(&sc->rnd_source, isr);
1838 
1839 		handled = 1;
1840 
1841 		if ((ifp->if_flags & IFF_RUNNING) == 0)
1842 			break;
1843 
1844 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1845 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1846 
1847 			/* Grab any new packets. */
1848 			(*sc->sc_rxintr)(sc);
1849 
1850 			if (isr & ISR_RXORN) {
1851 				printf("%s: receive FIFO overrun\n",
1852 				    device_xname(sc->sc_dev));
1853 
1854 				/* XXX adjust rx_drain_thresh? */
1855 			}
1856 
1857 			if (isr & ISR_RXIDLE) {
1858 				printf("%s: receive ring overrun\n",
1859 				    device_xname(sc->sc_dev));
1860 
1861 				/* Get the receive process going again. */
1862 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1863 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1864 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1865 				    SIP_CR, CR_RXE);
1866 			}
1867 		}
1868 
1869 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1870 #ifdef SIP_EVENT_COUNTERS
1871 			if (isr & ISR_TXDESC)
1872 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1873 			else if (isr & ISR_TXIDLE)
1874 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1875 #endif
1876 
1877 			/* Sweep up transmit descriptors. */
1878 			sipcom_txintr(sc);
1879 
1880 			if (isr & ISR_TXURN) {
1881 				u_int32_t thresh;
1882 				int txfifo_size = (sc->sc_gigabit)
1883 				    ? DP83820_SIP_TXFIFO_SIZE
1884 				    : OTHER_SIP_TXFIFO_SIZE;
1885 
1886 				printf("%s: transmit FIFO underrun",
1887 				    device_xname(sc->sc_dev));
1888 				thresh = sc->sc_tx_drain_thresh + 1;
1889 				if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
1890 				&& (thresh * 32) <= (txfifo_size -
1891 				     (sc->sc_tx_fill_thresh * 32))) {
1892 					printf("; increasing Tx drain "
1893 					    "threshold to %u bytes\n",
1894 					    thresh * 32);
1895 					sc->sc_tx_drain_thresh = thresh;
1896 					(void) sipcom_init(ifp);
1897 				} else {
1898 					(void) sipcom_init(ifp);
1899 					printf("\n");
1900 				}
1901 			}
1902 		}
1903 
1904 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1905 			if (isr & ISR_PAUSE_ST) {
1906 				sc->sc_paused = 1;
1907 				SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1908 				ifp->if_flags |= IFF_OACTIVE;
1909 			}
1910 			if (isr & ISR_PAUSE_END) {
1911 				sc->sc_paused = 0;
1912 				ifp->if_flags &= ~IFF_OACTIVE;
1913 			}
1914 		}
1915 
1916 		if (isr & ISR_HIBERR) {
1917 			int want_init = 0;
1918 
1919 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1920 
1921 #define	PRINTERR(bit, str)						\
1922 			do {						\
1923 				if ((isr & (bit)) != 0) {		\
1924 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
1925 						printf("%s: %s\n",	\
1926 						    device_xname(sc->sc_dev), str); \
1927 					want_init = 1;			\
1928 				}					\
1929 			} while (/*CONSTCOND*/0)
1930 
1931 			PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
1932 			PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
1933 			PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
1934 			PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
1935 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1936 			/*
1937 			 * Ignore:
1938 			 *	Tx reset complete
1939 			 *	Rx reset complete
1940 			 */
1941 			if (want_init)
1942 				(void) sipcom_init(ifp);
1943 #undef PRINTERR
1944 		}
1945 	}
1946 
1947 	/* Re-enable interrupts. */
1948 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1949 
1950 	/* Try to get more packets going. */
1951 	sipcom_start(ifp);
1952 
1953 	return (handled);
1954 }
1955 
1956 /*
1957  * sip_txintr:
1958  *
1959  *	Helper; handle transmit interrupts.
1960  */
1961 static void
1962 sipcom_txintr(struct sip_softc *sc)
1963 {
1964 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1965 	struct sip_txsoft *txs;
1966 	u_int32_t cmdsts;
1967 
1968 	if (sc->sc_paused == 0)
1969 		ifp->if_flags &= ~IFF_OACTIVE;
1970 
1971 	/*
1972 	 * Go through our Tx list and free mbufs for those
1973 	 * frames which have been transmitted.
1974 	 */
1975 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1976 		sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1977 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1978 
1979 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
1980 		if (cmdsts & CMDSTS_OWN)
1981 			break;
1982 
1983 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1984 
1985 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1986 
1987 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1988 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1989 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1990 		m_freem(txs->txs_mbuf);
1991 		txs->txs_mbuf = NULL;
1992 
1993 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1994 
1995 		/*
1996 		 * Check for errors and collisions.
1997 		 */
1998 		if (cmdsts &
1999 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
2000 			ifp->if_oerrors++;
2001 			if (cmdsts & CMDSTS_Tx_EC)
2002 				ifp->if_collisions += 16;
2003 			if (ifp->if_flags & IFF_DEBUG) {
2004 				if (cmdsts & CMDSTS_Tx_ED)
2005 					printf("%s: excessive deferral\n",
2006 					    device_xname(sc->sc_dev));
2007 				if (cmdsts & CMDSTS_Tx_EC)
2008 					printf("%s: excessive collisions\n",
2009 					    device_xname(sc->sc_dev));
2010 			}
2011 		} else {
2012 			/* Packet was transmitted successfully. */
2013 			ifp->if_opackets++;
2014 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
2015 		}
2016 	}
2017 
2018 	/*
2019 	 * If there are no more pending transmissions, cancel the watchdog
2020 	 * timer.
2021 	 */
2022 	if (txs == NULL) {
2023 		ifp->if_timer = 0;
2024 		sc->sc_txwin = 0;
2025 	}
2026 }
2027 
2028 /*
2029  * gsip_rxintr:
2030  *
2031  *	Helper; handle receive interrupts on gigabit parts.
2032  */
2033 static void
2034 gsip_rxintr(struct sip_softc *sc)
2035 {
2036 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2037 	struct sip_rxsoft *rxs;
2038 	struct mbuf *m;
2039 	u_int32_t cmdsts, extsts;
2040 	int i, len;
2041 
2042 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2043 		rxs = &sc->sc_rxsoft[i];
2044 
2045 		sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2046 
2047 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2048 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
2049 		len = CMDSTS_SIZE(sc, cmdsts);
2050 
2051 		/*
2052 		 * NOTE: OWN is set if owned by _consumer_.  We're the
2053 		 * consumer of the receive ring, so if the bit is clear,
2054 		 * we have processed all of the packets.
2055 		 */
2056 		if ((cmdsts & CMDSTS_OWN) == 0) {
2057 			/*
2058 			 * We have processed all of the receive buffers.
2059 			 */
2060 			break;
2061 		}
2062 
2063 		if (__predict_false(sc->sc_rxdiscard)) {
2064 			sip_init_rxdesc(sc, i);
2065 			if ((cmdsts & CMDSTS_MORE) == 0) {
2066 				/* Reset our state. */
2067 				sc->sc_rxdiscard = 0;
2068 			}
2069 			continue;
2070 		}
2071 
2072 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2073 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2074 
2075 		m = rxs->rxs_mbuf;
2076 
2077 		/*
2078 		 * Add a new receive buffer to the ring.
2079 		 */
2080 		if (sipcom_add_rxbuf(sc, i) != 0) {
2081 			/*
2082 			 * Failed, throw away what we've done so
2083 			 * far, and discard the rest of the packet.
2084 			 */
2085 			ifp->if_ierrors++;
2086 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2087 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2088 			sip_init_rxdesc(sc, i);
2089 			if (cmdsts & CMDSTS_MORE)
2090 				sc->sc_rxdiscard = 1;
2091 			if (sc->sc_rxhead != NULL)
2092 				m_freem(sc->sc_rxhead);
2093 			sip_rxchain_reset(sc);
2094 			continue;
2095 		}
2096 
2097 		sip_rxchain_link(sc, m);
2098 
2099 		m->m_len = len;
2100 
2101 		/*
2102 		 * If this is not the end of the packet, keep
2103 		 * looking.
