1 /* $NetBSD: if_sip.c,v 1.73 2002/10/17 01:17:30 fair Exp $ */ 2 3 /*- 4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /*- 40 * Copyright (c) 1999 Network Computer, Inc. 41 * All rights reserved. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. Neither the name of Network Computer, Inc. nor the names of its 52 * contributors may be used to endorse or promote products derived 53 * from this software without specific prior written permission. 54 * 55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS 56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 65 * POSSIBILITY OF SUCH DAMAGE. 66 */ 67 68 /* 69 * Device driver for the Silicon Integrated Systems SiS 900, 70 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and 71 * National Semiconductor DP83820 10/100/1000 PCI Ethernet 72 * controllers. 73 * 74 * Originally written to support the SiS 900 by Jason R. Thorpe for 75 * Network Computer, Inc. 76 * 77 * TODO: 78 * 79 * - Reduce the Rx interrupt load. 80 */ 81 82 #include <sys/cdefs.h> 83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.73 2002/10/17 01:17:30 fair Exp $"); 84 85 #include "bpfilter.h" 86 #include "rnd.h" 87 88 #include <sys/param.h> 89 #include <sys/systm.h> 90 #include <sys/callout.h> 91 #include <sys/mbuf.h> 92 #include <sys/malloc.h> 93 #include <sys/kernel.h> 94 #include <sys/socket.h> 95 #include <sys/ioctl.h> 96 #include <sys/errno.h> 97 #include <sys/device.h> 98 #include <sys/queue.h> 99 100 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */ 101 102 #if NRND > 0 103 #include <sys/rnd.h> 104 #endif 105 106 #include <net/if.h> 107 #include <net/if_dl.h> 108 #include <net/if_media.h> 109 #include <net/if_ether.h> 110 111 #if NBPFILTER > 0 112 #include <net/bpf.h> 113 #endif 114 115 #include <machine/bus.h> 116 #include <machine/intr.h> 117 #include <machine/endian.h> 118 119 #include <dev/mii/mii.h> 120 #include <dev/mii/miivar.h> 121 #ifdef DP83820 122 #include <dev/mii/mii_bitbang.h> 123 #endif /* DP83820 */ 124 125 #include <dev/pci/pcireg.h> 126 #include <dev/pci/pcivar.h> 127 #include <dev/pci/pcidevs.h> 128 129 #include <dev/pci/if_sipreg.h> 130 131 #ifdef DP83820 /* DP83820 Gigabit Ethernet */ 132 #define SIP_DECL(x) __CONCAT(gsip_,x) 133 #else /* SiS900 and DP83815 */ 134 #define SIP_DECL(x) __CONCAT(sip_,x) 135 #endif 136 137 #define SIP_STR(x) __STRING(SIP_DECL(x)) 138 139 /* 140 * Transmit descriptor list size. This is arbitrary, but allocate 141 * enough descriptors for 128 pending transmissions, and 8 segments 142 * per packet. This MUST work out to a power of 2. 143 */ 144 #define SIP_NTXSEGS 16 145 #define SIP_NTXSEGS_ALLOC 8 146 147 #define SIP_TXQUEUELEN 256 148 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC) 149 #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1) 150 #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK) 151 152 #if defined(DP83020) 153 #define TX_DMAMAP_SIZE ETHER_MAX_LEN_JUMBO 154 #else 155 #define TX_DMAMAP_SIZE MCLBYTES 156 #endif 157 158 /* 159 * Receive descriptor list size. We have one Rx buffer per incoming 160 * packet, so this logic is a little simpler. 161 * 162 * Actually, on the DP83820, we allow the packet to consume more than 163 * one buffer, in order to support jumbo Ethernet frames. In that 164 * case, a packet may consume up to 5 buffers (assuming a 2048 byte 165 * mbuf cluster). 256 receive buffers is only 51 maximum size packets, 166 * so we'd better be quick about handling receive interrupts. 167 */ 168 #if defined(DP83820) 169 #define SIP_NRXDESC 256 170 #else 171 #define SIP_NRXDESC 128 172 #endif /* DP83820 */ 173 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1) 174 #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK) 175 176 /* 177 * Control structures are DMA'd to the SiS900 chip. We allocate them in 178 * a single clump that maps to a single DMA segment to make several things 179 * easier. 180 */ 181 struct sip_control_data { 182 /* 183 * The transmit descriptors. 184 */ 185 struct sip_desc scd_txdescs[SIP_NTXDESC]; 186 187 /* 188 * The receive descriptors. 189 */ 190 struct sip_desc scd_rxdescs[SIP_NRXDESC]; 191 }; 192 193 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x) 194 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)]) 195 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)]) 196 197 /* 198 * Software state for transmit jobs. 199 */ 200 struct sip_txsoft { 201 struct mbuf *txs_mbuf; /* head of our mbuf chain */ 202 bus_dmamap_t txs_dmamap; /* our DMA map */ 203 int txs_firstdesc; /* first descriptor in packet */ 204 int txs_lastdesc; /* last descriptor in packet */ 205 SIMPLEQ_ENTRY(sip_txsoft) txs_q; 206 }; 207 208 SIMPLEQ_HEAD(sip_txsq, sip_txsoft); 209 210 /* 211 * Software state for receive jobs. 212 */ 213 struct sip_rxsoft { 214 struct mbuf *rxs_mbuf; /* head of our mbuf chain */ 215 bus_dmamap_t rxs_dmamap; /* our DMA map */ 216 }; 217 218 /* 219 * Software state per device. 220 */ 221 struct sip_softc { 222 struct device sc_dev; /* generic device information */ 223 bus_space_tag_t sc_st; /* bus space tag */ 224 bus_space_handle_t sc_sh; /* bus space handle */ 225 bus_dma_tag_t sc_dmat; /* bus DMA tag */ 226 struct ethercom sc_ethercom; /* ethernet common data */ 227 void *sc_sdhook; /* shutdown hook */ 228 229 const struct sip_product *sc_model; /* which model are we? */ 230 int sc_rev; /* chip revision */ 231 232 void *sc_ih; /* interrupt cookie */ 233 234 struct mii_data sc_mii; /* MII/media information */ 235 236 struct callout sc_tick_ch; /* tick callout */ 237 238 bus_dmamap_t sc_cddmamap; /* control data DMA map */ 239 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr 240 241 /* 242 * Software state for transmit and receive descriptors. 243 */ 244 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN]; 245 struct sip_rxsoft sc_rxsoft[SIP_NRXDESC]; 246 247 /* 248 * Control data structures. 249 */ 250 struct sip_control_data *sc_control_data; 251 #define sc_txdescs sc_control_data->scd_txdescs 252 #define sc_rxdescs sc_control_data->scd_rxdescs 253 254 #ifdef SIP_EVENT_COUNTERS 255 /* 256 * Event counters. 257 */ 258 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */ 259 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */ 260 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */ 261 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */ 262 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */ 263 struct evcnt sc_ev_rxintr; /* Rx interrupts */ 264 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */ 265 #ifdef DP83820 266 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */ 267 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */ 268 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */ 269 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */ 270 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */ 271 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */ 272 #endif /* DP83820 */ 273 #endif /* SIP_EVENT_COUNTERS */ 274 275 u_int32_t sc_txcfg; /* prototype TXCFG register */ 276 u_int32_t sc_rxcfg; /* prototype RXCFG register */ 277 u_int32_t sc_imr; /* prototype IMR register */ 278 u_int32_t sc_rfcr; /* prototype RFCR register */ 279 280 u_int32_t sc_cfg; /* prototype CFG register */ 281 282 #ifdef DP83820 283 u_int32_t sc_gpior; /* prototype GPIOR register */ 284 #endif /* DP83820 */ 285 286 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */ 287 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */ 288 289 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */ 290 291 int sc_flags; /* misc. flags; see below */ 292 293 int sc_txfree; /* number of free Tx descriptors */ 294 int sc_txnext; /* next ready Tx descriptor */ 295 int sc_txwin; /* Tx descriptors since last intr */ 296 297 struct sip_txsq sc_txfreeq; /* free Tx descsofts */ 298 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */ 299 300 int sc_rxptr; /* next ready Rx descriptor/descsoft */ 301 #if defined(DP83820) 302 int sc_rxdiscard; 303 int sc_rxlen; 304 struct mbuf *sc_rxhead; 305 struct mbuf *sc_rxtail; 306 struct mbuf **sc_rxtailp; 307 #endif /* DP83820 */ 308 309 #if NRND > 0 310 rndsource_element_t rnd_source; /* random source */ 311 #endif 312 }; 313 314 /* sc_flags */ 315 #define SIPF_PAUSED 0x00000001 /* paused (802.3x flow control) */ 316 317 #ifdef DP83820 318 #define SIP_RXCHAIN_RESET(sc) \ 319 do { \ 320 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \ 321 *(sc)->sc_rxtailp = NULL; \ 322 (sc)->sc_rxlen = 0; \ 323 } while (/*CONSTCOND*/0) 324 325 #define SIP_RXCHAIN_LINK(sc, m) \ 326 do { \ 327 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \ 328 (sc)->sc_rxtailp = &(m)->m_next; \ 329 } while (/*CONSTCOND*/0) 330 #endif /* DP83820 */ 331 332 #ifdef SIP_EVENT_COUNTERS 333 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++ 334 #else 335 #define SIP_EVCNT_INCR(ev) /* nothing */ 336 #endif 337 338 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x))) 339 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x))) 340 341 #define SIP_CDTXSYNC(sc, x, n, ops) \ 342 do { \ 343 int __x, __n; \ 344 \ 345 __x = (x); \ 346 __n = (n); \ 347 \ 348 /* If it will wrap around, sync to the end of the ring. */ \ 349 if ((__x + __n) > SIP_NTXDESC) { \ 350 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 351 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \ 352 (SIP_NTXDESC - __x), (ops)); \ 353 __n -= (SIP_NTXDESC - __x); \ 354 __x = 0; \ 355 } \ 356 \ 357 /* Now sync whatever is left. */ \ 358 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 359 SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \ 360 } while (0) 361 362 #define SIP_CDRXSYNC(sc, x, ops) \ 363 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 364 SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops)) 365 366 #ifdef DP83820 367 #define SIP_INIT_RXDESC_EXTSTS __sipd->sipd_extsts = 0; 368 #define SIP_RXBUF_LEN (MCLBYTES - 4) 369 #else 370 #define SIP_INIT_RXDESC_EXTSTS /* nothing */ 371 #define SIP_RXBUF_LEN (MCLBYTES - 1) /* field width */ 372 #endif 373 #define SIP_INIT_RXDESC(sc, x) \ 374 do { \ 375 struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \ 376 struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \ 377 \ 378 __sipd->sipd_link = \ 379 htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \ 380 __sipd->sipd_bufptr = \ 381 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \ 382 __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \ 383 (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK)); \ 384 SIP_INIT_RXDESC_EXTSTS \ 385 SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \ 386 } while (0) 387 388 #define SIP_CHIP_VERS(sc, v, p, r) \ 389 ((sc)->sc_model->sip_vendor == (v) && \ 390 (sc)->sc_model->sip_product == (p) && \ 391 (sc)->sc_rev == (r)) 392 393 #define SIP_CHIP_MODEL(sc, v, p) \ 394 ((sc)->sc_model->sip_vendor == (v) && \ 395 (sc)->sc_model->sip_product == (p)) 396 397 #if !defined(DP83820) 398 #define SIP_SIS900_REV(sc, rev) \ 399 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev)) 400 #endif 401 402 #define SIP_TIMEOUT 1000 403 404 void SIP_DECL(start)(struct ifnet *); 405 void SIP_DECL(watchdog)(struct ifnet *); 406 int SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t); 407 int SIP_DECL(init)(struct ifnet *); 408 void SIP_DECL(stop)(struct ifnet *, int); 409 410 void SIP_DECL(shutdown)(void *); 411 412 void SIP_DECL(reset)(struct sip_softc *); 413 void SIP_DECL(rxdrain)(struct sip_softc *); 414 int SIP_DECL(add_rxbuf)(struct sip_softc *, int); 415 void SIP_DECL(read_eeprom)(struct sip_softc *, int, int, u_int16_t *); 416 void SIP_DECL(tick)(void *); 417 418 #if !defined(DP83820) 419 void SIP_DECL(sis900_set_filter)(struct sip_softc *); 420 #endif /* ! DP83820 */ 421 void SIP_DECL(dp83815_set_filter)(struct sip_softc *); 422 423 #if defined(DP83820) 424 void SIP_DECL(dp83820_read_macaddr)(struct sip_softc *, 425 const struct pci_attach_args *, u_int8_t *); 426 #else 427 void SIP_DECL(sis900_read_macaddr)(struct sip_softc *, 428 const struct pci_attach_args *, u_int8_t *); 429 void SIP_DECL(dp83815_read_macaddr)(struct sip_softc *, 430 const struct pci_attach_args *, u_int8_t *); 431 #endif /* DP83820 */ 432 433 int SIP_DECL(intr)(void *); 434 void SIP_DECL(txintr)(struct sip_softc *); 435 void SIP_DECL(rxintr)(struct sip_softc *); 436 437 #if defined(DP83820) 438 int SIP_DECL(dp83820_mii_readreg)(struct device *, int, int); 439 void SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int); 440 void SIP_DECL(dp83820_mii_statchg)(struct device *); 441 #else 442 int SIP_DECL(sis900_mii_readreg)(struct device *, int, int); 443 void SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int); 444 void SIP_DECL(sis900_mii_statchg)(struct device *); 445 446 int SIP_DECL(dp83815_mii_readreg)(struct device *, int, int); 447 void SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int); 448 void SIP_DECL(dp83815_mii_statchg)(struct device *); 449 #endif /* DP83820 */ 450 451 int SIP_DECL(mediachange)(struct ifnet *); 452 void SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *); 453 454 int SIP_DECL(match)(struct device *, struct cfdata *, void *); 455 void SIP_DECL(attach)(struct device *, struct device *, void *); 456 457 int SIP_DECL(copy_small) = 0; 458 459 #ifdef DP83820 460 CFATTACH_DECL(gsip, sizeof(struct sip_softc), 461 gsip_match, gsip_attach, NULL, NULL); 462 #else 463 CFATTACH_DECL(sip, sizeof(struct sip_softc), 464 sip_match, sip_attach, NULL, NULL); 465 #endif 466 467 /* 468 * Descriptions of the variants of the SiS900. 