xref: /netbsd-src/sys/dev/pci/if_sip.c (revision 37b34d511dea595d3ba03a661cf3b775038ea5f8)
1 /*	$NetBSD: if_sip.c,v 1.73 2002/10/17 01:17:30 fair Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*-
40  * Copyright (c) 1999 Network Computer, Inc.
41  * All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of Network Computer, Inc. nor the names of its
52  *    contributors may be used to endorse or promote products derived
53  *    from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65  * POSSIBILITY OF SUCH DAMAGE.
66  */
67 
68 /*
69  * Device driver for the Silicon Integrated Systems SiS 900,
70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72  * controllers.
73  *
74  * Originally written to support the SiS 900 by Jason R. Thorpe for
75  * Network Computer, Inc.
76  *
77  * TODO:
78  *
79  *	- Reduce the Rx interrupt load.
80  */
81 
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.73 2002/10/17 01:17:30 fair Exp $");
84 
85 #include "bpfilter.h"
86 #include "rnd.h"
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99 
100 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
101 
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105 
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110 
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114 
115 #include <machine/bus.h>
116 #include <machine/intr.h>
117 #include <machine/endian.h>
118 
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #ifdef DP83820
122 #include <dev/mii/mii_bitbang.h>
123 #endif /* DP83820 */
124 
125 #include <dev/pci/pcireg.h>
126 #include <dev/pci/pcivar.h>
127 #include <dev/pci/pcidevs.h>
128 
129 #include <dev/pci/if_sipreg.h>
130 
131 #ifdef DP83820		/* DP83820 Gigabit Ethernet */
132 #define	SIP_DECL(x)	__CONCAT(gsip_,x)
133 #else			/* SiS900 and DP83815 */
134 #define	SIP_DECL(x)	__CONCAT(sip_,x)
135 #endif
136 
137 #define	SIP_STR(x)	__STRING(SIP_DECL(x))
138 
139 /*
140  * Transmit descriptor list size.  This is arbitrary, but allocate
141  * enough descriptors for 128 pending transmissions, and 8 segments
142  * per packet.  This MUST work out to a power of 2.
143  */
144 #define	SIP_NTXSEGS		16
145 #define	SIP_NTXSEGS_ALLOC	8
146 
147 #define	SIP_TXQUEUELEN		256
148 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
149 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
150 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
151 
152 #if defined(DP83020)
153 #define	TX_DMAMAP_SIZE		ETHER_MAX_LEN_JUMBO
154 #else
155 #define	TX_DMAMAP_SIZE		MCLBYTES
156 #endif
157 
158 /*
159  * Receive descriptor list size.  We have one Rx buffer per incoming
160  * packet, so this logic is a little simpler.
161  *
162  * Actually, on the DP83820, we allow the packet to consume more than
163  * one buffer, in order to support jumbo Ethernet frames.  In that
164  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
165  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
166  * so we'd better be quick about handling receive interrupts.
167  */
168 #if defined(DP83820)
169 #define	SIP_NRXDESC		256
170 #else
171 #define	SIP_NRXDESC		128
172 #endif /* DP83820 */
173 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
174 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
175 
176 /*
177  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
178  * a single clump that maps to a single DMA segment to make several things
179  * easier.
180  */
181 struct sip_control_data {
182 	/*
183 	 * The transmit descriptors.
184 	 */
185 	struct sip_desc scd_txdescs[SIP_NTXDESC];
186 
187 	/*
188 	 * The receive descriptors.
189 	 */
190 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
191 };
192 
193 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
194 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
195 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
196 
197 /*
198  * Software state for transmit jobs.
199  */
200 struct sip_txsoft {
201 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
202 	bus_dmamap_t txs_dmamap;	/* our DMA map */
203 	int txs_firstdesc;		/* first descriptor in packet */
204 	int txs_lastdesc;		/* last descriptor in packet */
205 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
206 };
207 
208 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
209 
210 /*
211  * Software state for receive jobs.
212  */
213 struct sip_rxsoft {
214 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
215 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
216 };
217 
218 /*
219  * Software state per device.
220  */
221 struct sip_softc {
222 	struct device sc_dev;		/* generic device information */
223 	bus_space_tag_t sc_st;		/* bus space tag */
224 	bus_space_handle_t sc_sh;	/* bus space handle */
225 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
226 	struct ethercom sc_ethercom;	/* ethernet common data */
227 	void *sc_sdhook;		/* shutdown hook */
228 
229 	const struct sip_product *sc_model; /* which model are we? */
230 	int sc_rev;			/* chip revision */
231 
232 	void *sc_ih;			/* interrupt cookie */
233 
234 	struct mii_data sc_mii;		/* MII/media information */
235 
236 	struct callout sc_tick_ch;	/* tick callout */
237 
238 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
239 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
240 
241 	/*
242 	 * Software state for transmit and receive descriptors.
243 	 */
244 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
245 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
246 
247 	/*
248 	 * Control data structures.
249 	 */
250 	struct sip_control_data *sc_control_data;
251 #define	sc_txdescs	sc_control_data->scd_txdescs
252 #define	sc_rxdescs	sc_control_data->scd_rxdescs
253 
254 #ifdef SIP_EVENT_COUNTERS
255 	/*
256 	 * Event counters.
257 	 */
258 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
259 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
260 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
261 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
262 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
263 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
264 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
265 #ifdef DP83820
266 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
267 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
268 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
269 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
270 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
271 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
272 #endif /* DP83820 */
273 #endif /* SIP_EVENT_COUNTERS */
274 
275 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
276 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
277 	u_int32_t sc_imr;		/* prototype IMR register */
278 	u_int32_t sc_rfcr;		/* prototype RFCR register */
279 
280 	u_int32_t sc_cfg;		/* prototype CFG register */
281 
282 #ifdef DP83820
283 	u_int32_t sc_gpior;		/* prototype GPIOR register */
284 #endif /* DP83820 */
285 
286 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
287 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
288 
289 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
290 
291 	int	sc_flags;		/* misc. flags; see below */
292 
293 	int	sc_txfree;		/* number of free Tx descriptors */
294 	int	sc_txnext;		/* next ready Tx descriptor */
295 	int	sc_txwin;		/* Tx descriptors since last intr */
296 
297 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
298 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
299 
300 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
301 #if defined(DP83820)
302 	int	sc_rxdiscard;
303 	int	sc_rxlen;
304 	struct mbuf *sc_rxhead;
305 	struct mbuf *sc_rxtail;
306 	struct mbuf **sc_rxtailp;
307 #endif /* DP83820 */
308 
309 #if NRND > 0
310 	rndsource_element_t rnd_source;	/* random source */
311 #endif
312 };
313 
314 /* sc_flags */
315 #define	SIPF_PAUSED	0x00000001	/* paused (802.3x flow control) */
316 
317 #ifdef DP83820
318 #define	SIP_RXCHAIN_RESET(sc)						\
319 do {									\
320 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
321 	*(sc)->sc_rxtailp = NULL;					\
322 	(sc)->sc_rxlen = 0;						\
323 } while (/*CONSTCOND*/0)
324 
325 #define	SIP_RXCHAIN_LINK(sc, m)						\
326 do {									\
327 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
328 	(sc)->sc_rxtailp = &(m)->m_next;				\
329 } while (/*CONSTCOND*/0)
330 #endif /* DP83820 */
331 
332 #ifdef SIP_EVENT_COUNTERS
333 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
334 #else
335 #define	SIP_EVCNT_INCR(ev)	/* nothing */
336 #endif
337 
338 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
339 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
340 
341 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
342 do {									\
343 	int __x, __n;							\
344 									\
345 	__x = (x);							\
346 	__n = (n);							\
347 									\
348 	/* If it will wrap around, sync to the end of the ring. */	\
349 	if ((__x + __n) > SIP_NTXDESC) {				\
350 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
351 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
352 		    (SIP_NTXDESC - __x), (ops));			\
353 		__n -= (SIP_NTXDESC - __x);				\
354 		__x = 0;						\
355 	}								\
356 									\
357 	/* Now sync whatever is left. */				\
358 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
359 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
360 } while (0)
361 
362 #define	SIP_CDRXSYNC(sc, x, ops)					\
363 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
364 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
365 
366 #ifdef DP83820
367 #define	SIP_INIT_RXDESC_EXTSTS	__sipd->sipd_extsts = 0;
368 #define	SIP_RXBUF_LEN		(MCLBYTES - 4)
369 #else
370 #define	SIP_INIT_RXDESC_EXTSTS	/* nothing */
371 #define	SIP_RXBUF_LEN		(MCLBYTES - 1)	/* field width */
372 #endif
373 #define	SIP_INIT_RXDESC(sc, x)						\
374 do {									\
375 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
376 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
377 									\
378 	__sipd->sipd_link =						\
379 	    htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x))));		\
380 	__sipd->sipd_bufptr =						\
381 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr);		\
382 	__sipd->sipd_cmdsts = htole32(CMDSTS_INTR |			\
383 	    (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK));			\
384 	SIP_INIT_RXDESC_EXTSTS						\
385 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
386 } while (0)
387 
388 #define	SIP_CHIP_VERS(sc, v, p, r)					\
389 	((sc)->sc_model->sip_vendor == (v) &&				\
390 	 (sc)->sc_model->sip_product == (p) &&				\
391 	 (sc)->sc_rev == (r))
392 
393 #define	SIP_CHIP_MODEL(sc, v, p)					\
394 	((sc)->sc_model->sip_vendor == (v) &&				\
395 	 (sc)->sc_model->sip_product == (p))
396 
397 #if !defined(DP83820)
398 #define	SIP_SIS900_REV(sc, rev)						\
399 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
400 #endif
401 
402 #define SIP_TIMEOUT 1000
403 
404 void	SIP_DECL(start)(struct ifnet *);
405 void	SIP_DECL(watchdog)(struct ifnet *);
406 int	SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
407 int	SIP_DECL(init)(struct ifnet *);
408 void	SIP_DECL(stop)(struct ifnet *, int);
409 
410 void	SIP_DECL(shutdown)(void *);
411 
412 void	SIP_DECL(reset)(struct sip_softc *);
413 void	SIP_DECL(rxdrain)(struct sip_softc *);
414 int	SIP_DECL(add_rxbuf)(struct sip_softc *, int);
415 void	SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *);
416 void	SIP_DECL(tick)(void *);
417 
418 #if !defined(DP83820)
419 void	SIP_DECL(sis900_set_filter)(struct sip_softc *);
420 #endif /* ! DP83820 */
421 void	SIP_DECL(dp83815_set_filter)(struct sip_softc *);
422 
423 #if defined(DP83820)
424 void	SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
425 	    const struct pci_attach_args *, u_int8_t *);
426 #else
427 void	SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
428 	    const struct pci_attach_args *, u_int8_t *);
429 void	SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
430 	    const struct pci_attach_args *, u_int8_t *);
431 #endif /* DP83820 */
432 
433 int	SIP_DECL(intr)(void *);
434 void	SIP_DECL(txintr)(struct sip_softc *);
435 void	SIP_DECL(rxintr)(struct sip_softc *);
436 
437 #if defined(DP83820)
438 int	SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
439 void	SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
440 void	SIP_DECL(dp83820_mii_statchg)(struct device *);
441 #else
442 int	SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
443 void	SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
444 void	SIP_DECL(sis900_mii_statchg)(struct device *);
445 
446 int	SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
447 void	SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
448 void	SIP_DECL(dp83815_mii_statchg)(struct device *);
449 #endif /* DP83820 */
450 
451 int	SIP_DECL(mediachange)(struct ifnet *);
452 void	SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
453 
454 int	SIP_DECL(match)(struct device *, struct cfdata *, void *);
455 void	SIP_DECL(attach)(struct device *, struct device *, void *);
456 
457 int	SIP_DECL(copy_small) = 0;
458 
459 #ifdef DP83820
460 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
461     gsip_match, gsip_attach, NULL, NULL);
462 #else
463 CFATTACH_DECL(sip, sizeof(struct sip_softc),
464     sip_match, sip_attach, NULL, NULL);
465 #endif
466 
467 /*
468  * Descriptions of the variants of the SiS900.
