xref: /netbsd-src/sys/dev/pci/if_sip.c (revision 267197ec1eebfcb9810ea27a89625b6ddf68e3e7)
1 /*	$NetBSD: if_sip.c,v 1.127 2008/02/07 01:21:57 dyoung Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*-
40  * Copyright (c) 1999 Network Computer, Inc.
41  * All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of Network Computer, Inc. nor the names of its
52  *    contributors may be used to endorse or promote products derived
53  *    from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65  * POSSIBILITY OF SUCH DAMAGE.
66  */
67 
68 /*
69  * Device driver for the Silicon Integrated Systems SiS 900,
70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72  * controllers.
73  *
74  * Originally written to support the SiS 900 by Jason R. Thorpe for
75  * Network Computer, Inc.
76  *
77  * TODO:
78  *
79  *	- Reduce the Rx interrupt load.
80  */
81 
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.127 2008/02/07 01:21:57 dyoung Exp $");
84 
85 #include "bpfilter.h"
86 #include "rnd.h"
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99 
100 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
101 
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105 
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110 
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114 
115 #include <sys/bus.h>
116 #include <sys/intr.h>
117 #include <machine/endian.h>
118 
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/mii_bitbang.h>
122 
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 #include <dev/pci/pcidevs.h>
126 
127 #include <dev/pci/if_sipreg.h>
128 
129 /*
130  * Transmit descriptor list size.  This is arbitrary, but allocate
131  * enough descriptors for 128 pending transmissions, and 8 segments
132  * per packet (64 for DP83820 for jumbo frames).
133  *
134  * This MUST work out to a power of 2.
135  */
136 #define	GSIP_NTXSEGS_ALLOC 16
137 #define	SIP_NTXSEGS_ALLOC 8
138 
139 #define	SIP_TXQUEUELEN		256
140 #define	MAX_SIP_NTXDESC	\
141     (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
142 
143 /*
144  * Receive descriptor list size.  We have one Rx buffer per incoming
145  * packet, so this logic is a little simpler.
146  *
147  * Actually, on the DP83820, we allow the packet to consume more than
148  * one buffer, in order to support jumbo Ethernet frames.  In that
149  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
150  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
151  * so we'd better be quick about handling receive interrupts.
152  */
153 #define	GSIP_NRXDESC		256
154 #define	SIP_NRXDESC		128
155 
156 #define	MAX_SIP_NRXDESC	MAX(GSIP_NRXDESC, SIP_NRXDESC)
157 
158 /*
159  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
160  * a single clump that maps to a single DMA segment to make several things
161  * easier.
162  */
163 struct sip_control_data {
164 	/*
165 	 * The transmit descriptors.
166 	 */
167 	struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
168 
169 	/*
170 	 * The receive descriptors.
171 	 */
172 	struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
173 };
174 
175 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
176 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
177 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
178 
179 /*
180  * Software state for transmit jobs.
181  */
182 struct sip_txsoft {
183 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
184 	bus_dmamap_t txs_dmamap;	/* our DMA map */
185 	int txs_firstdesc;		/* first descriptor in packet */
186 	int txs_lastdesc;		/* last descriptor in packet */
187 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
188 };
189 
190 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
191 
192 /*
193  * Software state for receive jobs.
194  */
195 struct sip_rxsoft {
196 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
197 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
198 };
199 
200 enum sip_attach_stage {
201 	  SIP_ATTACH_FIN = 0
202 	, SIP_ATTACH_CREATE_RXMAP
203 	, SIP_ATTACH_CREATE_TXMAP
204 	, SIP_ATTACH_LOAD_MAP
205 	, SIP_ATTACH_CREATE_MAP
206 	, SIP_ATTACH_MAP_MEM
207 	, SIP_ATTACH_ALLOC_MEM
208 	, SIP_ATTACH_INTR
209 	, SIP_ATTACH_MAP
210 };
211 
212 /*
213  * Software state per device.
214  */
215 struct sip_softc {
216 	struct device sc_dev;		/* generic device information */
217 	bus_space_tag_t sc_st;		/* bus space tag */
218 	bus_space_handle_t sc_sh;	/* bus space handle */
219 	bus_size_t sc_sz;		/* bus space size */
220 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
221 	pci_chipset_tag_t sc_pc;
222 	bus_dma_segment_t sc_seg;
223 	struct ethercom sc_ethercom;	/* ethernet common data */
224 
225 	const struct sip_product *sc_model; /* which model are we? */
226 	int sc_gigabit;			/* 1: 83820, 0: other */
227 	int sc_rev;			/* chip revision */
228 
229 	void *sc_ih;			/* interrupt cookie */
230 
231 	struct mii_data sc_mii;		/* MII/media information */
232 
233 	callout_t sc_tick_ch;		/* tick callout */
234 
235 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
236 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
237 
238 	/*
239 	 * Software state for transmit and receive descriptors.
240 	 */
241 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
242 	struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
243 
244 	/*
245 	 * Control data structures.
246 	 */
247 	struct sip_control_data *sc_control_data;
248 #define	sc_txdescs	sc_control_data->scd_txdescs
249 #define	sc_rxdescs	sc_control_data->scd_rxdescs
250 
251 #ifdef SIP_EVENT_COUNTERS
252 	/*
253 	 * Event counters.
254 	 */
255 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
256 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
257 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
258 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
259 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
260 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
261 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
262 	struct evcnt sc_ev_rxpause;	/* PAUSE received */
263 	/* DP83820 only */
264 	struct evcnt sc_ev_txpause;	/* PAUSE transmitted */
265 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
266 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
267 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
268 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
269 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
270 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
271 #endif /* SIP_EVENT_COUNTERS */
272 
273 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
274 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
275 	u_int32_t sc_imr;		/* prototype IMR register */
276 	u_int32_t sc_rfcr;		/* prototype RFCR register */
277 
278 	u_int32_t sc_cfg;		/* prototype CFG register */
279 
280 	u_int32_t sc_gpior;		/* prototype GPIOR register */
281 
282 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
283 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
284 
285 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
286 
287 	int	sc_flowflags;		/* 802.3x flow control flags */
288 	int	sc_rx_flow_thresh;	/* Rx FIFO threshold for flow control */
289 	int	sc_paused;		/* paused indication */
290 
291 	int	sc_txfree;		/* number of free Tx descriptors */
292 	int	sc_txnext;		/* next ready Tx descriptor */
293 	int	sc_txwin;		/* Tx descriptors since last intr */
294 
295 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
296 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
297 
298 	/* values of interface state at last init */
299 	struct {
300 		/* if_capenable */
301 		uint64_t	if_capenable;
302 		/* ec_capenable */
303 		int		ec_capenable;
304 		/* VLAN_ATTACHED */
305 		int		is_vlan;
306 	}	sc_prev;
307 
308 	short	sc_if_flags;
309 
310 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
311 	int	sc_rxdiscard;
312 	int	sc_rxlen;
313 	struct mbuf *sc_rxhead;
314 	struct mbuf *sc_rxtail;
315 	struct mbuf **sc_rxtailp;
316 
317 	int sc_ntxdesc;
318 	int sc_ntxdesc_mask;
319 
320 	int sc_nrxdesc_mask;
321 
322 	const struct sip_parm {
323 		const struct sip_regs {
324 			int r_rxcfg;
325 			int r_txcfg;
326 		} p_regs;
327 
328 		const struct sip_bits {
329 			uint32_t b_txcfg_mxdma_8;
330 			uint32_t b_txcfg_mxdma_16;
331 			uint32_t b_txcfg_mxdma_32;
332 			uint32_t b_txcfg_mxdma_64;
333 			uint32_t b_txcfg_mxdma_128;
334 			uint32_t b_txcfg_mxdma_256;
335 			uint32_t b_txcfg_mxdma_512;
336 			uint32_t b_txcfg_flth_mask;
337 			uint32_t b_txcfg_drth_mask;
338 
339 			uint32_t b_rxcfg_mxdma_8;
340 			uint32_t b_rxcfg_mxdma_16;
341 			uint32_t b_rxcfg_mxdma_32;
342 			uint32_t b_rxcfg_mxdma_64;
343 			uint32_t b_rxcfg_mxdma_128;
344 			uint32_t b_rxcfg_mxdma_256;
345 			uint32_t b_rxcfg_mxdma_512;
346 
347 			uint32_t b_isr_txrcmp;
348 			uint32_t b_isr_rxrcmp;
349 			uint32_t b_isr_dperr;
350 			uint32_t b_isr_sserr;
351 			uint32_t b_isr_rmabt;
352 			uint32_t b_isr_rtabt;
353 
354 			uint32_t b_cmdsts_size_mask;
355 		} p_bits;
356 		int		p_filtmem;
357 		int		p_rxbuf_len;
358 		bus_size_t	p_tx_dmamap_size;
359 		int		p_ntxsegs;
360 		int		p_ntxsegs_alloc;
361 		int		p_nrxdesc;
362 	} *sc_parm;
363 
364 	void (*sc_rxintr)(struct sip_softc *);
365 
366 #if NRND > 0
367 	rndsource_element_t rnd_source;	/* random source */
368 #endif
369 };
370 
371 #define	sc_bits	sc_parm->p_bits
372 #define	sc_regs	sc_parm->p_regs
373 
374 static const struct sip_parm sip_parm = {
375 	  .p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
376 	, .p_rxbuf_len = MCLBYTES - 1	/* field width */
377 	, .p_tx_dmamap_size = MCLBYTES
378 	, .p_ntxsegs = 16
379 	, .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
380 	, .p_nrxdesc = SIP_NRXDESC
381 	, .p_bits = {
382 		  .b_txcfg_mxdma_8	= 0x00200000	/*       8 bytes */
383 		, .b_txcfg_mxdma_16	= 0x00300000	/*      16 bytes */
384 		, .b_txcfg_mxdma_32	= 0x00400000	/*      32 bytes */
385 		, .b_txcfg_mxdma_64	= 0x00500000	/*      64 bytes */
386 		, .b_txcfg_mxdma_128	= 0x00600000	/*     128 bytes */
387 		, .b_txcfg_mxdma_256	= 0x00700000	/*     256 bytes */
388 		, .b_txcfg_mxdma_512	= 0x00000000	/*     512 bytes */
389 		, .b_txcfg_flth_mask	= 0x00003f00	/* Tx fill threshold */
390 		, .b_txcfg_drth_mask	= 0x0000003f	/* Tx drain threshold */
391 
392 		, .b_rxcfg_mxdma_8	= 0x00200000	/*       8 bytes */
393 		, .b_rxcfg_mxdma_16	= 0x00300000	/*      16 bytes */
394 		, .b_rxcfg_mxdma_32	= 0x00400000	/*      32 bytes */
395 		, .b_rxcfg_mxdma_64	= 0x00500000	/*      64 bytes */
396 		, .b_rxcfg_mxdma_128	= 0x00600000	/*     128 bytes */
397 		, .b_rxcfg_mxdma_256	= 0x00700000	/*     256 bytes */
398 		, .b_rxcfg_mxdma_512	= 0x00000000	/*     512 bytes */
399 
400 		, .b_isr_txrcmp	= 0x02000000	/* transmit reset complete */
401 		, .b_isr_rxrcmp	= 0x01000000	/* receive reset complete */
402 		, .b_isr_dperr	= 0x00800000	/* detected parity error */
403 		, .b_isr_sserr	= 0x00400000	/* signalled system error */
404 		, .b_isr_rmabt	= 0x00200000	/* received master abort */
405 		, .b_isr_rtabt	= 0x00100000	/* received target abort */
406 		, .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
407 	}
408 	, .p_regs = {
409 		.r_rxcfg = OTHER_SIP_RXCFG,
410 		.r_txcfg = OTHER_SIP_TXCFG
411 	}
412 }, gsip_parm = {
413 	  .p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
414 	, .p_rxbuf_len = MCLBYTES - 8
415 	, .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
416 	, .p_ntxsegs = 64
417 	, .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
418 	, .p_nrxdesc = GSIP_NRXDESC
419 	, .p_bits = {
420 		  .b_txcfg_mxdma_8	= 0x00100000	/*       8 bytes */
421 		, .b_txcfg_mxdma_16	= 0x00200000	/*      16 bytes */
422 		, .b_txcfg_mxdma_32	= 0x00300000	/*      32 bytes */
423 		, .b_txcfg_mxdma_64	= 0x00400000	/*      64 bytes */
424 		, .b_txcfg_mxdma_128	= 0x00500000	/*     128 bytes */
425 		, .b_txcfg_mxdma_256	= 0x00600000	/*     256 bytes */
426 		, .b_txcfg_mxdma_512	= 0x00700000	/*     512 bytes */
427 		, .b_txcfg_flth_mask	= 0x0000ff00	/* Fx fill threshold */
428 		, .b_txcfg_drth_mask	= 0x000000ff	/* Tx drain threshold */
429 
430 		, .b_rxcfg_mxdma_8	= 0x00100000	/*       8 bytes */
431 		, .b_rxcfg_mxdma_16	= 0x00200000	/*      16 bytes */
432 		, .b_rxcfg_mxdma_32	= 0x00300000	/*      32 bytes */
433 		, .b_rxcfg_mxdma_64	= 0x00400000	/*      64 bytes */
434 		, .b_rxcfg_mxdma_128	= 0x00500000	/*     128 bytes */
435 		, .b_rxcfg_mxdma_256	= 0x00600000	/*     256 bytes */
436 		, .b_rxcfg_mxdma_512	= 0x00700000	/*     512 bytes */
437 
438 		, .b_isr_txrcmp	= 0x00400000	/* transmit reset complete */
439 		, .b_isr_rxrcmp	= 0x00200000	/* receive reset complete */
440 		, .b_isr_dperr	= 0x00100000	/* detected parity error */
441 		, .b_isr_sserr	= 0x00080000	/* signalled system error */
442 		, .b_isr_rmabt	= 0x00040000	/* received master abort */
443 		, .b_isr_rtabt	= 0x00020000	/* received target abort */
444 		, .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
445 	}
446 	, .p_regs = {
447 		.r_rxcfg = DP83820_SIP_RXCFG,
448 		.r_txcfg = DP83820_SIP_TXCFG
449 	}
450 };
451 
452 static inline int
453 sip_nexttx(const struct sip_softc *sc, int x)
454 {
455 	return (x + 1) & sc->sc_ntxdesc_mask;
456 }
457 
458 static inline int
459 sip_nextrx(const struct sip_softc *sc, int x)
460 {
461 	return (x + 1) & sc->sc_nrxdesc_mask;
462 }
463 
464 /* 83820 only */
465 static inline void
466 sip_rxchain_reset(struct sip_softc *sc)
467 {
468 	sc->sc_rxtailp = &sc->sc_rxhead;
