1 /* $NetBSD: if_sip.c,v 1.127 2008/02/07 01:21:57 dyoung Exp $ */ 2 3 /*- 4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /*- 40 * Copyright (c) 1999 Network Computer, Inc. 41 * All rights reserved. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. Neither the name of Network Computer, Inc. nor the names of its 52 * contributors may be used to endorse or promote products derived 53 * from this software without specific prior written permission. 54 * 55 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS 56 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 57 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 58 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 59 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 60 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 61 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 62 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 63 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 64 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 65 * POSSIBILITY OF SUCH DAMAGE. 66 */ 67 68 /* 69 * Device driver for the Silicon Integrated Systems SiS 900, 70 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and 71 * National Semiconductor DP83820 10/100/1000 PCI Ethernet 72 * controllers. 73 * 74 * Originally written to support the SiS 900 by Jason R. Thorpe for 75 * Network Computer, Inc. 76 * 77 * TODO: 78 * 79 * - Reduce the Rx interrupt load. 80 */ 81 82 #include <sys/cdefs.h> 83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.127 2008/02/07 01:21:57 dyoung Exp $"); 84 85 #include "bpfilter.h" 86 #include "rnd.h" 87 88 #include <sys/param.h> 89 #include <sys/systm.h> 90 #include <sys/callout.h> 91 #include <sys/mbuf.h> 92 #include <sys/malloc.h> 93 #include <sys/kernel.h> 94 #include <sys/socket.h> 95 #include <sys/ioctl.h> 96 #include <sys/errno.h> 97 #include <sys/device.h> 98 #include <sys/queue.h> 99 100 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */ 101 102 #if NRND > 0 103 #include <sys/rnd.h> 104 #endif 105 106 #include <net/if.h> 107 #include <net/if_dl.h> 108 #include <net/if_media.h> 109 #include <net/if_ether.h> 110 111 #if NBPFILTER > 0 112 #include <net/bpf.h> 113 #endif 114 115 #include <sys/bus.h> 116 #include <sys/intr.h> 117 #include <machine/endian.h> 118 119 #include <dev/mii/mii.h> 120 #include <dev/mii/miivar.h> 121 #include <dev/mii/mii_bitbang.h> 122 123 #include <dev/pci/pcireg.h> 124 #include <dev/pci/pcivar.h> 125 #include <dev/pci/pcidevs.h> 126 127 #include <dev/pci/if_sipreg.h> 128 129 /* 130 * Transmit descriptor list size. This is arbitrary, but allocate 131 * enough descriptors for 128 pending transmissions, and 8 segments 132 * per packet (64 for DP83820 for jumbo frames). 133 * 134 * This MUST work out to a power of 2. 135 */ 136 #define GSIP_NTXSEGS_ALLOC 16 137 #define SIP_NTXSEGS_ALLOC 8 138 139 #define SIP_TXQUEUELEN 256 140 #define MAX_SIP_NTXDESC \ 141 (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC)) 142 143 /* 144 * Receive descriptor list size. We have one Rx buffer per incoming 145 * packet, so this logic is a little simpler. 146 * 147 * Actually, on the DP83820, we allow the packet to consume more than 148 * one buffer, in order to support jumbo Ethernet frames. In that 149 * case, a packet may consume up to 5 buffers (assuming a 2048 byte 150 * mbuf cluster). 256 receive buffers is only 51 maximum size packets, 151 * so we'd better be quick about handling receive interrupts. 152 */ 153 #define GSIP_NRXDESC 256 154 #define SIP_NRXDESC 128 155 156 #define MAX_SIP_NRXDESC MAX(GSIP_NRXDESC, SIP_NRXDESC) 157 158 /* 159 * Control structures are DMA'd to the SiS900 chip. We allocate them in 160 * a single clump that maps to a single DMA segment to make several things 161 * easier. 162 */ 163 struct sip_control_data { 164 /* 165 * The transmit descriptors. 166 */ 167 struct sip_desc scd_txdescs[MAX_SIP_NTXDESC]; 168 169 /* 170 * The receive descriptors. 171 */ 172 struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC]; 173 }; 174 175 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x) 176 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)]) 177 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)]) 178 179 /* 180 * Software state for transmit jobs. 181 */ 182 struct sip_txsoft { 183 struct mbuf *txs_mbuf; /* head of our mbuf chain */ 184 bus_dmamap_t txs_dmamap; /* our DMA map */ 185 int txs_firstdesc; /* first descriptor in packet */ 186 int txs_lastdesc; /* last descriptor in packet */ 187 SIMPLEQ_ENTRY(sip_txsoft) txs_q; 188 }; 189 190 SIMPLEQ_HEAD(sip_txsq, sip_txsoft); 191 192 /* 193 * Software state for receive jobs. 194 */ 195 struct sip_rxsoft { 196 struct mbuf *rxs_mbuf; /* head of our mbuf chain */ 197 bus_dmamap_t rxs_dmamap; /* our DMA map */ 198 }; 199 200 enum sip_attach_stage { 201 SIP_ATTACH_FIN = 0 202 , SIP_ATTACH_CREATE_RXMAP 203 , SIP_ATTACH_CREATE_TXMAP 204 , SIP_ATTACH_LOAD_MAP 205 , SIP_ATTACH_CREATE_MAP 206 , SIP_ATTACH_MAP_MEM 207 , SIP_ATTACH_ALLOC_MEM 208 , SIP_ATTACH_INTR 209 , SIP_ATTACH_MAP 210 }; 211 212 /* 213 * Software state per device. 214 */ 215 struct sip_softc { 216 struct device sc_dev; /* generic device information */ 217 bus_space_tag_t sc_st; /* bus space tag */ 218 bus_space_handle_t sc_sh; /* bus space handle */ 219 bus_size_t sc_sz; /* bus space size */ 220 bus_dma_tag_t sc_dmat; /* bus DMA tag */ 221 pci_chipset_tag_t sc_pc; 222 bus_dma_segment_t sc_seg; 223 struct ethercom sc_ethercom; /* ethernet common data */ 224 225 const struct sip_product *sc_model; /* which model are we? */ 226 int sc_gigabit; /* 1: 83820, 0: other */ 227 int sc_rev; /* chip revision */ 228 229 void *sc_ih; /* interrupt cookie */ 230 231 struct mii_data sc_mii; /* MII/media information */ 232 233 callout_t sc_tick_ch; /* tick callout */ 234 235 bus_dmamap_t sc_cddmamap; /* control data DMA map */ 236 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr 237 238 /* 239 * Software state for transmit and receive descriptors. 240 */ 241 struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN]; 242 struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC]; 243 244 /* 245 * Control data structures. 246 */ 247 struct sip_control_data *sc_control_data; 248 #define sc_txdescs sc_control_data->scd_txdescs 249 #define sc_rxdescs sc_control_data->scd_rxdescs 250 251 #ifdef SIP_EVENT_COUNTERS 252 /* 253 * Event counters. 254 */ 255 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */ 256 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */ 257 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */ 258 struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */ 259 struct evcnt sc_ev_txiintr; /* Tx idle interrupts */ 260 struct evcnt sc_ev_rxintr; /* Rx interrupts */ 261 struct evcnt sc_ev_hiberr; /* HIBERR interrupts */ 262 struct evcnt sc_ev_rxpause; /* PAUSE received */ 263 /* DP83820 only */ 264 struct evcnt sc_ev_txpause; /* PAUSE transmitted */ 265 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */ 266 struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */ 267 struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */ 268 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */ 269 struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */ 270 struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */ 271 #endif /* SIP_EVENT_COUNTERS */ 272 273 u_int32_t sc_txcfg; /* prototype TXCFG register */ 274 u_int32_t sc_rxcfg; /* prototype RXCFG register */ 275 u_int32_t sc_imr; /* prototype IMR register */ 276 u_int32_t sc_rfcr; /* prototype RFCR register */ 277 278 u_int32_t sc_cfg; /* prototype CFG register */ 279 280 u_int32_t sc_gpior; /* prototype GPIOR register */ 281 282 u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */ 283 u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */ 284 285 u_int32_t sc_rx_drain_thresh; /* receive drain threshold */ 286 287 int sc_flowflags; /* 802.3x flow control flags */ 288 int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */ 289 int sc_paused; /* paused indication */ 290 291 int sc_txfree; /* number of free Tx descriptors */ 292 int sc_txnext; /* next ready Tx descriptor */ 293 int sc_txwin; /* Tx descriptors since last intr */ 294 295 struct sip_txsq sc_txfreeq; /* free Tx descsofts */ 296 struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */ 297 298 /* values of interface state at last init */ 299 struct { 300 /* if_capenable */ 301 uint64_t if_capenable; 302 /* ec_capenable */ 303 int ec_capenable; 304 /* VLAN_ATTACHED */ 305 int is_vlan; 306 } sc_prev; 307 308 short sc_if_flags; 309 310 int sc_rxptr; /* next ready Rx descriptor/descsoft */ 311 int sc_rxdiscard; 312 int sc_rxlen; 313 struct mbuf *sc_rxhead; 314 struct mbuf *sc_rxtail; 315 struct mbuf **sc_rxtailp; 316 317 int sc_ntxdesc; 318 int sc_ntxdesc_mask; 319 320 int sc_nrxdesc_mask; 321 322 const struct sip_parm { 323 const struct sip_regs { 324 int r_rxcfg; 325 int r_txcfg; 326 } p_regs; 327 328 const struct sip_bits { 329 uint32_t b_txcfg_mxdma_8; 330 uint32_t b_txcfg_mxdma_16; 331 uint32_t b_txcfg_mxdma_32; 332 uint32_t b_txcfg_mxdma_64; 333 uint32_t b_txcfg_mxdma_128; 334 uint32_t b_txcfg_mxdma_256; 335 uint32_t b_txcfg_mxdma_512; 336 uint32_t b_txcfg_flth_mask; 337 uint32_t b_txcfg_drth_mask; 338 339 uint32_t b_rxcfg_mxdma_8; 340 uint32_t b_rxcfg_mxdma_16; 341 uint32_t b_rxcfg_mxdma_32; 342 uint32_t b_rxcfg_mxdma_64; 343 uint32_t b_rxcfg_mxdma_128; 344 uint32_t b_rxcfg_mxdma_256; 345 uint32_t b_rxcfg_mxdma_512; 346 347 uint32_t b_isr_txrcmp; 348 uint32_t b_isr_rxrcmp; 349 uint32_t b_isr_dperr; 350 uint32_t b_isr_sserr; 351 uint32_t b_isr_rmabt; 352 uint32_t b_isr_rtabt; 353 354 uint32_t b_cmdsts_size_mask; 355 } p_bits; 356 int p_filtmem; 357 int p_rxbuf_len; 358 bus_size_t p_tx_dmamap_size; 359 int p_ntxsegs; 360 int p_ntxsegs_alloc; 361 int p_nrxdesc; 362 } *sc_parm; 363 364 void (*sc_rxintr)(struct sip_softc *); 365 366 #if NRND > 0 367 rndsource_element_t rnd_source; /* random source */ 368 #endif 369 }; 370 371 #define sc_bits sc_parm->p_bits 372 #define sc_regs sc_parm->p_regs 373 374 static const struct sip_parm sip_parm = { 375 .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM 376 , .p_rxbuf_len = MCLBYTES - 1 /* field width */ 377 , .p_tx_dmamap_size = MCLBYTES 378 , .p_ntxsegs = 16 379 , .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC 380 , .p_nrxdesc = SIP_NRXDESC 381 , .p_bits = { 382 .b_txcfg_mxdma_8 = 0x00200000 /* 8 bytes */ 383 , .b_txcfg_mxdma_16 = 0x00300000 /* 16 bytes */ 384 , .b_txcfg_mxdma_32 = 0x00400000 /* 32 bytes */ 385 , .b_txcfg_mxdma_64 = 0x00500000 /* 64 bytes */ 386 , .b_txcfg_mxdma_128 = 0x00600000 /* 128 bytes */ 387 , .b_txcfg_mxdma_256 = 0x00700000 /* 256 bytes */ 388 , .b_txcfg_mxdma_512 = 0x00000000 /* 512 bytes */ 389 , .b_txcfg_flth_mask = 0x00003f00 /* Tx fill threshold */ 390 , .b_txcfg_drth_mask = 0x0000003f /* Tx drain threshold */ 391 392 , .b_rxcfg_mxdma_8 = 0x00200000 /* 8 bytes */ 393 , .b_rxcfg_mxdma_16 = 0x00300000 /* 16 bytes */ 394 , .b_rxcfg_mxdma_32 = 0x00400000 /* 32 bytes */ 395 , .b_rxcfg_mxdma_64 = 0x00500000 /* 64 bytes */ 396 , .b_rxcfg_mxdma_128 = 0x00600000 /* 128 bytes */ 397 , .b_rxcfg_mxdma_256 = 0x00700000 /* 256 bytes */ 398 , .b_rxcfg_mxdma_512 = 0x00000000 /* 512 bytes */ 399 400 , .b_isr_txrcmp = 0x02000000 /* transmit reset complete */ 401 , .b_isr_rxrcmp = 0x01000000 /* receive reset complete */ 402 , .b_isr_dperr = 0x00800000 /* detected parity error */ 403 , .b_isr_sserr = 0x00400000 /* signalled system error */ 404 , .b_isr_rmabt = 0x00200000 /* received master abort */ 405 , .b_isr_rtabt = 0x00100000 /* received target abort */ 406 , .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK 407 } 408 , .p_regs = { 409 .r_rxcfg = OTHER_SIP_RXCFG, 410 .r_txcfg = OTHER_SIP_TXCFG 411 } 412 }, gsip_parm = { 413 .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM 414 , .p_rxbuf_len = MCLBYTES - 8 415 , .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO 416 , .p_ntxsegs = 64 417 , .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC 418 , .p_nrxdesc = GSIP_NRXDESC 419 , .p_bits = { 420 .b_txcfg_mxdma_8 = 0x00100000 /* 8 bytes */ 421 , .b_txcfg_mxdma_16 = 0x00200000 /* 16 bytes */ 422 , .b_txcfg_mxdma_32 = 0x00300000 /* 32 bytes */ 423 , .b_txcfg_mxdma_64 = 0x00400000 /* 64 bytes */ 424 , .b_txcfg_mxdma_128 = 0x00500000 /* 128 bytes */ 425 , .b_txcfg_mxdma_256 = 0x00600000 /* 256 bytes */ 426 , .b_txcfg_mxdma_512 = 0x00700000 /* 512 bytes */ 427 , .b_txcfg_flth_mask = 0x0000ff00 /* Fx fill threshold */ 428 , .b_txcfg_drth_mask = 0x000000ff /* Tx drain threshold */ 429 430 , .b_rxcfg_mxdma_8 = 0x00100000 /* 8 bytes */ 431 , .b_rxcfg_mxdma_16 = 0x00200000 /* 16 bytes */ 432 , .b_rxcfg_mxdma_32 = 0x00300000 /* 32 bytes */ 433 , .b_rxcfg_mxdma_64 = 0x00400000 /* 64 bytes */ 434 , .b_rxcfg_mxdma_128 = 0x00500000 /* 128 bytes */ 435 , .b_rxcfg_mxdma_256 = 0x00600000 /* 256 bytes */ 436 , .b_rxcfg_mxdma_512 = 0x00700000 /* 512 bytes */ 437 438 , .b_isr_txrcmp = 0x00400000 /* transmit reset complete */ 439 , .b_isr_rxrcmp = 0x00200000 /* receive reset complete */ 440 , .b_isr_dperr = 0x00100000 /* detected parity error */ 441 , .b_isr_sserr = 0x00080000 /* signalled system error */ 442 , .b_isr_rmabt = 0x00040000 /* received master abort */ 443 , .b_isr_rtabt = 0x00020000 /* received target abort */ 444 , .