2104 		 */
2105 		if (cmdsts & CMDSTS_MORE) {
2106 			sc->sc_rxlen += len;
2107 			continue;
2108 		}
2109 
2110 		/*
2111 		 * Okay, we have the entire packet now.  The chip includes
2112 		 * the FCS, so we need to trim it.
2113 		 */
2114 		m->m_len -= ETHER_CRC_LEN;
2115 
2116 		*sc->sc_rxtailp = NULL;
2117 		len = m->m_len + sc->sc_rxlen;
2118 		m = sc->sc_rxhead;
2119 
2120 		sip_rxchain_reset(sc);
2121 
2122 		/*
2123 		 * If an error occurred, update stats and drop the packet.
2124 		 */
2125 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2126 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2127 			ifp->if_ierrors++;
2128 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2129 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
2130 				/* Receive overrun handled elsewhere. */
2131 				printf("%s: receive descriptor error\n",
2132 				    device_xname(sc->sc_dev));
2133 			}
2134 #define	PRINTERR(bit, str)						\
2135 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
2136 			    (cmdsts & (bit)) != 0)			\
2137 				printf("%s: %s\n", device_xname(sc->sc_dev), str)
2138 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2139 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2140 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2141 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2142 #undef PRINTERR
2143 			m_freem(m);
2144 			continue;
2145 		}
2146 
2147 		/*
2148 		 * If the packet is small enough to fit in a
2149 		 * single header mbuf, allocate one and copy
2150 		 * the data into it.  This greatly reduces
2151 		 * memory consumption when we receive lots
2152 		 * of small packets.
2153 		 */
2154 		if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
2155 			struct mbuf *nm;
2156 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
2157 			if (nm == NULL) {
2158 				ifp->if_ierrors++;
2159 				m_freem(m);
2160 				continue;
2161 			}
2162 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2163 			nm->m_data += 2;
2164 			nm->m_pkthdr.len = nm->m_len = len;
2165 			m_copydata(m, 0, len, mtod(nm, void *));
2166 			m_freem(m);
2167 			m = nm;
2168 		}
2169 #ifndef __NO_STRICT_ALIGNMENT
2170 		else {
2171 			/*
2172 			 * The DP83820's receive buffers must be 4-byte
2173 			 * aligned.  But this means that the data after
2174 			 * the Ethernet header is misaligned.  To compensate,
2175 			 * we have artificially shortened the buffer size
2176 			 * in the descriptor, and we do an overlapping copy
2177 			 * of the data two bytes further in (in the first
2178 			 * buffer of the chain only).
2179 			 */
2180 			memmove(mtod(m, char *) + 2, mtod(m, void *),
2181 			    m->m_len);
2182 			m->m_data += 2;
2183 		}
2184 #endif /* ! __NO_STRICT_ALIGNMENT */
2185 
2186 		/*
2187 		 * If VLANs are enabled, VLAN packets have been unwrapped
2188 		 * for us.  Associate the tag with the packet.
2189 		 */
2190 
2191 		/*
2192 		 * Again, byte swapping is tricky. Hardware provided
2193 		 * the tag in the network byte order, but extsts was
2194 		 * passed through le32toh() in the meantime. On a
2195 		 * big-endian machine, we need to swap it again. On a
2196 		 * little-endian machine, we need to convert from the
2197 		 * network to host byte order. This means that we must
2198 		 * swap it in any case, so unconditional swap instead
2199 		 * of htons() is used.
2200 		 */
2201 		if ((extsts & EXTSTS_VPKT) != 0) {
2202 			VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
2203 			    continue);
2204 		}
2205 
2206 		/*
2207 		 * Set the incoming checksum information for the
2208 		 * packet.
2209 		 */
2210 		if ((extsts & EXTSTS_IPPKT) != 0) {
2211 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2212 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2213 			if (extsts & EXTSTS_Rx_IPERR)
2214 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2215 			if (extsts & EXTSTS_TCPPKT) {
2216 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2217 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2218 				if (extsts & EXTSTS_Rx_TCPERR)
2219 					m->m_pkthdr.csum_flags |=
2220 					    M_CSUM_TCP_UDP_BAD;
2221 			} else if (extsts & EXTSTS_UDPPKT) {
2222 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2223 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2224 				if (extsts & EXTSTS_Rx_UDPERR)
2225 					m->m_pkthdr.csum_flags |=
2226 					    M_CSUM_TCP_UDP_BAD;
2227 			}
2228 		}
2229 
2230 		ifp->if_ipackets++;
2231 		m->m_pkthdr.rcvif = ifp;
2232 		m->m_pkthdr.len = len;
2233 
2234 		/*
2235 		 * Pass this up to any BPF listeners, but only
2236 		 * pass if up the stack if it's for us.
2237 		 */
2238 		bpf_mtap(ifp, m);
2239 
2240 		/* Pass it on. */
2241 		(*ifp->if_input)(ifp, m);
2242 	}
2243 
2244 	/* Update the receive pointer. */
2245 	sc->sc_rxptr = i;
2246 }
2247 
2248 /*
2249  * sip_rxintr:
2250  *
2251  *	Helper; handle receive interrupts on 10/100 parts.
2252  */
2253 static void
2254 sip_rxintr(struct sip_softc *sc)
2255 {
2256 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2257 	struct sip_rxsoft *rxs;
2258 	struct mbuf *m;
2259 	u_int32_t cmdsts;
2260 	int i, len;
2261 
2262 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2263 		rxs = &sc->sc_rxsoft[i];
2264 
2265 		sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2266 
2267 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2268 
2269 		/*
2270 		 * NOTE: OWN is set if owned by _consumer_.  We're the
2271 		 * consumer of the receive ring, so if the bit is clear,
2272 		 * we have processed all of the packets.
2273 		 */
2274 		if ((cmdsts & CMDSTS_OWN) == 0) {
2275 			/*
2276 			 * We have processed all of the receive buffers.
2277 			 */
2278 			break;
2279 		}
2280 
2281 		/*
2282 		 * If any collisions were seen on the wire, count one.
2283 		 */
2284 		if (cmdsts & CMDSTS_Rx_COL)
2285 			ifp->if_collisions++;
2286 
2287 		/*
2288 		 * If an error occurred, update stats, clear the status
2289 		 * word, and leave the packet buffer in place.  It will
2290 		 * simply be reused the next time the ring comes around.
2291 		 */
2292 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2293 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2294 			ifp->if_ierrors++;
2295 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2296 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
2297 				/* Receive overrun handled elsewhere. */
2298 				printf("%s: receive descriptor error\n",
2299 				    device_xname(sc->sc_dev));
2300 			}
2301 #define	PRINTERR(bit, str)						\
2302 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
2303 			    (cmdsts & (bit)) != 0)			\
2304 				printf("%s: %s\n", device_xname(sc->sc_dev), str)
2305 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2306 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2307 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2308 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2309 #undef PRINTERR
2310 			sip_init_rxdesc(sc, i);
2311 			continue;
2312 		}
2313 
2314 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2315 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2316 
2317 		/*
2318 		 * No errors; receive the packet.  Note, the SiS 900
2319 		 * includes the CRC with every packet.
2320 		 */
2321 		len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
2322 
2323 #ifdef __NO_STRICT_ALIGNMENT
2324 		/*
2325 		 * If the packet is small enough to fit in a
2326 		 * single header mbuf, allocate one and copy
2327 		 * the data into it.  This greatly reduces
2328 		 * memory consumption when we receive lots
2329 		 * of small packets.
2330 		 *
2331 		 * Otherwise, we add a new buffer to the receive
2332 		 * chain.  If this fails, we drop the packet and
2333 		 * recycle the old buffer.