469 	*sc->sc_rxtailp = NULL;
470 	sc->sc_rxlen = 0;
471 }
472 
473 /* 83820 only */
474 static inline void
475 sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
476 {
477 	*sc->sc_rxtailp = sc->sc_rxtail = m;
478 	sc->sc_rxtailp = &m->m_next;
479 }
480 
481 #ifdef SIP_EVENT_COUNTERS
482 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
483 #else
484 #define	SIP_EVCNT_INCR(ev)	/* nothing */
485 #endif
486 
487 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
488 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
489 
490 static inline void
491 sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
492 {
493 	int x, n;
494 
495 	x = x0;
496 	n = n0;
497 
498 	/* If it will wrap around, sync to the end of the ring. */
499 	if (x + n > sc->sc_ntxdesc) {
500 		bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
501 		    SIP_CDTXOFF(x), sizeof(struct sip_desc) *
502 		    (sc->sc_ntxdesc - x), ops);
503 		n -= (sc->sc_ntxdesc - x);
504 		x = 0;
505 	}
506 
507 	/* Now sync whatever is left. */
508 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
509 	    SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
510 }
511 
512 static inline void
513 sip_cdrxsync(struct sip_softc *sc, int x, int ops)
514 {
515 	bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
516 	    SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
517 }
518 
519 #if 0
520 #ifdef DP83820
521 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
522 	u_int32_t	sipd_cmdsts;	/* command/status word */
523 #else
524 	u_int32_t	sipd_cmdsts;	/* command/status word */
525 	u_int32_t	sipd_bufptr;	/* pointer to DMA segment */
526 #endif /* DP83820 */
527 #endif /* 0 */
528 
529 static inline volatile uint32_t *
530 sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
531 {
532 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
533 }
534 
535 static inline volatile uint32_t *
536 sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
537 {
538 	return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
539 }
540 
541 static inline void
542 sip_init_rxdesc(struct sip_softc *sc, int x)
543 {
544 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
545 	struct sip_desc *sipd = &sc->sc_rxdescs[x];
546 
547 	sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
548 	*sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
549 	*sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
550 	    (sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
551 	sipd->sipd_extsts = 0;
552 	sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
553 }
554 
555 #define	SIP_CHIP_VERS(sc, v, p, r)					\
556 	((sc)->sc_model->sip_vendor == (v) &&				\
557 	 (sc)->sc_model->sip_product == (p) &&				\
558 	 (sc)->sc_rev == (r))
559 
560 #define	SIP_CHIP_MODEL(sc, v, p)					\
561 	((sc)->sc_model->sip_vendor == (v) &&				\
562 	 (sc)->sc_model->sip_product == (p))
563 
564 #define	SIP_SIS900_REV(sc, rev)						\
565 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
566 
567 #define SIP_TIMEOUT 1000
568 
569 static void	sipcom_start(struct ifnet *);
570 static void	sipcom_watchdog(struct ifnet *);
571 static int	sipcom_ioctl(struct ifnet *, u_long, void *);
572 static int	sipcom_init(struct ifnet *);
573 static void	sipcom_stop(struct ifnet *, int);
574 
575 static bool	sipcom_reset(struct sip_softc *);
576 static void	sipcom_rxdrain(struct sip_softc *);
577 static int	sipcom_add_rxbuf(struct sip_softc *, int);
578 static void	sipcom_read_eeprom(struct sip_softc *, int, int,
579 				      u_int16_t *);
580 static void	sipcom_tick(void *);
581 
582 static void	sipcom_sis900_set_filter(struct sip_softc *);
583 static void	sipcom_dp83815_set_filter(struct sip_softc *);
584 
585 static void	sipcom_dp83820_read_macaddr(struct sip_softc *,
586 		    const struct pci_attach_args *, u_int8_t *);
587 static void	sipcom_sis900_eeprom_delay(struct sip_softc *sc);
588 static void	sipcom_sis900_read_macaddr(struct sip_softc *,
589 		    const struct pci_attach_args *, u_int8_t *);
590 static void	sipcom_dp83815_read_macaddr(struct sip_softc *,
591 		    const struct pci_attach_args *, u_int8_t *);
592 
593 static int	sipcom_intr(void *);
594 static void	sipcom_txintr(struct sip_softc *);
595 static void	sip_rxintr(struct sip_softc *);
596 static void	gsip_rxintr(struct sip_softc *);
597 
598 static int	sipcom_dp83820_mii_readreg(struct device *, int, int);
599 static void	sipcom_dp83820_mii_writereg(struct device *, int, int, int);
600 static void	sipcom_dp83820_mii_statchg(struct device *);
601 
602 static int	sipcom_sis900_mii_readreg(struct device *, int, int);
603 static void	sipcom_sis900_mii_writereg(struct device *, int, int, int);
604 static void	sipcom_sis900_mii_statchg(struct device *);
605 
606 static int	sipcom_dp83815_mii_readreg(struct device *, int, int);
607 static void	sipcom_dp83815_mii_writereg(struct device *, int, int, int);
608 static void	sipcom_dp83815_mii_statchg(struct device *);
609 
610 static void	sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
611 
612 static int	sipcom_match(struct device *, struct cfdata *, void *);
613 static void	sipcom_attach(struct device *, struct device *, void *);
614 static void	sipcom_do_detach(device_t, enum sip_attach_stage);
615 static int	sipcom_detach(device_t, int);
616 static bool	sipcom_resume(device_t);
617 
618 int	gsip_copy_small = 0;
619 int	sip_copy_small = 0;
620 
621 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
622     sipcom_match, sipcom_attach, sipcom_detach, NULL);
623 CFATTACH_DECL(sip, sizeof(struct sip_softc),
624     sipcom_match, sipcom_attach, sipcom_detach, NULL);
625 
626 /*
627  * Descriptions of the variants of the SiS900.
628  */
629 struct sip_variant {
630 	int	(*sipv_mii_readreg)(struct device *, int, int);
631 	void	(*sipv_mii_writereg)(struct device *, int, int, int);
632 	void	(*sipv_mii_statchg)(struct device *);
633 	void	(*sipv_set_filter)(struct sip_softc *);
634 	void	(*sipv_read_macaddr)(struct sip_softc *,
635 		    const struct pci_attach_args *, u_int8_t *);
636 };
637 
638 static u_int32_t sipcom_mii_bitbang_read(struct device *);
639 static void	sipcom_mii_bitbang_write(struct device *, u_int32_t);
640 
641 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
642 	sipcom_mii_bitbang_read,
643 	sipcom_mii_bitbang_write,
644 	{
645 		EROMAR_MDIO,		/* MII_BIT_MDO */
646 		EROMAR_MDIO,		/* MII_BIT_MDI */
647 		EROMAR_MDC,		/* MII_BIT_MDC */
648 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
649 		0,			/* MII_BIT_DIR_PHY_HOST */
650 	}
651 };
652 
653 static const struct sip_variant sipcom_variant_dp83820 = {
654 	sipcom_dp83820_mii_readreg,
655 	sipcom_dp83820_mii_writereg,
656 	sipcom_dp83820_mii_statchg,
657 	sipcom_dp83815_set_filter,
658 	sipcom_dp83820_read_macaddr,
659 };
660 
661 static const struct sip_variant sipcom_variant_sis900 = {
662 	sipcom_sis900_mii_readreg,
663 	sipcom_sis900_mii_writereg,
664 	sipcom_sis900_mii_statchg,
665 	sipcom_sis900_set_filter,
666 	sipcom_sis900_read_macaddr,
667 };
668 
669 static const struct sip_variant sipcom_variant_dp83815 = {
670 	sipcom_dp83815_mii_readreg,
671 	sipcom_dp83815_mii_writereg,
672 	sipcom_dp83815_mii_statchg,
673 	sipcom_dp83815_set_filter,
674 	sipcom_dp83815_read_macaddr,
675 };
676 
677 
678 /*
679  * Devices supported by this driver.
680  */
681 static const struct sip_product {
682 	pci_vendor_id_t		sip_vendor;
683 	pci_product_id_t	sip_product;
684 	const char		*sip_name;
685 	const struct sip_variant *sip_variant;
686 	int			sip_gigabit;
687 } sipcom_products[] = {
688 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
689 	  "NatSemi DP83820 Gigabit Ethernet",
690 	  &sipcom_variant_dp83820, 1 },
691 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
692 	  "SiS 900 10/100 Ethernet",
693 	  &sipcom_variant_sis900, 0 },
694 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
695 	  "SiS 7016 10/100 Ethernet",
696 	  &sipcom_variant_sis900, 0 },
697 
698 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
699 	  "NatSemi DP83815 10/100 Ethernet",
700 	  &sipcom_variant_dp83815, 0 },
701 
702 	{ 0,			0,
703 	  NULL,
704 	  NULL, 0 },
705 };
706 
707 static const struct sip_product *
708 sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
709 {
710 	const struct sip_product *sip;
711 
712 	for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
713 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
714 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
715 		    sip->sip_gigabit == gigabit)
716 			return sip;
717 	}
718 	return NULL;
719 }
720 
721 /*
722  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
723  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
724  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
725  * which means we try to use 64-bit data transfers on those cards if we
726  * happen to be plugged into a 32-bit slot.
727  *
728  * What we do is use this table of cards known to be 64-bit cards.  If
729  * you have a 64-bit card who's subsystem ID is not listed in this table,
730  * send the output of "pcictl dump ..." of the device to me so that your
731  * card will use the 64-bit data path when plugged into a 64-bit slot.
732  *
733  *	-- Jason R. Thorpe <thorpej@NetBSD.org>
734  *	   June 30, 2002
735  */
736 static int
737 sipcom_check_64bit(const struct pci_attach_args *pa)
738 {
739 	static const struct {
740 		pci_vendor_id_t c64_vendor;
741 		pci_product_id_t c64_product;
742 	} card64[] = {
743 		/* Asante GigaNIX */
744 		{ 0x128a,	0x0002 },
745 
746 		/* Accton EN1407-T, Planex GN-1000TE */
747 		{ 0x1113,	0x1407 },
748 
749 		/* Netgear GA-621 */
750 		{ 0x1385,	0x621a },
751 
752 		/* SMC EZ Card */
753 		{ 0x10b8,	0x9462 },
754 
755 		{ 0, 0}
756 	};
757 	pcireg_t subsys;
758 	int i;
759 
760 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
761 
762 	for (i = 0; card64[i].c64_vendor != 0; i++) {
763 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
764 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
765 			return (1);
766 	}
767 
768 	return (0);
769 }
770 
771 static int
772 sipcom_match(struct device *parent, struct cfdata *cf, void *aux)
773 {
774 	struct pci_attach_args *pa = aux;
775 
776 	if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
777 		return 1;
778 
779 	return 0;
780 }
781 
782 static void
783 sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
784 {
785 	u_int32_t reg;
786 	int i;
787 
788 	/*
789 	 * Cause the chip to load configuration data from the EEPROM.
790 	 */
791 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
792 	for (i = 0; i < 10000; i++) {
793 		delay(10);
794 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
795 		    PTSCR_EELOAD_EN) == 0)
796 			break;
797 	}
798 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
799 	    PTSCR_EELOAD_EN) {
800 		printf("%s: timeout loading configuration from EEPROM\n",
801 		    sc->sc_dev.dv_xname);
802 		return;
803 	}
804 
805 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
806 
807 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
808 	if (reg & CFG_PCI64_DET) {
809 		printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
810 		/*
811 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
812 		 * data transfers.
813 		 *
814 		 * We can't use the DATA64_EN bit in the EEPROM, because
815 		 * vendors of 32-bit cards fail to clear that bit in many
816 		 * cases (yet the card still detects that it's in a 64-bit
817 		 * slot; go figure).
818 		 */
819 		if (sipcom_check_64bit(pa)) {
820 			sc->sc_cfg |= CFG_DATA64_EN;
821 			printf(", using 64-bit data transfers");
822 		}
823 		printf("\n");
824 	}
825 
826 	/*
827 	 * XXX Need some PCI flags indicating support for
828 	 * XXX 64-bit addressing.
829 	 */
830 #if 0
831 	if (reg & CFG_M64ADDR)
832 		sc->sc_cfg |= CFG_M64ADDR;
833 	if (reg & CFG_T64ADDR)
834 		sc->sc_cfg |= CFG_T64ADDR;
835 #endif
836 
837 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
838 		const char *sep = "";
839 		printf("%s: using ", sc->sc_dev.dv_xname);
840 		if (reg & CFG_EXT_125) {
841 			sc->sc_cfg |= CFG_EXT_125;
842 			printf("%s125MHz clock", sep);
843 			sep = ", ";
844 		}
845 		if (reg & CFG_TBI_EN) {
846 			sc->sc_cfg |= CFG_TBI_EN;
847 			printf("%sten-bit interface", sep);
848 			sep = ", ";
849 		}
850 		printf("\n");
851 	}
852 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
853 	    (reg & CFG_MRM_DIS) != 0)
854 		sc->sc_cfg |= CFG_MRM_DIS;
855 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
856 	    (reg & CFG_MWI_DIS) != 0)
857 		sc->sc_cfg |= CFG_MWI_DIS;
858 
859 	/*
860 	 * Use the extended descriptor format on the DP83820.  This
861 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
862 	 * checksumming.
863 	 */
864 	sc->sc_cfg |= CFG_EXTSTS_EN;
865 }
866 
867 static int
868 sipcom_detach(device_t self, int flags)
869 {
870 	int s;
871 
872 	s = splnet();
873 	sipcom_do_detach(self, SIP_ATTACH_FIN);
874 	splx(s);
875 
876 	return 0;
877 }
878 
879 static void
880 sipcom_do_detach(device_t self, enum sip_attach_stage stage)
881 {
882 	int i;
883 	struct sip_softc *sc = device_private(self);
884 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
885 
886 	/*
887 	 * Free any resources we've allocated during attach.
888 	 * Do this in reverse order and fall through.
889 	 */
890 	switch (stage) {
891 	case SIP_ATTACH_FIN:
892 		sipcom_stop(ifp, 1);
893 		pmf_device_deregister(self);
894 #ifdef SIP_EVENT_COUNTERS
895 		/*
896 		 * Attach event counters.