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK 445 } 446 , .p_regs = { 447 .r_rxcfg = DP83820_SIP_RXCFG, 448 .r_txcfg = DP83820_SIP_TXCFG 449 } 450 }; 451 452 static inline int 453 sip_nexttx(const struct sip_softc *sc, int x) 454 { 455 return (x + 1) & sc->sc_ntxdesc_mask; 456 } 457 458 static inline int 459 sip_nextrx(const struct sip_softc *sc, int x) 460 { 461 return (x + 1) & sc->sc_nrxdesc_mask; 462 } 463 464 /* 83820 only */ 465 static inline void 466 sip_rxchain_reset(struct sip_softc *sc) 467 { 468 sc->sc_rxtailp = &sc->sc_rxhead; 469 *sc->sc_rxtailp = NULL; 470 sc->sc_rxlen = 0; 471 } 472 473 /* 83820 only */ 474 static inline void 475 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m) 476 { 477 *sc->sc_rxtailp = sc->sc_rxtail = m; 478 sc->sc_rxtailp = &m->m_next; 479 } 480 481 #ifdef SIP_EVENT_COUNTERS 482 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++ 483 #else 484 #define SIP_EVCNT_INCR(ev) /* nothing */ 485 #endif 486 487 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x))) 488 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x))) 489 490 static inline void 491 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops) 492 { 493 int x, n; 494 495 x = x0; 496 n = n0; 497 498 /* If it will wrap around, sync to the end of the ring. */ 499 if (x + n > sc->sc_ntxdesc) { 500 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap, 501 SIP_CDTXOFF(x), sizeof(struct sip_desc) * 502 (sc->sc_ntxdesc - x), ops); 503 n -= (sc->sc_ntxdesc - x); 504 x = 0; 505 } 506 507 /* Now sync whatever is left. */ 508 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap, 509 SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops); 510 } 511 512 static inline void 513 sip_cdrxsync(struct sip_softc *sc, int x, int ops) 514 { 515 bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap, 516 SIP_CDRXOFF(x), sizeof(struct sip_desc), ops); 517 } 518 519 #if 0 520 #ifdef DP83820 521 u_int32_t sipd_bufptr; /* pointer to DMA segment */ 522 u_int32_t sipd_cmdsts; /* command/status word */ 523 #else 524 u_int32_t sipd_cmdsts; /* command/status word */ 525 u_int32_t sipd_bufptr; /* pointer to DMA segment */ 526 #endif /* DP83820 */ 527 #endif /* 0 */ 528 529 static inline volatile uint32_t * 530 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd) 531 { 532 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0]; 533 } 534 535 static inline volatile uint32_t * 536 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd) 537 { 538 return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1]; 539 } 540 541 static inline void 542 sip_init_rxdesc(struct sip_softc *sc, int x) 543 { 544 struct sip_rxsoft *rxs = &sc->sc_rxsoft[x]; 545 struct sip_desc *sipd = &sc->sc_rxdescs[x]; 546 547 sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x))); 548 *sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr); 549 *sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR | 550 (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask)); 551 sipd->sipd_extsts = 0; 552 sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 553 } 554 555 #define SIP_CHIP_VERS(sc, v, p, r) \ 556 ((sc)->sc_model->sip_vendor == (v) && \ 557 (sc)->sc_model->sip_product == (p) && \ 558 (sc)->sc_rev == (r)) 559 560 #define SIP_CHIP_MODEL(sc, v, p) \ 561 ((sc)->sc_model->sip_vendor == (v) && \ 562 (sc)->sc_model->sip_product == (p)) 563 564 #define SIP_SIS900_REV(sc, rev) \ 565 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev)) 566 567 #define SIP_TIMEOUT 1000 568 569 static void sipcom_start(struct ifnet *); 570 static void sipcom_watchdog(struct ifnet *); 571 static int sipcom_ioctl(struct ifnet *, u_long, void *); 572 static int sipcom_init(struct ifnet *); 573 static void sipcom_stop(struct ifnet *, int); 574 575 static bool sipcom_reset(struct sip_softc *); 576 static void sipcom_rxdrain(struct sip_softc *); 577 static int sipcom_add_rxbuf(struct sip_softc *, int); 578 static void sipcom_read_eeprom(struct sip_softc *, int, int, 579 u_int16_t *); 580 static void sipcom_tick(void *); 581 582 static void sipcom_sis900_set_filter(struct sip_softc *); 583 static void sipcom_dp83815_set_filter(struct sip_softc *); 584 585 static void sipcom_dp83820_read_macaddr(struct sip_softc *, 586 const struct pci_attach_args *, u_int8_t *); 587 static void sipcom_sis900_eeprom_delay(struct sip_softc *sc); 588 static void sipcom_sis900_read_macaddr(struct sip_softc *, 589 const struct pci_attach_args *, u_int8_t *); 590 static void sipcom_dp83815_read_macaddr(struct sip_softc *, 591 const struct pci_attach_args *, u_int8_t *); 592 593 static int sipcom_intr(void *); 594 static void sipcom_txintr(struct sip_softc *); 595 static void sip_rxintr(struct sip_softc *); 596 static void gsip_rxintr(struct sip_softc *); 597 598 static int sipcom_dp83820_mii_readreg(struct device *, int, int); 599 static void sipcom_dp83820_mii_writereg(struct device *, int, int, int); 600 static void sipcom_dp83820_mii_statchg(struct device *); 601 602 static int sipcom_sis900_mii_readreg(struct device *, int, int); 603 static void sipcom_sis900_mii_writereg(struct device *, int, int, int); 604 static void sipcom_sis900_mii_statchg(struct device *); 605 606 static int sipcom_dp83815_mii_readreg(struct device *, int, int); 607 static void sipcom_dp83815_mii_writereg(struct device *, int, int, int); 608 static void sipcom_dp83815_mii_statchg(struct device *); 609 610 static void sipcom_mediastatus(struct ifnet *, struct ifmediareq *); 611 612 static int sipcom_match(struct device *, struct cfdata *, void *); 613 static void sipcom_attach(struct device *, struct device *, void *); 614 static void sipcom_do_detach(device_t, enum sip_attach_stage); 615 static int sipcom_detach(device_t, int); 616 static bool sipcom_resume(device_t); 617 618 int gsip_copy_small = 0; 619 int sip_copy_small = 0; 620 621 CFATTACH_DECL(gsip, sizeof(struct sip_softc), 622 sipcom_match, sipcom_attach, sipcom_detach, NULL); 623 CFATTACH_DECL(sip, sizeof(struct sip_softc), 624 sipcom_match, sipcom_attach, sipcom_detach, NULL); 625 626 /* 627 * Descriptions of the variants of the SiS900. 628 */ 629 struct sip_variant { 630 int (*sipv_mii_readreg)(struct device *, int, int); 631 void (*sipv_mii_writereg)(struct device *, int, int, int); 632 void (*sipv_mii_statchg)(struct device *); 633 void (*sipv_set_filter)(struct sip_softc *); 634 void (*sipv_read_macaddr)(struct sip_softc *, 635 const struct pci_attach_args *, u_int8_t *); 636 }; 637 638 static u_int32_t sipcom_mii_bitbang_read(struct device *); 639 static void sipcom_mii_bitbang_write(struct device *, u_int32_t); 640 641 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = { 642 sipcom_mii_bitbang_read, 643 sipcom_mii_bitbang_write, 644 { 645 EROMAR_MDIO, /* MII_BIT_MDO */ 646 EROMAR_MDIO, /* MII_BIT_MDI */ 647 EROMAR_MDC, /* MII_BIT_MDC */ 648 EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */ 649 0, /* MII_BIT_DIR_PHY_HOST */ 650 } 651 }; 652 653 static const struct sip_variant sipcom_variant_dp83820 = { 654 sipcom_dp83820_mii_readreg, 655 sipcom_dp83820_mii_writereg, 656 sipcom_dp83820_mii_statchg, 657 sipcom_dp83815_set_filter, 658 sipcom_dp83820_read_macaddr, 659 }; 660 661 static const struct sip_variant sipcom_variant_sis900 = { 662 sipcom_sis900_mii_readreg, 663 sipcom_sis900_mii_writereg, 664 sipcom_sis900_mii_statchg, 665 sipcom_sis900_set_filter, 666 sipcom_sis900_read_macaddr, 667 }; 668 669 static const struct sip_variant sipcom_variant_dp83815 = { 670 sipcom_dp83815_mii_readreg, 671 sipcom_dp83815_mii_writereg, 672 sipcom_dp83815_mii_statchg, 673 sipcom_dp83815_set_filter, 674 sipcom_dp83815_read_macaddr, 675 }; 676 677 678 /* 679 * Devices supported by this driver. 680 */ 681 static const struct sip_product { 682 pci_vendor_id_t sip_vendor; 683 pci_product_id_t sip_product; 684 const char *sip_name; 685 const struct sip_variant *sip_variant; 686 int sip_gigabit; 687 } sipcom_products[] = { 688 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820, 689 "NatSemi DP83820 Gigabit Ethernet", 690 &sipcom_variant_dp83820, 1 }, 691 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, 692 "SiS 900 10/100 Ethernet", 693 &sipcom_variant_sis900, 0 }, 694 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016, 695 "SiS 7016 10/100 Ethernet", 696 &sipcom_variant_sis900, 0 }, 697 698 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815, 699 "NatSemi DP83815 10/100 Ethernet", 700 &sipcom_variant_dp83815, 0 }, 701 702 { 0, 0, 703 NULL, 704 NULL, 0 }, 705 }; 706 707 static const struct sip_product * 708 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit) 709 { 710 const struct sip_product *sip; 711 712 for (sip = sipcom_products; sip->sip_name != NULL; sip++) { 713 if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor && 714 PCI_PRODUCT(pa->pa_id) == sip->sip_product && 715 sip->sip_gigabit == gigabit) 716 return sip; 717 } 718 return NULL; 719 } 720 721 /* 722 * I really hate stupid hardware vendors. There's a bit in the EEPROM 723 * which indicates if the card can do 64-bit data transfers. Unfortunately, 724 * several vendors of 32-bit cards fail to clear this bit in the EEPROM, 725 * which means we try to use 64-bit data transfers on those cards if we 726 * happen to be plugged into a 32-bit slot. 727 * 728 * What we do is use this table of cards known to be 64-bit cards. If 729 * you have a 64-bit card who's subsystem ID is not listed in this table, 730 * send the output of "pcictl dump ..." of the device to me so that your 731 * card will use the 64-bit data path when plugged into a 64-bit slot. 732 * 733 * -- Jason R. Thorpe <thorpej@NetBSD.org> 734 * June 30, 2002 735 */ 736 static int 737 sipcom_check_64bit(const struct pci_attach_args *pa) 738 { 739 static const struct { 740 pci_vendor_id_t c64_vendor; 741 pci_product_id_t c64_product; 742 } card64[] = { 743 /* Asante GigaNIX */ 744 { 0x128a, 0x0002 }, 745 746 /* Accton EN1407-T, Planex GN-1000TE */ 747 { 0x1113, 0x1407 }, 748 749 /* Netgear GA-621 */ 750 { 0x1385, 0x621a }, 751 752 /* SMC EZ Card */ 753 { 0x10b8, 0x9462 }, 754 755 { 0, 0} 756 }; 757 pcireg_t subsys; 758 int i; 759 760 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG); 761 762 for (i = 0; card64[i].c64_vendor != 0; i++) { 763 if (PCI_VENDOR(subsys) == card64[i].c64_vendor && 764 PCI_PRODUCT(subsys) == card64[i].c64_product) 765 return (1); 766 } 767 768 return (0); 769 } 770 771 static int 772 sipcom_match(struct device *parent, struct cfdata *cf, void *aux) 773 { 774 struct pci_attach_args *pa = aux; 775 776 if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL) 777 return 1; 778 779 return 0; 780 } 781 782 static void 783 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa) 784 { 785 u_int32_t reg; 786 int i; 787 788 /* 789 * Cause the chip to load configuration data from the EEPROM. 790 */ 791 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN); 792 for (i = 0; i < 10000; i++) { 793 delay(10); 794 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) & 795 PTSCR_EELOAD_EN) == 0) 796 break; 797 } 798 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) & 799 PTSCR_EELOAD_EN) { 800 printf("%s: timeout loading configuration from EEPROM\n", 801 sc->sc_dev.dv_xname); 802 return; 803 } 804 805 sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR); 806 807 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG); 808 if (reg & CFG_PCI64_DET) { 809 printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname); 810 /* 811 * Check to see if this card is 64-bit. If so, enable 64-bit 812 * data transfers. 813 * 814 * We can't use the DATA64_EN bit in the EEPROM, because 815 * vendors of 32-bit cards fail to clear that bit in many 816 * cases (yet the card still detects that it's in a 64-bit 817 * slot; go figure). 818 */ 819 if (sipcom_check_64bit(pa)) { 820 sc->sc_cfg |= CFG_DATA64_EN; 821 printf(", using 64-bit data transfers"); 822 } 823 printf("\n"); 824 } 825 826 /* 827 * XXX Need some PCI flags indicating support for 828 * XXX 64-bit addressing. 829 */ 830 #if 0 831 if (reg & CFG_M64ADDR) 832 sc->sc_cfg |= CFG_M64ADDR; 833 if (reg & CFG_T64ADDR) 834 sc->sc_cfg |= CFG_T64ADDR; 835 #endif 836 837 if (reg & (CFG_TBI_EN|CFG_EXT_125)) { 838 const char *sep = ""; 839 printf("%s: using ", sc->sc_dev.dv_xname); 840 if (reg & CFG_EXT_125) { 841 sc->sc_cfg |= CFG_EXT_125; 842 printf("%s125MHz clock", sep); 843 sep = ", "; 844 } 845 if (reg & CFG_TBI_EN) { 846 sc->sc_cfg |= CFG_TBI_EN; 847 printf("%sten-bit interface", sep); 848 sep = ", "; 849 } 850 printf("\n"); 851 } 852 if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 || 853 (reg & CFG_MRM_DIS) != 0) 854 sc->sc_cfg |= CFG_MRM_DIS; 855 if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 || 856 (reg & CFG_MWI_DIS) != 0) 857 sc->sc_cfg |= CFG_MWI_DIS; 858 859 /* 860 * Use the extended descriptor format on the DP83820. This 861 * gives us an interface to VLAN tagging and IPv4/TCP/UDP 862 * checksumming. 863 */ 864 sc->sc_cfg |= CFG_EXTSTS_EN; 865 } 866 867 static int 868 sipcom_detach(device_t self, int flags) 869 { 870 int s; 871 872 s = splnet(); 873 sipcom_do_detach(self, SIP_ATTACH_FIN); 874 splx(s); 875 876 return 0; 877 } 878 879 static void 880 sipcom_do_detach(device_t self, enum sip_attach_stage stage) 881 { 882 int i; 883 struct sip_softc *sc = device_private(self); 884 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 885 886 /* 887 * Free any resources we've allocated during attach. 888 * Do this in reverse order and fall through. 889 */ 890 switch (stage) { 891 case SIP_ATTACH_FIN: 892 sipcom_stop(ifp, 1); 893 pmf_device_deregister(self); 894 #ifdef SIP_EVENT_COUNTERS 895 /* 896 * Attach event counters. 897 */ 898 evcnt_detach(&sc->sc_ev_txforceintr); 899 evcnt_detach(&sc->sc_ev_txdstall); 900 evcnt_detach(&sc->sc_ev_txsstall); 901 evcnt_detach(&sc->sc_ev_hiberr); 902 evcnt_detach(&sc->sc_ev_rxintr); 903 evcnt_detach(&sc->sc_ev_txiintr); 904 evcnt_detach(&sc->sc_ev_txdintr); 905 if (!sc->sc_gigabit) { 906 evcnt_detach(&sc->sc_ev_rxpause); 907 } else { 908 evcnt_detach(&sc->sc_ev_txudpsum); 909 evcnt_detach(&sc->sc_ev_txtcpsum); 910 evcnt_detach(&sc->sc_ev_txipsum); 911 evcnt_detach(&sc->sc_ev_rxudpsum); 912 evcnt_detach(&sc->sc_ev_rxtcpsum); 913 evcnt_detach(&sc->sc_ev_rxipsum); 914 evcnt_detach(&sc->sc_ev_txpause); 915 evcnt_detach(&sc->sc_ev_rxpause); 916 } 917 #endif /* SIP_EVENT_COUNTERS */ 918 919 #if NRND > 0 920 rnd_detach_source(&sc->rnd_source); 921 #endif 922 923 ether_ifdetach(ifp); 924 if_detach(ifp); 925 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY); 926 927 /*FALLTHROUGH*/ 928 case SIP_ATTACH_CREATE_RXMAP: 929 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) { 930 if (sc->sc_rxsoft[i].rxs_dmamap != NULL) 931 bus_dmamap_destroy(sc->sc_dmat, 932 sc->sc_rxsoft[i].rxs_dmamap); 933 } 934 /*FALLTHROUGH*/ 935 case SIP_ATTACH_CREATE_TXMAP: 936 for (i = 0; i < SIP_TXQUEUELEN; i++) { 937 if (sc->sc_txsoft[i].txs_dmamap != NULL) 938 bus_dmamap_destroy(sc->sc_dmat, 939 sc->sc_txsoft[i].txs_dmamap); 940 } 941 /*FALLTHROUGH*/ 942 case SIP_ATTACH_LOAD_MAP: 943 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap); 944 /*FALLTHROUGH*/ 945 case SIP_ATTACH_CREATE_MAP: 946 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap); 947 /*FALLTHROUGH*/ 948 case SIP_ATTACH_MAP_MEM: 949 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data, 950 sizeof(struct sip_control_data)); 951 /*FALLTHROUGH*/ 952 case SIP_ATTACH_ALLOC_MEM: 953 bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1); 954 /* FALLTHROUGH*/ 955 case SIP_ATTACH_INTR: 956 pci_intr_disestablish(sc->sc_pc, sc->sc_ih); 957 /* FALLTHROUGH*/ 958 case SIP_ATTACH_MAP: 959 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz); 960 break; 961 default: 962 break; 963 } 964 return; 965 } 966 967 static bool 968 sipcom_resume(device_t self) 969 { 970 struct sip_softc *sc = device_private(self); 971 972 return sipcom_reset(sc); 973 } 974 975 static void 976 sipcom_attach(device_t parent, device_t self, void *aux) 977 { 978 struct sip_softc *sc = (struct sip_softc *) self; 979 struct pci_attach_args *pa = aux; 980 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 981 pci_chipset_tag_t pc = pa->pa_pc; 982 pci_intr_handle_t ih; 983 const char *intrstr = NULL; 984 bus_space_tag_t iot, memt; 985 bus_space_handle_t ioh, memh; 986 bus_size_t iosz, memsz; 987 int ioh_valid, memh_valid; 988 int i, rseg, error; 989 const struct sip_product *sip; 990 u_int8_t enaddr[ETHER_ADDR_LEN]; 991 pcireg_t pmreg; 992 pcireg_t memtype; 993 bus_size_t tx_dmamap_size; 994 int ntxsegs_alloc; 995 cfdata_t cf = device_cfdata(self); 996 997 callout_init(&sc->sc_tick_ch, 0); 998 999 sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0); 1000 if (sip == NULL) { 1001 printf("\n"); 1002 panic("%s: impossible", __func__); 1003 } 1004 sc->sc_gigabit = sip->sip_gigabit; 1005 1006 sc->sc_pc = pc; 1007 1008 if (sc->sc_gigabit) { 1009 sc->sc_rxintr = gsip_rxintr; 1010 sc->sc_parm = &gsip_parm; 1011 } else { 1012 sc->sc_rxintr = sip_rxintr; 1013 sc->sc_parm = &sip_parm; 1014 } 1015 tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size; 1016 ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc; 1017 sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc; 1018 sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1; 1019 sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1; 1020 1021 sc->sc_rev = PCI_REVISION(pa->pa_class); 1022 1023 printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev); 1024 1025 sc->sc_model = sip; 1026 1027 /* 1028 * XXX Work-around broken PXE firmware on some boards. 