xref: /netbsd-src/sys/dev/pci/if_sip.c (revision 466a16a118933bd295a8a104f095714fadf9cf68)
1 /*	$NetBSD: if_sip.c,v 1.135 2008/11/07 00:20:07 dyoung Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1999 Network Computer, Inc.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of Network Computer, Inc. nor the names of its
45  *    contributors may be used to endorse or promote products derived
46  *    from this software without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
49  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
50  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
51  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
52  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
53  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
54  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
55  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
56  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
57  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
58  * POSSIBILITY OF SUCH DAMAGE.
59  */
60 
61 /*
62  * Device driver for the Silicon Integrated Systems SiS 900,
63  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
64  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
65  * controllers.
66  *
67  * Originally written to support the SiS 900 by Jason R. Thorpe for
68  * Network Computer, Inc.
69  *
70  * TODO:
71  *
72  *	- Reduce the Rx interrupt load.
73  */
74 
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.135 2008/11/07 00:20:07 dyoung Exp $");
77 
78 #include "bpfilter.h"
79 #include "rnd.h"
80 
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/callout.h>
84 #include <sys/mbuf.h>
85 #include <sys/malloc.h>
86 #include <sys/kernel.h>
87 #include <sys/socket.h>
88 #include <sys/ioctl.h>
89 #include <sys/errno.h>
90 #include <sys/device.h>
91 #include <sys/queue.h>
92 
93 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
94 
95 #if NRND > 0
96 #include <sys/rnd.h>
97 #endif
98 
99 #include <net/if.h>
100 #include <net/if_dl.h>
101 #include <net/if_media.h>
102 #include <net/if_ether.h>
103 
104 #if NBPFILTER > 0
105 #include <net/bpf.h>
106 #endif
107 
108 #include <sys/bus.h>
109 #include <sys/intr.h>
110 #include <machine/endian.h>
111 
112 #include <dev/mii/mii.h>
113 #include <dev/mii/miivar.h>
114 #include <dev/mii/mii_bitbang.h>
115 
116 #include <dev/pci/pcireg.h>
117 #include <dev/pci/pcivar.h>
118 #include <dev/pci/pcidevs.h>
119 
120 #include <dev/pci/if_sipreg.h>
121 
122 /*
123  * Transmit descriptor list size.  This is arbitrary, but allocate
124  * enough descriptors for 128 pending transmissions, and 8 segments
125  * per packet (64 for DP83820 for jumbo frames).
126  *
127  * This MUST work out to a power of 2.
128  */
129 #define	GSIP_NTXSEGS_ALLOC 16
130 #define	SIP_NTXSEGS_ALLOC 8
131 
132 #define	SIP_TXQUEUELEN		256
133 #define	MAX_SIP_NTXDESC	\
134     (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
135 
136 /*
137  * Receive descriptor list size.  We have one Rx buffer per incoming
138  * packet, so this logic is a little simpler.
139  *
140  * Actually, on the DP83820, we allow the packet to consume more than
141  * one buffer, in order to support jumbo Ethernet frames.  In that
142  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
143  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
144  * so we'd better be quick about handling receive interrupts.
145  */
146 #define	GSIP_NRXDESC		256
147 #define	SIP_NRXDESC		128
148 
149 #define	MAX_SIP_NRXDESC	MAX(GSIP_NRXDESC, SIP_NRXDESC)
150 
151 /*
152  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
153  * a single clump that maps to a single DMA segment to make several things
154  * easier.
155  */
156 struct sip_control_data {
157 	/*
158 	 * The transmit descriptors.
159 	 */
160 	struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
161 
162 	/*
163 	 * The receive descriptors.
164 	 */
165 	struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
166 };
167 
168 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
169 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
170 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
171 
172 /*
173  * Software state for transmit jobs.
174  */
175 struct sip_txsoft {
176 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
177 	bus_dmamap_t txs_dmamap;	/* our DMA map */
178 	int txs_firstdesc;		/* first descriptor in packet */
179 	int txs_lastdesc;		/* last descriptor in packet */
180 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
181 };
182 
183 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
184 
185 /*
186  * Software state for receive jobs.
187  */
188 struct sip_rxsoft {
189 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
190 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
191 };
192 
193 enum sip_attach_stage {
194 	  SIP_ATTACH_FIN = 0
195 	, SIP_ATTACH_CREATE_RXMAP
196 	, SIP_ATTACH_CREATE_TXMAP
197 	, SIP_ATTACH_LOAD_MAP
198 	, SIP_ATTACH_CREATE_MAP
199 	, SIP_ATTACH_MAP_MEM
200 	, SIP_ATTACH_ALLOC_MEM
201 	, SIP_ATTACH_INTR
202 	, SIP_ATTACH_MAP
203 };
204 
205 /*
206  * Software state per device.
207  */
208 struct sip_softc {
209 	struct device sc_dev;		/* generic device information */
210 	bus_space_tag_t sc_st;		/* bus space tag */
211 	bus_space_handle_t sc_sh;	/* bus space handle */
212 	bus_size_t sc_sz;		/* bus space size */
213 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
214 	pci_chipset_tag_t sc_pc;
215 	bus_dma_segment_t sc_seg;
216 	struct ethercom sc_ethercom;	/* ethernet common data */
217 
218 	const struct sip_product *sc_model; /* which model are we? */
219 	int sc_gigabit;			/* 1: 83820, 0: other */
220 	int sc_rev;			/* chip revision */
221 
222 	void *sc_ih;			/* interrupt cookie */
223 
224 	struct mii_data sc_mii;		/* MII/media information */
225 
226 	callout_t sc_tick_ch;		/* tick callout */
227 
228 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
229 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
230 
231 	/*
232 	 * Software state for transmit and receive descriptors.
233 	 */
234 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
235 	struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
236 
237 	/*
238 	 * Control data structures.
239 	 */
240 	struct sip_control_data *sc_control_data;
241 #define	sc_txdescs	sc_control_data->scd_txdescs
242 #define	sc_rxdescs	sc_control_data->scd_rxdescs
243 
244 #ifdef SIP_EVENT_COUNTERS
245 	/*
246 	 * Event counters.
247 	 */
248 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
249 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
250 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
251 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
252 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
253 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
254 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
255 	struct evcnt sc_ev_rxpause;	/* PAUSE received */
256 	/* DP83820 only */
257 	struct evcnt sc_ev_txpause;	/* PAUSE transmitted */
258 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
259 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
260 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
261 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
262 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
263 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
264 #endif /* SIP_EVENT_COUNTERS */
265 
266 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
267 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
268 	u_int32_t sc_imr;		/* prototype IMR register */
269 	u_int32_t sc_rfcr;		/* prototype RFCR register */
270 
271 	u_int32_t sc_cfg;		/* prototype CFG register */
272 
273 	u_int32_t sc_gpior;		/* prototype GPIOR register */
274 
275 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
276 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
277 
278 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
279 
280 	int	sc_flowflags;		/* 802.3x flow control flags */
281 	int	sc_rx_flow_thresh;	/* Rx FIFO threshold for flow control */
282 	int	sc_paused;		/* paused indication */
283 
284 	int	sc_txfree;		/* number of free Tx descriptors */
285 	int	sc_txnext;		/* next ready Tx descriptor */
286 	int	sc_txwin;		/* Tx descriptors since last intr */
287 
288 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
289 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
290 
291 	/* values of interface state at last init */
292 	struct {
293 		/* if_capenable */
294 		uint64_t	if_capenable;
295 		/* ec_capenable */
296 		int		ec_capenable;
297 		/* VLAN_ATTACHED */
298 		int		is_vlan;
299 	}	sc_prev;
300 
301 	short	sc_if_flags;
302 
303 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
304 	int	sc_rxdiscard;
305 	int	sc_rxlen;
306 	struct mbuf *sc_rxhead;
307 	struct mbuf *sc_rxtail;
308 	struct mbuf **sc_rxtailp;
309 
310 	int sc_ntxdesc;
311 	int sc_ntxdesc_mask;
312 
313 	int sc_nrxdesc_mask;
314 
315 	const struct sip_parm {
316 		const struct sip_regs {
317 			int r_rxcfg;
318 			int r_txcfg;
319 		} p_regs;
320 
321 		const struct sip_bits {
322 			uint32_t b_txcfg_mxdma_8;
323 			uint32_t b_txcfg_mxdma_16;
324 			uint32_t b_txcfg_mxdma_32;
325 			uint32_t b_txcfg_mxdma_64;
326 			uint32_t b_txcfg_mxdma_128;
327 			uint32_t b_txcfg_mxdma_256;
328 			uint32_t b_txcfg_mxdma_512;
329 			uint32_t b_txcfg_flth_mask;
330 			uint32_t b_txcfg_drth_mask;
331 
332 			uint32_t b_rxcfg_mxdma_8;
333 			uint32_t b_rxcfg_mxdma_16;
334 			uint32_t b_rxcfg_mxdma_32;
335 			uint32_t b_rxcfg_mxdma_64;
336 			uint32_t b_rxcfg_mxdma_128;
337 			uint32_t b_rxcfg_mxdma_256;
338 			uint32_t b_rxcfg_mxdma_512;
339 
340 			uint32_t b_isr_txrcmp;
341 			uint32_t b_isr_rxrcmp;
342 			uint32_t b_isr_dperr;
343 			uint32_t b_isr_sserr;
344 			uint32_t b_isr_rmabt;
345 			uint32_t b_isr_rtabt;
346 
347 			uint32_t b_cmdsts_size_mask;
348 		} p_bits;
349 		int		p_filtmem;
350 		int		p_rxbuf_len;
351 		bus_size_t	p_tx_dmamap_size;
352 		int		p_ntxsegs;
353 		int		p_ntxsegs_alloc;
354 		int		p_nrxdesc;
355 	} *sc_parm;
356 
357 	void (*sc_rxintr)(struct sip_softc *);
358 
359 #if NRND > 0
360 	rndsource_element_t rnd_source;	/* random source */
361 #endif
362 };
363 
364 #define	sc_bits	sc_parm->p_bits
365 #define	sc_regs	sc_parm->p_regs
366 
367 static const struct sip_parm sip_parm = {
368 	  .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
369 	, .p_rxbuf_len = MCLBYTES - 1	/* field width */
370 	, .p_tx_dmamap_size = MCLBYTES
371 	, .p_ntxsegs = 16
372 	, .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
373 	, .p_nrxdesc = SIP_NRXDESC
374 	, .p_bits = {
375 		  .b_txcfg_mxdma_8	= 0x00200000	/*       8 bytes */
376 		, .b_txcfg_mxdma_16	= 0x00300000	/*      16 bytes */
377 		, .b_txcfg_mxdma_32	= 0x00400000	/*      32 bytes */
378 		, .b_txcfg_mxdma_64	= 0x00500000	/*      64 bytes */
379 		, .b_txcfg_mxdma_128	= 0x00600000	/*     128 bytes */
380 		, .b_txcfg_mxdma_256	= 0x00700000	/*     256 bytes */
381 		, .b_txcfg_mxdma_512	= 0x00000000	/*     512 bytes */
382 		, .b_txcfg_flth_mask	= 0x00003f00	/* Tx fill threshold */
383 		, .b_txcfg_drth_mask	= 0x0000003f	/* Tx drain threshold */
384 
385 		, .b_rxcfg_mxdma_8	= 0x00200000	/*       8 bytes */
386 		, .b_rxcfg_mxdma_16	= 0x00300000	/*      16 bytes */
387 		, .b_rxcfg_mxdma_32	= 0x00400000	/*      32 bytes */
388 		, .b_rxcfg_mxdma_64	= 0x00500000	/*      64 bytes */
389 		, .b_rxcfg_mxdma_128	= 0x00600000	/*     128 bytes */
390 		, .b_rxcfg_mxdma_256	= 0x00700000	/*     256 bytes */
391 		, .b_rxcfg_mxdma_512	= 0x00000000	/*     512 bytes */
392 
393 		, .b_isr_txrcmp	= 0x02000000	/* transmit reset complete */
394 		, .b_isr_rxrcmp	= 0x01000000	/* receive reset complete */
395 		, .b_isr_dperr	= 0x00800000	/* detected parity error */
396 		, .b_isr_sserr	= 0x00400000	/* signalled system error */
397 		, .b_isr_rmabt	= 0x00200000	/* received master abort */
398 		, .b_isr_rtabt	= 0x00100000	/* received target abort */
399 		, .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
400 	}
401 	, .p_regs = {
402 		.r_rxcfg = OTHER_SIP_RXCFG,
403 		.r_txcfg = OTHER_SIP_TXCFG
404 	}
405 }, gsip_parm = {
406 	  .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
407 	, .p_rxbuf_len = MCLBYTES - 8
408 	, .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
409 	, .p_ntxsegs = 64
410 	, .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
411 	, .p_nrxdesc = GSIP_NRXDESC
412 	, .p_bits = {
413 		  .b_txcfg_mxdma_8	= 0x00100000	/*       8 bytes */
414 		, .b_txcfg_mxdma_16	= 0x00200000	/*      16 bytes */
415 		, .b_txcfg_mxdma_32	= 0x00300000	/*      32 bytes */
416 		, .b_txcfg_mxdma_64	= 0x00400000	/*      64 bytes */
417 		, .b_txcfg_mxdma_128	= 0x00500000	/*     128 bytes */
418 		, .b_txcfg_mxdma_256	= 0x00600000	/*     256 bytes */
419 		, .b_txcfg_mxdma_512	= 0x00700000	/*     512 bytes */
420 		, .b_txcfg_flth_mask	= 0x0000ff00	/* Fx fill threshold */
421 		, .b_txcfg_drth_mask	= 0x000000ff	/* Tx drain threshold */
422 
423 		, .b_rxcfg_mxdma_8	= 0x00100000	/*       8 bytes */
424 		, .b_rxcfg_mxdma_16	= 0x00200000	/*      16 bytes */
425 		, .b_rxcfg_mxdma_32	= 0x00300000	/*      32 bytes */
426 		, .b_rxcfg_mxdma_64	= 0x00400000	/*      64 bytes */
427 		, .b_rxcfg_mxdma_128	= 0x00500000	/*     128 bytes */
428 		, .b_rxcfg_mxdma_256	= 0x00600000	/*     256 bytes */
429 		, .b_rxcfg_mxdma_512	= 0x00700000	/*     512 bytes */
430 
431 		, .b_isr_txrcmp	= 0x00400000	/* transmit reset complete */
432 		, .b_isr_rxrcmp	= 0x00200000	/* receive reset complete */
433 		, .b_isr_dperr	= 0x00100000	/* detected parity error */
434 		, .b_isr_sserr	= 0x00080000	/* signalled system error */
435 		, .b_isr_rmabt	= 0x00040000	/* received master abort */
436 		, .b_isr_rtabt	= 0x00020000	/* received target abort */
437 		, .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
438 	}
439 	, .p_regs = {
440 		.r_rxcfg = DP83820_SIP_RXCFG,
