xref: /netbsd-src/sys/dev/pci/if_sip.c (revision 481fca6e59249d8ffcf24fef7cfbe7b131bfb080)
1 /*	$NetBSD: if_sip.c,v 1.12 2000/06/28 16:08:45 mrg Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999 Network Computer, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of Network Computer, Inc. nor the names of its
16  *    contributors may be used to endorse or promote products derived
17  *    from this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Device driver for the Silicon Integrated Systems SiS 900 and
34  * SiS 7016 10/100 PCI Ethernet controllers.
35  *
36  * Written by Jason R. Thorpe for Network Computer, Inc.
37  */
38 
39 #include "opt_inet.h"
40 #include "opt_ns.h"
41 #include "bpfilter.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/callout.h>
46 #include <sys/mbuf.h>
47 #include <sys/malloc.h>
48 #include <sys/kernel.h>
49 #include <sys/socket.h>
50 #include <sys/ioctl.h>
51 #include <sys/errno.h>
52 #include <sys/device.h>
53 #include <sys/queue.h>
54 
55 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
56 
57 #include <net/if.h>
58 #include <net/if_dl.h>
59 #include <net/if_media.h>
60 #include <net/if_ether.h>
61 
62 #if NBPFILTER > 0
63 #include <net/bpf.h>
64 #endif
65 
66 #ifdef INET
67 #include <netinet/in.h>
68 #include <netinet/if_inarp.h>
69 #endif
70 
71 #ifdef NS
72 #include <netns/ns.h>
73 #include <netns/ns_if.h>
74 #endif
75 
76 #include <machine/bus.h>
77 #include <machine/intr.h>
78 
79 #include <dev/mii/miivar.h>
80 
81 #include <dev/pci/pcireg.h>
82 #include <dev/pci/pcivar.h>
83 #include <dev/pci/pcidevs.h>
84 
85 #include <dev/pci/if_sipreg.h>
86 
87 /*
88  * Devices supported by this driver.
89  */
90 const struct sip_product {
91 	pci_vendor_id_t		sip_vendor;
92 	pci_product_id_t	sip_product;
93 	const char		*sip_name;
94 } sip_products[] = {
95 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
96 	  "SiS 900 10/100 Ethernet" },
97 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
98 	  "SiS 7016 10/100 Ethernet" },
99 
100 	{ 0,			0,
101 	  NULL },
102 };
103 
104 /*
105  * Transmit descriptor list size.  This is arbitrary, but allocate
106  * enough descriptors for 64 pending transmissions, and 16 segments
107  * per packet.  This MUST work out to a power of 2.
108  */
109 #define	SIP_NTXSEGS		16
110 
111 #define	SIP_TXQUEUELEN		64
112 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS)
113 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
114 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
115 
116 /*
117  * Receive descriptor list size.  We have one Rx buffer per incoming
118  * packet, so this logic is a little simpler.
119  */
120 #define	SIP_NRXDESC		64
121 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
122 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
123 
124 /*
125  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
126  * a single clump that maps to a single DMA segment to make several things
127  * easier.
128  */
129 struct sip_control_data {
130 	/*
131 	 * The transmit descriptors.
132 	 */
133 	struct sip_desc scd_txdescs[SIP_NTXDESC];
134 
135 	/*
136 	 * The receive descriptors.
137 	 */
138 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
139 };
140 
141 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
142 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
143 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
144 
145 /*
146  * Software state for transmit jobs.
147  */
148 struct sip_txsoft {
149 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
150 	bus_dmamap_t txs_dmamap;	/* our DMA map */
151 	int txs_firstdesc;		/* first descriptor in packet */
152 	int txs_lastdesc;		/* last descriptor in packet */
153 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
154 };
155 
156 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
157 
158 /*
159  * Software state for receive jobs.
160  */
161 struct sip_rxsoft {
162 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
163 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
164 };
165 
166 /*
167  * Software state per device.
168  */
169 struct sip_softc {
170 	struct device sc_dev;		/* generic device information */
171 	bus_space_tag_t sc_st;		/* bus space tag */
172 	bus_space_handle_t sc_sh;	/* bus space handle */
173 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
174 	struct ethercom sc_ethercom;	/* ethernet common data */
175 	void *sc_sdhook;		/* shutdown hook */
176 	pci_product_id_t sc_model;	/* which model are we? */
177 
178 	void *sc_ih;			/* interrupt cookie */
179 
180 	struct mii_data sc_mii;		/* MII/media information */
181 
182 	struct callout sc_tick_ch;	/* tick callout */
183 
184 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
185 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
186 
187 	/*
188 	 * Software state for transmit and receive descriptors.
189 	 */
190 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
191 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
192 
193 	/*
194 	 * Control data structures.
195 	 */
196 	struct sip_control_data *sc_control_data;
197 #define	sc_txdescs	sc_control_data->scd_txdescs
198 #define	sc_rxdescs	sc_control_data->scd_rxdescs
199 
200 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
201 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
202 	u_int32_t sc_imr;		/* prototype IMR register */
203 	u_int32_t sc_rfcr;		/* prototype RFCR register */
204 
205 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
206 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
207 
208 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
209 
210 	int	sc_flags;		/* misc. flags; see below */
211 
212 	int	sc_txfree;		/* number of free Tx descriptors */
213 	int	sc_txnext;		/* next ready Tx descriptor */
214 
215 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
216 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
217 
218 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
219 };
220 
221 /* sc_flags */
222 #define	SIPF_PAUSED	0x00000001	/* paused (802.3x flow control) */
223 
224 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
225 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
226 
227 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
228 do {									\
229 	int __x, __n;							\
230 									\
231 	__x = (x);							\
232 	__n = (n);							\
233 									\
234 	/* If it will wrap around, sync to the end of the ring. */	\
235 	if ((__x + __n) > SIP_NTXDESC) {				\
236 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
237 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
238 		    (SIP_NTXDESC - __x), (ops));			\
239 		__n -= (SIP_NTXDESC - __x);				\
240 		__x = 0;						\
241 	}								\
242 									\
243 	/* Now sync whatever is left. */				\
244 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
245 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
246 } while (0)
247 
248 #define	SIP_CDRXSYNC(sc, x, ops)					\
249 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
250 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
251 
252 /*
253  * Note we rely on MCLBYTES being a power of two below.