897 		 */
898 		evcnt_detach(&sc->sc_ev_txforceintr);
899 		evcnt_detach(&sc->sc_ev_txdstall);
900 		evcnt_detach(&sc->sc_ev_txsstall);
901 		evcnt_detach(&sc->sc_ev_hiberr);
902 		evcnt_detach(&sc->sc_ev_rxintr);
903 		evcnt_detach(&sc->sc_ev_txiintr);
904 		evcnt_detach(&sc->sc_ev_txdintr);
905 		if (!sc->sc_gigabit) {
906 			evcnt_detach(&sc->sc_ev_rxpause);
907 		} else {
908 			evcnt_detach(&sc->sc_ev_txudpsum);
909 			evcnt_detach(&sc->sc_ev_txtcpsum);
910 			evcnt_detach(&sc->sc_ev_txipsum);
911 			evcnt_detach(&sc->sc_ev_rxudpsum);
912 			evcnt_detach(&sc->sc_ev_rxtcpsum);
913 			evcnt_detach(&sc->sc_ev_rxipsum);
914 			evcnt_detach(&sc->sc_ev_txpause);
915 			evcnt_detach(&sc->sc_ev_rxpause);
916 		}
917 #endif /* SIP_EVENT_COUNTERS */
918 
919 #if NRND > 0
920 		rnd_detach_source(&sc->rnd_source);
921 #endif
922 
923 		ether_ifdetach(ifp);
924 		if_detach(ifp);
925 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
926 
927 		/*FALLTHROUGH*/
928 	case SIP_ATTACH_CREATE_RXMAP:
929 		for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
930 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
931 				bus_dmamap_destroy(sc->sc_dmat,
932 				    sc->sc_rxsoft[i].rxs_dmamap);
933 		}
934 		/*FALLTHROUGH*/
935 	case SIP_ATTACH_CREATE_TXMAP:
936 		for (i = 0; i < SIP_TXQUEUELEN; i++) {
937 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
938 				bus_dmamap_destroy(sc->sc_dmat,
939 				    sc->sc_txsoft[i].txs_dmamap);
940 		}
941 		/*FALLTHROUGH*/
942 	case SIP_ATTACH_LOAD_MAP:
943 		bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
944 		/*FALLTHROUGH*/
945 	case SIP_ATTACH_CREATE_MAP:
946 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
947 		/*FALLTHROUGH*/
948 	case SIP_ATTACH_MAP_MEM:
949 		bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
950 		    sizeof(struct sip_control_data));
951 		/*FALLTHROUGH*/
952 	case SIP_ATTACH_ALLOC_MEM:
953 		bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
954 		/* FALLTHROUGH*/
955 	case SIP_ATTACH_INTR:
956 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
957 		/* FALLTHROUGH*/
958 	case SIP_ATTACH_MAP:
959 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
960 		break;
961 	default:
962 		break;
963 	}
964 	return;
965 }
966 
967 static bool
968 sipcom_resume(device_t self)
969 {
970 	struct sip_softc *sc = device_private(self);
971 
972 	return sipcom_reset(sc);
973 }
974 
975 static void
976 sipcom_attach(device_t parent, device_t self, void *aux)
977 {
978 	struct sip_softc *sc = (struct sip_softc *) self;
979 	struct pci_attach_args *pa = aux;
980 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
981 	pci_chipset_tag_t pc = pa->pa_pc;
982 	pci_intr_handle_t ih;
983 	const char *intrstr = NULL;
984 	bus_space_tag_t iot, memt;
985 	bus_space_handle_t ioh, memh;
986 	bus_size_t iosz, memsz;
987 	int ioh_valid, memh_valid;
988 	int i, rseg, error;
989 	const struct sip_product *sip;
990 	u_int8_t enaddr[ETHER_ADDR_LEN];
991 	pcireg_t pmreg;
992 	pcireg_t memtype;
993 	bus_size_t tx_dmamap_size;
994 	int ntxsegs_alloc;
995 	cfdata_t cf = device_cfdata(self);
996 
997 	callout_init(&sc->sc_tick_ch, 0);
998 
999 	sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
1000 	if (sip == NULL) {
1001 		printf("\n");
1002 		panic("%s: impossible", __func__);
1003 	}
1004 	sc->sc_gigabit = sip->sip_gigabit;
1005 
1006 	sc->sc_pc = pc;
1007 
1008 	if (sc->sc_gigabit) {
1009 		sc->sc_rxintr = gsip_rxintr;
1010 		sc->sc_parm = &gsip_parm;
1011 	} else {
1012 		sc->sc_rxintr = sip_rxintr;
1013 		sc->sc_parm = &sip_parm;
1014 	}
1015 	tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
1016 	ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
1017 	sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
1018 	sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
1019 	sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
1020 
1021 	sc->sc_rev = PCI_REVISION(pa->pa_class);
1022 
1023 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
1024 
1025 	sc->sc_model = sip;
1026 
1027 	/*
1028 	 * XXX Work-around broken PXE firmware on some boards.
1029 	 *
1030 	 * The DP83815 shares an address decoder with the MEM BAR
1031 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
1032 	 * so that memory mapped access works.
1033 	 */
1034 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
1035 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
1036 	    ~PCI_MAPREG_ROM_ENABLE);
1037 
1038 	/*
1039 	 * Map the device.
1040 	 */
1041 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
1042 	    PCI_MAPREG_TYPE_IO, 0,
1043 	    &iot, &ioh, NULL, &iosz) == 0);
1044 	if (sc->sc_gigabit) {
1045 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
1046 		switch (memtype) {
1047 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1048 		case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1049 			memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1050 			    memtype, 0, &memt, &memh, NULL, &memsz) == 0);
1051 			break;
1052 		default:
1053 			memh_valid = 0;
1054 		}
1055 	} else {
1056 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
1057 		    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
1058 		    &memt, &memh, NULL, &memsz) == 0);
1059 	}
1060 
1061 	if (memh_valid) {
1062 		sc->sc_st = memt;
1063 		sc->sc_sh = memh;
1064 		sc->sc_sz = memsz;
1065 	} else if (ioh_valid) {
1066 		sc->sc_st = iot;
1067 		sc->sc_sh = ioh;
1068 		sc->sc_sz = iosz;
1069 	} else {
1070 		printf("%s: unable to map device registers\n",
1071 		    sc->sc_dev.dv_xname);
1072 		return;
1073 	}
1074 
1075 	sc->sc_dmat = pa->pa_dmat;
1076 
1077 	/*
1078 	 * Make sure bus mastering is enabled.  Also make sure
1079 	 * Write/Invalidate is enabled if we're allowed to use it.
1080 	 */
1081 	pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1082 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
1083 		pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
1084 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
1085 	    pmreg | PCI_COMMAND_MASTER_ENABLE);
1086 
1087 	/* power up chip */
1088 	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
1089 	    NULL)) && error != EOPNOTSUPP) {
1090 		aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname,
1091 		    error);
1092 		return;
1093 	}
1094 
1095 	/*
1096 	 * Map and establish our interrupt.
1097 	 */
1098 	if (pci_intr_map(pa, &ih)) {
1099 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
1100 		return;
1101 	}
1102 	intrstr = pci_intr_string(pc, ih);
1103 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sipcom_intr, sc);
1104 	if (sc->sc_ih == NULL) {
1105 		printf("%s: unable to establish interrupt",
1106 		    sc->sc_dev.dv_xname);
1107 		if (intrstr != NULL)
1108 			printf(" at %s", intrstr);
1109 		printf("\n");
1110 		return sipcom_do_detach(self, SIP_ATTACH_MAP);
1111 	}
1112 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
1113 
1114 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1115 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1116 
1117 	/*
1118 	 * Allocate the control data structures, and create and load the
1119 	 * DMA map for it.
1120 	 */
1121 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
1122 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
1123 	    &rseg, 0)) != 0) {
1124 		printf("%s: unable to allocate control data, error = %d\n",
1125 		    sc->sc_dev.dv_xname, error);
1126 		return sipcom_do_detach(self, SIP_ATTACH_INTR);
1127 	}
1128 
1129 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
1130 	    sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
1131 	    BUS_DMA_COHERENT|BUS_DMA_NOCACHE)) != 0) {
1132 		printf("%s: unable to map control data, error = %d\n",
1133 		    sc->sc_dev.dv_xname, error);
1134 		sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
1135 	}
1136 
1137 	if ((error = bus_dmamap_create(sc->sc_dmat,
1138 	    sizeof(struct sip_control_data), 1,
1139 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
1140 		printf("%s: unable to create control data DMA map, "
1141 		    "error = %d\n", sc->sc_dev.dv_xname, error);
1142 		sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
1143 	}
1144 
1145 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
1146 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
1147 	    0)) != 0) {
1148 		printf("%s: unable to load control data DMA map, error = %d\n",
1149 		    sc->sc_dev.dv_xname, error);
1150 		sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
1151 	}
1152 
1153 	/*
1154 	 * Create the transmit buffer DMA maps.
1155 	 */
1156 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
1157 		if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
1158 		    sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
1159 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
1160 			printf("%s: unable to create tx DMA map %d, "
1161 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
1162 			sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
1163 		}
1164 	}
1165 
1166 	/*
1167 	 * Create the receive buffer DMA maps.
1168 	 */
1169 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
1170 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1171 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
1172 			printf("%s: unable to create rx DMA map %d, "
1173 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
1174 			sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
1175 		}
1176 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
1177 	}
1178 
1179 	/*
1180 	 * Reset the chip to a known state.
1181 	 */
1182 	sipcom_reset(sc);
1183 
1184 	/*
1185 	 * Read the Ethernet address from the EEPROM.  This might
1186 	 * also fetch other stuff from the EEPROM and stash it
1187 	 * in the softc.
1188 	 */
1189 	sc->sc_cfg = 0;
1190 	if (!sc->sc_gigabit) {
1191 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1192 		    SIP_SIS900_REV(sc,SIS_REV_900B))
1193 			sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
1194 
1195 		if (SIP_SIS900_REV(sc,SIS_REV_635) ||
1196 		    SIP_SIS900_REV(sc,SIS_REV_960) ||
1197 		    SIP_SIS900_REV(sc,SIS_REV_900B))
1198 			sc->sc_cfg |=
1199 			    (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
1200 			     CFG_EDBMASTEN);
1201 	}
1202 
1203 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
1204 
1205 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
1206 	    ether_sprintf(enaddr));
1207 
1208 	/*
1209 	 * Initialize the configuration register: aggressive PCI
1210 	 * bus request algorithm, default backoff, default OW timer,
1211 	 * default parity error detection.
1212 	 *
1213 	 * NOTE: "Big endian mode" is useless on the SiS900 and
1214 	 * friends -- it affects packet data, not descriptors.
1215 	 */
1216 	if (sc->sc_gigabit)
1217 		sipcom_dp83820_attach(sc, pa);
1218 
1219 	/*
1220 	 * Initialize our media structures and probe the MII.
1221 	 */
1222 	sc->sc_mii.mii_ifp = ifp;
1223 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
1224 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
1225 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
1226 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
1227 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
1228 	    sipcom_mediastatus);
1229 
1230 	/*
1231 	 * XXX We cannot handle flow control on the DP83815.
1232 	 */
1233 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1234 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1235 			   MII_OFFSET_ANY, 0);
1236 	else
1237 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1238 			   MII_OFFSET_ANY, MIIF_DOPAUSE);
1239 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1240 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1241 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1242 	} else
1243 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1244 
1245 	ifp = &sc->sc_ethercom.ec_if;
1246 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
1247 	ifp->if_softc = sc;
1248 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1249 	sc->sc_if_flags = ifp->if_flags;
1250 	ifp->if_ioctl = sipcom_ioctl;
1251 	ifp->if_start = sipcom_start;
1252 	ifp->if_watchdog = sipcom_watchdog;
1253 	ifp->if_init = sipcom_init;
1254 	ifp->if_stop = sipcom_stop;
1255 	IFQ_SET_READY(&ifp->if_snd);
1256 
1257 	/*
1258 	 * We can support 802.1Q VLAN-sized frames.
1259 	 */
1260 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1261 
1262 	if (sc->sc_gigabit) {
1263 		/*
1264 		 * And the DP83820 can do VLAN tagging in hardware, and
1265 		 * support the jumbo Ethernet MTU.
1266 		 */
1267 		sc->sc_ethercom.ec_capabilities |=
1268 		    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1269 
1270 		/*
1271 		 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1272 		 * in hardware.
1273 		 */
1274 		ifp->if_capabilities |=
1275 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1276 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1277 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1278 	}
1279 
1280 	/*
1281 	 * Attach the interface.
1282 	 */
1283 	if_attach(ifp);
1284 	ether_ifattach(ifp, enaddr);
1285 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
1286 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
1287 	sc->sc_prev.if_capenable = ifp->if_capenable;
1288 #if NRND > 0
1289 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1290 	    RND_TYPE_NET, 0);
1291 #endif
1292 
1293 	/*
1294 	 * The number of bytes that must be available in
1295 	 * the Tx FIFO before the bus master can DMA more
1296 	 * data into the FIFO.
1297 	 */
1298 	sc->sc_tx_fill_thresh = 64 / 32;
1299 
1300 	/*
1301 	 * Start at a drain threshold of 512 bytes.  We will
1302 	 * increase it if a DMA underrun occurs.
1303 	 *
1304 	 * XXX The minimum value of this variable should be
1305 	 * tuned.  We may be able to improve performance
1306 	 * by starting with a lower value.  That, however,
1307 	 * may trash the first few outgoing packets if the
1308 	 * PCI bus is saturated.
1309 	 */
1310 	if (sc->sc_gigabit)
1311 		sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
1312 	else
1313 		sc->sc_tx_drain_thresh = 1504 / 32;
1314 
1315 	/*
1316 	 * Initialize the Rx FIFO drain threshold.
1317 	 *
1318 	 * This is in units of 8 bytes.
1319 	 *
1320 	 * We should never set this value lower than 2; 14 bytes are
1321 	 * required to filter the packet.
1322 	 */
1323 	sc->sc_rx_drain_thresh = 128 / 8;
1324 
1325 #ifdef SIP_EVENT_COUNTERS
1326 	/*
1327 	 * Attach event counters.
1328 	 */
1329 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1330 	    NULL, sc->sc_dev.dv_xname, "txsstall");
1331 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1332 	    NULL, sc->sc_dev.dv_xname, "txdstall");
1333 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1334 	    NULL, sc->sc_dev.dv_xname, "txforceintr");
1335 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1336 	    NULL, sc->sc_dev.dv_xname, "txdintr");
1337 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1338 	    NULL, sc->sc_dev.dv_xname, "txiintr");
1339 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1340 	    NULL, sc->sc_dev.dv_xname, "rxintr");
1341 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1342 	    NULL, sc->sc_dev.dv_xname, "hiberr");
1343 	if (!sc->sc_gigabit) {
1344 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1345 		    NULL, sc->sc_dev.dv_xname, "rxpause");
1346 	} else {
1347 		evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1348 		    NULL, sc->sc_dev.dv_xname, "rxpause");
1349 		evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1350 		    NULL, sc->sc_dev.dv_xname, "txpause");
1351 		evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1352 		    NULL, sc->sc_dev.dv_xname, "rxipsum");
1353 		evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1354 		    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
1355 		evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1356 		    NULL, sc->sc_dev.dv_xname, "rxudpsum");
1357 		evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1358 		    NULL, sc->sc_dev.dv_xname, "txipsum");
1359 		evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1360 		    NULL, sc->sc_dev.dv_xname, "txtcpsum");
1361 		evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1362 		    NULL, sc->sc_dev.dv_xname, "txudpsum");
1363 	}
1364 #endif /* SIP_EVENT_COUNTERS */
1365 
1366 	if (!pmf_device_register(self, NULL, sipcom_resume))
1367 		aprint_error_dev(self, "couldn't establish power handler\n");
1368 	else
1369 		pmf_class_network_register(self, ifp);
1370 }
1371 
1372 static inline void
1373 sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
1374     uint64_t capenable)
1375 {
1376 	struct m_tag *mtag;
1377 	u_int32_t extsts;
1378 #ifdef DEBUG
1379 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1380 #endif
1381 	/*
1382 	 * If VLANs are enabled and the packet has a VLAN tag, set
1383 	 * up the descriptor to encapsulate the packet for us.
1384 	 *
1385 	 * This apparently has to be on the last descriptor of
1386 	 * the packet.
1387 	 */
1388 
1389 	/*
1390 	 * Byte swapping is tricky. We need to provide the tag
1391 	 * in a network byte order. On a big-endian machine,
1392 	 * the byteorder is correct, but we need to swap it
1393 	 * anyway, because this will be undone by the outside
1394 	 * htole32(). That's why there must be an
1395 	 * unconditional swap instead of htons() inside.
1396 	 */
1397 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
1398 		sc->sc_txdescs[lasttx].sipd_extsts |=
1399 		    htole32(EXTSTS_VPKT |
1400 				(bswap16(VLAN_TAG_VALUE(mtag)) &
1401 				 EXTSTS_VTCI));
1402 	}
1403 
1404 	/*
1405 	 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1406 	 * checksumming, set up the descriptor to do this work
1407 	 * for us.
1408 	 *
1409 	 * This apparently has to be on the first descriptor of
1410 	 * the packet.
1411 	 *
1412 	 * Byte-swap constants so the compiler can optimize.