469  */
470 struct sip_variant {
471 	int	(*sipv_mii_readreg)(struct device *, int, int);
472 	void	(*sipv_mii_writereg)(struct device *, int, int, int);
473 	void	(*sipv_mii_statchg)(struct device *);
474 	void	(*sipv_set_filter)(struct sip_softc *);
475 	void	(*sipv_read_macaddr)(struct sip_softc *,
476 		    const struct pci_attach_args *, u_int8_t *);
477 };
478 
479 #if defined(DP83820)
480 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *);
481 void	SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t);
482 
483 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = {
484 	SIP_DECL(dp83820_mii_bitbang_read),
485 	SIP_DECL(dp83820_mii_bitbang_write),
486 	{
487 		EROMAR_MDIO,		/* MII_BIT_MDO */
488 		EROMAR_MDIO,		/* MII_BIT_MDI */
489 		EROMAR_MDC,		/* MII_BIT_MDC */
490 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
491 		0,			/* MII_BIT_DIR_PHY_HOST */
492 	}
493 };
494 #endif /* DP83820 */
495 
496 #if defined(DP83820)
497 const struct sip_variant SIP_DECL(variant_dp83820) = {
498 	SIP_DECL(dp83820_mii_readreg),
499 	SIP_DECL(dp83820_mii_writereg),
500 	SIP_DECL(dp83820_mii_statchg),
501 	SIP_DECL(dp83815_set_filter),
502 	SIP_DECL(dp83820_read_macaddr),
503 };
504 #else
505 const struct sip_variant SIP_DECL(variant_sis900) = {
506 	SIP_DECL(sis900_mii_readreg),
507 	SIP_DECL(sis900_mii_writereg),
508 	SIP_DECL(sis900_mii_statchg),
509 	SIP_DECL(sis900_set_filter),
510 	SIP_DECL(sis900_read_macaddr),
511 };
512 
513 const struct sip_variant SIP_DECL(variant_dp83815) = {
514 	SIP_DECL(dp83815_mii_readreg),
515 	SIP_DECL(dp83815_mii_writereg),
516 	SIP_DECL(dp83815_mii_statchg),
517 	SIP_DECL(dp83815_set_filter),
518 	SIP_DECL(dp83815_read_macaddr),
519 };
520 #endif /* DP83820 */
521 
522 /*
523  * Devices supported by this driver.
524  */
525 const struct sip_product {
526 	pci_vendor_id_t		sip_vendor;
527 	pci_product_id_t	sip_product;
528 	const char		*sip_name;
529 	const struct sip_variant *sip_variant;
530 } SIP_DECL(products)[] = {
531 #if defined(DP83820)
532 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
533 	  "NatSemi DP83820 Gigabit Ethernet",
534 	  &SIP_DECL(variant_dp83820) },
535 #else
536 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
537 	  "SiS 900 10/100 Ethernet",
538 	  &SIP_DECL(variant_sis900) },
539 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
540 	  "SiS 7016 10/100 Ethernet",
541 	  &SIP_DECL(variant_sis900) },
542 
543 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
544 	  "NatSemi DP83815 10/100 Ethernet",
545 	  &SIP_DECL(variant_dp83815) },
546 #endif /* DP83820 */
547 
548 	{ 0,			0,
549 	  NULL,
550 	  NULL },
551 };
552 
553 static const struct sip_product *
554 SIP_DECL(lookup)(const struct pci_attach_args *pa)
555 {
556 	const struct sip_product *sip;
557 
558 	for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
559 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
560 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
561 			return (sip);
562 	}
563 	return (NULL);
564 }
565 
566 #ifdef DP83820
567 /*
568  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
569  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
570  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
571  * which means we try to use 64-bit data transfers on those cards if we
572  * happen to be plugged into a 32-bit slot.
573  *
574  * What we do is use this table of cards known to be 64-bit cards.  If
575  * you have a 64-bit card who's subsystem ID is not listed in this table,
576  * send the output of "pcictl dump ..." of the device to me so that your
577  * card will use the 64-bit data path when plugged into a 64-bit slot.
578  *
579  *	-- Jason R. Thorpe <thorpej@netbsd.org>
580  *	   June 30, 2002
581  */
582 static int
583 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
584 {
585 	static const struct {
586 		pci_vendor_id_t c64_vendor;
587 		pci_product_id_t c64_product;
588 	} card64[] = {
589 		/* Asante GigaNIX */
590 		{ 0x128a,	0x0002 },
591 
592 		/* Accton EN1407-T, Planex GN-1000TE */
593 		{ 0x1113,	0x1407 },
594 
595 		/* Netgear GA-621 */
596 		{ 0x1385,	0x621a },
597 
598 		{ 0, 0}
599 	};
600 	pcireg_t subsys;
601 	int i;
602 
603 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
604 
605 	for (i = 0; card64[i].c64_vendor != 0; i++) {
606 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
607 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
608 			return (1);
609 	}
610 
611 	return (0);
612 }
613 #endif /* DP83820 */
614 
615 int
616 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
617 {
618 	struct pci_attach_args *pa = aux;
619 
620 	if (SIP_DECL(lookup)(pa) != NULL)
621 		return (1);
622 
623 	return (0);
624 }
625 
626 void
627 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
628 {
629 	struct sip_softc *sc = (struct sip_softc *) self;
630 	struct pci_attach_args *pa = aux;
631 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
632 	pci_chipset_tag_t pc = pa->pa_pc;
633 	pci_intr_handle_t ih;
634 	const char *intrstr = NULL;
635 	bus_space_tag_t iot, memt;
636 	bus_space_handle_t ioh, memh;
637 	bus_dma_segment_t seg;
638 	int ioh_valid, memh_valid;
639 	int i, rseg, error;
640 	const struct sip_product *sip;
641 	pcireg_t pmode;
642 	u_int8_t enaddr[ETHER_ADDR_LEN];
643 	int pmreg;
644 #ifdef DP83820
645 	pcireg_t memtype;
646 	u_int32_t reg;
647 #endif /* DP83820 */
648 
649 	callout_init(&sc->sc_tick_ch);
650 
651 	sip = SIP_DECL(lookup)(pa);
652 	if (sip == NULL) {
653 		printf("\n");
654 		panic(SIP_STR(attach) ": impossible");
655 	}
656 	sc->sc_rev = PCI_REVISION(pa->pa_class);
657 
658 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
659 
660 	sc->sc_model = sip;
661 
662 	/*
663 	 * XXX Work-around broken PXE firmware on some boards.
664 	 *
665 	 * The DP83815 shares an address decoder with the MEM BAR
666 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
667 	 * so that memory mapped access works.
668 	 */
669 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
670 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
671 	    ~PCI_MAPREG_ROM_ENABLE);
672 
673 	/*
674 	 * Map the device.
675 	 */
676 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
677 	    PCI_MAPREG_TYPE_IO, 0,
678 	    &iot, &ioh, NULL, NULL) == 0);
679 #ifdef DP83820
680 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
681 	switch (memtype) {
682 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
683 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
684 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
685 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
686 		break;
687 	default:
688 		memh_valid = 0;
689 	}
690 #else
691 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
692 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
693 	    &memt, &memh, NULL, NULL) == 0);
694 #endif /* DP83820 */
695 
696 	if (memh_valid) {
697 		sc->sc_st = memt;
698 		sc->sc_sh = memh;
699 	} else if (ioh_valid) {
700 		sc->sc_st = iot;
701 		sc->sc_sh = ioh;
702 	} else {
703 		printf("%s: unable to map device registers\n",
704 		    sc->sc_dev.dv_xname);
705 		return;
706 	}
707 
708 	sc->sc_dmat = pa->pa_dmat;
709 
710 	/*
711 	 * Make sure bus mastering is enabled.  Also make sure
712 	 * Write/Invalidate is enabled if we're allowed to use it.
713 	 */
714 	pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
715 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
716 		pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
717 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
718 	    pmreg | PCI_COMMAND_MASTER_ENABLE);
719 
720 	/* Get it out of power save mode if needed. */
721 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
722 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
723 		if (pmode == 3) {
724 			/*
725 			 * The card has lost all configuration data in
726 			 * this state, so punt.
727 			 */
728 			printf("%s: unable to wake up from power state D3\n",
729 			    sc->sc_dev.dv_xname);
730 			return;
731 		}
732 		if (pmode != 0) {
733 			printf("%s: waking up from power state D%d\n",
734 			    sc->sc_dev.dv_xname, pmode);
735 			pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
736 		}
737 	}
738 
739 	/*
740 	 * Map and establish our interrupt.
741 	 */
742 	if (pci_intr_map(pa, &ih)) {
743 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
744 		return;
745 	}
746 	intrstr = pci_intr_string(pc, ih);
747 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
748 	if (sc->sc_ih == NULL) {
749 		printf("%s: unable to establish interrupt",
750 		    sc->sc_dev.dv_xname);
751 		if (intrstr != NULL)
752 			printf(" at %s", intrstr);
753 		printf("\n");
754 		return;
755 	}
756 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
757 
758 	SIMPLEQ_INIT(&sc->sc_txfreeq);
759 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
760 
761 	/*
762 	 * Allocate the control data structures, and create and load the
763 	 * DMA map for it.
764 	 */
765 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
766 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
767 	    0)) != 0) {
768 		printf("%s: unable to allocate control data, error = %d\n",
769 		    sc->sc_dev.dv_xname, error);
770 		goto fail_0;
771 	}
772 
773 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
774 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
775 	    BUS_DMA_COHERENT)) != 0) {
776 		printf("%s: unable to map control data, error = %d\n",
777 		    sc->sc_dev.dv_xname, error);
778 		goto fail_1;
779 	}
780 
781 	if ((error = bus_dmamap_create(sc->sc_dmat,
782 	    sizeof(struct sip_control_data), 1,
783 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
784 		printf("%s: unable to create control data DMA map, "
785 		    "error = %d\n", sc->sc_dev.dv_xname, error);
786 		goto fail_2;
787 	}
788 
789 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
790 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
791 	    0)) != 0) {
792 		printf("%s: unable to load control data DMA map, error = %d\n",
793 		    sc->sc_dev.dv_xname, error);
794 		goto fail_3;
795 	}
796 
797 	/*
798 	 * Create the transmit buffer DMA maps.
799 	 */
800 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
801 		if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
802 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
803 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
804 			printf("%s: unable to create tx DMA map %d, "
805 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
806 			goto fail_4;
807 		}
808 	}
809 
810 	/*
811 	 * Create the receive buffer DMA maps.
812 	 */
813 	for (i = 0; i < SIP_NRXDESC; i++) {
814 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
815 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
816 			printf("%s: unable to create rx DMA map %d, "
817 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
818 			goto fail_5;
819 		}
820 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
821 	}
822 
823 	/*
824 	 * Reset the chip to a known state.
825 	 */
826 	SIP_DECL(reset)(sc);
827 
828 	/*
829 	 * Read the Ethernet address from the EEPROM.  This might
830 	 * also fetch other stuff from the EEPROM and stash it
831 	 * in the softc.
832 	 */
833 	sc->sc_cfg = 0;
834 #if !defined(DP83820)
835 	if (SIP_SIS900_REV(sc,SIS_REV_635) ||
836 	    SIP_SIS900_REV(sc,SIS_REV_900B))
837 		sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
838 #endif
839 
840 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
841 
842 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
843 	    ether_sprintf(enaddr));
844 
845 	/*
846 	 * Initialize the configuration register: aggressive PCI
847 	 * bus request algorithm, default backoff, default OW timer,
848 	 * default parity error detection.
849 	 *
850 	 * NOTE: "Big endian mode" is useless on the SiS900 and
851 	 * friends -- it affects packet data, not descriptors.
852 	 */
853 #ifdef DP83820
854 	/*
855 	 * Cause the chip to load configuration data from the EEPROM.
856 	 */
857 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
858 	for (i = 0; i < 10000; i++) {
859 		delay(10);
860 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
861 		    PTSCR_EELOAD_EN) == 0)
862 			break;
863 	}
864 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
865 	    PTSCR_EELOAD_EN) {
866 		printf("%s: timeout loading configuration from EEPROM\n",
867 		    sc->sc_dev.dv_xname);
868 		return;
869 	}
870 
871 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
872 
873 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
874 	if (reg & CFG_PCI64_DET) {
875 		printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
876 		/*
877 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
878 		 * data transfers.
879 		 *
880 		 * We can't use the DATA64_EN bit in the EEPROM, because
881 		 * vendors of 32-bit cards fail to clear that bit in many
882 		 * cases (yet the card still detects that it's in a 64-bit
883 		 * slot; go figure).
884 		 */
885 		if (SIP_DECL(check_64bit)(pa)) {
886 			sc->sc_cfg |= CFG_DATA64_EN;
887 			printf(", using 64-bit data transfers");
888 		}
889 		printf("\n");
890 	}
891 
892 	/*
893 	 * XXX Need some PCI flags indicating support for
894 	 * XXX 64-bit addressing.
895 	 */
896 #if 0
897 	if (reg & CFG_M64ADDR)
898 		sc->sc_cfg |= CFG_M64ADDR;
899 	if (reg & CFG_T64ADDR)
900 		sc->sc_cfg |= CFG_T64ADDR;
901 #endif
902 
903 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
904 		const char *sep = "";
905 		printf("%s: using ", sc->sc_dev.dv_xname);
906 		if (reg & CFG_EXT_125) {
907 			sc->sc_cfg |= CFG_EXT_125;
908 			printf("%s125MHz clock", sep);
909 			sep = ", ";
910 		}
911 		if (reg & CFG_TBI_EN) {
912 			sc->sc_cfg |= CFG_TBI_EN;
913 			printf("%sten-bit interface", sep);
914 			sep = ", ";
915 		}
916 		printf("\n");
917 	}
918 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
919 	    (reg & CFG_MRM_DIS) != 0)
920 		sc->sc_cfg |= CFG_MRM_DIS;
921 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
922 	    (reg & CFG_MWI_DIS) != 0)
923 		sc->sc_cfg |= CFG_MWI_DIS;
924 
925 	/*
926 	 * Use the extended descriptor format on the DP83820.  This
927 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
928 	 * checksumming.