254  */
255 #define	SIP_INIT_RXDESC(sc, x)						\
256 do {									\
257 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
258 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
259 									\
260 	__sipd->sipd_link = SIP_CDRXADDR((sc), SIP_NEXTRX((x)));	\
261 	__sipd->sipd_bufptr = __rxs->rxs_dmamap->dm_segs[0].ds_addr;	\
262 	__sipd->sipd_cmdsts = CMDSTS_INTR |				\
263 	    ((MCLBYTES - 1) & CMDSTS_SIZE_MASK);			\
264 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
265 } while (0)
266 
267 void	sip_start __P((struct ifnet *));
268 void	sip_watchdog __P((struct ifnet *));
269 int	sip_ioctl __P((struct ifnet *, u_long, caddr_t));
270 
271 void	sip_shutdown __P((void *));
272 
273 void	sip_reset __P((struct sip_softc *));
274 int	sip_init __P((struct sip_softc *));
275 void	sip_stop __P((struct sip_softc *, int));
276 void	sip_rxdrain __P((struct sip_softc *));
277 int	sip_add_rxbuf __P((struct sip_softc *, int));
278 void	sip_read_eeprom __P((struct sip_softc *, int, int, u_int16_t *));
279 void	sip_set_filter __P((struct sip_softc *));
280 void	sip_tick __P((void *));
281 
282 int	sip_intr __P((void *));
283 void	sip_txintr __P((struct sip_softc *));
284 void	sip_rxintr __P((struct sip_softc *));
285 
286 int	sip_mii_readreg __P((struct device *, int, int));
287 void	sip_mii_writereg __P((struct device *, int, int, int));
288 void	sip_mii_statchg __P((struct device *));
289 
290 int	sip_mediachange __P((struct ifnet *));
291 void	sip_mediastatus __P((struct ifnet *, struct ifmediareq *));
292 
293 int	sip_match __P((struct device *, struct cfdata *, void *));
294 void	sip_attach __P((struct device *, struct device *, void *));
295 
296 int	sip_copy_small = 0;
297 
298 struct cfattach sip_ca = {
299 	sizeof(struct sip_softc), sip_match, sip_attach,
300 };
301 
302 const struct sip_product *sip_lookup __P((const struct pci_attach_args *));
303 
304 const struct sip_product *
305 sip_lookup(pa)
306 	const struct pci_attach_args *pa;
307 {
308 	const struct sip_product *sip;
309 
310 	for (sip = sip_products; sip->sip_name != NULL; sip++) {
311 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
312 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
313 			return (sip);
314 	}
315 	return (NULL);
316 }
317 
318 int
319 sip_match(parent, cf, aux)
320 	struct device *parent;
321 	struct cfdata *cf;
322 	void *aux;
323 {
324 	struct pci_attach_args *pa = aux;
325 
326 	if (sip_lookup(pa) != NULL)
327 		return (1);
328 
329 	return (0);
330 }
331 
332 void
333 sip_attach(parent, self, aux)
334 	struct device *parent, *self;
335 	void *aux;
336 {
337 	struct sip_softc *sc = (struct sip_softc *) self;
338 	struct pci_attach_args *pa = aux;
339 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
340 	pci_chipset_tag_t pc = pa->pa_pc;
341 	pci_intr_handle_t ih;
342 	const char *intrstr = NULL;
343 	bus_space_tag_t iot, memt;
344 	bus_space_handle_t ioh, memh;
345 	bus_dma_segment_t seg;
346 	int ioh_valid, memh_valid;
347 	int i, rseg, error;
348 	const struct sip_product *sip;
349 	pcireg_t pmode;
350 	u_int16_t enaddr[ETHER_ADDR_LEN / 2];
351 	int pmreg;
352 
353 	callout_init(&sc->sc_tick_ch);
354 
355 	sip = sip_lookup(pa);
356 	if (sip == NULL) {
357 		printf("\n");
358 		panic("sip_attach: impossible");
359 	}
360 
361 	printf(": %s\n", sip->sip_name);
362 
363 	sc->sc_model = PCI_PRODUCT(pa->pa_id);
364 
365 	/*
366 	 * Map the device.
367 	 */
368 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
369 	    PCI_MAPREG_TYPE_IO, 0,
370 	    &iot, &ioh, NULL, NULL) == 0);
371 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
372 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
373 	    &memt, &memh, NULL, NULL) == 0);
374 
375 	if (memh_valid) {
376 		sc->sc_st = memt;
377 		sc->sc_sh = memh;
378 	} else if (ioh_valid) {
379 		sc->sc_st = iot;
380 		sc->sc_sh = ioh;
381 	} else {
382 		printf("%s: unable to map device registers\n",
383 		    sc->sc_dev.dv_xname);
384 		return;
385 	}
386 
387 	sc->sc_dmat = pa->pa_dmat;
388 
389 	/* Enable bus mastering. */
390 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
391 	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
392 	    PCI_COMMAND_MASTER_ENABLE);
393 
394 	/* Get it out of power save mode if needed. */
395 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
396 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
397 		if (pmode == 3) {
398 			/*
399 			 * The card has lost all configuration data in
400 			 * this state, so punt.
401 			 */
402 			printf("%s: unable to wake up from power state D3\n",
403 			    sc->sc_dev.dv_xname);
404 			return;
405 		}
406 		if (pmode != 0) {
407 			printf("%s: waking up from power state D%d\n",
408 			    sc->sc_dev.dv_xname, pmode);
409 			pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
410 		}
411 	}
412 
413 	/*
414 	 * Map and establish our interrupt.
415 	 */
416 	if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
417 	    pa->pa_intrline, &ih)) {
418 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
419 		return;
420 	}
421 	intrstr = pci_intr_string(pc, ih);
422 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sip_intr, sc);
423 	if (sc->sc_ih == NULL) {
424 		printf("%s: unable to establish interrupt",
425 		    sc->sc_dev.dv_xname);
426 		if (intrstr != NULL)
427 			printf(" at %s", intrstr);
428 		printf("\n");
429 		return;
430 	}
431 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
432 
433 	SIMPLEQ_INIT(&sc->sc_txfreeq);
434 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
435 
436 	/*
437 	 * Allocate the control data structures, and create and load the
438 	 * DMA map for it.
439 	 */
440 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
441 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
442 	    0)) != 0) {
443 		printf("%s: unable to allocate control data, error = %d\n",
444 		    sc->sc_dev.dv_xname, error);
445 		goto fail_0;
446 	}
447 
448 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
449 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
450 	    BUS_DMA_COHERENT)) != 0) {
451 		printf("%s: unable to map control data, error = %d\n",
452 		    sc->sc_dev.dv_xname, error);
453 		goto fail_1;
454 	}
455 
456 	if ((error = bus_dmamap_create(sc->sc_dmat,
457 	    sizeof(struct sip_control_data), 1,
458 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
459 		printf("%s: unable to create control data DMA map, "
460 		    "error = %d\n", sc->sc_dev.dv_xname, error);
461 		goto fail_2;
462 	}
463 
464 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
465 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
466 	    0)) != 0) {
467 		printf("%s: unable to load control data DMA map, error = %d\n",
468 		    sc->sc_dev.dv_xname, error);
469 		goto fail_3;
470 	}
471 
472 	/*
473 	 * Create the transmit buffer DMA maps.
474 	 */
475 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
476 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
477 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
478 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
479 			printf("%s: unable to create tx DMA map %d, "
480 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
481 			goto fail_4;
482 		}
483 	}
484 
485 	/*
486 	 * Create the receive buffer DMA maps.
487 	 */
488 	for (i = 0; i < SIP_NRXDESC; i++) {
489 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
490 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
491 			printf("%s: unable to create rx DMA map %d, "
492 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
493 			goto fail_5;
494 		}
495 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
496 	}
497 
498 	/*
499 	 * Reset the chip to a known state.
500 	 */
501 	sip_reset(sc);
502 
503 	/*
504 	 * Read the Ethernet address from the EEPROM.
505 	 */
506 	sip_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
507 	    sizeof(enaddr) / sizeof(enaddr[0]), enaddr);
508 
509 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
510 	    ether_sprintf((u_int8_t *)enaddr));
511 
512 	/*
513 	 * Initialize our media structures and probe the MII.
514 	 */
515 	sc->sc_mii.mii_ifp = ifp;
516 	sc->sc_mii.mii_readreg = sip_mii_readreg;
517 	sc->sc_mii.mii_writereg = sip_mii_writereg;
518 	sc->sc_mii.mii_statchg = sip_mii_statchg;
519 	ifmedia_init(&sc->sc_mii.mii_media, 0, sip_mediachange,
520 	    sip_mediastatus);
521 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
522 	    MII_OFFSET_ANY, 0);
523 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
524 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
525 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
526 	} else
527 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
528 
529 	ifp = &sc->sc_ethercom.ec_if;
530 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
531 	ifp->if_softc = sc;
532 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
533 	ifp->if_ioctl = sip_ioctl;
534 	ifp->if_start = sip_start;
535 	ifp->if_watchdog = sip_watchdog;
536 
537 	/*
538 	 * Attach the interface.