1029 * 1030 * The DP83815 shares an address decoder with the MEM BAR 1031 * and the ROM BAR. Make sure the ROM BAR is disabled, 1032 * so that memory mapped access works. 1033 */ 1034 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, 1035 pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) & 1036 ~PCI_MAPREG_ROM_ENABLE); 1037 1038 /* 1039 * Map the device. 1040 */ 1041 ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA, 1042 PCI_MAPREG_TYPE_IO, 0, 1043 &iot, &ioh, NULL, &iosz) == 0); 1044 if (sc->sc_gigabit) { 1045 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA); 1046 switch (memtype) { 1047 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT: 1048 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT: 1049 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA, 1050 memtype, 0, &memt, &memh, NULL, &memsz) == 0); 1051 break; 1052 default: 1053 memh_valid = 0; 1054 } 1055 } else { 1056 memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA, 1057 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0, 1058 &memt, &memh, NULL, &memsz) == 0); 1059 } 1060 1061 if (memh_valid) { 1062 sc->sc_st = memt; 1063 sc->sc_sh = memh; 1064 sc->sc_sz = memsz; 1065 } else if (ioh_valid) { 1066 sc->sc_st = iot; 1067 sc->sc_sh = ioh; 1068 sc->sc_sz = iosz; 1069 } else { 1070 printf("%s: unable to map device registers\n", 1071 sc->sc_dev.dv_xname); 1072 return; 1073 } 1074 1075 sc->sc_dmat = pa->pa_dmat; 1076 1077 /* 1078 * Make sure bus mastering is enabled. Also make sure 1079 * Write/Invalidate is enabled if we're allowed to use it. 1080 */ 1081 pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 1082 if (pa->pa_flags & PCI_FLAGS_MWI_OKAY) 1083 pmreg |= PCI_COMMAND_INVALIDATE_ENABLE; 1084 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, 1085 pmreg | PCI_COMMAND_MASTER_ENABLE); 1086 1087 /* power up chip */ 1088 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc, 1089 NULL)) && error != EOPNOTSUPP) { 1090 aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname, 1091 error); 1092 return; 1093 } 1094 1095 /* 1096 * Map and establish our interrupt. 1097 */ 1098 if (pci_intr_map(pa, &ih)) { 1099 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname); 1100 return; 1101 } 1102 intrstr = pci_intr_string(pc, ih); 1103 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc); 1104 if (sc->sc_ih == NULL) { 1105 printf("%s: unable to establish interrupt", 1106 sc->sc_dev.dv_xname); 1107 if (intrstr != NULL) 1108 printf(" at %s", intrstr); 1109 printf("\n"); 1110 return sipcom_do_detach(self, SIP_ATTACH_MAP); 1111 } 1112 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr); 1113 1114 SIMPLEQ_INIT(&sc->sc_txfreeq); 1115 SIMPLEQ_INIT(&sc->sc_txdirtyq); 1116 1117 /* 1118 * Allocate the control data structures, and create and load the 1119 * DMA map for it. 1120 */ 1121 if ((error = bus_dmamem_alloc(sc->sc_dmat, 1122 sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1, 1123 &rseg, 0)) != 0) { 1124 printf("%s: unable to allocate control data, error = %d\n", 1125 sc->sc_dev.dv_xname, error); 1126 return sipcom_do_detach(self, SIP_ATTACH_INTR); 1127 } 1128 1129 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg, 1130 sizeof(struct sip_control_data), (void **)&sc->sc_control_data, 1131 BUS_DMA_COHERENT|BUS_DMA_NOCACHE)) != 0) { 1132 printf("%s: unable to map control data, error = %d\n", 1133 sc->sc_dev.dv_xname, error); 1134 sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM); 1135 } 1136 1137 if ((error = bus_dmamap_create(sc->sc_dmat, 1138 sizeof(struct sip_control_data), 1, 1139 sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) { 1140 printf("%s: unable to create control data DMA map, " 1141 "error = %d\n", sc->sc_dev.dv_xname, error); 1142 sipcom_do_detach(self, SIP_ATTACH_MAP_MEM); 1143 } 1144 1145 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap, 1146 sc->sc_control_data, sizeof(struct sip_control_data), NULL, 1147 0)) != 0) { 1148 printf("%s: unable to load control data DMA map, error = %d\n", 1149 sc->sc_dev.dv_xname, error); 1150 sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP); 1151 } 1152 1153 /* 1154 * Create the transmit buffer DMA maps. 1155 */ 1156 for (i = 0; i < SIP_TXQUEUELEN; i++) { 1157 if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size, 1158 sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0, 1159 &sc->sc_txsoft[i].txs_dmamap)) != 0) { 1160 printf("%s: unable to create tx DMA map %d, " 1161 "error = %d\n", sc->sc_dev.dv_xname, i, error); 1162 sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP); 1163 } 1164 } 1165 1166 /* 1167 * Create the receive buffer DMA maps. 1168 */ 1169 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) { 1170 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, 1171 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) { 1172 printf("%s: unable to create rx DMA map %d, " 1173 "error = %d\n", sc->sc_dev.dv_xname, i, error); 1174 sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP); 1175 } 1176 sc->sc_rxsoft[i].rxs_mbuf = NULL; 1177 } 1178 1179 /* 1180 * Reset the chip to a known state. 1181 */ 1182 sipcom_reset(sc); 1183 1184 /* 1185 * Read the Ethernet address from the EEPROM. This might 1186 * also fetch other stuff from the EEPROM and stash it 1187 * in the softc. 1188 */ 1189 sc->sc_cfg = 0; 1190 if (!sc->sc_gigabit) { 1191 if (SIP_SIS900_REV(sc,SIS_REV_635) || 1192 SIP_SIS900_REV(sc,SIS_REV_900B)) 1193 sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT); 1194 1195 if (SIP_SIS900_REV(sc,SIS_REV_635) || 1196 SIP_SIS900_REV(sc,SIS_REV_960) || 1197 SIP_SIS900_REV(sc,SIS_REV_900B)) 1198 sc->sc_cfg |= 1199 (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) & 1200 CFG_EDBMASTEN); 1201 } 1202 1203 (*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr); 1204 1205 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname, 1206 ether_sprintf(enaddr)); 1207 1208 /* 1209 * Initialize the configuration register: aggressive PCI 1210 * bus request algorithm, default backoff, default OW timer, 1211 * default parity error detection. 1212 * 1213 * NOTE: "Big endian mode" is useless on the SiS900 and 1214 * friends -- it affects packet data, not descriptors. 1215 */ 1216 if (sc->sc_gigabit) 1217 sipcom_dp83820_attach(sc, pa); 1218 1219 /* 1220 * Initialize our media structures and probe the MII. 1221 */ 1222 sc->sc_mii.mii_ifp = ifp; 1223 sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg; 1224 sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg; 1225 sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg; 1226 sc->sc_ethercom.ec_mii = &sc->sc_mii; 1227 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange, 1228 sipcom_mediastatus); 1229 1230 /* 1231 * XXX We cannot handle flow control on the DP83815. 1232 */ 1233 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) 1234 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, 1235 MII_OFFSET_ANY, 0); 1236 else 1237 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, 1238 MII_OFFSET_ANY, MIIF_DOPAUSE); 1239 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { 1240 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL); 1241 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE); 1242 } else 1243 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); 1244 1245 ifp = &sc->sc_ethercom.ec_if; 1246 strcpy(ifp->if_xname, sc->sc_dev.dv_xname); 1247 ifp->if_softc = sc; 1248 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1249 sc->sc_if_flags = ifp->if_flags; 1250 ifp->if_ioctl = sipcom_ioctl; 1251 ifp->if_start = sipcom_start; 1252 ifp->if_watchdog = sipcom_watchdog; 1253 ifp->if_init = sipcom_init; 1254 ifp->if_stop = sipcom_stop; 1255 IFQ_SET_READY(&ifp->if_snd); 1256 1257 /* 1258 * We can support 802.1Q VLAN-sized frames. 1259 */ 1260 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU; 1261 1262 if (sc->sc_gigabit) { 1263 /* 1264 * And the DP83820 can do VLAN tagging in hardware, and 1265 * support the jumbo Ethernet MTU. 1266 */ 1267 sc->sc_ethercom.ec_capabilities |= 1268 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU; 1269 1270 /* 1271 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums 1272 * in hardware. 1273 */ 1274 ifp->if_capabilities |= 1275 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx | 1276 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx | 1277 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx; 1278 } 1279 1280 /* 1281 * Attach the interface. 1282 */ 1283 if_attach(ifp); 1284 ether_ifattach(ifp, enaddr); 1285 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable; 1286 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom); 1287 sc->sc_prev.if_capenable = ifp->if_capenable; 1288 #if NRND > 0 1289 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname, 1290 RND_TYPE_NET, 0); 1291 #endif 1292 1293 /* 1294 * The number of bytes that must be available in 1295 * the Tx FIFO before the bus master can DMA more 1296 * data into the FIFO. 1297 */ 1298 sc->sc_tx_fill_thresh = 64 / 32; 1299 1300 /* 1301 * Start at a drain threshold of 512 bytes. We will 1302 * increase it if a DMA underrun occurs. 1303 * 1304 * XXX The minimum value of this variable should be 1305 * tuned. We may be able to improve performance 1306 * by starting with a lower value. That, however, 1307 * may trash the first few outgoing packets if the 1308 * PCI bus is saturated. 1309 */ 1310 if (sc->sc_gigabit) 1311 sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */ 1312 else 1313 sc->sc_tx_drain_thresh = 1504 / 32; 1314 1315 /* 1316 * Initialize the Rx FIFO drain threshold. 1317 * 1318 * This is in units of 8 bytes. 1319 * 1320 * We should never set this value lower than 2; 14 bytes are 1321 * required to filter the packet. 1322 */ 1323 sc->sc_rx_drain_thresh = 128 / 8; 1324 1325 #ifdef SIP_EVENT_COUNTERS 1326 /* 1327 * Attach event counters. 1328 */ 1329 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC, 1330 NULL, sc->sc_dev.dv_xname, "txsstall"); 1331 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC, 1332 NULL, sc->sc_dev.dv_xname, "txdstall"); 1333 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR, 1334 NULL, sc->sc_dev.dv_xname, "txforceintr"); 1335 evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR, 1336 NULL, sc->sc_dev.dv_xname, "txdintr"); 1337 evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR, 1338 NULL, sc->sc_dev.dv_xname, "txiintr"); 1339 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR, 1340 NULL, sc->sc_dev.dv_xname, "rxintr"); 1341 evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR, 1342 NULL, sc->sc_dev.dv_xname, "hiberr"); 1343 if (!sc->sc_gigabit) { 1344 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR, 1345 NULL, sc->sc_dev.dv_xname, "rxpause"); 1346 } else { 1347 evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC, 1348 NULL, sc->sc_dev.dv_xname, "rxpause"); 1349 evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC, 1350 NULL, sc->sc_dev.dv_xname, "txpause"); 1351 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC, 1352 NULL, sc->sc_dev.dv_xname, "rxipsum"); 1353 evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC, 1354 NULL, sc->sc_dev.dv_xname, "rxtcpsum"); 1355 evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC, 1356 NULL, sc->sc_dev.dv_xname, "rxudpsum"); 1357 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC, 1358 NULL, sc->sc_dev.dv_xname, "txipsum"); 1359 evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC, 1360 NULL, sc->sc_dev.dv_xname, "txtcpsum"); 1361 evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC, 1362 NULL, sc->sc_dev.dv_xname, "txudpsum"); 1363 } 1364 #endif /* SIP_EVENT_COUNTERS */ 1365 1366 if (!pmf_device_register(self, NULL, sipcom_resume)) 1367 aprint_error_dev(self, "couldn't establish power handler\n"); 1368 else 1369 pmf_class_network_register(self, ifp); 1370 } 1371 1372 static inline void 1373 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0, 1374 uint64_t capenable) 1375 { 1376 struct m_tag *mtag; 1377 u_int32_t extsts; 1378 #ifdef DEBUG 1379 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1380 #endif 1381 /* 1382 * If VLANs are enabled and the packet has a VLAN tag, set 1383 * up the descriptor to encapsulate the packet for us. 1384 * 1385 * This apparently has to be on the last descriptor of 1386 * the packet. 1387 */ 1388 1389 /* 1390 * Byte swapping is tricky. We need to provide the tag 1391 * in a network byte order. On a big-endian machine, 1392 * the byteorder is correct, but we need to swap it 1393 * anyway, because this will be undone by the outside 1394 * htole32(). That's why there must be an 1395 * unconditional swap instead of htons() inside. 1396 */ 1397 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) { 1398 sc->sc_txdescs[lasttx].sipd_extsts |= 1399 htole32(EXTSTS_VPKT | 1400 (bswap16(VLAN_TAG_VALUE(mtag)) & 1401 EXTSTS_VTCI)); 1402 } 1403 1404 /* 1405 * If the upper-layer has requested IPv4/TCPv4/UDPv4 1406 * checksumming, set up the descriptor to do this work 1407 * for us. 1408 * 1409 * This apparently has to be on the first descriptor of 1410 * the packet. 1411 * 1412 * Byte-swap constants so the compiler can optimize. 1413 */ 1414 extsts = 0; 1415 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) { 1416 KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx); 1417 SIP_EVCNT_INCR(&sc->sc_ev_txipsum); 1418 extsts |= htole32(EXTSTS_IPPKT); 1419 } 1420 if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) { 1421 KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx); 1422 SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum); 1423 extsts |= htole32(EXTSTS_TCPPKT); 1424 } else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) { 1425 KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx); 1426 SIP_EVCNT_INCR(&sc->sc_ev_txudpsum); 1427 extsts |= htole32(EXTSTS_UDPPKT); 1428 } 1429 sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts; 1430 } 1431 1432 /* 1433 * sip_start: [ifnet interface function] 1434 * 1435 * Start packet transmission on the interface. 