469 */ 470 struct sip_variant { 471 int (*sipv_mii_readreg)(struct device *, int, int); 472 void (*sipv_mii_writereg)(struct device *, int, int, int); 473 void (*sipv_mii_statchg)(struct device *); 474 void (*sipv_set_filter)(struct sip_softc *); 475 void (*sipv_read_macaddr)(struct sip_softc *, 476 const struct pci_attach_args *, u_int8_t *); 477 }; 478 479 #if defined(DP83820) 480 u_int32_t SIP_DECL(dp83820_mii_bitbang_read)(struct device *); 481 void SIP_DECL(dp83820_mii_bitbang_write)(struct device *, u_int32_t); 482 483 const struct mii_bitbang_ops SIP_DECL(dp83820_mii_bitbang_ops) = { 484 SIP_DECL(dp83820_mii_bitbang_read), 485 SIP_DECL(dp83820_mii_bitbang_write), 486 { 487 EROMAR_MDIO, /* MII_BIT_MDO */ 488 EROMAR_MDIO, /* MII_BIT_MDI */ 489 EROMAR_MDC, /* MII_BIT_MDC */ 490 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */ 491 0, /* MII_BIT_DIR_PHY_HOST */ 492 } 493 }; 494 #endif /* DP83820 */ 495 496 #if defined(DP83820) 497 const struct sip_variant SIP_DECL(variant_dp83820) = { 498 SIP_DECL(dp83820_mii_readreg), 499 SIP_DECL(dp83820_mii_writereg), 500 SIP_DECL(dp83820_mii_statchg), 501 SIP_DECL(dp83815_set_filter), 502 SIP_DECL(dp83820_read_macaddr), 503 }; 504 #else 505 const struct sip_variant SIP_DECL(variant_sis900) = { 506 SIP_DECL(sis900_mii_readreg), 507 SIP_DECL(sis900_mii_writereg), 508 SIP_DECL(sis900_mii_statchg), 509 SIP_DECL(sis900_set_filter), 510 SIP_DECL(sis900_read_macaddr), 511 }; 512 513 const struct sip_variant SIP_DECL(variant_dp83815) = { 514 SIP_DECL(dp83815_mii_readreg), 515 SIP_DECL(dp83815_mii_writereg), 516 SIP_DECL(dp83815_mii_statchg), 517 SIP_DECL(dp83815_set_filter), 518 SIP_DECL(dp83815_read_macaddr), 519 }; 520 #endif /* DP83820 */ 521 522 /* 523 * Devices supported by this driver. 524 */ 525 const struct sip_product { 526 pci_vendor_id_t sip_vendor; 527 pci_product_id_t sip_product; 528 const char *sip_name; 529 const struct sip_variant *sip_variant; 530 } SIP_DECL(products)[] = { 531 #if defined(DP83820) 532 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820, 533 "NatSemi DP83820 Gigabit Ethernet", 534 &SIP_DECL(variant_dp83820) }, 535 #else 536 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, 537 "SiS 900 10/100 Ethernet", 538 &SIP_DECL(variant_sis900) }, 539 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016, 540 "SiS 7016 10/100 Ethernet", 541 &SIP_DECL(variant_sis900) }, 542 543 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815, 544 "NatSemi DP83815 10/100 Ethernet", 545 &SIP_DECL(variant_dp83815) }, 546 #endif /* DP83820 */ 547 548 { 0, 0, 549 NULL, 550 NULL }, 551 }; 552 553 static const struct sip_product * 554 SIP_DECL(lookup)(const struct pci_attach_args *pa) 555 { 556 const struct sip_product *sip; 557 558 for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) { 559 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor && 560 PCI_PRODUCT(pa->pa_id) == sip->sip_product) 561 return (sip); 562 } 563 return (NULL); 564 } 565 566 #ifdef DP83820 567 /* 568 * I really hate stupid hardware vendors. There's a bit in the EEPROM 569 * which indicates if the card can do 64-bit data transfers. Unfortunately, 570 * several vendors of 32-bit cards fail to clear this bit in the EEPROM, 571 * which means we try to use 64-bit data transfers on those cards if we 572 * happen to be plugged into a 32-bit slot. 573 * 574 * What we do is use this table of cards known to be 64-bit cards. If 575 * you have a 64-bit card who's subsystem ID is not listed in this table, 576 * send the output of "pcictl dump ..." of the device to me so that your 577 * card will use the 64-bit data path when plugged into a 64-bit slot. 578 * 579 * -- Jason R. Thorpe <thorpej@netbsd.org> 580 * June 30, 2002 581 */ 582 static int 583 SIP_DECL(check_64bit)(const struct pci_attach_args *pa) 584 { 585 static const struct { 586 pci_vendor_id_t c64_vendor; 587 pci_product_id_t c64_product; 588 } card64[] = { 589 /* Asante GigaNIX */ 590 { 0x128a, 0x0002 }, 591 592 /* Accton EN1407-T, Planex GN-1000TE */ 593 { 0x1113, 0x1407 }, 594 595 /* Netgear GA-621 */ 596 { 0x1385, 0x621a }, 597 598 { 0, 0} 599 }; 600 pcireg_t subsys; 601 int i; 602 603 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG); 604 605 for (i = 0; card64[i].c64_vendor != 0; i++) { 606 if (PCI_VENDOR(subsys) == card64[i].c64_vendor && 607 PCI_PRODUCT(subsys) == card64[i].c64_product) 608 return (1); 609 } 610 611 return (0); 612 } 613 #endif /* DP83820 */ 614 615 int 616 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux) 617 { 618 struct pci_attach_args *pa = aux; 619 620 if (SIP_DECL(lookup)(pa) != NULL) 621 return (1); 622 623 return (0); 624 } 625 626 void 627 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux) 628 { 629 struct sip_softc *sc = (struct sip_softc *) self; 630 struct pci_attach_args *pa = aux; 631 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 632 pci_chipset_tag_t pc = pa->pa_pc; 633 pci_intr_handle_t ih; 634 const char *intrstr = NULL; 635 bus_space_tag_t iot, memt; 636 bus_space_handle_t ioh, memh; 637 bus_dma_segment_t seg; 638 int ioh_valid, memh_valid; 639 int i, rseg, error; 640 const struct sip_product *sip; 641 pcireg_t pmode; 642 u_int8_t enaddr[ETHER_ADDR_LEN]; 643 int pmreg; 644 #ifdef DP83820 645 pcireg_t memtype; 646 u_int32_t reg; 647 #endif /* DP83820 */ 648 649 callout_init(&sc->sc_tick_ch); 650 651 sip = SIP_DECL(lookup)(pa); 652 if (sip == NULL) { 653 printf("\n"); 654 panic(SIP_STR(attach) ": impossible"); 655 } 656 sc->sc_rev = PCI_REVISION(pa->pa_class); 657 658 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev); 659 660 sc->sc_model = sip; 661 662 /* 663 * XXX Work-around broken PXE firmware on some boards. 664 * 665 * The DP83815 shares an address decoder with the MEM BAR 666 * and the ROM BAR. Make sure the ROM BAR is disabled, 667 * so that memory mapped access works. 668 */ 669 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, 670 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) & 671 ~PCI_MAPREG_ROM_ENABLE); 672 673 /* 674 * Map the device. 675 */ 676 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA, 677 PCI_MAPREG_TYPE_IO, 0, 678 &iot, &ioh, NULL, NULL) == 0); 679 #ifdef DP83820 680 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA); 681 switch (memtype) { 682 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT: 683 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT: 684 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA, 685 memtype, 0, &memt, &memh, NULL, NULL) == 0); 686 break; 687 default: 688 memh_valid = 0; 689 } 690 #else 691 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA, 692 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0, 693 &memt, &memh, NULL, NULL) == 0); 694 #endif /* DP83820 */ 695 696 if (memh_valid) { 697 sc->sc_st = memt; 698 sc->sc_sh = memh; 699 } else if (ioh_valid) { 700 sc->sc_st = iot; 701 sc->sc_sh = ioh; 702 } else { 703 printf("%s: unable to map device registers\n", 704 sc->sc_dev.dv_xname); 705 return; 706 } 707 708 sc->sc_dmat = pa->pa_dmat; 709 710 /* 711 * Make sure bus mastering is enabled. Also make sure 712 * Write/Invalidate is enabled if we're allowed to use it. 713 */ 714 pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 715 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY) 716 pmreg |= PCI_COMMAND_INVALIDATE_ENABLE; 717 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, 718 pmreg | PCI_COMMAND_MASTER_ENABLE); 719 720 /* Get it out of power save mode if needed. */ 721 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) { 722 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3; 723 if (pmode == 3) { 724 /* 725 * The card has lost all configuration data in 726 * this state, so punt. 727 */ 728 printf("%s: unable to wake up from power state D3\n", 729 sc->sc_dev.dv_xname); 730 return; 731 } 732 if (pmode != 0) { 733 printf("%s: waking up from power state D%d\n", 734 sc->sc_dev.dv_xname, pmode); 735 pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0); 736 } 737 } 738 739 /* 740 * Map and establish our interrupt. 741 */ 742 if (pci_intr_map(pa, &ih)) { 743 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname); 744 return; 745 } 746 intrstr = pci_intr_string(pc, ih); 747 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc); 748 if (sc->sc_ih == NULL) { 749 printf("%s: unable to establish interrupt", 750 sc->sc_dev.dv_xname); 751 if (intrstr != NULL) 752 printf(" at %s", intrstr); 753 printf("\n"); 754 return; 755 } 756 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr); 757 758 SIMPLEQ_INIT(&sc->sc_txfreeq); 759 SIMPLEQ_INIT(&sc->sc_txdirtyq); 760 761 /* 762 * Allocate the control data structures, and create and load the 763 * DMA map for it. 764 */ 765 if ((error = bus_dmamem_alloc(sc->sc_dmat, 766 sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg, 767 0)) != 0) { 768 printf("%s: unable to allocate control data, error = %d\n", 769 sc->sc_dev.dv_xname, error); 770 goto fail_0; 771 } 772 773 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, 774 sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data, 775 BUS_DMA_COHERENT)) != 0) { 776 printf("%s: unable to map control data, error = %d\n", 777 sc->sc_dev.dv_xname, error); 778 goto fail_1; 779 } 780 781 if ((error = bus_dmamap_create(sc->sc_dmat, 782 sizeof(struct sip_control_data), 1, 783 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) { 784 printf("%s: unable to create control data DMA map, " 785 "error = %d\n", sc->sc_dev.dv_xname, error); 786 goto fail_2; 787 } 788 789 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap, 790 sc->sc_control_data, sizeof(struct sip_control_data), NULL, 791 0)) != 0) { 792 printf("%s: unable to load control data DMA map, error = %d\n", 793 sc->sc_dev.dv_xname, error); 794 goto fail_3; 795 } 796 797 /* 798 * Create the transmit buffer DMA maps. 799 */ 800 for (i = 0; i < SIP_TXQUEUELEN; i++) { 801 if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE, 802 SIP_NTXSEGS, MCLBYTES, 0, 0, 803 &sc->sc_txsoft[i].txs_dmamap)) != 0) { 804 printf("%s: unable to create tx DMA map %d, " 805 "error = %d\n", sc->sc_dev.dv_xname, i, error); 806 goto fail_4; 807 } 808 } 809 810 /* 811 * Create the receive buffer DMA maps. 812 */ 813 for (i = 0; i < SIP_NRXDESC; i++) { 814 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, 815 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) { 816 printf("%s: unable to create rx DMA map %d, " 817 "error = %d\n", sc->sc_dev.dv_xname, i, error); 818 goto fail_5; 819 } 820 sc->sc_rxsoft[i].rxs_mbuf = NULL; 821 } 822 823 /* 824 * Reset the chip to a known state. 825 */ 826 SIP_DECL(reset)(sc); 827 828 /* 829 * Read the Ethernet address from the EEPROM. This might 830 * also fetch other stuff from the EEPROM and stash it 831 * in the softc. 832 */ 833 sc->sc_cfg = 0; 834 #if !defined(DP83820) 835 if (SIP_SIS900_REV(sc,SIS_REV_635) || 836 SIP_SIS900_REV(sc,SIS_REV_900B)) 837 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT); 838 #endif 839 840 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr); 841 842 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname, 843 ether_sprintf(enaddr)); 844 845 /* 846 * Initialize the configuration register: aggressive PCI 847 * bus request algorithm, default backoff, default OW timer, 848 * default parity error detection. 