2334 		 */
2335 		if (sip_copy_small != 0 && len <= MHLEN) {
2336 			MGETHDR(m, M_DONTWAIT, MT_DATA);
2337 			if (m == NULL)
2338 				goto dropit;
2339 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2340 			memcpy(mtod(m, void *),
2341 			    mtod(rxs->rxs_mbuf, void *), len);
2342 			sip_init_rxdesc(sc, i);
2343 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2344 			    rxs->rxs_dmamap->dm_mapsize,
2345 			    BUS_DMASYNC_PREREAD);
2346 		} else {
2347 			m = rxs->rxs_mbuf;
2348 			if (sipcom_add_rxbuf(sc, i) != 0) {
2349  dropit:
2350 				ifp->if_ierrors++;
2351 				sip_init_rxdesc(sc, i);
2352 				bus_dmamap_sync(sc->sc_dmat,
2353 				    rxs->rxs_dmamap, 0,
2354 				    rxs->rxs_dmamap->dm_mapsize,
2355 				    BUS_DMASYNC_PREREAD);
2356 				continue;
2357 			}
2358 		}
2359 #else
2360 		/*
2361 		 * The SiS 900's receive buffers must be 4-byte aligned.
2362 		 * But this means that the data after the Ethernet header
2363 		 * is misaligned.  We must allocate a new buffer and
2364 		 * copy the data, shifted forward 2 bytes.
2365 		 */
2366 		MGETHDR(m, M_DONTWAIT, MT_DATA);
2367 		if (m == NULL) {
2368  dropit:
2369 			ifp->if_ierrors++;
2370 			sip_init_rxdesc(sc, i);
2371 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2372 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2373 			continue;
2374 		}
2375 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2376 		if (len > (MHLEN - 2)) {
2377 			MCLGET(m, M_DONTWAIT);
2378 			if ((m->m_flags & M_EXT) == 0) {
2379 				m_freem(m);
2380 				goto dropit;
2381 			}
2382 		}
2383 		m->m_data += 2;
2384 
2385 		/*
2386 		 * Note that we use clusters for incoming frames, so the
2387 		 * buffer is virtually contiguous.
2388 		 */
2389 		memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2390 
2391 		/* Allow the receive descriptor to continue using its mbuf. */
2392 		sip_init_rxdesc(sc, i);
2393 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2394 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2395 #endif /* __NO_STRICT_ALIGNMENT */
2396 
2397 		ifp->if_ipackets++;
2398 		m->m_pkthdr.rcvif = ifp;
2399 		m->m_pkthdr.len = m->m_len = len;
2400 
2401 		/*
2402 		 * Pass this up to any BPF listeners, but only
2403 		 * pass if up the stack if it's for us.
2404 		 */
2405 		bpf_mtap(ifp, m);
2406 
2407 		/* Pass it on. */
2408 		(*ifp->if_input)(ifp, m);
2409 	}
2410 
2411 	/* Update the receive pointer. */
2412 	sc->sc_rxptr = i;
2413 }
2414 
2415 /*
2416  * sip_tick:
2417  *
2418  *	One second timer, used to tick the MII.
2419  */
2420 static void
2421 sipcom_tick(void *arg)
2422 {
2423 	struct sip_softc *sc = arg;
2424 	int s;
2425 
2426 	s = splnet();
2427 #ifdef SIP_EVENT_COUNTERS
2428 	if (sc->sc_gigabit) {
2429 		/* Read PAUSE related counts from MIB registers. */
2430 		sc->sc_ev_rxpause.ev_count +=
2431 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
2432 				     SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2433 		sc->sc_ev_txpause.ev_count +=
2434 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
2435 				     SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2436 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2437 	}
2438 #endif /* SIP_EVENT_COUNTERS */
2439 	mii_tick(&sc->sc_mii);
2440 	splx(s);
2441 
2442 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2443 }
2444 
2445 /*
2446  * sip_reset:
2447  *
2448  *	Perform a soft reset on the SiS 900.
2449  */
2450 static bool
2451 sipcom_reset(struct sip_softc *sc)
2452 {
2453 	bus_space_tag_t st = sc->sc_st;
2454 	bus_space_handle_t sh = sc->sc_sh;
2455 	int i;
2456 
2457 	bus_space_write_4(st, sh, SIP_IER, 0);
2458 	bus_space_write_4(st, sh, SIP_IMR, 0);
2459 	bus_space_write_4(st, sh, SIP_RFCR, 0);
2460 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
2461 
2462 	for (i = 0; i < SIP_TIMEOUT; i++) {
2463 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2464 			break;
2465 		delay(2);
2466 	}
2467 
2468 	if (i == SIP_TIMEOUT) {
2469 		printf("%s: reset failed to complete\n", device_xname(sc->sc_dev));
2470 		return false;
2471 	}
2472 
2473 	delay(1000);
2474 
2475 	if (sc->sc_gigabit) {
2476 		/*
2477 		 * Set the general purpose I/O bits.  Do it here in case we
2478 		 * need to have GPIO set up to talk to the media interface.
2479 		 */
2480 		bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2481 		delay(1000);
2482 	}
2483 	return true;
2484 }
2485 
2486 static void
2487 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2488 {
2489 	u_int32_t reg;
2490 	bus_space_tag_t st = sc->sc_st;
2491 	bus_space_handle_t sh = sc->sc_sh;
2492 	/*
2493 	 * Initialize the VLAN/IP receive control register.
2494 	 * We enable checksum computation on all incoming
2495 	 * packets, and do not reject packets w/ bad checksums.
2496 	 */
2497 	reg = 0;
2498 	if (capenable &
2499 	    (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
2500 		reg |= VRCR_IPEN;
2501 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2502 		reg |= VRCR_VTDEN|VRCR_VTREN;
2503 	bus_space_write_4(st, sh, SIP_VRCR, reg);
2504 
2505 	/*
2506 	 * Initialize the VLAN/IP transmit control register.
2507 	 * We enable outgoing checksum computation on a
2508 	 * per-packet basis.
2509 	 */
2510 	reg = 0;
2511 	if (capenable &
2512 	    (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2513 		reg |= VTCR_PPCHK;
2514 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2515 		reg |= VTCR_VPPTI;
2516 	bus_space_write_4(st, sh, SIP_VTCR, reg);
2517 
2518 	/*
2519 	 * If we're using VLANs, initialize the VLAN data register.
2520 	 * To understand why we bswap the VLAN Ethertype, see section
2521 	 * 4.2.36 of the DP83820 manual.
2522 	 */
2523 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2524 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2525 }
2526 
2527 /*
2528  * sip_init:		[ ifnet interface function ]
2529  *
2530  *	Initialize the interface.  Must be called at splnet().
2531  */
2532 static int
2533 sipcom_init(struct ifnet *ifp)
2534 {
2535 	struct sip_softc *sc = ifp->if_softc;
2536 	bus_space_tag_t st = sc->sc_st;
2537 	bus_space_handle_t sh = sc->sc_sh;
2538 	struct sip_txsoft *txs;
2539 	struct sip_rxsoft *rxs;
2540 	struct sip_desc *sipd;
2541 	int i, error = 0;
2542 
2543 	if (device_is_active(sc->sc_dev)) {
2544 		/*
2545 		 * Cancel any pending I/O.
2546 		 */
2547 		sipcom_stop(ifp, 0);
2548 	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
2549 	           !device_is_active(sc->sc_dev))
2550 		return 0;
2551 
2552 	/*
2553 	 * Reset the chip to a known state.
2554 	 */
2555 	if (!sipcom_reset(sc))
2556 		return EBUSY;
2557 
2558 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2559 		/*
2560 		 * DP83815 manual, page 78:
2561 		 *    4.4 Recommended Registers Configuration
2562 		 *    For optimum performance of the DP83815, version noted
2563 		 *    as DP83815CVNG (SRR = 203h), the listed register
2564 		 *    modifications must be followed in sequence...
2565 		 *
2566 		 * It's not clear if this should be 302h or 203h because that
2567 		 * chip name is listed as SRR 302h in the description of the
2568 		 * SRR register.  However, my revision 302h DP83815 on the
2569 		 * Netgear FA311 purchased in 02/2001 needs these settings
2570 		 * to avoid tons of errors in AcceptPerfectMatch (non-
2571 		 * IFF_PROMISC) mode.  I do not know if other revisions need
2572 		 * this set or not.  [briggs -- 09 March 2001]
2573 		 *
2574 		 * Note that only the low-order 12 bits of 0xe4 are documented
2575 		 * and that this sets reserved bits in that register.