441 		.r_txcfg = DP83820_SIP_TXCFG
442 	}
443 };
444 
445 static inline int
446 sip_nexttx(const struct sip_softc *sc, int x)
447 {
448 	return (x + 1) & sc->sc_ntxdesc_mask;
449 }
450 
451 static inline int
452 sip_nextrx(const struct sip_softc *sc, int x)
453 {
454 	return (x + 1) & sc->sc_nrxdesc_mask;
455 }
456 
457 /* 83820 only */
458 static inline void
459 sip_rxchain_reset(struct sip_softc *sc)
460 {
461 	sc->sc_rxtailp = &sc->sc_rxhead;
462 	*sc->sc_rxtailp = NULL;
463 	sc->sc_rxlen = 0;
464 }
465 
466 /* 83820 only */
467 static inline void
468 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
469 {
470 	*sc->sc_rxtailp = sc->sc_rxtail = m;
471 	sc->sc_rxtailp = &m->m_next;
472 }
473 
474 #ifdef SIP_EVENT_COUNTERS
475 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
476 #else
477 #define	SIP_EVCNT_INCR(ev)	/* nothing */
478 #endif
479 
480 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
481 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
482 
483 static inline void
484 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
485 {
486 	int x, n;
487 
488 	x = x0;
489 	n = n0;
490 
491 	/* If it will wrap around, sync to the end of the ring. */
492 	if (x + n > sc->sc_ntxdesc) {
493 		bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
494 		    SIP_CDTXOFF(x), sizeof(struct sip_desc) *
495 		    (sc->sc_ntxdesc - x), ops);
496 		n -= (sc->sc_ntxdesc - x);
497 		x = 0;
498 	}
499 
500 	/* Now sync whatever is left. */
501 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
502 	    SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
503 }
504 
505 static inline void
506 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
507 {
508 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
509 	    SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
510 }
511 
512 #if 0
513 #ifdef DP83820
514 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
515 	u_int32_t	sipd_cmdsts;	/* command/status word */
516 #else
517 	u_int32_t	sipd_cmdsts;	/* command/status word */
518 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
519 #endif /* DP83820 */
520 #endif /* 0 */
521 
522 static inline volatile uint32_t *
523 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
524 {
525 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
526 }
527 
528 static inline volatile uint32_t *
529 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
530 {
531 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
532 }
533 
534 static inline void
535 sip_init_rxdesc(struct sip_softc *sc, int x)
536 {
537 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
538 	struct sip_desc *sipd = &sc->sc_rxdescs[x];
539 
540 	sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
541 	*sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
542 	*sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
543 	    (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
544 	sipd->sipd_extsts = 0;
545 	sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
546 }
547 
548 #define	SIP_CHIP_VERS(sc, v, p, r)					\
549 	((sc)->sc_model->sip_vendor == (v) &&				\
550 	 (sc)->sc_model->sip_product == (p) &&				\
551 	 (sc)->sc_rev == (r))
552 
553 #define	SIP_CHIP_MODEL(sc, v, p)					\
554 	((sc)->sc_model->sip_vendor == (v) &&				\
555 	 (sc)->sc_model->sip_product == (p))
556 
557 #define	SIP_SIS900_REV(sc, rev)						\
558 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
559 
560 #define SIP_TIMEOUT 1000
561 
562 static int	sip_ifflags_cb(struct ethercom *);
563 static void	sipcom_start(struct ifnet *);
564 static void	sipcom_watchdog(struct ifnet *);
565 static int	sipcom_ioctl(struct ifnet *, u_long, void *);
566 static int	sipcom_init(struct ifnet *);
567 static void	sipcom_stop(struct ifnet *, int);
568 
569 static bool	sipcom_reset(struct sip_softc *);
570 static void	sipcom_rxdrain(struct sip_softc *);
571 static int	sipcom_add_rxbuf(struct sip_softc *, int);
572 static void	sipcom_read_eeprom(struct sip_softc *, int, int,
573 				      u_int16_t *);
574 static void	sipcom_tick(void *);
575 
576 static void	sipcom_sis900_set_filter(struct sip_softc *);
577 static void	sipcom_dp83815_set_filter(struct sip_softc *);
578 
579 static void	sipcom_dp83820_read_macaddr(struct sip_softc *,
580 		    const struct pci_attach_args *, u_int8_t *);
581 static void	sipcom_sis900_eeprom_delay(struct sip_softc *sc);
582 static void	sipcom_sis900_read_macaddr(struct sip_softc *,
583 		    const struct pci_attach_args *, u_int8_t *);
584 static void	sipcom_dp83815_read_macaddr(struct sip_softc *,
585 		    const struct pci_attach_args *, u_int8_t *);
586 
587 static int	sipcom_intr(void *);
588 static void	sipcom_txintr(struct sip_softc *);
589 static void	sip_rxintr(struct sip_softc *);
590 static void	gsip_rxintr(struct sip_softc *);
591 
592 static int	sipcom_dp83820_mii_readreg(device_t, int, int);
593 static void	sipcom_dp83820_mii_writereg(device_t, int, int, int);
594 static void	sipcom_dp83820_mii_statchg(device_t);
595 
596 static int	sipcom_sis900_mii_readreg(device_t, int, int);
597 static void	sipcom_sis900_mii_writereg(device_t, int, int, int);
598 static void	sipcom_sis900_mii_statchg(device_t);
599 
600 static int	sipcom_dp83815_mii_readreg(device_t, int, int);
601 static void	sipcom_dp83815_mii_writereg(device_t, int, int, int);
602 static void	sipcom_dp83815_mii_statchg(device_t);
603 
604 static void	sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
605 
606 static int	sipcom_match(device_t, struct cfdata *, void *);
607 static void	sipcom_attach(device_t, device_t, void *);
608 static void	sipcom_do_detach(device_t, enum sip_attach_stage);
609 static int	sipcom_detach(device_t, int);
610 static bool	sipcom_resume(device_t PMF_FN_PROTO);
611 static bool	sipcom_suspend(device_t PMF_FN_PROTO);
612 
613 int	gsip_copy_small = 0;
614 int	sip_copy_small = 0;
615 
616 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
617     sipcom_match, sipcom_attach, sipcom_detach, NULL);
618 CFATTACH_DECL(sip, sizeof(struct sip_softc),
619     sipcom_match, sipcom_attach, sipcom_detach, NULL);
620 
621 /*
622  * Descriptions of the variants of the SiS900.
623  */
624 struct sip_variant {
625 	int	(*sipv_mii_readreg)(device_t, int, int);
626 	void	(*sipv_mii_writereg)(device_t, int, int, int);
627 	void	(*sipv_mii_statchg)(device_t);
628 	void	(*sipv_set_filter)(struct sip_softc *);
629 	void	(*sipv_read_macaddr)(struct sip_softc *,
630 		    const struct pci_attach_args *, u_int8_t *);
631 };
632 
633 static u_int32_t sipcom_mii_bitbang_read(device_t);
634 static void	sipcom_mii_bitbang_write(device_t, u_int32_t);
635 
636 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
637 	sipcom_mii_bitbang_read,
638 	sipcom_mii_bitbang_write,
639 	{
640 		EROMAR_MDIO,		/* MII_BIT_MDO */
641 		EROMAR_MDIO,		/* MII_BIT_MDI */
642 		EROMAR_MDC,		/* MII_BIT_MDC */
643 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
644 		0,			/* MII_BIT_DIR_PHY_HOST */
645 	}
646 };
647 
648 static const struct sip_variant sipcom_variant_dp83820 = {
649 	sipcom_dp83820_mii_readreg,
650 	sipcom_dp83820_mii_writereg,
651 	sipcom_dp83820_mii_statchg,
652 	sipcom_dp83815_set_filter,
653 	sipcom_dp83820_read_macaddr,
654 };
655 
656 static const struct sip_variant sipcom_variant_sis900 = {
657 	sipcom_sis900_mii_readreg,
658 	sipcom_sis900_mii_writereg,
659 	sipcom_sis900_mii_statchg,
660 	sipcom_sis900_set_filter,
661 	sipcom_sis900_read_macaddr,
662 };
663 
664 static const struct sip_variant sipcom_variant_dp83815 = {
665 	sipcom_dp83815_mii_readreg,
666 	sipcom_dp83815_mii_writereg,
667 	sipcom_dp83815_mii_statchg,
668 	sipcom_dp83815_set_filter,
669 	sipcom_dp83815_read_macaddr,
670 };
671 
672 
673 /*
674  * Devices supported by this driver.
675  */
676 static const struct sip_product {
677 	pci_vendor_id_t		sip_vendor;
678 	pci_product_id_t	sip_product;
679 	const char		*sip_name;
680 	const struct sip_variant *sip_variant;
681 	int			sip_gigabit;
682 } sipcom_products[] = {
683 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
684 	  "NatSemi DP83820 Gigabit Ethernet",
685 	  &sipcom_variant_dp83820, 1 },
686 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
687 	  "SiS 900 10/100 Ethernet",
688 	  &sipcom_variant_sis900, 0 },
689 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
690 	  "SiS 7016 10/100 Ethernet",
691 	  &sipcom_variant_sis900, 0 },
692 
693 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
694 	  "NatSemi DP83815 10/100 Ethernet",
695 	  &sipcom_variant_dp83815, 0 },
696 
697 	{ 0,			0,
698 	  NULL,
699 	  NULL, 0 },
700 };
701 
702 static const struct sip_product *
703 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
704 {
705 	const struct sip_product *sip;
706 
707 	for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
708 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
709 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
710 		    sip->sip_gigabit == gigabit)
711 			return sip;
712 	}
713 	return NULL;
714 }
715 
716 /*
717  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
718  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
719  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
720  * which means we try to use 64-bit data transfers on those cards if we
721  * happen to be plugged into a 32-bit slot.
722  *
723  * What we do is use this table of cards known to be 64-bit cards.  If
724  * you have a 64-bit card who's subsystem ID is not listed in this table,
725  * send the output of "pcictl dump ..." of the device to me so that your
726  * card will use the 64-bit data path when plugged into a 64-bit slot.
727  *
728  *	-- Jason R. Thorpe <thorpej@NetBSD.org>
729  *	   June 30, 2002
730  */
731 static int
732 sipcom_check_64bit(const struct pci_attach_args *pa)
733 {
734 	static const struct {
735 		pci_vendor_id_t c64_vendor;
736 		pci_product_id_t c64_product;
737 	} card64[] = {
738 		/* Asante GigaNIX */
739 		{ 0x128a,	0x0002 },
740 
741 		/* Accton EN1407-T, Planex GN-1000TE */
742 		{ 0x1113,	0x1407 },
743 
744 		/* Netgear GA-621 */
745 		{ 0x1385,	0x621a },
746 
747 		/* SMC EZ Card */
748 		{ 0x10b8,	0x9462 },
749 
750 		{ 0, 0}
751 	};
752 	pcireg_t subsys;
753 	int i;
754 
755 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
756 
757 	for (i = 0; card64[i].c64_vendor != 0; i++) {
758 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
759 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
760 			return (1);
761 	}
762 
763 	return (0);
764 }
765 
766 static int
767 sipcom_match(device_t parent, struct cfdata *cf, void *aux)
768 {
769 	struct pci_attach_args *pa = aux;
770 
771 	if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
772 		return 1;
773 
774 	return 0;
775 }
776 
777 static void
778 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
779 {
780 	u_int32_t reg;
781 	int i;
782 
783 	/*
784 	 * Cause the chip to load configuration data from the EEPROM.
785 	 */
786 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
787 	for (i = 0; i < 10000; i++) {
788 		delay(10);
789 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
790 		    PTSCR_EELOAD_EN) == 0)
791 			break;
792 	}
793 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
794 	    PTSCR_EELOAD_EN) {
795 		printf("%s: timeout loading configuration from EEPROM\n",
796 		    device_xname(&sc->sc_dev));
797 		return;
798 	}
799 
800 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
801 
802 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
803 	if (reg & CFG_PCI64_DET) {
804 		printf("%s: 64-bit PCI slot detected", device_xname(&sc->sc_dev));
805 		/*
806 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
807 		 * data transfers.
808 		 *
809 		 * We can't use the DATA64_EN bit in the EEPROM, because
810 		 * vendors of 32-bit cards fail to clear that bit in many
811 		 * cases (yet the card still detects that it's in a 64-bit
812 		 * slot; go figure).
813 		 */
814 		if (sipcom_check_64bit(pa)) {
815 			sc->sc_cfg |= CFG_DATA64_EN;
816 			printf(", using 64-bit data transfers");
817 		}
818 		printf("\n");
819 	}
820 
821 	/*
822 	 * XXX Need some PCI flags indicating support for
823 	 * XXX 64-bit addressing.
824 	 */
825 #if 0
826 	if (reg & CFG_M64ADDR)
827 		sc->sc_cfg |= CFG_M64ADDR;
828 	if (reg & CFG_T64ADDR)
829 		sc->sc_cfg |= CFG_T64ADDR;
830 #endif
831 
832 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
833 		const char *sep = "";
834 		printf("%s: using ", device_xname(&sc->sc_dev));
835 		if (reg & CFG_EXT_125) {
836 			sc->sc_cfg |= CFG_EXT_125;
837 			printf("%s125MHz clock", sep);
838 			sep = ", ";
839 		}
840 		if (reg & CFG_TBI_EN) {
841 			sc->sc_cfg |= CFG_TBI_EN;
842 			printf("%sten-bit interface", sep);
843 			sep = ", ";
844 		}
845 		printf("\n");
846 	}
847 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
848 	    (reg & CFG_MRM_DIS) != 0)
849 		sc->sc_cfg |= CFG_MRM_DIS;
850 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
851 	    (reg & CFG_MWI_DIS) != 0)
852 		sc->sc_cfg |= CFG_MWI_DIS;
853 
854 	/*
855 	 * Use the extended descriptor format on the DP83820.  This
856 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
857 	 * checksumming.
858 	 */
859 	sc->sc_cfg |= CFG_EXTSTS_EN;
860 }
861 
862 static int
863 sipcom_detach(device_t self, int flags)
864 {
865 	int s;
866 
867 	s = splnet();
868 	sipcom_do_detach(self, SIP_ATTACH_FIN);
869 	splx(s);
870 
871 	return 0;
872 }
873 
874 static void
875 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
876 {
877 	int i;
878 	struct sip_softc *sc = device_private(self);
879 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
880 
881 	/*
882 	 * Free any resources we've allocated during attach.
883 	 * Do this in reverse order and fall through.
884 	 */
885 	switch (stage) {
886 	case SIP_ATTACH_FIN:
887 		sipcom_stop(ifp, 1);
888 		pmf_device_deregister(self);
889 #ifdef SIP_EVENT_COUNTERS
890 		/*
891 		 * Attach event counters.