929 	 */
930 	sc->sc_cfg |= CFG_EXTSTS_EN;
931 #endif /* DP83820 */
932 
933 	/*
934 	 * Initialize our media structures and probe the MII.
935 	 */
936 	sc->sc_mii.mii_ifp = ifp;
937 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
938 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
939 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
940 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, SIP_DECL(mediachange),
941 	    SIP_DECL(mediastatus));
942 
943 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
944 	    MII_OFFSET_ANY, 0);
945 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
946 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
947 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
948 	} else
949 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
950 
951 	ifp = &sc->sc_ethercom.ec_if;
952 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
953 	ifp->if_softc = sc;
954 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
955 	ifp->if_ioctl = SIP_DECL(ioctl);
956 	ifp->if_start = SIP_DECL(start);
957 	ifp->if_watchdog = SIP_DECL(watchdog);
958 	ifp->if_init = SIP_DECL(init);
959 	ifp->if_stop = SIP_DECL(stop);
960 	IFQ_SET_READY(&ifp->if_snd);
961 
962 	/*
963 	 * We can support 802.1Q VLAN-sized frames.
964 	 */
965 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
966 
967 #ifdef DP83820
968 	/*
969 	 * And the DP83820 can do VLAN tagging in hardware, and
970 	 * support the jumbo Ethernet MTU.
971 	 */
972 	sc->sc_ethercom.ec_capabilities |=
973 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
974 
975 	/*
976 	 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
977 	 * in hardware.
978 	 */
979 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
980 	    IFCAP_CSUM_UDPv4;
981 #endif /* DP83820 */
982 
983 	/*
984 	 * Attach the interface.
985 	 */
986 	if_attach(ifp);
987 	ether_ifattach(ifp, enaddr);
988 #if NRND > 0
989 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
990 	    RND_TYPE_NET, 0);
991 #endif
992 
993 	/*
994 	 * The number of bytes that must be available in
995 	 * the Tx FIFO before the bus master can DMA more
996 	 * data into the FIFO.
997 	 */
998 	sc->sc_tx_fill_thresh = 64 / 32;
999 
1000 	/*
1001 	 * Start at a drain threshold of 512 bytes.  We will
1002 	 * increase it if a DMA underrun occurs.
1003 	 *
1004 	 * XXX The minimum value of this variable should be
1005 	 * tuned.  We may be able to improve performance
1006 	 * by starting with a lower value.  That, however,
1007 	 * may trash the first few outgoing packets if the
1008 	 * PCI bus is saturated.
1009 	 */
1010 	sc->sc_tx_drain_thresh = 1504 / 32;
1011 
1012 	/*
1013 	 * Initialize the Rx FIFO drain threshold.
1014 	 *
1015 	 * This is in units of 8 bytes.
1016 	 *
1017 	 * We should never set this value lower than 2; 14 bytes are
1018 	 * required to filter the packet.
1019 	 */
1020 	sc->sc_rx_drain_thresh = 128 / 8;
1021 
1022 #ifdef SIP_EVENT_COUNTERS
1023 	/*
1024 	 * Attach event counters.
1025 	 */
1026 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1027 	    NULL, sc->sc_dev.dv_xname, "txsstall");
1028 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1029 	    NULL, sc->sc_dev.dv_xname, "txdstall");
1030 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1031 	    NULL, sc->sc_dev.dv_xname, "txforceintr");
1032 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1033 	    NULL, sc->sc_dev.dv_xname, "txdintr");
1034 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1035 	    NULL, sc->sc_dev.dv_xname, "txiintr");
1036 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1037 	    NULL, sc->sc_dev.dv_xname, "rxintr");
1038 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1039 	    NULL, sc->sc_dev.dv_xname, "hiberr");
1040 #ifdef DP83820
1041 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1042 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
1043 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1044 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
1045 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1046 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
1047 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1048 	    NULL, sc->sc_dev.dv_xname, "txipsum");
1049 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1050 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
1051 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1052 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
1053 #endif /* DP83820 */
1054 #endif /* SIP_EVENT_COUNTERS */
1055 
1056 	/*
1057 	 * Make sure the interface is shutdown during reboot.
1058 	 */
1059 	sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
1060 	if (sc->sc_sdhook == NULL)
1061 		printf("%s: WARNING: unable to establish shutdown hook\n",
1062 		    sc->sc_dev.dv_xname);
1063 	return;
1064 
1065 	/*
1066 	 * Free any resources we've allocated during the failed attach
1067 	 * attempt.  Do this in reverse order and fall through.
1068 	 */
1069  fail_5:
1070 	for (i = 0; i < SIP_NRXDESC; i++) {
1071 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1072 			bus_dmamap_destroy(sc->sc_dmat,
1073 			    sc->sc_rxsoft[i].rxs_dmamap);
1074 	}
1075  fail_4:
1076 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
1077 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
1078 			bus_dmamap_destroy(sc->sc_dmat,
1079 			    sc->sc_txsoft[i].txs_dmamap);
1080 	}
1081 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1082  fail_3:
1083 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1084  fail_2:
1085 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1086 	    sizeof(struct sip_control_data));
1087  fail_1:
1088 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1089  fail_0:
1090 	return;
1091 }
1092 
1093 /*
1094  * sip_shutdown:
1095  *
1096  *	Make sure the interface is stopped at reboot time.
1097  */
1098 void
1099 SIP_DECL(shutdown)(void *arg)
1100 {
1101 	struct sip_softc *sc = arg;
1102 
1103 	SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
1104 }
1105 
1106 /*
1107  * sip_start:		[ifnet interface function]
1108  *
1109  *	Start packet transmission on the interface.
1110  */
1111 void
1112 SIP_DECL(start)(struct ifnet *ifp)
1113 {
1114 	struct sip_softc *sc = ifp->if_softc;
1115 	struct mbuf *m0, *m;
1116 	struct sip_txsoft *txs;
1117 	bus_dmamap_t dmamap;
1118 	int error, nexttx, lasttx, seg;
1119 	int ofree = sc->sc_txfree;
1120 #if 0
1121 	int firsttx = sc->sc_txnext;
1122 #endif
1123 #ifdef DP83820
1124 	u_int32_t extsts;
1125 #endif
1126 
1127 	/*
1128 	 * If we've been told to pause, don't transmit any more packets.
1129 	 */
1130 	if (sc->sc_flags & SIPF_PAUSED)
1131 		ifp->if_flags |= IFF_OACTIVE;
1132 
1133 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1134 		return;
1135 
1136 	/*
1137 	 * Loop through the send queue, setting up transmit descriptors
1138 	 * until we drain the queue, or use up all available transmit
1139 	 * descriptors.
1140 	 */
1141 	for (;;) {
1142 		/* Get a work queue entry. */
1143 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1144 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1145 			break;
1146 		}
1147 
1148 		/*
1149 		 * Grab a packet off the queue.
1150 		 */
1151 		IFQ_POLL(&ifp->if_snd, m0);
1152 		if (m0 == NULL)
1153 			break;
1154 #ifndef DP83820
1155 		m = NULL;
1156 #endif
1157 
1158 		dmamap = txs->txs_dmamap;
1159 
1160 #ifdef DP83820
1161 		/*
1162 		 * Load the DMA map.  If this fails, the packet either
1163 		 * didn't fit in the allotted number of segments, or we
1164 		 * were short on resources.  For the too-many-segments
1165 		 * case, we simply report an error and drop the packet,
1166 		 * since we can't sanely copy a jumbo packet to a single
1167 		 * buffer.
1168 		 */
1169 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1170 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1171 		if (error) {
1172 			if (error == EFBIG) {
1173 				printf("%s: Tx packet consumes too many "
1174 				    "DMA segments, dropping...\n",
1175 				    sc->sc_dev.dv_xname);
1176 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1177 				m_freem(m0);
1178 				continue;
1179 			}
1180 			/*
1181 			 * Short on resources, just stop for now.
1182 			 */
1183 			break;
1184 		}
1185 #else /* DP83820 */
1186 		/*
1187 		 * Load the DMA map.  If this fails, the packet either
1188 		 * didn't fit in the alloted number of segments, or we
1189 		 * were short on resources.  In this case, we'll copy
1190 		 * and try again.
1191 		 */
1192 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1193 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1194 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1195 			if (m == NULL) {
1196 				printf("%s: unable to allocate Tx mbuf\n",
1197 				    sc->sc_dev.dv_xname);
1198 				break;
1199 			}
1200 			if (m0->m_pkthdr.len > MHLEN) {
1201 				MCLGET(m, M_DONTWAIT);
1202 				if ((m->m_flags & M_EXT) == 0) {
1203 					printf("%s: unable to allocate Tx "
1204 					    "cluster\n", sc->sc_dev.dv_xname);
1205 					m_freem(m);
1206 					break;
1207 				}
1208 			}
1209 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1210 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1211 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1212 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1213 			if (error) {
1214 				printf("%s: unable to load Tx buffer, "
1215 				    "error = %d\n", sc->sc_dev.dv_xname, error);
1216 				break;
1217 			}
1218 		}
1219 #endif /* DP83820 */
1220 
1221 		/*
1222 		 * Ensure we have enough descriptors free to describe
1223 		 * the packet.  Note, we always reserve one descriptor
1224 		 * at the end of the ring as a termination point, to
1225 		 * prevent wrap-around.
1226 		 */
1227 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1228 			/*
1229 			 * Not enough free descriptors to transmit this
1230 			 * packet.  We haven't committed anything yet,
1231 			 * so just unload the DMA map, put the packet
1232 			 * back on the queue, and punt.  Notify the upper
1233 			 * layer that there are not more slots left.
1234 			 *
1235 			 * XXX We could allocate an mbuf and copy, but
1236 			 * XXX is it worth it?
1237 			 */
1238 			ifp->if_flags |= IFF_OACTIVE;
1239 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1240 #ifndef DP83820
1241 			if (m != NULL)
1242 				m_freem(m);
1243 #endif
1244 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1245 			break;
1246 		}
1247 
1248 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1249 #ifndef DP83820
1250 		if (m != NULL) {
1251 			m_freem(m0);
1252 			m0 = m;
1253 		}
1254 #endif
1255 
1256 		/*
1257 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1258 		 */
1259 
1260 		/* Sync the DMA map. */
1261 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1262 		    BUS_DMASYNC_PREWRITE);
1263 
1264 		/*
1265 		 * Initialize the transmit descriptors.
1266 		 */
1267 		for (nexttx = sc->sc_txnext, seg = 0;
1268 		     seg < dmamap->dm_nsegs;
1269 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
1270 			/*
1271 			 * If this is the first descriptor we're
1272 			 * enqueueing, don't set the OWN bit just
1273 			 * yet.  That could cause a race condition.
1274 			 * We'll do it below.
1275 			 */
1276 			sc->sc_txdescs[nexttx].sipd_bufptr =
1277 			    htole32(dmamap->dm_segs[seg].ds_addr);
1278 			sc->sc_txdescs[nexttx].sipd_cmdsts =
1279 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1280 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1281 #ifdef DP83820
1282 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
1283 #endif /* DP83820 */
1284 			lasttx = nexttx;
1285 		}
1286 
1287 		/* Clear the MORE bit on the last segment. */
1288 		sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1289 
1290 		/*
1291 		 * If we're in the interrupt delay window, delay the
1292 		 * interrupt.
1293 		 */
1294 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1295 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1296 			sc->sc_txdescs[lasttx].sipd_cmdsts |=
1297 			    htole32(CMDSTS_INTR);
1298 			sc->sc_txwin = 0;
1299 		}
1300 
1301 #ifdef DP83820
1302 		/*
1303 		 * If VLANs are enabled and the packet has a VLAN tag, set
1304 		 * up the descriptor to encapsulate the packet for us.
1305 		 *
1306 		 * This apparently has to be on the last descriptor of
1307 		 * the packet.
1308 		 */
1309 		if (sc->sc_ethercom.ec_nvlans != 0 &&
1310 		    (m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) {
1311 			sc->sc_txdescs[lasttx].sipd_extsts |=
1312 			    htole32(EXTSTS_VPKT |
1313 				    htons(*mtod(m, int *) & EXTSTS_VTCI));
1314 		}
1315 
1316 		/*
1317 		 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1318 		 * checksumming, set up the descriptor to do this work
1319 		 * for us.
1320 		 *
1321 		 * This apparently has to be on the first descriptor of
1322 		 * the packet.
1323 		 *
1324 		 * Byte-swap constants so the compiler can optimize.