1413 	 */
1414 	extsts = 0;
1415 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1416 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
1417 		SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1418 		extsts |= htole32(EXTSTS_IPPKT);
1419 	}
1420 	if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1421 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
1422 		SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1423 		extsts |= htole32(EXTSTS_TCPPKT);
1424 	} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1425 		KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
1426 		SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1427 		extsts |= htole32(EXTSTS_UDPPKT);
1428 	}
1429 	sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1430 }
1431 
1432 /*
1433  * sip_start:		[ifnet interface function]
1434  *
1435  *	Start packet transmission on the interface.
1436  */
1437 static void
1438 sipcom_start(struct ifnet *ifp)
1439 {
1440 	struct sip_softc *sc = ifp->if_softc;
1441 	struct mbuf *m0;
1442 	struct mbuf *m;
1443 	struct sip_txsoft *txs;
1444 	bus_dmamap_t dmamap;
1445 	int error, nexttx, lasttx, seg;
1446 	int ofree = sc->sc_txfree;
1447 #if 0
1448 	int firsttx = sc->sc_txnext;
1449 #endif
1450 
1451 	/*
1452 	 * If we've been told to pause, don't transmit any more packets.
1453 	 */
1454 	if (!sc->sc_gigabit && sc->sc_paused)
1455 		ifp->if_flags |= IFF_OACTIVE;
1456 
1457 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1458 		return;
1459 
1460 	/*
1461 	 * Loop through the send queue, setting up transmit descriptors
1462 	 * until we drain the queue, or use up all available transmit
1463 	 * descriptors.
1464 	 */
1465 	for (;;) {
1466 		/* Get a work queue entry. */
1467 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1468 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1469 			break;
1470 		}
1471 
1472 		/*
1473 		 * Grab a packet off the queue.
1474 		 */
1475 		IFQ_POLL(&ifp->if_snd, m0);
1476 		if (m0 == NULL)
1477 			break;
1478 		m = NULL;
1479 
1480 		dmamap = txs->txs_dmamap;
1481 
1482 		/*
1483 		 * Load the DMA map.  If this fails, the packet either
1484 		 * didn't fit in the alloted number of segments, or we
1485 		 * were short on resources.
1486 		 */
1487 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1488 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1489 		/* In the non-gigabit case, we'll copy and try again. */
1490 		if (error != 0 && !sc->sc_gigabit) {
1491 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1492 			if (m == NULL) {
1493 				printf("%s: unable to allocate Tx mbuf\n",
1494 				    sc->sc_dev.dv_xname);
1495 				break;
1496 			}
1497 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1498 			if (m0->m_pkthdr.len > MHLEN) {
1499 				MCLGET(m, M_DONTWAIT);
1500 				if ((m->m_flags & M_EXT) == 0) {
1501 					printf("%s: unable to allocate Tx "
1502 					    "cluster\n", sc->sc_dev.dv_xname);
1503 					m_freem(m);
1504 					break;
1505 				}
1506 			}
1507 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1508 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1509 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1510 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1511 			if (error) {
1512 				printf("%s: unable to load Tx buffer, "
1513 				    "error = %d\n", sc->sc_dev.dv_xname, error);
1514 				break;
1515 			}
1516 		} else if (error == EFBIG) {
1517 			/*
1518 			 * For the too-many-segments case, we simply
1519 			 * report an error and drop the packet,
1520 			 * since we can't sanely copy a jumbo packet
1521 			 * to a single buffer.
1522 			 */
1523 			printf("%s: Tx packet consumes too many "
1524 			    "DMA segments, dropping...\n", sc->sc_dev.dv_xname);
1525 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1526 			m_freem(m0);
1527 			continue;
1528 		} else if (error != 0) {
1529 			/*
1530 			 * Short on resources, just stop for now.
1531 			 */
1532 			break;
1533 		}
1534 
1535 		/*
1536 		 * Ensure we have enough descriptors free to describe
1537 		 * the packet.  Note, we always reserve one descriptor
1538 		 * at the end of the ring as a termination point, to
1539 		 * prevent wrap-around.
1540 		 */
1541 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1542 			/*
1543 			 * Not enough free descriptors to transmit this
1544 			 * packet.  We haven't committed anything yet,
1545 			 * so just unload the DMA map, put the packet
1546 			 * back on the queue, and punt.  Notify the upper
1547 			 * layer that there are not more slots left.
1548 			 *
1549 			 * XXX We could allocate an mbuf and copy, but
1550 			 * XXX is it worth it?
1551 			 */
1552 			ifp->if_flags |= IFF_OACTIVE;
1553 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1554 			if (m != NULL)
1555 				m_freem(m);
1556 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1557 			break;
1558 		}
1559 
1560 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1561 		if (m != NULL) {
1562 			m_freem(m0);
1563 			m0 = m;
1564 		}
1565 
1566 		/*
1567 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1568 		 */
1569 
1570 		/* Sync the DMA map. */
1571 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1572 		    BUS_DMASYNC_PREWRITE);
1573 
1574 		/*
1575 		 * Initialize the transmit descriptors.
1576 		 */
1577 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1578 		     seg < dmamap->dm_nsegs;
1579 		     seg++, nexttx = sip_nexttx(sc, nexttx)) {
1580 			/*
1581 			 * If this is the first descriptor we're
1582 			 * enqueueing, don't set the OWN bit just
1583 			 * yet.  That could cause a race condition.
1584 			 * We'll do it below.
1585 			 */
1586 			*sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
1587 			    htole32(dmamap->dm_segs[seg].ds_addr);
1588 			*sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
1589 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1590 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1591 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
1592 			lasttx = nexttx;
1593 		}
1594 
1595 		/* Clear the MORE bit on the last segment. */
1596 		*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
1597 		    htole32(~CMDSTS_MORE);
1598 
1599 		/*
1600 		 * If we're in the interrupt delay window, delay the
1601 		 * interrupt.
1602 		 */
1603 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1604 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1605 			*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
1606 			    htole32(CMDSTS_INTR);
1607 			sc->sc_txwin = 0;
1608 		}
1609 
1610 		if (sc->sc_gigabit)
1611 			sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
1612 
1613 		/* Sync the descriptors we're using. */
1614 		sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
1615 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1616 
1617 		/*
1618 		 * The entire packet is set up.  Give the first descrptor
1619 		 * to the chip now.
1620 		 */
1621 		*sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
1622 		    htole32(CMDSTS_OWN);
1623 		sip_cdtxsync(sc, sc->sc_txnext, 1,
1624 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1625 
1626 		/*
1627 		 * Store a pointer to the packet so we can free it later,
1628 		 * and remember what txdirty will be once the packet is
1629 		 * done.
1630 		 */
1631 		txs->txs_mbuf = m0;
1632 		txs->txs_firstdesc = sc->sc_txnext;
1633 		txs->txs_lastdesc = lasttx;
1634 
1635 		/* Advance the tx pointer. */
1636 		sc->sc_txfree -= dmamap->dm_nsegs;
1637 		sc->sc_txnext = nexttx;
1638 
1639 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1640 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1641 
1642 #if NBPFILTER > 0
1643 		/*
1644 		 * Pass the packet to any BPF listeners.
1645 		 */
1646 		if (ifp->if_bpf)
1647 			bpf_mtap(ifp->if_bpf, m0);
1648 #endif /* NBPFILTER > 0 */
1649 	}
1650 
1651 	if (txs == NULL || sc->sc_txfree == 0) {
1652 		/* No more slots left; notify upper layer. */
1653 		ifp->if_flags |= IFF_OACTIVE;
1654 	}
1655 
1656 	if (sc->sc_txfree != ofree) {
1657 		/*
1658 		 * Start the transmit process.  Note, the manual says
1659 		 * that if there are no pending transmissions in the
1660 		 * chip's internal queue (indicated by TXE being clear),
1661 		 * then the driver software must set the TXDP to the
1662 		 * first descriptor to be transmitted.  However, if we
1663 		 * do this, it causes serious performance degredation on
1664 		 * the DP83820 under load, not setting TXDP doesn't seem
1665 		 * to adversely affect the SiS 900 or DP83815.
1666 		 *
1667 		 * Well, I guess it wouldn't be the first time a manual
1668 		 * has lied -- and they could be speaking of the NULL-
1669 		 * terminated descriptor list case, rather than OWN-
1670 		 * terminated rings.
1671 		 */
1672 #if 0
1673 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1674 		     CR_TXE) == 0) {
1675 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1676 			    SIP_CDTXADDR(sc, firsttx));
1677 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1678 		}
1679 #else
1680 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1681 #endif
1682 
1683 		/* Set a watchdog timer in case the chip flakes out. */
1684 		/* Gigabit autonegotiation takes 5 seconds. */
1685 		ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
1686 	}
1687 }
1688 
1689 /*
1690  * sip_watchdog:	[ifnet interface function]
1691  *
1692  *	Watchdog timer handler.
1693  */
1694 static void
1695 sipcom_watchdog(struct ifnet *ifp)
1696 {
1697 	struct sip_softc *sc = ifp->if_softc;
1698 
1699 	/*
1700 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1701 	 * If we get a timeout, try and sweep up transmit descriptors.
1702 	 * If we manage to sweep them all up, ignore the lack of
1703 	 * interrupt.
1704 	 */
1705 	sipcom_txintr(sc);
1706 
1707 	if (sc->sc_txfree != sc->sc_ntxdesc) {
1708 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1709 		ifp->if_oerrors++;
1710 
1711 		/* Reset the interface. */
1712 		(void) sipcom_init(ifp);
1713 	} else if (ifp->if_flags & IFF_DEBUG)
1714 		printf("%s: recovered from device timeout\n",
1715 		    sc->sc_dev.dv_xname);
1716 
1717 	/* Try to get more packets going. */
1718 	sipcom_start(ifp);
1719 }
1720 
1721 /*
1722  * sip_ioctl:		[ifnet interface function]
1723  *
1724  *	Handle control requests from the operator.
1725  */
1726 static int
1727 sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1728 {
1729 	struct sip_softc *sc = ifp->if_softc;
1730 	struct ifreq *ifr = (struct ifreq *)data;
1731 	int s, error;
1732 
1733 	s = splnet();
1734 
1735 	switch (cmd) {
1736 	case SIOCSIFMEDIA:
1737 		/* Flow control requires full-duplex mode. */
1738 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1739 		    (ifr->ifr_media & IFM_FDX) == 0)
1740 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
1741 
1742 		/* XXX */
1743 		if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1744 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1745 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1746 			if (sc->sc_gigabit &&
1747 			    (ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1748 				/* We can do both TXPAUSE and RXPAUSE. */
1749 				ifr->ifr_media |=
1750 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1751 			} else if (ifr->ifr_media & IFM_FLOW) {
1752 				/*
1753 				 * Both TXPAUSE and RXPAUSE must be set.
1754 				 * (SiS900 and DP83815 don't have PAUSE_ASYM
1755 				 * feature.)
1756 				 *
1757 				 * XXX Can SiS900 and DP83815 send PAUSE?
1758 				 */
1759 				ifr->ifr_media |=
1760 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1761 			}
1762 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1763 		}
1764 		goto ethioctl;
1765 	case SIOCSIFFLAGS:
1766 		/* If the interface is up and running, only modify the receive
1767 		 * filter when setting promiscuous or debug mode.  Otherwise
1768 		 * fall through to ether_ioctl, which will reset the chip.
1769 		 */
1770 
1771 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable			\
1772 			 == (sc)->sc_ethercom.ec_capenable)		\
1773 			&& ((sc)->sc_prev.is_vlan ==			\
1774 			    VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1775 
1776 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1777 
1778 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
1779 		if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
1780 		    == (IFF_UP|IFF_RUNNING))
1781 		    && ((ifp->if_flags & (~RESETIGN))
1782 		    == (sc->sc_if_flags & (~RESETIGN)))
1783 		    && COMPARE_EC(sc) && COMPARE_IC(sc, ifp)) {
1784 			/* Set up the receive filter. */
1785 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1786 			error = 0;
1787 			break;
1788 #undef RESETIGN
1789 		}
1790 		/* FALLTHROUGH */
1791 	ethioctl:
1792 	default:
1793 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1794 			break;
1795 
1796 		error = 0;
1797 
1798 		if (cmd == SIOCSIFCAP)
1799 			error = (*ifp->if_init)(ifp);
1800 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1801 			;
1802 		else if (ifp->if_flags & IFF_RUNNING) {
1803 			/*
1804 			 * Multicast list has changed; set the hardware filter
1805 			 * accordingly.
1806 			 */
1807 			(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1808 		}
1809 		break;
1810 	}
1811 
1812 	/* Try to get more packets going. */
1813 	sipcom_start(ifp);
1814 
1815 	sc->sc_if_flags = ifp->if_flags;
1816 	splx(s);
1817 	return (error);
1818 }
1819 
1820 /*
1821  * sip_intr:
1822  *
1823  *	Interrupt service routine.
1824  */
1825 static int
1826 sipcom_intr(void *arg)
1827 {
1828 	struct sip_softc *sc = arg;
1829 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1830 	u_int32_t isr;
1831 	int handled = 0;
1832 
1833 	/* Disable interrupts. */
1834 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1835 
1836 	for (;;) {
1837 		/* Reading clears interrupt. */
1838 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1839 		if ((isr & sc->sc_imr) == 0)
1840 			break;
1841 
1842 #if NRND > 0
1843 		if (RND_ENABLED(&sc->rnd_source))
1844 			rnd_add_uint32(&sc->rnd_source, isr);
1845 #endif
1846 
1847 		handled = 1;
1848 
1849 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1850 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1851 
1852 			/* Grab any new packets. */
1853 			(*sc->sc_rxintr)(sc);
1854 
1855 			if (isr & ISR_RXORN) {
1856 				printf("%s: receive FIFO overrun\n",
1857 				    sc->sc_dev.dv_xname);
1858 
1859 				/* XXX adjust rx_drain_thresh? */
1860 			}
1861 
1862 			if (isr & ISR_RXIDLE) {
1863 				printf("%s: receive ring overrun\n",
1864 				    sc->sc_dev.dv_xname);
1865 
1866 				/* Get the receive process going again. */
1867 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1868 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1869 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1870 				    SIP_CR, CR_RXE);
1871 			}
1872 		}
1873 
1874 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1875 #ifdef SIP_EVENT_COUNTERS
1876 			if (isr & ISR_TXDESC)
1877 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1878 			else if (isr & ISR_TXIDLE)
1879 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1880 #endif
1881 
1882 			/* Sweep up transmit descriptors. */
1883 			sipcom_txintr(sc);
1884 
1885 			if (isr & ISR_TXURN) {
1886 				u_int32_t thresh;
1887 				int txfifo_size = (sc->sc_gigabit)
1888 				    ? DP83820_SIP_TXFIFO_SIZE
1889 				    : OTHER_SIP_TXFIFO_SIZE;
1890 
1891 				printf("%s: transmit FIFO underrun",
1892 				    sc->sc_dev.dv_xname);
1893 				thresh = sc->sc_tx_drain_thresh + 1;
1894 				if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
1895 				&& (thresh * 32) <= (txfifo_size -
1896 				     (sc->sc_tx_fill_thresh * 32))) {
1897 					printf("; increasing Tx drain "
1898 					    "threshold to %u bytes\n",
1899 					    thresh * 32);
1900 					sc->sc_tx_drain_thresh = thresh;
1901 					(void) sipcom_init(ifp);
1902 				} else {
1903 					(void) sipcom_init(ifp);
1904 					printf("\n");
1905 				}
1906 			}
1907 		}
1908 
1909 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1910 			if (isr & ISR_PAUSE_ST) {
1911 				sc->sc_paused = 1;
1912 				SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1913 				ifp->if_flags |= IFF_OACTIVE;
1914 			}
1915 			if (isr & ISR_PAUSE_END) {
1916 				sc->sc_paused = 0;
1917 				ifp->if_flags &= ~IFF_OACTIVE;
1918 			}
1919 		}
1920 
1921 		if (isr & ISR_HIBERR) {
1922 			int want_init = 0;
1923 
1924 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1925 
1926 #define	PRINTERR(bit, str)						\
1927 			do {						\
1928 				if ((isr & (bit)) != 0) {		\
1929 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
1930 						printf("%s: %s\n",	\
1931 						    sc->sc_dev.dv_xname, str); \
1932 					want_init = 1;			\
1933 				}					\
1934 			} while (/*CONSTCOND*/0)
1935 
1936 			PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
1937 			PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
1938 			PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
1939 			PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
1940 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1941 			/*
1942 			 * Ignore:
1943 			 *	Tx reset complete
1944 			 *	Rx reset complete
1945 			 */
1946 			if (want_init)
1947 				(void) sipcom_init(ifp);
1948 #undef PRINTERR
1949 		}
1950 	}
1951 
1952 	/* Re-enable interrupts. */
1953 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1954 
1955 	/* Try to get more packets going. */
1956 	sipcom_start(ifp);
1957 
1958 	return (handled);
1959 }
1960 
1961 /*
1962  * sip_txintr:
1963  *
1964  *	Helper; handle transmit interrupts.