2576 		 */
2577 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
2578 
2579 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
2580 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
2581 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
2582 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
2583 
2584 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
2585 	}
2586 
2587 	/*
2588 	 * Initialize the transmit descriptor ring.
2589 	 */
2590 	for (i = 0; i < sc->sc_ntxdesc; i++) {
2591 		sipd = &sc->sc_txdescs[i];
2592 		memset(sipd, 0, sizeof(struct sip_desc));
2593 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
2594 	}
2595 	sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
2596 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2597 	sc->sc_txfree = sc->sc_ntxdesc;
2598 	sc->sc_txnext = 0;
2599 	sc->sc_txwin = 0;
2600 
2601 	/*
2602 	 * Initialize the transmit job descriptors.
2603 	 */
2604 	SIMPLEQ_INIT(&sc->sc_txfreeq);
2605 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
2606 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
2607 		txs = &sc->sc_txsoft[i];
2608 		txs->txs_mbuf = NULL;
2609 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2610 	}
2611 
2612 	/*
2613 	 * Initialize the receive descriptor and receive job
2614 	 * descriptor rings.
2615 	 */
2616 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2617 		rxs = &sc->sc_rxsoft[i];
2618 		if (rxs->rxs_mbuf == NULL) {
2619 			if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
2620 				printf("%s: unable to allocate or map rx "
2621 				    "buffer %d, error = %d\n",
2622 				    device_xname(sc->sc_dev), i, error);
2623 				/*
2624 				 * XXX Should attempt to run with fewer receive
2625 				 * XXX buffers instead of just failing.
2626 				 */
2627 				sipcom_rxdrain(sc);
2628 				goto out;
2629 			}
2630 		} else
2631 			sip_init_rxdesc(sc, i);
2632 	}
2633 	sc->sc_rxptr = 0;
2634 	sc->sc_rxdiscard = 0;
2635 	sip_rxchain_reset(sc);
2636 
2637 	/*
2638 	 * Set the configuration register; it's already initialized
2639 	 * in sip_attach().
2640 	 */
2641 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2642 
2643 	/*
2644 	 * Initialize the prototype TXCFG register.
2645 	 */
2646 	if (sc->sc_gigabit) {
2647 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2648 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2649 	} else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2650 	     SIP_SIS900_REV(sc, SIS_REV_960) ||
2651 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2652 	    (sc->sc_cfg & CFG_EDBMASTEN)) {
2653 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
2654 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
2655 	} else {
2656 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2657 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2658 	}
2659 
2660 	sc->sc_txcfg |= TXCFG_ATP |
2661 	    __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
2662 	    sc->sc_tx_drain_thresh;
2663 	bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
2664 
2665 	/*
2666 	 * Initialize the receive drain threshold if we have never
2667 	 * done so.
2668 	 */
2669 	if (sc->sc_rx_drain_thresh == 0) {
2670 		/*
2671 		 * XXX This value should be tuned.  This is set to the
2672 		 * maximum of 248 bytes, and we may be able to improve
2673 		 * performance by decreasing it (although we should never
2674 		 * set this value lower than 2; 14 bytes are required to
2675 		 * filter the packet).
2676 		 */
2677 		sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
2678 	}
2679 
2680 	/*
2681 	 * Initialize the prototype RXCFG register.
2682 	 */
2683 	sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
2684 	/*
2685 	 * Accept long packets (including FCS) so we can handle
2686 	 * 802.1q-tagged frames and jumbo frames properly.
2687 	 */
2688 	if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2689 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2690 		sc->sc_rxcfg |= RXCFG_ALP;
2691 
2692 	/*
2693 	 * Checksum offloading is disabled if the user selects an MTU
2694 	 * larger than 8109.  (FreeBSD says 8152, but there is emperical
2695 	 * evidence that >8109 does not work on some boards, such as the
2696 	 * Planex GN-1000TE).
2697 	 */
2698 	if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2699 	    (ifp->if_capenable &
2700 	     (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2701 	      IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2702 	      IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
2703 		printf("%s: Checksum offloading does not work if MTU > 8109 - "
2704 		       "disabled.\n", device_xname(sc->sc_dev));
2705 		ifp->if_capenable &=
2706 		    ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2707 		     IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2708 		     IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
2709 		ifp->if_csum_flags_tx = 0;
2710 		ifp->if_csum_flags_rx = 0;
2711 	}
2712 
2713 	bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
2714 
2715 	if (sc->sc_gigabit)
2716 		sipcom_dp83820_init(sc, ifp->if_capenable);
2717 
2718 	/*
2719 	 * Give the transmit and receive rings to the chip.
2720 	 */
2721 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2722 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2723 
2724 	/*
2725 	 * Initialize the interrupt mask.
2726 	 */
2727 	sc->sc_imr = sc->sc_bits.b_isr_dperr |
2728 	             sc->sc_bits.b_isr_sserr |
2729 		     sc->sc_bits.b_isr_rmabt |
2730 		     sc->sc_bits.b_isr_rtabt | ISR_RXSOVR |
2731 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2732 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2733 
2734 	/* Set up the receive filter. */
2735 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2736 
2737 	/*
2738 	 * Tune sc_rx_flow_thresh.
2739 	 * XXX "More than 8KB" is too short for jumbo frames.
2740 	 * XXX TODO: Threshold value should be user-settable.
2741 	 */
2742 	sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2743 				 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2744 				 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2745 
2746 	/*
2747 	 * Set the current media.  Do this after initializing the prototype
2748 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2749 	 * control.
2750 	 */
2751 	if ((error = ether_mediachange(ifp)) != 0)
2752 		goto out;
2753 
2754 	/*
2755 	 * Set the interrupt hold-off timer to 100us.
2756 	 */
2757 	if (sc->sc_gigabit)
2758 		bus_space_write_4(st, sh, SIP_IHR, 0x01);
2759 
2760 	/*
2761 	 * Enable interrupts.
2762 	 */
2763 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
2764 
2765 	/*
2766 	 * Start the transmit and receive processes.
2767 	 */
2768 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2769 
2770 	/*
2771 	 * Start the one second MII clock.
2772 	 */
2773 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2774 
2775 	/*
2776 	 * ...all done!
2777 	 */
2778 	ifp->if_flags |= IFF_RUNNING;
2779 	ifp->if_flags &= ~IFF_OACTIVE;
2780 	sc->sc_if_flags = ifp->if_flags;
2781 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2782 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2783 	sc->sc_prev.if_capenable = ifp->if_capenable;
2784 
2785  out:
2786 	if (error)
2787 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
2788 	return (error);
2789 }
2790 
2791 /*
2792  * sip_drain:
2793  *
2794  *	Drain the receive queue.
2795  */
2796 static void
2797 sipcom_rxdrain(struct sip_softc *sc)
2798 {
2799 	struct sip_rxsoft *rxs;
2800 	int i;
2801 
2802 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2803 		rxs = &sc->sc_rxsoft[i];
2804 		if (rxs->rxs_mbuf != NULL) {
2805 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2806 			m_freem(rxs->rxs_mbuf);
2807 			rxs->rxs_mbuf = NULL;
2808 		}
2809 	}
2810 }
2811 
2812 /*
2813  * sip_stop:		[ ifnet interface function ]
2814  *
2815  *	Stop transmission on the interface.
2816  */
2817 static void
2818 sipcom_stop(struct ifnet *ifp, int disable)
2819 {
2820 	struct sip_softc *sc = ifp->if_softc;
2821 	bus_space_tag_t st = sc->sc_st;
2822 	bus_space_handle_t sh = sc->sc_sh;
2823 	struct sip_txsoft *txs;
2824 	u_int32_t cmdsts = 0;		/* DEBUG */
2825 
2826 	/*
2827 	 * Stop the one second clock.
2828 	 */
2829 	callout_stop(&sc->sc_tick_ch);
2830 
2831 	/* Down the MII. */
2832 	mii_down(&sc->sc_mii);
2833 
2834 	if (device_is_active(sc->sc_dev)) {
2835 		/*
2836 		 * Disable interrupts.