1325 		 */
1326 		extsts = 0;
1327 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1328 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
1329 			SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1330 			extsts |= htole32(EXTSTS_IPPKT);
1331 		}
1332 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1333 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
1334 			SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1335 			extsts |= htole32(EXTSTS_TCPPKT);
1336 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1337 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
1338 			SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1339 			extsts |= htole32(EXTSTS_UDPPKT);
1340 		}
1341 		sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1342 #endif /* DP83820 */
1343 
1344 		/* Sync the descriptors we're using. */
1345 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1346 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1347 
1348 		/*
1349 		 * The entire packet is set up.  Give the first descrptor
1350 		 * to the chip now.
1351 		 */
1352 		sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
1353 		    htole32(CMDSTS_OWN);
1354 		SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
1355 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1356 
1357 		/*
1358 		 * Store a pointer to the packet so we can free it later,
1359 		 * and remember what txdirty will be once the packet is
1360 		 * done.
1361 		 */
1362 		txs->txs_mbuf = m0;
1363 		txs->txs_firstdesc = sc->sc_txnext;
1364 		txs->txs_lastdesc = lasttx;
1365 
1366 		/* Advance the tx pointer. */
1367 		sc->sc_txfree -= dmamap->dm_nsegs;
1368 		sc->sc_txnext = nexttx;
1369 
1370 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1371 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1372 
1373 #if NBPFILTER > 0
1374 		/*
1375 		 * Pass the packet to any BPF listeners.
1376 		 */
1377 		if (ifp->if_bpf)
1378 			bpf_mtap(ifp->if_bpf, m0);
1379 #endif /* NBPFILTER > 0 */
1380 	}
1381 
1382 	if (txs == NULL || sc->sc_txfree == 0) {
1383 		/* No more slots left; notify upper layer. */
1384 		ifp->if_flags |= IFF_OACTIVE;
1385 	}
1386 
1387 	if (sc->sc_txfree != ofree) {
1388 		/*
1389 		 * Start the transmit process.  Note, the manual says
1390 		 * that if there are no pending transmissions in the
1391 		 * chip's internal queue (indicated by TXE being clear),
1392 		 * then the driver software must set the TXDP to the
1393 		 * first descriptor to be transmitted.  However, if we
1394 		 * do this, it causes serious performance degredation on
1395 		 * the DP83820 under load, not setting TXDP doesn't seem
1396 		 * to adversely affect the SiS 900 or DP83815.
1397 		 *
1398 		 * Well, I guess it wouldn't be the first time a manual
1399 		 * has lied -- and they could be speaking of the NULL-
1400 		 * terminated descriptor list case, rather than OWN-
1401 		 * terminated rings.
1402 		 */
1403 #if 0
1404 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1405 		     CR_TXE) == 0) {
1406 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1407 			    SIP_CDTXADDR(sc, firsttx));
1408 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1409 		}
1410 #else
1411 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1412 #endif
1413 
1414 		/* Set a watchdog timer in case the chip flakes out. */
1415 		ifp->if_timer = 5;
1416 	}
1417 }
1418 
1419 /*
1420  * sip_watchdog:	[ifnet interface function]
1421  *
1422  *	Watchdog timer handler.
1423  */
1424 void
1425 SIP_DECL(watchdog)(struct ifnet *ifp)
1426 {
1427 	struct sip_softc *sc = ifp->if_softc;
1428 
1429 	/*
1430 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1431 	 * If we get a timeout, try and sweep up transmit descriptors.
1432 	 * If we manage to sweep them all up, ignore the lack of
1433 	 * interrupt.
1434 	 */
1435 	SIP_DECL(txintr)(sc);
1436 
1437 	if (sc->sc_txfree != SIP_NTXDESC) {
1438 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1439 		ifp->if_oerrors++;
1440 
1441 		/* Reset the interface. */
1442 		(void) SIP_DECL(init)(ifp);
1443 	} else if (ifp->if_flags & IFF_DEBUG)
1444 		printf("%s: recovered from device timeout\n",
1445 		    sc->sc_dev.dv_xname);
1446 
1447 	/* Try to get more packets going. */
1448 	SIP_DECL(start)(ifp);
1449 }
1450 
1451 /*
1452  * sip_ioctl:		[ifnet interface function]
1453  *
1454  *	Handle control requests from the operator.
1455  */
1456 int
1457 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1458 {
1459 	struct sip_softc *sc = ifp->if_softc;
1460 	struct ifreq *ifr = (struct ifreq *)data;
1461 	int s, error;
1462 
1463 	s = splnet();
1464 
1465 	switch (cmd) {
1466 	case SIOCSIFMEDIA:
1467 	case SIOCGIFMEDIA:
1468 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1469 		break;
1470 
1471 	default:
1472 		error = ether_ioctl(ifp, cmd, data);
1473 		if (error == ENETRESET) {
1474 			/*
1475 			 * Multicast list has changed; set the hardware filter
1476 			 * accordingly.
1477 			 */
1478 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1479 			error = 0;
1480 		}
1481 		break;
1482 	}
1483 
1484 	/* Try to get more packets going. */
1485 	SIP_DECL(start)(ifp);
1486 
1487 	splx(s);
1488 	return (error);
1489 }
1490 
1491 /*
1492  * sip_intr:
1493  *
1494  *	Interrupt service routine.
1495  */
1496 int
1497 SIP_DECL(intr)(void *arg)
1498 {
1499 	struct sip_softc *sc = arg;
1500 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1501 	u_int32_t isr;
1502 	int handled = 0;
1503 
1504 	for (;;) {
1505 		/* Reading clears interrupt. */
1506 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1507 		if ((isr & sc->sc_imr) == 0)
1508 			break;
1509 
1510 #if NRND > 0
1511 		if (RND_ENABLED(&sc->rnd_source))
1512 			rnd_add_uint32(&sc->rnd_source, isr);
1513 #endif
1514 
1515 		handled = 1;
1516 
1517 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1518 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1519 
1520 			/* Grab any new packets. */
1521 			SIP_DECL(rxintr)(sc);
1522 
1523 			if (isr & ISR_RXORN) {
1524 				printf("%s: receive FIFO overrun\n",
1525 				    sc->sc_dev.dv_xname);
1526 
1527 				/* XXX adjust rx_drain_thresh? */
1528 			}
1529 
1530 			if (isr & ISR_RXIDLE) {
1531 				printf("%s: receive ring overrun\n",
1532 				    sc->sc_dev.dv_xname);
1533 
1534 				/* Get the receive process going again. */
1535 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1536 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1537 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1538 				    SIP_CR, CR_RXE);
1539 			}
1540 		}
1541 
1542 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1543 #ifdef SIP_EVENT_COUNTERS
1544 			if (isr & ISR_TXDESC)
1545 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1546 			else if (isr & ISR_TXIDLE)
1547 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1548 #endif
1549 
1550 			/* Sweep up transmit descriptors. */
1551 			SIP_DECL(txintr)(sc);
1552 
1553 			if (isr & ISR_TXURN) {
1554 				u_int32_t thresh;
1555 
1556 				printf("%s: transmit FIFO underrun",
1557 				    sc->sc_dev.dv_xname);
1558 
1559 				thresh = sc->sc_tx_drain_thresh + 1;
1560 				if (thresh <= TXCFG_DRTH &&
1561 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
1562 				     (sc->sc_tx_fill_thresh * 32))) {
1563 					printf("; increasing Tx drain "
1564 					    "threshold to %u bytes\n",
1565 					    thresh * 32);
1566 					sc->sc_tx_drain_thresh = thresh;
1567 					(void) SIP_DECL(init)(ifp);
1568 				} else {
1569 					(void) SIP_DECL(init)(ifp);
1570 					printf("\n");
1571 				}
1572 			}
1573 		}
1574 
1575 #if !defined(DP83820)
1576 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1577 			if (isr & ISR_PAUSE_ST) {
1578 				sc->sc_flags |= SIPF_PAUSED;
1579 				ifp->if_flags |= IFF_OACTIVE;
1580 			}
1581 			if (isr & ISR_PAUSE_END) {
1582 				sc->sc_flags &= ~SIPF_PAUSED;
1583 				ifp->if_flags &= ~IFF_OACTIVE;
1584 			}
1585 		}
1586 #endif /* ! DP83820 */
1587 
1588 		if (isr & ISR_HIBERR) {
1589 			int want_init = 0;
1590 
1591 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1592 
1593 #define	PRINTERR(bit, str)						\
1594 			do {						\
1595 				if ((isr & (bit)) != 0) {		\
1596 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
1597 						printf("%s: %s\n",	\
1598 						    sc->sc_dev.dv_xname, str); \
1599 					want_init = 1;			\
1600 				}					\
1601 			} while (/*CONSTCOND*/0)
1602 
1603 			PRINTERR(ISR_DPERR, "parity error");
1604 			PRINTERR(ISR_SSERR, "system error");
1605 			PRINTERR(ISR_RMABT, "master abort");
1606 			PRINTERR(ISR_RTABT, "target abort");
1607 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1608 			/*
1609 			 * Ignore:
1610 			 *	Tx reset complete
1611 			 *	Rx reset complete
1612 			 */
1613 			if (want_init)
1614 				(void) SIP_DECL(init)(ifp);
1615 #undef PRINTERR
1616 		}
1617 	}
1618 
1619 	/* Try to get more packets going. */
1620 	SIP_DECL(start)(ifp);
1621 
1622 	return (handled);
1623 }
1624 
1625 /*
1626  * sip_txintr:
1627  *
1628  *	Helper; handle transmit interrupts.
1629  */
1630 void
1631 SIP_DECL(txintr)(struct sip_softc *sc)
1632 {
1633 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1634 	struct sip_txsoft *txs;
1635 	u_int32_t cmdsts;
1636 
1637 	if ((sc->sc_flags & SIPF_PAUSED) == 0)
1638 		ifp->if_flags &= ~IFF_OACTIVE;
1639 
1640 	/*
1641 	 * Go through our Tx list and free mbufs for those
1642 	 * frames which have been transmitted.
1643 	 */
1644 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1645 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1646 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1647 
1648 		cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1649 		if (cmdsts & CMDSTS_OWN)
1650 			break;
1651 
1652 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1653 
1654 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1655 
1656 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1657 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1658 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1659 		m_freem(txs->txs_mbuf);
1660 		txs->txs_mbuf = NULL;
1661 
1662 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1663 
1664 		/*
1665 		 * Check for errors and collisions.
1666 		 */
1667 		if (cmdsts &
1668 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1669 			ifp->if_oerrors++;
1670 			if (cmdsts & CMDSTS_Tx_EC)
1671 				ifp->if_collisions += 16;
1672 			if (ifp->if_flags & IFF_DEBUG) {
1673 				if (cmdsts & CMDSTS_Tx_ED)
1674 					printf("%s: excessive deferral\n",
1675 					    sc->sc_dev.dv_xname);
1676 				if (cmdsts & CMDSTS_Tx_EC)
1677 					printf("%s: excessive collisions\n",
1678 					    sc->sc_dev.dv_xname);
1679 			}
1680 		} else {
1681 			/* Packet was transmitted successfully. */
1682 			ifp->if_opackets++;
1683 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1684 		}
1685 	}
1686 
1687 	/*
1688 	 * If there are no more pending transmissions, cancel the watchdog
1689 	 * timer.
1690 	 */
1691 	if (txs == NULL) {
1692 		ifp->if_timer = 0;
1693 		sc->sc_txwin = 0;
1694 	}
1695 }
1696 
1697 #if defined(DP83820)
1698 /*
1699  * sip_rxintr:
1700  *
1701  *	Helper; handle receive interrupts.
1702  */
1703 void
1704 SIP_DECL(rxintr)(struct sip_softc *sc)
1705 {
1706 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1707 	struct sip_rxsoft *rxs;
1708 	struct mbuf *m, *tailm;
1709 	u_int32_t cmdsts, extsts;
1710 	int i, len;
1711 
1712 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1713 		rxs = &sc->sc_rxsoft[i];
1714 
1715 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1716 
1717 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1718 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1719 
1720 		/*
1721 		 * NOTE: OWN is set if owned by _consumer_.  We're the
1722 		 * consumer of the receive ring, so if the bit is clear,
1723 		 * we have processed all of the packets.
1724 		 */
1725 		if ((cmdsts & CMDSTS_OWN) == 0) {
1726 			/*
1727 			 * We have processed all of the receive buffers.
1728 			 */
1729 			break;
1730 		}
1731 
1732 		if (__predict_false(sc->sc_rxdiscard)) {
1733 			SIP_INIT_RXDESC(sc, i);
1734 			if ((cmdsts & CMDSTS_MORE) == 0) {
1735 				/* Reset our state. */
1736 				sc->sc_rxdiscard = 0;
1737 			}
1738 			continue;
1739 		}
1740 
1741 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1742 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1743 
1744 		m = rxs->rxs_mbuf;
1745 
1746 		/*
1747 		 * Add a new receive buffer to the ring.