1436 */ 1437 static void 1438 sipcom_start(struct ifnet *ifp) 1439 { 1440 struct sip_softc *sc = ifp->if_softc; 1441 struct mbuf *m0; 1442 struct mbuf *m; 1443 struct sip_txsoft *txs; 1444 bus_dmamap_t dmamap; 1445 int error, nexttx, lasttx, seg; 1446 int ofree = sc->sc_txfree; 1447 #if 0 1448 int firsttx = sc->sc_txnext; 1449 #endif 1450 1451 /* 1452 * If we've been told to pause, don't transmit any more packets. 1453 */ 1454 if (!sc->sc_gigabit && sc->sc_paused) 1455 ifp->if_flags |= IFF_OACTIVE; 1456 1457 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) 1458 return; 1459 1460 /* 1461 * Loop through the send queue, setting up transmit descriptors 1462 * until we drain the queue, or use up all available transmit 1463 * descriptors. 1464 */ 1465 for (;;) { 1466 /* Get a work queue entry. */ 1467 if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) { 1468 SIP_EVCNT_INCR(&sc->sc_ev_txsstall); 1469 break; 1470 } 1471 1472 /* 1473 * Grab a packet off the queue. 1474 */ 1475 IFQ_POLL(&ifp->if_snd, m0); 1476 if (m0 == NULL) 1477 break; 1478 m = NULL; 1479 1480 dmamap = txs->txs_dmamap; 1481 1482 /* 1483 * Load the DMA map. If this fails, the packet either 1484 * didn't fit in the alloted number of segments, or we 1485 * were short on resources. 1486 */ 1487 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0, 1488 BUS_DMA_WRITE|BUS_DMA_NOWAIT); 1489 /* In the non-gigabit case, we'll copy and try again. */ 1490 if (error != 0 && !sc->sc_gigabit) { 1491 MGETHDR(m, M_DONTWAIT, MT_DATA); 1492 if (m == NULL) { 1493 printf("%s: unable to allocate Tx mbuf\n", 1494 sc->sc_dev.dv_xname); 1495 break; 1496 } 1497 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner); 1498 if (m0->m_pkthdr.len > MHLEN) { 1499 MCLGET(m, M_DONTWAIT); 1500 if ((m->m_flags & M_EXT) == 0) { 1501 printf("%s: unable to allocate Tx " 1502 "cluster\n", sc->sc_dev.dv_xname); 1503 m_freem(m); 1504 break; 1505 } 1506 } 1507 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *)); 1508 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len; 1509 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, 1510 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT); 1511 if (error) { 1512 printf("%s: unable to load Tx buffer, " 1513 "error = %d\n", sc->sc_dev.dv_xname, error); 1514 break; 1515 } 1516 } else if (error == EFBIG) { 1517 /* 1518 * For the too-many-segments case, we simply 1519 * report an error and drop the packet, 1520 * since we can't sanely copy a jumbo packet 1521 * to a single buffer. 1522 */ 1523 printf("%s: Tx packet consumes too many " 1524 "DMA segments, dropping...\n", sc->sc_dev.dv_xname); 1525 IFQ_DEQUEUE(&ifp->if_snd, m0); 1526 m_freem(m0); 1527 continue; 1528 } else if (error != 0) { 1529 /* 1530 * Short on resources, just stop for now. 1531 */ 1532 break; 1533 } 1534 1535 /* 1536 * Ensure we have enough descriptors free to describe 1537 * the packet. Note, we always reserve one descriptor 1538 * at the end of the ring as a termination point, to 1539 * prevent wrap-around. 1540 */ 1541 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) { 1542 /* 1543 * Not enough free descriptors to transmit this 1544 * packet. We haven't committed anything yet, 1545 * so just unload the DMA map, put the packet 1546 * back on the queue, and punt. Notify the upper 1547 * layer that there are not more slots left. 1548 * 1549 * XXX We could allocate an mbuf and copy, but 1550 * XXX is it worth it? 1551 */ 1552 ifp->if_flags |= IFF_OACTIVE; 1553 bus_dmamap_unload(sc->sc_dmat, dmamap); 1554 if (m != NULL) 1555 m_freem(m); 1556 SIP_EVCNT_INCR(&sc->sc_ev_txdstall); 1557 break; 1558 } 1559 1560 IFQ_DEQUEUE(&ifp->if_snd, m0); 1561 if (m != NULL) { 1562 m_freem(m0); 1563 m0 = m; 1564 } 1565 1566 /* 1567 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. 1568 */ 1569 1570 /* Sync the DMA map. */ 1571 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, 1572 BUS_DMASYNC_PREWRITE); 1573 1574 /* 1575 * Initialize the transmit descriptors. 1576 */ 1577 for (nexttx = lasttx = sc->sc_txnext, seg = 0; 1578 seg < dmamap->dm_nsegs; 1579 seg++, nexttx = sip_nexttx(sc, nexttx)) { 1580 /* 1581 * If this is the first descriptor we're 1582 * enqueueing, don't set the OWN bit just 1583 * yet. That could cause a race condition. 1584 * We'll do it below. 1585 */ 1586 *sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) = 1587 htole32(dmamap->dm_segs[seg].ds_addr); 1588 *sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) = 1589 htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) | 1590 CMDSTS_MORE | dmamap->dm_segs[seg].ds_len); 1591 sc->sc_txdescs[nexttx].sipd_extsts = 0; 1592 lasttx = nexttx; 1593 } 1594 1595 /* Clear the MORE bit on the last segment. */ 1596 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &= 1597 htole32(~CMDSTS_MORE); 1598 1599 /* 1600 * If we're in the interrupt delay window, delay the 1601 * interrupt. 1602 */ 1603 if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) { 1604 SIP_EVCNT_INCR(&sc->sc_ev_txforceintr); 1605 *sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |= 1606 htole32(CMDSTS_INTR); 1607 sc->sc_txwin = 0; 1608 } 1609 1610 if (sc->sc_gigabit) 1611 sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable); 1612 1613 /* Sync the descriptors we're using. */ 1614 sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs, 1615 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1616 1617 /* 1618 * The entire packet is set up. Give the first descrptor 1619 * to the chip now. 1620 */ 1621 *sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |= 1622 htole32(CMDSTS_OWN); 1623 sip_cdtxsync(sc, sc->sc_txnext, 1, 1624 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1625 1626 /* 1627 * Store a pointer to the packet so we can free it later, 1628 * and remember what txdirty will be once the packet is 1629 * done. 1630 */ 1631 txs->txs_mbuf = m0; 1632 txs->txs_firstdesc = sc->sc_txnext; 1633 txs->txs_lastdesc = lasttx; 1634 1635 /* Advance the tx pointer. */ 1636 sc->sc_txfree -= dmamap->dm_nsegs; 1637 sc->sc_txnext = nexttx; 1638 1639 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q); 1640 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q); 1641 1642 #if NBPFILTER > 0 1643 /* 1644 * Pass the packet to any BPF listeners. 1645 */ 1646 if (ifp->if_bpf) 1647 bpf_mtap(ifp->if_bpf, m0); 1648 #endif /* NBPFILTER > 0 */ 1649 } 1650 1651 if (txs == NULL || sc->sc_txfree == 0) { 1652 /* No more slots left; notify upper layer. */ 1653 ifp->if_flags |= IFF_OACTIVE; 1654 } 1655 1656 if (sc->sc_txfree != ofree) { 1657 /* 1658 * Start the transmit process. Note, the manual says 1659 * that if there are no pending transmissions in the 1660 * chip's internal queue (indicated by TXE being clear), 1661 * then the driver software must set the TXDP to the 1662 * first descriptor to be transmitted. However, if we 1663 * do this, it causes serious performance degredation on 1664 * the DP83820 under load, not setting TXDP doesn't seem 1665 * to adversely affect the SiS 900 or DP83815. 1666 * 1667 * Well, I guess it wouldn't be the first time a manual 1668 * has lied -- and they could be speaking of the NULL- 1669 * terminated descriptor list case, rather than OWN- 1670 * terminated rings. 1671 */ 1672 #if 0 1673 if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) & 1674 CR_TXE) == 0) { 1675 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP, 1676 SIP_CDTXADDR(sc, firsttx)); 1677 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE); 1678 } 1679 #else 1680 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE); 1681 #endif 1682 1683 /* Set a watchdog timer in case the chip flakes out. */ 1684 /* Gigabit autonegotiation takes 5 seconds. */ 1685 ifp->if_timer = (sc->sc_gigabit) ? 10 : 5; 1686 } 1687 } 1688 1689 /* 1690 * sip_watchdog: [ifnet interface function] 1691 * 1692 * Watchdog timer handler. 1693 */ 1694 static void 1695 sipcom_watchdog(struct ifnet *ifp) 1696 { 1697 struct sip_softc *sc = ifp->if_softc; 1698 1699 /* 1700 * The chip seems to ignore the CMDSTS_INTR bit sometimes! 1701 * If we get a timeout, try and sweep up transmit descriptors. 1702 * If we manage to sweep them all up, ignore the lack of 1703 * interrupt. 1704 */ 1705 sipcom_txintr(sc); 1706 1707 if (sc->sc_txfree != sc->sc_ntxdesc) { 1708 printf("%s: device timeout\n", sc->sc_dev.dv_xname); 1709 ifp->if_oerrors++; 1710 1711 /* Reset the interface. */ 1712 (void) sipcom_init(ifp); 1713 } else if (ifp->if_flags & IFF_DEBUG) 1714 printf("%s: recovered from device timeout\n", 1715 sc->sc_dev.dv_xname); 1716 1717 /* Try to get more packets going. */ 1718 sipcom_start(ifp); 1719 } 1720 1721 /* 1722 * sip_ioctl: [ifnet interface function] 1723 * 1724 * Handle control requests from the operator. 1725 */ 1726 static int 1727 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1728 { 1729 struct sip_softc *sc = ifp->if_softc; 1730 struct ifreq *ifr = (struct ifreq *)data; 1731 int s, error; 1732 1733 s = splnet(); 1734 1735 switch (cmd) { 1736 case SIOCSIFMEDIA: 1737 /* Flow control requires full-duplex mode. */ 1738 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO || 1739 (ifr->ifr_media & IFM_FDX) == 0) 1740 ifr->ifr_media &= ~IFM_ETH_FMASK; 1741 1742 /* XXX */ 1743 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) 1744 ifr->ifr_media &= ~IFM_ETH_FMASK; 1745 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) { 1746 if (sc->sc_gigabit && 1747 (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) { 1748 /* We can do both TXPAUSE and RXPAUSE. */ 1749 ifr->ifr_media |= 1750 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE; 1751 } else if (ifr->ifr_media & IFM_FLOW) { 1752 /* 1753 * Both TXPAUSE and RXPAUSE must be set. 1754 * (SiS900 and DP83815 don't have PAUSE_ASYM 1755 * feature.) 1756 * 1757 * XXX Can SiS900 and DP83815 send PAUSE? 1758 */ 1759 ifr->ifr_media |= 1760 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE; 1761 } 1762 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK; 1763 } 1764 goto ethioctl; 1765 case SIOCSIFFLAGS: 1766 /* If the interface is up and running, only modify the receive 1767 * filter when setting promiscuous or debug mode. Otherwise 1768 * fall through to ether_ioctl, which will reset the chip. 1769 */ 1770 1771 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable \ 1772 == (sc)->sc_ethercom.ec_capenable) \ 1773 && ((sc)->sc_prev.is_vlan == \ 1774 VLAN_ATTACHED(&(sc)->sc_ethercom) )) 1775 1776 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable) 1777 1778 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG) 1779 if (((ifp->if_flags & (IFF_UP|IFF_RUNNING)) 1780 == (IFF_UP|IFF_RUNNING)) 1781 && ((ifp->if_flags & (~RESETIGN)) 1782 == (sc->sc_if_flags & (~RESETIGN))) 1783 && COMPARE_EC(sc) && COMPARE_IC(sc, ifp)) { 1784 /* Set up the receive filter. */ 1785 (*sc->sc_model->sip_variant->sipv_set_filter)(sc); 1786 error = 0; 1787 break; 1788 #undef RESETIGN 1789 } 1790 /* FALLTHROUGH */ 1791 ethioctl: 1792 default: 1793 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET) 1794 break; 1795 1796 error = 0; 1797 1798 if (cmd == SIOCSIFCAP) 1799 error = (*ifp->if_init)(ifp); 1800 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI) 1801 ; 1802 else if (ifp->if_flags & IFF_RUNNING) { 1803 /* 1804 * Multicast list has changed; set the hardware filter 1805 * accordingly. 1806 */ 1807 (*sc->sc_model->sip_variant->sipv_set_filter)(sc); 1808 } 1809 break; 1810 } 1811 1812 /* Try to get more packets going. */ 1813 sipcom_start(ifp); 1814 1815 sc->sc_if_flags = ifp->if_flags; 1816 splx(s); 1817 return (error); 1818 } 1819 1820 /* 1821 * sip_intr: 1822 * 1823 * Interrupt service routine. 1824 */ 1825 static int 1826 sipcom_intr(void *arg) 1827 { 1828 struct sip_softc *sc = arg; 1829 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1830 u_int32_t isr; 1831 int handled = 0; 1832 1833 /* Disable interrupts. */ 1834 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0); 1835 1836 for (;;) { 1837 /* Reading clears interrupt. */ 1838 isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR); 1839 if ((isr & sc->sc_imr) == 0) 1840 break; 1841 1842 #if NRND > 0 1843 if (RND_ENABLED(&sc->rnd_source)) 1844 rnd_add_uint32(&sc->rnd_source, isr); 1845 #endif 1846 1847 handled = 1; 1848 1849 if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) { 1850 SIP_EVCNT_INCR(&sc->sc_ev_rxintr); 1851 1852 /* Grab any new packets. */ 1853 (*sc->sc_rxintr)(sc); 1854 1855 if (isr & ISR_RXORN) { 1856 printf("%s: receive FIFO overrun\n", 1857 sc->sc_dev.dv_xname); 1858 1859 /* XXX adjust rx_drain_thresh? */ 1860 } 1861 1862 if (isr & ISR_RXIDLE) { 1863 printf("%s: receive ring overrun\n", 1864 sc->sc_dev.dv_xname); 1865 1866 /* Get the receive process going again. */ 1867 bus_space_write_4(sc->sc_st, sc->sc_sh, 1868 SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr)); 1869 bus_space_write_4(sc->sc_st, sc->sc_sh, 1870 SIP_CR, CR_RXE); 1871 } 1872 } 1873 1874 if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) { 1875 #ifdef SIP_EVENT_COUNTERS 1876 if (isr & ISR_TXDESC) 1877 SIP_EVCNT_INCR(&sc->sc_ev_txdintr); 1878 else if (isr & ISR_TXIDLE) 1879 SIP_EVCNT_INCR(&sc->sc_ev_txiintr); 1880 #endif 1881 1882 /* Sweep up transmit descriptors. */ 1883 sipcom_txintr(sc); 1884 1885 if (isr & ISR_TXURN) { 1886 u_int32_t thresh; 1887 int txfifo_size = (sc->sc_gigabit) 1888 ? DP83820_SIP_TXFIFO_SIZE 1889 : OTHER_SIP_TXFIFO_SIZE; 1890 1891 printf("%s: transmit FIFO underrun", 1892 sc->sc_dev.dv_xname); 1893 thresh = sc->sc_tx_drain_thresh + 1; 1894 if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask) 1895 && (thresh * 32) <= (txfifo_size - 1896 (sc->sc_tx_fill_thresh * 32))) { 1897 printf("; increasing Tx drain " 1898 "threshold to %u bytes\n", 1899 thresh * 32); 1900 sc->sc_tx_drain_thresh = thresh; 1901 (void) sipcom_init(ifp); 1902 } else { 1903 (void) sipcom_init(ifp); 1904 printf("\n"); 1905 } 1906 } 1907 } 1908 1909 if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) { 1910 if (isr & ISR_PAUSE_ST) { 1911 sc->sc_paused = 1; 1912 SIP_EVCNT_INCR(&sc->sc_ev_rxpause); 1913 ifp->if_flags |= IFF_OACTIVE; 1914 } 1915 if (isr & ISR_PAUSE_END) { 1916 sc->sc_paused = 0; 1917 ifp->if_flags &= ~IFF_OACTIVE; 1918 } 1919 } 1920 1921 if (isr & ISR_HIBERR) { 1922 int want_init = 0; 1923 1924 SIP_EVCNT_INCR(&sc->sc_ev_hiberr); 1925 1926 #define PRINTERR(bit, str) \ 1927 do { \ 1928 if ((isr & (bit)) != 0) { \ 1929 if ((ifp->if_flags & IFF_DEBUG) != 0) \ 1930 printf("%s: %s\n", \ 1931 sc->sc_dev.dv_xname, str); \ 1932 want_init = 1; \ 1933 } \ 1934 } while (/*CONSTCOND*/0) 1935 1936 PRINTERR(sc->sc_bits.b_isr_dperr, "parity error"); 1937 PRINTERR(sc->sc_bits.b_isr_sserr, "system error"); 1938 PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort"); 1939 PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort"); 1940 PRINTERR(ISR_RXSOVR, "receive status FIFO overrun"); 1941 /* 1942 * Ignore: 1943 * Tx reset complete 1944 * Rx reset complete 1945 */ 1946 if (want_init) 1947 (void) sipcom_init(ifp); 1948 #undef PRINTERR 1949 } 1950 } 1951 1952 /* Re-enable interrupts. */ 1953 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE); 1954 1955 /* Try to get more packets going. */ 1956 sipcom_start(ifp); 1957 1958 return (handled); 1959 } 1960 1961 /* 1962 * sip_txintr: 1963 * 1964 * Helper; handle transmit interrupts. 