539 	 */
540 	if_attach(ifp);
541 	ether_ifattach(ifp, (u_int8_t *)enaddr);
542 #if NBPFILTER > 0
543 	bpfattach(&sc->sc_ethercom.ec_if.if_bpf, ifp, DLT_EN10MB,
544 	    sizeof(struct ether_header));
545 #endif
546 
547 	/*
548 	 * Make sure the interface is shutdown during reboot.
549 	 */
550 	sc->sc_sdhook = shutdownhook_establish(sip_shutdown, sc);
551 	if (sc->sc_sdhook == NULL)
552 		printf("%s: WARNING: unable to establish shutdown hook\n",
553 		    sc->sc_dev.dv_xname);
554 	return;
555 
556 	/*
557 	 * Free any resources we've allocated during the failed attach
558 	 * attempt.  Do this in reverse order and fall through.
559 	 */
560  fail_5:
561 	for (i = 0; i < SIP_NRXDESC; i++) {
562 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
563 			bus_dmamap_destroy(sc->sc_dmat,
564 			    sc->sc_rxsoft[i].rxs_dmamap);
565 	}
566  fail_4:
567 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
568 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
569 			bus_dmamap_destroy(sc->sc_dmat,
570 			    sc->sc_txsoft[i].txs_dmamap);
571 	}
572 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
573  fail_3:
574 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
575  fail_2:
576 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
577 	    sizeof(struct sip_control_data));
578  fail_1:
579 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
580  fail_0:
581 	return;
582 }
583 
584 /*
585  * sip_shutdown:
586  *
587  *	Make sure the interface is stopped at reboot time.
588  */
589 void
590 sip_shutdown(arg)
591 	void *arg;
592 {
593 	struct sip_softc *sc = arg;
594 
595 	sip_stop(sc, 1);
596 }
597 
598 /*
599  * sip_start:		[ifnet interface function]
600  *
601  *	Start packet transmission on the interface.
602  */
603 void
604 sip_start(ifp)
605 	struct ifnet *ifp;
606 {
607 	struct sip_softc *sc = ifp->if_softc;
608 	struct mbuf *m0, *m;
609 	struct sip_txsoft *txs;
610 	bus_dmamap_t dmamap;
611 	int error, firsttx, nexttx, lasttx, ofree, seg;
612 
613 	/*
614 	 * If we've been told to pause, don't transmit any more packets.
615 	 */
616 	if (sc->sc_flags & SIPF_PAUSED)
617 		ifp->if_flags |= IFF_OACTIVE;
618 
619 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
620 		return;
621 
622 	/*
623 	 * Remember the previous number of free descriptors and
624 	 * the first descriptor we'll use.
625 	 */
626 	ofree = sc->sc_txfree;
627 	firsttx = sc->sc_txnext;
628 
629 	/*
630 	 * Loop through the send queue, setting up transmit descriptors
631 	 * until we drain the queue, or use up all available transmit
632 	 * descriptors.
633 	 */
634 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
635 	       sc->sc_txfree != 0) {
636 		/*
637 		 * Grab a packet off the queue.
638 		 */
639 		IF_DEQUEUE(&ifp->if_snd, m0);
640 		if (m0 == NULL)
641 			break;
642 
643 		dmamap = txs->txs_dmamap;
644 
645 		/*
646 		 * Load the DMA map.  If this fails, the packet either
647 		 * didn't fit in the alloted number of segments, or we
648 		 * were short on resources.  In this case, we'll copy
649 		 * and try again.
650 		 */
651 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
652 		    BUS_DMA_NOWAIT) != 0) {
653 			MGETHDR(m, M_DONTWAIT, MT_DATA);
654 			if (m == NULL) {
655 				printf("%s: unable to allocate Tx mbuf\n",
656 				    sc->sc_dev.dv_xname);
657 				IF_PREPEND(&ifp->if_snd, m0);
658 				break;
659 			}
660 			if (m0->m_pkthdr.len > MHLEN) {
661 				MCLGET(m, M_DONTWAIT);
662 				if ((m->m_flags & M_EXT) == 0) {
663 					printf("%s: unable to allocate Tx "
664 					    "cluster\n", sc->sc_dev.dv_xname);
665 					m_freem(m);
666 					IF_PREPEND(&ifp->if_snd, m0);
667 					break;
668 				}
669 			}
670 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
671 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
672 			m_freem(m0);
673 			m0 = m;
674 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
675 			    m0, BUS_DMA_NOWAIT);
676 			if (error) {
677 				printf("%s: unable to load Tx buffer, "
678 				    "error = %d\n", sc->sc_dev.dv_xname, error);
679 				IF_PREPEND(&ifp->if_snd, m0);
680 				break;
681 			}
682 		}
683 
684 		/*
685 		 * Ensure we have enough descriptors free to describe
686 		 * the packet.
687 		 */
688 		if (dmamap->dm_nsegs > sc->sc_txfree) {
689 			/*
690 			 * Not enough free descriptors to transmit this
691 			 * packet.  We haven't committed anything yet,
692 			 * so just unload the DMA map, put the packet
693 			 * back on the queue, and punt.  Notify the upper
694 			 * layer that there are not more slots left.
695 			 *
696 			 * XXX We could allocate an mbuf and copy, but
697 			 * XXX is it worth it?
698 			 */
699 			ifp->if_flags |= IFF_OACTIVE;
700 			bus_dmamap_unload(sc->sc_dmat, dmamap);
701 			IF_PREPEND(&ifp->if_snd, m0);
702 			break;
703 		}
704 
705 		/*
706 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
707 		 */
708 
709 		/* Sync the DMA map. */
710 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
711 		    BUS_DMASYNC_PREWRITE);
712 
713 		/*
714 		 * Initialize the transmit descriptors.
715 		 */
716 		for (nexttx = sc->sc_txnext, seg = 0;
717 		     seg < dmamap->dm_nsegs;
718 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
719 			/*
720 			 * If this is the first descriptor we're
721 			 * enqueueing, don't set the OWN bit just
722 			 * yet.  That could cause a race condition.
723 			 * We'll do it below.
724 			 */
725 			sc->sc_txdescs[nexttx].sipd_bufptr =
726 			    dmamap->dm_segs[seg].ds_addr;
727 			sc->sc_txdescs[nexttx].sipd_cmdsts =
728 			    (nexttx == firsttx ? 0 : CMDSTS_OWN) |
729 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len;
730 			lasttx = nexttx;
731 		}
732 
733 		/* Clear the MORE bit on the last segment. */
734 		sc->sc_txdescs[lasttx].sipd_cmdsts &= ~CMDSTS_MORE;
735 
736 		/* Sync the descriptors we're using. */
737 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
738 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
739 
740 		/*
741 		 * Store a pointer to the packet so we can free it later,
742 		 * and remember what txdirty will be once the packet is
743 		 * done.
744 		 */
745 		txs->txs_mbuf = m0;
746 		txs->txs_firstdesc = sc->sc_txnext;
747 		txs->txs_lastdesc = lasttx;
748 
749 		/* Advance the tx pointer. */
750 		sc->sc_txfree -= dmamap->dm_nsegs;
751 		sc->sc_txnext = nexttx;
752 
753 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q);
754 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
755 
756 #if NBPFILTER > 0
757 		/*
758 		 * Pass the packet to any BPF listeners.