892 		 */
893 		evcnt_detach(&sc->sc_ev_txforceintr);
894 		evcnt_detach(&sc->sc_ev_txdstall);
895 		evcnt_detach(&sc->sc_ev_txsstall);
896 		evcnt_detach(&sc->sc_ev_hiberr);
897 		evcnt_detach(&sc->sc_ev_rxintr);
898 		evcnt_detach(&sc->sc_ev_txiintr);
899 		evcnt_detach(&sc->sc_ev_txdintr);
900 		if (!sc->sc_gigabit) {
901 			evcnt_detach(&sc->sc_ev_rxpause);
902 		} else {
903 			evcnt_detach(&sc->sc_ev_txudpsum);
904 			evcnt_detach(&sc->sc_ev_txtcpsum);
905 			evcnt_detach(&sc->sc_ev_txipsum);
906 			evcnt_detach(&sc->sc_ev_rxudpsum);
907 			evcnt_detach(&sc->sc_ev_rxtcpsum);
908 			evcnt_detach(&sc->sc_ev_rxipsum);
909 			evcnt_detach(&sc->sc_ev_txpause);
910 			evcnt_detach(&sc->sc_ev_rxpause);
911 		}
912 #endif /* SIP_EVENT_COUNTERS */
913 
914 #if NRND > 0
915 		rnd_detach_source(&sc->rnd_source);
916 #endif
917 
918 		ether_ifdetach(ifp);
919 		if_detach(ifp);
920 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
921 
922 		/*FALLTHROUGH*/
923 	case SIP_ATTACH_CREATE_RXMAP:
924 		for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
925 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
926 				bus_dmamap_destroy(sc->sc_dmat,
927 				    sc->sc_rxsoft[i].rxs_dmamap);
928 		}
929 		/*FALLTHROUGH*/
930 	case SIP_ATTACH_CREATE_TXMAP:
931 		for (i = 0; i < SIP_TXQUEUELEN; i++) {
932 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
933 				bus_dmamap_destroy(sc->sc_dmat,
934 				    sc->sc_txsoft[i].txs_dmamap);
935 		}
936 		/*FALLTHROUGH*/
937 	case SIP_ATTACH_LOAD_MAP:
938 		bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
939 		/*FALLTHROUGH*/
940 	case SIP_ATTACH_CREATE_MAP:
941 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
942 		/*FALLTHROUGH*/
943 	case SIP_ATTACH_MAP_MEM:
944 		bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
945 		    sizeof(struct sip_control_data));
946 		/*FALLTHROUGH*/
947 	case SIP_ATTACH_ALLOC_MEM:
948 		bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
949 		/* FALLTHROUGH*/
950 	case SIP_ATTACH_INTR:
951 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
952 		/* FALLTHROUGH*/
953 	case SIP_ATTACH_MAP:
954 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
955 		break;
956 	default:
957 		break;
958 	}
959 	return;
960 }
961 
962 static bool
963 sipcom_resume(device_t self PMF_FN_ARGS)
964 {
965 	struct sip_softc *sc = device_private(self);
966 
967 	return sipcom_reset(sc);
968 }
969 
970 static bool
971 sipcom_suspend(device_t self PMF_FN_ARGS)
972 {
973 	struct sip_softc *sc = device_private(self);
974 
975 	sipcom_rxdrain(sc);
976 	return true;
977 }
978 
979 static void
980 sipcom_attach(device_t parent, device_t self, void *aux)
981 {
982 	struct sip_softc *sc = device_private(self);
983 	struct pci_attach_args *pa = aux;
984 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
985 	pci_chipset_tag_t pc = pa->pa_pc;
986 	pci_intr_handle_t ih;
987 	const char *intrstr = NULL;
988 	bus_space_tag_t iot, memt;
989 	bus_space_handle_t ioh, memh;
990 	bus_size_t iosz, memsz;
991 	int ioh_valid, memh_valid;
992 	int i, rseg, error;
993 	const struct sip_product *sip;
994 	u_int8_t enaddr[ETHER_ADDR_LEN];
995 	pcireg_t csr;
996 	pcireg_t memtype;
997 	bus_size_t tx_dmamap_size;
998 	int ntxsegs_alloc;
999 	cfdata_t cf = device_cfdata(self);
1000 
1001 	callout_init(&sc->sc_tick_ch, 0);
1002 
1003 	sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
1004 	if (sip == NULL) {
1005 		printf("\n");
1006 		panic("%s: impossible", __func__);
1007 	}
1008 	sc->sc_gigabit = sip->sip_gigabit;
1009 
1010 	sc->sc_pc = pc;
1011 
1012 	if (sc->sc_gigabit) {
1013 		sc->sc_rxintr = gsip_rxintr;
1014 		sc->sc_parm = &gsip_parm;
1015 	} else {
1016 		sc->sc_rxintr = sip_rxintr;
1017 		sc->sc_parm = &sip_parm;
1018 	}
1019 	tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
1020 	ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
1021 	sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
1022 	sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
1023 	sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
1024 
1025 	sc->sc_rev = PCI_REVISION(pa->pa_class);
1026 
1027 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
1028 
1029 	sc->sc_model = sip;
1030 
1031 	/*
1032 	 * XXX Work-around broken PXE firmware on some boards.
1033 	 *
1034 	 * The DP83815 shares an address decoder with the MEM BAR
1035 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
1036 	 * so that memory mapped access works.
1037 	 */
1038 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
1039 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
1040 	    ~PCI_MAPREG_ROM_ENABLE);
1041 
1042 	/*
1043 	 * Map the device.
1044 	 */
1045 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
1046 	    PCI_MAPREG_TYPE_IO, 0,
1047 	    &iot, &ioh, NULL, &iosz) == 0);
1048 	if (sc->sc_gigabit) {
1049 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
1050 		switch (memtype) {
1051 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1052 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1053 			memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1054 			    memtype, 0, &memt, &memh, NULL, &memsz) == 0);
1055 			break;
1056 		default:
1057 			memh_valid = 0;
1058 		}
1059 	} else {
1060 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1061 		    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
1062 		    &memt, &memh, NULL, &memsz) == 0);
1063 	}
1064 
1065 	if (memh_valid) {
1066 		sc->sc_st = memt;
1067 		sc->sc_sh = memh;
1068 		sc->sc_sz = memsz;
1069 	} else if (ioh_valid) {
1070 		sc->sc_st = iot;
1071 		sc->sc_sh = ioh;
1072 		sc->sc_sz = iosz;
1073 	} else {
1074 		printf("%s: unable to map device registers\n",
1075 		    device_xname(&sc->sc_dev));
1076 		return;
1077 	}
1078 
1079 	sc->sc_dmat = pa->pa_dmat;
1080 
1081 	/*
1082 	 * Make sure bus mastering is enabled.  Also make sure
1083 	 * Write/Invalidate is enabled if we're allowed to use it.
1084 	 */
1085 	csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1086 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
1087 		csr |= PCI_COMMAND_INVALIDATE_ENABLE;
1088 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
1089 	    csr | PCI_COMMAND_MASTER_ENABLE);
1090 
1091 	/* power up chip */
1092 	error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null);
1093 	if (error != 0 && error != EOPNOTSUPP) {
1094 		aprint_error_dev(&sc->sc_dev, "cannot activate %d\n", error);
1095 		return;
1096 	}
1097 
1098 	/*
1099 	 * Map and establish our interrupt.
1100 	 */
1101 	if (pci_intr_map(pa, &ih)) {
1102 		aprint_error_dev(&sc->sc_dev, "unable to map interrupt\n");
1103 		return;
1104 	}
1105 	intrstr = pci_intr_string(pc, ih);
1106 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc);
1107 	if (sc->sc_ih == NULL) {
1108 		aprint_error_dev(&sc->sc_dev, "unable to establish interrupt");
1109 		if (intrstr != NULL)
1110 			printf(" at %s", intrstr);
1111 		printf("\n");
1112 		return sipcom_do_detach(self, SIP_ATTACH_MAP);
1113 	}
1114 	printf("%s: interrupting at %s\n", device_xname(&sc->sc_dev), intrstr);
1115 
1116 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1117 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1118 
1119 	/*
1120 	 * Allocate the control data structures, and create and load the
1121 	 * DMA map for it.
1122 	 */
1123 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
1124 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
1125 	    &rseg, 0)) != 0) {
1126 		aprint_error_dev(&sc->sc_dev, "unable to allocate control data, error = %d\n",
1127 		    error);
1128 		return sipcom_do_detach(self, SIP_ATTACH_INTR);
1129 	}
1130 
1131 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
1132 	    sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
1133 	    BUS_DMA_COHERENT|BUS_DMA_NOCACHE)) != 0) {
1134 		aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
1135 		    error);
1136 		sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
1137 	}
1138 
1139 	if ((error = bus_dmamap_create(sc->sc_dmat,
1140 	    sizeof(struct sip_control_data), 1,
1141 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
1142 		aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
1143 		    "error = %d\n", error);
1144 		sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
1145 	}
1146 
1147 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1148 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
1149 	    0)) != 0) {
1150 		aprint_error_dev(&sc->sc_dev, "unable to load control data DMA map, error = %d\n",
1151 		    error);
1152 		sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
1153 	}
1154 
1155 	/*
1156 	 * Create the transmit buffer DMA maps.
1157 	 */
1158 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
1159 		if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
1160 		    sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
1161 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1162 			aprint_error_dev(&sc->sc_dev, "unable to create tx DMA map %d, "
1163 			    "error = %d\n", i, error);
1164 			sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1165 		}
1166 	}
1167 
1168 	/*
1169 	 * Create the receive buffer DMA maps.
1170 	 */
1171 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1172 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1173 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1174 			aprint_error_dev(&sc->sc_dev, "unable to create rx DMA map %d, "
1175 			    "error = %d\n", i, error);
1176 			sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1177 		}
1178 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
1179 	}
1180 
1181 	/*
1182 	 * Reset the chip to a known state.
1183 	 */
1184 	sipcom_reset(sc);
1185 
1186 	/*
1187 	 * Read the Ethernet address from the EEPROM.  This might
1188 	 * also fetch other stuff from the EEPROM and stash it
1189 	 * in the softc.
1190 	 */
1191 	sc->sc_cfg = 0;
1192 	if (!sc->sc_gigabit) {
1193 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1194 		    SIP_SIS900_REV(sc,SIS_REV_900B))
1195 			sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1196 
1197 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1198 		    SIP_SIS900_REV(sc,SIS_REV_960) ||
1199 		    SIP_SIS900_REV(sc,SIS_REV_900B))
1200 			sc->sc_cfg |=
1201 			    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1202 			     CFG_EDBMASTEN);
1203 	}
1204 
1205 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1206 
1207 	printf("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
1208 	    ether_sprintf(enaddr));
1209 
1210 	/*
1211 	 * Initialize the configuration register: aggressive PCI
1212 	 * bus request algorithm, default backoff, default OW timer,
1213 	 * default parity error detection.
1214 	 *
1215 	 * NOTE: "Big endian mode" is useless on the SiS900 and
1216 	 * friends -- it affects packet data, not descriptors.
1217 	 */
1218 	if (sc->sc_gigabit)
1219 		sipcom_dp83820_attach(sc, pa);
1220 
1221 	/*
1222 	 * Initialize our media structures and probe the MII.
1223 	 */
1224 	sc->sc_mii.mii_ifp = ifp;
1225 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
1226 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
1227 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
1228 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
1229 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
1230 	    sipcom_mediastatus);
1231 
1232 	/*
1233 	 * XXX We cannot handle flow control on the DP83815.
1234 	 */
1235 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1236 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1237 			   MII_OFFSET_ANY, 0);
1238 	else
1239 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1240 			   MII_OFFSET_ANY, MIIF_DOPAUSE);
1241 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1242 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1243 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1244 	} else
1245 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1246 
1247 	ifp = &sc->sc_ethercom.ec_if;
1248 	strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
1249 	ifp->if_softc = sc;
1250 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1251 	sc->sc_if_flags = ifp->if_flags;
1252 	ifp->if_ioctl = sipcom_ioctl;
1253 	ifp->if_start = sipcom_start;
1254 	ifp->if_watchdog = sipcom_watchdog;
1255 	ifp->if_init = sipcom_init;
1256 	ifp->if_stop = sipcom_stop;
1257 	IFQ_SET_READY(&ifp->if_snd);
1258 
1259 	/*
1260 	 * We can support 802.1Q VLAN-sized frames.
1261 	 */
1262 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1263 
1264 	if (sc->sc_gigabit) {
1265 		/*
1266 		 * And the DP83820 can do VLAN tagging in hardware, and
1267 		 * support the jumbo Ethernet MTU.
1268 		 */
1269 		sc->sc_ethercom.ec_capabilities |=
1270 		    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1271 
1272 		/*
1273 		 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1274 		 * in hardware.
1275 		 */
1276 		ifp->if_capabilities |=
1277 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1278 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1279 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1280 	}
1281 
1282 	/*
1283 	 * Attach the interface.
1284 	 */
1285 	if_attach(ifp);
1286 	ether_ifattach(ifp, enaddr);
1287 	ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb);
1288 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1289 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1290 	sc->sc_prev.if_capenable = ifp->if_capenable;
1291 #if NRND > 0
1292 	rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
1293 	    RND_TYPE_NET, 0);
1294 #endif
1295 
1296 	/*
1297 	 * The number of bytes that must be available in
1298 	 * the Tx FIFO before the bus master can DMA more
1299 	 * data into the FIFO.
1300 	 */
1301 	sc->sc_tx_fill_thresh = 64 / 32;
1302 
1303 	/*
1304 	 * Start at a drain threshold of 512 bytes.  We will
1305 	 * increase it if a DMA underrun occurs.
1306 	 *
1307 	 * XXX The minimum value of this variable should be
1308 	 * tuned.  We may be able to improve performance
1309 	 * by starting with a lower value.  That, however,
1310 	 * may trash the first few outgoing packets if the
1311 	 * PCI bus is saturated.
1312 	 */
1313 	if (sc->sc_gigabit)
1314 		sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1315 	else
1316 		sc->sc_tx_drain_thresh = 1504 / 32;
1317 
1318 	/*
1319 	 * Initialize the Rx FIFO drain threshold.
1320 	 *
1321 	 * This is in units of 8 bytes.
1322 	 *
1323 	 * We should never set this value lower than 2; 14 bytes are
1324 	 * required to filter the packet.
1325 	 */
1326 	sc->sc_rx_drain_thresh = 128 / 8;
1327 
1328 #ifdef SIP_EVENT_COUNTERS
1329 	/*
1330 	 * Attach event counters.
1331 	 */
1332 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1333 	    NULL, device_xname(&sc->sc_dev), "txsstall");
1334 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1335 	    NULL, device_xname(&sc->sc_dev), "txdstall");
1336 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1337 	    NULL, device_xname(&sc->sc_dev), "txforceintr");
1338 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1339 	    NULL, device_xname(&sc->sc_dev), "txdintr");
1340 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1341 	    NULL, device_xname(&sc->sc_dev), "txiintr");
1342 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1343 	    NULL, device_xname(&sc->sc_dev), "rxintr");
1344 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1345 	    NULL, device_xname(&sc->sc_dev), "hiberr");
1346 	if (!sc->sc_gigabit) {
1347 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1348 		    NULL, device_xname(&sc->sc_dev), "rxpause");
1349 	} else {
1350 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1351 		    NULL, device_xname(&sc->sc_dev), "rxpause");
1352 		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1353 		    NULL, device_xname(&sc->sc_dev), "txpause");
1354 		evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1355 		    NULL, device_xname(&sc->sc_dev), "rxipsum");
1356 		evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1357 		    NULL, device_xname(&sc->sc_dev), "rxtcpsum");
1358 		evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1359 		    NULL, device_xname(&sc->sc_dev), "rxudpsum");
1360 		evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1361 		    NULL, device_xname(&sc->sc_dev), "txipsum");
1362 		evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1363 		    NULL, device_xname(&sc->sc_dev), "txtcpsum");
1364 		evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1365 		    NULL, device_xname(&sc->sc_dev), "txudpsum");
1366 	}
1367 #endif /* SIP_EVENT_COUNTERS */
1368 
1369 	if (!pmf_device_register(self, sipcom_suspend, sipcom_resume))
1370 		aprint_error_dev(self, "couldn't establish power handler\n");
1371 	else
1372 		pmf_class_network_register(self, ifp);
1373 }
1374 
1375 static inline void
1376 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1377     uint64_t capenable)
1378 {
1379 	struct m_tag *mtag;
1380 	u_int32_t extsts;
1381 #ifdef DEBUG
1382 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1383 #endif
1384 	/*
1385 	 * If VLANs are enabled and the packet has a VLAN tag, set
1386 	 * up the descriptor to encapsulate the packet for us.
1387 	 *
1388 	 * This apparently has to be on the last descriptor of
1389 	 * the packet.
1390 	 */
1391 
1392 	/*
1393 	 * Byte swapping is tricky. We need to provide the tag
1394 	 * in a network byte order. On a big-endian machine,
1395 	 * the byteorder is correct, but we need to swap it
1396 	 * anyway, because this will be undone by the outside
1397 	 * htole32(). That's why there must be an
1398 	 * unconditional swap instead of htons() inside.