2837 		 */
2838 		bus_space_write_4(st, sh, SIP_IER, 0);
2839 
2840 		/*
2841 		 * Stop receiver and transmitter.
2842 		 */
2843 		bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2844 	}
2845 
2846 	/*
2847 	 * Release any queued transmit buffers.
2848 	 */
2849 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2850 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2851 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2852 		    (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
2853 		     CMDSTS_INTR) == 0)
2854 			printf("%s: sip_stop: last descriptor does not "
2855 			    "have INTR bit set\n", device_xname(sc->sc_dev));
2856 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2857 #ifdef DIAGNOSTIC
2858 		if (txs->txs_mbuf == NULL) {
2859 			printf("%s: dirty txsoft with no mbuf chain\n",
2860 			    device_xname(sc->sc_dev));
2861 			panic("sip_stop");
2862 		}
2863 #endif
2864 		cmdsts |=		/* DEBUG */
2865 		    le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
2866 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2867 		m_freem(txs->txs_mbuf);
2868 		txs->txs_mbuf = NULL;
2869 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2870 	}
2871 
2872 	/*
2873 	 * Mark the interface down and cancel the watchdog timer.
2874 	 */
2875 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2876 	ifp->if_timer = 0;
2877 
2878 	if (disable)
2879 		pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
2880 
2881 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2882 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2883 		printf("%s: sip_stop: no INTR bits set in dirty tx "
2884 		    "descriptors\n", device_xname(sc->sc_dev));
2885 }
2886 
2887 /*
2888  * sip_read_eeprom:
2889  *
2890  *	Read data from the serial EEPROM.
2891  */
2892 static void
2893 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2894     u_int16_t *data)
2895 {
2896 	bus_space_tag_t st = sc->sc_st;
2897 	bus_space_handle_t sh = sc->sc_sh;
2898 	u_int16_t reg;
2899 	int i, x;
2900 
2901 	for (i = 0; i < wordcnt; i++) {
2902 		/* Send CHIP SELECT. */
2903 		reg = EROMAR_EECS;
2904 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
2905 
2906 		/* Shift in the READ opcode. */
2907 		for (x = 3; x > 0; x--) {
2908 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2909 				reg |= EROMAR_EEDI;
2910 			else
2911 				reg &= ~EROMAR_EEDI;
2912 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2913 			bus_space_write_4(st, sh, SIP_EROMAR,
2914 			    reg | EROMAR_EESK);
2915 			delay(4);
2916 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2917 			delay(4);
2918 		}
2919 
2920 		/* Shift in address. */
2921 		for (x = 6; x > 0; x--) {
2922 			if ((word + i) & (1 << (x - 1)))
2923 				reg |= EROMAR_EEDI;
2924 			else
2925 				reg &= ~EROMAR_EEDI;
2926 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2927 			bus_space_write_4(st, sh, SIP_EROMAR,
2928 			    reg | EROMAR_EESK);
2929 			delay(4);
2930 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2931 			delay(4);
2932 		}
2933 
2934 		/* Shift out data. */
2935 		reg = EROMAR_EECS;
2936 		data[i] = 0;
2937 		for (x = 16; x > 0; x--) {
2938 			bus_space_write_4(st, sh, SIP_EROMAR,
2939 			    reg | EROMAR_EESK);
2940 			delay(4);
2941 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2942 				data[i] |= (1 << (x - 1));
2943 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2944 			delay(4);
2945 		}
2946 
2947 		/* Clear CHIP SELECT. */
2948 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
2949 		delay(4);
2950 	}
2951 }
2952 
2953 /*
2954  * sipcom_add_rxbuf:
2955  *
2956  *	Add a receive buffer to the indicated descriptor.
2957  */
2958 static int
2959 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
2960 {
2961 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2962 	struct mbuf *m;
2963 	int error;
2964 
2965 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2966 	if (m == NULL)
2967 		return (ENOBUFS);
2968 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2969 
2970 	MCLGET(m, M_DONTWAIT);
2971 	if ((m->m_flags & M_EXT) == 0) {
2972 		m_freem(m);
2973 		return (ENOBUFS);
2974 	}
2975 
2976 	/* XXX I don't believe this is necessary. --dyoung */
2977 	if (sc->sc_gigabit)
2978 		m->m_len = sc->sc_parm->p_rxbuf_len;
2979 
2980 	if (rxs->rxs_mbuf != NULL)
2981 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2982 
2983 	rxs->rxs_mbuf = m;
2984 
2985 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2986 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2987 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2988 	if (error) {
2989 		printf("%s: can't load rx DMA map %d, error = %d\n",
2990 		    device_xname(sc->sc_dev), idx, error);
2991 		panic("%s", __func__);		/* XXX */
2992 	}
2993 
2994 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2995 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2996 
2997 	sip_init_rxdesc(sc, idx);
2998 
2999 	return (0);
3000 }
3001 
3002 /*
3003  * sip_sis900_set_filter:
3004  *
3005  *	Set up the receive filter.
3006  */
3007 static void
3008 sipcom_sis900_set_filter(struct sip_softc *sc)
3009 {
3010 	bus_space_tag_t st = sc->sc_st;
3011 	bus_space_handle_t sh = sc->sc_sh;
3012 	struct ethercom *ec = &sc->sc_ethercom;
3013 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3014 	struct ether_multi *enm;
3015 	const u_int8_t *cp;
3016 	struct ether_multistep step;
3017 	u_int32_t crc, mchash[16];
3018 
3019 	/*
3020 	 * Initialize the prototype RFCR.
3021 	 */
3022 	sc->sc_rfcr = RFCR_RFEN;
3023 	if (ifp->if_flags & IFF_BROADCAST)
3024 		sc->sc_rfcr |= RFCR_AAB;
3025 	if (ifp->if_flags & IFF_PROMISC) {
3026 		sc->sc_rfcr |= RFCR_AAP;
3027 		goto allmulti;
3028 	}
3029 
3030 	/*
3031 	 * Set up the multicast address filter by passing all multicast
3032 	 * addresses through a CRC generator, and then using the high-order
3033 	 * 6 bits as an index into the 128 bit multicast hash table (only
3034 	 * the lower 16 bits of each 32 bit multicast hash register are
3035 	 * valid).  The high order bits select the register, while the
3036 	 * rest of the bits select the bit within the register.
3037 	 */
3038 
3039 	memset(mchash, 0, sizeof(mchash));
3040 
3041 	/*
3042 	 * SiS900 (at least SiS963) requires us to register the address of
3043 	 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3044 	 */
3045 	crc = 0x0ed423f9;
3046 
3047 	if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3048 	    SIP_SIS900_REV(sc, SIS_REV_960) ||
3049 	    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3050 		/* Just want the 8 most significant bits. */
3051 		crc >>= 24;
3052 	} else {
3053 		/* Just want the 7 most significant bits. */
3054 		crc >>= 25;
3055 	}
3056 
3057 	/* Set the corresponding bit in the hash table. */
3058 	mchash[crc >> 4] |= 1 << (crc & 0xf);
3059 
3060 	ETHER_FIRST_MULTI(step, ec, enm);
3061 	while (enm != NULL) {
3062 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3063 			/*
3064 			 * We must listen to a range of multicast addresses.
3065 			 * For now, just accept all multicasts, rather than
3066 			 * trying to set only those filter bits needed to match
3067 			 * the range.  (At this time, the only use of address
3068 			 * ranges is for IP multicast routing, for which the
3069 			 * range is big enough to require all bits set.)
3070 			 */
3071 			goto allmulti;
3072 		}
3073 
3074 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3075 
3076 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3077 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
3078 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3079 			/* Just want the 8 most significant bits. */
3080 			crc >>= 24;
3081 		} else {
3082 			/* Just want the 7 most significant bits. */
3083 			crc >>= 25;
3084 		}
3085 
3086 		/* Set the corresponding bit in the hash table. */
3087 		mchash[crc >> 4] |= 1 << (crc & 0xf);
3088 
3089 		ETHER_NEXT_MULTI(step, enm);
3090 	}
3091 
3092 	ifp->if_flags &= ~IFF_ALLMULTI;
3093 	goto setit;
3094 
3095  allmulti:
3096 	ifp->if_flags |= IFF_ALLMULTI;
3097 	sc->sc_rfcr |= RFCR_AAM;
3098 
3099  setit:
3100 #define	FILTER_EMIT(addr, data)						\
3101 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
3102 	delay(1);							\
3103 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
3104 	delay(1)
3105 
3106 	/*
3107 	 * Disable receive filter, and program the node address.