759 		 */
760 		if (ifp->if_bpf)
761 			bpf_mtap(ifp->if_bpf, m0);
762 #endif /* NBPFILTER > 0 */
763 	}
764 
765 	if (txs == NULL || sc->sc_txfree == 0) {
766 		/* No more slots left; notify upper layer. */
767 		ifp->if_flags |= IFF_OACTIVE;
768 	}
769 
770 	if (sc->sc_txfree != ofree) {
771 		/*
772 		 * Cause a descriptor interrupt to happen on the
773 		 * last packet we enqueued.
774 		 */
775 		sc->sc_txdescs[lasttx].sipd_cmdsts |= CMDSTS_INTR;
776 		SIP_CDTXSYNC(sc, lasttx, 1,
777 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
778 
779 		/*
780 		 * The entire packet chain is set up.  Give the
781 		 * first descrptor to the chip now.
782 		 */
783 		sc->sc_txdescs[firsttx].sipd_cmdsts |= CMDSTS_OWN;
784 		SIP_CDTXSYNC(sc, firsttx, 1,
785 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
786 
787 		/* Start the transmit process. */
788 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
789 		     CR_TXE) == 0) {
790 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
791 			    SIP_CDTXADDR(sc, firsttx));
792 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
793 		}
794 
795 		/* Set a watchdog timer in case the chip flakes out. */
796 		ifp->if_timer = 5;
797 	}
798 }
799 
800 /*
801  * sip_watchdog:	[ifnet interface function]
802  *
803  *	Watchdog timer handler.
804  */
805 void
806 sip_watchdog(ifp)
807 	struct ifnet *ifp;
808 {
809 	struct sip_softc *sc = ifp->if_softc;
810 
811 	/*
812 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
813 	 * If we get a timeout, try and sweep up transmit descriptors.
814 	 * If we manage to sweep them all up, ignore the lack of
815 	 * interrupt.
816 	 */
817 	sip_txintr(sc);
818 
819 	if (sc->sc_txfree != SIP_NTXDESC) {
820 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
821 		ifp->if_oerrors++;
822 
823 		/* Reset the interface. */
824 		(void) sip_init(sc);
825 	} else if (ifp->if_flags & IFF_DEBUG)
826 		printf("%s: recovered from device timeout\n",
827 		    sc->sc_dev.dv_xname);
828 
829 	/* Try to get more packets going. */
830 	sip_start(ifp);
831 }
832 
833 /*
834  * sip_ioctl:		[ifnet interface function]
835  *
836  *	Handle control requests from the operator.
837  */
838 int
839 sip_ioctl(ifp, cmd, data)
840 	struct ifnet *ifp;
841 	u_long cmd;
842 	caddr_t data;
843 {
844 	struct sip_softc *sc = ifp->if_softc;
845 	struct ifreq *ifr = (struct ifreq *)data;
846 	struct ifaddr *ifa = (struct ifaddr *)data;
847 	int s, error = 0;
848 
849 	s = splnet();
850 
851 	switch (cmd) {
852 	case SIOCSIFADDR:
853 		ifp->if_flags |= IFF_UP;
854 
855 		switch (ifa->ifa_addr->sa_family) {
856 #ifdef INET
857 		case AF_INET:
858 			if ((error = sip_init(sc)) != 0)
859 				break;
860 			arp_ifinit(ifp, ifa);
861 			break;
862 #endif /* INET */
863 #ifdef NS
864 		case AF_NS:
865 		    {
866 			struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
867 
868 			if (ns_nullhost(*ina))
869 				ina->x_host = *(union ns_host *)
870 				    LLADDR(ifp->if_sadl);
871 			else
872 				memcpy(LLADDR(ifp->if_sadl),
873 				    ina->x_host.c_host, ifp->if_addrlen);
874 			error = sip_init(sc);
875 			break;
876 		    }
877 #endif /* NS */
878 		default:
879 			error = sip_init(sc);
880 			break;
881 		}
882 		break;
883 
884 	case SIOCSIFMTU:
885 		if (ifr->ifr_mtu > ETHERMTU)
886 			error = EINVAL;
887 		else
888 			ifp->if_mtu = ifr->ifr_mtu;
889 		break;
890 
891 	case SIOCSIFFLAGS:
892 		if ((ifp->if_flags & IFF_UP) == 0 &&
893 		    (ifp->if_flags & IFF_RUNNING) != 0) {
894 			/*
895 			 * If interface is marked down and it is running, then
896 			 * stop it.
897 			 */
898 			sip_stop(sc, 1);
899 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
900 			   (ifp->if_flags & IFF_RUNNING) == 0) {
901 			/*
902 			 * If interfase it marked up and it is stopped, then
903 			 * start it.
904 			 */
905 			error = sip_init(sc);
906 		} else if ((ifp->if_flags & IFF_UP) != 0) {
907 			/*
908 			 * Reset the interface to pick up changes in any other
909 			 * flags that affect the hardware state.
910 			 */
911 			error = sip_init(sc);
912 		}
913 		break;
914 
915 	case SIOCADDMULTI:
916 	case SIOCDELMULTI:
917 		error = (cmd == SIOCADDMULTI) ?
918 		    ether_addmulti(ifr, &sc->sc_ethercom) :
919 		    ether_delmulti(ifr, &sc->sc_ethercom);
920 
921 		if (error == ENETRESET) {
922 			/*
923 			 * Multicast list has changed; set the hardware filter
924 			 * accordingly.
925 			 */
926 			sip_set_filter(sc);
927 			error = 0;
928 		}
929 		break;
930 
931 	case SIOCSIFMEDIA:
932 	case SIOCGIFMEDIA:
933 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
934 		break;
935 
936 	default:
937 		error = EINVAL;
938 		break;
939 	}
940 
941 	/* Try to get more packets going. */
942 	sip_start(ifp);
943 
944 	splx(s);
945 	return (error);
946 }
947 
948 /*
949  * sip_intr:
950  *
951  *	Interrupt service routine.
952  */
953 int
954 sip_intr(arg)
955 	void *arg;
956 {
957 	struct sip_softc *sc = arg;
958 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
959 	u_int32_t isr;
960 	int handled = 0;
961 
962 	for (;;) {
963 		/* Reading clears interrupt. */
964 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
965 		if ((isr & sc->sc_imr) == 0)
966 			break;
967 
968 		handled = 1;
969 
970 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
971 			/* Grab any new packets. */
972 			sip_rxintr(sc);
973 
974 			if (isr & ISR_RXORN) {
975 				printf("%s: receive FIFO overrun\n",
976 				    sc->sc_dev.dv_xname);
977 
978 				/* XXX adjust rx_drain_thresh? */
979 			}
980 
981 			if (isr & ISR_RXIDLE) {
982 				printf("%s: receive ring overrun\n",
983 				    sc->sc_dev.dv_xname);
984 
985 				/* Get the receive process going again. */
986 				bus_space_write_4(sc->sc_st, sc->sc_sh,
987 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
988 				bus_space_write_4(sc->sc_st, sc->sc_sh,
989 				    SIP_CR, CR_RXE);
990 			}
991 		}
992 
993 		if (isr & (ISR_TXURN|ISR_TXDESC)) {
994 			/* Sweep up transmit descriptors. */
995 			sip_txintr(sc);
996 
997 			if (isr & ISR_TXURN) {
998 				u_int32_t thresh;
999 
1000 				printf("%s: transmit FIFO underrun",
1001 				    sc->sc_dev.dv_xname);
1002 
1003 				thresh = sc->sc_tx_drain_thresh + 1;
1004 				if (thresh <= TXCFG_DRTH &&
1005 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
1006 				     (sc->sc_tx_fill_thresh * 32))) {
1007 					printf("; increasing Tx drain "
1008 					    "threshold to %u bytes\n",
1009 					    thresh * 32);
1010 					sc->sc_tx_drain_thresh = thresh;
1011 					(void) sip_init(sc);
1012 				} else {
1013 					(void) sip_init(sc);
1014 					printf("\n");
1015 				}
1016 			}
1017 		}
1018 
1019 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1020 			if (isr & ISR_PAUSE_ST) {
1021 				sc->sc_flags |= SIPF_PAUSED;
1022 				ifp->if_flags |= IFF_OACTIVE;
1023 			}
1024 			if (isr & ISR_PAUSE_END) {
1025 				sc->sc_flags &= ~SIPF_PAUSED;
1026 				ifp->if_flags &= ~IFF_OACTIVE;
1027 			}
1028 		}
1029 
1030 		if (isr & ISR_HIBERR) {
1031 #define	PRINTERR(bit, str)						\
1032 			if (isr & (bit))				\
1033 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1034 			PRINTERR(ISR_DPERR, "parity error");
1035 			PRINTERR(ISR_SSERR, "system error");
1036 			PRINTERR(ISR_RMABT, "master abort");
1037 			PRINTERR(ISR_RTABT, "target abort");
1038 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1039 			(void) sip_init(sc);
1040 #undef PRINTERR
1041 		}
1042 	}
1043 
1044 	/* Try to get more packets going. */
1045 	sip_start(ifp);
1046 
1047 	return (handled);
1048 }
1049 
1050 /*
1051  * sip_txintr:
1052  *
1053  *	Helper; handle transmit interrupts.