1399 	 */
1400 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1401 		sc->sc_txdescs[lasttx].sipd_extsts |=
1402 		    htole32(EXTSTS_VPKT |
1403 				(bswap16(VLAN_TAG_VALUE(mtag)) &
1404 				 EXTSTS_VTCI));
1405 	}
1406 
1407 	/*
1408 	 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1409 	 * checksumming, set up the descriptor to do this work
1410 	 * for us.
1411 	 *
1412 	 * This apparently has to be on the first descriptor of
1413 	 * the packet.
1414 	 *
1415 	 * Byte-swap constants so the compiler can optimize.
1416 	 */
1417 	extsts = 0;
1418 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1419 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1420 		SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1421 		extsts |= htole32(EXTSTS_IPPKT);
1422 	}
1423 	if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1424 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1425 		SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1426 		extsts |= htole32(EXTSTS_TCPPKT);
1427 	} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1428 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1429 		SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1430 		extsts |= htole32(EXTSTS_UDPPKT);
1431 	}
1432 	sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1433 }
1434 
1435 /*
1436  * sip_start:		[ifnet interface function]
1437  *
1438  *	Start packet transmission on the interface.
1439  */
1440 static void
1441 sipcom_start(struct ifnet *ifp)
1442 {
1443 	struct sip_softc *sc = ifp->if_softc;
1444 	struct mbuf *m0;
1445 	struct mbuf *m;
1446 	struct sip_txsoft *txs;
1447 	bus_dmamap_t dmamap;
1448 	int error, nexttx, lasttx, seg;
1449 	int ofree = sc->sc_txfree;
1450 #if 0
1451 	int firsttx = sc->sc_txnext;
1452 #endif
1453 
1454 	/*
1455 	 * If we've been told to pause, don't transmit any more packets.
1456 	 */
1457 	if (!sc->sc_gigabit && sc->sc_paused)
1458 		ifp->if_flags |= IFF_OACTIVE;
1459 
1460 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1461 		return;
1462 
1463 	/*
1464 	 * Loop through the send queue, setting up transmit descriptors
1465 	 * until we drain the queue, or use up all available transmit
1466 	 * descriptors.
1467 	 */
1468 	for (;;) {
1469 		/* Get a work queue entry. */
1470 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1471 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1472 			break;
1473 		}
1474 
1475 		/*
1476 		 * Grab a packet off the queue.
1477 		 */
1478 		IFQ_POLL(&ifp->if_snd, m0);
1479 		if (m0 == NULL)
1480 			break;
1481 		m = NULL;
1482 
1483 		dmamap = txs->txs_dmamap;
1484 
1485 		/*
1486 		 * Load the DMA map.  If this fails, the packet either
1487 		 * didn't fit in the alloted number of segments, or we
1488 		 * were short on resources.
1489 		 */
1490 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1491 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1492 		/* In the non-gigabit case, we'll copy and try again. */
1493 		if (error != 0 && !sc->sc_gigabit) {
1494 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1495 			if (m == NULL) {
1496 				printf("%s: unable to allocate Tx mbuf\n",
1497 				    device_xname(&sc->sc_dev));
1498 				break;
1499 			}
1500 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1501 			if (m0->m_pkthdr.len > MHLEN) {
1502 				MCLGET(m, M_DONTWAIT);
1503 				if ((m->m_flags & M_EXT) == 0) {
1504 					printf("%s: unable to allocate Tx "
1505 					    "cluster\n", device_xname(&sc->sc_dev));
1506 					m_freem(m);
1507 					break;
1508 				}
1509 			}
1510 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1511 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1512 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1513 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1514 			if (error) {
1515 				printf("%s: unable to load Tx buffer, "
1516 				    "error = %d\n", device_xname(&sc->sc_dev), error);
1517 				break;
1518 			}
1519 		} else if (error == EFBIG) {
1520 			/*
1521 			 * For the too-many-segments case, we simply
1522 			 * report an error and drop the packet,
1523 			 * since we can't sanely copy a jumbo packet
1524 			 * to a single buffer.
1525 			 */
1526 			printf("%s: Tx packet consumes too many "
1527 			    "DMA segments, dropping...\n", device_xname(&sc->sc_dev));
1528 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1529 			m_freem(m0);
1530 			continue;
1531 		} else if (error != 0) {
1532 			/*
1533 			 * Short on resources, just stop for now.
1534 			 */
1535 			break;
1536 		}
1537 
1538 		/*
1539 		 * Ensure we have enough descriptors free to describe
1540 		 * the packet.  Note, we always reserve one descriptor
1541 		 * at the end of the ring as a termination point, to
1542 		 * prevent wrap-around.
1543 		 */
1544 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1545 			/*
1546 			 * Not enough free descriptors to transmit this
1547 			 * packet.  We haven't committed anything yet,
1548 			 * so just unload the DMA map, put the packet
1549 			 * back on the queue, and punt.  Notify the upper
1550 			 * layer that there are not more slots left.
1551 			 *
1552 			 * XXX We could allocate an mbuf and copy, but
1553 			 * XXX is it worth it?
1554 			 */
1555 			ifp->if_flags |= IFF_OACTIVE;
1556 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1557 			if (m != NULL)
1558 				m_freem(m);
1559 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1560 			break;
1561 		}
1562 
1563 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1564 		if (m != NULL) {
1565 			m_freem(m0);
1566 			m0 = m;
1567 		}
1568 
1569 		/*
1570 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1571 		 */
1572 
1573 		/* Sync the DMA map. */
1574 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1575 		    BUS_DMASYNC_PREWRITE);
1576 
1577 		/*
1578 		 * Initialize the transmit descriptors.
1579 		 */
1580 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1581 		     seg < dmamap->dm_nsegs;
1582 		     seg++, nexttx = sip_nexttx(sc, nexttx)) {
1583 			/*
1584 			 * If this is the first descriptor we're
1585 			 * enqueueing, don't set the OWN bit just
1586 			 * yet.  That could cause a race condition.
1587 			 * We'll do it below.
1588 			 */
1589 			*sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
1590 			    htole32(dmamap->dm_segs[seg].ds_addr);
1591 			*sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
1592 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1593 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1594 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
1595 			lasttx = nexttx;
1596 		}
1597 
1598 		/* Clear the MORE bit on the last segment. */
1599 		*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
1600 		    htole32(~CMDSTS_MORE);
1601 
1602 		/*
1603 		 * If we're in the interrupt delay window, delay the
1604 		 * interrupt.
1605 		 */
1606 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1607 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1608 			*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
1609 			    htole32(CMDSTS_INTR);
1610 			sc->sc_txwin = 0;
1611 		}
1612 
1613 		if (sc->sc_gigabit)
1614 			sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1615 
1616 		/* Sync the descriptors we're using. */
1617 		sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
1618 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1619 
1620 		/*
1621 		 * The entire packet is set up.  Give the first descrptor
1622 		 * to the chip now.
1623 		 */
1624 		*sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
1625 		    htole32(CMDSTS_OWN);
1626 		sip_cdtxsync(sc, sc->sc_txnext, 1,
1627 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1628 
1629 		/*
1630 		 * Store a pointer to the packet so we can free it later,
1631 		 * and remember what txdirty will be once the packet is
1632 		 * done.
1633 		 */
1634 		txs->txs_mbuf = m0;
1635 		txs->txs_firstdesc = sc->sc_txnext;
1636 		txs->txs_lastdesc = lasttx;
1637 
1638 		/* Advance the tx pointer. */
1639 		sc->sc_txfree -= dmamap->dm_nsegs;
1640 		sc->sc_txnext = nexttx;
1641 
1642 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1643 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1644 
1645 #if NBPFILTER > 0
1646 		/*
1647 		 * Pass the packet to any BPF listeners.
1648 		 */
1649 		if (ifp->if_bpf)
1650 			bpf_mtap(ifp->if_bpf, m0);
1651 #endif /* NBPFILTER > 0 */
1652 	}
1653 
1654 	if (txs == NULL || sc->sc_txfree == 0) {
1655 		/* No more slots left; notify upper layer. */
1656 		ifp->if_flags |= IFF_OACTIVE;
1657 	}
1658 
1659 	if (sc->sc_txfree != ofree) {
1660 		/*
1661 		 * Start the transmit process.  Note, the manual says
1662 		 * that if there are no pending transmissions in the
1663 		 * chip's internal queue (indicated by TXE being clear),
1664 		 * then the driver software must set the TXDP to the
1665 		 * first descriptor to be transmitted.  However, if we
1666 		 * do this, it causes serious performance degredation on
1667 		 * the DP83820 under load, not setting TXDP doesn't seem
1668 		 * to adversely affect the SiS 900 or DP83815.
1669 		 *
1670 		 * Well, I guess it wouldn't be the first time a manual
1671 		 * has lied -- and they could be speaking of the NULL-
1672 		 * terminated descriptor list case, rather than OWN-
1673 		 * terminated rings.
1674 		 */
1675 #if 0
1676 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1677 		     CR_TXE) == 0) {
1678 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1679 			    SIP_CDTXADDR(sc, firsttx));
1680 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1681 		}
1682 #else
1683 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1684 #endif
1685 
1686 		/* Set a watchdog timer in case the chip flakes out. */
1687 		/* Gigabit autonegotiation takes 5 seconds. */
1688 		ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1689 	}
1690 }
1691 
1692 /*
1693  * sip_watchdog:	[ifnet interface function]
1694  *
1695  *	Watchdog timer handler.
1696  */
1697 static void
1698 sipcom_watchdog(struct ifnet *ifp)
1699 {
1700 	struct sip_softc *sc = ifp->if_softc;
1701 
1702 	/*
1703 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1704 	 * If we get a timeout, try and sweep up transmit descriptors.
1705 	 * If we manage to sweep them all up, ignore the lack of
1706 	 * interrupt.
1707 	 */
1708 	sipcom_txintr(sc);
1709 
1710 	if (sc->sc_txfree != sc->sc_ntxdesc) {
1711 		printf("%s: device timeout\n", device_xname(&sc->sc_dev));
1712 		ifp->if_oerrors++;
1713 
1714 		/* Reset the interface. */
1715 		(void) sipcom_init(ifp);
1716 	} else if (ifp->if_flags & IFF_DEBUG)
1717 		printf("%s: recovered from device timeout\n",
1718 		    device_xname(&sc->sc_dev));
1719 
1720 	/* Try to get more packets going. */
1721 	sipcom_start(ifp);
1722 }
1723 
1724 /* If the interface is up and running, only modify the receive
1725  * filter when setting promiscuous or debug mode.  Otherwise fall
1726  * through to ether_ioctl, which will reset the chip.
1727  */
1728 static int
1729 sip_ifflags_cb(struct ethercom *ec)
1730 {
1731 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable			\
1732 			 == (sc)->sc_ethercom.ec_capenable)		\
1733 			&& ((sc)->sc_prev.is_vlan ==			\
1734 			    VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1735 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1736 	struct ifnet *ifp = &ec->ec_if;
1737 	struct sip_softc *sc = ifp->if_softc;
1738 	int change = ifp->if_flags ^ sc->sc_if_flags;
1739 
1740 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0 || !COMPARE_EC(sc) ||
1741 	    !COMPARE_IC(sc, ifp))
1742 		return ENETRESET;
1743 	/* Set up the receive filter. */
1744 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1745 	return 0;
1746 }
1747 
1748 /*
1749  * sip_ioctl:		[ifnet interface function]
1750  *
1751  *	Handle control requests from the operator.
1752  */
1753 static int
1754 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1755 {
1756 	struct sip_softc *sc = ifp->if_softc;
1757 	struct ifreq *ifr = (struct ifreq *)data;
1758 	int s, error;
1759 
1760 	s = splnet();
1761 
1762 	switch (cmd) {
1763 	case SIOCSIFMEDIA:
1764 		/* Flow control requires full-duplex mode. */
1765 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1766 		    (ifr->ifr_media & IFM_FDX) == 0)
1767 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
1768 
1769 		/* XXX */
1770 		if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1771 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1772 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1773 			if (sc->sc_gigabit &&
1774 			    (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1775 				/* We can do both TXPAUSE and RXPAUSE. */
1776 				ifr->ifr_media |=
1777 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1778 			} else if (ifr->ifr_media & IFM_FLOW) {
1779 				/*
1780 				 * Both TXPAUSE and RXPAUSE must be set.
1781 				 * (SiS900 and DP83815 don't have PAUSE_ASYM
1782 				 * feature.)
1783 				 *
1784 				 * XXX Can SiS900 and DP83815 send PAUSE?
1785 				 */
1786 				ifr->ifr_media |=
1787 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1788 			}
1789 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1790 		}
1791 		/*FALLTHROUGH*/
1792 	default:
1793 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1794 			break;
1795 
1796 		error = 0;
1797 
1798 		if (cmd == SIOCSIFCAP)
1799 			error = (*ifp->if_init)(ifp);
1800 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1801 			;
1802 		else if (ifp->if_flags & IFF_RUNNING) {
1803 			/*
1804 			 * Multicast list has changed; set the hardware filter
1805 			 * accordingly.
1806 			 */
1807 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1808 		}
1809 		break;
1810 	}
1811 
1812 	/* Try to get more packets going. */
1813 	sipcom_start(ifp);
1814 
1815 	sc->sc_if_flags = ifp->if_flags;
1816 	splx(s);
1817 	return (error);
1818 }
1819 
1820 /*
1821  * sip_intr:
1822  *
1823  *	Interrupt service routine.
1824  */
1825 static int
1826 sipcom_intr(void *arg)
1827 {
1828 	struct sip_softc *sc = arg;
1829 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1830 	u_int32_t isr;
1831 	int handled = 0;
1832 
1833 	if (!device_is_active(&sc->sc_dev))
1834 		return 0;
1835 
1836 	/* Disable interrupts. */
1837 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1838 
1839 	for (;;) {
1840 		/* Reading clears interrupt. */
1841 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1842 		if ((isr & sc->sc_imr) == 0)
1843 			break;
1844 
1845 #if NRND > 0
1846 		if (RND_ENABLED(&sc->rnd_source))
1847 			rnd_add_uint32(&sc->rnd_source, isr);
1848 #endif
1849 
1850 		handled = 1;
1851 
1852 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1853 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1854 
1855 			/* Grab any new packets. */
1856 			(*sc->sc_rxintr)(sc);
1857 
1858 			if (isr & ISR_RXORN) {
1859 				printf("%s: receive FIFO overrun\n",
1860 				    device_xname(&sc->sc_dev));
1861 
1862 				/* XXX adjust rx_drain_thresh? */
1863 			}
1864 
1865 			if (isr & ISR_RXIDLE) {
1866 				printf("%s: receive ring overrun\n",
1867 				    device_xname(&sc->sc_dev));
1868 
1869 				/* Get the receive process going again. */
1870 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1871 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1872 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1873 				    SIP_CR, CR_RXE);
1874 			}
1875 		}
1876 
1877 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1878 #ifdef SIP_EVENT_COUNTERS
1879 			if (isr & ISR_TXDESC)
1880 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1881 			else if (isr & ISR_TXIDLE)
1882 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1883 #endif
1884 
1885 			/* Sweep up transmit descriptors. */
1886 			sipcom_txintr(sc);
1887 
1888 			if (isr & ISR_TXURN) {
1889 				u_int32_t thresh;
1890 				int txfifo_size = (sc->sc_gigabit)
1891 				    ? DP83820_SIP_TXFIFO_SIZE
1892 				    : OTHER_SIP_TXFIFO_SIZE;
1893 
1894 				printf("%s: transmit FIFO underrun",
1895 				    device_xname(&sc->sc_dev));
1896 				thresh = sc->sc_tx_drain_thresh + 1;
1897 				if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
1898 				&& (thresh * 32) <= (txfifo_size -
1899 				     (sc->sc_tx_fill_thresh * 32))) {
1900 					printf("; increasing Tx drain "
1901 					    "threshold to %u bytes\n",
1902 					    thresh * 32);
1903 					sc->sc_tx_drain_thresh = thresh;
1904 					(void) sipcom_init(ifp);
1905 				} else {
1906 					(void) sipcom_init(ifp);
1907 					printf("\n");
1908 				}
1909 			}
1910 		}
1911 
1912 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1913 			if (isr & ISR_PAUSE_ST) {
1914 				sc->sc_paused = 1;
1915 				SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1916 				ifp->if_flags |= IFF_OACTIVE;
1917 			}
1918 			if (isr & ISR_PAUSE_END) {
1919 				sc->sc_paused = 0;
1920 				ifp->if_flags &= ~IFF_OACTIVE;
1921 			}
1922 		}
1923 
1924 		if (isr & ISR_HIBERR) {
1925 			int want_init = 0;
1926 
1927 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1928 
1929 #define	PRINTERR(bit, str)						\
1930 			do {						\
1931 				if ((isr & (bit)) != 0) {		\
1932 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
1933 						printf("%s: %s\n",	\
1934 						    device_xname(&sc->sc_dev), str); \
1935 					want_init = 1;			\
1936 				}					\
1937 			} while (/*CONSTCOND*/0)
1938 
1939 			PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
1940 			PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
1941 			PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
1942 			PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
1943 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1944 			/*
1945 			 * Ignore:
1946 			 *	Tx reset complete
1947 			 *	Rx reset complete
1948 			 */
1949 			if (want_init)
1950 				(void) sipcom_init(ifp);
1951 #undef PRINTERR
1952 		}
1953 	}
1954 
1955 	/* Re-enable interrupts. */
1956 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1957 
1958 	/* Try to get more packets going. */
1959 	sipcom_start(ifp);
1960 
1961 	return (handled);
1962 }
1963 
1964 /*
1965  * sip_txintr:
1966  *
1967  *	Helper; handle transmit interrupts.