1965 */ 1966 static void 1967 sipcom_txintr(struct sip_softc *sc) 1968 { 1969 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1970 struct sip_txsoft *txs; 1971 u_int32_t cmdsts; 1972 1973 if (sc->sc_paused == 0) 1974 ifp->if_flags &= ~IFF_OACTIVE; 1975 1976 /* 1977 * Go through our Tx list and free mbufs for those 1978 * frames which have been transmitted. 1979 */ 1980 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) { 1981 sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs, 1982 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1983 1984 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])); 1985 if (cmdsts & CMDSTS_OWN) 1986 break; 1987 1988 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); 1989 1990 sc->sc_txfree += txs->txs_dmamap->dm_nsegs; 1991 1992 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 1993 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1994 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); 1995 m_freem(txs->txs_mbuf); 1996 txs->txs_mbuf = NULL; 1997 1998 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 1999 2000 /* 2001 * Check for errors and collisions. 2002 */ 2003 if (cmdsts & 2004 (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) { 2005 ifp->if_oerrors++; 2006 if (cmdsts & CMDSTS_Tx_EC) 2007 ifp->if_collisions += 16; 2008 if (ifp->if_flags & IFF_DEBUG) { 2009 if (cmdsts & CMDSTS_Tx_ED) 2010 printf("%s: excessive deferral\n", 2011 sc->sc_dev.dv_xname); 2012 if (cmdsts & CMDSTS_Tx_EC) 2013 printf("%s: excessive collisions\n", 2014 sc->sc_dev.dv_xname); 2015 } 2016 } else { 2017 /* Packet was transmitted successfully. */ 2018 ifp->if_opackets++; 2019 ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts); 2020 } 2021 } 2022 2023 /* 2024 * If there are no more pending transmissions, cancel the watchdog 2025 * timer. 2026 */ 2027 if (txs == NULL) { 2028 ifp->if_timer = 0; 2029 sc->sc_txwin = 0; 2030 } 2031 } 2032 2033 /* 2034 * gsip_rxintr: 2035 * 2036 * Helper; handle receive interrupts on gigabit parts. 2037 */ 2038 static void 2039 gsip_rxintr(struct sip_softc *sc) 2040 { 2041 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2042 struct sip_rxsoft *rxs; 2043 struct mbuf *m; 2044 u_int32_t cmdsts, extsts; 2045 int i, len; 2046 2047 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) { 2048 rxs = &sc->sc_rxsoft[i]; 2049 2050 sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 2051 2052 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i])); 2053 extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts); 2054 len = CMDSTS_SIZE(sc, cmdsts); 2055 2056 /* 2057 * NOTE: OWN is set if owned by _consumer_. We're the 2058 * consumer of the receive ring, so if the bit is clear, 2059 * we have processed all of the packets. 2060 */ 2061 if ((cmdsts & CMDSTS_OWN) == 0) { 2062 /* 2063 * We have processed all of the receive buffers. 2064 */ 2065 break; 2066 } 2067 2068 if (__predict_false(sc->sc_rxdiscard)) { 2069 sip_init_rxdesc(sc, i); 2070 if ((cmdsts & CMDSTS_MORE) == 0) { 2071 /* Reset our state. */ 2072 sc->sc_rxdiscard = 0; 2073 } 2074 continue; 2075 } 2076 2077 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 2078 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 2079 2080 m = rxs->rxs_mbuf; 2081 2082 /* 2083 * Add a new receive buffer to the ring. 2084 */ 2085 if (sipcom_add_rxbuf(sc, i) != 0) { 2086 /* 2087 * Failed, throw away what we've done so 2088 * far, and discard the rest of the packet. 2089 */ 2090 ifp->if_ierrors++; 2091 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 2092 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 2093 sip_init_rxdesc(sc, i); 2094 if (cmdsts & CMDSTS_MORE) 2095 sc->sc_rxdiscard = 1; 2096 if (sc->sc_rxhead != NULL) 2097 m_freem(sc->sc_rxhead); 2098 sip_rxchain_reset(sc); 2099 continue; 2100 } 2101 2102 sip_rxchain_link(sc, m); 2103 2104 m->m_len = len; 2105 2106 /* 2107 * If this is not the end of the packet, keep 2108 * looking. 2109 */ 2110 if (cmdsts & CMDSTS_MORE) { 2111 sc->sc_rxlen += len; 2112 continue; 2113 } 2114 2115 /* 2116 * Okay, we have the entire packet now. The chip includes 2117 * the FCS, so we need to trim it. 2118 */ 2119 m->m_len -= ETHER_CRC_LEN; 2120 2121 *sc->sc_rxtailp = NULL; 2122 len = m->m_len + sc->sc_rxlen; 2123 m = sc->sc_rxhead; 2124 2125 sip_rxchain_reset(sc); 2126 2127 /* 2128 * If an error occurred, update stats and drop the packet. 2129 */ 2130 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT| 2131 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) { 2132 ifp->if_ierrors++; 2133 if ((cmdsts & CMDSTS_Rx_RXA) != 0 && 2134 (cmdsts & CMDSTS_Rx_RXO) == 0) { 2135 /* Receive overrun handled elsewhere. */ 2136 printf("%s: receive descriptor error\n", 2137 sc->sc_dev.dv_xname); 2138 } 2139 #define PRINTERR(bit, str) \ 2140 if ((ifp->if_flags & IFF_DEBUG) != 0 && \ 2141 (cmdsts & (bit)) != 0) \ 2142 printf("%s: %s\n", sc->sc_dev.dv_xname, str) 2143 PRINTERR(CMDSTS_Rx_RUNT, "runt packet"); 2144 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error"); 2145 PRINTERR(CMDSTS_Rx_CRCE, "CRC error"); 2146 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error"); 2147 #undef PRINTERR 2148 m_freem(m); 2149 continue; 2150 } 2151 2152 /* 2153 * If the packet is small enough to fit in a 2154 * single header mbuf, allocate one and copy 2155 * the data into it. This greatly reduces 2156 * memory consumption when we receive lots 2157 * of small packets. 2158 */ 2159 if (gsip_copy_small != 0 && len <= (MHLEN - 2)) { 2160 struct mbuf *nm; 2161 MGETHDR(nm, M_DONTWAIT, MT_DATA); 2162 if (nm == NULL) { 2163 ifp->if_ierrors++; 2164 m_freem(m); 2165 continue; 2166 } 2167 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner); 2168 nm->m_data += 2; 2169 nm->m_pkthdr.len = nm->m_len = len; 2170 m_copydata(m, 0, len, mtod(nm, void *)); 2171 m_freem(m); 2172 m = nm; 2173 } 2174 #ifndef __NO_STRICT_ALIGNMENT 2175 else { 2176 /* 2177 * The DP83820's receive buffers must be 4-byte 2178 * aligned. But this means that the data after 2179 * the Ethernet header is misaligned. To compensate, 2180 * we have artificially shortened the buffer size 2181 * in the descriptor, and we do an overlapping copy 2182 * of the data two bytes further in (in the first 2183 * buffer of the chain only). 2184 */ 2185 memmove(mtod(m, char *) + 2, mtod(m, void *), 2186 m->m_len); 2187 m->m_data += 2; 2188 } 2189 #endif /* ! __NO_STRICT_ALIGNMENT */ 2190 2191 /* 2192 * If VLANs are enabled, VLAN packets have been unwrapped 2193 * for us. Associate the tag with the packet. 2194 */ 2195 2196 /* 2197 * Again, byte swapping is tricky. Hardware provided 2198 * the tag in the network byte order, but extsts was 2199 * passed through le32toh() in the meantime. On a 2200 * big-endian machine, we need to swap it again. On a 2201 * little-endian machine, we need to convert from the 2202 * network to host byte order. This means that we must 2203 * swap it in any case, so unconditional swap instead 2204 * of htons() is used. 2205 */ 2206 if ((extsts & EXTSTS_VPKT) != 0) { 2207 VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI), 2208 continue); 2209 } 2210 2211 /* 2212 * Set the incoming checksum information for the 2213 * packet. 2214 */ 2215 if ((extsts & EXTSTS_IPPKT) != 0) { 2216 SIP_EVCNT_INCR(&sc->sc_ev_rxipsum); 2217 m->m_pkthdr.csum_flags |= M_CSUM_IPv4; 2218 if (extsts & EXTSTS_Rx_IPERR) 2219 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD; 2220 if (extsts & EXTSTS_TCPPKT) { 2221 SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum); 2222 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4; 2223 if (extsts & EXTSTS_Rx_TCPERR) 2224 m->m_pkthdr.csum_flags |= 2225 M_CSUM_TCP_UDP_BAD; 2226 } else if (extsts & EXTSTS_UDPPKT) { 2227 SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum); 2228 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4; 2229 if (extsts & EXTSTS_Rx_UDPERR) 2230 m->m_pkthdr.csum_flags |= 2231 M_CSUM_TCP_UDP_BAD; 2232 } 2233 } 2234 2235 ifp->if_ipackets++; 2236 m->m_pkthdr.rcvif = ifp; 2237 m->m_pkthdr.len = len; 2238 2239 #if NBPFILTER > 0 2240 /* 2241 * Pass this up to any BPF listeners, but only 2242 * pass if up the stack if it's for us. 2243 */ 2244 if (ifp->if_bpf) 2245 bpf_mtap(ifp->if_bpf, m); 2246 #endif /* NBPFILTER > 0 */ 2247 2248 /* Pass it on. */ 2249 (*ifp->if_input)(ifp, m); 2250 } 2251 2252 /* Update the receive pointer. */ 2253 sc->sc_rxptr = i; 2254 } 2255 2256 /* 2257 * sip_rxintr: 2258 * 2259 * Helper; handle receive interrupts on 10/100 parts. 2260 */ 2261 static void 2262 sip_rxintr(struct sip_softc *sc) 2263 { 2264 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2265 struct sip_rxsoft *rxs; 2266 struct mbuf *m; 2267 u_int32_t cmdsts; 2268 int i, len; 2269 2270 for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) { 2271 rxs = &sc->sc_rxsoft[i]; 2272 2273 sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 2274 2275 cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i])); 2276 2277 /* 2278 * NOTE: OWN is set if owned by _consumer_. We're the 2279 * consumer of the receive ring, so if the bit is clear, 2280 * we have processed all of the packets. 2281 */ 2282 if ((cmdsts & CMDSTS_OWN) == 0) { 2283 /* 2284 * We have processed all of the receive buffers. 2285 */ 2286 break; 2287 } 2288 2289 /* 2290 * If any collisions were seen on the wire, count one. 2291 */ 2292 if (cmdsts & CMDSTS_Rx_COL) 2293 ifp->if_collisions++; 2294 2295 /* 2296 * If an error occurred, update stats, clear the status 2297 * word, and leave the packet buffer in place. It will 2298 * simply be reused the next time the ring comes around. 2299 */ 2300 if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT| 2301 CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) { 2302 ifp->if_ierrors++; 2303 if ((cmdsts & CMDSTS_Rx_RXA) != 0 && 2304 (cmdsts & CMDSTS_Rx_RXO) == 0) { 2305 /* Receive overrun handled elsewhere. */ 2306 printf("%s: receive descriptor error\n", 2307 sc->sc_dev.dv_xname); 2308 } 2309 #define PRINTERR(bit, str) \ 2310 if ((ifp->if_flags & IFF_DEBUG) != 0 && \ 2311 (cmdsts & (bit)) != 0) \ 2312 printf("%s: %s\n", sc->sc_dev.dv_xname, str) 2313 PRINTERR(CMDSTS_Rx_RUNT, "runt packet"); 2314 PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error"); 2315 PRINTERR(CMDSTS_Rx_CRCE, "CRC error"); 2316 PRINTERR(CMDSTS_Rx_FAE, "frame alignment error"); 2317 #undef PRINTERR 2318 sip_init_rxdesc(sc, i); 2319 continue; 2320 } 2321 2322 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 2323 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 2324 2325 /* 2326 * No errors; receive the packet. Note, the SiS 900 2327 * includes the CRC with every packet. 2328 */ 2329 len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN; 2330 2331 #ifdef __NO_STRICT_ALIGNMENT 2332 /* 2333 * If the packet is small enough to fit in a 2334 * single header mbuf, allocate one and copy 2335 * the data into it. This greatly reduces 2336 * memory consumption when we receive lots 2337 * of small packets. 2338 * 2339 * Otherwise, we add a new buffer to the receive 2340 * chain. If this fails, we drop the packet and 2341 * recycle the old buffer. 2342 */ 2343 if (sip_copy_small != 0 && len <= MHLEN) { 2344 MGETHDR(m, M_DONTWAIT, MT_DATA); 2345 if (m == NULL) 2346 goto dropit; 2347 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner); 2348 memcpy(mtod(m, void *), 2349 mtod(rxs->rxs_mbuf, void *), len); 2350 sip_init_rxdesc(sc, i); 2351 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 2352 rxs->rxs_dmamap->dm_mapsize, 2353 BUS_DMASYNC_PREREAD); 2354 } else { 2355 m = rxs->rxs_mbuf; 2356 if (sipcom_add_rxbuf(sc, i) != 0) { 2357 dropit: 2358 ifp->if_ierrors++; 2359 sip_init_rxdesc(sc, i); 2360 bus_dmamap_sync(sc->sc_dmat, 2361 rxs->rxs_dmamap, 0, 2362 rxs->rxs_dmamap->dm_mapsize, 2363 BUS_DMASYNC_PREREAD); 2364 continue; 2365 } 2366 } 2367 #else 2368 /* 2369 * The SiS 900's receive buffers must be 4-byte aligned. 2370 * But this means that the data after the Ethernet header 2371 * is misaligned. We must allocate a new buffer and 2372 * copy the data, shifted forward 2 bytes. 2373 */ 2374 MGETHDR(m, M_DONTWAIT, MT_DATA); 2375 if (m == NULL) { 2376 dropit: 2377 ifp->if_ierrors++; 2378 sip_init_rxdesc(sc, i); 2379 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 2380 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 2381 continue; 2382 } 2383 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner); 2384 if (len > (MHLEN - 2)) { 2385 MCLGET(m, M_DONTWAIT); 2386 if ((m->m_flags & M_EXT) == 0) { 2387 m_freem(m); 2388 goto dropit; 2389 } 2390 } 2391 m->m_data += 2; 2392 2393 /* 2394 * Note that we use clusters for incoming frames, so the 2395 * buffer is virtually contiguous. 2396 */ 2397 memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len); 2398 2399 /* Allow the receive descriptor to continue using its mbuf. */ 2400 sip_init_rxdesc(sc, i); 2401 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 2402 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 2403 #endif /* __NO_STRICT_ALIGNMENT */ 2404 2405 ifp->if_ipackets++; 2406 m->m_pkthdr.rcvif = ifp; 2407 m->m_pkthdr.len = m->m_len = len; 2408 2409 #if NBPFILTER > 0 2410 /* 2411 * Pass this up to any BPF listeners, but only 2412 * pass if up the stack if it's for us. 2413 */ 2414 if (ifp->if_bpf) 2415 bpf_mtap(ifp->if_bpf, m); 2416 #endif /* NBPFILTER > 0 */ 2417 2418 /* Pass it on. */ 2419 (*ifp->if_input)(ifp, m); 2420 } 2421 2422 /* Update the receive pointer. */ 2423 sc->sc_rxptr = i; 2424 } 2425 2426 /* 2427 * sip_tick: 2428 * 2429 * One second timer, used to tick the MII. 2430 */ 2431 static void 2432 sipcom_tick(void *arg) 2433 { 2434 struct sip_softc *sc = arg; 2435 int s; 2436 2437 s = splnet(); 2438 #ifdef SIP_EVENT_COUNTERS 2439 if (sc->sc_gigabit) { 2440 /* Read PAUSE related counts from MIB registers. */ 2441 sc->sc_ev_rxpause.ev_count += 2442 bus_space_read_4(sc->sc_st, sc->sc_sh, 2443 SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff; 2444 sc->sc_ev_txpause.ev_count += 2445 bus_space_read_4(sc->sc_st, sc->sc_sh, 2446 SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff; 2447 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR); 2448 } 2449 #endif /* SIP_EVENT_COUNTERS */ 2450 mii_tick(&sc->sc_mii); 2451 splx(s); 2452 2453 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc); 2454 } 2455 2456 /* 2457 * sip_reset: 2458 * 2459 * Perform a soft reset on the SiS 900. 