1748 		 */
1749 		if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1750 			/*
1751 			 * Failed, throw away what we've done so
1752 			 * far, and discard the rest of the packet.
1753 			 */
1754 			ifp->if_ierrors++;
1755 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1756 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1757 			SIP_INIT_RXDESC(sc, i);
1758 			if (cmdsts & CMDSTS_MORE)
1759 				sc->sc_rxdiscard = 1;
1760 			if (sc->sc_rxhead != NULL)
1761 				m_freem(sc->sc_rxhead);
1762 			SIP_RXCHAIN_RESET(sc);
1763 			continue;
1764 		}
1765 
1766 		SIP_RXCHAIN_LINK(sc, m);
1767 
1768 		/*
1769 		 * If this is not the end of the packet, keep
1770 		 * looking.
1771 		 */
1772 		if (cmdsts & CMDSTS_MORE) {
1773 			sc->sc_rxlen += m->m_len;
1774 			continue;
1775 		}
1776 
1777 		/*
1778 		 * Okay, we have the entire packet now...
1779 		 */
1780 		*sc->sc_rxtailp = NULL;
1781 		m = sc->sc_rxhead;
1782 		tailm = sc->sc_rxtail;
1783 
1784 		SIP_RXCHAIN_RESET(sc);
1785 
1786 		/*
1787 		 * If an error occurred, update stats and drop the packet.
1788 		 */
1789 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1790 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1791 			ifp->if_ierrors++;
1792 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1793 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
1794 				/* Receive overrun handled elsewhere. */
1795 				printf("%s: receive descriptor error\n",
1796 				    sc->sc_dev.dv_xname);
1797 			}
1798 #define	PRINTERR(bit, str)						\
1799 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
1800 			    (cmdsts & (bit)) != 0)			\
1801 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1802 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1803 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1804 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1805 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1806 #undef PRINTERR
1807 			m_freem(m);
1808 			continue;
1809 		}
1810 
1811 		/*
1812 		 * No errors.
1813 		 *
1814 		 * Note, the DP83820 includes the CRC with
1815 		 * every packet.
1816 		 */
1817 		len = CMDSTS_SIZE(cmdsts);
1818 		tailm->m_len = len - sc->sc_rxlen;
1819 
1820 		/*
1821 		 * If the packet is small enough to fit in a
1822 		 * single header mbuf, allocate one and copy
1823 		 * the data into it.  This greatly reduces
1824 		 * memory consumption when we receive lots
1825 		 * of small packets.
1826 		 */
1827 		if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1828 			struct mbuf *nm;
1829 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
1830 			if (nm == NULL) {
1831 				ifp->if_ierrors++;
1832 				m_freem(m);
1833 				continue;
1834 			}
1835 			nm->m_data += 2;
1836 			nm->m_pkthdr.len = nm->m_len = len;
1837 			m_copydata(m, 0, len, mtod(nm, caddr_t));
1838 			m_freem(m);
1839 			m = nm;
1840 		}
1841 #ifndef __NO_STRICT_ALIGNMENT
1842 		else {
1843 			/*
1844 			 * The DP83820's receive buffers must be 4-byte
1845 			 * aligned.  But this means that the data after
1846 			 * the Ethernet header is misaligned.  To compensate,
1847 			 * we have artificially shortened the buffer size
1848 			 * in the descriptor, and we do an overlapping copy
1849 			 * of the data two bytes further in (in the first
1850 			 * buffer of the chain only).
1851 			 */
1852 			memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1853 			    m->m_len);
1854 			m->m_data += 2;
1855 		}
1856 #endif /* ! __NO_STRICT_ALIGNMENT */
1857 
1858 		/*
1859 		 * If VLANs are enabled, VLAN packets have been unwrapped
1860 		 * for us.  Associate the tag with the packet.
1861 		 */
1862 		if (sc->sc_ethercom.ec_nvlans != 0 &&
1863 		    (extsts & EXTSTS_VPKT) != 0) {
1864 			struct mbuf *vtag;
1865 
1866 			vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN);
1867 			if (vtag == NULL) {
1868 				ifp->if_ierrors++;
1869 				printf("%s: unable to allocate VLAN tag\n",
1870 				    sc->sc_dev.dv_xname);
1871 				m_freem(m);
1872 				continue;
1873 			}
1874 
1875 			*mtod(vtag, int *) = ntohs(extsts & EXTSTS_VTCI);
1876 			vtag->m_len = sizeof(int);
1877 		}
1878 
1879 		/*
1880 		 * Set the incoming checksum information for the
1881 		 * packet.
1882 		 */
1883 		if ((extsts & EXTSTS_IPPKT) != 0) {
1884 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1885 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1886 			if (extsts & EXTSTS_Rx_IPERR)
1887 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1888 			if (extsts & EXTSTS_TCPPKT) {
1889 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1890 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1891 				if (extsts & EXTSTS_Rx_TCPERR)
1892 					m->m_pkthdr.csum_flags |=
1893 					    M_CSUM_TCP_UDP_BAD;
1894 			} else if (extsts & EXTSTS_UDPPKT) {
1895 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1896 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1897 				if (extsts & EXTSTS_Rx_UDPERR)
1898 					m->m_pkthdr.csum_flags |=
1899 					    M_CSUM_TCP_UDP_BAD;
1900 			}
1901 		}
1902 
1903 		ifp->if_ipackets++;
1904 		m->m_flags |= M_HASFCS;
1905 		m->m_pkthdr.rcvif = ifp;
1906 		m->m_pkthdr.len = len;
1907 
1908 #if NBPFILTER > 0
1909 		/*
1910 		 * Pass this up to any BPF listeners, but only
1911 		 * pass if up the stack if it's for us.
1912 		 */
1913 		if (ifp->if_bpf)
1914 			bpf_mtap(ifp->if_bpf, m);
1915 #endif /* NBPFILTER > 0 */
1916 
1917 		/* Pass it on. */
1918 		(*ifp->if_input)(ifp, m);
1919 	}
1920 
1921 	/* Update the receive pointer. */
1922 	sc->sc_rxptr = i;
1923 }
1924 #else /* ! DP83820 */
1925 /*
1926  * sip_rxintr:
1927  *
1928  *	Helper; handle receive interrupts.
1929  */
1930 void
1931 SIP_DECL(rxintr)(struct sip_softc *sc)
1932 {
1933 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1934 	struct sip_rxsoft *rxs;
1935 	struct mbuf *m;
1936 	u_int32_t cmdsts;
1937 	int i, len;
1938 
1939 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1940 		rxs = &sc->sc_rxsoft[i];
1941 
1942 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1943 
1944 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1945 
1946 		/*
1947 		 * NOTE: OWN is set if owned by _consumer_.  We're the
1948 		 * consumer of the receive ring, so if the bit is clear,
1949 		 * we have processed all of the packets.
1950 		 */
1951 		if ((cmdsts & CMDSTS_OWN) == 0) {
1952 			/*
1953 			 * We have processed all of the receive buffers.
1954 			 */
1955 			break;
1956 		}
1957 
1958 		/*
1959 		 * If any collisions were seen on the wire, count one.
1960 		 */
1961 		if (cmdsts & CMDSTS_Rx_COL)
1962 			ifp->if_collisions++;
1963 
1964 		/*
1965 		 * If an error occurred, update stats, clear the status
1966 		 * word, and leave the packet buffer in place.  It will
1967 		 * simply be reused the next time the ring comes around.
1968 		 */
1969 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1970 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1971 			ifp->if_ierrors++;
1972 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1973 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
1974 				/* Receive overrun handled elsewhere. */
1975 				printf("%s: receive descriptor error\n",
1976 				    sc->sc_dev.dv_xname);
1977 			}
1978 #define	PRINTERR(bit, str)						\
1979 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
1980 			    (cmdsts & (bit)) != 0)			\
1981 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1982 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1983 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1984 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1985 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1986 #undef PRINTERR
1987 			SIP_INIT_RXDESC(sc, i);
1988 			continue;
1989 		}
1990 
1991 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1992 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1993 
1994 		/*
1995 		 * No errors; receive the packet.  Note, the SiS 900
1996 		 * includes the CRC with every packet.
1997 		 */
1998 		len = CMDSTS_SIZE(cmdsts);
1999 
2000 #ifdef __NO_STRICT_ALIGNMENT
2001 		/*
2002 		 * If the packet is small enough to fit in a
2003 		 * single header mbuf, allocate one and copy
2004 		 * the data into it.  This greatly reduces
2005 		 * memory consumption when we receive lots
2006 		 * of small packets.
2007 		 *
2008 		 * Otherwise, we add a new buffer to the receive
2009 		 * chain.  If this fails, we drop the packet and
2010 		 * recycle the old buffer.
2011 		 */
2012 		if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
2013 			MGETHDR(m, M_DONTWAIT, MT_DATA);
2014 			if (m == NULL)
2015 				goto dropit;
2016 			memcpy(mtod(m, caddr_t),
2017 			    mtod(rxs->rxs_mbuf, caddr_t), len);
2018 			SIP_INIT_RXDESC(sc, i);
2019 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2020 			    rxs->rxs_dmamap->dm_mapsize,
2021 			    BUS_DMASYNC_PREREAD);
2022 		} else {
2023 			m = rxs->rxs_mbuf;
2024 			if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
2025  dropit:
2026 				ifp->if_ierrors++;
2027 				SIP_INIT_RXDESC(sc, i);
2028 				bus_dmamap_sync(sc->sc_dmat,
2029 				    rxs->rxs_dmamap, 0,
2030 				    rxs->rxs_dmamap->dm_mapsize,
2031 				    BUS_DMASYNC_PREREAD);
2032 				continue;
2033 			}
2034 		}
2035 #else
2036 		/*
2037 		 * The SiS 900's receive buffers must be 4-byte aligned.
2038 		 * But this means that the data after the Ethernet header
2039 		 * is misaligned.  We must allocate a new buffer and
2040 		 * copy the data, shifted forward 2 bytes.
2041 		 */
2042 		MGETHDR(m, M_DONTWAIT, MT_DATA);
2043 		if (m == NULL) {
2044  dropit:
2045 			ifp->if_ierrors++;
2046 			SIP_INIT_RXDESC(sc, i);
2047 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2048 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2049 			continue;
2050 		}
2051 		if (len > (MHLEN - 2)) {
2052 			MCLGET(m, M_DONTWAIT);
2053 			if ((m->m_flags & M_EXT) == 0) {
2054 				m_freem(m);
2055 				goto dropit;
2056 			}
2057 		}
2058 		m->m_data += 2;
2059 
2060 		/*
2061 		 * Note that we use clusters for incoming frames, so the
2062 		 * buffer is virtually contiguous.
2063 		 */
2064 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
2065 
2066 		/* Allow the receive descriptor to continue using its mbuf. */
2067 		SIP_INIT_RXDESC(sc, i);
2068 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2069 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2070 #endif /* __NO_STRICT_ALIGNMENT */
2071 
2072 		ifp->if_ipackets++;
2073 		m->m_flags |= M_HASFCS;
2074 		m->m_pkthdr.rcvif = ifp;
2075 		m->m_pkthdr.len = m->m_len = len;
2076 
2077 #if NBPFILTER > 0
2078 		/*
2079 		 * Pass this up to any BPF listeners, but only
2080 		 * pass if up the stack if it's for us.
2081 		 */
2082 		if (ifp->if_bpf)
2083 			bpf_mtap(ifp->if_bpf, m);
2084 #endif /* NBPFILTER > 0 */
2085 
2086 		/* Pass it on. */
2087 		(*ifp->if_input)(ifp, m);
2088 	}
2089 
2090 	/* Update the receive pointer. */
2091 	sc->sc_rxptr = i;
2092 }
2093 #endif /* DP83820 */
2094 
2095 /*
2096  * sip_tick:
2097  *
2098  *	One second timer, used to tick the MII.
2099  */
2100 void
2101 SIP_DECL(tick)(void *arg)
2102 {
2103 	struct sip_softc *sc = arg;
2104 	int s;
2105 
2106 	s = splnet();
2107 	mii_tick(&sc->sc_mii);
2108 	splx(s);
2109 
2110 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2111 }
2112 
2113 /*
2114  * sip_reset:
2115  *
2116  *	Perform a soft reset on the SiS 900.
2117  */
2118 void
2119 SIP_DECL(reset)(struct sip_softc *sc)
2120 {
2121 	bus_space_tag_t st = sc->sc_st;
2122 	bus_space_handle_t sh = sc->sc_sh;
2123 	int i;
2124 
2125 	bus_space_write_4(st, sh, SIP_IER, 0);
2126 	bus_space_write_4(st, sh, SIP_IMR, 0);
2127 	bus_space_write_4(st, sh, SIP_RFCR, 0);
2128 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
2129 
2130 	for (i = 0; i < SIP_TIMEOUT; i++) {
2131 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2132 			break;
2133 		delay(2);
2134 	}
2135 
2136 	if (i == SIP_TIMEOUT)
2137 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2138 
2139 	delay(1000);
2140 
2141 #ifdef DP83820
2142 	/*
2143 	 * Set the general purpose I/O bits.  Do it here in case we
2144 	 * need to have GPIO set up to talk to the media interface.