1965  */
1966 static void
1967 sipcom_txintr(struct sip_softc *sc)
1968 {
1969 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1970 	struct sip_txsoft *txs;
1971 	u_int32_t cmdsts;
1972 
1973 	if (sc->sc_paused == 0)
1974 		ifp->if_flags &= ~IFF_OACTIVE;
1975 
1976 	/*
1977 	 * Go through our Tx list and free mbufs for those
1978 	 * frames which have been transmitted.
1979 	 */
1980 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1981 		sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1982 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1983 
1984 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
1985 		if (cmdsts & CMDSTS_OWN)
1986 			break;
1987 
1988 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1989 
1990 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1991 
1992 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1993 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1994 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1995 		m_freem(txs->txs_mbuf);
1996 		txs->txs_mbuf = NULL;
1997 
1998 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1999 
2000 		/*
2001 		 * Check for errors and collisions.
2002 		 */
2003 		if (cmdsts &
2004 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
2005 			ifp->if_oerrors++;
2006 			if (cmdsts & CMDSTS_Tx_EC)
2007 				ifp->if_collisions += 16;
2008 			if (ifp->if_flags & IFF_DEBUG) {
2009 				if (cmdsts & CMDSTS_Tx_ED)
2010 					printf("%s: excessive deferral\n",
2011 					    sc->sc_dev.dv_xname);
2012 				if (cmdsts & CMDSTS_Tx_EC)
2013 					printf("%s: excessive collisions\n",
2014 					    sc->sc_dev.dv_xname);
2015 			}
2016 		} else {
2017 			/* Packet was transmitted successfully. */
2018 			ifp->if_opackets++;
2019 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
2020 		}
2021 	}
2022 
2023 	/*
2024 	 * If there are no more pending transmissions, cancel the watchdog
2025 	 * timer.
2026 	 */
2027 	if (txs == NULL) {
2028 		ifp->if_timer = 0;
2029 		sc->sc_txwin = 0;
2030 	}
2031 }
2032 
2033 /*
2034  * gsip_rxintr:
2035  *
2036  *	Helper; handle receive interrupts on gigabit parts.
2037  */
2038 static void
2039 gsip_rxintr(struct sip_softc *sc)
2040 {
2041 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2042 	struct sip_rxsoft *rxs;
2043 	struct mbuf *m;
2044 	u_int32_t cmdsts, extsts;
2045 	int i, len;
2046 
2047 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2048 		rxs = &sc->sc_rxsoft[i];
2049 
2050 		sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2051 
2052 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2053 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
2054 		len = CMDSTS_SIZE(sc, cmdsts);
2055 
2056 		/*
2057 		 * NOTE: OWN is set if owned by _consumer_.  We're the
2058 		 * consumer of the receive ring, so if the bit is clear,
2059 		 * we have processed all of the packets.
2060 		 */
2061 		if ((cmdsts & CMDSTS_OWN) == 0) {
2062 			/*
2063 			 * We have processed all of the receive buffers.
2064 			 */
2065 			break;
2066 		}
2067 
2068 		if (__predict_false(sc->sc_rxdiscard)) {
2069 			sip_init_rxdesc(sc, i);
2070 			if ((cmdsts & CMDSTS_MORE) == 0) {
2071 				/* Reset our state. */
2072 				sc->sc_rxdiscard = 0;
2073 			}
2074 			continue;
2075 		}
2076 
2077 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2078 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2079 
2080 		m = rxs->rxs_mbuf;
2081 
2082 		/*
2083 		 * Add a new receive buffer to the ring.
2084 		 */
2085 		if (sipcom_add_rxbuf(sc, i) != 0) {
2086 			/*
2087 			 * Failed, throw away what we've done so
2088 			 * far, and discard the rest of the packet.
2089 			 */
2090 			ifp->if_ierrors++;
2091 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2092 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2093 			sip_init_rxdesc(sc, i);
2094 			if (cmdsts & CMDSTS_MORE)
2095 				sc->sc_rxdiscard = 1;
2096 			if (sc->sc_rxhead != NULL)
2097 				m_freem(sc->sc_rxhead);
2098 			sip_rxchain_reset(sc);
2099 			continue;
2100 		}
2101 
2102 		sip_rxchain_link(sc, m);
2103 
2104 		m->m_len = len;
2105 
2106 		/*
2107 		 * If this is not the end of the packet, keep
2108 		 * looking.
2109 		 */
2110 		if (cmdsts & CMDSTS_MORE) {
2111 			sc->sc_rxlen += len;
2112 			continue;
2113 		}
2114 
2115 		/*
2116 		 * Okay, we have the entire packet now.  The chip includes
2117 		 * the FCS, so we need to trim it.
2118 		 */
2119 		m->m_len -= ETHER_CRC_LEN;
2120 
2121 		*sc->sc_rxtailp = NULL;
2122 		len = m->m_len + sc->sc_rxlen;
2123 		m = sc->sc_rxhead;
2124 
2125 		sip_rxchain_reset(sc);
2126 
2127 		/*
2128 		 * If an error occurred, update stats and drop the packet.
2129 		 */
2130 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2131 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2132 			ifp->if_ierrors++;
2133 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2134 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
2135 				/* Receive overrun handled elsewhere. */
2136 				printf("%s: receive descriptor error\n",
2137 				    sc->sc_dev.dv_xname);
2138 			}
2139 #define	PRINTERR(bit, str)						\
2140 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
2141 			    (cmdsts & (bit)) != 0)			\
2142 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
2143 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2144 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2145 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2146 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2147 #undef PRINTERR
2148 			m_freem(m);
2149 			continue;
2150 		}
2151 
2152 		/*
2153 		 * If the packet is small enough to fit in a
2154 		 * single header mbuf, allocate one and copy
2155 		 * the data into it.  This greatly reduces
2156 		 * memory consumption when we receive lots
2157 		 * of small packets.
2158 		 */
2159 		if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
2160 			struct mbuf *nm;
2161 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
2162 			if (nm == NULL) {
2163 				ifp->if_ierrors++;
2164 				m_freem(m);
2165 				continue;
2166 			}
2167 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2168 			nm->m_data += 2;
2169 			nm->m_pkthdr.len = nm->m_len = len;
2170 			m_copydata(m, 0, len, mtod(nm, void *));
2171 			m_freem(m);
2172 			m = nm;
2173 		}
2174 #ifndef __NO_STRICT_ALIGNMENT
2175 		else {
2176 			/*
2177 			 * The DP83820's receive buffers must be 4-byte
2178 			 * aligned.  But this means that the data after
2179 			 * the Ethernet header is misaligned.  To compensate,
2180 			 * we have artificially shortened the buffer size
2181 			 * in the descriptor, and we do an overlapping copy
2182 			 * of the data two bytes further in (in the first
2183 			 * buffer of the chain only).
2184 			 */
2185 			memmove(mtod(m, char *) + 2, mtod(m, void *),
2186 			    m->m_len);
2187 			m->m_data += 2;
2188 		}
2189 #endif /* ! __NO_STRICT_ALIGNMENT */
2190 
2191 		/*
2192 		 * If VLANs are enabled, VLAN packets have been unwrapped
2193 		 * for us.  Associate the tag with the packet.
2194 		 */
2195 
2196 		/*
2197 		 * Again, byte swapping is tricky. Hardware provided
2198 		 * the tag in the network byte order, but extsts was
2199 		 * passed through le32toh() in the meantime. On a
2200 		 * big-endian machine, we need to swap it again. On a
2201 		 * little-endian machine, we need to convert from the
2202 		 * network to host byte order. This means that we must
2203 		 * swap it in any case, so unconditional swap instead
2204 		 * of htons() is used.
2205 		 */
2206 		if ((extsts & EXTSTS_VPKT) != 0) {
2207 			VLAN_INPUT_TAG(ifp, m, bswap16(extsts & EXTSTS_VTCI),
2208 			    continue);
2209 		}
2210 
2211 		/*
2212 		 * Set the incoming checksum information for the
2213 		 * packet.
2214 		 */
2215 		if ((extsts & EXTSTS_IPPKT) != 0) {
2216 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
2217 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2218 			if (extsts & EXTSTS_Rx_IPERR)
2219 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2220 			if (extsts & EXTSTS_TCPPKT) {
2221 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
2222 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
2223 				if (extsts & EXTSTS_Rx_TCPERR)
2224 					m->m_pkthdr.csum_flags |=
2225 					    M_CSUM_TCP_UDP_BAD;
2226 			} else if (extsts & EXTSTS_UDPPKT) {
2227 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
2228 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
2229 				if (extsts & EXTSTS_Rx_UDPERR)
2230 					m->m_pkthdr.csum_flags |=
2231 					    M_CSUM_TCP_UDP_BAD;
2232 			}
2233 		}
2234 
2235 		ifp->if_ipackets++;
2236 		m->m_pkthdr.rcvif = ifp;
2237 		m->m_pkthdr.len = len;
2238 
2239 #if NBPFILTER > 0
2240 		/*
2241 		 * Pass this up to any BPF listeners, but only
2242 		 * pass if up the stack if it's for us.
2243 		 */
2244 		if (ifp->if_bpf)
2245 			bpf_mtap(ifp->if_bpf, m);
2246 #endif /* NBPFILTER > 0 */
2247 
2248 		/* Pass it on. */
2249 		(*ifp->if_input)(ifp, m);
2250 	}
2251 
2252 	/* Update the receive pointer. */
2253 	sc->sc_rxptr = i;
2254 }
2255 
2256 /*
2257  * sip_rxintr:
2258  *
2259  *	Helper; handle receive interrupts on 10/100 parts.
2260  */
2261 static void
2262 sip_rxintr(struct sip_softc *sc)
2263 {
2264 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2265 	struct sip_rxsoft *rxs;
2266 	struct mbuf *m;
2267 	u_int32_t cmdsts;
2268 	int i, len;
2269 
2270 	for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
2271 		rxs = &sc->sc_rxsoft[i];
2272 
2273 		sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2274 
2275 		cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
2276 
2277 		/*
2278 		 * NOTE: OWN is set if owned by _consumer_.  We're the
2279 		 * consumer of the receive ring, so if the bit is clear,
2280 		 * we have processed all of the packets.
2281 		 */
2282 		if ((cmdsts & CMDSTS_OWN) == 0) {
2283 			/*
2284 			 * We have processed all of the receive buffers.
2285 			 */
2286 			break;
2287 		}
2288 
2289 		/*
2290 		 * If any collisions were seen on the wire, count one.
2291 		 */
2292 		if (cmdsts & CMDSTS_Rx_COL)
2293 			ifp->if_collisions++;
2294 
2295 		/*
2296 		 * If an error occurred, update stats, clear the status
2297 		 * word, and leave the packet buffer in place.  It will
2298 		 * simply be reused the next time the ring comes around.
2299 		 */
2300 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2301 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2302 			ifp->if_ierrors++;
2303 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2304 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
2305 				/* Receive overrun handled elsewhere. */
2306 				printf("%s: receive descriptor error\n",
2307 				    sc->sc_dev.dv_xname);
2308 			}
2309 #define	PRINTERR(bit, str)						\
2310 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
2311 			    (cmdsts & (bit)) != 0)			\
2312 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
2313 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2314 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2315 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2316 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2317 #undef PRINTERR
2318 			sip_init_rxdesc(sc, i);
2319 			continue;
2320 		}
2321 
2322 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2323 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2324 
2325 		/*
2326 		 * No errors; receive the packet.  Note, the SiS 900
2327 		 * includes the CRC with every packet.
2328 		 */
2329 		len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
2330 
2331 #ifdef __NO_STRICT_ALIGNMENT
2332 		/*
2333 		 * If the packet is small enough to fit in a
2334 		 * single header mbuf, allocate one and copy
2335 		 * the data into it.  This greatly reduces
2336 		 * memory consumption when we receive lots
2337 		 * of small packets.
2338 		 *
2339 		 * Otherwise, we add a new buffer to the receive
2340 		 * chain.  If this fails, we drop the packet and
2341 		 * recycle the old buffer.
2342 		 */
2343 		if (sip_copy_small != 0 && len <= MHLEN) {
2344 			MGETHDR(m, M_DONTWAIT, MT_DATA);
2345 			if (m == NULL)
2346 				goto dropit;
2347 			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2348 			memcpy(mtod(m, void *),
2349 			    mtod(rxs->rxs_mbuf, void *), len);
2350 			sip_init_rxdesc(sc, i);
2351 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2352 			    rxs->rxs_dmamap->dm_mapsize,
2353 			    BUS_DMASYNC_PREREAD);
2354 		} else {
2355 			m = rxs->rxs_mbuf;
2356 			if (sipcom_add_rxbuf(sc, i) != 0) {
2357  dropit:
2358 				ifp->if_ierrors++;
2359 				sip_init_rxdesc(sc, i);
2360 				bus_dmamap_sync(sc->sc_dmat,
2361 				    rxs->rxs_dmamap, 0,
2362 				    rxs->rxs_dmamap->dm_mapsize,
2363 				    BUS_DMASYNC_PREREAD);
2364 				continue;
2365 			}
2366 		}
2367 #else
2368 		/*
2369 		 * The SiS 900's receive buffers must be 4-byte aligned.
2370 		 * But this means that the data after the Ethernet header
2371 		 * is misaligned.  We must allocate a new buffer and
2372 		 * copy the data, shifted forward 2 bytes.
2373 		 */
2374 		MGETHDR(m, M_DONTWAIT, MT_DATA);
2375 		if (m == NULL) {
2376  dropit:
2377 			ifp->if_ierrors++;
2378 			sip_init_rxdesc(sc, i);
2379 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2380 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2381 			continue;
2382 		}
2383 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2384 		if (len > (MHLEN - 2)) {
2385 			MCLGET(m, M_DONTWAIT);
2386 			if ((m->m_flags & M_EXT) == 0) {
2387 				m_freem(m);
2388 				goto dropit;
2389 			}
2390 		}
2391 		m->m_data += 2;
2392 
2393 		/*
2394 		 * Note that we use clusters for incoming frames, so the
2395 		 * buffer is virtually contiguous.