2460 */ 2461 static bool 2462 sipcom_reset(struct sip_softc *sc) 2463 { 2464 bus_space_tag_t st = sc->sc_st; 2465 bus_space_handle_t sh = sc->sc_sh; 2466 int i; 2467 2468 bus_space_write_4(st, sh, SIP_IER, 0); 2469 bus_space_write_4(st, sh, SIP_IMR, 0); 2470 bus_space_write_4(st, sh, SIP_RFCR, 0); 2471 bus_space_write_4(st, sh, SIP_CR, CR_RST); 2472 2473 for (i = 0; i < SIP_TIMEOUT; i++) { 2474 if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0) 2475 break; 2476 delay(2); 2477 } 2478 2479 if (i == SIP_TIMEOUT) { 2480 printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname); 2481 return false; 2482 } 2483 2484 delay(1000); 2485 2486 if (sc->sc_gigabit) { 2487 /* 2488 * Set the general purpose I/O bits. Do it here in case we 2489 * need to have GPIO set up to talk to the media interface. 2490 */ 2491 bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior); 2492 delay(1000); 2493 } 2494 return true; 2495 } 2496 2497 static void 2498 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable) 2499 { 2500 u_int32_t reg; 2501 bus_space_tag_t st = sc->sc_st; 2502 bus_space_handle_t sh = sc->sc_sh; 2503 /* 2504 * Initialize the VLAN/IP receive control register. 2505 * We enable checksum computation on all incoming 2506 * packets, and do not reject packets w/ bad checksums. 2507 */ 2508 reg = 0; 2509 if (capenable & 2510 (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx)) 2511 reg |= VRCR_IPEN; 2512 if (VLAN_ATTACHED(&sc->sc_ethercom)) 2513 reg |= VRCR_VTDEN|VRCR_VTREN; 2514 bus_space_write_4(st, sh, SIP_VRCR, reg); 2515 2516 /* 2517 * Initialize the VLAN/IP transmit control register. 2518 * We enable outgoing checksum computation on a 2519 * per-packet basis. 2520 */ 2521 reg = 0; 2522 if (capenable & 2523 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx)) 2524 reg |= VTCR_PPCHK; 2525 if (VLAN_ATTACHED(&sc->sc_ethercom)) 2526 reg |= VTCR_VPPTI; 2527 bus_space_write_4(st, sh, SIP_VTCR, reg); 2528 2529 /* 2530 * If we're using VLANs, initialize the VLAN data register. 2531 * To understand why we bswap the VLAN Ethertype, see section 2532 * 4.2.36 of the DP83820 manual. 2533 */ 2534 if (VLAN_ATTACHED(&sc->sc_ethercom)) 2535 bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN)); 2536 } 2537 2538 /* 2539 * sip_init: [ ifnet interface function ] 2540 * 2541 * Initialize the interface. Must be called at splnet(). 2542 */ 2543 static int 2544 sipcom_init(struct ifnet *ifp) 2545 { 2546 struct sip_softc *sc = ifp->if_softc; 2547 bus_space_tag_t st = sc->sc_st; 2548 bus_space_handle_t sh = sc->sc_sh; 2549 struct sip_txsoft *txs; 2550 struct sip_rxsoft *rxs; 2551 struct sip_desc *sipd; 2552 int i, error = 0; 2553 2554 if (!device_has_power(&sc->sc_dev)) 2555 return EBUSY; 2556 2557 /* 2558 * Cancel any pending I/O. 2559 */ 2560 sipcom_stop(ifp, 0); 2561 2562 /* 2563 * Reset the chip to a known state. 2564 */ 2565 if (!sipcom_reset(sc)) 2566 return EBUSY; 2567 2568 if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) { 2569 /* 2570 * DP83815 manual, page 78: 2571 * 4.4 Recommended Registers Configuration 2572 * For optimum performance of the DP83815, version noted 2573 * as DP83815CVNG (SRR = 203h), the listed register 2574 * modifications must be followed in sequence... 2575 * 2576 * It's not clear if this should be 302h or 203h because that 2577 * chip name is listed as SRR 302h in the description of the 2578 * SRR register. However, my revision 302h DP83815 on the 2579 * Netgear FA311 purchased in 02/2001 needs these settings 2580 * to avoid tons of errors in AcceptPerfectMatch (non- 2581 * IFF_PROMISC) mode. I do not know if other revisions need 2582 * this set or not. [briggs -- 09 March 2001] 2583 * 2584 * Note that only the low-order 12 bits of 0xe4 are documented 2585 * and that this sets reserved bits in that register. 2586 */ 2587 bus_space_write_4(st, sh, 0x00cc, 0x0001); 2588 2589 bus_space_write_4(st, sh, 0x00e4, 0x189C); 2590 bus_space_write_4(st, sh, 0x00fc, 0x0000); 2591 bus_space_write_4(st, sh, 0x00f4, 0x5040); 2592 bus_space_write_4(st, sh, 0x00f8, 0x008c); 2593 2594 bus_space_write_4(st, sh, 0x00cc, 0x0000); 2595 } 2596 2597 /* 2598 * Initialize the transmit descriptor ring. 2599 */ 2600 for (i = 0; i < sc->sc_ntxdesc; i++) { 2601 sipd = &sc->sc_txdescs[i]; 2602 memset(sipd, 0, sizeof(struct sip_desc)); 2603 sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i))); 2604 } 2605 sip_cdtxsync(sc, 0, sc->sc_ntxdesc, 2606 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 2607 sc->sc_txfree = sc->sc_ntxdesc; 2608 sc->sc_txnext = 0; 2609 sc->sc_txwin = 0; 2610 2611 /* 2612 * Initialize the transmit job descriptors. 2613 */ 2614 SIMPLEQ_INIT(&sc->sc_txfreeq); 2615 SIMPLEQ_INIT(&sc->sc_txdirtyq); 2616 for (i = 0; i < SIP_TXQUEUELEN; i++) { 2617 txs = &sc->sc_txsoft[i]; 2618 txs->txs_mbuf = NULL; 2619 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 2620 } 2621 2622 /* 2623 * Initialize the receive descriptor and receive job 2624 * descriptor rings. 2625 */ 2626 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) { 2627 rxs = &sc->sc_rxsoft[i]; 2628 if (rxs->rxs_mbuf == NULL) { 2629 if ((error = sipcom_add_rxbuf(sc, i)) != 0) { 2630 printf("%s: unable to allocate or map rx " 2631 "buffer %d, error = %d\n", 2632 sc->sc_dev.dv_xname, i, error); 2633 /* 2634 * XXX Should attempt to run with fewer receive 2635 * XXX buffers instead of just failing. 2636 */ 2637 sipcom_rxdrain(sc); 2638 goto out; 2639 } 2640 } else 2641 sip_init_rxdesc(sc, i); 2642 } 2643 sc->sc_rxptr = 0; 2644 sc->sc_rxdiscard = 0; 2645 sip_rxchain_reset(sc); 2646 2647 /* 2648 * Set the configuration register; it's already initialized 2649 * in sip_attach(). 2650 */ 2651 bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg); 2652 2653 /* 2654 * Initialize the prototype TXCFG register. 2655 */ 2656 if (sc->sc_gigabit) { 2657 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512; 2658 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512; 2659 } else if ((SIP_SIS900_REV(sc, SIS_REV_635) || 2660 SIP_SIS900_REV(sc, SIS_REV_960) || 2661 SIP_SIS900_REV(sc, SIS_REV_900B)) && 2662 (sc->sc_cfg & CFG_EDBMASTEN)) { 2663 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64; 2664 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64; 2665 } else { 2666 sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512; 2667 sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512; 2668 } 2669 2670 sc->sc_txcfg |= TXCFG_ATP | 2671 __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) | 2672 sc->sc_tx_drain_thresh; 2673 bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg); 2674 2675 /* 2676 * Initialize the receive drain threshold if we have never 2677 * done so. 2678 */ 2679 if (sc->sc_rx_drain_thresh == 0) { 2680 /* 2681 * XXX This value should be tuned. This is set to the 2682 * maximum of 248 bytes, and we may be able to improve 2683 * performance by decreasing it (although we should never 2684 * set this value lower than 2; 14 bytes are required to 2685 * filter the packet). 2686 */ 2687 sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK); 2688 } 2689 2690 /* 2691 * Initialize the prototype RXCFG register. 2692 */ 2693 sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK); 2694 /* 2695 * Accept long packets (including FCS) so we can handle 2696 * 802.1q-tagged frames and jumbo frames properly. 2697 */ 2698 if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) || 2699 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)) 2700 sc->sc_rxcfg |= RXCFG_ALP; 2701 2702 /* 2703 * Checksum offloading is disabled if the user selects an MTU 2704 * larger than 8109. (FreeBSD says 8152, but there is emperical 2705 * evidence that >8109 does not work on some boards, such as the 2706 * Planex GN-1000TE). 2707 */ 2708 if (sc->sc_gigabit && ifp->if_mtu > 8109 && 2709 (ifp->if_capenable & 2710 (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx| 2711 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx| 2712 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) { 2713 printf("%s: Checksum offloading does not work if MTU > 8109 - " 2714 "disabled.\n", sc->sc_dev.dv_xname); 2715 ifp->if_capenable &= 2716 ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx| 2717 IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx| 2718 IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx); 2719 ifp->if_csum_flags_tx = 0; 2720 ifp->if_csum_flags_rx = 0; 2721 } 2722 2723 bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg); 2724 2725 if (sc->sc_gigabit) 2726 sipcom_dp83820_init(sc, ifp->if_capenable); 2727 2728 /* 2729 * Give the transmit and receive rings to the chip. 2730 */ 2731 bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext)); 2732 bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr)); 2733 2734 /* 2735 * Initialize the interrupt mask. 2736 */ 2737 sc->sc_imr = sc->sc_bits.b_isr_dperr | 2738 sc->sc_bits.b_isr_sserr | 2739 sc->sc_bits.b_isr_rmabt | 2740 sc->sc_bits.b_isr_rtabt | ISR_RXSOVR | 2741 ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC; 2742 bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr); 2743 2744 /* Set up the receive filter. */ 2745 (*sc->sc_model->sip_variant->sipv_set_filter)(sc); 2746 2747 /* 2748 * Tune sc_rx_flow_thresh. 2749 * XXX "More than 8KB" is too short for jumbo frames. 2750 * XXX TODO: Threshold value should be user-settable. 2751 */ 2752 sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 | 2753 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 | 2754 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK)); 2755 2756 /* 2757 * Set the current media. Do this after initializing the prototype 2758 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow 2759 * control. 2760 */ 2761 if ((error = ether_mediachange(ifp)) != 0) 2762 goto out; 2763 2764 /* 2765 * Set the interrupt hold-off timer to 100us. 2766 */ 2767 if (sc->sc_gigabit) 2768 bus_space_write_4(st, sh, SIP_IHR, 0x01); 2769 2770 /* 2771 * Enable interrupts. 2772 */ 2773 bus_space_write_4(st, sh, SIP_IER, IER_IE); 2774 2775 /* 2776 * Start the transmit and receive processes. 2777 */ 2778 bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE); 2779 2780 /* 2781 * Start the one second MII clock. 2782 */ 2783 callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc); 2784 2785 /* 2786 * ...all done! 2787 */ 2788 ifp->if_flags |= IFF_RUNNING; 2789 ifp->if_flags &= ~IFF_OACTIVE; 2790 sc->sc_if_flags = ifp->if_flags; 2791 sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable; 2792 sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom); 2793 sc->sc_prev.if_capenable = ifp->if_capenable; 2794 2795 out: 2796 if (error) 2797 printf("%s: interface not running\n", sc->sc_dev.dv_xname); 2798 return (error); 2799 } 2800 2801 /* 2802 * sip_drain: 2803 * 2804 * Drain the receive queue. 2805 */ 2806 static void 2807 sipcom_rxdrain(struct sip_softc *sc) 2808 { 2809 struct sip_rxsoft *rxs; 2810 int i; 2811 2812 for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) { 2813 rxs = &sc->sc_rxsoft[i]; 2814 if (rxs->rxs_mbuf != NULL) { 2815 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 2816 m_freem(rxs->rxs_mbuf); 2817 rxs->rxs_mbuf = NULL; 2818 } 2819 } 2820 } 2821 2822 /* 2823 * sip_stop: [ ifnet interface function ] 2824 * 2825 * Stop transmission on the interface. 2826 */ 2827 static void 2828 sipcom_stop(struct ifnet *ifp, int disable) 2829 { 2830 struct sip_softc *sc = ifp->if_softc; 2831 bus_space_tag_t st = sc->sc_st; 2832 bus_space_handle_t sh = sc->sc_sh; 2833 struct sip_txsoft *txs; 2834 u_int32_t cmdsts = 0; /* DEBUG */ 2835 2836 /* 2837 * Stop the one second clock. 2838 */ 2839 callout_stop(&sc->sc_tick_ch); 2840 2841 /* Down the MII. */ 2842 mii_down(&sc->sc_mii); 2843 2844 /* 2845 * Disable interrupts. 2846 */ 2847 bus_space_write_4(st, sh, SIP_IER, 0); 2848 2849 /* 2850 * Stop receiver and transmitter. 2851 */ 2852 bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD); 2853 2854 /* 2855 * Release any queued transmit buffers. 2856 */ 2857 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) { 2858 if ((ifp->if_flags & IFF_DEBUG) != 0 && 2859 SIMPLEQ_NEXT(txs, txs_q) == NULL && 2860 (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) & 2861 CMDSTS_INTR) == 0) 2862 printf("%s: sip_stop: last descriptor does not " 2863 "have INTR bit set\n", sc->sc_dev.dv_xname); 2864 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); 2865 #ifdef DIAGNOSTIC 2866 if (txs->txs_mbuf == NULL) { 2867 printf("%s: dirty txsoft with no mbuf chain\n", 2868 sc->sc_dev.dv_xname); 2869 panic("sip_stop"); 2870 } 2871 #endif 2872 cmdsts |= /* DEBUG */ 2873 le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])); 2874 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); 2875 m_freem(txs->txs_mbuf); 2876 txs->txs_mbuf = NULL; 2877 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 2878 } 2879 2880 if (disable) 2881 sipcom_rxdrain(sc); 2882 2883 /* 2884 * Mark the interface down and cancel the watchdog timer. 2885 */ 2886 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2887 ifp->if_timer = 0; 2888 2889 if ((ifp->if_flags & IFF_DEBUG) != 0 && 2890 (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc) 2891 printf("%s: sip_stop: no INTR bits set in dirty tx " 2892 "descriptors\n", sc->sc_dev.dv_xname); 2893 } 2894 2895 /* 2896 * sip_read_eeprom: 2897 * 2898 * Read data from the serial EEPROM. 2899 */ 2900 static void 2901 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt, 2902 u_int16_t *data) 2903 { 2904 bus_space_tag_t st = sc->sc_st; 2905 bus_space_handle_t sh = sc->sc_sh; 2906 u_int16_t reg; 2907 int i, x; 2908 2909 for (i = 0; i < wordcnt; i++) { 2910 /* Send CHIP SELECT. */ 2911 reg = EROMAR_EECS; 2912 bus_space_write_4(st, sh, SIP_EROMAR, reg); 2913 2914 /* Shift in the READ opcode. */ 2915 for (x = 3; x > 0; x--) { 2916 if (SIP_EEPROM_OPC_READ & (1 << (x - 1))) 2917 reg |= EROMAR_EEDI; 2918 else 2919 reg &= ~EROMAR_EEDI; 2920 bus_space_write_4(st, sh, SIP_EROMAR, reg); 2921 bus_space_write_4(st, sh, SIP_EROMAR, 2922 reg | EROMAR_EESK); 2923 delay(4); 2924 bus_space_write_4(st, sh, SIP_EROMAR, reg); 2925 delay(4); 2926 } 2927 2928 /* Shift in address. */ 2929 for (x = 6; x > 0; x--) { 2930 if ((word + i) & (1 << (x - 1))) 2931 reg |= EROMAR_EEDI; 2932 else 2933 reg &= ~EROMAR_EEDI; 2934 bus_space_write_4(st, sh, SIP_EROMAR, reg); 2935 bus_space_write_4(st, sh, SIP_EROMAR, 2936 reg | EROMAR_EESK); 2937 delay(4); 2938 bus_space_write_4(st, sh, SIP_EROMAR, reg); 2939 delay(4); 2940 } 2941 2942 /* Shift out data. */ 2943 reg = EROMAR_EECS; 2944 data[i] = 0; 2945 for (x = 16; x > 0; x--) { 2946 bus_space_write_4(st, sh, SIP_EROMAR, 2947 reg | EROMAR_EESK); 2948 delay(4); 2949 if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO) 2950 data[i] |= (1 << (x - 1)); 2951 bus_space_write_4(st, sh, SIP_EROMAR, reg); 2952 delay(4); 2953 } 2954 2955 /* Clear CHIP SELECT. */ 2956 bus_space_write_4(st, sh, SIP_EROMAR, 0); 2957 delay(4); 2958 } 2959 } 2960 2961 /* 2962 * sipcom_add_rxbuf: 2963 * 2964 * Add a receive buffer to the indicated descriptor. 