2145 	 */
2146 	bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2147 	delay(1000);
2148 #endif /* DP83820 */
2149 }
2150 
2151 /*
2152  * sip_init:		[ ifnet interface function ]
2153  *
2154  *	Initialize the interface.  Must be called at splnet().
2155  */
2156 int
2157 SIP_DECL(init)(struct ifnet *ifp)
2158 {
2159 	struct sip_softc *sc = ifp->if_softc;
2160 	bus_space_tag_t st = sc->sc_st;
2161 	bus_space_handle_t sh = sc->sc_sh;
2162 	struct sip_txsoft *txs;
2163 	struct sip_rxsoft *rxs;
2164 	struct sip_desc *sipd;
2165 	u_int32_t reg;
2166 	int i, error = 0;
2167 
2168 	/*
2169 	 * Cancel any pending I/O.
2170 	 */
2171 	SIP_DECL(stop)(ifp, 0);
2172 
2173 	/*
2174 	 * Reset the chip to a known state.
2175 	 */
2176 	SIP_DECL(reset)(sc);
2177 
2178 #if !defined(DP83820)
2179 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2180 		/*
2181 		 * DP83815 manual, page 78:
2182 		 *    4.4 Recommended Registers Configuration
2183 		 *    For optimum performance of the DP83815, version noted
2184 		 *    as DP83815CVNG (SRR = 203h), the listed register
2185 		 *    modifications must be followed in sequence...
2186 		 *
2187 		 * It's not clear if this should be 302h or 203h because that
2188 		 * chip name is listed as SRR 302h in the description of the
2189 		 * SRR register.  However, my revision 302h DP83815 on the
2190 		 * Netgear FA311 purchased in 02/2001 needs these settings
2191 		 * to avoid tons of errors in AcceptPerfectMatch (non-
2192 		 * IFF_PROMISC) mode.  I do not know if other revisions need
2193 		 * this set or not.  [briggs -- 09 March 2001]
2194 		 *
2195 		 * Note that only the low-order 12 bits of 0xe4 are documented
2196 		 * and that this sets reserved bits in that register.
2197 		 */
2198 		reg = bus_space_read_4(st, sh, SIP_NS_SRR);
2199 		if (reg == 0x302) {
2200 			bus_space_write_4(st, sh, 0x00cc, 0x0001);
2201 			bus_space_write_4(st, sh, 0x00e4, 0x189C);
2202 			bus_space_write_4(st, sh, 0x00fc, 0x0000);
2203 			bus_space_write_4(st, sh, 0x00f4, 0x5040);
2204 			bus_space_write_4(st, sh, 0x00f8, 0x008c);
2205 		}
2206 	}
2207 #endif /* ! DP83820 */
2208 
2209 	/*
2210 	 * Initialize the transmit descriptor ring.
2211 	 */
2212 	for (i = 0; i < SIP_NTXDESC; i++) {
2213 		sipd = &sc->sc_txdescs[i];
2214 		memset(sipd, 0, sizeof(struct sip_desc));
2215 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2216 	}
2217 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2218 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2219 	sc->sc_txfree = SIP_NTXDESC;
2220 	sc->sc_txnext = 0;
2221 	sc->sc_txwin = 0;
2222 
2223 	/*
2224 	 * Initialize the transmit job descriptors.
2225 	 */
2226 	SIMPLEQ_INIT(&sc->sc_txfreeq);
2227 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
2228 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
2229 		txs = &sc->sc_txsoft[i];
2230 		txs->txs_mbuf = NULL;
2231 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2232 	}
2233 
2234 	/*
2235 	 * Initialize the receive descriptor and receive job
2236 	 * descriptor rings.
2237 	 */
2238 	for (i = 0; i < SIP_NRXDESC; i++) {
2239 		rxs = &sc->sc_rxsoft[i];
2240 		if (rxs->rxs_mbuf == NULL) {
2241 			if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2242 				printf("%s: unable to allocate or map rx "
2243 				    "buffer %d, error = %d\n",
2244 				    sc->sc_dev.dv_xname, i, error);
2245 				/*
2246 				 * XXX Should attempt to run with fewer receive
2247 				 * XXX buffers instead of just failing.
2248 				 */
2249 				SIP_DECL(rxdrain)(sc);
2250 				goto out;
2251 			}
2252 		} else
2253 			SIP_INIT_RXDESC(sc, i);
2254 	}
2255 	sc->sc_rxptr = 0;
2256 #ifdef DP83820
2257 	sc->sc_rxdiscard = 0;
2258 	SIP_RXCHAIN_RESET(sc);
2259 #endif /* DP83820 */
2260 
2261 	/*
2262 	 * Set the configuration register; it's already initialized
2263 	 * in sip_attach().
2264 	 */
2265 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2266 
2267 	/*
2268 	 * Initialize the prototype TXCFG register.
2269 	 */
2270 #if defined(DP83820)
2271 	sc->sc_txcfg = TXCFG_MXDMA_512;
2272 	sc->sc_rxcfg = RXCFG_MXDMA_512;
2273 #else
2274 	if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2275 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2276 	    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & CFG_EDBMASTEN)) {
2277 		sc->sc_txcfg = TXCFG_MXDMA_64;
2278 		sc->sc_rxcfg = RXCFG_MXDMA_64;
2279 	} else {
2280 		sc->sc_txcfg = TXCFG_MXDMA_512;
2281 		sc->sc_rxcfg = RXCFG_MXDMA_512;
2282 	}
2283 #endif /* DP83820 */
2284 
2285 	sc->sc_txcfg |= TXCFG_ATP |
2286 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2287 	    sc->sc_tx_drain_thresh;
2288 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2289 
2290 	/*
2291 	 * Initialize the receive drain threshold if we have never
2292 	 * done so.
2293 	 */
2294 	if (sc->sc_rx_drain_thresh == 0) {
2295 		/*
2296 		 * XXX This value should be tuned.  This is set to the
2297 		 * maximum of 248 bytes, and we may be able to improve
2298 		 * performance by decreasing it (although we should never
2299 		 * set this value lower than 2; 14 bytes are required to
2300 		 * filter the packet).
2301 		 */
2302 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2303 	}
2304 
2305 	/*
2306 	 * Initialize the prototype RXCFG register.
2307 	 */
2308 	sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2309 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2310 
2311 #ifdef DP83820
2312 	/*
2313 	 * Initialize the VLAN/IP receive control register.
2314 	 * We enable checksum computation on all incoming
2315 	 * packets, and do not reject packets w/ bad checksums.
2316 	 */
2317 	reg = 0;
2318 	if (ifp->if_capenable &
2319 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2320 		reg |= VRCR_IPEN;
2321 	if (sc->sc_ethercom.ec_nvlans != 0)
2322 		reg |= VRCR_VTDEN|VRCR_VTREN;
2323 	bus_space_write_4(st, sh, SIP_VRCR, reg);
2324 
2325 	/*
2326 	 * Initialize the VLAN/IP transmit control register.
2327 	 * We enable outgoing checksum computation on a
2328 	 * per-packet basis.
2329 	 */
2330 	reg = 0;
2331 	if (ifp->if_capenable &
2332 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2333 		reg |= VTCR_PPCHK;
2334 	if (sc->sc_ethercom.ec_nvlans != 0)
2335 		reg |= VTCR_VPPTI;
2336 	bus_space_write_4(st, sh, SIP_VTCR, reg);
2337 
2338 	/*
2339 	 * If we're using VLANs, initialize the VLAN data register.
2340 	 * To understand why we bswap the VLAN Ethertype, see section
2341 	 * 4.2.36 of the DP83820 manual.
2342 	 */
2343 	if (sc->sc_ethercom.ec_nvlans != 0)
2344 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2345 #endif /* DP83820 */
2346 
2347 	/*
2348 	 * Give the transmit and receive rings to the chip.
2349 	 */
2350 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2351 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2352 
2353 	/*
2354 	 * Initialize the interrupt mask.
2355 	 */
2356 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2357 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2358 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2359 
2360 	/* Set up the receive filter. */
2361 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2362 
2363 	/*
2364 	 * Set the current media.  Do this after initializing the prototype
2365 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2366 	 * control.
2367 	 */
2368 	mii_mediachg(&sc->sc_mii);
2369 
2370 	/*
2371 	 * Enable interrupts.
2372 	 */
2373 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
2374 
2375 	/*
2376 	 * Start the transmit and receive processes.
2377 	 */
2378 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2379 
2380 	/*
2381 	 * Start the one second MII clock.
2382 	 */
2383 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2384 
2385 	/*
2386 	 * ...all done!
2387 	 */
2388 	ifp->if_flags |= IFF_RUNNING;
2389 	ifp->if_flags &= ~IFF_OACTIVE;
2390 
2391  out:
2392 	if (error)
2393 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2394 	return (error);
2395 }
2396 
2397 /*
2398  * sip_drain:
2399  *
2400  *	Drain the receive queue.
2401  */
2402 void
2403 SIP_DECL(rxdrain)(struct sip_softc *sc)
2404 {
2405 	struct sip_rxsoft *rxs;
2406 	int i;
2407 
2408 	for (i = 0; i < SIP_NRXDESC; i++) {
2409 		rxs = &sc->sc_rxsoft[i];
2410 		if (rxs->rxs_mbuf != NULL) {
2411 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2412 			m_freem(rxs->rxs_mbuf);
2413 			rxs->rxs_mbuf = NULL;
2414 		}
2415 	}
2416 }
2417 
2418 /*
2419  * sip_stop:		[ ifnet interface function ]
2420  *
2421  *	Stop transmission on the interface.
2422  */
2423 void
2424 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2425 {
2426 	struct sip_softc *sc = ifp->if_softc;
2427 	bus_space_tag_t st = sc->sc_st;
2428 	bus_space_handle_t sh = sc->sc_sh;
2429 	struct sip_txsoft *txs;
2430 	u_int32_t cmdsts = 0;		/* DEBUG */
2431 
2432 	/*
2433 	 * Stop the one second clock.
2434 	 */
2435 	callout_stop(&sc->sc_tick_ch);
2436 
2437 	/* Down the MII. */
2438 	mii_down(&sc->sc_mii);
2439 
2440 	/*
2441 	 * Disable interrupts.
2442 	 */
2443 	bus_space_write_4(st, sh, SIP_IER, 0);
2444 
2445 	/*
2446 	 * Stop receiver and transmitter.
2447 	 */
2448 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2449 
2450 	/*
2451 	 * Release any queued transmit buffers.
2452 	 */
2453 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2454 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2455 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2456 		    (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2457 		     CMDSTS_INTR) == 0)
2458 			printf("%s: sip_stop: last descriptor does not "
2459 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
2460 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2461 #ifdef DIAGNOSTIC
2462 		if (txs->txs_mbuf == NULL) {
2463 			printf("%s: dirty txsoft with no mbuf chain\n",
2464 			    sc->sc_dev.dv_xname);
2465 			panic("sip_stop");
2466 		}
2467 #endif
2468 		cmdsts |=		/* DEBUG */
2469 		    le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2470 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2471 		m_freem(txs->txs_mbuf);
2472 		txs->txs_mbuf = NULL;
2473 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2474 	}
2475 
2476 	if (disable)
2477 		SIP_DECL(rxdrain)(sc);
2478 
2479 	/*
2480 	 * Mark the interface down and cancel the watchdog timer.
2481 	 */
2482 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2483 	ifp->if_timer = 0;
2484 
2485 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2486 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2487 		printf("%s: sip_stop: no INTR bits set in dirty tx "
2488 		    "descriptors\n", sc->sc_dev.dv_xname);
2489 }
2490 
2491 /*
2492  * sip_read_eeprom:
2493  *
2494  *	Read data from the serial EEPROM.