1054  */
1055 void
1056 sip_txintr(sc)
1057 	struct sip_softc *sc;
1058 {
1059 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1060 	struct sip_txsoft *txs;
1061 	u_int32_t cmdsts;
1062 
1063 	if ((sc->sc_flags & SIPF_PAUSED) == 0)
1064 		ifp->if_flags &= ~IFF_OACTIVE;
1065 
1066 	/*
1067 	 * Go through our Tx list and free mbufs for those
1068 	 * frames which have been transmitted.
1069 	 */
1070 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1071 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1072 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1073 
1074 		cmdsts = sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts;
1075 		if (cmdsts & CMDSTS_OWN)
1076 			break;
1077 
1078 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1079 
1080 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1081 
1082 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1083 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1084 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1085 		m_freem(txs->txs_mbuf);
1086 		txs->txs_mbuf = NULL;
1087 
1088 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1089 
1090 		/*
1091 		 * Check for errors and collisions.
1092 		 */
1093 		if (cmdsts &
1094 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1095 			if (ifp->if_flags & IFF_DEBUG) {
1096 				if (CMDSTS_Tx_ED)
1097 					printf("%s: excessive deferral\n",
1098 					    sc->sc_dev.dv_xname);
1099 				if (CMDSTS_Tx_EC) {
1100 					printf("%s: excessive collisions\n",
1101 					    sc->sc_dev.dv_xname);
1102 					ifp->if_collisions += 16;
1103 				}
1104 			}
1105 		} else {
1106 			/* Packet was transmitted successfully. */
1107 			ifp->if_opackets++;
1108 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1109 		}
1110 	}
1111 
1112 	/*
1113 	 * If there are no more pending transmissions, cancel the watchdog
1114 	 * timer.
1115 	 */
1116 	if (txs == NULL)
1117 		ifp->if_timer = 0;
1118 }
1119 
1120 /*
1121  * sip_rxintr:
1122  *
1123  *	Helper; handle receive interrupts.
1124  */
1125 void
1126 sip_rxintr(sc)
1127 	struct sip_softc *sc;
1128 {
1129 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1130 	struct ether_header *eh;
1131 	struct sip_rxsoft *rxs;
1132 	struct mbuf *m;
1133 	u_int32_t cmdsts;
1134 	int i, len;
1135 
1136 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1137 		rxs = &sc->sc_rxsoft[i];
1138 
1139 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1140 
1141 		cmdsts = sc->sc_rxdescs[i].sipd_cmdsts;
1142 
1143 		/*
1144 		 * NOTE: OWN is set if owned by _consumer_.  We're the
1145 		 * consumer of the receive ring, so if the bit is clear,
1146 		 * we have processed all of the packets.
1147 		 */
1148 		if ((cmdsts & CMDSTS_OWN) == 0) {
1149 			/*
1150 			 * We have processed all of the receive buffers.
1151 			 */
1152 			break;
1153 		}
1154 
1155 		/*
1156 		 * If any collisions were seen on the wire, count one.
1157 		 */
1158 		if (cmdsts & CMDSTS_Rx_COL)
1159 			ifp->if_collisions++;
1160 
1161 		/*
1162 		 * If an error occurred, update stats, clear the status
1163 		 * word, and leave the packet buffer in place.  It will
1164 		 * simply be reused the next time the ring comes around.
1165 		 */
1166 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_LONG|CMDSTS_Rx_RUNT|
1167 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1168 			ifp->if_ierrors++;
1169 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1170 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
1171 				/* Receive overrun handled elsewhere. */
1172 				printf("%s: receive descriptor error\n",
1173 				    sc->sc_dev.dv_xname);
1174 			}
1175 #define	PRINTERR(bit, str)						\
1176 			if (cmdsts & (bit))				\
1177 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1178 			PRINTERR(CMDSTS_Rx_LONG, "packet too long");
1179 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1180 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1181 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1182 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1183 #undef PRINTERR
1184 			SIP_INIT_RXDESC(sc, i);
1185 			continue;
1186 		}
1187 
1188 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1189 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1190 
1191 		/*
1192 		 * No errors; receive the packet.  Note, the SiS 900
1193 		 * includes the CRC with every packet; trim it.
1194 		 */
1195 		len = CMDSTS_SIZE(cmdsts) - ETHER_CRC_LEN;
1196 
1197 #ifdef __NO_STRICT_ALIGNMENT
1198 		/*
1199 		 * If the packet is small enough to fit in a
1200 		 * single header mbuf, allocate one and copy
1201 		 * the data into it.  This greatly reduces
1202 		 * memory consumption when we receive lots
1203 		 * of small packets.
1204 		 *
1205 		 * Otherwise, we add a new buffer to the receive
1206 		 * chain.  If this fails, we drop the packet and
1207 		 * recycle the old buffer.
1208 		 */
1209 		if (sip_copy_small != 0 && len <= MHLEN) {
1210 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1211 			if (m == NULL)
1212 				goto dropit;
1213 			memcpy(mtod(m, caddr_t),
1214 			    mtod(rxs->rxs_mbuf, caddr_t), len);
1215 			SIP_INIT_RXDESC(sc, i);
1216 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1217 			    rxs->rxs_dmamap->dm_mapsize,
1218 			    BUS_DMASYNC_PREREAD);
1219 		} else {
1220 			m = rxs->rxs_mbuf;
1221 			if (sip_add_rxbuf(sc, i) != 0) {
1222  dropit:
1223 				ifp->if_ierrors++;
1224 				SIP_INIT_RXDESC(sc, i);
1225 				bus_dmamap_sync(sc->sc_dmat,
1226 				    rxs->rxs_dmamap, 0,
1227 				    rxs->rxs_dmamap->dm_mapsize,
1228 				    BUS_DMASYNC_PREREAD);
1229 				continue;
1230 			}
1231 		}
1232 #else
1233 		/*
1234 		 * The SiS 900's receive buffers must be 4-byte aligned.
1235 		 * But this means that the data after the Ethernet header
1236 		 * is misaligned.  We must allocate a new buffer and
1237 		 * copy the data, shifted forward 2 bytes.