849 * 850 * NOTE: "Big endian mode" is useless on the SiS900 and 851 * friends -- it affects packet data, not descriptors. 852 */ 853 #ifdef DP83820 854 /* 855 * Cause the chip to load configuration data from the EEPROM. 856 */ 857 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN); 858 for (i = 0; i < 10000; i++) { 859 delay(10); 860 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) & 861 PTSCR_EELOAD_EN) == 0) 862 break; 863 } 864 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) & 865 PTSCR_EELOAD_EN) { 866 printf("%s: timeout loading configuration from EEPROM\n", 867 sc->sc_dev.dv_xname); 868 return; 869 } 870 871 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR); 872 873 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG); 874 if (reg & CFG_PCI64_DET) { 875 printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname); 876 /* 877 * Check to see if this card is 64-bit. If so, enable 64-bit 878 * data transfers. 879 * 880 * We can't use the DATA64_EN bit in the EEPROM, because 881 * vendors of 32-bit cards fail to clear that bit in many 882 * cases (yet the card still detects that it's in a 64-bit 883 * slot; go figure). 884 */ 885 if (SIP_DECL(check_64bit)(pa)) { 886 sc->sc_cfg |= CFG_DATA64_EN; 887 printf(", using 64-bit data transfers"); 888 } 889 printf("\n"); 890 } 891 892 /* 893 * XXX Need some PCI flags indicating support for 894 * XXX 64-bit addressing. 895 */ 896 #if 0 897 if (reg & CFG_M64ADDR) 898 sc->sc_cfg |= CFG_M64ADDR; 899 if (reg & CFG_T64ADDR) 900 sc->sc_cfg |= CFG_T64ADDR; 901 #endif 902 903 if (reg & (CFG_TBI_EN|CFG_EXT_125)) { 904 const char *sep = ""; 905 printf("%s: using ", sc->sc_dev.dv_xname); 906 if (reg & CFG_EXT_125) { 907 sc->sc_cfg |= CFG_EXT_125; 908 printf("%s125MHz clock", sep); 909 sep = ", "; 910 } 911 if (reg & CFG_TBI_EN) { 912 sc->sc_cfg |= CFG_TBI_EN; 913 printf("%sten-bit interface", sep); 914 sep = ", "; 915 } 916 printf("\n"); 917 } 918 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 || 919 (reg & CFG_MRM_DIS) != 0) 920 sc->sc_cfg |= CFG_MRM_DIS; 921 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 || 922 (reg & CFG_MWI_DIS) != 0) 923 sc->sc_cfg |= CFG_MWI_DIS; 924 925 /* 926 * Use the extended descriptor format on the DP83820. This 927 * gives us an interface to VLAN tagging and IPv4/TCP/UDP 928 * checksumming. 929 */ 930 sc->sc_cfg |= CFG_EXTSTS_EN; 931 #endif /* DP83820 */ 932 933 /* 934 * Initialize our media structures and probe the MII. 935 */ 936 sc->sc_mii.mii_ifp = ifp; 937 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg; 938 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg; 939 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg; 940 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, SIP_DECL(mediachange), 941 SIP_DECL(mediastatus)); 942 943 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, 944 MII_OFFSET_ANY, 0); 945 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { 946 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL); 947 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE); 948 } else 949 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); 950 951 ifp = &sc->sc_ethercom.ec_if; 952 strcpy(ifp->if_xname, sc->sc_dev.dv_xname); 953 ifp->if_softc = sc; 954 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 955 ifp->if_ioctl = SIP_DECL(ioctl); 956 ifp->if_start = SIP_DECL(start); 957 ifp->if_watchdog = SIP_DECL(watchdog); 958 ifp->if_init = SIP_DECL(init); 959 ifp->if_stop = SIP_DECL(stop); 960 IFQ_SET_READY(&ifp->if_snd); 961 962 /* 963 * We can support 802.1Q VLAN-sized frames. 964 */ 965 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU; 966 967 #ifdef DP83820 968 /* 969 * And the DP83820 can do VLAN tagging in hardware, and 970 * support the jumbo Ethernet MTU. 971 */ 972 sc->sc_ethercom.ec_capabilities |= 973 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU; 974 975 /* 976 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums 977 * in hardware. 978 */ 979 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | 980 IFCAP_CSUM_UDPv4; 981 #endif /* DP83820 */ 982 983 /* 984 * Attach the interface. 985 */ 986 if_attach(ifp); 987 ether_ifattach(ifp, enaddr); 988 #if NRND > 0 989 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname, 990 RND_TYPE_NET, 0); 991 #endif 992 993 /* 994 * The number of bytes that must be available in 995 * the Tx FIFO before the bus master can DMA more 996 * data into the FIFO. 997 */ 998 sc->sc_tx_fill_thresh = 64 / 32; 999 1000 /* 1001 * Start at a drain threshold of 512 bytes. We will 1002 * increase it if a DMA underrun occurs. 1003 * 1004 * XXX The minimum value of this variable should be 1005 * tuned. We may be able to improve performance 1006 * by starting with a lower value. That, however, 1007 * may trash the first few outgoing packets if the 1008 * PCI bus is saturated. 1009 */ 1010 sc->sc_tx_drain_thresh = 1504 / 32; 1011 1012 /* 1013 * Initialize the Rx FIFO drain threshold. 1014 * 1015 * This is in units of 8 bytes. 1016 * 1017 * We should never set this value lower than 2; 14 bytes are 1018 * required to filter the packet. 1019 */ 1020 sc->sc_rx_drain_thresh = 128 / 8; 1021 1022 #ifdef SIP_EVENT_COUNTERS 1023 /* 1024 * Attach event counters. 1025 */ 1026 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC, 1027 NULL, sc->sc_dev.dv_xname, "txsstall"); 1028 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC, 1029 NULL, sc->sc_dev.dv_xname, "txdstall"); 1030 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR, 1031 NULL, sc->sc_dev.dv_xname, "txforceintr"); 1032 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR, 1033 NULL, sc->sc_dev.dv_xname, "txdintr"); 1034 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR, 1035 NULL, sc->sc_dev.dv_xname, "txiintr"); 1036 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR, 1037 NULL, sc->sc_dev.dv_xname, "rxintr"); 1038 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR, 1039 NULL, sc->sc_dev.dv_xname, "hiberr"); 1040 #ifdef DP83820 1041 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC, 1042 NULL, sc->sc_dev.dv_xname, "rxipsum"); 1043 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC, 1044 NULL, sc->sc_dev.dv_xname, "rxtcpsum"); 1045 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC, 1046 NULL, sc->sc_dev.dv_xname, "rxudpsum"); 1047 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC, 1048 NULL, sc->sc_dev.dv_xname, "txipsum"); 1049 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC, 1050 NULL, sc->sc_dev.dv_xname, "txtcpsum"); 1051 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC, 1052 NULL, sc->sc_dev.dv_xname, "txudpsum"); 1053 #endif /* DP83820 */ 1054 #endif /* SIP_EVENT_COUNTERS */ 1055 1056 /* 1057 * Make sure the interface is shutdown during reboot. 1058 */ 1059 sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc); 1060 if (sc->sc_sdhook == NULL) 1061 printf("%s: WARNING: unable to establish shutdown hook\n", 1062 sc->sc_dev.dv_xname); 1063 return; 1064 1065 /* 1066 * Free any resources we've allocated during the failed attach 1067 * attempt. Do this in reverse order and fall through. 1068 */ 1069 fail_5: 1070 for (i = 0; i < SIP_NRXDESC; i++) { 1071 if (sc->sc_rxsoft[i].rxs_dmamap != NULL) 1072 bus_dmamap_destroy(sc->sc_dmat, 1073 sc->sc_rxsoft[i].rxs_dmamap); 1074 } 1075 fail_4: 1076 for (i = 0; i < SIP_TXQUEUELEN; i++) { 1077 if (sc->sc_txsoft[i].txs_dmamap != NULL) 1078 bus_dmamap_destroy(sc->sc_dmat, 1079 sc->sc_txsoft[i].txs_dmamap); 1080 } 1081 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap); 1082 fail_3: 1083 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap); 1084 fail_2: 1085 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data, 1086 sizeof(struct sip_control_data)); 1087 fail_1: 1088 bus_dmamem_free(sc->sc_dmat, &seg, rseg); 1089 fail_0: 1090 return; 1091 } 1092 1093 /* 1094 * sip_shutdown: 1095 * 1096 * Make sure the interface is stopped at reboot time. 1097 */ 1098 void 1099 SIP_DECL(shutdown)(void *arg) 1100 { 1101 struct sip_softc *sc = arg; 1102 1103 SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1); 1104 } 1105 1106 /* 1107 * sip_start: [ifnet interface function] 1108 * 1109 * Start packet transmission on the interface. 1110 */ 1111 void 1112 SIP_DECL(start)(struct ifnet *ifp) 1113 { 1114 struct sip_softc *sc = ifp->if_softc; 1115 struct mbuf *m0, *m; 1116 struct sip_txsoft *txs; 1117 bus_dmamap_t dmamap; 1118 int error, nexttx, lasttx, seg; 1119 int ofree = sc->sc_txfree; 1120 #if 0 1121 int firsttx = sc->sc_txnext; 1122 #endif 1123 #ifdef DP83820 1124 u_int32_t extsts; 1125 #endif 1126 1127 /* 1128 * If we've been told to pause, don't transmit any more packets. 1129 */ 1130 if (sc->sc_flags & SIPF_PAUSED) 1131 ifp->if_flags |= IFF_OACTIVE; 1132 1133 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) 1134 return; 1135 1136 /* 1137 * Loop through the send queue, setting up transmit descriptors 1138 * until we drain the queue, or use up all available transmit 1139 * descriptors. 1140 */ 1141 for (;;) { 1142 /* Get a work queue entry. */ 1143 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) { 1144 SIP_EVCNT_INCR(&sc->sc_ev_txsstall); 1145 break; 1146 } 1147 1148 /* 1149 * Grab a packet off the queue. 1150 */ 1151 IFQ_POLL(&ifp->if_snd, m0); 1152 if (m0 == NULL) 1153 break; 1154 #ifndef DP83820 1155 m = NULL; 1156 #endif 1157 1158 dmamap = txs->txs_dmamap; 1159 1160 #ifdef DP83820 1161 /* 1162 * Load the DMA map. If this fails, the packet either 1163 * didn't fit in the allotted number of segments, or we 1164 * were short on resources. For the too-many-segments 1165 * case, we simply report an error and drop the packet, 1166 * since we can't sanely copy a jumbo packet to a single 1167 * buffer. 1168 */ 1169 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0, 1170 BUS_DMA_WRITE|BUS_DMA_NOWAIT); 1171 if (error) { 1172 if (error == EFBIG) { 1173 printf("%s: Tx packet consumes too many " 1174 "DMA segments, dropping...\n", 1175 sc->sc_dev.dv_xname); 1176 IFQ_DEQUEUE(&ifp->if_snd, m0); 1177 m_freem(m0); 1178 continue; 1179 } 1180 /* 1181 * Short on resources, just stop for now. 1182 */ 1183 break; 1184 } 1185 #else /* DP83820 */ 1186 /* 1187 * Load the DMA map. If this fails, the packet either 1188 * didn't fit in the alloted number of segments, or we 1189 * were short on resources. In this case, we'll copy 1190 * and try again. 1191 */ 1192 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0, 1193 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) { 1194 MGETHDR(m, M_DONTWAIT, MT_DATA); 1195 if (m == NULL) { 1196 printf("%s: unable to allocate Tx mbuf\n", 1197 sc->sc_dev.dv_xname); 1198 break; 1199 } 1200 if (m0->m_pkthdr.len > MHLEN) { 1201 MCLGET(m, M_DONTWAIT); 1202 if ((m->m_flags & M_EXT) == 0) { 1203 printf("%s: unable to allocate Tx " 1204 "cluster\n", sc->sc_dev.dv_xname); 1205 m_freem(m); 1206 break; 1207 } 1208 } 1209 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t)); 1210 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len; 1211 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, 1212 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT); 1213 if (error) { 1214 printf("%s: unable to load Tx buffer, " 1215 "error = %d\n", sc->sc_dev.dv_xname, error); 1216 break; 1217 } 1218 } 1219 #endif /* DP83820 */ 1220 1221 /* 1222 * Ensure we have enough descriptors free to describe 1223 * the packet. Note, we always reserve one descriptor 1224 * at the end of the ring as a termination point, to 1225 * prevent wrap-around. 1226 */ 1227 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) { 1228 /* 1229 * Not enough free descriptors to transmit this 1230 * packet. We haven't committed anything yet, 1231 * so just unload the DMA map, put the packet 1232 * back on the queue, and punt. Notify the upper 1233 * layer that there are not more slots left. 1234 * 1235 * XXX We could allocate an mbuf and copy, but 1236 * XXX is it worth it? 1237 */ 1238 ifp->if_flags |= IFF_OACTIVE; 1239 bus_dmamap_unload(sc->sc_dmat, dmamap); 1240 #ifndef DP83820 1241 if (m != NULL) 1242 m_freem(m); 1243 #endif 1244 SIP_EVCNT_INCR(&sc->sc_ev_txdstall); 1245 break; 1246 } 1247 1248 IFQ_DEQUEUE(&ifp->if_snd, m0); 1249 #ifndef DP83820 1250 if (m != NULL) { 1251 m_freem(m0); 1252 m0 = m; 1253 } 1254 #endif 1255 1256 /* 1257 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. 