2495  */
2496 void
2497 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2498     u_int16_t *data)
2499 {
2500 	bus_space_tag_t st = sc->sc_st;
2501 	bus_space_handle_t sh = sc->sc_sh;
2502 	u_int16_t reg;
2503 	int i, x;
2504 
2505 	for (i = 0; i < wordcnt; i++) {
2506 		/* Send CHIP SELECT. */
2507 		reg = EROMAR_EECS;
2508 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
2509 
2510 		/* Shift in the READ opcode. */
2511 		for (x = 3; x > 0; x--) {
2512 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2513 				reg |= EROMAR_EEDI;
2514 			else
2515 				reg &= ~EROMAR_EEDI;
2516 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2517 			bus_space_write_4(st, sh, SIP_EROMAR,
2518 			    reg | EROMAR_EESK);
2519 			delay(4);
2520 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2521 			delay(4);
2522 		}
2523 
2524 		/* Shift in address. */
2525 		for (x = 6; x > 0; x--) {
2526 			if ((word + i) & (1 << (x - 1)))
2527 				reg |= EROMAR_EEDI;
2528 			else
2529 				reg &= ~EROMAR_EEDI;
2530 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2531 			bus_space_write_4(st, sh, SIP_EROMAR,
2532 			    reg | EROMAR_EESK);
2533 			delay(4);
2534 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2535 			delay(4);
2536 		}
2537 
2538 		/* Shift out data. */
2539 		reg = EROMAR_EECS;
2540 		data[i] = 0;
2541 		for (x = 16; x > 0; x--) {
2542 			bus_space_write_4(st, sh, SIP_EROMAR,
2543 			    reg | EROMAR_EESK);
2544 			delay(4);
2545 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2546 				data[i] |= (1 << (x - 1));
2547 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2548 			delay(4);
2549 		}
2550 
2551 		/* Clear CHIP SELECT. */
2552 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
2553 		delay(4);
2554 	}
2555 }
2556 
2557 /*
2558  * sip_add_rxbuf:
2559  *
2560  *	Add a receive buffer to the indicated descriptor.
2561  */
2562 int
2563 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2564 {
2565 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2566 	struct mbuf *m;
2567 	int error;
2568 
2569 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2570 	if (m == NULL)
2571 		return (ENOBUFS);
2572 
2573 	MCLGET(m, M_DONTWAIT);
2574 	if ((m->m_flags & M_EXT) == 0) {
2575 		m_freem(m);
2576 		return (ENOBUFS);
2577 	}
2578 
2579 #if defined(DP83820)
2580 	m->m_len = SIP_RXBUF_LEN;
2581 #endif /* DP83820 */
2582 
2583 	if (rxs->rxs_mbuf != NULL)
2584 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2585 
2586 	rxs->rxs_mbuf = m;
2587 
2588 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2589 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2590 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2591 	if (error) {
2592 		printf("%s: can't load rx DMA map %d, error = %d\n",
2593 		    sc->sc_dev.dv_xname, idx, error);
2594 		panic("sip_add_rxbuf");		/* XXX */
2595 	}
2596 
2597 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2598 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2599 
2600 	SIP_INIT_RXDESC(sc, idx);
2601 
2602 	return (0);
2603 }
2604 
2605 #if !defined(DP83820)
2606 /*
2607  * sip_sis900_set_filter:
2608  *
2609  *	Set up the receive filter.
2610  */
2611 void
2612 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2613 {
2614 	bus_space_tag_t st = sc->sc_st;
2615 	bus_space_handle_t sh = sc->sc_sh;
2616 	struct ethercom *ec = &sc->sc_ethercom;
2617 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2618 	struct ether_multi *enm;
2619 	u_int8_t *cp;
2620 	struct ether_multistep step;
2621 	u_int32_t crc, mchash[16];
2622 
2623 	/*
2624 	 * Initialize the prototype RFCR.
2625 	 */
2626 	sc->sc_rfcr = RFCR_RFEN;
2627 	if (ifp->if_flags & IFF_BROADCAST)
2628 		sc->sc_rfcr |= RFCR_AAB;
2629 	if (ifp->if_flags & IFF_PROMISC) {
2630 		sc->sc_rfcr |= RFCR_AAP;
2631 		goto allmulti;
2632 	}
2633 
2634 	/*
2635 	 * Set up the multicast address filter by passing all multicast
2636 	 * addresses through a CRC generator, and then using the high-order
2637 	 * 6 bits as an index into the 128 bit multicast hash table (only
2638 	 * the lower 16 bits of each 32 bit multicast hash register are
2639 	 * valid).  The high order bits select the register, while the
2640 	 * rest of the bits select the bit within the register.
2641 	 */
2642 
2643 	memset(mchash, 0, sizeof(mchash));
2644 
2645 	ETHER_FIRST_MULTI(step, ec, enm);
2646 	while (enm != NULL) {
2647 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2648 			/*
2649 			 * We must listen to a range of multicast addresses.
2650 			 * For now, just accept all multicasts, rather than
2651 			 * trying to set only those filter bits needed to match
2652 			 * the range.  (At this time, the only use of address
2653 			 * ranges is for IP multicast routing, for which the
2654 			 * range is big enough to require all bits set.)
2655 			 */
2656 			goto allmulti;
2657 		}
2658 
2659 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2660 
2661 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2662 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
2663 			/* Just want the 8 most significant bits. */
2664 			crc >>= 24;
2665 		} else {
2666 			/* Just want the 7 most significant bits. */
2667 			crc >>= 25;
2668 		}
2669 
2670 		/* Set the corresponding bit in the hash table. */
2671 		mchash[crc >> 4] |= 1 << (crc & 0xf);
2672 
2673 		ETHER_NEXT_MULTI(step, enm);
2674 	}
2675 
2676 	ifp->if_flags &= ~IFF_ALLMULTI;
2677 	goto setit;
2678 
2679  allmulti:
2680 	ifp->if_flags |= IFF_ALLMULTI;
2681 	sc->sc_rfcr |= RFCR_AAM;
2682 
2683  setit:
2684 #define	FILTER_EMIT(addr, data)						\
2685 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
2686 	delay(1);							\
2687 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
2688 	delay(1)
2689 
2690 	/*
2691 	 * Disable receive filter, and program the node address.
2692 	 */
2693 	cp = LLADDR(ifp->if_sadl);
2694 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2695 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2696 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2697 
2698 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2699 		/*
2700 		 * Program the multicast hash table.
2701 		 */
2702 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2703 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2704 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2705 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2706 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2707 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2708 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2709 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2710 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2711 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
2712 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2713 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2714 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2715 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2716 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2717 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2718 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2719 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2720 		}
2721 	}
2722 #undef FILTER_EMIT
2723 
2724 	/*
2725 	 * Re-enable the receiver filter.
2726 	 */
2727 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2728 }
2729 #endif /* ! DP83820 */
2730 
2731 /*
2732  * sip_dp83815_set_filter:
2733  *
2734  *	Set up the receive filter.
2735  */
2736 void
2737 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2738 {
2739 	bus_space_tag_t st = sc->sc_st;
2740 	bus_space_handle_t sh = sc->sc_sh;
2741 	struct ethercom *ec = &sc->sc_ethercom;
2742 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2743 	struct ether_multi *enm;
2744 	u_int8_t *cp;
2745 	struct ether_multistep step;
2746 	u_int32_t crc, hash, slot, bit;
2747 #ifdef DP83820
2748 #define	MCHASH_NWORDS	128
2749 #else
2750 #define	MCHASH_NWORDS	32
2751 #endif /* DP83820 */
2752 	u_int16_t mchash[MCHASH_NWORDS];
2753 	int i;
2754 
2755 	/*
2756 	 * Initialize the prototype RFCR.
2757 	 * Enable the receive filter, and accept on
2758 	 *    Perfect (destination address) Match
2759 	 * If IFF_BROADCAST, also accept all broadcast packets.
2760 	 * If IFF_PROMISC, accept all unicast packets (and later, set
2761 	 *    IFF_ALLMULTI and accept all multicast, too).
2762 	 */
2763 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2764 	if (ifp->if_flags & IFF_BROADCAST)
2765 		sc->sc_rfcr |= RFCR_AAB;
2766 	if (ifp->if_flags & IFF_PROMISC) {
2767 		sc->sc_rfcr |= RFCR_AAP;
2768 		goto allmulti;
2769 	}
2770 
2771 #ifdef DP83820
2772 	/*
2773 	 * Set up the DP83820 multicast address filter by passing all multicast
2774 	 * addresses through a CRC generator, and then using the high-order
2775 	 * 11 bits as an index into the 2048 bit multicast hash table.  The
2776 	 * high-order 7 bits select the slot, while the low-order 4 bits
2777 	 * select the bit within the slot.  Note that only the low 16-bits
2778 	 * of each filter word are used, and there are 128 filter words.
2779 	 */
2780 #else
2781 	/*
2782 	 * Set up the DP83815 multicast address filter by passing all multicast
2783 	 * addresses through a CRC generator, and then using the high-order
2784 	 * 9 bits as an index into the 512 bit multicast hash table.  The
2785 	 * high-order 5 bits select the slot, while the low-order 4 bits
2786 	 * select the bit within the slot.  Note that only the low 16-bits
2787 	 * of each filter word are used, and there are 32 filter words.
2788 	 */
2789 #endif /* DP83820 */
2790 
2791 	memset(mchash, 0, sizeof(mchash));
2792 
2793 	ifp->if_flags &= ~IFF_ALLMULTI;
2794 	ETHER_FIRST_MULTI(step, ec, enm);
2795 	if (enm == NULL)
2796 		goto setit;
2797 	while (enm != NULL) {
2798 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2799 			/*
2800 			 * We must listen to a range of multicast addresses.
2801 			 * For now, just accept all multicasts, rather than
2802 			 * trying to set only those filter bits needed to match
2803 			 * the range.  (At this time, the only use of address
2804 			 * ranges is for IP multicast routing, for which the
2805 			 * range is big enough to require all bits set.)
2806 			 */
2807 			goto allmulti;
2808 		}
2809 
2810 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2811 
2812 #ifdef DP83820
2813 		/* Just want the 11 most significant bits. */
2814 		hash = crc >> 21;
2815 #else
2816 		/* Just want the 9 most significant bits. */
2817 		hash = crc >> 23;
2818 #endif /* DP83820 */
2819 
2820 		slot = hash >> 4;
2821 		bit = hash & 0xf;
2822 
2823 		/* Set the corresponding bit in the hash table. */
2824 		mchash[slot] |= 1 << bit;
2825 
2826 		ETHER_NEXT_MULTI(step, enm);
2827 	}
2828 	sc->sc_rfcr |= RFCR_MHEN;
2829 	goto setit;
2830 
2831  allmulti:
2832 	ifp->if_flags |= IFF_ALLMULTI;
2833 	sc->sc_rfcr |= RFCR_AAM;
2834 
2835  setit:
2836 #define	FILTER_EMIT(addr, data)						\
2837 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
2838 	delay(1);							\
2839 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
2840 	delay(1)
2841 
2842 	/*
2843 	 * Disable receive filter, and program the node address.
2844 	 */
2845 	cp = LLADDR(ifp->if_sadl);
2846 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
2847 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
2848 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
2849 
2850 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2851 		/*
2852 		 * Program the multicast hash table.
2853 		 */
2854 		for (i = 0; i < MCHASH_NWORDS; i++) {
2855 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
2856 			    mchash[i]);
2857 		}
2858 	}
2859 #undef FILTER_EMIT
2860 #undef MCHASH_NWORDS
2861 
2862 	/*
2863 	 * Re-enable the receiver filter.
2864 	 */
2865 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2866 }
2867 
2868 #if defined(DP83820)
2869 /*
2870  * sip_dp83820_mii_readreg:	[mii interface function]
2871  *
2872  *	Read a PHY register on the MII of the DP83820.
2873  */
2874 int
2875 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
2876 {
2877 	struct sip_softc *sc = (void *) self;
2878 
2879 	if (sc->sc_cfg & CFG_TBI_EN) {
2880 		bus_addr_t tbireg;
2881 		int rv;
2882 
2883 		if (phy != 0)
2884 			return (0);
2885 
2886 		switch (reg) {
2887 		case MII_BMCR:		tbireg = SIP_TBICR; break;
2888 		case MII_BMSR:		tbireg = SIP_TBISR; break;
2889 		case MII_ANAR:		tbireg = SIP_TANAR; break;
2890 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
2891 		case MII_ANER:		tbireg = SIP_TANER; break;
2892 		case MII_EXTSR:
2893 			/*
2894 			 * Don't even bother reading the TESR register.
2895 			 * The manual documents that the device has
2896 			 * 1000baseX full/half capability, but the
2897 			 * register itself seems read back 0 on some
2898 			 * boards.  Just hard-code the result.
2899 			 */
2900 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
2901 
2902 		default:
2903 			return (0);
2904 		}
2905 
2906 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
2907 		if (tbireg == SIP_TBISR) {
2908 			/* LINK and ACOMP are switched! */
2909 			int val = rv;
2910 
2911 			rv = 0;
2912 			if (val & TBISR_MR_LINK_STATUS)
2913 				rv |= BMSR_LINK;
2914 			if (val & TBISR_MR_AN_COMPLETE)
2915 				rv |= BMSR_ACOMP;
2916 
2917 			/*
2918 			 * The manual claims this register reads back 0
2919 			 * on hard and soft reset.  But we want to let
2920 			 * the gentbi driver know that we support auto-
2921 			 * negotiation, so hard-code this bit in the
2922 			 * result.
2923 			 */
2924 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
2925 		}
2926 
2927 		return (rv);
2928 	}
2929 
2930 	return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2931 	    phy, reg));
2932 }
2933 
2934 /*
2935  * sip_dp83820_mii_writereg:	[mii interface function]
2936  *
2937  *	Write a PHY register on the MII of the DP83820.