2965 */ 2966 static int 2967 sipcom_add_rxbuf(struct sip_softc *sc, int idx) 2968 { 2969 struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx]; 2970 struct mbuf *m; 2971 int error; 2972 2973 MGETHDR(m, M_DONTWAIT, MT_DATA); 2974 if (m == NULL) 2975 return (ENOBUFS); 2976 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner); 2977 2978 MCLGET(m, M_DONTWAIT); 2979 if ((m->m_flags & M_EXT) == 0) { 2980 m_freem(m); 2981 return (ENOBUFS); 2982 } 2983 2984 /* XXX I don't believe this is necessary. --dyoung */ 2985 if (sc->sc_gigabit) 2986 m->m_len = sc->sc_parm->p_rxbuf_len; 2987 2988 if (rxs->rxs_mbuf != NULL) 2989 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 2990 2991 rxs->rxs_mbuf = m; 2992 2993 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, 2994 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, 2995 BUS_DMA_READ|BUS_DMA_NOWAIT); 2996 if (error) { 2997 printf("%s: can't load rx DMA map %d, error = %d\n", 2998 sc->sc_dev.dv_xname, idx, error); 2999 panic("%s", __func__); /* XXX */ 3000 } 3001 3002 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 3003 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 3004 3005 sip_init_rxdesc(sc, idx); 3006 3007 return (0); 3008 } 3009 3010 /* 3011 * sip_sis900_set_filter: 3012 * 3013 * Set up the receive filter. 3014 */ 3015 static void 3016 sipcom_sis900_set_filter(struct sip_softc *sc) 3017 { 3018 bus_space_tag_t st = sc->sc_st; 3019 bus_space_handle_t sh = sc->sc_sh; 3020 struct ethercom *ec = &sc->sc_ethercom; 3021 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 3022 struct ether_multi *enm; 3023 const u_int8_t *cp; 3024 struct ether_multistep step; 3025 u_int32_t crc, mchash[16]; 3026 3027 /* 3028 * Initialize the prototype RFCR. 3029 */ 3030 sc->sc_rfcr = RFCR_RFEN; 3031 if (ifp->if_flags & IFF_BROADCAST) 3032 sc->sc_rfcr |= RFCR_AAB; 3033 if (ifp->if_flags & IFF_PROMISC) { 3034 sc->sc_rfcr |= RFCR_AAP; 3035 goto allmulti; 3036 } 3037 3038 /* 3039 * Set up the multicast address filter by passing all multicast 3040 * addresses through a CRC generator, and then using the high-order 3041 * 6 bits as an index into the 128 bit multicast hash table (only 3042 * the lower 16 bits of each 32 bit multicast hash register are 3043 * valid). The high order bits select the register, while the 3044 * rest of the bits select the bit within the register. 3045 */ 3046 3047 memset(mchash, 0, sizeof(mchash)); 3048 3049 /* 3050 * SiS900 (at least SiS963) requires us to register the address of 3051 * the PAUSE packet (01:80:c2:00:00:01) into the address filter. 3052 */ 3053 crc = 0x0ed423f9; 3054 3055 if (SIP_SIS900_REV(sc, SIS_REV_635) || 3056 SIP_SIS900_REV(sc, SIS_REV_960) || 3057 SIP_SIS900_REV(sc, SIS_REV_900B)) { 3058 /* Just want the 8 most significant bits. */ 3059 crc >>= 24; 3060 } else { 3061 /* Just want the 7 most significant bits. */ 3062 crc >>= 25; 3063 } 3064 3065 /* Set the corresponding bit in the hash table. */ 3066 mchash[crc >> 4] |= 1 << (crc & 0xf); 3067 3068 ETHER_FIRST_MULTI(step, ec, enm); 3069 while (enm != NULL) { 3070 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 3071 /* 3072 * We must listen to a range of multicast addresses. 3073 * For now, just accept all multicasts, rather than 3074 * trying to set only those filter bits needed to match 3075 * the range. (At this time, the only use of address 3076 * ranges is for IP multicast routing, for which the 3077 * range is big enough to require all bits set.) 3078 */ 3079 goto allmulti; 3080 } 3081 3082 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN); 3083 3084 if (SIP_SIS900_REV(sc, SIS_REV_635) || 3085 SIP_SIS900_REV(sc, SIS_REV_960) || 3086 SIP_SIS900_REV(sc, SIS_REV_900B)) { 3087 /* Just want the 8 most significant bits. */ 3088 crc >>= 24; 3089 } else { 3090 /* Just want the 7 most significant bits. */ 3091 crc >>= 25; 3092 } 3093 3094 /* Set the corresponding bit in the hash table. */ 3095 mchash[crc >> 4] |= 1 << (crc & 0xf); 3096 3097 ETHER_NEXT_MULTI(step, enm); 3098 } 3099 3100 ifp->if_flags &= ~IFF_ALLMULTI; 3101 goto setit; 3102 3103 allmulti: 3104 ifp->if_flags |= IFF_ALLMULTI; 3105 sc->sc_rfcr |= RFCR_AAM; 3106 3107 setit: 3108 #define FILTER_EMIT(addr, data) \ 3109 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \ 3110 delay(1); \ 3111 bus_space_write_4(st, sh, SIP_RFDR, (data)); \ 3112 delay(1) 3113 3114 /* 3115 * Disable receive filter, and program the node address. 3116 */ 3117 cp = CLLADDR(ifp->if_sadl); 3118 FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]); 3119 FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]); 3120 FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]); 3121 3122 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 3123 /* 3124 * Program the multicast hash table. 3125 */ 3126 FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]); 3127 FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]); 3128 FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]); 3129 FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]); 3130 FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]); 3131 FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]); 3132 FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]); 3133 FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]); 3134 if (SIP_SIS900_REV(sc, SIS_REV_635) || 3135 SIP_SIS900_REV(sc, SIS_REV_960) || 3136 SIP_SIS900_REV(sc, SIS_REV_900B)) { 3137 FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]); 3138 FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]); 3139 FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]); 3140 FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]); 3141 FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]); 3142 FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]); 3143 FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]); 3144 FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]); 3145 } 3146 } 3147 #undef FILTER_EMIT 3148 3149 /* 3150 * Re-enable the receiver filter. 3151 */ 3152 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr); 3153 } 3154 3155 /* 3156 * sip_dp83815_set_filter: 3157 * 3158 * Set up the receive filter. 3159 */ 3160 static void 3161 sipcom_dp83815_set_filter(struct sip_softc *sc) 3162 { 3163 bus_space_tag_t st = sc->sc_st; 3164 bus_space_handle_t sh = sc->sc_sh; 3165 struct ethercom *ec = &sc->sc_ethercom; 3166 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 3167 struct ether_multi *enm; 3168 const u_int8_t *cp; 3169 struct ether_multistep step; 3170 u_int32_t crc, hash, slot, bit; 3171 #define MCHASH_NWORDS_83820 128 3172 #define MCHASH_NWORDS_83815 32 3173 #define MCHASH_NWORDS MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815) 3174 u_int16_t mchash[MCHASH_NWORDS]; 3175 int i; 3176 3177 /* 3178 * Initialize the prototype RFCR. 3179 * Enable the receive filter, and accept on 3180 * Perfect (destination address) Match 3181 * If IFF_BROADCAST, also accept all broadcast packets. 3182 * If IFF_PROMISC, accept all unicast packets (and later, set 3183 * IFF_ALLMULTI and accept all multicast, too). 3184 */ 3185 sc->sc_rfcr = RFCR_RFEN | RFCR_APM; 3186 if (ifp->if_flags & IFF_BROADCAST) 3187 sc->sc_rfcr |= RFCR_AAB; 3188 if (ifp->if_flags & IFF_PROMISC) { 3189 sc->sc_rfcr |= RFCR_AAP; 3190 goto allmulti; 3191 } 3192 3193 /* 3194 * Set up the DP83820/DP83815 multicast address filter by 3195 * passing all multicast addresses through a CRC generator, 3196 * and then using the high-order 11/9 bits as an index into 3197 * the 2048/512 bit multicast hash table. The high-order 3198 * 7/5 bits select the slot, while the low-order 4 bits 3199 * select the bit within the slot. Note that only the low 3200 * 16-bits of each filter word are used, and there are 3201 * 128/32 filter words. 3202 */ 3203 3204 memset(mchash, 0, sizeof(mchash)); 3205 3206 ifp->if_flags &= ~IFF_ALLMULTI; 3207 ETHER_FIRST_MULTI(step, ec, enm); 3208 if (enm == NULL) 3209 goto setit; 3210 while (enm != NULL) { 3211 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 3212 /* 3213 * We must listen to a range of multicast addresses. 3214 * For now, just accept all multicasts, rather than 3215 * trying to set only those filter bits needed to match 3216 * the range. (At this time, the only use of address 3217 * ranges is for IP multicast routing, for which the 3218 * range is big enough to require all bits set.) 3219 */ 3220 goto allmulti; 3221 } 3222 3223 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN); 3224 3225 if (sc->sc_gigabit) { 3226 /* Just want the 11 most significant bits. */ 3227 hash = crc >> 21; 3228 } else { 3229 /* Just want the 9 most significant bits. */ 3230 hash = crc >> 23; 3231 } 3232 3233 slot = hash >> 4; 3234 bit = hash & 0xf; 3235 3236 /* Set the corresponding bit in the hash table. */ 3237 mchash[slot] |= 1 << bit; 3238 3239 ETHER_NEXT_MULTI(step, enm); 3240 } 3241 sc->sc_rfcr |= RFCR_MHEN; 3242 goto setit; 3243 3244 allmulti: 3245 ifp->if_flags |= IFF_ALLMULTI; 3246 sc->sc_rfcr |= RFCR_AAM; 3247 3248 setit: 3249 #define FILTER_EMIT(addr, data) \ 3250 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \ 3251 delay(1); \ 3252 bus_space_write_4(st, sh, SIP_RFDR, (data)); \ 3253 delay(1) 3254 3255 /* 3256 * Disable receive filter, and program the node address. 3257 */ 3258 cp = CLLADDR(ifp->if_sadl); 3259 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]); 3260 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]); 3261 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]); 3262 3263 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 3264 int nwords = 3265 sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815; 3266 /* 3267 * Program the multicast hash table. 3268 */ 3269 for (i = 0; i < nwords; i++) { 3270 FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]); 3271 } 3272 } 3273 #undef FILTER_EMIT 3274 #undef MCHASH_NWORDS 3275 #undef MCHASH_NWORDS_83815 3276 #undef MCHASH_NWORDS_83820 3277 3278 /* 3279 * Re-enable the receiver filter. 3280 */ 3281 bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr); 3282 } 3283 3284 /* 3285 * sip_dp83820_mii_readreg: [mii interface function] 3286 * 3287 * Read a PHY register on the MII of the DP83820. 3288 */ 3289 static int 3290 sipcom_dp83820_mii_readreg(struct device *self, int phy, int reg) 3291 { 3292 struct sip_softc *sc = (void *) self; 3293 3294 if (sc->sc_cfg & CFG_TBI_EN) { 3295 bus_addr_t tbireg; 3296 int rv; 3297 3298 if (phy != 0) 3299 return (0); 3300 3301 switch (reg) { 3302 case MII_BMCR: tbireg = SIP_TBICR; break; 3303 case MII_BMSR: tbireg = SIP_TBISR; break; 3304 case MII_ANAR: tbireg = SIP_TANAR; break; 3305 case MII_ANLPAR: tbireg = SIP_TANLPAR; break; 3306 case MII_ANER: tbireg = SIP_TANER; break; 3307 case MII_EXTSR: 3308 /* 3309 * Don't even bother reading the TESR register. 3310 * The manual documents that the device has 3311 * 1000baseX full/half capability, but the 3312 * register itself seems read back 0 on some 3313 * boards. Just hard-code the result. 3314 */ 3315 return (EXTSR_1000XFDX|EXTSR_1000XHDX); 3316 3317 default: 3318 return (0); 3319 } 3320 3321 rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff; 3322 if (tbireg == SIP_TBISR) { 3323 /* LINK and ACOMP are switched! */ 3324 int val = rv; 3325 3326 rv = 0; 3327 if (val & TBISR_MR_LINK_STATUS) 3328 rv |= BMSR_LINK; 3329 if (val & TBISR_MR_AN_COMPLETE) 3330 rv |= BMSR_ACOMP; 3331 3332 /* 3333 * The manual claims this register reads back 0 3334 * on hard and soft reset. But we want to let 3335 * the gentbi driver know that we support auto- 3336 * negotiation, so hard-code this bit in the 3337 * result. 3338 */ 3339 rv |= BMSR_ANEG | BMSR_EXTSTAT; 3340 } 3341 3342 return (rv); 3343 } 3344 3345 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg); 3346 } 3347 3348 /* 3349 * sip_dp83820_mii_writereg: [mii interface function] 3350 * 3351 * Write a PHY register on the MII of the DP83820. 3352 */ 3353 static void 3354 sipcom_dp83820_mii_writereg(struct device *self, int phy, int reg, int val) 3355 { 3356 struct sip_softc *sc = (void *) self; 3357 3358 if (sc->sc_cfg & CFG_TBI_EN) { 3359 bus_addr_t tbireg; 3360 3361 if (phy != 0) 3362 return; 3363 3364 switch (reg) { 3365 case MII_BMCR: tbireg = SIP_TBICR; break; 3366 case MII_ANAR: tbireg = SIP_TANAR; break; 3367 case MII_ANLPAR: tbireg = SIP_TANLPAR; break; 3368 default: 3369 return; 3370 } 3371 3372 bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val); 3373 return; 3374 } 3375 3376 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val); 3377 } 3378 3379 /* 3380 * sip_dp83820_mii_statchg: [mii interface function] 3381 * 3382 * Callback from MII layer when media changes. 3383 */ 3384 static void 3385 sipcom_dp83820_mii_statchg(struct device *self) 3386 { 3387 struct sip_softc *sc = (struct sip_softc *) self; 3388 struct mii_data *mii = &sc->sc_mii; 3389 u_int32_t cfg, pcr; 3390 3391 /* 3392 * Get flow control negotiation result. 3393 */ 3394 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO && 3395 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) { 3396 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK; 3397 mii->mii_media_active &= ~IFM_ETH_FMASK; 3398 } 3399 3400 /* 3401 * Update TXCFG for full-duplex operation. 3402 */ 3403 if ((mii->mii_media_active & IFM_FDX) != 0) 3404 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI); 3405 else 3406 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI); 3407 3408 /* 3409 * Update RXCFG for full-duplex or loopback. 3410 */ 3411 if ((mii->mii_media_active & IFM_FDX) != 0 || 3412 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP) 3413 sc->sc_rxcfg |= RXCFG_ATX; 3414 else 3415 sc->sc_rxcfg &= ~RXCFG_ATX; 3416 3417 /* 3418 * Update CFG for MII/GMII. 3419 */ 3420 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000)) 3421 cfg = sc->sc_cfg | CFG_MODE_1000; 3422 else 3423 cfg = sc->sc_cfg; 3424 3425 /* 3426 * 802.3x flow control. 3427 */ 3428 pcr = 0; 3429 if (sc->sc_flowflags & IFM_FLOW) { 3430 if (sc->sc_flowflags & IFM_ETH_TXPAUSE) 3431 pcr |= sc->sc_rx_flow_thresh; 3432 if (sc->sc_flowflags & IFM_ETH_RXPAUSE) 3433 pcr |= PCR_PSEN | PCR_PS_MCAST; 3434 } 3435 3436 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg); 3437 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg, 3438 sc->sc_txcfg); 3439 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg, 3440 sc->sc_rxcfg); 3441 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr); 3442 } 3443 3444 /* 3445 * sip_mii_bitbang_read: [mii bit-bang interface function] 3446 * 3447 * Read the MII serial port for the MII bit-bang module. 