3108 	 */
3109 	cp = CLLADDR(ifp->if_sadl);
3110 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
3111 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
3112 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
3113 
3114 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3115 		/*
3116 		 * Program the multicast hash table.
3117 		 */
3118 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
3119 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
3120 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
3121 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
3122 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
3123 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
3124 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
3125 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
3126 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3127 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
3128 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3129 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
3130 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
3131 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
3132 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
3133 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
3134 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
3135 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
3136 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
3137 		}
3138 	}
3139 #undef FILTER_EMIT
3140 
3141 	/*
3142 	 * Re-enable the receiver filter.
3143 	 */
3144 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3145 }
3146 
3147 /*
3148  * sip_dp83815_set_filter:
3149  *
3150  *	Set up the receive filter.
3151  */
3152 static void
3153 sipcom_dp83815_set_filter(struct sip_softc *sc)
3154 {
3155 	bus_space_tag_t st = sc->sc_st;
3156 	bus_space_handle_t sh = sc->sc_sh;
3157 	struct ethercom *ec = &sc->sc_ethercom;
3158 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3159 	struct ether_multi *enm;
3160 	const u_int8_t *cp;
3161 	struct ether_multistep step;
3162 	u_int32_t crc, hash, slot, bit;
3163 #define	MCHASH_NWORDS_83820	128
3164 #define	MCHASH_NWORDS_83815	32
3165 #define	MCHASH_NWORDS	MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3166 	u_int16_t mchash[MCHASH_NWORDS];
3167 	int i;
3168 
3169 	/*
3170 	 * Initialize the prototype RFCR.
3171 	 * Enable the receive filter, and accept on
3172 	 *    Perfect (destination address) Match
3173 	 * If IFF_BROADCAST, also accept all broadcast packets.
3174 	 * If IFF_PROMISC, accept all unicast packets (and later, set
3175 	 *    IFF_ALLMULTI and accept all multicast, too).
3176 	 */
3177 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3178 	if (ifp->if_flags & IFF_BROADCAST)
3179 		sc->sc_rfcr |= RFCR_AAB;
3180 	if (ifp->if_flags & IFF_PROMISC) {
3181 		sc->sc_rfcr |= RFCR_AAP;
3182 		goto allmulti;
3183 	}
3184 
3185 	/*
3186          * Set up the DP83820/DP83815 multicast address filter by
3187          * passing all multicast addresses through a CRC generator,
3188          * and then using the high-order 11/9 bits as an index into
3189          * the 2048/512 bit multicast hash table.  The high-order
3190          * 7/5 bits select the slot, while the low-order 4 bits
3191          * select the bit within the slot.  Note that only the low
3192          * 16-bits of each filter word are used, and there are
3193          * 128/32 filter words.
3194 	 */
3195 
3196 	memset(mchash, 0, sizeof(mchash));
3197 
3198 	ifp->if_flags &= ~IFF_ALLMULTI;
3199 	ETHER_FIRST_MULTI(step, ec, enm);
3200 	if (enm == NULL)
3201 		goto setit;
3202 	while (enm != NULL) {
3203 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3204 			/*
3205 			 * We must listen to a range of multicast addresses.
3206 			 * For now, just accept all multicasts, rather than
3207 			 * trying to set only those filter bits needed to match
3208 			 * the range.  (At this time, the only use of address
3209 			 * ranges is for IP multicast routing, for which the
3210 			 * range is big enough to require all bits set.)
3211 			 */
3212 			goto allmulti;
3213 		}
3214 
3215 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3216 
3217 		if (sc->sc_gigabit) {
3218 			/* Just want the 11 most significant bits. */
3219 			hash = crc >> 21;
3220 		} else {
3221 			/* Just want the 9 most significant bits. */
3222 			hash = crc >> 23;
3223 		}
3224 
3225 		slot = hash >> 4;
3226 		bit = hash & 0xf;
3227 
3228 		/* Set the corresponding bit in the hash table. */
3229 		mchash[slot] |= 1 << bit;
3230 
3231 		ETHER_NEXT_MULTI(step, enm);
3232 	}
3233 	sc->sc_rfcr |= RFCR_MHEN;
3234 	goto setit;
3235 
3236  allmulti:
3237 	ifp->if_flags |= IFF_ALLMULTI;
3238 	sc->sc_rfcr |= RFCR_AAM;
3239 
3240  setit:
3241 #define	FILTER_EMIT(addr, data)						\
3242 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
3243 	delay(1);							\
3244 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
3245 	delay(1)
3246 
3247 	/*
3248 	 * Disable receive filter, and program the node address.
3249 	 */
3250 	cp = CLLADDR(ifp->if_sadl);
3251 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3252 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3253 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3254 
3255 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3256 		int nwords =
3257 		    sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3258 		/*
3259 		 * Program the multicast hash table.
3260 		 */
3261 		for (i = 0; i < nwords; i++) {
3262 			FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
3263 		}
3264 	}
3265 #undef FILTER_EMIT
3266 #undef MCHASH_NWORDS
3267 #undef MCHASH_NWORDS_83815
3268 #undef MCHASH_NWORDS_83820
3269 
3270 	/*
3271 	 * Re-enable the receiver filter.
3272 	 */
3273 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3274 }
3275 
3276 /*
3277  * sip_dp83820_mii_readreg:	[mii interface function]
3278  *
3279  *	Read a PHY register on the MII of the DP83820.
3280  */
3281 static int
3282 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg)
3283 {
3284 	struct sip_softc *sc = device_private(self);
3285 
3286 	if (sc->sc_cfg & CFG_TBI_EN) {
3287 		bus_addr_t tbireg;
3288 		int rv;
3289 
3290 		if (phy != 0)
3291 			return (0);
3292 
3293 		switch (reg) {
3294 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3295 		case MII_BMSR:		tbireg = SIP_TBISR; break;
3296 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3297 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3298 		case MII_ANER:		tbireg = SIP_TANER; break;
3299 		case MII_EXTSR:
3300 			/*
3301 			 * Don't even bother reading the TESR register.
3302 			 * The manual documents that the device has
3303 			 * 1000baseX full/half capability, but the
3304 			 * register itself seems read back 0 on some
3305 			 * boards.  Just hard-code the result.
3306 			 */
3307 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3308 
3309 		default:
3310 			return (0);
3311 		}
3312 
3313 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3314 		if (tbireg == SIP_TBISR) {
3315 			/* LINK and ACOMP are switched! */
3316 			int val = rv;
3317 
3318 			rv = 0;
3319 			if (val & TBISR_MR_LINK_STATUS)
3320 				rv |= BMSR_LINK;
3321 			if (val & TBISR_MR_AN_COMPLETE)
3322 				rv |= BMSR_ACOMP;
3323 
3324 			/*
3325 			 * The manual claims this register reads back 0
3326 			 * on hard and soft reset.  But we want to let
3327 			 * the gentbi driver know that we support auto-
3328 			 * negotiation, so hard-code this bit in the
3329 			 * result.
3330 			 */
3331 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
3332 		}
3333 
3334 		return (rv);
3335 	}
3336 
3337 	return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
3338 }
3339 
3340 /*
3341  * sip_dp83820_mii_writereg:	[mii interface function]
3342  *
3343  *	Write a PHY register on the MII of the DP83820.
3344  */
3345 static void
3346 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, int val)
3347 {
3348 	struct sip_softc *sc = device_private(self);
3349 
3350 	if (sc->sc_cfg & CFG_TBI_EN) {
3351 		bus_addr_t tbireg;
3352 
3353 		if (phy != 0)
3354 			return;
3355 
3356 		switch (reg) {
3357 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3358 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3359 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3360 		default:
3361 			return;
3362 		}
3363 
3364 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3365 		return;
3366 	}
3367 
3368 	mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
3369 }
3370 
3371 /*
3372  * sip_dp83820_mii_statchg:	[mii interface function]
3373  *
3374  *	Callback from MII layer when media changes.