1258 */ 1259 1260 /* Sync the DMA map. */ 1261 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, 1262 BUS_DMASYNC_PREWRITE); 1263 1264 /* 1265 * Initialize the transmit descriptors. 1266 */ 1267 for (nexttx = sc->sc_txnext, seg = 0; 1268 seg < dmamap->dm_nsegs; 1269 seg++, nexttx = SIP_NEXTTX(nexttx)) { 1270 /* 1271 * If this is the first descriptor we're 1272 * enqueueing, don't set the OWN bit just 1273 * yet. That could cause a race condition. 1274 * We'll do it below. 1275 */ 1276 sc->sc_txdescs[nexttx].sipd_bufptr = 1277 htole32(dmamap->dm_segs[seg].ds_addr); 1278 sc->sc_txdescs[nexttx].sipd_cmdsts = 1279 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) | 1280 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len); 1281 #ifdef DP83820 1282 sc->sc_txdescs[nexttx].sipd_extsts = 0; 1283 #endif /* DP83820 */ 1284 lasttx = nexttx; 1285 } 1286 1287 /* Clear the MORE bit on the last segment. */ 1288 sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE); 1289 1290 /* 1291 * If we're in the interrupt delay window, delay the 1292 * interrupt. 1293 */ 1294 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) { 1295 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr); 1296 sc->sc_txdescs[lasttx].sipd_cmdsts |= 1297 htole32(CMDSTS_INTR); 1298 sc->sc_txwin = 0; 1299 } 1300 1301 #ifdef DP83820 1302 /* 1303 * If VLANs are enabled and the packet has a VLAN tag, set 1304 * up the descriptor to encapsulate the packet for us. 1305 * 1306 * This apparently has to be on the last descriptor of 1307 * the packet. 1308 */ 1309 if (sc->sc_ethercom.ec_nvlans != 0 && 1310 (m = m_aux_find(m0, AF_LINK, ETHERTYPE_VLAN)) != NULL) { 1311 sc->sc_txdescs[lasttx].sipd_extsts |= 1312 htole32(EXTSTS_VPKT | 1313 htons(*mtod(m, int *) & EXTSTS_VTCI)); 1314 } 1315 1316 /* 1317 * If the upper-layer has requested IPv4/TCPv4/UDPv4 1318 * checksumming, set up the descriptor to do this work 1319 * for us. 1320 * 1321 * This apparently has to be on the first descriptor of 1322 * the packet. 1323 * 1324 * Byte-swap constants so the compiler can optimize. 1325 */ 1326 extsts = 0; 1327 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) { 1328 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4); 1329 SIP_EVCNT_INCR(&sc->sc_ev_txipsum); 1330 extsts |= htole32(EXTSTS_IPPKT); 1331 } 1332 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) { 1333 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4); 1334 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum); 1335 extsts |= htole32(EXTSTS_TCPPKT); 1336 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) { 1337 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4); 1338 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum); 1339 extsts |= htole32(EXTSTS_UDPPKT); 1340 } 1341 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts; 1342 #endif /* DP83820 */ 1343 1344 /* Sync the descriptors we're using. */ 1345 SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs, 1346 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1347 1348 /* 1349 * The entire packet is set up. Give the first descrptor 1350 * to the chip now. 1351 */ 1352 sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |= 1353 htole32(CMDSTS_OWN); 1354 SIP_CDTXSYNC(sc, sc->sc_txnext, 1, 1355 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1356 1357 /* 1358 * Store a pointer to the packet so we can free it later, 1359 * and remember what txdirty will be once the packet is 1360 * done. 1361 */ 1362 txs->txs_mbuf = m0; 1363 txs->txs_firstdesc = sc->sc_txnext; 1364 txs->txs_lastdesc = lasttx; 1365 1366 /* Advance the tx pointer. */ 1367 sc->sc_txfree -= dmamap->dm_nsegs; 1368 sc->sc_txnext = nexttx; 1369 1370 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q); 1371 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q); 1372 1373 #if NBPFILTER > 0 1374 /* 1375 * Pass the packet to any BPF listeners. 1376 */ 1377 if (ifp->if_bpf) 1378 bpf_mtap(ifp->if_bpf, m0); 1379 #endif /* NBPFILTER > 0 */ 1380 } 1381 1382 if (txs == NULL || sc->sc_txfree == 0) { 1383 /* No more slots left; notify upper layer. */ 1384 ifp->if_flags |= IFF_OACTIVE; 1385 } 1386 1387 if (sc->sc_txfree != ofree) { 1388 /* 1389 * Start the transmit process. Note, the manual says 1390 * that if there are no pending transmissions in the 1391 * chip's internal queue (indicated by TXE being clear), 1392 * then the driver software must set the TXDP to the 1393 * first descriptor to be transmitted. However, if we 1394 * do this, it causes serious performance degredation on 1395 * the DP83820 under load, not setting TXDP doesn't seem 1396 * to adversely affect the SiS 900 or DP83815. 1397 * 1398 * Well, I guess it wouldn't be the first time a manual 1399 * has lied -- and they could be speaking of the NULL- 1400 * terminated descriptor list case, rather than OWN- 1401 * terminated rings. 1402 */ 1403 #if 0 1404 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) & 1405 CR_TXE) == 0) { 1406 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP, 1407 SIP_CDTXADDR(sc, firsttx)); 1408 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE); 1409 } 1410 #else 1411 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE); 1412 #endif 1413 1414 /* Set a watchdog timer in case the chip flakes out. */ 1415 ifp->if_timer = 5; 1416 } 1417 } 1418 1419 /* 1420 * sip_watchdog: [ifnet interface function] 1421 * 1422 * Watchdog timer handler. 1423 */ 1424 void 1425 SIP_DECL(watchdog)(struct ifnet *ifp) 1426 { 1427 struct sip_softc *sc = ifp->if_softc; 1428 1429 /* 1430 * The chip seems to ignore the CMDSTS_INTR bit sometimes! 1431 * If we get a timeout, try and sweep up transmit descriptors. 1432 * If we manage to sweep them all up, ignore the lack of 1433 * interrupt. 1434 */ 1435 SIP_DECL(txintr)(sc); 1436 1437 if (sc->sc_txfree != SIP_NTXDESC) { 1438 printf("%s: device timeout\n", sc->sc_dev.dv_xname); 1439 ifp->if_oerrors++; 1440 1441 /* Reset the interface. */ 1442 (void) SIP_DECL(init)(ifp); 1443 } else if (ifp->if_flags & IFF_DEBUG) 1444 printf("%s: recovered from device timeout\n", 1445 sc->sc_dev.dv_xname); 1446 1447 /* Try to get more packets going. */ 1448 SIP_DECL(start)(ifp); 1449 } 1450 1451 /* 1452 * sip_ioctl: [ifnet interface function] 1453 * 1454 * Handle control requests from the operator. 1455 */ 1456 int 1457 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data) 1458 { 1459 struct sip_softc *sc = ifp->if_softc; 1460 struct ifreq *ifr = (struct ifreq *)data; 1461 int s, error; 1462 1463 s = splnet(); 1464 1465 switch (cmd) { 1466 case SIOCSIFMEDIA: 1467 case SIOCGIFMEDIA: 1468 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd); 1469 break; 1470 1471 default: 1472 error = ether_ioctl(ifp, cmd, data); 1473 if (error == ENETRESET) { 1474 /* 1475 * Multicast list has changed; set the hardware filter 1476 * accordingly. 1477 */ 1478 (*sc->sc_model->sip_variant->sipv_set_filter)(sc); 1479 error = 0; 1480 } 1481 break; 1482 } 1483 1484 /* Try to get more packets going. */ 1485 SIP_DECL(start)(ifp); 1486 1487 splx(s); 1488 return (error); 1489 } 1490 1491 /* 1492 * sip_intr: 1493 * 1494 * Interrupt service routine. 1495 */ 1496 int 1497 SIP_DECL(intr)(void *arg) 1498 { 1499 struct sip_softc *sc = arg; 1500 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1501 u_int32_t isr; 1502 int handled = 0; 1503 1504 for (;;) { 1505 /* Reading clears interrupt. */ 1506 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR); 1507 if ((isr & sc->sc_imr) == 0) 1508 break; 1509 1510 #if NRND > 0 1511 if (RND_ENABLED(&sc->rnd_source)) 1512 rnd_add_uint32(&sc->rnd_source, isr); 1513 #endif 1514 1515 handled = 1; 1516 1517 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) { 1518 SIP_EVCNT_INCR(&sc->sc_ev_rxintr); 1519 1520 /* Grab any new packets. */ 1521 SIP_DECL(rxintr)(sc); 1522 1523 if (isr & ISR_RXORN) { 1524 printf("%s: receive FIFO overrun\n", 1525 sc->sc_dev.dv_xname); 1526 1527 /* XXX adjust rx_drain_thresh? */ 1528 } 1529 1530 if (isr & ISR_RXIDLE) { 1531 printf("%s: receive ring overrun\n", 1532 sc->sc_dev.dv_xname); 1533 1534 /* Get the receive process going again. */ 1535 bus_space_write_4(sc->sc_st, sc->sc_sh, 1536 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr)); 1537 bus_space_write_4(sc->sc_st, sc->sc_sh, 1538 SIP_CR, CR_RXE); 1539 } 1540 } 1541 1542 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) { 1543 #ifdef SIP_EVENT_COUNTERS 1544 if (isr & ISR_TXDESC) 1545 SIP_EVCNT_INCR(&sc->sc_ev_txdintr); 1546 else if (isr & ISR_TXIDLE) 1547 SIP_EVCNT_INCR(&sc->sc_ev_txiintr); 1548 #endif 1549 1550 /* Sweep up transmit descriptors. */ 1551 SIP_DECL(txintr)(sc); 1552 1553 if (isr & ISR_TXURN) { 1554 u_int32_t thresh; 1555 1556 printf("%s: transmit FIFO underrun", 1557 sc->sc_dev.dv_xname); 1558 1559 thresh = sc->sc_tx_drain_thresh + 1; 1560 if (thresh <= TXCFG_DRTH && 1561 (thresh * 32) <= (SIP_TXFIFO_SIZE - 1562 (sc->sc_tx_fill_thresh * 32))) { 1563 printf("; increasing Tx drain " 1564 "threshold to %u bytes\n", 1565 thresh * 32); 1566 sc->sc_tx_drain_thresh = thresh; 1567 (void) SIP_DECL(init)(ifp); 1568 } else { 1569 (void) SIP_DECL(init)(ifp); 1570 printf("\n"); 1571 } 1572 } 1573 } 1574 1575 #if !defined(DP83820) 1576 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) { 1577 if (isr & ISR_PAUSE_ST) { 1578 sc->sc_flags |= SIPF_PAUSED; 1579 ifp->if_flags |= IFF_OACTIVE; 1580 } 1581 if (isr & ISR_PAUSE_END) { 1582 sc->sc_flags &= ~SIPF_PAUSED; 1583 ifp->if_flags &= ~IFF_OACTIVE; 1584 } 1585 } 1586 #endif /* ! DP83820 */ 1587 1588 if (isr & ISR_HIBERR) { 1589 int want_init = 0; 1590 1591 SIP_EVCNT_INCR(&sc->sc_ev_hiberr); 1592 1593 #define PRINTERR(bit, str) \ 1594 do { \ 1595 if ((isr & (bit)) != 0) { \ 1596 if ((ifp->if_flags & IFF_DEBUG) != 0) \ 1597 printf("%s: %s\n", \ 1598 sc->sc_dev.dv_xname, str); \ 1599 want_init = 1; \ 1600 } \ 1601 } while (/*CONSTCOND*/0) 1602 1603 PRINTERR(ISR_DPERR, "parity error"); 1604 PRINTERR(ISR_SSERR, "system error"); 1605 PRINTERR(ISR_RMABT, "master abort"); 1606 PRINTERR(ISR_RTABT, "target abort"); 1607 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun"); 1608 /* 1609 * Ignore: 1610 * Tx reset complete 1611 * Rx reset complete 1612 */ 1613 if (want_init) 1614 (void) SIP_DECL(init)(ifp); 1615 #undef PRINTERR 1616 } 1617 } 1618 1619 /* Try to get more packets going. */ 1620 SIP_DECL(start)(ifp); 1621 1622 return (handled); 1623 } 1624 1625 /* 1626 * sip_txintr: 1627 * 1628 * Helper; handle transmit interrupts. 1629 */ 1630 void 1631 SIP_DECL(txintr)(struct sip_softc *sc) 1632 { 1633 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1634 struct sip_txsoft *txs; 1635 u_int32_t cmdsts; 1636 1637 if ((sc->sc_flags & SIPF_PAUSED) == 0) 1638 ifp->if_flags &= ~IFF_OACTIVE; 1639 1640 /* 1641 * Go through our Tx list and free mbufs for those 1642 * frames which have been transmitted. 1643 */ 1644 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) { 1645 SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs, 1646 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1647 1648 cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts); 1649 if (cmdsts & CMDSTS_OWN) 1650 break; 1651 1652 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); 1653 1654 sc->sc_txfree += txs->txs_dmamap->dm_nsegs; 1655 1656 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 1657 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1658 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); 1659 m_freem(txs->txs_mbuf); 1660 txs->txs_mbuf = NULL; 1661 1662 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 1663 1664 /* 1665 * Check for errors and collisions. 1666 */ 1667 if (cmdsts & 1668 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) { 1669 ifp->if_oerrors++; 1670 if (cmdsts & CMDSTS_Tx_EC) 1671 ifp->if_collisions += 16; 1672 if (ifp->if_flags & IFF_DEBUG) { 1673 if (cmdsts & CMDSTS_Tx_ED) 1674 printf("%s: excessive deferral\n", 1675 sc->sc_dev.dv_xname); 1676 if (cmdsts & CMDSTS_Tx_EC) 1677 printf("%s: excessive collisions\n", 1678 sc->sc_dev.dv_xname); 1679 } 1680 } else { 1681 /* Packet was transmitted successfully. */ 1682 ifp->if_opackets++; 1683 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts); 1684 } 1685 } 1686 1687 /* 1688 * If there are no more pending transmissions, cancel the watchdog 1689 * timer. 