2396 		 */
2397 		memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
2398 
2399 		/* Allow the receive descriptor to continue using its mbuf. */
2400 		sip_init_rxdesc(sc, i);
2401 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2402 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2403 #endif /* __NO_STRICT_ALIGNMENT */
2404 
2405 		ifp->if_ipackets++;
2406 		m->m_pkthdr.rcvif = ifp;
2407 		m->m_pkthdr.len = m->m_len = len;
2408 
2409 #if NBPFILTER > 0
2410 		/*
2411 		 * Pass this up to any BPF listeners, but only
2412 		 * pass if up the stack if it's for us.
2413 		 */
2414 		if (ifp->if_bpf)
2415 			bpf_mtap(ifp->if_bpf, m);
2416 #endif /* NBPFILTER > 0 */
2417 
2418 		/* Pass it on. */
2419 		(*ifp->if_input)(ifp, m);
2420 	}
2421 
2422 	/* Update the receive pointer. */
2423 	sc->sc_rxptr = i;
2424 }
2425 
2426 /*
2427  * sip_tick:
2428  *
2429  *	One second timer, used to tick the MII.
2430  */
2431 static void
2432 sipcom_tick(void *arg)
2433 {
2434 	struct sip_softc *sc = arg;
2435 	int s;
2436 
2437 	s = splnet();
2438 #ifdef SIP_EVENT_COUNTERS
2439 	if (sc->sc_gigabit) {
2440 		/* Read PAUSE related counts from MIB registers. */
2441 		sc->sc_ev_rxpause.ev_count +=
2442 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
2443 				     SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2444 		sc->sc_ev_txpause.ev_count +=
2445 		    bus_space_read_4(sc->sc_st, sc->sc_sh,
2446 				     SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2447 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2448 	}
2449 #endif /* SIP_EVENT_COUNTERS */
2450 	mii_tick(&sc->sc_mii);
2451 	splx(s);
2452 
2453 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2454 }
2455 
2456 /*
2457  * sip_reset:
2458  *
2459  *	Perform a soft reset on the SiS 900.
2460  */
2461 static bool
2462 sipcom_reset(struct sip_softc *sc)
2463 {
2464 	bus_space_tag_t st = sc->sc_st;
2465 	bus_space_handle_t sh = sc->sc_sh;
2466 	int i;
2467 
2468 	bus_space_write_4(st, sh, SIP_IER, 0);
2469 	bus_space_write_4(st, sh, SIP_IMR, 0);
2470 	bus_space_write_4(st, sh, SIP_RFCR, 0);
2471 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
2472 
2473 	for (i = 0; i < SIP_TIMEOUT; i++) {
2474 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2475 			break;
2476 		delay(2);
2477 	}
2478 
2479 	if (i == SIP_TIMEOUT) {
2480 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2481 		return false;
2482 	}
2483 
2484 	delay(1000);
2485 
2486 	if (sc->sc_gigabit) {
2487 		/*
2488 		 * Set the general purpose I/O bits.  Do it here in case we
2489 		 * need to have GPIO set up to talk to the media interface.
2490 		 */
2491 		bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2492 		delay(1000);
2493 	}
2494 	return true;
2495 }
2496 
2497 static void
2498 sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
2499 {
2500 	u_int32_t reg;
2501 	bus_space_tag_t st = sc->sc_st;
2502 	bus_space_handle_t sh = sc->sc_sh;
2503 	/*
2504 	 * Initialize the VLAN/IP receive control register.
2505 	 * We enable checksum computation on all incoming
2506 	 * packets, and do not reject packets w/ bad checksums.
2507 	 */
2508 	reg = 0;
2509 	if (capenable &
2510 	    (IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
2511 		reg |= VRCR_IPEN;
2512 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2513 		reg |= VRCR_VTDEN|VRCR_VTREN;
2514 	bus_space_write_4(st, sh, SIP_VRCR, reg);
2515 
2516 	/*
2517 	 * Initialize the VLAN/IP transmit control register.
2518 	 * We enable outgoing checksum computation on a
2519 	 * per-packet basis.
2520 	 */
2521 	reg = 0;
2522 	if (capenable &
2523 	    (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
2524 		reg |= VTCR_PPCHK;
2525 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2526 		reg |= VTCR_VPPTI;
2527 	bus_space_write_4(st, sh, SIP_VTCR, reg);
2528 
2529 	/*
2530 	 * If we're using VLANs, initialize the VLAN data register.
2531 	 * To understand why we bswap the VLAN Ethertype, see section
2532 	 * 4.2.36 of the DP83820 manual.
2533 	 */
2534 	if (VLAN_ATTACHED(&sc->sc_ethercom))
2535 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2536 }
2537 
2538 /*
2539  * sip_init:		[ ifnet interface function ]
2540  *
2541  *	Initialize the interface.  Must be called at splnet().
2542  */
2543 static int
2544 sipcom_init(struct ifnet *ifp)
2545 {
2546 	struct sip_softc *sc = ifp->if_softc;
2547 	bus_space_tag_t st = sc->sc_st;
2548 	bus_space_handle_t sh = sc->sc_sh;
2549 	struct sip_txsoft *txs;
2550 	struct sip_rxsoft *rxs;
2551 	struct sip_desc *sipd;
2552 	int i, error = 0;
2553 
2554 	if (!device_has_power(&sc->sc_dev))
2555 		return EBUSY;
2556 
2557 	/*
2558 	 * Cancel any pending I/O.
2559 	 */
2560 	sipcom_stop(ifp, 0);
2561 
2562 	/*
2563 	 * Reset the chip to a known state.
2564 	 */
2565 	if (!sipcom_reset(sc))
2566 		return EBUSY;
2567 
2568 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2569 		/*
2570 		 * DP83815 manual, page 78:
2571 		 *    4.4 Recommended Registers Configuration
2572 		 *    For optimum performance of the DP83815, version noted
2573 		 *    as DP83815CVNG (SRR = 203h), the listed register
2574 		 *    modifications must be followed in sequence...
2575 		 *
2576 		 * It's not clear if this should be 302h or 203h because that
2577 		 * chip name is listed as SRR 302h in the description of the
2578 		 * SRR register.  However, my revision 302h DP83815 on the
2579 		 * Netgear FA311 purchased in 02/2001 needs these settings
2580 		 * to avoid tons of errors in AcceptPerfectMatch (non-
2581 		 * IFF_PROMISC) mode.  I do not know if other revisions need
2582 		 * this set or not.  [briggs -- 09 March 2001]
2583 		 *
2584 		 * Note that only the low-order 12 bits of 0xe4 are documented
2585 		 * and that this sets reserved bits in that register.
2586 		 */
2587 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
2588 
2589 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
2590 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
2591 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
2592 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
2593 
2594 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
2595 	}
2596 
2597 	/*
2598 	 * Initialize the transmit descriptor ring.
2599 	 */
2600 	for (i = 0; i < sc->sc_ntxdesc; i++) {
2601 		sipd = &sc->sc_txdescs[i];
2602 		memset(sipd, 0, sizeof(struct sip_desc));
2603 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
2604 	}
2605 	sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
2606 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2607 	sc->sc_txfree = sc->sc_ntxdesc;
2608 	sc->sc_txnext = 0;
2609 	sc->sc_txwin = 0;
2610 
2611 	/*
2612 	 * Initialize the transmit job descriptors.
2613 	 */
2614 	SIMPLEQ_INIT(&sc->sc_txfreeq);
2615 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
2616 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
2617 		txs = &sc->sc_txsoft[i];
2618 		txs->txs_mbuf = NULL;
2619 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2620 	}
2621 
2622 	/*
2623 	 * Initialize the receive descriptor and receive job
2624 	 * descriptor rings.
2625 	 */
2626 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2627 		rxs = &sc->sc_rxsoft[i];
2628 		if (rxs->rxs_mbuf == NULL) {
2629 			if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
2630 				printf("%s: unable to allocate or map rx "
2631 				    "buffer %d, error = %d\n",
2632 				    sc->sc_dev.dv_xname, i, error);
2633 				/*
2634 				 * XXX Should attempt to run with fewer receive
2635 				 * XXX buffers instead of just failing.
2636 				 */
2637 				sipcom_rxdrain(sc);
2638 				goto out;
2639 			}
2640 		} else
2641 			sip_init_rxdesc(sc, i);
2642 	}
2643 	sc->sc_rxptr = 0;
2644 	sc->sc_rxdiscard = 0;
2645 	sip_rxchain_reset(sc);
2646 
2647 	/*
2648 	 * Set the configuration register; it's already initialized
2649 	 * in sip_attach().
2650 	 */
2651 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2652 
2653 	/*
2654 	 * Initialize the prototype TXCFG register.
2655 	 */
2656 	if (sc->sc_gigabit) {
2657 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2658 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2659 	} else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2660 	     SIP_SIS900_REV(sc, SIS_REV_960) ||
2661 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2662 	    (sc->sc_cfg & CFG_EDBMASTEN)) {
2663 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
2664 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
2665 	} else {
2666 		sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
2667 		sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
2668 	}
2669 
2670 	sc->sc_txcfg |= TXCFG_ATP |
2671 	    __SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
2672 	    sc->sc_tx_drain_thresh;
2673 	bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
2674 
2675 	/*
2676 	 * Initialize the receive drain threshold if we have never
2677 	 * done so.
2678 	 */
2679 	if (sc->sc_rx_drain_thresh == 0) {
2680 		/*
2681 		 * XXX This value should be tuned.  This is set to the
2682 		 * maximum of 248 bytes, and we may be able to improve
2683 		 * performance by decreasing it (although we should never
2684 		 * set this value lower than 2; 14 bytes are required to
2685 		 * filter the packet).
2686 		 */
2687 		sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
2688 	}
2689 
2690 	/*
2691 	 * Initialize the prototype RXCFG register.
2692 	 */
2693 	sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
2694 	/*
2695 	 * Accept long packets (including FCS) so we can handle
2696 	 * 802.1q-tagged frames and jumbo frames properly.
2697 	 */
2698 	if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
2699 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2700 		sc->sc_rxcfg |= RXCFG_ALP;
2701 
2702 	/*
2703 	 * Checksum offloading is disabled if the user selects an MTU
2704 	 * larger than 8109.  (FreeBSD says 8152, but there is emperical
2705 	 * evidence that >8109 does not work on some boards, such as the
2706 	 * Planex GN-1000TE).
2707 	 */
2708 	if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
2709 	    (ifp->if_capenable &
2710 	     (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2711 	      IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2712 	      IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
2713 		printf("%s: Checksum offloading does not work if MTU > 8109 - "
2714 		       "disabled.\n", sc->sc_dev.dv_xname);
2715 		ifp->if_capenable &=
2716 		    ~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
2717 		     IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
2718 		     IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
2719 		ifp->if_csum_flags_tx = 0;
2720 		ifp->if_csum_flags_rx = 0;
2721 	}
2722 
2723 	bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
2724 
2725 	if (sc->sc_gigabit)
2726 		sipcom_dp83820_init(sc, ifp->if_capenable);
2727 
2728 	/*
2729 	 * Give the transmit and receive rings to the chip.
2730 	 */
2731 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2732 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2733 
2734 	/*
2735 	 * Initialize the interrupt mask.
2736 	 */
2737 	sc->sc_imr = sc->sc_bits.b_isr_dperr |
2738 	             sc->sc_bits.b_isr_sserr |
2739 		     sc->sc_bits.b_isr_rmabt |
2740 		     sc->sc_bits.b_isr_rtabt | ISR_RXSOVR |
2741 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2742 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2743 
2744 	/* Set up the receive filter. */
2745 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2746 
2747 	/*
2748 	 * Tune sc_rx_flow_thresh.
2749 	 * XXX "More than 8KB" is too short for jumbo frames.
2750 	 * XXX TODO: Threshold value should be user-settable.
2751 	 */
2752 	sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2753 				 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2754 				 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2755 
2756 	/*
2757 	 * Set the current media.  Do this after initializing the prototype
2758 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2759 	 * control.
2760 	 */
2761 	if ((error = ether_mediachange(ifp)) != 0)
2762 		goto out;
2763 
2764 	/*
2765 	 * Set the interrupt hold-off timer to 100us.
2766 	 */
2767 	if (sc->sc_gigabit)
2768 		bus_space_write_4(st, sh, SIP_IHR, 0x01);
2769 
2770 	/*
2771 	 * Enable interrupts.
2772 	 */
2773 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
2774 
2775 	/*
2776 	 * Start the transmit and receive processes.
2777 	 */
2778 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2779 
2780 	/*
2781 	 * Start the one second MII clock.
2782 	 */
2783 	callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
2784 
2785 	/*
2786 	 * ...all done!
2787 	 */
2788 	ifp->if_flags |= IFF_RUNNING;
2789 	ifp->if_flags &= ~IFF_OACTIVE;
2790 	sc->sc_if_flags = ifp->if_flags;
2791 	sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
2792 	sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
2793 	sc->sc_prev.if_capenable = ifp->if_capenable;
2794 
2795  out:
2796 	if (error)
2797 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2798 	return (error);
2799 }
2800 
2801 /*
2802  * sip_drain:
2803  *
2804  *	Drain the receive queue.
2805  */
2806 static void
2807 sipcom_rxdrain(struct sip_softc *sc)
2808 {
2809 	struct sip_rxsoft *rxs;
2810 	int i;
2811 
2812 	for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
2813 		rxs = &sc->sc_rxsoft[i];
2814 		if (rxs->rxs_mbuf != NULL) {
2815 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2816 			m_freem(rxs->rxs_mbuf);
2817 			rxs->rxs_mbuf = NULL;
2818 		}
2819 	}
2820 }
2821 
2822 /*
2823  * sip_stop:		[ ifnet interface function ]
2824  *
2825  *	Stop transmission on the interface.
2826  */
2827 static void
2828 sipcom_stop(struct ifnet *ifp, int disable)
2829 {
2830 	struct sip_softc *sc = ifp->if_softc;
2831 	bus_space_tag_t st = sc->sc_st;
2832 	bus_space_handle_t sh = sc->sc_sh;
2833 	struct sip_txsoft *txs;
2834 	u_int32_t cmdsts = 0;		/* DEBUG */
2835 
2836 	/*
2837 	 * Stop the one second clock.
2838 	 */
2839 	callout_stop(&sc->sc_tick_ch);
2840 
2841 	/* Down the MII. */
2842 	mii_down(&sc->sc_mii);
2843 
2844 	/*
2845 	 * Disable interrupts.
2846 	 */
2847 	bus_space_write_4(st, sh, SIP_IER, 0);
2848 
2849 	/*
2850 	 * Stop receiver and transmitter.
2851 	 */
2852 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2853 
2854 	/*
2855 	 * Release any queued transmit buffers.