1968  */
1969 static void
1970 sipcom_txintr(struct sip_softc *sc)
1971 {
1972 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1973 	struct sip_txsoft *txs;
1974 	u_int32_t cmdsts;
1975 
1976 	if (sc->sc_paused == 0)
1977 		ifp->if_flags &= ~IFF_OACTIVE;
1978 
1979 	/*
1980 	 * Go through our Tx list and free mbufs for those
1981 	 * frames which have been transmitted.
1982 	 */
1983 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1984 		sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1985 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1986 
1987 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
1988 		if (cmdsts & CMDSTS_OWN)
1989 			break;
1990 
1991 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1992 
1993 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1994 
1995 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1996 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1997 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1998 		m_freem(txs->txs_mbuf);
1999 		txs->txs_mbuf = NULL;
2000 
2001 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2002 
2003 		/*
2004 		 * Check for errors and collisions.
2005 		 */
2006 		if (cmdsts &
2007 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
2008 			ifp->if_oerrors++;
2009 			if (cmdsts & CMDSTS_Tx_EC)
2010 				ifp->if_collisions += 16;
2011 			if (ifp->if_flags & IFF_DEBUG) {
2012 				if (cmdsts & CMDSTS_Tx_ED)
2013 					printf("%s: excessive deferral\n",
2014 					    device_xname(&sc->sc_dev));
2015 				if (cmdsts & CMDSTS_Tx_EC)
2016 					printf("%s: excessive collisions\n",
2017 					    device_xname(&sc->sc_dev));
2018 			}
2019 		} else {
2020 			/* Packet was transmitted successfully. */
2021 			ifp->if_opackets++;
2022 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
2023 		}
2024 	}
2025 
2026 	/*
2027 	 * If there are no more pending transmissions, cancel the watchdog
2028 	 * timer.
2029 	 */
2030 	if (txs == NULL) {
2031 		ifp->if_timer = 0;
2032 		sc->sc_txwin = 0;
2033 	}
2034 }
2035 
2036 /*
2037  * gsip_rxintr:
2038  *
2039  *	Helper; handle receive interrupts on gigabit parts.
2040  */
2041 static void
2042 gsip_rxintr(struct sip_softc *sc)
2043 {
2044 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2045 	struct sip_rxsoft *rxs;
2046 	struct mbuf *m;
2047 	u_int32_t cmdsts, extsts;
2048 	int i, len;
2049 
2050 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2051 		rxs = &sc->sc_rxsoft[i];
2052 
2053 		sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2054 
2055 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2056 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
2057 		len = CMDSTS_SIZE(sc, cmdsts);
2058 
2059 		/*
2060 		 * NOTE: OWN is set if owned by _consumer_.  We're the
2061 		 * consumer of the receive ring, so if the bit is clear,
2062 		 * we have processed all of the packets.
2063 		 */
2064 		if ((cmdsts & CMDSTS_OWN) == 0) {
2065 			/*
2066 			 * We have processed all of the receive buffers.
2067 			 */
2068 			break;
2069 		}
2070 
2071 		if (__predict_false(sc->sc_rxdiscard)) {
2072 			sip_init_rxdesc(sc, i);
2073 			if ((cmdsts & CMDSTS_MORE) == 0) {
2074 				/* Reset our state. */
2075 				sc->sc_rxdiscard = 0;
2076 			}
2077 			continue;
2078 		}
2079 
2080 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2081 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2082 
2083 		m = rxs->rxs_mbuf;
2084 
2085 		/*
2086 		 * Add a new receive buffer to the ring.
2087 		 */
2088 		if (sipcom_add_rxbuf(sc, i) != 0) {
2089 			/*
2090 			 * Failed, throw away what we've done so
2091 			 * far, and discard the rest of the packet.
2092 			 */
2093 			ifp->if_ierrors++;
2094 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2095 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2096 			sip_init_rxdesc(sc, i);
2097 			if (cmdsts & CMDSTS_MORE)
2098 				sc->sc_rxdiscard = 1;
2099 			if (sc->sc_rxhead != NULL)
2100 				m_freem(sc->sc_rxhead);
2101 			sip_rxchain_reset(sc);
2102 			continue;
2103 		}
2104 
2105 		sip_rxchain_link(sc, m);
2106 
2107 		m->m_len = len;
2108 
2109 		/*
2110 		 * If this is not the end of the packet, keep
2111 		 * looking.
2112 		 */
2113 		if (cmdsts & CMDSTS_MORE) {
2114 			sc->sc_rxlen += len;
2115 			continue;
2116 		}
2117 
2118 		/*
2119 		 * Okay, we have the entire packet now.  The chip includes
2120 		 * the FCS, so we need to trim it.
2121 		 */
2122 		m->m_len -= ETHER_CRC_LEN;
2123 
2124 		*sc->sc_rxtailp = NULL;
2125 		len = m->m_len + sc->sc_rxlen;
2126 		m = sc->sc_rxhead;
2127 
2128 		sip_rxchain_reset(sc);
2129 
2130 		/*
2131 		 * If an error occurred, update stats and drop the packet.
2132 		 */
2133 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2134 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2135 			ifp->if_ierrors++;
2136 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2137 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
2138 				/* Receive overrun handled elsewhere. */
2139 				printf("%s: receive descriptor error\n",
2140 				    device_xname(&sc->sc_dev));
2141 			}
2142 #define	PRINTERR(bit, str)						\
2143 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
2144 			    (cmdsts & (bit)) != 0)			\
2145 				printf("%s: %s\n", device_xname(&sc->sc_dev), str)
2146 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2147 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2148 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2149 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2150 #undef PRINTERR
2151 			m_freem(m);
2152 			continue;
2153 		}
2154 
2155 		/*
2156 		 * If the packet is small enough to fit in a
2157 		 * single header mbuf, allocate one and copy
2158 		 * the data into it.  This greatly reduces
2159 		 * memory consumption when we receive lots
2160 		 * of small packets.
2161 		 */
2162 		if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
2163 			struct mbuf *nm;
2164 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
2165 			if (nm == NULL) {
2166 				ifp->if_ierrors++;
2167 				m_freem(m);
2168 				continue;
2169 			}
2170 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2171 			nm->m_data += 2;
2172 			nm->m_pkthdr.len = nm->m_len = len;
2173 			m_copydata(m, 0, len, mtod(nm, void *));
2174 			m_freem(m);
2175 			m = nm;
2176 		}
2177 #ifndef __NO_STRICT_ALIGNMENT
2178 		else {
2179 			/*
2180 			 * The DP83820's receive buffers must be 4-byte
2181 			 * aligned.  But this means that the data after
2182 			 * the Ethernet header is misaligned.  To compensate,
2183 			 * we have artificially shortened the buffer size
2184 			 * in the descriptor, and we do an overlapping copy
2185 			 * of the data two bytes further in (in the first
2186 			 * buffer of the chain only).
2187 			 */
2188 			memmove(mtod(m, char *) + 2, mtod(m, void *),
2189 			    m->m_len);
2190 			m->m_data += 2;
2191 		}
2192 #endif /* ! __NO_STRICT_ALIGNMENT */
2193 
2194 		/*
2195 		 * If VLANs are enabled, VLAN packets have been unwrapped
2196 		 * for us.  Associate the tag with the packet.
2197 		 */
2198 
2199 		/*
2200 		 * Again, byte swapping is tricky. Hardware provided
2201 		 * the tag in the network byte order, but extsts was
2202 		 * passed through le32toh() in the meantime. On a
2203 		 * big-endian machine, we need to swap it again. On a
2204 		 * little-endian machine, we need to convert from the
2205 		 * network to host byte order. This means that we must
2206 		 * swap it in any case, so unconditional swap instead
2207 		 * of htons() is used.
2208 		 */
2209 		if ((extsts & EXTSTS_VPKT) != 0) {
2210 			VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
2211 			    continue);
2212 		}
2213 
2214 		/*
2215 		 * Set the incoming checksum information for the
2216 		 * packet.
2217 		 */
2218 		if ((extsts & EXTSTS_IPPKT) != 0) {
2219 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2220 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2221 			if (extsts & EXTSTS_Rx_IPERR)
2222 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2223 			if (extsts & EXTSTS_TCPPKT) {
2224 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2225 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2226 				if (extsts & EXTSTS_Rx_TCPERR)
2227 					m->m_pkthdr.csum_flags |=
2228 					    M_CSUM_TCP_UDP_BAD;
2229 			} else if (extsts & EXTSTS_UDPPKT) {
2230 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2231 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2232 				if (extsts & EXTSTS_Rx_UDPERR)
2233 					m->m_pkthdr.csum_flags |=
2234 					    M_CSUM_TCP_UDP_BAD;
2235 			}
2236 		}
2237 
2238 		ifp->if_ipackets++;
2239 		m->m_pkthdr.rcvif = ifp;
2240 		m->m_pkthdr.len = len;
2241 
2242 #if NBPFILTER > 0
2243 		/*
2244 		 * Pass this up to any BPF listeners, but only
2245 		 * pass if up the stack if it's for us.
2246 		 */
2247 		if (ifp->if_bpf)
2248 			bpf_mtap(ifp->if_bpf, m);
2249 #endif /* NBPFILTER > 0 */
2250 
2251 		/* Pass it on. */
2252 		(*ifp->if_input)(ifp, m);
2253 	}
2254 
2255 	/* Update the receive pointer. */
2256 	sc->sc_rxptr = i;
2257 }
2258 
2259 /*
2260  * sip_rxintr:
2261  *
2262  *	Helper; handle receive interrupts on 10/100 parts.
2263  */
2264 static void
2265 sip_rxintr(struct sip_softc *sc)
2266 {
2267 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2268 	struct sip_rxsoft *rxs;
2269 	struct mbuf *m;
2270 	u_int32_t cmdsts;
2271 	int i, len;
2272 
2273 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2274 		rxs = &sc->sc_rxsoft[i];
2275 
2276 		sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2277 
2278 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2279 
2280 		/*
2281 		 * NOTE: OWN is set if owned by _consumer_.  We're the
2282 		 * consumer of the receive ring, so if the bit is clear,
2283 		 * we have processed all of the packets.
2284 		 */
2285 		if ((cmdsts & CMDSTS_OWN) == 0) {
2286 			/*
2287 			 * We have processed all of the receive buffers.
2288 			 */
2289 			break;
2290 		}
2291 
2292 		/*
2293 		 * If any collisions were seen on the wire, count one.
2294 		 */
2295 		if (cmdsts & CMDSTS_Rx_COL)
2296 			ifp->if_collisions++;
2297 
2298 		/*
2299 		 * If an error occurred, update stats, clear the status
2300 		 * word, and leave the packet buffer in place.  It will
2301 		 * simply be reused the next time the ring comes around.
2302 		 */
2303 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2304 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2305 			ifp->if_ierrors++;
2306 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2307 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
2308 				/* Receive overrun handled elsewhere. */
2309 				printf("%s: receive descriptor error\n",
2310 				    device_xname(&sc->sc_dev));
2311 			}
2312 #define	PRINTERR(bit, str)						\
2313 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
2314 			    (cmdsts & (bit)) != 0)			\
2315 				printf("%s: %s\n", device_xname(&sc->sc_dev), str)
2316 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2317 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2318 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2319 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2320 #undef PRINTERR
2321 			sip_init_rxdesc(sc, i);
2322 			continue;
2323 		}
2324 
2325 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2326 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2327 
2328 		/*
2329 		 * No errors; receive the packet.  Note, the SiS 900
2330 		 * includes the CRC with every packet.
2331 		 */
2332 		len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
2333 
2334 #ifdef __NO_STRICT_ALIGNMENT
2335 		/*
2336 		 * If the packet is small enough to fit in a
2337 		 * single header mbuf, allocate one and copy
2338 		 * the data into it.  This greatly reduces
2339 		 * memory consumption when we receive lots
2340 		 * of small packets.
2341 		 *
2342 		 * Otherwise, we add a new buffer to the receive
2343 		 * chain.  If this fails, we drop the packet and
2344 		 * recycle the old buffer.
2345 		 */
2346 		if (sip_copy_small != 0 && len <= MHLEN) {
2347 			MGETHDR(m, M_DONTWAIT, MT_DATA);
2348 			if (m == NULL)
2349 				goto dropit;
2350 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2351 			memcpy(mtod(m, void *),
2352 			    mtod(rxs->rxs_mbuf, void *), len);
2353 			sip_init_rxdesc(sc, i);
2354 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2355 			    rxs->rxs_dmamap->dm_mapsize,
2356 			    BUS_DMASYNC_PREREAD);
2357 		} else {
2358 			m = rxs->rxs_mbuf;
2359 			if (sipcom_add_rxbuf(sc, i) != 0) {
2360  dropit:
2361 				ifp->if_ierrors++;
2362 				sip_init_rxdesc(sc, i);
2363 				bus_dmamap_sync(sc->sc_dmat,
2364 				    rxs->rxs_dmamap, 0,
2365 				    rxs->rxs_dmamap->dm_mapsize,
2366 				    BUS_DMASYNC_PREREAD);
2367 				continue;
2368 			}
2369 		}
2370 #else
2371 		/*
2372 		 * The SiS 900's receive buffers must be 4-byte aligned.
2373 		 * But this means that the data after the Ethernet header
2374 		 * is misaligned.  We must allocate a new buffer and
2375 		 * copy the data, shifted forward 2 bytes.