1690 */ 1691 if (txs == NULL) { 1692 ifp->if_timer = 0; 1693 sc->sc_txwin = 0; 1694 } 1695 } 1696 1697 #if defined(DP83820) 1698 /* 1699 * sip_rxintr: 1700 * 1701 * Helper; handle receive interrupts. 1702 */ 1703 void 1704 SIP_DECL(rxintr)(struct sip_softc *sc) 1705 { 1706 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1707 struct sip_rxsoft *rxs; 1708 struct mbuf *m, *tailm; 1709 u_int32_t cmdsts, extsts; 1710 int i, len; 1711 1712 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) { 1713 rxs = &sc->sc_rxsoft[i]; 1714 1715 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1716 1717 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts); 1718 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts); 1719 1720 /* 1721 * NOTE: OWN is set if owned by _consumer_. We're the 1722 * consumer of the receive ring, so if the bit is clear, 1723 * we have processed all of the packets. 1724 */ 1725 if ((cmdsts & CMDSTS_OWN) == 0) { 1726 /* 1727 * We have processed all of the receive buffers. 1728 */ 1729 break; 1730 } 1731 1732 if (__predict_false(sc->sc_rxdiscard)) { 1733 SIP_INIT_RXDESC(sc, i); 1734 if ((cmdsts & CMDSTS_MORE) == 0) { 1735 /* Reset our state. */ 1736 sc->sc_rxdiscard = 0; 1737 } 1738 continue; 1739 } 1740 1741 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 1742 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 1743 1744 m = rxs->rxs_mbuf; 1745 1746 /* 1747 * Add a new receive buffer to the ring. 1748 */ 1749 if (SIP_DECL(add_rxbuf)(sc, i) != 0) { 1750 /* 1751 * Failed, throw away what we've done so 1752 * far, and discard the rest of the packet. 1753 */ 1754 ifp->if_ierrors++; 1755 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 1756 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 1757 SIP_INIT_RXDESC(sc, i); 1758 if (cmdsts & CMDSTS_MORE) 1759 sc->sc_rxdiscard = 1; 1760 if (sc->sc_rxhead != NULL) 1761 m_freem(sc->sc_rxhead); 1762 SIP_RXCHAIN_RESET(sc); 1763 continue; 1764 } 1765 1766 SIP_RXCHAIN_LINK(sc, m); 1767 1768 /* 1769 * If this is not the end of the packet, keep 1770 * looking. 1771 */ 1772 if (cmdsts & CMDSTS_MORE) { 1773 sc->sc_rxlen += m->m_len; 1774 continue; 1775 } 1776 1777 /* 1778 * Okay, we have the entire packet now... 1779 */ 1780 *sc->sc_rxtailp = NULL; 1781 m = sc->sc_rxhead; 1782 tailm = sc->sc_rxtail; 1783 1784 SIP_RXCHAIN_RESET(sc); 1785 1786 /* 1787 * If an error occurred, update stats and drop the packet. 1788 */ 1789 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT| 1790 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) { 1791 ifp->if_ierrors++; 1792 if ((cmdsts & CMDSTS_Rx_RXA) != 0 && 1793 (cmdsts & CMDSTS_Rx_RXO) == 0) { 1794 /* Receive overrun handled elsewhere. */ 1795 printf("%s: receive descriptor error\n", 1796 sc->sc_dev.dv_xname); 1797 } 1798 #define PRINTERR(bit, str) \ 1799 if ((ifp->if_flags & IFF_DEBUG) != 0 && \ 1800 (cmdsts & (bit)) != 0) \ 1801 printf("%s: %s\n", sc->sc_dev.dv_xname, str) 1802 PRINTERR(CMDSTS_Rx_RUNT, "runt packet"); 1803 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error"); 1804 PRINTERR(CMDSTS_Rx_CRCE, "CRC error"); 1805 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error"); 1806 #undef PRINTERR 1807 m_freem(m); 1808 continue; 1809 } 1810 1811 /* 1812 * No errors. 1813 * 1814 * Note, the DP83820 includes the CRC with 1815 * every packet. 1816 */ 1817 len = CMDSTS_SIZE(cmdsts); 1818 tailm->m_len = len - sc->sc_rxlen; 1819 1820 /* 1821 * If the packet is small enough to fit in a 1822 * single header mbuf, allocate one and copy 1823 * the data into it. This greatly reduces 1824 * memory consumption when we receive lots 1825 * of small packets. 1826 */ 1827 if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) { 1828 struct mbuf *nm; 1829 MGETHDR(nm, M_DONTWAIT, MT_DATA); 1830 if (nm == NULL) { 1831 ifp->if_ierrors++; 1832 m_freem(m); 1833 continue; 1834 } 1835 nm->m_data += 2; 1836 nm->m_pkthdr.len = nm->m_len = len; 1837 m_copydata(m, 0, len, mtod(nm, caddr_t)); 1838 m_freem(m); 1839 m = nm; 1840 } 1841 #ifndef __NO_STRICT_ALIGNMENT 1842 else { 1843 /* 1844 * The DP83820's receive buffers must be 4-byte 1845 * aligned. But this means that the data after 1846 * the Ethernet header is misaligned. To compensate, 1847 * we have artificially shortened the buffer size 1848 * in the descriptor, and we do an overlapping copy 1849 * of the data two bytes further in (in the first 1850 * buffer of the chain only). 1851 */ 1852 memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t), 1853 m->m_len); 1854 m->m_data += 2; 1855 } 1856 #endif /* ! __NO_STRICT_ALIGNMENT */ 1857 1858 /* 1859 * If VLANs are enabled, VLAN packets have been unwrapped 1860 * for us. Associate the tag with the packet. 1861 */ 1862 if (sc->sc_ethercom.ec_nvlans != 0 && 1863 (extsts & EXTSTS_VPKT) != 0) { 1864 struct mbuf *vtag; 1865 1866 vtag = m_aux_add(m, AF_LINK, ETHERTYPE_VLAN); 1867 if (vtag == NULL) { 1868 ifp->if_ierrors++; 1869 printf("%s: unable to allocate VLAN tag\n", 1870 sc->sc_dev.dv_xname); 1871 m_freem(m); 1872 continue; 1873 } 1874 1875 *mtod(vtag, int *) = ntohs(extsts & EXTSTS_VTCI); 1876 vtag->m_len = sizeof(int); 1877 } 1878 1879 /* 1880 * Set the incoming checksum information for the 1881 * packet. 1882 */ 1883 if ((extsts & EXTSTS_IPPKT) != 0) { 1884 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum); 1885 m->m_pkthdr.csum_flags |= M_CSUM_IPv4; 1886 if (extsts & EXTSTS_Rx_IPERR) 1887 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD; 1888 if (extsts & EXTSTS_TCPPKT) { 1889 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum); 1890 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4; 1891 if (extsts & EXTSTS_Rx_TCPERR) 1892 m->m_pkthdr.csum_flags |= 1893 M_CSUM_TCP_UDP_BAD; 1894 } else if (extsts & EXTSTS_UDPPKT) { 1895 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum); 1896 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4; 1897 if (extsts & EXTSTS_Rx_UDPERR) 1898 m->m_pkthdr.csum_flags |= 1899 M_CSUM_TCP_UDP_BAD; 1900 } 1901 } 1902 1903 ifp->if_ipackets++; 1904 m->m_flags |= M_HASFCS; 1905 m->m_pkthdr.rcvif = ifp; 1906 m->m_pkthdr.len = len; 1907 1908 #if NBPFILTER > 0 1909 /* 1910 * Pass this up to any BPF listeners, but only 1911 * pass if up the stack if it's for us. 1912 */ 1913 if (ifp->if_bpf) 1914 bpf_mtap(ifp->if_bpf, m); 1915 #endif /* NBPFILTER > 0 */ 1916 1917 /* Pass it on. */ 1918 (*ifp->if_input)(ifp, m); 1919 } 1920 1921 /* Update the receive pointer. */ 1922 sc->sc_rxptr = i; 1923 } 1924 #else /* ! DP83820 */ 1925 /* 1926 * sip_rxintr: 1927 * 1928 * Helper; handle receive interrupts. 1929 */ 1930 void 1931 SIP_DECL(rxintr)(struct sip_softc *sc) 1932 { 1933 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1934 struct sip_rxsoft *rxs; 1935 struct mbuf *m; 1936 u_int32_t cmdsts; 1937 int i, len; 1938 1939 for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) { 1940 rxs = &sc->sc_rxsoft[i]; 1941 1942 SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1943 1944 cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts); 1945 1946 /* 1947 * NOTE: OWN is set if owned by _consumer_. We're the 1948 * consumer of the receive ring, so if the bit is clear, 1949 * we have processed all of the packets. 1950 */ 1951 if ((cmdsts & CMDSTS_OWN) == 0) { 1952 /* 1953 * We have processed all of the receive buffers. 1954 */ 1955 break; 1956 } 1957 1958 /* 1959 * If any collisions were seen on the wire, count one. 1960 */ 1961 if (cmdsts & CMDSTS_Rx_COL) 1962 ifp->if_collisions++; 1963 1964 /* 1965 * If an error occurred, update stats, clear the status 1966 * word, and leave the packet buffer in place. It will 1967 * simply be reused the next time the ring comes around. 1968 */ 1969 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT| 1970 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) { 1971 ifp->if_ierrors++; 1972 if ((cmdsts & CMDSTS_Rx_RXA) != 0 && 1973 (cmdsts & CMDSTS_Rx_RXO) == 0) { 1974 /* Receive overrun handled elsewhere. */ 1975 printf("%s: receive descriptor error\n", 1976 sc->sc_dev.dv_xname); 1977 } 1978 #define PRINTERR(bit, str) \ 1979 if ((ifp->if_flags & IFF_DEBUG) != 0 && \ 1980 (cmdsts & (bit)) != 0) \ 1981 printf("%s: %s\n", sc->sc_dev.dv_xname, str) 1982 PRINTERR(CMDSTS_Rx_RUNT, "runt packet"); 1983 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error"); 1984 PRINTERR(CMDSTS_Rx_CRCE, "CRC error"); 1985 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error"); 1986 #undef PRINTERR 1987 SIP_INIT_RXDESC(sc, i); 1988 continue; 1989 } 1990 1991 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 1992 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 1993 1994 /* 1995 * No errors; receive the packet. Note, the SiS 900 1996 * includes the CRC with every packet. 1997 */ 1998 len = CMDSTS_SIZE(cmdsts); 1999 2000 #ifdef __NO_STRICT_ALIGNMENT 2001 /* 2002 * If the packet is small enough to fit in a 2003 * single header mbuf, allocate one and copy 2004 * the data into it. This greatly reduces 2005 * memory consumption when we receive lots 2006 * of small packets. 2007 * 2008 * Otherwise, we add a new buffer to the receive 2009 * chain. If this fails, we drop the packet and 2010 * recycle the old buffer. 2011 */ 2012 if (SIP_DECL(copy_small) != 0 && len <= MHLEN) { 2013 MGETHDR(m, M_DONTWAIT, MT_DATA); 2014 if (m == NULL) 2015 goto dropit; 2016 memcpy(mtod(m, caddr_t), 2017 mtod(rxs->rxs_mbuf, caddr_t), len); 2018 SIP_INIT_RXDESC(sc, i); 2019 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 2020 rxs->rxs_dmamap->dm_mapsize, 2021 BUS_DMASYNC_PREREAD); 2022 } else { 2023 m = rxs->rxs_mbuf; 2024 if (SIP_DECL(add_rxbuf)(sc, i) != 0) { 2025 dropit: 2026 ifp->if_ierrors++; 2027 SIP_INIT_RXDESC(sc, i); 2028 bus_dmamap_sync(sc->sc_dmat, 2029 rxs->rxs_dmamap, 0, 2030 rxs->rxs_dmamap->dm_mapsize, 2031 BUS_DMASYNC_PREREAD); 2032 continue; 2033 } 2034 } 2035 #else 2036 /* 2037 * The SiS 900's receive buffers must be 4-byte aligned. 2038 * But this means that the data after the Ethernet header 2039 * is misaligned. We must allocate a new buffer and 2040 * copy the data, shifted forward 2 bytes. 2041 */ 2042 MGETHDR(m, M_DONTWAIT, MT_DATA); 2043 if (m == NULL) { 2044 dropit: 2045 ifp->if_ierrors++; 2046 SIP_INIT_RXDESC(sc, i); 2047 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 2048 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 2049 continue; 2050 } 2051 if (len > (MHLEN - 2)) { 2052 MCLGET(m, M_DONTWAIT); 2053 if ((m->m_flags & M_EXT) == 0) { 2054 m_freem(m); 2055 goto dropit; 2056 } 2057 } 2058 m->m_data += 2; 2059 2060 /* 2061 * Note that we use clusters for incoming frames, so the 2062 * buffer is virtually contiguous. 2063 */ 2064 memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len); 2065 2066 /* Allow the receive descriptor to continue using its mbuf. */ 2067 SIP_INIT_RXDESC(sc, i); 2068 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 2069 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 2070 #endif /* __NO_STRICT_ALIGNMENT */ 2071 2072 ifp->if_ipackets++; 2073 m->m_flags |= M_HASFCS; 2074 m->m_pkthdr.rcvif = ifp; 2075 m->m_pkthdr.len = m->m_len = len; 2076 2077 #if NBPFILTER > 0 2078 /* 2079 * Pass this up to any BPF listeners, but only 2080 * pass if up the stack if it's for us. 2081 */ 2082 if (ifp->if_bpf) 2083 bpf_mtap(ifp->if_bpf, m); 2084 #endif /* NBPFILTER > 0 */ 2085 2086 /* Pass it on. */ 2087 (*ifp->if_input)(ifp, m); 2088 } 2089 2090 /* Update the receive pointer. */ 2091 sc->sc_rxptr = i; 2092 } 2093 #endif /* DP83820 */ 2094 2095 /* 2096 * sip_tick: 2097 * 2098 * One second timer, used to tick the MII. 2099 */ 2100 void 2101 SIP_DECL(tick)(void *arg) 2102 { 2103 struct sip_softc *sc = arg; 2104 int s; 2105 2106 s = splnet(); 2107 mii_tick(&sc->sc_mii); 2108 splx(s); 2109 2110 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc); 2111 } 2112 2113 /* 2114 * sip_reset: 2115 * 2116 * Perform a soft reset on the SiS 900. 2117 */ 2118 void 2119 SIP_DECL(reset)(struct sip_softc *sc) 2120 { 2121 bus_space_tag_t st = sc->sc_st; 2122 bus_space_handle_t sh = sc->sc_sh; 2123 int i; 2124 2125 bus_space_write_4(st, sh, SIP_IER, 0); 2126 bus_space_write_4(st, sh, SIP_IMR, 0); 2127 bus_space_write_4(st, sh, SIP_RFCR, 0); 2128 bus_space_write_4(st, sh, SIP_CR, CR_RST); 2129 2130 for (i = 0; i < SIP_TIMEOUT; i++) { 2131 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0) 2132 break; 2133 delay(2); 2134 } 2135 2136 if (i == SIP_TIMEOUT) 2137 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname); 2138 2139 delay(1000); 2140 2141 #ifdef DP83820 2142 /* 2143 * Set the general purpose I/O bits. Do it here in case we 2144 * need to have GPIO set up to talk to the media interface. 