2856 	 */
2857 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2858 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2859 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2860 		    (le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
2861 		     CMDSTS_INTR) == 0)
2862 			printf("%s: sip_stop: last descriptor does not "
2863 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
2864 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2865 #ifdef DIAGNOSTIC
2866 		if (txs->txs_mbuf == NULL) {
2867 			printf("%s: dirty txsoft with no mbuf chain\n",
2868 			    sc->sc_dev.dv_xname);
2869 			panic("sip_stop");
2870 		}
2871 #endif
2872 		cmdsts |=		/* DEBUG */
2873 		    le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
2874 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2875 		m_freem(txs->txs_mbuf);
2876 		txs->txs_mbuf = NULL;
2877 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2878 	}
2879 
2880 	if (disable)
2881 		sipcom_rxdrain(sc);
2882 
2883 	/*
2884 	 * Mark the interface down and cancel the watchdog timer.
2885 	 */
2886 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2887 	ifp->if_timer = 0;
2888 
2889 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2890 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
2891 		printf("%s: sip_stop: no INTR bits set in dirty tx "
2892 		    "descriptors\n", sc->sc_dev.dv_xname);
2893 }
2894 
2895 /*
2896  * sip_read_eeprom:
2897  *
2898  *	Read data from the serial EEPROM.
2899  */
2900 static void
2901 sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
2902     u_int16_t *data)
2903 {
2904 	bus_space_tag_t st = sc->sc_st;
2905 	bus_space_handle_t sh = sc->sc_sh;
2906 	u_int16_t reg;
2907 	int i, x;
2908 
2909 	for (i = 0; i < wordcnt; i++) {
2910 		/* Send CHIP SELECT. */
2911 		reg = EROMAR_EECS;
2912 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
2913 
2914 		/* Shift in the READ opcode. */
2915 		for (x = 3; x > 0; x--) {
2916 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2917 				reg |= EROMAR_EEDI;
2918 			else
2919 				reg &= ~EROMAR_EEDI;
2920 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2921 			bus_space_write_4(st, sh, SIP_EROMAR,
2922 			    reg | EROMAR_EESK);
2923 			delay(4);
2924 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2925 			delay(4);
2926 		}
2927 
2928 		/* Shift in address. */
2929 		for (x = 6; x > 0; x--) {
2930 			if ((word + i) & (1 << (x - 1)))
2931 				reg |= EROMAR_EEDI;
2932 			else
2933 				reg &= ~EROMAR_EEDI;
2934 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2935 			bus_space_write_4(st, sh, SIP_EROMAR,
2936 			    reg | EROMAR_EESK);
2937 			delay(4);
2938 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2939 			delay(4);
2940 		}
2941 
2942 		/* Shift out data. */
2943 		reg = EROMAR_EECS;
2944 		data[i] = 0;
2945 		for (x = 16; x > 0; x--) {
2946 			bus_space_write_4(st, sh, SIP_EROMAR,
2947 			    reg | EROMAR_EESK);
2948 			delay(4);
2949 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2950 				data[i] |= (1 << (x - 1));
2951 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2952 			delay(4);
2953 		}
2954 
2955 		/* Clear CHIP SELECT. */
2956 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
2957 		delay(4);
2958 	}
2959 }
2960 
2961 /*
2962  * sipcom_add_rxbuf:
2963  *
2964  *	Add a receive buffer to the indicated descriptor.
2965  */
2966 static int
2967 sipcom_add_rxbuf(struct sip_softc *sc, int idx)
2968 {
2969 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2970 	struct mbuf *m;
2971 	int error;
2972 
2973 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2974 	if (m == NULL)
2975 		return (ENOBUFS);
2976 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2977 
2978 	MCLGET(m, M_DONTWAIT);
2979 	if ((m->m_flags & M_EXT) == 0) {
2980 		m_freem(m);
2981 		return (ENOBUFS);
2982 	}
2983 
2984 	/* XXX I don't believe this is necessary. --dyoung */
2985 	if (sc->sc_gigabit)
2986 		m->m_len = sc->sc_parm->p_rxbuf_len;
2987 
2988 	if (rxs->rxs_mbuf != NULL)
2989 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2990 
2991 	rxs->rxs_mbuf = m;
2992 
2993 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2994 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2995 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2996 	if (error) {
2997 		printf("%s: can't load rx DMA map %d, error = %d\n",
2998 		    sc->sc_dev.dv_xname, idx, error);
2999 		panic("%s", __func__);		/* XXX */
3000 	}
3001 
3002 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3003 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3004 
3005 	sip_init_rxdesc(sc, idx);
3006 
3007 	return (0);
3008 }
3009 
3010 /*
3011  * sip_sis900_set_filter:
3012  *
3013  *	Set up the receive filter.
3014  */
3015 static void
3016 sipcom_sis900_set_filter(struct sip_softc *sc)
3017 {
3018 	bus_space_tag_t st = sc->sc_st;
3019 	bus_space_handle_t sh = sc->sc_sh;
3020 	struct ethercom *ec = &sc->sc_ethercom;
3021 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3022 	struct ether_multi *enm;
3023 	const u_int8_t *cp;
3024 	struct ether_multistep step;
3025 	u_int32_t crc, mchash[16];
3026 
3027 	/*
3028 	 * Initialize the prototype RFCR.
3029 	 */
3030 	sc->sc_rfcr = RFCR_RFEN;
3031 	if (ifp->if_flags & IFF_BROADCAST)
3032 		sc->sc_rfcr |= RFCR_AAB;
3033 	if (ifp->if_flags & IFF_PROMISC) {
3034 		sc->sc_rfcr |= RFCR_AAP;
3035 		goto allmulti;
3036 	}
3037 
3038 	/*
3039 	 * Set up the multicast address filter by passing all multicast
3040 	 * addresses through a CRC generator, and then using the high-order
3041 	 * 6 bits as an index into the 128 bit multicast hash table (only
3042 	 * the lower 16 bits of each 32 bit multicast hash register are
3043 	 * valid).  The high order bits select the register, while the
3044 	 * rest of the bits select the bit within the register.
3045 	 */
3046 
3047 	memset(mchash, 0, sizeof(mchash));
3048 
3049 	/*
3050 	 * SiS900 (at least SiS963) requires us to register the address of
3051 	 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3052 	 */
3053 	crc = 0x0ed423f9;
3054 
3055 	if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3056 	    SIP_SIS900_REV(sc, SIS_REV_960) ||
3057 	    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3058 		/* Just want the 8 most significant bits. */
3059 		crc >>= 24;
3060 	} else {
3061 		/* Just want the 7 most significant bits. */
3062 		crc >>= 25;
3063 	}
3064 
3065 	/* Set the corresponding bit in the hash table. */
3066 	mchash[crc >> 4] |= 1 << (crc & 0xf);
3067 
3068 	ETHER_FIRST_MULTI(step, ec, enm);
3069 	while (enm != NULL) {
3070 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3071 			/*
3072 			 * We must listen to a range of multicast addresses.
3073 			 * For now, just accept all multicasts, rather than
3074 			 * trying to set only those filter bits needed to match
3075 			 * the range.  (At this time, the only use of address
3076 			 * ranges is for IP multicast routing, for which the
3077 			 * range is big enough to require all bits set.)
3078 			 */
3079 			goto allmulti;
3080 		}
3081 
3082 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3083 
3084 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3085 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
3086 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3087 			/* Just want the 8 most significant bits. */
3088 			crc >>= 24;
3089 		} else {
3090 			/* Just want the 7 most significant bits. */
3091 			crc >>= 25;
3092 		}
3093 
3094 		/* Set the corresponding bit in the hash table. */
3095 		mchash[crc >> 4] |= 1 << (crc & 0xf);
3096 
3097 		ETHER_NEXT_MULTI(step, enm);
3098 	}
3099 
3100 	ifp->if_flags &= ~IFF_ALLMULTI;
3101 	goto setit;
3102 
3103  allmulti:
3104 	ifp->if_flags |= IFF_ALLMULTI;
3105 	sc->sc_rfcr |= RFCR_AAM;
3106 
3107  setit:
3108 #define	FILTER_EMIT(addr, data)						\
3109 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
3110 	delay(1);							\
3111 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
3112 	delay(1)
3113 
3114 	/*
3115 	 * Disable receive filter, and program the node address.
3116 	 */
3117 	cp = CLLADDR(ifp->if_sadl);
3118 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
3119 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
3120 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
3121 
3122 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3123 		/*
3124 		 * Program the multicast hash table.
3125 		 */
3126 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
3127 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
3128 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
3129 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
3130 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
3131 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
3132 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
3133 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
3134 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
3135 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
3136 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
3137 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
3138 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
3139 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
3140 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
3141 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
3142 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
3143 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
3144 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
3145 		}
3146 	}
3147 #undef FILTER_EMIT
3148 
3149 	/*
3150 	 * Re-enable the receiver filter.
3151 	 */
3152 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3153 }
3154 
3155 /*
3156  * sip_dp83815_set_filter:
3157  *
3158  *	Set up the receive filter.
3159  */
3160 static void
3161 sipcom_dp83815_set_filter(struct sip_softc *sc)
3162 {
3163 	bus_space_tag_t st = sc->sc_st;
3164 	bus_space_handle_t sh = sc->sc_sh;
3165 	struct ethercom *ec = &sc->sc_ethercom;
3166 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3167 	struct ether_multi *enm;
3168 	const u_int8_t *cp;
3169 	struct ether_multistep step;
3170 	u_int32_t crc, hash, slot, bit;
3171 #define	MCHASH_NWORDS_83820	128
3172 #define	MCHASH_NWORDS_83815	32
3173 #define	MCHASH_NWORDS	MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3174 	u_int16_t mchash[MCHASH_NWORDS];
3175 	int i;
3176 
3177 	/*
3178 	 * Initialize the prototype RFCR.
3179 	 * Enable the receive filter, and accept on
3180 	 *    Perfect (destination address) Match
3181 	 * If IFF_BROADCAST, also accept all broadcast packets.
3182 	 * If IFF_PROMISC, accept all unicast packets (and later, set
3183 	 *    IFF_ALLMULTI and accept all multicast, too).
3184 	 */
3185 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
3186 	if (ifp->if_flags & IFF_BROADCAST)
3187 		sc->sc_rfcr |= RFCR_AAB;
3188 	if (ifp->if_flags & IFF_PROMISC) {
3189 		sc->sc_rfcr |= RFCR_AAP;
3190 		goto allmulti;
3191 	}
3192 
3193 	/*
3194          * Set up the DP83820/DP83815 multicast address filter by
3195          * passing all multicast addresses through a CRC generator,
3196          * and then using the high-order 11/9 bits as an index into
3197          * the 2048/512 bit multicast hash table.  The high-order
3198          * 7/5 bits select the slot, while the low-order 4 bits
3199          * select the bit within the slot.  Note that only the low
3200          * 16-bits of each filter word are used, and there are
3201          * 128/32 filter words.
3202 	 */
3203 
3204 	memset(mchash, 0, sizeof(mchash));
3205 
3206 	ifp->if_flags &= ~IFF_ALLMULTI;
3207 	ETHER_FIRST_MULTI(step, ec, enm);
3208 	if (enm == NULL)
3209 		goto setit;
3210 	while (enm != NULL) {
3211 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3212 			/*
3213 			 * We must listen to a range of multicast addresses.
3214 			 * For now, just accept all multicasts, rather than
3215 			 * trying to set only those filter bits needed to match
3216 			 * the range.  (At this time, the only use of address
3217 			 * ranges is for IP multicast routing, for which the
3218 			 * range is big enough to require all bits set.)
3219 			 */
3220 			goto allmulti;
3221 		}
3222 
3223 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3224 
3225 		if (sc->sc_gigabit) {
3226 			/* Just want the 11 most significant bits. */
3227 			hash = crc >> 21;
3228 		} else {
3229 			/* Just want the 9 most significant bits. */
3230 			hash = crc >> 23;
3231 		}
3232 
3233 		slot = hash >> 4;
3234 		bit = hash & 0xf;
3235 
3236 		/* Set the corresponding bit in the hash table. */
3237 		mchash[slot] |= 1 << bit;
3238 
3239 		ETHER_NEXT_MULTI(step, enm);
3240 	}
3241 	sc->sc_rfcr |= RFCR_MHEN;
3242 	goto setit;
3243 
3244  allmulti:
3245 	ifp->if_flags |= IFF_ALLMULTI;
3246 	sc->sc_rfcr |= RFCR_AAM;
3247 
3248  setit:
3249 #define	FILTER_EMIT(addr, data)						\
3250 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
3251 	delay(1);							\
3252 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
3253 	delay(1)
3254 
3255 	/*
3256 	 * Disable receive filter, and program the node address.
3257 	 */
3258 	cp = CLLADDR(ifp->if_sadl);
3259 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3260 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3261 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3262 
3263 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3264 		int nwords =
3265 		    sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
3266 		/*
3267 		 * Program the multicast hash table.
3268 		 */
3269 		for (i = 0; i < nwords; i++) {
3270 			FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
3271 		}
3272 	}
3273 #undef FILTER_EMIT
3274 #undef MCHASH_NWORDS
3275 #undef MCHASH_NWORDS_83815
3276 #undef MCHASH_NWORDS_83820
3277 
3278 	/*
3279 	 * Re-enable the receiver filter.
3280 	 */
3281 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3282 }
3283 
3284 /*
3285  * sip_dp83820_mii_readreg:	[mii interface function]
3286  *
3287  *	Read a PHY register on the MII of the DP83820.
3288  */
3289 static int
3290 sipcom_dp83820_mii_readreg(struct device *self, int phy, int reg)
3291 {
3292 	struct sip_softc *sc = (void *) self;
3293 
3294 	if (sc->sc_cfg & CFG_TBI_EN) {
3295 		bus_addr_t tbireg;
3296 		int rv;
3297 
3298 		if (phy != 0)
3299 			return (0);
3300 
3301 		switch (reg) {
3302 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3303 		case MII_BMSR:		tbireg = SIP_TBISR; break;
3304 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3305 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3306 		case MII_ANER:		tbireg = SIP_TANER; break;
3307 		case MII_EXTSR:
3308 			/*
3309 			 * Don't even bother reading the TESR register.
3310 			 * The manual documents that the device has
3311 			 * 1000baseX full/half capability, but the
3312 			 * register itself seems read back 0 on some
3313 			 * boards.  Just hard-code the result.
3314 			 */
3315 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3316 
3317 		default:
3318 			return (0);
3319 		}
3320 
3321 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3322 		if (tbireg == SIP_TBISR) {
3323 			/* LINK and ACOMP are switched! */
3324 			int val = rv;
3325 
3326 			rv = 0;
3327 			if (val & TBISR_MR_LINK_STATUS)
3328 				rv |= BMSR_LINK;
3329 			if (val & TBISR_MR_AN_COMPLETE)
3330 				rv |= BMSR_ACOMP;
3331 
3332 			/*
3333 			 * The manual claims this register reads back 0
3334 			 * on hard and soft reset.  But we want to let
3335 			 * the gentbi driver know that we support auto-
3336 			 * negotiation, so hard-code this bit in the
3337 			 * result.
3338 			 */
3339 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
3340 		}
3341 
3342 		return (rv);
3343 	}
3344 
3345 	return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
3346 }
3347 
3348 /*
3349  * sip_dp83820_mii_writereg:	[mii interface function]
3350  *
3351  *	Write a PHY register on the MII of the DP83820.
3352  */
3353 static void
3354 sipcom_dp83820_mii_writereg(struct device *self, int phy, int reg, int val)
3355 {
3356 	struct sip_softc *sc = (void *) self;
3357 
3358 	if (sc->sc_cfg & CFG_TBI_EN) {
3359 		bus_addr_t tbireg;
3360 
3361 		if (phy != 0)
3362 			return;
3363 
3364 		switch (reg) {
3365 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3366 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3367 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3368 		default:
3369 			return;
3370 		}
3371 
3372 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3373 		return;
3374 	}
3375 
3376 	mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
3377 }
3378 
3379 /*
3380  * sip_dp83820_mii_statchg:	[mii interface function]
3381  *
3382  *	Callback from MII layer when media changes.