2376 		 */
2377 		MGETHDR(m, M_DONTWAIT, MT_DATA);
2378 		if (m == NULL) {
2379  dropit:
2380 			ifp->if_ierrors++;
2381 			sip_init_rxdesc(sc, i);
2382 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2383 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2384 			continue;
2385 		}
2386 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2387 		if (len > (MHLEN - 2)) {
2388 			MCLGET(m, M_DONTWAIT);
2389 			if ((m->m_flags & M_EXT) == 0) {
2390 				m_freem(m);
2391 				goto dropit;
2392 			}
2393 		}
2394 		m->m_data += 2;
2395 
2396 		/*
2397 		 * Note that we use clusters for incoming frames, so the
2398 		 * buffer is virtually contiguous.
2399 		 */
2400 		memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2401 
2402 		/* Allow the receive descriptor to continue using its mbuf. */
2403 		sip_init_rxdesc(sc, i);
2404 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2405 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2406 #endif /* __NO_STRICT_ALIGNMENT */
2407 
2408 		ifp->if_ipackets++;
2409 		m->m_pkthdr.rcvif = ifp;
2410 		m->m_pkthdr.len = m->m_len = len;
2411 
2412 #if NBPFILTER > 0
2413 		/*
2414 		 * Pass this up to any BPF listeners, but only
2415 		 * pass if up the stack if it's for us.
2416 		 */
2417 		if (ifp->if_bpf)
2418 			bpf_mtap(ifp->if_bpf, m);
2419 #endif /* NBPFILTER > 0 */
2420 
2421 		/* Pass it on. */
2422 		(*ifp->if_input)(ifp, m);
2423 	}
2424 
2425 	/* Update the receive pointer. */
2426 	sc->sc_rxptr = i;
2427 }
2428 
2429 /*
2430  * sip_tick:
2431  *
2432  *	One second timer, used to tick the MII.
2433  */
2434 static void
2435 sipcom_tick(void *arg)
2436 {
2437 	struct sip_softc *sc = arg;
2438 	int s;
2439 
2440 	s = splnet();
2441 #ifdef SIP_EVENT_COUNTERS
2442 	if (sc->sc_gigabit) {
2443 		/* Read PAUSE related counts from MIB registers. */
2444 		sc->sc_ev_rxpause.ev_count +=
2445 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
2446 				     SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2447 		sc->sc_ev_txpause.ev_count +=
2448 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
2449 				     SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2450 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2451 	}
2452 #endif /* SIP_EVENT_COUNTERS */
2453 	mii_tick(&sc->sc_mii);
2454 	splx(s);
2455 
2456 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2457 }
2458 
2459 /*
2460  * sip_reset:
2461  *
2462  *	Perform a soft reset on the SiS 900.
2463  */
2464 static bool
2465 sipcom_reset(struct sip_softc *sc)
2466 {
2467 	bus_space_tag_t st = sc->sc_st;
2468 	bus_space_handle_t sh = sc->sc_sh;
2469 	int i;
2470 
2471 	bus_space_write_4(st, sh, SIP_IER, 0);
2472 	bus_space_write_4(st, sh, SIP_IMR, 0);
2473 	bus_space_write_4(st, sh, SIP_RFCR, 0);
2474 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
2475 
2476 	for (i = 0; i < SIP_TIMEOUT; i++) {
2477 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2478 			break;
2479 		delay(2);
2480 	}
2481 
2482 	if (i == SIP_TIMEOUT) {
2483 		printf("%s: reset failed to complete\n", device_xname(&sc->sc_dev));
2484 		return false;
2485 	}
2486 
2487 	delay(1000);
2488 
2489 	if (sc->sc_gigabit) {
2490 		/*
2491 		 * Set the general purpose I/O bits.  Do it here in case we
2492 		 * need to have GPIO set up to talk to the media interface.
2493 		 */
2494 		bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2495 		delay(1000);
2496 	}
2497 	return true;
2498 }
2499 
2500 static void
2501 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2502 {
2503 	u_int32_t reg;
2504 	bus_space_tag_t st = sc->sc_st;
2505 	bus_space_handle_t sh = sc->sc_sh;
2506 	/*
2507 	 * Initialize the VLAN/IP receive control register.
2508 	 * We enable checksum computation on all incoming
2509 	 * packets, and do not reject packets w/ bad checksums.
2510 	 */
2511 	reg = 0;
2512 	if (capenable &
2513 	    (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
2514 		reg |= VRCR_IPEN;
2515 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2516 		reg |= VRCR_VTDEN|VRCR_VTREN;
2517 	bus_space_write_4(st, sh, SIP_VRCR, reg);
2518 
2519 	/*
2520 	 * Initialize the VLAN/IP transmit control register.
2521 	 * We enable outgoing checksum computation on a
2522 	 * per-packet basis.
2523 	 */
2524 	reg = 0;
2525 	if (capenable &
2526 	    (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2527 		reg |= VTCR_PPCHK;
2528 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2529 		reg |= VTCR_VPPTI;
2530 	bus_space_write_4(st, sh, SIP_VTCR, reg);
2531 
2532 	/*
2533 	 * If we're using VLANs, initialize the VLAN data register.
2534 	 * To understand why we bswap the VLAN Ethertype, see section
2535 	 * 4.2.36 of the DP83820 manual.
2536 	 */
2537 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2538 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2539 }
2540 
2541 /*
2542  * sip_init:		[ ifnet interface function ]
2543  *
2544  *	Initialize the interface.  Must be called at splnet().
2545  */
2546 static int
2547 sipcom_init(struct ifnet *ifp)
2548 {
2549 	struct sip_softc *sc = ifp->if_softc;
2550 	bus_space_tag_t st = sc->sc_st;
2551 	bus_space_handle_t sh = sc->sc_sh;
2552 	struct sip_txsoft *txs;
2553 	struct sip_rxsoft *rxs;
2554 	struct sip_desc *sipd;
2555 	int i, error = 0;
2556 
2557 	if (device_is_active(&sc->sc_dev)) {
2558 		/*
2559 		 * Cancel any pending I/O.
2560 		 */
2561 		sipcom_stop(ifp, 0);
2562 	} else if (!pmf_device_resume_self(&sc->sc_dev))
2563 		return 0;
2564 
2565 	/*
2566 	 * Reset the chip to a known state.
2567 	 */
2568 	if (!sipcom_reset(sc))
2569 		return EBUSY;
2570 
2571 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2572 		/*
2573 		 * DP83815 manual, page 78:
2574 		 *    4.4 Recommended Registers Configuration
2575 		 *    For optimum performance of the DP83815, version noted
2576 		 *    as DP83815CVNG (SRR = 203h), the listed register
2577 		 *    modifications must be followed in sequence...
2578 		 *
2579 		 * It's not clear if this should be 302h or 203h because that
2580 		 * chip name is listed as SRR 302h in the description of the
2581 		 * SRR register.  However, my revision 302h DP83815 on the
2582 		 * Netgear FA311 purchased in 02/2001 needs these settings
2583 		 * to avoid tons of errors in AcceptPerfectMatch (non-
2584 		 * IFF_PROMISC) mode.  I do not know if other revisions need
2585 		 * this set or not.  [briggs -- 09 March 2001]
2586 		 *
2587 		 * Note that only the low-order 12 bits of 0xe4 are documented
2588 		 * and that this sets reserved bits in that register.
2589 		 */
2590 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
2591 
2592 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
2593 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
2594 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
2595 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
2596 
2597 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
2598 	}
2599 
2600 	/*
2601 	 * Initialize the transmit descriptor ring.
2602 	 */
2603 	for (i = 0; i < sc->sc_ntxdesc; i++) {
2604 		sipd = &sc->sc_txdescs[i];
2605 		memset(sipd, 0, sizeof(struct sip_desc));
2606 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
2607 	}
2608 	sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
2609 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2610 	sc->sc_txfree = sc->sc_ntxdesc;
2611 	sc->sc_txnext = 0;
2612 	sc->sc_txwin = 0;
2613 
2614 	/*
2615 	 * Initialize the transmit job descriptors.
2616 	 */
2617 	SIMPLEQ_INIT(&sc->sc_txfreeq);
2618 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
2619 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
2620 		txs = &sc->sc_txsoft[i];
2621 		txs->txs_mbuf = NULL;
2622 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2623 	}
2624 
2625 	/*
2626 	 * Initialize the receive descriptor and receive job
2627 	 * descriptor rings.
2628 	 */
2629 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2630 		rxs = &sc->sc_rxsoft[i];
2631 		if (rxs->rxs_mbuf == NULL) {
2632 			if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
2633 				printf("%s: unable to allocate or map rx "
2634 				    "buffer %d, error = %d\n",
2635 				    device_xname(&sc->sc_dev), i, error);
2636 				/*
2637 				 * XXX Should attempt to run with fewer receive
2638 				 * XXX buffers instead of just failing.
2639 				 */
2640 				sipcom_rxdrain(sc);
2641 				goto out;
2642 			}
2643 		} else
2644 			sip_init_rxdesc(sc, i);
2645 	}
2646 	sc->sc_rxptr = 0;
2647 	sc->sc_rxdiscard = 0;
2648 	sip_rxchain_reset(sc);
2649 
2650 	/*
2651 	 * Set the configuration register; it's already initialized
2652 	 * in sip_attach().
2653 	 */
2654 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2655 
2656 	/*
2657 	 * Initialize the prototype TXCFG register.
2658 	 */
2659 	if (sc->sc_gigabit) {
2660 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2661 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2662 	} else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2663 	     SIP_SIS900_REV(sc, SIS_REV_960) ||
2664 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2665 	    (sc->sc_cfg & CFG_EDBMASTEN)) {
2666 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
2667 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
2668 	} else {
2669 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2670 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2671 	}
2672 
2673 	sc->sc_txcfg |= TXCFG_ATP |
2674 	    __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
2675 	    sc->sc_tx_drain_thresh;
2676 	bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
2677 
2678 	/*
2679 	 * Initialize the receive drain threshold if we have never
2680 	 * done so.
2681 	 */
2682 	if (sc->sc_rx_drain_thresh == 0) {
2683 		/*
2684 		 * XXX This value should be tuned.  This is set to the
2685 		 * maximum of 248 bytes, and we may be able to improve
2686 		 * performance by decreasing it (although we should never
2687 		 * set this value lower than 2; 14 bytes are required to
2688 		 * filter the packet).
2689 		 */
2690 		sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
2691 	}
2692 
2693 	/*
2694 	 * Initialize the prototype RXCFG register.
2695 	 */
2696 	sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
2697 	/*
2698 	 * Accept long packets (including FCS) so we can handle
2699 	 * 802.1q-tagged frames and jumbo frames properly.
2700 	 */
2701 	if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2702 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2703 		sc->sc_rxcfg |= RXCFG_ALP;
2704 
2705 	/*
2706 	 * Checksum offloading is disabled if the user selects an MTU
2707 	 * larger than 8109.  (FreeBSD says 8152, but there is emperical
2708 	 * evidence that >8109 does not work on some boards, such as the
2709 	 * Planex GN-1000TE).
2710 	 */
2711 	if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2712 	    (ifp->if_capenable &
2713 	     (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2714 	      IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2715 	      IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
2716 		printf("%s: Checksum offloading does not work if MTU > 8109 - "
2717 		       "disabled.\n", device_xname(&sc->sc_dev));
2718 		ifp->if_capenable &=
2719 		    ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2720 		     IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2721 		     IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
2722 		ifp->if_csum_flags_tx = 0;
2723 		ifp->if_csum_flags_rx = 0;
2724 	}
2725 
2726 	bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
2727 
2728 	if (sc->sc_gigabit)
2729 		sipcom_dp83820_init(sc, ifp->if_capenable);
2730 
2731 	/*
2732 	 * Give the transmit and receive rings to the chip.
2733 	 */
2734 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2735 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2736 
2737 	/*
2738 	 * Initialize the interrupt mask.
2739 	 */
2740 	sc->sc_imr = sc->sc_bits.b_isr_dperr |
2741 	             sc->sc_bits.b_isr_sserr |
2742 		     sc->sc_bits.b_isr_rmabt |
2743 		     sc->sc_bits.b_isr_rtabt | ISR_RXSOVR |
2744 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2745 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2746 
2747 	/* Set up the receive filter. */
2748 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2749 
2750 	/*
2751 	 * Tune sc_rx_flow_thresh.
2752 	 * XXX "More than 8KB" is too short for jumbo frames.
2753 	 * XXX TODO: Threshold value should be user-settable.
2754 	 */
2755 	sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2756 				 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2757 				 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2758 
2759 	/*
2760 	 * Set the current media.  Do this after initializing the prototype
2761 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2762 	 * control.
2763 	 */
2764 	if ((error = ether_mediachange(ifp)) != 0)
2765 		goto out;
2766 
2767 	/*
2768 	 * Set the interrupt hold-off timer to 100us.
2769 	 */
2770 	if (sc->sc_gigabit)
2771 		bus_space_write_4(st, sh, SIP_IHR, 0x01);
2772 
2773 	/*
2774 	 * Enable interrupts.
2775 	 */
2776 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
2777 
2778 	/*
2779 	 * Start the transmit and receive processes.
2780 	 */
2781 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2782 
2783 	/*
2784 	 * Start the one second MII clock.
2785 	 */
2786 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2787 
2788 	/*
2789 	 * ...all done!
2790 	 */
2791 	ifp->if_flags |= IFF_RUNNING;
2792 	ifp->if_flags &= ~IFF_OACTIVE;
2793 	sc->sc_if_flags = ifp->if_flags;
2794 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2795 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2796 	sc->sc_prev.if_capenable = ifp->if_capenable;
2797 
2798  out:
2799 	if (error)
2800 		printf("%s: interface not running\n", device_xname(&sc->sc_dev));
2801 	return (error);
2802 }
2803 
2804 /*
2805  * sip_drain:
2806  *
2807  *	Drain the receive queue.
2808  */
2809 static void
2810 sipcom_rxdrain(struct sip_softc *sc)
2811 {
2812 	struct sip_rxsoft *rxs;
2813 	int i;
2814 
2815 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2816 		rxs = &sc->sc_rxsoft[i];
2817 		if (rxs->rxs_mbuf != NULL) {
2818 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2819 			m_freem(rxs->rxs_mbuf);
2820 			rxs->rxs_mbuf = NULL;
2821 		}
2822 	}
2823 }
2824 
2825 /*
2826  * sip_stop:		[ ifnet interface function ]
2827  *
2828  *	Stop transmission on the interface.
2829  */
2830 static void
2831 sipcom_stop(struct ifnet *ifp, int disable)
2832 {
2833 	struct sip_softc *sc = ifp->if_softc;
2834 	bus_space_tag_t st = sc->sc_st;
2835 	bus_space_handle_t sh = sc->sc_sh;
2836 	struct sip_txsoft *txs;
2837 	u_int32_t cmdsts = 0;		/* DEBUG */
2838 
2839 	/*
2840 	 * Stop the one second clock.
2841 	 */
2842 	callout_stop(&sc->sc_tick_ch);
2843 
2844 	/* Down the MII. */
2845 	mii_down(&sc->sc_mii);
2846 
2847 	/*
2848 	 * Disable interrupts.
2849 	 */
2850 	bus_space_write_4(st, sh, SIP_IER, 0);
2851 
2852 	/*
2853 	 * Stop receiver and transmitter.
2854 	 */
2855 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2856 
2857 	/*
2858 	 * Release any queued transmit buffers.