2145 */ 2146 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior); 2147 delay(1000); 2148 #endif /* DP83820 */ 2149 } 2150 2151 /* 2152 * sip_init: [ ifnet interface function ] 2153 * 2154 * Initialize the interface. Must be called at splnet(). 2155 */ 2156 int 2157 SIP_DECL(init)(struct ifnet *ifp) 2158 { 2159 struct sip_softc *sc = ifp->if_softc; 2160 bus_space_tag_t st = sc->sc_st; 2161 bus_space_handle_t sh = sc->sc_sh; 2162 struct sip_txsoft *txs; 2163 struct sip_rxsoft *rxs; 2164 struct sip_desc *sipd; 2165 u_int32_t reg; 2166 int i, error = 0; 2167 2168 /* 2169 * Cancel any pending I/O. 2170 */ 2171 SIP_DECL(stop)(ifp, 0); 2172 2173 /* 2174 * Reset the chip to a known state. 2175 */ 2176 SIP_DECL(reset)(sc); 2177 2178 #if !defined(DP83820) 2179 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) { 2180 /* 2181 * DP83815 manual, page 78: 2182 * 4.4 Recommended Registers Configuration 2183 * For optimum performance of the DP83815, version noted 2184 * as DP83815CVNG (SRR = 203h), the listed register 2185 * modifications must be followed in sequence... 2186 * 2187 * It's not clear if this should be 302h or 203h because that 2188 * chip name is listed as SRR 302h in the description of the 2189 * SRR register. However, my revision 302h DP83815 on the 2190 * Netgear FA311 purchased in 02/2001 needs these settings 2191 * to avoid tons of errors in AcceptPerfectMatch (non- 2192 * IFF_PROMISC) mode. I do not know if other revisions need 2193 * this set or not. [briggs -- 09 March 2001] 2194 * 2195 * Note that only the low-order 12 bits of 0xe4 are documented 2196 * and that this sets reserved bits in that register. 2197 */ 2198 reg = bus_space_read_4(st, sh, SIP_NS_SRR); 2199 if (reg == 0x302) { 2200 bus_space_write_4(st, sh, 0x00cc, 0x0001); 2201 bus_space_write_4(st, sh, 0x00e4, 0x189C); 2202 bus_space_write_4(st, sh, 0x00fc, 0x0000); 2203 bus_space_write_4(st, sh, 0x00f4, 0x5040); 2204 bus_space_write_4(st, sh, 0x00f8, 0x008c); 2205 } 2206 } 2207 #endif /* ! DP83820 */ 2208 2209 /* 2210 * Initialize the transmit descriptor ring. 2211 */ 2212 for (i = 0; i < SIP_NTXDESC; i++) { 2213 sipd = &sc->sc_txdescs[i]; 2214 memset(sipd, 0, sizeof(struct sip_desc)); 2215 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i))); 2216 } 2217 SIP_CDTXSYNC(sc, 0, SIP_NTXDESC, 2218 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 2219 sc->sc_txfree = SIP_NTXDESC; 2220 sc->sc_txnext = 0; 2221 sc->sc_txwin = 0; 2222 2223 /* 2224 * Initialize the transmit job descriptors. 2225 */ 2226 SIMPLEQ_INIT(&sc->sc_txfreeq); 2227 SIMPLEQ_INIT(&sc->sc_txdirtyq); 2228 for (i = 0; i < SIP_TXQUEUELEN; i++) { 2229 txs = &sc->sc_txsoft[i]; 2230 txs->txs_mbuf = NULL; 2231 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 2232 } 2233 2234 /* 2235 * Initialize the receive descriptor and receive job 2236 * descriptor rings. 2237 */ 2238 for (i = 0; i < SIP_NRXDESC; i++) { 2239 rxs = &sc->sc_rxsoft[i]; 2240 if (rxs->rxs_mbuf == NULL) { 2241 if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) { 2242 printf("%s: unable to allocate or map rx " 2243 "buffer %d, error = %d\n", 2244 sc->sc_dev.dv_xname, i, error); 2245 /* 2246 * XXX Should attempt to run with fewer receive 2247 * XXX buffers instead of just failing. 2248 */ 2249 SIP_DECL(rxdrain)(sc); 2250 goto out; 2251 } 2252 } else 2253 SIP_INIT_RXDESC(sc, i); 2254 } 2255 sc->sc_rxptr = 0; 2256 #ifdef DP83820 2257 sc->sc_rxdiscard = 0; 2258 SIP_RXCHAIN_RESET(sc); 2259 #endif /* DP83820 */ 2260 2261 /* 2262 * Set the configuration register; it's already initialized 2263 * in sip_attach(). 2264 */ 2265 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg); 2266 2267 /* 2268 * Initialize the prototype TXCFG register. 2269 */ 2270 #if defined(DP83820) 2271 sc->sc_txcfg = TXCFG_MXDMA_512; 2272 sc->sc_rxcfg = RXCFG_MXDMA_512; 2273 #else 2274 if ((SIP_SIS900_REV(sc, SIS_REV_635) || 2275 SIP_SIS900_REV(sc, SIS_REV_900B)) && 2276 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & CFG_EDBMASTEN)) { 2277 sc->sc_txcfg = TXCFG_MXDMA_64; 2278 sc->sc_rxcfg = RXCFG_MXDMA_64; 2279 } else { 2280 sc->sc_txcfg = TXCFG_MXDMA_512; 2281 sc->sc_rxcfg = RXCFG_MXDMA_512; 2282 } 2283 #endif /* DP83820 */ 2284 2285 sc->sc_txcfg |= TXCFG_ATP | 2286 (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) | 2287 sc->sc_tx_drain_thresh; 2288 bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg); 2289 2290 /* 2291 * Initialize the receive drain threshold if we have never 2292 * done so. 2293 */ 2294 if (sc->sc_rx_drain_thresh == 0) { 2295 /* 2296 * XXX This value should be tuned. This is set to the 2297 * maximum of 248 bytes, and we may be able to improve 2298 * performance by decreasing it (although we should never 2299 * set this value lower than 2; 14 bytes are required to 2300 * filter the packet). 2301 */ 2302 sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT; 2303 } 2304 2305 /* 2306 * Initialize the prototype RXCFG register. 2307 */ 2308 sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT); 2309 bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg); 2310 2311 #ifdef DP83820 2312 /* 2313 * Initialize the VLAN/IP receive control register. 2314 * We enable checksum computation on all incoming 2315 * packets, and do not reject packets w/ bad checksums. 2316 */ 2317 reg = 0; 2318 if (ifp->if_capenable & 2319 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4)) 2320 reg |= VRCR_IPEN; 2321 if (sc->sc_ethercom.ec_nvlans != 0) 2322 reg |= VRCR_VTDEN|VRCR_VTREN; 2323 bus_space_write_4(st, sh, SIP_VRCR, reg); 2324 2325 /* 2326 * Initialize the VLAN/IP transmit control register. 2327 * We enable outgoing checksum computation on a 2328 * per-packet basis. 2329 */ 2330 reg = 0; 2331 if (ifp->if_capenable & 2332 (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4)) 2333 reg |= VTCR_PPCHK; 2334 if (sc->sc_ethercom.ec_nvlans != 0) 2335 reg |= VTCR_VPPTI; 2336 bus_space_write_4(st, sh, SIP_VTCR, reg); 2337 2338 /* 2339 * If we're using VLANs, initialize the VLAN data register. 2340 * To understand why we bswap the VLAN Ethertype, see section 2341 * 4.2.36 of the DP83820 manual. 2342 */ 2343 if (sc->sc_ethercom.ec_nvlans != 0) 2344 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN)); 2345 #endif /* DP83820 */ 2346 2347 /* 2348 * Give the transmit and receive rings to the chip. 2349 */ 2350 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext)); 2351 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr)); 2352 2353 /* 2354 * Initialize the interrupt mask. 2355 */ 2356 sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR| 2357 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC; 2358 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr); 2359 2360 /* Set up the receive filter. */ 2361 (*sc->sc_model->sip_variant->sipv_set_filter)(sc); 2362 2363 /* 2364 * Set the current media. Do this after initializing the prototype 2365 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow 2366 * control. 2367 */ 2368 mii_mediachg(&sc->sc_mii); 2369 2370 /* 2371 * Enable interrupts. 2372 */ 2373 bus_space_write_4(st, sh, SIP_IER, IER_IE); 2374 2375 /* 2376 * Start the transmit and receive processes. 2377 */ 2378 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE); 2379 2380 /* 2381 * Start the one second MII clock. 2382 */ 2383 callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc); 2384 2385 /* 2386 * ...all done! 2387 */ 2388 ifp->if_flags |= IFF_RUNNING; 2389 ifp->if_flags &= ~IFF_OACTIVE; 2390 2391 out: 2392 if (error) 2393 printf("%s: interface not running\n", sc->sc_dev.dv_xname); 2394 return (error); 2395 } 2396 2397 /* 2398 * sip_drain: 2399 * 2400 * Drain the receive queue. 2401 */ 2402 void 2403 SIP_DECL(rxdrain)(struct sip_softc *sc) 2404 { 2405 struct sip_rxsoft *rxs; 2406 int i; 2407 2408 for (i = 0; i < SIP_NRXDESC; i++) { 2409 rxs = &sc->sc_rxsoft[i]; 2410 if (rxs->rxs_mbuf != NULL) { 2411 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 2412 m_freem(rxs->rxs_mbuf); 2413 rxs->rxs_mbuf = NULL; 2414 } 2415 } 2416 } 2417 2418 /* 2419 * sip_stop: [ ifnet interface function ] 2420 * 2421 * Stop transmission on the interface. 2422 */ 2423 void 2424 SIP_DECL(stop)(struct ifnet *ifp, int disable) 2425 { 2426 struct sip_softc *sc = ifp->if_softc; 2427 bus_space_tag_t st = sc->sc_st; 2428 bus_space_handle_t sh = sc->sc_sh; 2429 struct sip_txsoft *txs; 2430 u_int32_t cmdsts = 0; /* DEBUG */ 2431 2432 /* 2433 * Stop the one second clock. 2434 */ 2435 callout_stop(&sc->sc_tick_ch); 2436 2437 /* Down the MII. */ 2438 mii_down(&sc->sc_mii); 2439 2440 /* 2441 * Disable interrupts. 2442 */ 2443 bus_space_write_4(st, sh, SIP_IER, 0); 2444 2445 /* 2446 * Stop receiver and transmitter. 2447 */ 2448 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD); 2449 2450 /* 2451 * Release any queued transmit buffers. 2452 */ 2453 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) { 2454 if ((ifp->if_flags & IFF_DEBUG) != 0 && 2455 SIMPLEQ_NEXT(txs, txs_q) == NULL && 2456 (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) & 2457 CMDSTS_INTR) == 0) 2458 printf("%s: sip_stop: last descriptor does not " 2459 "have INTR bit set\n", sc->sc_dev.dv_xname); 2460 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); 2461 #ifdef DIAGNOSTIC 2462 if (txs->txs_mbuf == NULL) { 2463 printf("%s: dirty txsoft with no mbuf chain\n", 2464 sc->sc_dev.dv_xname); 2465 panic("sip_stop"); 2466 } 2467 #endif 2468 cmdsts |= /* DEBUG */ 2469 le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts); 2470 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); 2471 m_freem(txs->txs_mbuf); 2472 txs->txs_mbuf = NULL; 2473 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 2474 } 2475 2476 if (disable) 2477 SIP_DECL(rxdrain)(sc); 2478 2479 /* 2480 * Mark the interface down and cancel the watchdog timer. 2481 */ 2482 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2483 ifp->if_timer = 0; 2484 2485 if ((ifp->if_flags & IFF_DEBUG) != 0 && 2486 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC) 2487 printf("%s: sip_stop: no INTR bits set in dirty tx " 2488 "descriptors\n", sc->sc_dev.dv_xname); 2489 } 2490 2491 /* 2492 * sip_read_eeprom: 2493 * 2494 * Read data from the serial EEPROM. 2495 */ 2496 void 2497 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt, 2498 u_int16_t *data) 2499 { 2500 bus_space_tag_t st = sc->sc_st; 2501 bus_space_handle_t sh = sc->sc_sh; 2502 u_int16_t reg; 2503 int i, x; 2504 2505 for (i = 0; i < wordcnt; i++) { 2506 /* Send CHIP SELECT. */ 2507 reg = EROMAR_EECS; 2508 bus_space_write_4(st, sh, SIP_EROMAR, reg); 2509 2510 /* Shift in the READ opcode. */ 2511 for (x = 3; x > 0; x--) { 2512 if (SIP_EEPROM_OPC_READ & (1 << (x - 1))) 2513 reg |= EROMAR_EEDI; 2514 else 2515 reg &= ~EROMAR_EEDI; 2516 bus_space_write_4(st, sh, SIP_EROMAR, reg); 2517 bus_space_write_4(st, sh, SIP_EROMAR, 2518 reg | EROMAR_EESK); 2519 delay(4); 2520 bus_space_write_4(st, sh, SIP_EROMAR, reg); 2521 delay(4); 2522 } 2523 2524 /* Shift in address. */ 2525 for (x = 6; x > 0; x--) { 2526 if ((word + i) & (1 << (x - 1))) 2527 reg |= EROMAR_EEDI; 2528 else 2529 reg &= ~EROMAR_EEDI; 2530 bus_space_write_4(st, sh, SIP_EROMAR, reg); 2531 bus_space_write_4(st, sh, SIP_EROMAR, 2532 reg | EROMAR_EESK); 2533 delay(4); 2534 bus_space_write_4(st, sh, SIP_EROMAR, reg); 2535 delay(4); 2536 } 2537 2538 /* Shift out data. */ 2539 reg = EROMAR_EECS; 2540 data[i] = 0; 2541 for (x = 16; x > 0; x--) { 2542 bus_space_write_4(st, sh, SIP_EROMAR, 2543 reg | EROMAR_EESK); 2544 delay(4); 2545 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO) 2546 data[i] |= (1 << (x - 1)); 2547 bus_space_write_4(st, sh, SIP_EROMAR, reg); 2548 delay(4); 2549 } 2550 2551 /* Clear CHIP SELECT. */ 2552 bus_space_write_4(st, sh, SIP_EROMAR, 0); 2553 delay(4); 2554 } 2555 } 2556 2557 /* 2558 * sip_add_rxbuf: 2559 * 2560 * Add a receive buffer to the indicated descriptor. 