2938  */
2939 void
2940 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
2941 {
2942 	struct sip_softc *sc = (void *) self;
2943 
2944 	if (sc->sc_cfg & CFG_TBI_EN) {
2945 		bus_addr_t tbireg;
2946 
2947 		if (phy != 0)
2948 			return;
2949 
2950 		switch (reg) {
2951 		case MII_BMCR:		tbireg = SIP_TBICR; break;
2952 		case MII_ANAR:		tbireg = SIP_TANAR; break;
2953 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
2954 		default:
2955 			return;
2956 		}
2957 
2958 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
2959 		return;
2960 	}
2961 
2962 	mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops),
2963 	    phy, reg, val);
2964 }
2965 
2966 /*
2967  * sip_dp83815_mii_statchg:	[mii interface function]
2968  *
2969  *	Callback from MII layer when media changes.
2970  */
2971 void
2972 SIP_DECL(dp83820_mii_statchg)(struct device *self)
2973 {
2974 	struct sip_softc *sc = (struct sip_softc *) self;
2975 	u_int32_t cfg;
2976 
2977 	/*
2978 	 * Update TXCFG for full-duplex operation.
2979 	 */
2980 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2981 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
2982 	else
2983 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
2984 
2985 	/*
2986 	 * Update RXCFG for full-duplex or loopback.
2987 	 */
2988 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
2989 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
2990 		sc->sc_rxcfg |= RXCFG_ATX;
2991 	else
2992 		sc->sc_rxcfg &= ~RXCFG_ATX;
2993 
2994 	/*
2995 	 * Update CFG for MII/GMII.
2996 	 */
2997 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2998 		cfg = sc->sc_cfg | CFG_MODE_1000;
2999 	else
3000 		cfg = sc->sc_cfg;
3001 
3002 	/*
3003 	 * XXX 802.3x flow control.
3004 	 */
3005 
3006 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3007 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3008 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3009 }
3010 
3011 /*
3012  * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function]
3013  *
3014  *	Read the MII serial port for the MII bit-bang module.
3015  */
3016 u_int32_t
3017 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self)
3018 {
3019 	struct sip_softc *sc = (void *) self;
3020 
3021 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3022 }
3023 
3024 /*
3025  * sip_dp83820_mii_bitbang_write: [mii big-bang interface function]
3026  *
3027  *	Write the MII serial port for the MII bit-bang module.
3028  */
3029 void
3030 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val)
3031 {
3032 	struct sip_softc *sc = (void *) self;
3033 
3034 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3035 }
3036 #else /* ! DP83820 */
3037 /*
3038  * sip_sis900_mii_readreg:	[mii interface function]
3039  *
3040  *	Read a PHY register on the MII.
3041  */
3042 int
3043 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
3044 {
3045 	struct sip_softc *sc = (struct sip_softc *) self;
3046 	u_int32_t enphy;
3047 
3048 	/*
3049 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3050 	 * MII address 0.
3051 	 */
3052 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
3053 	    sc->sc_rev < SIS_REV_635 && phy != 0)
3054 		return (0);
3055 
3056 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3057 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3058 	    ENPHY_RWCMD | ENPHY_ACCESS);
3059 	do {
3060 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3061 	} while (enphy & ENPHY_ACCESS);
3062 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3063 }
3064 
3065 /*
3066  * sip_sis900_mii_writereg:	[mii interface function]
3067  *
3068  *	Write a PHY register on the MII.
3069  */
3070 void
3071 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
3072 {
3073 	struct sip_softc *sc = (struct sip_softc *) self;
3074 	u_int32_t enphy;
3075 
3076 	/*
3077 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3078 	 * MII address 0.
3079 	 */
3080 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 &&
3081 	    sc->sc_rev < SIS_REV_635 && phy != 0)
3082 		return;
3083 
3084 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3085 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3086 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3087 	do {
3088 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3089 	} while (enphy & ENPHY_ACCESS);
3090 }
3091 
3092 /*
3093  * sip_sis900_mii_statchg:	[mii interface function]
3094  *
3095  *	Callback from MII layer when media changes.
3096  */
3097 void
3098 SIP_DECL(sis900_mii_statchg)(struct device *self)
3099 {
3100 	struct sip_softc *sc = (struct sip_softc *) self;
3101 	u_int32_t flowctl;
3102 
3103 	/*
3104 	 * Update TXCFG for full-duplex operation.
3105 	 */
3106 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3107 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3108 	else
3109 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3110 
3111 	/*
3112 	 * Update RXCFG for full-duplex or loopback.
3113 	 */
3114 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3115 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3116 		sc->sc_rxcfg |= RXCFG_ATX;
3117 	else
3118 		sc->sc_rxcfg &= ~RXCFG_ATX;
3119 
3120 	/*
3121 	 * Update IMR for use of 802.3x flow control.
3122 	 */
3123 	if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) {
3124 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3125 		flowctl = FLOWCTL_FLOWEN;
3126 	} else {
3127 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3128 		flowctl = 0;
3129 	}
3130 
3131 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3132 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3133 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3134 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3135 }
3136 
3137 /*
3138  * sip_dp83815_mii_readreg:	[mii interface function]
3139  *
3140  *	Read a PHY register on the MII.
3141  */
3142 int
3143 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
3144 {
3145 	struct sip_softc *sc = (struct sip_softc *) self;
3146 	u_int32_t val;
3147 
3148 	/*
3149 	 * The DP83815 only has an internal PHY.  Only allow
3150 	 * MII address 0.
3151 	 */
3152 	if (phy != 0)
3153 		return (0);
3154 
3155 	/*
3156 	 * Apparently, after a reset, the DP83815 can take a while
3157 	 * to respond.  During this recovery period, the BMSR returns
3158 	 * a value of 0.  Catch this -- it's not supposed to happen
3159 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3160 	 * PHY to come back to life.
3161 	 *
3162 	 * This works out because the BMSR is the first register
3163 	 * read during the PHY probe process.
3164 	 */
3165 	do {
3166 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3167 	} while (reg == MII_BMSR && val == 0);
3168 
3169 	return (val & 0xffff);
3170 }
3171 
3172 /*
3173  * sip_dp83815_mii_writereg:	[mii interface function]
3174  *
3175  *	Write a PHY register to the MII.
3176  */
3177 void
3178 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
3179 {
3180 	struct sip_softc *sc = (struct sip_softc *) self;
3181 
3182 	/*
3183 	 * The DP83815 only has an internal PHY.  Only allow
3184 	 * MII address 0.
3185 	 */
3186 	if (phy != 0)
3187 		return;
3188 
3189 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3190 }
3191 
3192 /*
3193  * sip_dp83815_mii_statchg:	[mii interface function]
3194  *
3195  *	Callback from MII layer when media changes.
3196  */
3197 void
3198 SIP_DECL(dp83815_mii_statchg)(struct device *self)
3199 {
3200 	struct sip_softc *sc = (struct sip_softc *) self;
3201 
3202 	/*
3203 	 * Update TXCFG for full-duplex operation.
3204 	 */
3205 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3206 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3207 	else
3208 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3209 
3210 	/*
3211 	 * Update RXCFG for full-duplex or loopback.
3212 	 */
3213 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3214 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3215 		sc->sc_rxcfg |= RXCFG_ATX;
3216 	else
3217 		sc->sc_rxcfg &= ~RXCFG_ATX;
3218 
3219 	/*
3220 	 * XXX 802.3x flow control.
3221 	 */
3222 
3223 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3224 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3225 }
3226 #endif /* DP83820 */
3227 
3228 #if defined(DP83820)
3229 void
3230 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
3231     const struct pci_attach_args *pa, u_int8_t *enaddr)
3232 {
3233 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3234 	u_int8_t cksum, *e, match;
3235 	int i;
3236 
3237 	/*
3238 	 * EEPROM data format for the DP83820 can be found in
3239 	 * the DP83820 manual, section 4.2.4.
3240 	 */
3241 
3242 	SIP_DECL(read_eeprom)(sc, 0,
3243 	    sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
3244 
3245 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3246 	match = ~(match - 1);
3247 
3248 	cksum = 0x55;
3249 	e = (u_int8_t *) eeprom_data;
3250 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3251 		cksum += *e++;
3252 
3253 	if (cksum != match)
3254 		printf("%s: Checksum (%x) mismatch (%x)",
3255 		    sc->sc_dev.dv_xname, cksum, match);
3256 
3257 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3258 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3259 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3260 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3261 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3262 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3263 }
3264 #else /* ! DP83820 */
3265 void
3266 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
3267     const struct pci_attach_args *pa, u_int8_t *enaddr)
3268 {
3269 	u_int16_t myea[ETHER_ADDR_LEN / 2];
3270 
3271 	switch (sc->sc_rev) {
3272 	case SIS_REV_630S:
3273 	case SIS_REV_630E:
3274 	case SIS_REV_630EA1:
3275 	case SIS_REV_630ET:
3276 	case SIS_REV_635:
3277 		/*
3278 		 * The MAC address for the on-board Ethernet of
3279 		 * the SiS 630 chipset is in the NVRAM.  Kick
3280 		 * the chip into re-loading it from NVRAM, and
3281 		 * read the MAC address out of the filter registers.
3282 		 */
3283 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3284 
3285 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3286 		    RFCR_RFADDR_NODE0);
3287 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3288 		    0xffff;
3289 
3290 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3291 		    RFCR_RFADDR_NODE2);
3292 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3293 		    0xffff;
3294 
3295 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3296 		    RFCR_RFADDR_NODE4);
3297 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3298 		    0xffff;
3299 		break;
3300 
3301 	default:
3302 		SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3303 		    sizeof(myea) / sizeof(myea[0]), myea);
3304 	}
3305 
3306 	enaddr[0] = myea[0] & 0xff;
3307 	enaddr[1] = myea[0] >> 8;
3308 	enaddr[2] = myea[1] & 0xff;
3309 	enaddr[3] = myea[1] >> 8;
3310 	enaddr[4] = myea[2] & 0xff;
3311 	enaddr[5] = myea[2] >> 8;
3312 }
3313 
3314 /* Table and macro to bit-reverse an octet. */
3315 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3316 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3317 
3318 void
3319 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3320     const struct pci_attach_args *pa, u_int8_t *enaddr)
3321 {
3322 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3323 	u_int8_t cksum, *e, match;
3324 	int i;
3325 
3326 	SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3327 	    sizeof(eeprom_data[0]), eeprom_data);
3328 
3329 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3330 	match = ~(match - 1);
3331 
3332 	cksum = 0x55;
3333 	e = (u_int8_t *) eeprom_data;
3334 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3335 		cksum += *e++;
3336 	}
3337 	if (cksum != match) {
3338 		printf("%s: Checksum (%x) mismatch (%x)",
3339 		    sc->sc_dev.dv_xname, cksum, match);
3340 	}
3341 
3342 	/*
3343 	 * Unrolled because it makes slightly more sense this way.
3344 	 * The DP83815 stores the MAC address in bit 0 of word 6
3345 	 * through bit 15 of word 8.
3346 	 */
3347 	ea = &eeprom_data[6];
3348 	enaddr[0] = ((*ea & 0x1) << 7);
3349 	ea++;
3350 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
3351 	enaddr[1] = ((*ea & 0x1FE) >> 1);
3352 	enaddr[2] = ((*ea & 0x1) << 7);
3353 	ea++;
3354 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
3355 	enaddr[3] = ((*ea & 0x1FE) >> 1);
3356 	enaddr[4] = ((*ea & 0x1) << 7);
3357 	ea++;
3358 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
3359 	enaddr[5] = ((*ea & 0x1FE) >> 1);
3360 
3361 	/*
3362 	 * In case that's not weird enough, we also need to reverse
3363 	 * the bits in each byte.  This all actually makes more sense
3364 	 * if you think about the EEPROM storage as an array of bits
3365 	 * being shifted into bytes, but that's not how we're looking
3366 	 * at it here...
3367 	 */
3368 	for (i = 0; i < 6 ;i++)
3369 		enaddr[i] = bbr(enaddr[i]);
3370 }
3371 #endif /* DP83820 */
3372 
3373 /*
3374  * sip_mediastatus:	[ifmedia interface function]
3375  *
3376  *	Get the current interface media status.
3377  */
3378 void
3379 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3380 {
3381 	struct sip_softc *sc = ifp->if_softc;
3382 
3383 	mii_pollstat(&sc->sc_mii);
3384 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
3385 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
3386 }
3387 
3388 /*
3389  * sip_mediachange:	[ifmedia interface function]
3390  *
3391  *	Set hardware to newly-selected media.
3392  */
3393 int
3394 SIP_DECL(mediachange)(struct ifnet *ifp)
3395 {
3396 	struct sip_softc *sc = ifp->if_softc;
3397 
3398 	if (ifp->if_flags & IFF_UP)
3399 		mii_mediachg(&sc->sc_mii);
3400 	return (0);
3401 }
3402