2859 	 */
2860 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2861 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2862 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2863 		    (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
2864 		     CMDSTS_INTR) == 0)
2865 			printf("%s: sip_stop: last descriptor does not "
2866 			    "have INTR bit set\n", device_xname(&sc->sc_dev));
2867 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2868 #ifdef DIAGNOSTIC
2869 		if (txs->txs_mbuf == NULL) {
2870 			printf("%s: dirty txsoft with no mbuf chain\n",
2871 			    device_xname(&sc->sc_dev));
2872 			panic("sip_stop");
2873 		}
2874 #endif
2875 		cmdsts |=		/* DEBUG */
2876 		    le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
2877 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2878 		m_freem(txs->txs_mbuf);
2879 		txs->txs_mbuf = NULL;
2880 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2881 	}
2882 
2883 	/*
2884 	 * Mark the interface down and cancel the watchdog timer.
2885 	 */
2886 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2887 	ifp->if_timer = 0;
2888 
2889 	if (disable)
2890 		pmf_device_suspend_self(&sc->sc_dev);
2891 
2892 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2893 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2894 		printf("%s: sip_stop: no INTR bits set in dirty tx "
2895 		    "descriptors\n", device_xname(&sc->sc_dev));
2896 }
2897 
2898 /*
2899  * sip_read_eeprom:
2900  *
2901  *	Read data from the serial EEPROM.
2902  */
2903 static void
2904 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2905     u_int16_t *data)
2906 {
2907 	bus_space_tag_t st = sc->sc_st;
2908 	bus_space_handle_t sh = sc->sc_sh;
2909 	u_int16_t reg;
2910 	int i, x;
2911 
2912 	for (i = 0; i < wordcnt; i++) {
2913 		/* Send CHIP SELECT. */
2914 		reg = EROMAR_EECS;
2915 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
2916 
2917 		/* Shift in the READ opcode. */
2918 		for (x = 3; x > 0; x--) {
2919 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2920 				reg |= EROMAR_EEDI;
2921 			else
2922 				reg &= ~EROMAR_EEDI;
2923 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2924 			bus_space_write_4(st, sh, SIP_EROMAR,
2925 			    reg | EROMAR_EESK);
2926 			delay(4);
2927 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2928 			delay(4);
2929 		}
2930 
2931 		/* Shift in address. */
2932 		for (x = 6; x > 0; x--) {
2933 			if ((word + i) & (1 << (x - 1)))
2934 				reg |= EROMAR_EEDI;
2935 			else
2936 				reg &= ~EROMAR_EEDI;
2937 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2938 			bus_space_write_4(st, sh, SIP_EROMAR,
2939 			    reg | EROMAR_EESK);
2940 			delay(4);
2941 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2942 			delay(4);
2943 		}
2944 
2945 		/* Shift out data. */
2946 		reg = EROMAR_EECS;
2947 		data[i] = 0;
2948 		for (x = 16; x > 0; x--) {
2949 			bus_space_write_4(st, sh, SIP_EROMAR,
2950 			    reg | EROMAR_EESK);
2951 			delay(4);
2952 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2953 				data[i] |= (1 << (x - 1));
2954 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2955 			delay(4);
2956 		}
2957 
2958 		/* Clear CHIP SELECT. */
2959 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
2960 		delay(4);
2961 	}
2962 }
2963 
2964 /*
2965  * sipcom_add_rxbuf:
2966  *
2967  *	Add a receive buffer to the indicated descriptor.
2968  */
2969 static int
2970 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
2971 {
2972 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2973 	struct mbuf *m;
2974 	int error;
2975 
2976 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2977 	if (m == NULL)
2978 		return (ENOBUFS);
2979 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2980 
2981 	MCLGET(m, M_DONTWAIT);
2982 	if ((m->m_flags & M_EXT) == 0) {
2983 		m_freem(m);
2984 		return (ENOBUFS);
2985 	}
2986 
2987 	/* XXX I don't believe this is necessary. --dyoung */
2988 	if (sc->sc_gigabit)
2989 		m->m_len = sc->sc_parm->p_rxbuf_len;
2990 
2991 	if (rxs->rxs_mbuf != NULL)
2992 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2993 
2994 	rxs->rxs_mbuf = m;
2995 
2996 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2997 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2998 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2999 	if (error) {
3000 		printf("%s: can't load rx DMA map %d, error = %d\n",
3001 		    device_xname(&sc->sc_dev), idx, error);
3002 		panic("%s", __func__);		/* XXX */
3003 	}
3004 
3005 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3006 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3007 
3008 	sip_init_rxdesc(sc, idx);
3009 
3010 	return (0);
3011 }
3012 
3013 /*
3014  * sip_sis900_set_filter:
3015  *
3016  *	Set up the receive filter.
3017  */
3018 static void
3019 sipcom_sis900_set_filter(struct sip_softc *sc)
3020 {
3021 	bus_space_tag_t st = sc->sc_st;
3022 	bus_space_handle_t sh = sc->sc_sh;
3023 	struct ethercom *ec = &sc->sc_ethercom;
3024 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3025 	struct ether_multi *enm;
3026 	const u_int8_t *cp;
3027 	struct ether_multistep step;
3028 	u_int32_t crc, mchash[16];
3029 
3030 	/*
3031 	 * Initialize the prototype RFCR.
3032 	 */
3033 	sc->sc_rfcr = RFCR_RFEN;
3034 	if (ifp->if_flags & IFF_BROADCAST)
3035 		sc->sc_rfcr |= RFCR_AAB;
3036 	if (ifp->if_flags & IFF_PROMISC) {
3037 		sc->sc_rfcr |= RFCR_AAP;
3038 		goto allmulti;
3039 	}
3040 
3041 	/*
3042 	 * Set up the multicast address filter by passing all multicast
3043 	 * addresses through a CRC generator, and then using the high-order
3044 	 * 6 bits as an index into the 128 bit multicast hash table (only
3045 	 * the lower 16 bits of each 32 bit multicast hash register are
3046 	 * valid).  The high order bits select the register, while the
3047 	 * rest of the bits select the bit within the register.
3048 	 */
3049 
3050 	memset(mchash, 0, sizeof(mchash));
3051 
3052 	/*
3053 	 * SiS900 (at least SiS963) requires us to register the address of
3054 	 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3055 	 */
3056 	crc = 0x0ed423f9;
3057 
3058 	if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3059 	    SIP_SIS900_REV(sc, SIS_REV_960) ||
3060 	    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3061 		/* Just want the 8 most significant bits. */
3062 		crc >>= 24;
3063 	} else {
3064 		/* Just want the 7 most significant bits. */
3065 		crc >>= 25;
3066 	}
3067 
3068 	/* Set the corresponding bit in the hash table. */
3069 	mchash[crc >> 4] |= 1 << (crc & 0xf);
3070 
3071 	ETHER_FIRST_MULTI(step, ec, enm);
3072 	while (enm != NULL) {
3073 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3074 			/*
3075 			 * We must listen to a range of multicast addresses.
3076 			 * For now, just accept all multicasts, rather than
3077 			 * trying to set only those filter bits needed to match
3078 			 * the range.  (At this time, the only use of address
3079 			 * ranges is for IP multicast routing, for which the
3080 			 * range is big enough to require all bits set.)
3081 			 */
3082 			goto allmulti;
3083 		}
3084 
3085 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3086 
3087 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3088 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
3089 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3090 			/* Just want the 8 most significant bits. */
3091 			crc >>= 24;
3092 		} else {
3093 			/* Just want the 7 most significant bits. */
3094 			crc >>= 25;
3095 		}
3096 
3097 		/* Set the corresponding bit in the hash table. */
3098 		mchash[crc >> 4] |= 1 << (crc & 0xf);
3099 
3100 		ETHER_NEXT_MULTI(step, enm);
3101 	}
3102 
3103 	ifp->if_flags &= ~IFF_ALLMULTI;
3104 	goto setit;
3105 
3106  allmulti:
3107 	ifp->if_flags |= IFF_ALLMULTI;
3108 	sc->sc_rfcr |= RFCR_AAM;
3109 
3110  setit:
3111 #define	FILTER_EMIT(addr, data)						\
3112 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
3113 	delay(1);							\
3114 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
3115 	delay(1)
3116 
3117 	/*
3118 	 * Disable receive filter, and program the node address.
3119 	 */
3120 	cp = CLLADDR(ifp->if_sadl);
3121 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
3122 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
3123 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
3124 
3125 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3126 		/*
3127 		 * Program the multicast hash table.
3128 		 */
3129 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
3130 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
3131 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
3132 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
3133 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
3134 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
3135 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
3136 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
3137 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3138 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
3139 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3140 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
3141 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
3142 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
3143 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
3144 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
3145 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
3146 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
3147 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
3148 		}
3149 	}
3150 #undef FILTER_EMIT
3151 
3152 	/*
3153 	 * Re-enable the receiver filter.
3154 	 */
3155 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3156 }
3157 
3158 /*
3159  * sip_dp83815_set_filter:
3160  *
3161  *	Set up the receive filter.
3162  */
3163 static void
3164 sipcom_dp83815_set_filter(struct sip_softc *sc)
3165 {
3166 	bus_space_tag_t st = sc->sc_st;
3167 	bus_space_handle_t sh = sc->sc_sh;
3168 	struct ethercom *ec = &sc->sc_ethercom;
3169 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3170 	struct ether_multi *enm;
3171 	const u_int8_t *cp;
3172 	struct ether_multistep step;
3173 	u_int32_t crc, hash, slot, bit;
3174 #define	MCHASH_NWORDS_83820	128
3175 #define	MCHASH_NWORDS_83815	32
3176 #define	MCHASH_NWORDS	MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3177 	u_int16_t mchash[MCHASH_NWORDS];
3178 	int i;
3179 
3180 	/*
3181 	 * Initialize the prototype RFCR.
3182 	 * Enable the receive filter, and accept on
3183 	 *    Perfect (destination address) Match
3184 	 * If IFF_BROADCAST, also accept all broadcast packets.
3185 	 * If IFF_PROMISC, accept all unicast packets (and later, set
3186 	 *    IFF_ALLMULTI and accept all multicast, too).
3187 	 */
3188 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3189 	if (ifp->if_flags & IFF_BROADCAST)
3190 		sc->sc_rfcr |= RFCR_AAB;
3191 	if (ifp->if_flags & IFF_PROMISC) {
3192 		sc->sc_rfcr |= RFCR_AAP;
3193 		goto allmulti;
3194 	}
3195 
3196 	/*
3197          * Set up the DP83820/DP83815 multicast address filter by
3198          * passing all multicast addresses through a CRC generator,
3199          * and then using the high-order 11/9 bits as an index into
3200          * the 2048/512 bit multicast hash table.  The high-order
3201          * 7/5 bits select the slot, while the low-order 4 bits
3202          * select the bit within the slot.  Note that only the low
3203          * 16-bits of each filter word are used, and there are
3204          * 128/32 filter words.
3205 	 */
3206 
3207 	memset(mchash, 0, sizeof(mchash));
3208 
3209 	ifp->if_flags &= ~IFF_ALLMULTI;
3210 	ETHER_FIRST_MULTI(step, ec, enm);
3211 	if (enm == NULL)
3212 		goto setit;
3213 	while (enm != NULL) {
3214 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3215 			/*
3216 			 * We must listen to a range of multicast addresses.
3217 			 * For now, just accept all multicasts, rather than
3218 			 * trying to set only those filter bits needed to match
3219 			 * the range.  (At this time, the only use of address
3220 			 * ranges is for IP multicast routing, for which the
3221 			 * range is big enough to require all bits set.)
3222 			 */
3223 			goto allmulti;
3224 		}
3225 
3226 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3227 
3228 		if (sc->sc_gigabit) {
3229 			/* Just want the 11 most significant bits. */
3230 			hash = crc >> 21;
3231 		} else {
3232 			/* Just want the 9 most significant bits. */
3233 			hash = crc >> 23;
3234 		}
3235 
3236 		slot = hash >> 4;
3237 		bit = hash & 0xf;
3238 
3239 		/* Set the corresponding bit in the hash table. */
3240 		mchash[slot] |= 1 << bit;
3241 
3242 		ETHER_NEXT_MULTI(step, enm);
3243 	}
3244 	sc->sc_rfcr |= RFCR_MHEN;
3245 	goto setit;
3246 
3247  allmulti:
3248 	ifp->if_flags |= IFF_ALLMULTI;
3249 	sc->sc_rfcr |= RFCR_AAM;
3250 
3251  setit:
3252 #define	FILTER_EMIT(addr, data)						\
3253 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
3254 	delay(1);							\
3255 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
3256 	delay(1)
3257 
3258 	/*
3259 	 * Disable receive filter, and program the node address.
3260 	 */
3261 	cp = CLLADDR(ifp->if_sadl);
3262 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3263 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3264 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3265 
3266 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3267 		int nwords =
3268 		    sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3269 		/*
3270 		 * Program the multicast hash table.
3271 		 */
3272 		for (i = 0; i < nwords; i++) {
3273 			FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
3274 		}
3275 	}
3276 #undef FILTER_EMIT
3277 #undef MCHASH_NWORDS
3278 #undef MCHASH_NWORDS_83815
3279 #undef MCHASH_NWORDS_83820
3280 
3281 	/*
3282 	 * Re-enable the receiver filter.
3283 	 */
3284 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3285 }
3286 
3287 /*
3288  * sip_dp83820_mii_readreg:	[mii interface function]
3289  *
3290  *	Read a PHY register on the MII of the DP83820.
3291  */
3292 static int
3293 sipcom_dp83820_mii_readreg(device_t self, int phy, int reg)
3294 {
3295 	struct sip_softc *sc = device_private(self);
3296 
3297 	if (sc->sc_cfg & CFG_TBI_EN) {
3298 		bus_addr_t tbireg;
3299 		int rv;
3300 
3301 		if (phy != 0)
3302 			return (0);
3303 
3304 		switch (reg) {
3305 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3306 		case MII_BMSR:		tbireg = SIP_TBISR; break;
3307 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3308 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3309 		case MII_ANER:		tbireg = SIP_TANER; break;
3310 		case MII_EXTSR:
3311 			/*
3312 			 * Don't even bother reading the TESR register.
3313 			 * The manual documents that the device has
3314 			 * 1000baseX full/half capability, but the
3315 			 * register itself seems read back 0 on some
3316 			 * boards.  Just hard-code the result.
3317 			 */
3318 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3319 
3320 		default:
3321 			return (0);
3322 		}
3323 
3324 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3325 		if (tbireg == SIP_TBISR) {
3326 			/* LINK and ACOMP are switched! */
3327 			int val = rv;
3328 
3329 			rv = 0;
3330 			if (val & TBISR_MR_LINK_STATUS)
3331 				rv |= BMSR_LINK;
3332 			if (val & TBISR_MR_AN_COMPLETE)
3333 				rv |= BMSR_ACOMP;
3334 
3335 			/*
3336 			 * The manual claims this register reads back 0
3337 			 * on hard and soft reset.  But we want to let
3338 			 * the gentbi driver know that we support auto-
3339 			 * negotiation, so hard-code this bit in the
3340 			 * result.
3341 			 */
3342 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
3343 		}
3344 
3345 		return (rv);
3346 	}
3347 
3348 	return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
3349 }
3350 
3351 /*
3352  * sip_dp83820_mii_writereg:	[mii interface function]
3353  *
3354  *	Write a PHY register on the MII of the DP83820.
3355  */
3356 static void
3357 sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, int val)
3358 {
3359 	struct sip_softc *sc = device_private(self);
3360 
3361 	if (sc->sc_cfg & CFG_TBI_EN) {
3362 		bus_addr_t tbireg;
3363 
3364 		if (phy != 0)
3365 			return;
3366 
3367 		switch (reg) {
3368 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3369 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3370 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3371 		default:
3372 			return;
3373 		}
3374 
3375 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3376 		return;
3377 	}
3378 
3379 	mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
3380 }
3381 
3382 /*
3383  * sip_dp83820_mii_statchg:	[mii interface function]
3384  *
3385  *	Callback from MII layer when media changes.