3375  */
3376 static void
3377 sipcom_dp83820_mii_statchg(struct ifnet *ifp)
3378 {
3379 	struct sip_softc *sc = ifp->if_softc;
3380 	struct mii_data *mii = &sc->sc_mii;
3381 	u_int32_t cfg, pcr;
3382 
3383 	/*
3384 	 * Get flow control negotiation result.
3385 	 */
3386 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3387 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3388 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3389 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3390 	}
3391 
3392 	/*
3393 	 * Update TXCFG for full-duplex operation.
3394 	 */
3395 	if ((mii->mii_media_active & IFM_FDX) != 0)
3396 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3397 	else
3398 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3399 
3400 	/*
3401 	 * Update RXCFG for full-duplex or loopback.
3402 	 */
3403 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3404 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3405 		sc->sc_rxcfg |= RXCFG_ATX;
3406 	else
3407 		sc->sc_rxcfg &= ~RXCFG_ATX;
3408 
3409 	/*
3410 	 * Update CFG for MII/GMII.
3411 	 */
3412 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3413 		cfg = sc->sc_cfg | CFG_MODE_1000;
3414 	else
3415 		cfg = sc->sc_cfg;
3416 
3417 	/*
3418 	 * 802.3x flow control.
3419 	 */
3420 	pcr = 0;
3421 	if (sc->sc_flowflags & IFM_FLOW) {
3422 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3423 			pcr |= sc->sc_rx_flow_thresh;
3424 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3425 			pcr |= PCR_PSEN | PCR_PS_MCAST;
3426 	}
3427 
3428 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3429 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3430 	    sc->sc_txcfg);
3431 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3432 	    sc->sc_rxcfg);
3433 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3434 }
3435 
3436 /*
3437  * sip_mii_bitbang_read: [mii bit-bang interface function]
3438  *
3439  *	Read the MII serial port for the MII bit-bang module.
3440  */
3441 static u_int32_t
3442 sipcom_mii_bitbang_read(device_t self)
3443 {
3444 	struct sip_softc *sc = device_private(self);
3445 
3446 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3447 }
3448 
3449 /*
3450  * sip_mii_bitbang_write: [mii big-bang interface function]
3451  *
3452  *	Write the MII serial port for the MII bit-bang module.
3453  */
3454 static void
3455 sipcom_mii_bitbang_write(device_t self, u_int32_t val)
3456 {
3457 	struct sip_softc *sc = device_private(self);
3458 
3459 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3460 }
3461 
3462 /*
3463  * sip_sis900_mii_readreg:	[mii interface function]
3464  *
3465  *	Read a PHY register on the MII.
3466  */
3467 static int
3468 sipcom_sis900_mii_readreg(device_t self, int phy, int reg)
3469 {
3470 	struct sip_softc *sc = device_private(self);
3471 	u_int32_t enphy;
3472 
3473 	/*
3474 	 * The PHY of recent SiS chipsets is accessed through bitbang
3475 	 * operations.
3476 	 */
3477 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3478 		return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3479 		    phy, reg);
3480 
3481 #ifndef SIS900_MII_RESTRICT
3482 	/*
3483 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3484 	 * MII address 0.
3485 	 */
3486 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3487 		return (0);
3488 #endif
3489 
3490 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3491 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3492 	    ENPHY_RWCMD | ENPHY_ACCESS);
3493 	do {
3494 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3495 	} while (enphy & ENPHY_ACCESS);
3496 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3497 }
3498 
3499 /*
3500  * sip_sis900_mii_writereg:	[mii interface function]
3501  *
3502  *	Write a PHY register on the MII.
3503  */
3504 static void
3505 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, int val)
3506 {
3507 	struct sip_softc *sc = device_private(self);
3508 	u_int32_t enphy;
3509 
3510 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3511 		mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3512 		    phy, reg, val);
3513 		return;
3514 	}
3515 
3516 #ifndef SIS900_MII_RESTRICT
3517 	/*
3518 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3519 	 * MII address 0.
3520 	 */
3521 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3522 		return;
3523 #endif
3524 
3525 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3526 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3527 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3528 	do {
3529 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3530 	} while (enphy & ENPHY_ACCESS);
3531 }
3532 
3533 /*
3534  * sip_sis900_mii_statchg:	[mii interface function]
3535  *
3536  *	Callback from MII layer when media changes.
3537  */
3538 static void
3539 sipcom_sis900_mii_statchg(struct ifnet *ifp)
3540 {
3541 	struct sip_softc *sc = ifp->if_softc;
3542 	struct mii_data *mii = &sc->sc_mii;
3543 	u_int32_t flowctl;
3544 
3545 	/*
3546 	 * Get flow control negotiation result.
3547 	 */
3548 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3549 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3550 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3551 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3552 	}
3553 
3554 	/*
3555 	 * Update TXCFG for full-duplex operation.
3556 	 */
3557 	if ((mii->mii_media_active & IFM_FDX) != 0)
3558 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3559 	else
3560 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3561 
3562 	/*
3563 	 * Update RXCFG for full-duplex or loopback.
3564 	 */
3565 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3566 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3567 		sc->sc_rxcfg |= RXCFG_ATX;
3568 	else
3569 		sc->sc_rxcfg &= ~RXCFG_ATX;
3570 
3571 	/*
3572 	 * Update IMR for use of 802.3x flow control.
3573 	 */
3574 	if (sc->sc_flowflags & IFM_FLOW) {
3575 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3576 		flowctl = FLOWCTL_FLOWEN;
3577 	} else {
3578 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3579 		flowctl = 0;
3580 	}
3581 
3582 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3583 	    sc->sc_txcfg);
3584 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3585 	    sc->sc_rxcfg);
3586 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3587 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3588 }
3589 
3590 /*
3591  * sip_dp83815_mii_readreg:	[mii interface function]
3592  *
3593  *	Read a PHY register on the MII.
3594  */
3595 static int
3596 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg)
3597 {
3598 	struct sip_softc *sc = device_private(self);
3599 	u_int32_t val;
3600 
3601 	/*
3602 	 * The DP83815 only has an internal PHY.  Only allow
3603 	 * MII address 0.
3604 	 */
3605 	if (phy != 0)
3606 		return (0);
3607 
3608 	/*
3609 	 * Apparently, after a reset, the DP83815 can take a while
3610 	 * to respond.  During this recovery period, the BMSR returns
3611 	 * a value of 0.  Catch this -- it's not supposed to happen
3612 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3613 	 * PHY to come back to life.
3614 	 *
3615 	 * This works out because the BMSR is the first register
3616 	 * read during the PHY probe process.
3617 	 */
3618 	do {
3619 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3620 	} while (reg == MII_BMSR && val == 0);
3621 
3622 	return (val & 0xffff);
3623 }
3624 
3625 /*
3626  * sip_dp83815_mii_writereg:	[mii interface function]
3627  *
3628  *	Write a PHY register to the MII.
3629  */
3630 static void
3631 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, int val)
3632 {
3633 	struct sip_softc *sc = device_private(self);
3634 
3635 	/*
3636 	 * The DP83815 only has an internal PHY.  Only allow
3637 	 * MII address 0.
3638 	 */
3639 	if (phy != 0)
3640 		return;
3641 
3642 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3643 }
3644 
3645 /*
3646  * sip_dp83815_mii_statchg:	[mii interface function]
3647  *
3648  *	Callback from MII layer when media changes.
3649  */
3650 static void
3651 sipcom_dp83815_mii_statchg(struct ifnet *ifp)
3652 {
3653 	struct sip_softc *sc = ifp->if_softc;
3654 
3655 	/*
3656 	 * Update TXCFG for full-duplex operation.
3657 	 */
3658 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3659 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3660 	else
3661 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3662 
3663 	/*
3664 	 * Update RXCFG for full-duplex or loopback.