3448 */ 3449 static u_int32_t 3450 sipcom_mii_bitbang_read(struct device *self) 3451 { 3452 struct sip_softc *sc = (void *) self; 3453 3454 return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR)); 3455 } 3456 3457 /* 3458 * sip_mii_bitbang_write: [mii big-bang interface function] 3459 * 3460 * Write the MII serial port for the MII bit-bang module. 3461 */ 3462 static void 3463 sipcom_mii_bitbang_write(struct device *self, u_int32_t val) 3464 { 3465 struct sip_softc *sc = (void *) self; 3466 3467 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val); 3468 } 3469 3470 /* 3471 * sip_sis900_mii_readreg: [mii interface function] 3472 * 3473 * Read a PHY register on the MII. 3474 */ 3475 static int 3476 sipcom_sis900_mii_readreg(struct device *self, int phy, int reg) 3477 { 3478 struct sip_softc *sc = (struct sip_softc *) self; 3479 u_int32_t enphy; 3480 3481 /* 3482 * The PHY of recent SiS chipsets is accessed through bitbang 3483 * operations. 3484 */ 3485 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) 3486 return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, 3487 phy, reg); 3488 3489 #ifndef SIS900_MII_RESTRICT 3490 /* 3491 * The SiS 900 has only an internal PHY on the MII. Only allow 3492 * MII address 0. 3493 */ 3494 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0) 3495 return (0); 3496 #endif 3497 3498 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY, 3499 (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) | 3500 ENPHY_RWCMD | ENPHY_ACCESS); 3501 do { 3502 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY); 3503 } while (enphy & ENPHY_ACCESS); 3504 return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT); 3505 } 3506 3507 /* 3508 * sip_sis900_mii_writereg: [mii interface function] 3509 * 3510 * Write a PHY register on the MII. 3511 */ 3512 static void 3513 sipcom_sis900_mii_writereg(struct device *self, int phy, int reg, int val) 3514 { 3515 struct sip_softc *sc = (struct sip_softc *) self; 3516 u_int32_t enphy; 3517 3518 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) { 3519 mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, 3520 phy, reg, val); 3521 return; 3522 } 3523 3524 #ifndef SIS900_MII_RESTRICT 3525 /* 3526 * The SiS 900 has only an internal PHY on the MII. Only allow 3527 * MII address 0. 3528 */ 3529 if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0) 3530 return; 3531 #endif 3532 3533 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY, 3534 (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) | 3535 (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS); 3536 do { 3537 enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY); 3538 } while (enphy & ENPHY_ACCESS); 3539 } 3540 3541 /* 3542 * sip_sis900_mii_statchg: [mii interface function] 3543 * 3544 * Callback from MII layer when media changes. 3545 */ 3546 static void 3547 sipcom_sis900_mii_statchg(struct device *self) 3548 { 3549 struct sip_softc *sc = (struct sip_softc *) self; 3550 struct mii_data *mii = &sc->sc_mii; 3551 u_int32_t flowctl; 3552 3553 /* 3554 * Get flow control negotiation result. 3555 */ 3556 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO && 3557 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) { 3558 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK; 3559 mii->mii_media_active &= ~IFM_ETH_FMASK; 3560 } 3561 3562 /* 3563 * Update TXCFG for full-duplex operation. 3564 */ 3565 if ((mii->mii_media_active & IFM_FDX) != 0) 3566 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI); 3567 else 3568 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI); 3569 3570 /* 3571 * Update RXCFG for full-duplex or loopback. 3572 */ 3573 if ((mii->mii_media_active & IFM_FDX) != 0 || 3574 IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP) 3575 sc->sc_rxcfg |= RXCFG_ATX; 3576 else 3577 sc->sc_rxcfg &= ~RXCFG_ATX; 3578 3579 /* 3580 * Update IMR for use of 802.3x flow control. 3581 */ 3582 if (sc->sc_flowflags & IFM_FLOW) { 3583 sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST); 3584 flowctl = FLOWCTL_FLOWEN; 3585 } else { 3586 sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST); 3587 flowctl = 0; 3588 } 3589 3590 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg, 3591 sc->sc_txcfg); 3592 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg, 3593 sc->sc_rxcfg); 3594 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr); 3595 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl); 3596 } 3597 3598 /* 3599 * sip_dp83815_mii_readreg: [mii interface function] 3600 * 3601 * Read a PHY register on the MII. 3602 */ 3603 static int 3604 sipcom_dp83815_mii_readreg(struct device *self, int phy, int reg) 3605 { 3606 struct sip_softc *sc = (struct sip_softc *) self; 3607 u_int32_t val; 3608 3609 /* 3610 * The DP83815 only has an internal PHY. Only allow 3611 * MII address 0. 3612 */ 3613 if (phy != 0) 3614 return (0); 3615 3616 /* 3617 * Apparently, after a reset, the DP83815 can take a while 3618 * to respond. During this recovery period, the BMSR returns 3619 * a value of 0. Catch this -- it's not supposed to happen 3620 * (the BMSR has some hardcoded-to-1 bits), and wait for the 3621 * PHY to come back to life. 3622 * 3623 * This works out because the BMSR is the first register 3624 * read during the PHY probe process. 3625 */ 3626 do { 3627 val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg)); 3628 } while (reg == MII_BMSR && val == 0); 3629 3630 return (val & 0xffff); 3631 } 3632 3633 /* 3634 * sip_dp83815_mii_writereg: [mii interface function] 3635 * 3636 * Write a PHY register to the MII. 3637 */ 3638 static void 3639 sipcom_dp83815_mii_writereg(struct device *self, int phy, int reg, int val) 3640 { 3641 struct sip_softc *sc = (struct sip_softc *) self; 3642 3643 /* 3644 * The DP83815 only has an internal PHY. Only allow 3645 * MII address 0. 3646 */ 3647 if (phy != 0) 3648 return; 3649 3650 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val); 3651 } 3652 3653 /* 3654 * sip_dp83815_mii_statchg: [mii interface function] 3655 * 3656 * Callback from MII layer when media changes. 3657 */ 3658 static void 3659 sipcom_dp83815_mii_statchg(struct device *self) 3660 { 3661 struct sip_softc *sc = (struct sip_softc *) self; 3662 3663 /* 3664 * Update TXCFG for full-duplex operation. 3665 */ 3666 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0) 3667 sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI); 3668 else 3669 sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI); 3670 3671 /* 3672 * Update RXCFG for full-duplex or loopback. 3673 */ 3674 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 || 3675 IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP) 3676 sc->sc_rxcfg |= RXCFG_ATX; 3677 else 3678 sc->sc_rxcfg &= ~RXCFG_ATX; 3679 3680 /* 3681 * XXX 802.3x flow control. 3682 */ 3683 3684 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg, 3685 sc->sc_txcfg); 3686 bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg, 3687 sc->sc_rxcfg); 3688 3689 /* 3690 * Some DP83815s experience problems when used with short 3691 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This 3692 * sequence adjusts the DSP's signal attenuation to fix the 3693 * problem. 3694 */ 3695 if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) { 3696 uint32_t reg; 3697 3698 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001); 3699 3700 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4); 3701 reg &= 0x0fff; 3702 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000); 3703 delay(100); 3704 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc); 3705 reg &= 0x00ff; 3706 if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) { 3707 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc, 3708 0x00e8); 3709 reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4); 3710 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, 3711 reg | 0x20); 3712 } 3713 3714 bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0); 3715 } 3716 } 3717 3718 static void 3719 sipcom_dp83820_read_macaddr(struct sip_softc *sc, 3720 const struct pci_attach_args *pa, u_int8_t *enaddr) 3721 { 3722 u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2]; 3723 u_int8_t cksum, *e, match; 3724 int i; 3725 3726 /* 3727 * EEPROM data format for the DP83820 can be found in 3728 * the DP83820 manual, section 4.2.4. 3729 */ 3730 3731 sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data); 3732 3733 match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8; 3734 match = ~(match - 1); 3735 3736 cksum = 0x55; 3737 e = (u_int8_t *) eeprom_data; 3738 for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++) 3739 cksum += *e++; 3740 3741 if (cksum != match) 3742 printf("%s: Checksum (%x) mismatch (%x)", 3743 sc->sc_dev.dv_xname, cksum, match); 3744 3745 enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff; 3746 enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8; 3747 enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff; 3748 enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8; 3749 enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff; 3750 enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8; 3751 } 3752 3753 static void 3754 sipcom_sis900_eeprom_delay(struct sip_softc *sc) 3755 { 3756 int i; 3757 3758 /* 3759 * FreeBSD goes from (300/33)+1 [10] to 0. There must be 3760 * a reason, but I don't know it. 3761 */ 3762 for (i = 0; i < 10; i++) 3763 bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR); 3764 } 3765 3766 static void 3767 sipcom_sis900_read_macaddr(struct sip_softc *sc, 3768 const struct pci_attach_args *pa, u_int8_t *enaddr) 3769 { 3770 u_int16_t myea[ETHER_ADDR_LEN / 2]; 3771 3772 switch (sc->sc_rev) { 3773 case SIS_REV_630S: 3774 case SIS_REV_630E: 3775 case SIS_REV_630EA1: 3776 case SIS_REV_630ET: 3777 case SIS_REV_635: 3778 /* 3779 * The MAC address for the on-board Ethernet of 3780 * the SiS 630 chipset is in the NVRAM. Kick 3781 * the chip into re-loading it from NVRAM, and 3782 * read the MAC address out of the filter registers. 3783 */ 3784 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD); 3785 3786 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR, 3787 RFCR_RFADDR_NODE0); 3788 myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) & 3789 0xffff; 3790 3791 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR, 3792 RFCR_RFADDR_NODE2); 3793 myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) & 3794 0xffff; 3795 3796 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR, 3797 RFCR_RFADDR_NODE4); 3798 myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) & 3799 0xffff; 3800 break; 3801 3802 case SIS_REV_960: 3803 { 3804 #define SIS_SET_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \ 3805 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y)) 3806 3807 #define SIS_CLR_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \ 3808 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y)) 3809 3810 int waittime, i; 3811 3812 /* Allow to read EEPROM from LAN. It is shared 3813 * between a 1394 controller and the NIC and each 3814 * time we access it, we need to set SIS_EECMD_REQ. 3815 */ 3816 SIS_SET_EROMAR(sc, EROMAR_REQ); 3817 3818 for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */ 3819 /* Force EEPROM to idle state. */ 3820 3821 /* 3822 * XXX-cube This is ugly. I'll look for docs about it. 3823 */ 3824 SIS_SET_EROMAR(sc, EROMAR_EECS); 3825 sipcom_sis900_eeprom_delay(sc); 3826 for (i = 0; i <= 25; i++) { /* Yes, 26 times. */ 3827 SIS_SET_EROMAR(sc, EROMAR_EESK); 3828 sipcom_sis900_eeprom_delay(sc); 3829 SIS_CLR_EROMAR(sc, EROMAR_EESK); 3830 sipcom_sis900_eeprom_delay(sc); 3831 } 3832 SIS_CLR_EROMAR(sc, EROMAR_EECS); 3833 sipcom_sis900_eeprom_delay(sc); 3834 bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0); 3835 3836 if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) { 3837 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1, 3838 sizeof(myea) / sizeof(myea[0]), myea); 3839 break; 3840 } 3841 DELAY(1); 3842 } 3843 3844 /* 3845 * Set SIS_EECTL_CLK to high, so a other master 3846 * can operate on the i2c bus. 3847 */ 3848 SIS_SET_EROMAR(sc, EROMAR_EESK); 3849 3850 /* Refuse EEPROM access by LAN */ 3851 SIS_SET_EROMAR(sc, EROMAR_DONE); 3852 } break; 3853 3854 default: 3855 sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1, 3856 sizeof(myea) / sizeof(myea[0]), myea); 3857 } 3858 3859 enaddr[0] = myea[0] & 0xff; 3860 enaddr[1] = myea[0] >> 8; 3861 enaddr[2] = myea[1] & 0xff; 3862 enaddr[3] = myea[1] >> 8; 3863 enaddr[4] = myea[2] & 0xff; 3864 enaddr[5] = myea[2] >> 8; 3865 } 3866 3867 /* Table and macro to bit-reverse an octet. */ 3868 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15}; 3869 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf]) 3870 3871 static void 3872 sipcom_dp83815_read_macaddr(struct sip_softc *sc, 3873 const struct pci_attach_args *pa, u_int8_t *enaddr) 3874 { 3875 u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea; 3876 u_int8_t cksum, *e, match; 3877 int i; 3878 3879 sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) / 3880 sizeof(eeprom_data[0]), eeprom_data); 3881 3882 match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8; 3883 match = ~(match - 1); 3884 3885 cksum = 0x55; 3886 e = (u_int8_t *) eeprom_data; 3887 for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) { 3888 cksum += *e++; 3889 } 3890 if (cksum != match) { 3891 printf("%s: Checksum (%x) mismatch (%x)", 3892 sc->sc_dev.dv_xname, cksum, match); 3893 } 3894 3895 /* 3896 * Unrolled because it makes slightly more sense this way. 3897 * The DP83815 stores the MAC address in bit 0 of word 6 3898 * through bit 15 of word 8. 3899 */ 3900 ea = &eeprom_data[6]; 3901 enaddr[0] = ((*ea & 0x1) << 7); 3902 ea++; 3903 enaddr[0] |= ((*ea & 0xFE00) >> 9); 3904 enaddr[1] = ((*ea & 0x1FE) >> 1); 3905 enaddr[2] = ((*ea & 0x1) << 7); 3906 ea++; 3907 enaddr[2] |= ((*ea & 0xFE00) >> 9); 3908 enaddr[3] = ((*ea & 0x1FE) >> 1); 3909 enaddr[4] = ((*ea & 0x1) << 7); 3910 ea++; 3911 enaddr[4] |= ((*ea & 0xFE00) >> 9); 3912 enaddr[5] = ((*ea & 0x1FE) >> 1); 3913 3914 /* 3915 * In case that's not weird enough, we also need to reverse 3916 * the bits in each byte. This all actually makes more sense 3917 * if you think about the EEPROM storage as an array of bits 3918 * being shifted into bytes, but that's not how we're looking 3919 * at it here... 3920 */ 3921 for (i = 0; i < 6 ;i++) 3922 enaddr[i] = bbr(enaddr[i]); 3923 } 3924 3925 /* 3926 * sip_mediastatus: [ifmedia interface function] 3927 * 3928 * Get the current interface media status. 3929 */ 3930 static void 3931 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 3932 { 3933 struct sip_softc *sc = ifp->if_softc; 3934 3935 ether_mediastatus(ifp, ifmr); 3936 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) | 3937 sc->sc_flowflags; 3938 } 3939