2561 */ 2562 int 2563 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx) 2564 { 2565 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx]; 2566 struct mbuf *m; 2567 int error; 2568 2569 MGETHDR(m, M_DONTWAIT, MT_DATA); 2570 if (m == NULL) 2571 return (ENOBUFS); 2572 2573 MCLGET(m, M_DONTWAIT); 2574 if ((m->m_flags & M_EXT) == 0) { 2575 m_freem(m); 2576 return (ENOBUFS); 2577 } 2578 2579 #if defined(DP83820) 2580 m->m_len = SIP_RXBUF_LEN; 2581 #endif /* DP83820 */ 2582 2583 if (rxs->rxs_mbuf != NULL) 2584 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 2585 2586 rxs->rxs_mbuf = m; 2587 2588 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, 2589 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, 2590 BUS_DMA_READ|BUS_DMA_NOWAIT); 2591 if (error) { 2592 printf("%s: can't load rx DMA map %d, error = %d\n", 2593 sc->sc_dev.dv_xname, idx, error); 2594 panic("sip_add_rxbuf"); /* XXX */ 2595 } 2596 2597 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 2598 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 2599 2600 SIP_INIT_RXDESC(sc, idx); 2601 2602 return (0); 2603 } 2604 2605 #if !defined(DP83820) 2606 /* 2607 * sip_sis900_set_filter: 2608 * 2609 * Set up the receive filter. 2610 */ 2611 void 2612 SIP_DECL(sis900_set_filter)(struct sip_softc *sc) 2613 { 2614 bus_space_tag_t st = sc->sc_st; 2615 bus_space_handle_t sh = sc->sc_sh; 2616 struct ethercom *ec = &sc->sc_ethercom; 2617 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2618 struct ether_multi *enm; 2619 u_int8_t *cp; 2620 struct ether_multistep step; 2621 u_int32_t crc, mchash[16]; 2622 2623 /* 2624 * Initialize the prototype RFCR. 2625 */ 2626 sc->sc_rfcr = RFCR_RFEN; 2627 if (ifp->if_flags & IFF_BROADCAST) 2628 sc->sc_rfcr |= RFCR_AAB; 2629 if (ifp->if_flags & IFF_PROMISC) { 2630 sc->sc_rfcr |= RFCR_AAP; 2631 goto allmulti; 2632 } 2633 2634 /* 2635 * Set up the multicast address filter by passing all multicast 2636 * addresses through a CRC generator, and then using the high-order 2637 * 6 bits as an index into the 128 bit multicast hash table (only 2638 * the lower 16 bits of each 32 bit multicast hash register are 2639 * valid). The high order bits select the register, while the 2640 * rest of the bits select the bit within the register. 2641 */ 2642 2643 memset(mchash, 0, sizeof(mchash)); 2644 2645 ETHER_FIRST_MULTI(step, ec, enm); 2646 while (enm != NULL) { 2647 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 2648 /* 2649 * We must listen to a range of multicast addresses. 2650 * For now, just accept all multicasts, rather than 2651 * trying to set only those filter bits needed to match 2652 * the range. (At this time, the only use of address 2653 * ranges is for IP multicast routing, for which the 2654 * range is big enough to require all bits set.) 2655 */ 2656 goto allmulti; 2657 } 2658 2659 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN); 2660 2661 if (SIP_SIS900_REV(sc, SIS_REV_635) || 2662 SIP_SIS900_REV(sc, SIS_REV_900B)) { 2663 /* Just want the 8 most significant bits. */ 2664 crc >>= 24; 2665 } else { 2666 /* Just want the 7 most significant bits. */ 2667 crc >>= 25; 2668 } 2669 2670 /* Set the corresponding bit in the hash table. */ 2671 mchash[crc >> 4] |= 1 << (crc & 0xf); 2672 2673 ETHER_NEXT_MULTI(step, enm); 2674 } 2675 2676 ifp->if_flags &= ~IFF_ALLMULTI; 2677 goto setit; 2678 2679 allmulti: 2680 ifp->if_flags |= IFF_ALLMULTI; 2681 sc->sc_rfcr |= RFCR_AAM; 2682 2683 setit: 2684 #define FILTER_EMIT(addr, data) \ 2685 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \ 2686 delay(1); \ 2687 bus_space_write_4(st, sh, SIP_RFDR, (data)); \ 2688 delay(1) 2689 2690 /* 2691 * Disable receive filter, and program the node address. 2692 */ 2693 cp = LLADDR(ifp->if_sadl); 2694 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]); 2695 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]); 2696 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]); 2697 2698 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 2699 /* 2700 * Program the multicast hash table. 2701 */ 2702 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]); 2703 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]); 2704 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]); 2705 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]); 2706 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]); 2707 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]); 2708 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]); 2709 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]); 2710 if (SIP_SIS900_REV(sc, SIS_REV_635) || 2711 SIP_SIS900_REV(sc, SIS_REV_900B)) { 2712 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]); 2713 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]); 2714 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]); 2715 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]); 2716 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]); 2717 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]); 2718 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]); 2719 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]); 2720 } 2721 } 2722 #undef FILTER_EMIT 2723 2724 /* 2725 * Re-enable the receiver filter. 2726 */ 2727 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr); 2728 } 2729 #endif /* ! DP83820 */ 2730 2731 /* 2732 * sip_dp83815_set_filter: 2733 * 2734 * Set up the receive filter. 2735 */ 2736 void 2737 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc) 2738 { 2739 bus_space_tag_t st = sc->sc_st; 2740 bus_space_handle_t sh = sc->sc_sh; 2741 struct ethercom *ec = &sc->sc_ethercom; 2742 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2743 struct ether_multi *enm; 2744 u_int8_t *cp; 2745 struct ether_multistep step; 2746 u_int32_t crc, hash, slot, bit; 2747 #ifdef DP83820 2748 #define MCHASH_NWORDS 128 2749 #else 2750 #define MCHASH_NWORDS 32 2751 #endif /* DP83820 */ 2752 u_int16_t mchash[MCHASH_NWORDS]; 2753 int i; 2754 2755 /* 2756 * Initialize the prototype RFCR. 2757 * Enable the receive filter, and accept on 2758 * Perfect (destination address) Match 2759 * If IFF_BROADCAST, also accept all broadcast packets. 2760 * If IFF_PROMISC, accept all unicast packets (and later, set 2761 * IFF_ALLMULTI and accept all multicast, too). 2762 */ 2763 sc->sc_rfcr = RFCR_RFEN | RFCR_APM; 2764 if (ifp->if_flags & IFF_BROADCAST) 2765 sc->sc_rfcr |= RFCR_AAB; 2766 if (ifp->if_flags & IFF_PROMISC) { 2767 sc->sc_rfcr |= RFCR_AAP; 2768 goto allmulti; 2769 } 2770 2771 #ifdef DP83820 2772 /* 2773 * Set up the DP83820 multicast address filter by passing all multicast 2774 * addresses through a CRC generator, and then using the high-order 2775 * 11 bits as an index into the 2048 bit multicast hash table. The 2776 * high-order 7 bits select the slot, while the low-order 4 bits 2777 * select the bit within the slot. Note that only the low 16-bits 2778 * of each filter word are used, and there are 128 filter words. 2779 */ 2780 #else 2781 /* 2782 * Set up the DP83815 multicast address filter by passing all multicast 2783 * addresses through a CRC generator, and then using the high-order 2784 * 9 bits as an index into the 512 bit multicast hash table. The 2785 * high-order 5 bits select the slot, while the low-order 4 bits 2786 * select the bit within the slot. Note that only the low 16-bits 2787 * of each filter word are used, and there are 32 filter words. 2788 */ 2789 #endif /* DP83820 */ 2790 2791 memset(mchash, 0, sizeof(mchash)); 2792 2793 ifp->if_flags &= ~IFF_ALLMULTI; 2794 ETHER_FIRST_MULTI(step, ec, enm); 2795 if (enm == NULL) 2796 goto setit; 2797 while (enm != NULL) { 2798 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 2799 /* 2800 * We must listen to a range of multicast addresses. 2801 * For now, just accept all multicasts, rather than 2802 * trying to set only those filter bits needed to match 2803 * the range. (At this time, the only use of address 2804 * ranges is for IP multicast routing, for which the 2805 * range is big enough to require all bits set.) 2806 */ 2807 goto allmulti; 2808 } 2809 2810 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN); 2811 2812 #ifdef DP83820 2813 /* Just want the 11 most significant bits. */ 2814 hash = crc >> 21; 2815 #else 2816 /* Just want the 9 most significant bits. */ 2817 hash = crc >> 23; 2818 #endif /* DP83820 */ 2819 2820 slot = hash >> 4; 2821 bit = hash & 0xf; 2822 2823 /* Set the corresponding bit in the hash table. */ 2824 mchash[slot] |= 1 << bit; 2825 2826 ETHER_NEXT_MULTI(step, enm); 2827 } 2828 sc->sc_rfcr |= RFCR_MHEN; 2829 goto setit; 2830 2831 allmulti: 2832 ifp->if_flags |= IFF_ALLMULTI; 2833 sc->sc_rfcr |= RFCR_AAM; 2834 2835 setit: 2836 #define FILTER_EMIT(addr, data) \ 2837 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \ 2838 delay(1); \ 2839 bus_space_write_4(st, sh, SIP_RFDR, (data)); \ 2840 delay(1) 2841 2842 /* 2843 * Disable receive filter, and program the node address. 2844 */ 2845 cp = LLADDR(ifp->if_sadl); 2846 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]); 2847 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]); 2848 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]); 2849 2850 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 2851 /* 2852 * Program the multicast hash table. 2853 */ 2854 for (i = 0; i < MCHASH_NWORDS; i++) { 2855 FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2), 2856 mchash[i]); 2857 } 2858 } 2859 #undef FILTER_EMIT 2860 #undef MCHASH_NWORDS 2861 2862 /* 2863 * Re-enable the receiver filter. 2864 */ 2865 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr); 2866 } 2867 2868 #if defined(DP83820) 2869 /* 2870 * sip_dp83820_mii_readreg: [mii interface function] 2871 * 2872 * Read a PHY register on the MII of the DP83820. 2873 */ 2874 int 2875 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg) 2876 { 2877 struct sip_softc *sc = (void *) self; 2878 2879 if (sc->sc_cfg & CFG_TBI_EN) { 2880 bus_addr_t tbireg; 2881 int rv; 2882 2883 if (phy != 0) 2884 return (0); 2885 2886 switch (reg) { 2887 case MII_BMCR: tbireg = SIP_TBICR; break; 2888 case MII_BMSR: tbireg = SIP_TBISR; break; 2889 case MII_ANAR: tbireg = SIP_TANAR; break; 2890 case MII_ANLPAR: tbireg = SIP_TANLPAR; break; 2891 case MII_ANER: tbireg = SIP_TANER; break; 2892 case MII_EXTSR: 2893 /* 2894 * Don't even bother reading the TESR register. 2895 * The manual documents that the device has 2896 * 1000baseX full/half capability, but the 2897 * register itself seems read back 0 on some 2898 * boards. Just hard-code the result. 2899 */ 2900 return (EXTSR_1000XFDX|EXTSR_1000XHDX); 2901 2902 default: 2903 return (0); 2904 } 2905 2906 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff; 2907 if (tbireg == SIP_TBISR) { 2908 /* LINK and ACOMP are switched! */ 2909 int val = rv; 2910 2911 rv = 0; 2912 if (val & TBISR_MR_LINK_STATUS) 2913 rv |= BMSR_LINK; 2914 if (val & TBISR_MR_AN_COMPLETE) 2915 rv |= BMSR_ACOMP; 2916 2917 /* 2918 * The manual claims this register reads back 0 2919 * on hard and soft reset. But we want to let 2920 * the gentbi driver know that we support auto- 2921 * negotiation, so hard-code this bit in the 2922 * result. 2923 */ 2924 rv |= BMSR_ANEG | BMSR_EXTSTAT; 2925 } 2926 2927 return (rv); 2928 } 2929 2930 return (mii_bitbang_readreg(self, &SIP_DECL(dp83820_mii_bitbang_ops), 2931 phy, reg)); 2932 } 2933 2934 /* 2935 * sip_dp83820_mii_writereg: [mii interface function] 2936 * 2937 * Write a PHY register on the MII of the DP83820. 2938 */ 2939 void 2940 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val) 2941 { 2942 struct sip_softc *sc = (void *) self; 2943 2944 if (sc->sc_cfg & CFG_TBI_EN) { 2945 bus_addr_t tbireg; 2946 2947 if (phy != 0) 2948 return; 2949 2950 switch (reg) { 2951 case MII_BMCR: tbireg = SIP_TBICR; break; 2952 case MII_ANAR: tbireg = SIP_TANAR; break; 2953 case MII_ANLPAR: tbireg = SIP_TANLPAR; break; 2954 default: 2955 return; 2956 } 2957 2958 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val); 2959 return; 2960 } 2961 2962 mii_bitbang_writereg(self, &SIP_DECL(dp83820_mii_bitbang_ops), 2963 phy, reg, val); 2964 } 2965 2966 /* 2967 * sip_dp83815_mii_statchg: [mii interface function] 2968 * 2969 * Callback from MII layer when media changes. 2970 */ 2971 void 2972 SIP_DECL(dp83820_mii_statchg)(struct device *self) 2973 { 2974 struct sip_softc *sc = (struct sip_softc *) self; 2975 u_int32_t cfg; 2976 2977 /* 2978 * Update TXCFG for full-duplex operation. 2979 */ 2980 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0) 2981 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI); 2982 else 2983 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI); 2984 2985 /* 2986 * Update RXCFG for full-duplex or loopback. 