3665 	 */
3666 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3667 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3668 		sc->sc_rxcfg |= RXCFG_ATX;
3669 	else
3670 		sc->sc_rxcfg &= ~RXCFG_ATX;
3671 
3672 	/*
3673 	 * XXX 802.3x flow control.
3674 	 */
3675 
3676 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3677 	    sc->sc_txcfg);
3678 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3679 	    sc->sc_rxcfg);
3680 
3681 	/*
3682 	 * Some DP83815s experience problems when used with short
3683 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
3684 	 * sequence adjusts the DSP's signal attenuation to fix the
3685 	 * problem.
3686 	 */
3687 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3688 		uint32_t reg;
3689 
3690 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3691 
3692 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3693 		reg &= 0x0fff;
3694 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3695 		delay(100);
3696 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3697 		reg &= 0x00ff;
3698 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3699 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3700 			    0x00e8);
3701 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3702 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3703 			    reg | 0x20);
3704 		}
3705 
3706 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3707 	}
3708 }
3709 
3710 static void
3711 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3712     const struct pci_attach_args *pa, u_int8_t *enaddr)
3713 {
3714 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3715 	u_int8_t cksum, *e, match;
3716 	int i;
3717 
3718 	/*
3719 	 * EEPROM data format for the DP83820 can be found in
3720 	 * the DP83820 manual, section 4.2.4.
3721 	 */
3722 
3723 	sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3724 
3725 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3726 	match = ~(match - 1);
3727 
3728 	cksum = 0x55;
3729 	e = (u_int8_t *) eeprom_data;
3730 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3731 		cksum += *e++;
3732 
3733 	if (cksum != match)
3734 		printf("%s: Checksum (%x) mismatch (%x)",
3735 		    device_xname(sc->sc_dev), cksum, match);
3736 
3737 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3738 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3739 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3740 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3741 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3742 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3743 }
3744 
3745 static void
3746 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3747 {
3748 	int i;
3749 
3750 	/*
3751 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
3752 	 * a reason, but I don't know it.
3753 	 */
3754 	for (i = 0; i < 10; i++)
3755 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3756 }
3757 
3758 static void
3759 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3760     const struct pci_attach_args *pa, u_int8_t *enaddr)
3761 {
3762 	u_int16_t myea[ETHER_ADDR_LEN / 2];
3763 
3764 	switch (sc->sc_rev) {
3765 	case SIS_REV_630S:
3766 	case SIS_REV_630E:
3767 	case SIS_REV_630EA1:
3768 	case SIS_REV_630ET:
3769 	case SIS_REV_635:
3770 		/*
3771 		 * The MAC address for the on-board Ethernet of
3772 		 * the SiS 630 chipset is in the NVRAM.  Kick
3773 		 * the chip into re-loading it from NVRAM, and
3774 		 * read the MAC address out of the filter registers.
3775 		 */
3776 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3777 
3778 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3779 		    RFCR_RFADDR_NODE0);
3780 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3781 		    0xffff;
3782 
3783 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3784 		    RFCR_RFADDR_NODE2);
3785 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3786 		    0xffff;
3787 
3788 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3789 		    RFCR_RFADDR_NODE4);
3790 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3791 		    0xffff;
3792 		break;
3793 
3794 	case SIS_REV_960:
3795 		{
3796 #define	SIS_SET_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3797 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3798 
3799 #define	SIS_CLR_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3800 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3801 
3802 			int waittime, i;
3803 
3804 			/* Allow to read EEPROM from LAN. It is shared
3805 			 * between a 1394 controller and the NIC and each
3806 			 * time we access it, we need to set SIS_EECMD_REQ.
3807 			 */
3808 			SIS_SET_EROMAR(sc, EROMAR_REQ);
3809 
3810 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3811 				/* Force EEPROM to idle state. */
3812 
3813 				/*
3814 				 * XXX-cube This is ugly.  I'll look for docs about it.
3815 				 */
3816 				SIS_SET_EROMAR(sc, EROMAR_EECS);
3817 				sipcom_sis900_eeprom_delay(sc);
3818 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3819 					SIS_SET_EROMAR(sc, EROMAR_EESK);
3820 					sipcom_sis900_eeprom_delay(sc);
3821 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
3822 					sipcom_sis900_eeprom_delay(sc);
3823 				}
3824 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
3825 				sipcom_sis900_eeprom_delay(sc);
3826 				bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3827 
3828 				if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3829 					sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3830 					    sizeof(myea) / sizeof(myea[0]), myea);
3831 					break;
3832 				}
3833 				DELAY(1);
3834 			}
3835 
3836 			/*
3837 			 * Set SIS_EECTL_CLK to high, so a other master
3838 			 * can operate on the i2c bus.
3839 			 */
3840 			SIS_SET_EROMAR(sc, EROMAR_EESK);
3841 
3842 			/* Refuse EEPROM access by LAN */
3843 			SIS_SET_EROMAR(sc, EROMAR_DONE);
3844 		} break;
3845 
3846 	default:
3847 		sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3848 		    sizeof(myea) / sizeof(myea[0]), myea);
3849 	}
3850 
3851 	enaddr[0] = myea[0] & 0xff;
3852 	enaddr[1] = myea[0] >> 8;
3853 	enaddr[2] = myea[1] & 0xff;
3854 	enaddr[3] = myea[1] >> 8;
3855 	enaddr[4] = myea[2] & 0xff;
3856 	enaddr[5] = myea[2] >> 8;
3857 }
3858 
3859 /* Table and macro to bit-reverse an octet. */
3860 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3861 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3862 
3863 static void
3864 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3865     const struct pci_attach_args *pa, u_int8_t *enaddr)
3866 {
3867 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3868 	u_int8_t cksum, *e, match;
3869 	int i;
3870 
3871 	sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3872 	    sizeof(eeprom_data[0]), eeprom_data);
3873 
3874 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3875 	match = ~(match - 1);
3876 
3877 	cksum = 0x55;
3878 	e = (u_int8_t *) eeprom_data;
3879 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3880 		cksum += *e++;
3881 	}
3882 	if (cksum != match) {
3883 		printf("%s: Checksum (%x) mismatch (%x)",
3884 		    device_xname(sc->sc_dev), cksum, match);
3885 	}
3886 
3887 	/*
3888 	 * Unrolled because it makes slightly more sense this way.
3889 	 * The DP83815 stores the MAC address in bit 0 of word 6
3890 	 * through bit 15 of word 8.
3891 	 */
3892 	ea = &eeprom_data[6];
3893 	enaddr[0] = ((*ea & 0x1) << 7);
3894 	ea++;
3895 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
3896 	enaddr[1] = ((*ea & 0x1FE) >> 1);
3897 	enaddr[2] = ((*ea & 0x1) << 7);
3898 	ea++;
3899 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
3900 	enaddr[3] = ((*ea & 0x1FE) >> 1);
3901 	enaddr[4] = ((*ea & 0x1) << 7);
3902 	ea++;
3903 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
3904 	enaddr[5] = ((*ea & 0x1FE) >> 1);
3905 
3906 	/*
3907 	 * In case that's not weird enough, we also need to reverse
3908 	 * the bits in each byte.  This all actually makes more sense
3909 	 * if you think about the EEPROM storage as an array of bits
3910 	 * being shifted into bytes, but that's not how we're looking
3911 	 * at it here...
3912 	 */
3913 	for (i = 0; i < 6 ;i++)
3914 		enaddr[i] = bbr(enaddr[i]);
3915 }
3916 
3917 /*
3918  * sip_mediastatus:	[ifmedia interface function]
3919  *
3920  *	Get the current interface media status.
3921  */
3922 static void
3923 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3924 {
3925 	struct sip_softc *sc = ifp->if_softc;
3926 
3927 	if (!device_is_active(sc->sc_dev)) {
3928 		ifmr->ifm_active = IFM_ETHER | IFM_NONE;
3929 		ifmr->ifm_status = 0;
3930 		return;
3931 	}
3932 	ether_mediastatus(ifp, ifmr);
3933 	ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
3934 			   sc->sc_flowflags;
3935 }
3936