1238 		 */
1239 		MGETHDR(m, M_DONTWAIT, MT_DATA);
1240 		if (m == NULL) {
1241  dropit:
1242 			ifp->if_ierrors++;
1243 			SIP_INIT_RXDESC(sc, i);
1244 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1245 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1246 			continue;
1247 		}
1248 		if (len > (MHLEN - 2)) {
1249 			MCLGET(m, M_DONTWAIT);
1250 			if ((m->m_flags & M_EXT) == 0) {
1251 				m_freem(m);
1252 				goto dropit;
1253 			}
1254 		}
1255 		m->m_data += 2;
1256 
1257 		/*
1258 		 * Note that we use clusters for incoming frames, so the
1259 		 * buffer is virtually contiguous.
1260 		 */
1261 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
1262 
1263 		/* Allow the receive descriptor to continue using its mbuf. */
1264 		SIP_INIT_RXDESC(sc, i);
1265 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1266 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1267 #endif /* __NO_STRICT_ALIGNMENT */
1268 
1269 		ifp->if_ipackets++;
1270 		eh = mtod(m, struct ether_header *);
1271 		m->m_pkthdr.rcvif = ifp;
1272 		m->m_pkthdr.len = m->m_len = len;
1273 
1274 #if NBPFILTER > 0
1275 		/*
1276 		 * Pass this up to any BPF listeners, but only
1277 		 * pass if up the stack if it's for us.
1278 		 */
1279 		if (ifp->if_bpf) {
1280 			bpf_mtap(ifp->if_bpf, m);
1281 			if ((ifp->if_flags & IFF_PROMISC) != 0 &&
1282 			    (cmdsts & CMDSTS_Rx_DEST) == CMDSTS_Rx_DEST_REJ) {
1283 				m_freem(m);
1284 				continue;
1285 			}
1286 		}
1287 #endif /* NBPFILTER > 0 */
1288 
1289 		/* Pass it on. */
1290 		(*ifp->if_input)(ifp, m);
1291 	}
1292 
1293 	/* Update the receive pointer. */
1294 	sc->sc_rxptr = i;
1295 }
1296 
1297 /*
1298  * sip_tick:
1299  *
1300  *	One second timer, used to tick the MII.
1301  */
1302 void
1303 sip_tick(arg)
1304 	void *arg;
1305 {
1306 	struct sip_softc *sc = arg;
1307 	int s;
1308 
1309 	s = splnet();
1310 	mii_tick(&sc->sc_mii);
1311 	splx(s);
1312 
1313 	callout_reset(&sc->sc_tick_ch, hz, sip_tick, sc);
1314 }
1315 
1316 /*
1317  * sip_reset:
1318  *
1319  *	Perform a soft reset on the SiS 900.
1320  */
1321 void
1322 sip_reset(sc)
1323 	struct sip_softc *sc;
1324 {
1325 	bus_space_tag_t st = sc->sc_st;
1326 	bus_space_handle_t sh = sc->sc_sh;
1327 	int i;
1328 
1329 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
1330 
1331 	for (i = 0; i < 1000; i++) {
1332 		if ((bus_space_read_4(st, sh, SIP_ISR) &
1333 		     (ISR_TXRCMP|ISR_RXRCMP)) == (ISR_TXRCMP|ISR_RXRCMP))
1334 			return;
1335 		delay(2);
1336 	}
1337 
1338 	printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
1339 }
1340 
1341 /*
1342  * sip_init:
1343  *
1344  *	Initialize the interface.  Must be called at splnet().
1345  */
1346 int
1347 sip_init(sc)
1348 	struct sip_softc *sc;
1349 {
1350 	bus_space_tag_t st = sc->sc_st;
1351 	bus_space_handle_t sh = sc->sc_sh;
1352 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1353 	struct sip_txsoft *txs;
1354 	struct sip_rxsoft *rxs;
1355 	struct sip_desc *sipd;
1356 	u_int32_t cfg;
1357 	int i, error = 0;
1358 
1359 	/*
1360 	 * Cancel any pending I/O.
1361 	 */
1362 	sip_stop(sc, 0);
1363 
1364 	/*
1365 	 * Reset the chip to a known state.
1366 	 */
1367 	sip_reset(sc);
1368 
1369 	/*
1370 	 * Initialize the transmit descriptor ring.
1371 	 */
1372 	for (i = 0; i < SIP_NTXDESC; i++) {
1373 		sipd = &sc->sc_txdescs[i];
1374 		memset(sipd, 0, sizeof(struct sip_desc));
1375 		sipd->sipd_link = SIP_CDTXADDR(sc, SIP_NEXTTX(i));
1376 	}
1377 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
1378 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1379 	sc->sc_txfree = SIP_NTXDESC;
1380 	sc->sc_txnext = 0;
1381 
1382 	/*
1383 	 * Initialize the transmit job descriptors.
1384 	 */
1385 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1386 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1387 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
1388 		txs = &sc->sc_txsoft[i];
1389 		txs->txs_mbuf = NULL;
1390 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1391 	}
1392 
1393 	/*
1394 	 * Initialize the receive descriptor and receive job
1395 	 * descriptor rings.
1396 	 */
1397 	for (i = 0; i < SIP_NRXDESC; i++) {
1398 		rxs = &sc->sc_rxsoft[i];
1399 		if (rxs->rxs_mbuf == NULL) {
1400 			if ((error = sip_add_rxbuf(sc, i)) != 0) {
1401 				printf("%s: unable to allocate or map rx "
1402 				    "buffer %d, error = %d\n",
1403 				    sc->sc_dev.dv_xname, i, error);
1404 				/*
1405 				 * XXX Should attempt to run with fewer receive
1406 				 * XXX buffers instead of just failing.
1407 				 */
1408 				sip_rxdrain(sc);
1409 				goto out;
1410 			}
1411 		}
1412 	}
1413 	sc->sc_rxptr = 0;
1414 
1415 	/*
1416 	 * Initialize the configuration register: aggressive PCI
1417 	 * bus request algorithm, default backoff, default OW timer,
1418 	 * default parity error detection.
1419 	 */
1420 	cfg = 0;
1421 #if BYTE_ORDER == BIG_ENDIAN
1422 	/*
1423 	 * ...descriptors in big-endian mode.
1424 	 */
1425 	cfg |= CFG_BEM;
1426 #endif
1427 	bus_space_write_4(st, sh, SIP_CFG, cfg);
1428 
1429 	/*
1430 	 * Initialize the transmit fill and drain thresholds if
1431 	 * we have never done so.
1432 	 */
1433 	if (sc->sc_tx_fill_thresh == 0) {
1434 		/*
1435 		 * XXX This value should be tuned.  This is the
1436 		 * minimum (32 bytes), and we may be able to
1437 		 * improve performance by increasing it.
1438 		 */
1439 		sc->sc_tx_fill_thresh = 1;
1440 	}
1441 	if (sc->sc_tx_drain_thresh == 0) {
1442 		/*
1443 		 * Start at a drain threshold of 128 bytes.  We will
1444 		 * increase it if a DMA underrun occurs.
1445 		 *
1446 		 * XXX The minimum value of this variable should be
1447 		 * tuned.  We may be able to improve performance
1448 		 * by starting with a lower value.  That, however,
1449 		 * may trash the first few outgoing packets if the
1450 		 * PCI bus is saturated.
1451 		 */
1452 		sc->sc_tx_drain_thresh = 4;
1453 	}
1454 
1455 	/*
1456 	 * Initialize the prototype TXCFG register.
1457 	 */
1458 	sc->sc_txcfg = TXCFG_ATP | TXCFG_MXDMA_512 |
1459 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
1460 	    sc->sc_tx_drain_thresh;
1461 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
1462 
1463 	/*
1464 	 * Initialize the receive drain threshold if we have never
1465 	 * done so.