3386  */
3387 static void
3388 sipcom_dp83820_mii_statchg(device_t self)
3389 {
3390 	struct sip_softc *sc = device_private(self);
3391 	struct mii_data *mii = &sc->sc_mii;
3392 	u_int32_t cfg, pcr;
3393 
3394 	/*
3395 	 * Get flow control negotiation result.
3396 	 */
3397 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3398 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3399 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3400 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3401 	}
3402 
3403 	/*
3404 	 * Update TXCFG for full-duplex operation.
3405 	 */
3406 	if ((mii->mii_media_active & IFM_FDX) != 0)
3407 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3408 	else
3409 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3410 
3411 	/*
3412 	 * Update RXCFG for full-duplex or loopback.
3413 	 */
3414 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3415 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3416 		sc->sc_rxcfg |= RXCFG_ATX;
3417 	else
3418 		sc->sc_rxcfg &= ~RXCFG_ATX;
3419 
3420 	/*
3421 	 * Update CFG for MII/GMII.
3422 	 */
3423 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3424 		cfg = sc->sc_cfg | CFG_MODE_1000;
3425 	else
3426 		cfg = sc->sc_cfg;
3427 
3428 	/*
3429 	 * 802.3x flow control.
3430 	 */
3431 	pcr = 0;
3432 	if (sc->sc_flowflags & IFM_FLOW) {
3433 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3434 			pcr |= sc->sc_rx_flow_thresh;
3435 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3436 			pcr |= PCR_PSEN | PCR_PS_MCAST;
3437 	}
3438 
3439 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3440 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3441 	    sc->sc_txcfg);
3442 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3443 	    sc->sc_rxcfg);
3444 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3445 }
3446 
3447 /*
3448  * sip_mii_bitbang_read: [mii bit-bang interface function]
3449  *
3450  *	Read the MII serial port for the MII bit-bang module.
3451  */
3452 static u_int32_t
3453 sipcom_mii_bitbang_read(device_t self)
3454 {
3455 	struct sip_softc *sc = device_private(self);
3456 
3457 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3458 }
3459 
3460 /*
3461  * sip_mii_bitbang_write: [mii big-bang interface function]
3462  *
3463  *	Write the MII serial port for the MII bit-bang module.
3464  */
3465 static void
3466 sipcom_mii_bitbang_write(device_t self, u_int32_t val)
3467 {
3468 	struct sip_softc *sc = device_private(self);
3469 
3470 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3471 }
3472 
3473 /*
3474  * sip_sis900_mii_readreg:	[mii interface function]
3475  *
3476  *	Read a PHY register on the MII.
3477  */
3478 static int
3479 sipcom_sis900_mii_readreg(device_t self, int phy, int reg)
3480 {
3481 	struct sip_softc *sc = device_private(self);
3482 	u_int32_t enphy;
3483 
3484 	/*
3485 	 * The PHY of recent SiS chipsets is accessed through bitbang
3486 	 * operations.
3487 	 */
3488 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3489 		return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3490 		    phy, reg);
3491 
3492 #ifndef SIS900_MII_RESTRICT
3493 	/*
3494 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3495 	 * MII address 0.
3496 	 */
3497 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3498 		return (0);
3499 #endif
3500 
3501 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3502 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3503 	    ENPHY_RWCMD | ENPHY_ACCESS);
3504 	do {
3505 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3506 	} while (enphy & ENPHY_ACCESS);
3507 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3508 }
3509 
3510 /*
3511  * sip_sis900_mii_writereg:	[mii interface function]
3512  *
3513  *	Write a PHY register on the MII.
3514  */
3515 static void
3516 sipcom_sis900_mii_writereg(device_t self, int phy, int reg, int val)
3517 {
3518 	struct sip_softc *sc = device_private(self);
3519 	u_int32_t enphy;
3520 
3521 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3522 		mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3523 		    phy, reg, val);
3524 		return;
3525 	}
3526 
3527 #ifndef SIS900_MII_RESTRICT
3528 	/*
3529 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3530 	 * MII address 0.
3531 	 */
3532 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3533 		return;
3534 #endif
3535 
3536 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3537 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3538 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3539 	do {
3540 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3541 	} while (enphy & ENPHY_ACCESS);
3542 }
3543 
3544 /*
3545  * sip_sis900_mii_statchg:	[mii interface function]
3546  *
3547  *	Callback from MII layer when media changes.
3548  */
3549 static void
3550 sipcom_sis900_mii_statchg(device_t self)
3551 {
3552 	struct sip_softc *sc = device_private(self);
3553 	struct mii_data *mii = &sc->sc_mii;
3554 	u_int32_t flowctl;
3555 
3556 	/*
3557 	 * Get flow control negotiation result.
3558 	 */
3559 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3560 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3561 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3562 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3563 	}
3564 
3565 	/*
3566 	 * Update TXCFG for full-duplex operation.
3567 	 */
3568 	if ((mii->mii_media_active & IFM_FDX) != 0)
3569 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3570 	else
3571 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3572 
3573 	/*
3574 	 * Update RXCFG for full-duplex or loopback.
3575 	 */
3576 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3577 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3578 		sc->sc_rxcfg |= RXCFG_ATX;
3579 	else
3580 		sc->sc_rxcfg &= ~RXCFG_ATX;
3581 
3582 	/*
3583 	 * Update IMR for use of 802.3x flow control.
3584 	 */
3585 	if (sc->sc_flowflags & IFM_FLOW) {
3586 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3587 		flowctl = FLOWCTL_FLOWEN;
3588 	} else {
3589 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3590 		flowctl = 0;
3591 	}
3592 
3593 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3594 	    sc->sc_txcfg);
3595 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3596 	    sc->sc_rxcfg);
3597 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3598 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3599 }
3600 
3601 /*
3602  * sip_dp83815_mii_readreg:	[mii interface function]
3603  *
3604  *	Read a PHY register on the MII.
3605  */
3606 static int
3607 sipcom_dp83815_mii_readreg(device_t self, int phy, int reg)
3608 {
3609 	struct sip_softc *sc = device_private(self);
3610 	u_int32_t val;
3611 
3612 	/*
3613 	 * The DP83815 only has an internal PHY.  Only allow
3614 	 * MII address 0.
3615 	 */
3616 	if (phy != 0)
3617 		return (0);
3618 
3619 	/*
3620 	 * Apparently, after a reset, the DP83815 can take a while
3621 	 * to respond.  During this recovery period, the BMSR returns
3622 	 * a value of 0.  Catch this -- it's not supposed to happen
3623 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3624 	 * PHY to come back to life.
3625 	 *
3626 	 * This works out because the BMSR is the first register
3627 	 * read during the PHY probe process.
3628 	 */
3629 	do {
3630 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3631 	} while (reg == MII_BMSR && val == 0);
3632 
3633 	return (val & 0xffff);
3634 }
3635 
3636 /*
3637  * sip_dp83815_mii_writereg:	[mii interface function]
3638  *
3639  *	Write a PHY register to the MII.
3640  */
3641 static void
3642 sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, int val)
3643 {
3644 	struct sip_softc *sc = device_private(self);
3645 
3646 	/*
3647 	 * The DP83815 only has an internal PHY.  Only allow
3648 	 * MII address 0.
3649 	 */
3650 	if (phy != 0)
3651 		return;
3652 
3653 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3654 }
3655 
3656 /*
3657  * sip_dp83815_mii_statchg:	[mii interface function]
3658  *
3659  *	Callback from MII layer when media changes.
3660  */
3661 static void
3662 sipcom_dp83815_mii_statchg(device_t self)
3663 {
3664 	struct sip_softc *sc = device_private(self);
3665 
3666 	/*
3667 	 * Update TXCFG for full-duplex operation.
3668 	 */
3669 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3670 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3671 	else
3672 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3673 
3674 	/*
3675 	 * Update RXCFG for full-duplex or loopback.
3676 	 */
3677 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3678 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3679 		sc->sc_rxcfg |= RXCFG_ATX;
3680 	else
3681 		sc->sc_rxcfg &= ~RXCFG_ATX;
3682 
3683 	/*
3684 	 * XXX 802.3x flow control.
3685 	 */
3686 
3687 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3688 	    sc->sc_txcfg);
3689 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3690 	    sc->sc_rxcfg);
3691 
3692 	/*
3693 	 * Some DP83815s experience problems when used with short
3694 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
3695 	 * sequence adjusts the DSP's signal attenuation to fix the
3696 	 * problem.
3697 	 */
3698 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3699 		uint32_t reg;
3700 
3701 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3702 
3703 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3704 		reg &= 0x0fff;
3705 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3706 		delay(100);
3707 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3708 		reg &= 0x00ff;
3709 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3710 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3711 			    0x00e8);
3712 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3713 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3714 			    reg | 0x20);
3715 		}
3716 
3717 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3718 	}
3719 }
3720 
3721 static void
3722 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3723     const struct pci_attach_args *pa, u_int8_t *enaddr)
3724 {
3725 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3726 	u_int8_t cksum, *e, match;
3727 	int i;
3728 
3729 	/*
3730 	 * EEPROM data format for the DP83820 can be found in
3731 	 * the DP83820 manual, section 4.2.4.
3732 	 */
3733 
3734 	sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3735 
3736 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3737 	match = ~(match - 1);
3738 
3739 	cksum = 0x55;
3740 	e = (u_int8_t *) eeprom_data;
3741 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3742 		cksum += *e++;
3743 
3744 	if (cksum != match)
3745 		printf("%s: Checksum (%x) mismatch (%x)",
3746 		    device_xname(&sc->sc_dev), cksum, match);
3747 
3748 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3749 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3750 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3751 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3752 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3753 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3754 }
3755 
3756 static void
3757 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3758 {
3759 	int i;
3760 
3761 	/*
3762 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
3763 	 * a reason, but I don't know it.
3764 	 */
3765 	for (i = 0; i < 10; i++)
3766 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3767 }
3768 
3769 static void
3770 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3771     const struct pci_attach_args *pa, u_int8_t *enaddr)
3772 {
3773 	u_int16_t myea[ETHER_ADDR_LEN / 2];
3774 
3775 	switch (sc->sc_rev) {
3776 	case SIS_REV_630S:
3777 	case SIS_REV_630E:
3778 	case SIS_REV_630EA1:
3779 	case SIS_REV_630ET:
3780 	case SIS_REV_635:
3781 		/*
3782 		 * The MAC address for the on-board Ethernet of
3783 		 * the SiS 630 chipset is in the NVRAM.  Kick
3784 		 * the chip into re-loading it from NVRAM, and
3785 		 * read the MAC address out of the filter registers.
3786 		 */
3787 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3788 
3789 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3790 		    RFCR_RFADDR_NODE0);
3791 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3792 		    0xffff;
3793 
3794 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3795 		    RFCR_RFADDR_NODE2);
3796 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3797 		    0xffff;
3798 
3799 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3800 		    RFCR_RFADDR_NODE4);
3801 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3802 		    0xffff;
3803 		break;
3804 
3805 	case SIS_REV_960:
3806 		{
3807 #define	SIS_SET_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3808 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3809 
3810 #define	SIS_CLR_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3811 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3812 
3813 			int waittime, i;
3814 
3815 			/* Allow to read EEPROM from LAN. It is shared
3816 			 * between a 1394 controller and the NIC and each
3817 			 * time we access it, we need to set SIS_EECMD_REQ.
3818 			 */
3819 			SIS_SET_EROMAR(sc, EROMAR_REQ);
3820 
3821 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3822 				/* Force EEPROM to idle state. */
3823 
3824 				/*
3825 				 * XXX-cube This is ugly.  I'll look for docs about it.
3826 				 */
3827 				SIS_SET_EROMAR(sc, EROMAR_EECS);
3828 				sipcom_sis900_eeprom_delay(sc);
3829 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3830 					SIS_SET_EROMAR(sc, EROMAR_EESK);
3831 					sipcom_sis900_eeprom_delay(sc);
3832 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
3833 					sipcom_sis900_eeprom_delay(sc);
3834 				}
3835 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
3836 				sipcom_sis900_eeprom_delay(sc);
3837 				bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3838 
3839 				if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3840 					sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3841 					    sizeof(myea) / sizeof(myea[0]), myea);
3842 					break;
3843 				}
3844 				DELAY(1);
3845 			}
3846 
3847 			/*
3848 			 * Set SIS_EECTL_CLK to high, so a other master
3849 			 * can operate on the i2c bus.
3850 			 */
3851 			SIS_SET_EROMAR(sc, EROMAR_EESK);
3852 
3853 			/* Refuse EEPROM access by LAN */
3854 			SIS_SET_EROMAR(sc, EROMAR_DONE);
3855 		} break;
3856 
3857 	default:
3858 		sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3859 		    sizeof(myea) / sizeof(myea[0]), myea);
3860 	}
3861 
3862 	enaddr[0] = myea[0] & 0xff;
3863 	enaddr[1] = myea[0] >> 8;
3864 	enaddr[2] = myea[1] & 0xff;
3865 	enaddr[3] = myea[1] >> 8;
3866 	enaddr[4] = myea[2] & 0xff;
3867 	enaddr[5] = myea[2] >> 8;
3868 }
3869 
3870 /* Table and macro to bit-reverse an octet. */
3871 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3872 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3873 
3874 static void
3875 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3876     const struct pci_attach_args *pa, u_int8_t *enaddr)
3877 {
3878 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3879 	u_int8_t cksum, *e, match;
3880 	int i;
3881 
3882 	sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3883 	    sizeof(eeprom_data[0]), eeprom_data);
3884 
3885 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3886 	match = ~(match - 1);
3887 
3888 	cksum = 0x55;
3889 	e = (u_int8_t *) eeprom_data;
3890 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3891 		cksum += *e++;
3892 	}
3893 	if (cksum != match) {
3894 		printf("%s: Checksum (%x) mismatch (%x)",
3895 		    device_xname(&sc->sc_dev), cksum, match);
3896 	}
3897 
3898 	/*
3899 	 * Unrolled because it makes slightly more sense this way.
3900 	 * The DP83815 stores the MAC address in bit 0 of word 6
3901 	 * through bit 15 of word 8.
3902 	 */
3903 	ea = &eeprom_data[6];
3904 	enaddr[0] = ((*ea & 0x1) << 7);
3905 	ea++;
3906 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
3907 	enaddr[1] = ((*ea & 0x1FE) >> 1);
3908 	enaddr[2] = ((*ea & 0x1) << 7);
3909 	ea++;
3910 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
3911 	enaddr[3] = ((*ea & 0x1FE) >> 1);
3912 	enaddr[4] = ((*ea & 0x1) << 7);
3913 	ea++;
3914 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
3915 	enaddr[5] = ((*ea & 0x1FE) >> 1);
3916 
3917 	/*
3918 	 * In case that's not weird enough, we also need to reverse
3919 	 * the bits in each byte.  This all actually makes more sense
3920 	 * if you think about the EEPROM storage as an array of bits
3921 	 * being shifted into bytes, but that's not how we're looking
3922 	 * at it here...
3923 	 */
3924 	for (i = 0; i < 6 ;i++)
3925 		enaddr[i] = bbr(enaddr[i]);
3926 }
3927 
3928 /*
3929  * sip_mediastatus:	[ifmedia interface function]
3930  *
3931  *	Get the current interface media status.
3932  */
3933 static void
3934 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3935 {
3936 	struct sip_softc *sc = ifp->if_softc;
3937 
3938 	ether_mediastatus(ifp, ifmr);
3939 	ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
3940 			   sc->sc_flowflags;
3941 }
3942