2987 */ 2988 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 || 2989 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP) 2990 sc->sc_rxcfg |= RXCFG_ATX; 2991 else 2992 sc->sc_rxcfg &= ~RXCFG_ATX; 2993 2994 /* 2995 * Update CFG for MII/GMII. 2996 */ 2997 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000)) 2998 cfg = sc->sc_cfg | CFG_MODE_1000; 2999 else 3000 cfg = sc->sc_cfg; 3001 3002 /* 3003 * XXX 802.3x flow control. 3004 */ 3005 3006 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg); 3007 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg); 3008 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg); 3009 } 3010 3011 /* 3012 * sip_dp83820_mii_bitbang_read: [mii bit-bang interface function] 3013 * 3014 * Read the MII serial port for the MII bit-bang module. 3015 */ 3016 u_int32_t 3017 SIP_DECL(dp83820_mii_bitbang_read)(struct device *self) 3018 { 3019 struct sip_softc *sc = (void *) self; 3020 3021 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR)); 3022 } 3023 3024 /* 3025 * sip_dp83820_mii_bitbang_write: [mii big-bang interface function] 3026 * 3027 * Write the MII serial port for the MII bit-bang module. 3028 */ 3029 void 3030 SIP_DECL(dp83820_mii_bitbang_write)(struct device *self, u_int32_t val) 3031 { 3032 struct sip_softc *sc = (void *) self; 3033 3034 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val); 3035 } 3036 #else /* ! DP83820 */ 3037 /* 3038 * sip_sis900_mii_readreg: [mii interface function] 3039 * 3040 * Read a PHY register on the MII. 3041 */ 3042 int 3043 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg) 3044 { 3045 struct sip_softc *sc = (struct sip_softc *) self; 3046 u_int32_t enphy; 3047 3048 /* 3049 * The SiS 900 has only an internal PHY on the MII. Only allow 3050 * MII address 0. 3051 */ 3052 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && 3053 sc->sc_rev < SIS_REV_635 && phy != 0) 3054 return (0); 3055 3056 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY, 3057 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) | 3058 ENPHY_RWCMD | ENPHY_ACCESS); 3059 do { 3060 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY); 3061 } while (enphy & ENPHY_ACCESS); 3062 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT); 3063 } 3064 3065 /* 3066 * sip_sis900_mii_writereg: [mii interface function] 3067 * 3068 * Write a PHY register on the MII. 3069 */ 3070 void 3071 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val) 3072 { 3073 struct sip_softc *sc = (struct sip_softc *) self; 3074 u_int32_t enphy; 3075 3076 /* 3077 * The SiS 900 has only an internal PHY on the MII. Only allow 3078 * MII address 0. 3079 */ 3080 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && 3081 sc->sc_rev < SIS_REV_635 && phy != 0) 3082 return; 3083 3084 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY, 3085 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) | 3086 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS); 3087 do { 3088 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY); 3089 } while (enphy & ENPHY_ACCESS); 3090 } 3091 3092 /* 3093 * sip_sis900_mii_statchg: [mii interface function] 3094 * 3095 * Callback from MII layer when media changes. 3096 */ 3097 void 3098 SIP_DECL(sis900_mii_statchg)(struct device *self) 3099 { 3100 struct sip_softc *sc = (struct sip_softc *) self; 3101 u_int32_t flowctl; 3102 3103 /* 3104 * Update TXCFG for full-duplex operation. 3105 */ 3106 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0) 3107 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI); 3108 else 3109 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI); 3110 3111 /* 3112 * Update RXCFG for full-duplex or loopback. 3113 */ 3114 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 || 3115 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP) 3116 sc->sc_rxcfg |= RXCFG_ATX; 3117 else 3118 sc->sc_rxcfg &= ~RXCFG_ATX; 3119 3120 /* 3121 * Update IMR for use of 802.3x flow control. 3122 */ 3123 if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) { 3124 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST); 3125 flowctl = FLOWCTL_FLOWEN; 3126 } else { 3127 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST); 3128 flowctl = 0; 3129 } 3130 3131 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg); 3132 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg); 3133 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr); 3134 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl); 3135 } 3136 3137 /* 3138 * sip_dp83815_mii_readreg: [mii interface function] 3139 * 3140 * Read a PHY register on the MII. 3141 */ 3142 int 3143 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg) 3144 { 3145 struct sip_softc *sc = (struct sip_softc *) self; 3146 u_int32_t val; 3147 3148 /* 3149 * The DP83815 only has an internal PHY. Only allow 3150 * MII address 0. 3151 */ 3152 if (phy != 0) 3153 return (0); 3154 3155 /* 3156 * Apparently, after a reset, the DP83815 can take a while 3157 * to respond. During this recovery period, the BMSR returns 3158 * a value of 0. Catch this -- it's not supposed to happen 3159 * (the BMSR has some hardcoded-to-1 bits), and wait for the 3160 * PHY to come back to life. 3161 * 3162 * This works out because the BMSR is the first register 3163 * read during the PHY probe process. 3164 */ 3165 do { 3166 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg)); 3167 } while (reg == MII_BMSR && val == 0); 3168 3169 return (val & 0xffff); 3170 } 3171 3172 /* 3173 * sip_dp83815_mii_writereg: [mii interface function] 3174 * 3175 * Write a PHY register to the MII. 3176 */ 3177 void 3178 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val) 3179 { 3180 struct sip_softc *sc = (struct sip_softc *) self; 3181 3182 /* 3183 * The DP83815 only has an internal PHY. Only allow 3184 * MII address 0. 3185 */ 3186 if (phy != 0) 3187 return; 3188 3189 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val); 3190 } 3191 3192 /* 3193 * sip_dp83815_mii_statchg: [mii interface function] 3194 * 3195 * Callback from MII layer when media changes. 3196 */ 3197 void 3198 SIP_DECL(dp83815_mii_statchg)(struct device *self) 3199 { 3200 struct sip_softc *sc = (struct sip_softc *) self; 3201 3202 /* 3203 * Update TXCFG for full-duplex operation. 3204 */ 3205 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0) 3206 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI); 3207 else 3208 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI); 3209 3210 /* 3211 * Update RXCFG for full-duplex or loopback. 3212 */ 3213 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 || 3214 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP) 3215 sc->sc_rxcfg |= RXCFG_ATX; 3216 else 3217 sc->sc_rxcfg &= ~RXCFG_ATX; 3218 3219 /* 3220 * XXX 802.3x flow control. 3221 */ 3222 3223 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg); 3224 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg); 3225 } 3226 #endif /* DP83820 */ 3227 3228 #if defined(DP83820) 3229 void 3230 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc, 3231 const struct pci_attach_args *pa, u_int8_t *enaddr) 3232 { 3233 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2]; 3234 u_int8_t cksum, *e, match; 3235 int i; 3236 3237 /* 3238 * EEPROM data format for the DP83820 can be found in 3239 * the DP83820 manual, section 4.2.4. 3240 */ 3241 3242 SIP_DECL(read_eeprom)(sc, 0, 3243 sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data); 3244 3245 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8; 3246 match = ~(match - 1); 3247 3248 cksum = 0x55; 3249 e = (u_int8_t *) eeprom_data; 3250 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++) 3251 cksum += *e++; 3252 3253 if (cksum != match) 3254 printf("%s: Checksum (%x) mismatch (%x)", 3255 sc->sc_dev.dv_xname, cksum, match); 3256 3257 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff; 3258 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8; 3259 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff; 3260 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8; 3261 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff; 3262 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8; 3263 } 3264 #else /* ! DP83820 */ 3265 void 3266 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc, 3267 const struct pci_attach_args *pa, u_int8_t *enaddr) 3268 { 3269 u_int16_t myea[ETHER_ADDR_LEN / 2]; 3270 3271 switch (sc->sc_rev) { 3272 case SIS_REV_630S: 3273 case SIS_REV_630E: 3274 case SIS_REV_630EA1: 3275 case SIS_REV_630ET: 3276 case SIS_REV_635: 3277 /* 3278 * The MAC address for the on-board Ethernet of 3279 * the SiS 630 chipset is in the NVRAM. Kick 3280 * the chip into re-loading it from NVRAM, and 3281 * read the MAC address out of the filter registers. 3282 */ 3283 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD); 3284 3285 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR, 3286 RFCR_RFADDR_NODE0); 3287 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) & 3288 0xffff; 3289 3290 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR, 3291 RFCR_RFADDR_NODE2); 3292 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) & 3293 0xffff; 3294 3295 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR, 3296 RFCR_RFADDR_NODE4); 3297 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) & 3298 0xffff; 3299 break; 3300 3301 default: 3302 SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1, 3303 sizeof(myea) / sizeof(myea[0]), myea); 3304 } 3305 3306 enaddr[0] = myea[0] & 0xff; 3307 enaddr[1] = myea[0] >> 8; 3308 enaddr[2] = myea[1] & 0xff; 3309 enaddr[3] = myea[1] >> 8; 3310 enaddr[4] = myea[2] & 0xff; 3311 enaddr[5] = myea[2] >> 8; 3312 } 3313 3314 /* Table and macro to bit-reverse an octet. */ 3315 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15}; 3316 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf]) 3317 3318 void 3319 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc, 3320 const struct pci_attach_args *pa, u_int8_t *enaddr) 3321 { 3322 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea; 3323 u_int8_t cksum, *e, match; 3324 int i; 3325 3326 SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) / 3327 sizeof(eeprom_data[0]), eeprom_data); 3328 3329 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8; 3330 match = ~(match - 1); 3331 3332 cksum = 0x55; 3333 e = (u_int8_t *) eeprom_data; 3334 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) { 3335 cksum += *e++; 3336 } 3337 if (cksum != match) { 3338 printf("%s: Checksum (%x) mismatch (%x)", 3339 sc->sc_dev.dv_xname, cksum, match); 3340 } 3341 3342 /* 3343 * Unrolled because it makes slightly more sense this way. 3344 * The DP83815 stores the MAC address in bit 0 of word 6 3345 * through bit 15 of word 8. 3346 */ 3347 ea = &eeprom_data[6]; 3348 enaddr[0] = ((*ea & 0x1) << 7); 3349 ea++; 3350 enaddr[0] |= ((*ea & 0xFE00) >> 9); 3351 enaddr[1] = ((*ea & 0x1FE) >> 1); 3352 enaddr[2] = ((*ea & 0x1) << 7); 3353 ea++; 3354 enaddr[2] |= ((*ea & 0xFE00) >> 9); 3355 enaddr[3] = ((*ea & 0x1FE) >> 1); 3356 enaddr[4] = ((*ea & 0x1) << 7); 3357 ea++; 3358 enaddr[4] |= ((*ea & 0xFE00) >> 9); 3359 enaddr[5] = ((*ea & 0x1FE) >> 1); 3360 3361 /* 3362 * In case that's not weird enough, we also need to reverse 3363 * the bits in each byte. This all actually makes more sense 3364 * if you think about the EEPROM storage as an array of bits 3365 * being shifted into bytes, but that's not how we're looking 3366 * at it here... 3367 */ 3368 for (i = 0; i < 6 ;i++) 3369 enaddr[i] = bbr(enaddr[i]); 3370 } 3371 #endif /* DP83820 */ 3372 3373 /* 3374 * sip_mediastatus: [ifmedia interface function] 3375 * 3376 * Get the current interface media status. 3377 */ 3378 void 3379 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr) 3380 { 3381 struct sip_softc *sc = ifp->if_softc; 3382 3383 mii_pollstat(&sc->sc_mii); 3384 ifmr->ifm_status = sc->sc_mii.mii_media_status; 3385 ifmr->ifm_active = sc->sc_mii.mii_media_active; 3386 } 3387 3388 /* 3389 * sip_mediachange: [ifmedia interface function] 3390 * 3391 * Set hardware to newly-selected media. 3392 */ 3393 int 3394 SIP_DECL(mediachange)(struct ifnet *ifp) 3395 { 3396 struct sip_softc *sc = ifp->if_softc; 3397 3398 if (ifp->if_flags & IFF_UP) 3399 mii_mediachg(&sc->sc_mii); 3400 return (0); 3401 } 3402