1466 	 */
1467 	if (sc->sc_rx_drain_thresh == 0) {
1468 		/*
1469 		 * XXX This value should be tuned.  This is set to the
1470 		 * maximum of 248 bytes, and we may be able to improve
1471 		 * performance by decreasing it (although we should never
1472 		 * set this value lower than 2; 14 bytes are required to
1473 		 * filter the packet).
1474 		 */
1475 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
1476 	}
1477 
1478 	/*
1479 	 * Initialize the prototype RXCFG register.
1480 	 */
1481 	sc->sc_rxcfg = RXCFG_MXDMA_512 |
1482 	    (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
1483 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
1484 
1485 	/* Set up the receive filter. */
1486 	sip_set_filter(sc);
1487 
1488 	/*
1489 	 * Give the transmit and receive rings to the chip.
1490 	 */
1491 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
1492 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1493 
1494 	/*
1495 	 * Initialize the interrupt mask.
1496 	 */
1497 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
1498 	    ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
1499 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
1500 
1501 	/*
1502 	 * Set the current media.  Do this after initializing the prototype
1503 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
1504 	 * control.
1505 	 */
1506 	mii_mediachg(&sc->sc_mii);
1507 
1508 	/*
1509 	 * Enable interrupts.
1510 	 */
1511 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
1512 
1513 	/*
1514 	 * Start the transmit and receive processes.
1515 	 */
1516 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
1517 
1518 	/*
1519 	 * Start the one second MII clock.
1520 	 */
1521 	callout_reset(&sc->sc_tick_ch, hz, sip_tick, sc);
1522 
1523 	/*
1524 	 * ...all done!
1525 	 */
1526 	ifp->if_flags |= IFF_RUNNING;
1527 	ifp->if_flags &= ~IFF_OACTIVE;
1528 
1529  out:
1530 	if (error)
1531 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1532 	return (error);
1533 }
1534 
1535 /*
1536  * sip_drain:
1537  *
1538  *	Drain the receive queue.
1539  */
1540 void
1541 sip_rxdrain(sc)
1542 	struct sip_softc *sc;
1543 {
1544 	struct sip_rxsoft *rxs;
1545 	int i;
1546 
1547 	for (i = 0; i < SIP_NRXDESC; i++) {
1548 		rxs = &sc->sc_rxsoft[i];
1549 		if (rxs->rxs_mbuf != NULL) {
1550 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1551 			m_freem(rxs->rxs_mbuf);
1552 			rxs->rxs_mbuf = NULL;
1553 		}
1554 	}
1555 }
1556 
1557 /*
1558  * sip_stop:
1559  *
1560  *	Stop transmission on the interface.
1561  */
1562 void
1563 sip_stop(sc, drain)
1564 	struct sip_softc *sc;
1565 {
1566 	bus_space_tag_t st = sc->sc_st;
1567 	bus_space_handle_t sh = sc->sc_sh;
1568 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1569 	struct sip_txsoft *txs;
1570 	u_int32_t cmdsts = 0;		/* DEBUG */
1571 
1572 	/*
1573 	 * Stop the one second clock.
1574 	 */
1575 	callout_stop(&sc->sc_tick_ch);
1576 
1577 	/* Down the MII. */
1578 	mii_down(&sc->sc_mii);
1579 
1580 	/*
1581 	 * Disable interrupts.
1582 	 */
1583 	bus_space_write_4(st, sh, SIP_IER, 0);
1584 
1585 	/*
1586 	 * Stop receiver and transmitter.
1587 	 */
1588 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
1589 
1590 	/*
1591 	 * Release any queued transmit buffers.
1592 	 */
1593 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1594 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
1595 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
1596 		    (sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts &
1597 		     CMDSTS_INTR) == 0)
1598 			printf("%s: sip_stop: last descriptor does not "
1599 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
1600 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q);
1601 #ifdef DIAGNOSTIC
1602 		if (txs->txs_mbuf == NULL) {
1603 			printf("%s: dirty txsoft with no mbuf chain\n",
1604 			    sc->sc_dev.dv_xname);
1605 			panic("sip_stop");
1606 		}
1607 #endif
1608 		cmdsts |=		/* DEBUG */
1609 		    sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts;
1610 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1611 		m_freem(txs->txs_mbuf);
1612 		txs->txs_mbuf = NULL;
1613 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1614 	}
1615 
1616 	if (drain) {
1617 		/*
1618 		 * Release the receive buffers.
1619 		 */
1620 		sip_rxdrain(sc);
1621 	}
1622 
1623 	/*
1624 	 * Mark the interface down and cancel the watchdog timer.
1625 	 */
1626 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1627 	ifp->if_timer = 0;
1628 
1629 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
1630 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
1631 		printf("%s: sip_stop: no INTR bits set in dirty tx "
1632 		    "descriptors\n", sc->sc_dev.dv_xname);
1633 }
1634 
1635 /*
1636  * sip_read_eeprom:
1637  *
1638  *	Read data from the serial EEPROM.
1639  */
1640 void
1641 sip_read_eeprom(sc, word, wordcnt, data)
1642 	struct sip_softc *sc;
1643 	int word, wordcnt;
1644 	u_int16_t *data;
1645 {
1646 	bus_space_tag_t st = sc->sc_st;
1647 	bus_space_handle_t sh = sc->sc_sh;
1648 	u_int16_t reg;
1649 	int i, x;
1650 
1651 	for (i = 0; i < wordcnt; i++) {
1652 		/* Send CHIP SELECT. */
1653 		reg = EROMAR_EECS;
1654 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
1655 
1656 		/* Shift in the READ opcode. */
1657 		for (x = 3; x > 0; x--) {
1658 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
1659 				reg |= EROMAR_EEDI;
1660 			else
1661 				reg &= ~EROMAR_EEDI;
1662 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
1663 			bus_space_write_4(st, sh, SIP_EROMAR,
1664 			    reg | EROMAR_EESK);
1665 			delay(4);
1666 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
1667 			delay(4);
1668 		}
1669 
1670 		/* Shift in address. */
1671 		for (x = 6; x > 0; x--) {
1672 			if ((word + i) & (1 << (x - 1)))
1673 				reg |= EROMAR_EEDI;
1674 			else
1675 				reg &= ~EROMAR_EEDI;
1676 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
1677 			bus_space_write_4(st, sh, SIP_EROMAR,
1678 			    reg | EROMAR_EESK);
1679 			delay(4);
1680 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
1681 			delay(4);
1682 		}
1683 
1684 		/* Shift out data. */
1685 		reg = EROMAR_EECS;
1686 		data[i] = 0;
1687 		for (x = 16; x > 0; x--) {
1688 			bus_space_write_4(st, sh, SIP_EROMAR,
1689 			    reg | EROMAR_EESK);
1690 			delay(4);
1691 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
1692 				data[i] |= (1 << (x - 1));
1693 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
1694 		}
1695 
1696 		/* Clear CHIP SELECT. */
1697 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
1698 		delay(4);
1699 	}
1700 }
1701 
1702 /*
1703  * sip_add_rxbuf:
1704  *
1705  *	Add a receive buffer to the indicated descriptor.
1706  */
1707 int
1708 sip_add_rxbuf(sc, idx)
1709 	struct sip_softc *sc;
1710 	int idx;
1711 {
1712 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
1713 	struct mbuf *m;
1714 	int error;
1715 
1716 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1717 	if (m == NULL)
1718 		return (ENOBUFS);
1719 
1720 	MCLGET(m, M_DONTWAIT);
1721 	if ((m->m_flags & M_EXT) == 0) {
1722 		m_freem(m);
1723 		return (ENOBUFS);
1724 	}
1725 
1726 	if (rxs->rxs_mbuf != NULL)
1727 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1728 
1729 	rxs->rxs_mbuf = m;
1730 
1731 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1732 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1733 	if (error) {
1734 		printf("%s: can't load rx DMA map %d, error = %d\n",
1735 		    sc->sc_dev.dv_xname, idx, error);
1736 		panic("sip_add_rxbuf");		/* XXX */
1737 	}
1738 
1739 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1740 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1741 
1742 	SIP_INIT_RXDESC(sc, idx);
1743 
1744 	return (0);
1745 }
1746 
1747 /*
1748  * sip_set_filter:
1749  *
1750  *	Set up the receive filter.
1751  */
1752 void
1753 sip_set_filter(sc)
1754 	struct sip_softc *sc;
1755 {
1756 	bus_space_tag_t st = sc->sc_st;
1757 	bus_space_handle_t sh = sc->sc_sh;
1758 	struct ethercom *ec = &sc->sc_ethercom;
1759 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1760 	struct ether_multi *enm;
1761 	u_int8_t *cp;
1762 	struct ether_multistep step;
1763 	u_int32_t crc, mchash[8];
1764 
1765 	/*
1766 	 * Initialize the prototype RFCR.
1767 	 */
1768 	sc->sc_rfcr = RFCR_RFEN;
1769 	if (ifp->if_flags & IFF_BROADCAST)
1770 		sc->sc_rfcr |= RFCR_AAB;
1771 	if (ifp->if_flags & IFF_PROMISC) {
1772 		sc->sc_rfcr |= RFCR_AAP;
1773 		goto allmulti;
1774 	}
1775 
1776 	/*
1777 	 * Set up the multicast address filter by passing all multicast
1778 	 * addresses through a CRC generator, and then using the high-order
1779 	 * 6 bits as an index into the 128 bit multicast hash table (only
1780 	 * the lower 16 bits of each 32 bit multicast hash register are
1781 	 * valid).  The high order bits select the register, while the
1782 	 * rest of the bits select the bit within the register.
1783 	 */
1784 
1785 	memset(mchash, 0, sizeof(mchash));
1786 
1787 	ETHER_FIRST_MULTI(step, ec, enm);
1788 	while (enm != NULL) {
1789 		if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1790 			/*
1791 			 * We must listen to a range of multicast addresses.
1792 			 * For now, just accept all multicasts, rather than
1793 			 * trying to set only those filter bits needed to match
1794 			 * the range.  (At this time, the only use of address
1795 			 * ranges is for IP multicast routing, for which the
1796 			 * range is big enough to require all bits set.)
1797 			 */
1798 			goto allmulti;
1799 		}
1800 
1801 		crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1802 
1803 		/* Just want the 7 most significant bits. */
1804 		crc >>= 25;
1805 
1806 		/* Set the corresponding bit in the hash table. */
1807 		mchash[crc >> 4] |= 1 << (crc & 0xf);
1808 
1809 		ETHER_NEXT_MULTI(step, enm);
1810 	}
1811 
1812 	ifp->if_flags &= ~IFF_ALLMULTI;
1813 	goto setit;
1814 
1815  allmulti:
1816 	ifp->if_flags |= IFF_ALLMULTI;
1817 	sc->sc_rfcr |= RFCR_AAM;
1818 
1819  setit:
1820 #define	FILTER_EMIT(addr, data)						\
1821 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
1822 	bus_space_write_4(st, sh, SIP_RFDR, (data))
1823 
1824 	/*
1825 	 * Disable receive filter, and program the node address.
1826 	 */
1827 	cp = LLADDR(ifp->if_sadl);
1828 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
1829 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
1830 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
1831 
1832 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1833 		/*
1834 		 * Program the multicast hash table.
1835 		 */
1836 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
1837 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
1838 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
1839 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
1840 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
1841 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
1842 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
1843 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
1844 	}
1845 #undef FILTER_EMIT
1846 
1847 	/*
1848 	 * Re-enable the receiver filter.
1849 	 */
1850 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
1851 }
1852 
1853 /*
1854  * sip_mii_readreg:	[mii interface function]
1855  *
1856  *	Read a PHY register on the MII.
1857  */
1858 int
1859 sip_mii_readreg(self, phy, reg)
1860 	struct device *self;
1861 	int phy, reg;
1862 {
1863 	struct sip_softc *sc = (struct sip_softc *) self;
1864 	u_int32_t enphy;
1865 
1866 	/*
1867 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
1868 	 * MII address 0.
1869 	 */
1870 	if (sc->sc_model == PCI_PRODUCT_SIS_900 && phy != 0)
1871 		return (0);
1872 
1873 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
1874 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
1875 	    ENPHY_RWCMD | ENPHY_ACCESS);
1876 	do {
1877 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
1878 	} while (enphy & ENPHY_ACCESS);
1879 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
1880 }
1881 
1882 /*
1883  * sip_mii_writereg:	[mii interface function]
1884  *
1885  *	Write a PHY register on the MII.
1886  */
1887 void
1888 sip_mii_writereg(self, phy, reg, val)
1889 	struct device *self;
1890 	int phy, reg, val;
1891 {
1892 	struct sip_softc *sc = (struct sip_softc *) self;
1893 	u_int32_t enphy;
1894 
1895 	/*
1896 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
1897 	 * MII address 0.
1898 	 */
1899 	if (sc->sc_model == PCI_PRODUCT_SIS_900 && phy != 0)
1900 		return;
1901 
1902 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
1903 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
1904 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
1905 	do {
1906 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
1907 	} while (enphy & ENPHY_ACCESS);
1908 }
1909 
1910 /*
1911  * sip_mii_statchg:	[mii interface function]
1912  *
1913  *	Callback from MII layer when media changes.
1914  */
1915 void
1916 sip_mii_statchg(self)
1917 	struct device *self;
1918 {
1919 	struct sip_softc *sc = (struct sip_softc *) self;
1920 	u_int32_t flowctl;
1921 
1922 	/*
1923 	 * Update TXCFG for full-duplex operation.
1924 	 */
1925 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
1926 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
1927 	else
1928 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
1929 
1930 	/*
1931 	 * Update RXCFG for full-duplex or loopback.
1932 	 */
1933 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
1934 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
1935 		sc->sc_rxcfg |= RXCFG_ATX;
1936 	else
1937 		sc->sc_rxcfg &= ~RXCFG_ATX;
1938 
1939 	/*
1940 	 * Update IMR for use of 802.3x flow control.
1941 	 */
1942 	if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
1943 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
1944 		flowctl = FLOWCTL_FLOWEN;
1945 	} else {
1946 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
1947 		flowctl = 0;
1948 	}
1949 
1950 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
1951 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
1952 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
1953 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
1954 }
1955 
1956 /*
1957  * sip_mediastatus:	[ifmedia interface function]
1958  *
1959  *	Get the current interface media status.
1960  */
1961 void
1962 sip_mediastatus(ifp, ifmr)
1963 	struct ifnet *ifp;
1964 	struct ifmediareq *ifmr;
1965 {
1966 	struct sip_softc *sc = ifp->if_softc;
1967 
1968 	mii_pollstat(&sc->sc_mii);
1969 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1970 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1971 }
1972 
1973 /*
1974  * sip_mediachange:	[ifmedia interface function]
1975  *
1976  *	Set hardware to newly-selected media.
1977  */
1978 int
1979 sip_mediachange(ifp)
1980 	struct ifnet *ifp;
1981 {
1982 	struct sip_softc *sc = ifp->if_softc;
1983 
1984 	if (ifp->if_flags & IFF_UP)
1985 		mii_mediachg(&sc->sc_mii);
1986 	return (0);
1987 }
1988