3383  */
3384 static void
3385 sipcom_dp83820_mii_statchg(struct device *self)
3386 {
3387 	struct sip_softc *sc = (struct sip_softc *) self;
3388 	struct mii_data *mii = &sc->sc_mii;
3389 	u_int32_t cfg, pcr;
3390 
3391 	/*
3392 	 * Get flow control negotiation result.
3393 	 */
3394 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3395 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3396 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3397 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3398 	}
3399 
3400 	/*
3401 	 * Update TXCFG for full-duplex operation.
3402 	 */
3403 	if ((mii->mii_media_active & IFM_FDX) != 0)
3404 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3405 	else
3406 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3407 
3408 	/*
3409 	 * Update RXCFG for full-duplex or loopback.
3410 	 */
3411 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3412 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3413 		sc->sc_rxcfg |= RXCFG_ATX;
3414 	else
3415 		sc->sc_rxcfg &= ~RXCFG_ATX;
3416 
3417 	/*
3418 	 * Update CFG for MII/GMII.
3419 	 */
3420 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3421 		cfg = sc->sc_cfg | CFG_MODE_1000;
3422 	else
3423 		cfg = sc->sc_cfg;
3424 
3425 	/*
3426 	 * 802.3x flow control.
3427 	 */
3428 	pcr = 0;
3429 	if (sc->sc_flowflags & IFM_FLOW) {
3430 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3431 			pcr |= sc->sc_rx_flow_thresh;
3432 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3433 			pcr |= PCR_PSEN | PCR_PS_MCAST;
3434 	}
3435 
3436 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3437 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3438 	    sc->sc_txcfg);
3439 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3440 	    sc->sc_rxcfg);
3441 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3442 }
3443 
3444 /*
3445  * sip_mii_bitbang_read: [mii bit-bang interface function]
3446  *
3447  *	Read the MII serial port for the MII bit-bang module.
3448  */
3449 static u_int32_t
3450 sipcom_mii_bitbang_read(struct device *self)
3451 {
3452 	struct sip_softc *sc = (void *) self;
3453 
3454 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3455 }
3456 
3457 /*
3458  * sip_mii_bitbang_write: [mii big-bang interface function]
3459  *
3460  *	Write the MII serial port for the MII bit-bang module.
3461  */
3462 static void
3463 sipcom_mii_bitbang_write(struct device *self, u_int32_t val)
3464 {
3465 	struct sip_softc *sc = (void *) self;
3466 
3467 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3468 }
3469 
3470 /*
3471  * sip_sis900_mii_readreg:	[mii interface function]
3472  *
3473  *	Read a PHY register on the MII.
3474  */
3475 static int
3476 sipcom_sis900_mii_readreg(struct device *self, int phy, int reg)
3477 {
3478 	struct sip_softc *sc = (struct sip_softc *) self;
3479 	u_int32_t enphy;
3480 
3481 	/*
3482 	 * The PHY of recent SiS chipsets is accessed through bitbang
3483 	 * operations.
3484 	 */
3485 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3486 		return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
3487 		    phy, reg);
3488 
3489 #ifndef SIS900_MII_RESTRICT
3490 	/*
3491 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3492 	 * MII address 0.
3493 	 */
3494 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3495 		return (0);
3496 #endif
3497 
3498 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3499 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3500 	    ENPHY_RWCMD | ENPHY_ACCESS);
3501 	do {
3502 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3503 	} while (enphy & ENPHY_ACCESS);
3504 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3505 }
3506 
3507 /*
3508  * sip_sis900_mii_writereg:	[mii interface function]
3509  *
3510  *	Write a PHY register on the MII.
3511  */
3512 static void
3513 sipcom_sis900_mii_writereg(struct device *self, int phy, int reg, int val)
3514 {
3515 	struct sip_softc *sc = (struct sip_softc *) self;
3516 	u_int32_t enphy;
3517 
3518 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3519 		mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
3520 		    phy, reg, val);
3521 		return;
3522 	}
3523 
3524 #ifndef SIS900_MII_RESTRICT
3525 	/*
3526 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3527 	 * MII address 0.
3528 	 */
3529 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3530 		return;
3531 #endif
3532 
3533 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3534 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3535 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3536 	do {
3537 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3538 	} while (enphy & ENPHY_ACCESS);
3539 }
3540 
3541 /*
3542  * sip_sis900_mii_statchg:	[mii interface function]
3543  *
3544  *	Callback from MII layer when media changes.
3545  */
3546 static void
3547 sipcom_sis900_mii_statchg(struct device *self)
3548 {
3549 	struct sip_softc *sc = (struct sip_softc *) self;
3550 	struct mii_data *mii = &sc->sc_mii;
3551 	u_int32_t flowctl;
3552 
3553 	/*
3554 	 * Get flow control negotiation result.
3555 	 */
3556 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3557 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3558 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3559 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3560 	}
3561 
3562 	/*
3563 	 * Update TXCFG for full-duplex operation.
3564 	 */
3565 	if ((mii->mii_media_active & IFM_FDX) != 0)
3566 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3567 	else
3568 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3569 
3570 	/*
3571 	 * Update RXCFG for full-duplex or loopback.
3572 	 */
3573 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3574 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3575 		sc->sc_rxcfg |= RXCFG_ATX;
3576 	else
3577 		sc->sc_rxcfg &= ~RXCFG_ATX;
3578 
3579 	/*
3580 	 * Update IMR for use of 802.3x flow control.
3581 	 */
3582 	if (sc->sc_flowflags & IFM_FLOW) {
3583 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3584 		flowctl = FLOWCTL_FLOWEN;
3585 	} else {
3586 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3587 		flowctl = 0;
3588 	}
3589 
3590 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3591 	    sc->sc_txcfg);
3592 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3593 	    sc->sc_rxcfg);
3594 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3595 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3596 }
3597 
3598 /*
3599  * sip_dp83815_mii_readreg:	[mii interface function]
3600  *
3601  *	Read a PHY register on the MII.
3602  */
3603 static int
3604 sipcom_dp83815_mii_readreg(struct device *self, int phy, int reg)
3605 {
3606 	struct sip_softc *sc = (struct sip_softc *) self;
3607 	u_int32_t val;
3608 
3609 	/*
3610 	 * The DP83815 only has an internal PHY.  Only allow
3611 	 * MII address 0.
3612 	 */
3613 	if (phy != 0)
3614 		return (0);
3615 
3616 	/*
3617 	 * Apparently, after a reset, the DP83815 can take a while
3618 	 * to respond.  During this recovery period, the BMSR returns
3619 	 * a value of 0.  Catch this -- it's not supposed to happen
3620 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3621 	 * PHY to come back to life.
3622 	 *
3623 	 * This works out because the BMSR is the first register
3624 	 * read during the PHY probe process.
3625 	 */
3626 	do {
3627 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3628 	} while (reg == MII_BMSR && val == 0);
3629 
3630 	return (val & 0xffff);
3631 }
3632 
3633 /*
3634  * sip_dp83815_mii_writereg:	[mii interface function]
3635  *
3636  *	Write a PHY register to the MII.
3637  */
3638 static void
3639 sipcom_dp83815_mii_writereg(struct device *self, int phy, int reg, int val)
3640 {
3641 	struct sip_softc *sc = (struct sip_softc *) self;
3642 
3643 	/*
3644 	 * The DP83815 only has an internal PHY.  Only allow
3645 	 * MII address 0.
3646 	 */
3647 	if (phy != 0)
3648 		return;
3649 
3650 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3651 }
3652 
3653 /*
3654  * sip_dp83815_mii_statchg:	[mii interface function]
3655  *
3656  *	Callback from MII layer when media changes.
3657  */
3658 static void
3659 sipcom_dp83815_mii_statchg(struct device *self)
3660 {
3661 	struct sip_softc *sc = (struct sip_softc *) self;
3662 
3663 	/*
3664 	 * Update TXCFG for full-duplex operation.
3665 	 */
3666 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3667 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3668 	else
3669 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3670 
3671 	/*
3672 	 * Update RXCFG for full-duplex or loopback.
3673 	 */
3674 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3675 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3676 		sc->sc_rxcfg |= RXCFG_ATX;
3677 	else
3678 		sc->sc_rxcfg &= ~RXCFG_ATX;
3679 
3680 	/*
3681 	 * XXX 802.3x flow control.
3682 	 */
3683 
3684 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
3685 	    sc->sc_txcfg);
3686 	bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
3687 	    sc->sc_rxcfg);
3688 
3689 	/*
3690 	 * Some DP83815s experience problems when used with short
3691 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
3692 	 * sequence adjusts the DSP's signal attenuation to fix the
3693 	 * problem.
3694 	 */
3695 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3696 		uint32_t reg;
3697 
3698 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3699 
3700 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3701 		reg &= 0x0fff;
3702 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3703 		delay(100);
3704 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3705 		reg &= 0x00ff;
3706 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3707 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3708 			    0x00e8);
3709 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3710 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3711 			    reg | 0x20);
3712 		}
3713 
3714 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3715 	}
3716 }
3717 
3718 static void
3719 sipcom_dp83820_read_macaddr(struct sip_softc *sc,
3720     const struct pci_attach_args *pa, u_int8_t *enaddr)
3721 {
3722 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3723 	u_int8_t cksum, *e, match;
3724 	int i;
3725 
3726 	/*
3727 	 * EEPROM data format for the DP83820 can be found in
3728 	 * the DP83820 manual, section 4.2.4.
3729 	 */
3730 
3731 	sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
3732 
3733 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3734 	match = ~(match - 1);
3735 
3736 	cksum = 0x55;
3737 	e = (u_int8_t *) eeprom_data;
3738 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3739 		cksum += *e++;
3740 
3741 	if (cksum != match)
3742 		printf("%s: Checksum (%x) mismatch (%x)",
3743 		    sc->sc_dev.dv_xname, cksum, match);
3744 
3745 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3746 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3747 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3748 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3749 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3750 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3751 }
3752 
3753 static void
3754 sipcom_sis900_eeprom_delay(struct sip_softc *sc)
3755 {
3756 	int i;
3757 
3758 	/*
3759 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
3760 	 * a reason, but I don't know it.
3761 	 */
3762 	for (i = 0; i < 10; i++)
3763 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3764 }
3765 
3766 static void
3767 sipcom_sis900_read_macaddr(struct sip_softc *sc,
3768     const struct pci_attach_args *pa, u_int8_t *enaddr)
3769 {
3770 	u_int16_t myea[ETHER_ADDR_LEN / 2];
3771 
3772 	switch (sc->sc_rev) {
3773 	case SIS_REV_630S:
3774 	case SIS_REV_630E:
3775 	case SIS_REV_630EA1:
3776 	case SIS_REV_630ET:
3777 	case SIS_REV_635:
3778 		/*
3779 		 * The MAC address for the on-board Ethernet of
3780 		 * the SiS 630 chipset is in the NVRAM.  Kick
3781 		 * the chip into re-loading it from NVRAM, and
3782 		 * read the MAC address out of the filter registers.
3783 		 */
3784 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3785 
3786 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3787 		    RFCR_RFADDR_NODE0);
3788 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3789 		    0xffff;
3790 
3791 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3792 		    RFCR_RFADDR_NODE2);
3793 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3794 		    0xffff;
3795 
3796 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3797 		    RFCR_RFADDR_NODE4);
3798 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3799 		    0xffff;
3800 		break;
3801 
3802 	case SIS_REV_960:
3803 		{
3804 #define	SIS_SET_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3805 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3806 
3807 #define	SIS_CLR_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3808 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3809 
3810 			int waittime, i;
3811 
3812 			/* Allow to read EEPROM from LAN. It is shared
3813 			 * between a 1394 controller and the NIC and each
3814 			 * time we access it, we need to set SIS_EECMD_REQ.
3815 			 */
3816 			SIS_SET_EROMAR(sc, EROMAR_REQ);
3817 
3818 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3819 				/* Force EEPROM to idle state. */
3820 
3821 				/*
3822 				 * XXX-cube This is ugly.  I'll look for docs about it.
3823 				 */
3824 				SIS_SET_EROMAR(sc, EROMAR_EECS);
3825 				sipcom_sis900_eeprom_delay(sc);
3826 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3827 					SIS_SET_EROMAR(sc, EROMAR_EESK);
3828 					sipcom_sis900_eeprom_delay(sc);
3829 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
3830 					sipcom_sis900_eeprom_delay(sc);
3831 				}
3832 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
3833 				sipcom_sis900_eeprom_delay(sc);
3834 				bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3835 
3836 				if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3837 					sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3838 					    sizeof(myea) / sizeof(myea[0]), myea);
3839 					break;
3840 				}
3841 				DELAY(1);
3842 			}
3843 
3844 			/*
3845 			 * Set SIS_EECTL_CLK to high, so a other master
3846 			 * can operate on the i2c bus.
3847 			 */
3848 			SIS_SET_EROMAR(sc, EROMAR_EESK);
3849 
3850 			/* Refuse EEPROM access by LAN */
3851 			SIS_SET_EROMAR(sc, EROMAR_DONE);
3852 		} break;
3853 
3854 	default:
3855 		sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3856 		    sizeof(myea) / sizeof(myea[0]), myea);
3857 	}
3858 
3859 	enaddr[0] = myea[0] & 0xff;
3860 	enaddr[1] = myea[0] >> 8;
3861 	enaddr[2] = myea[1] & 0xff;
3862 	enaddr[3] = myea[1] >> 8;
3863 	enaddr[4] = myea[2] & 0xff;
3864 	enaddr[5] = myea[2] >> 8;
3865 }
3866 
3867 /* Table and macro to bit-reverse an octet. */
3868 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3869 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3870 
3871 static void
3872 sipcom_dp83815_read_macaddr(struct sip_softc *sc,
3873     const struct pci_attach_args *pa, u_int8_t *enaddr)
3874 {
3875 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3876 	u_int8_t cksum, *e, match;
3877 	int i;
3878 
3879 	sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
3880 	    sizeof(eeprom_data[0]), eeprom_data);
3881 
3882 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3883 	match = ~(match - 1);
3884 
3885 	cksum = 0x55;
3886 	e = (u_int8_t *) eeprom_data;
3887 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3888 		cksum += *e++;
3889 	}
3890 	if (cksum != match) {
3891 		printf("%s: Checksum (%x) mismatch (%x)",
3892 		    sc->sc_dev.dv_xname, cksum, match);
3893 	}
3894 
3895 	/*
3896 	 * Unrolled because it makes slightly more sense this way.
3897 	 * The DP83815 stores the MAC address in bit 0 of word 6
3898 	 * through bit 15 of word 8.
3899 	 */
3900 	ea = &eeprom_data[6];
3901 	enaddr[0] = ((*ea & 0x1) << 7);
3902 	ea++;
3903 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
3904 	enaddr[1] = ((*ea & 0x1FE) >> 1);
3905 	enaddr[2] = ((*ea & 0x1) << 7);
3906 	ea++;
3907 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
3908 	enaddr[3] = ((*ea & 0x1FE) >> 1);
3909 	enaddr[4] = ((*ea & 0x1) << 7);
3910 	ea++;
3911 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
3912 	enaddr[5] = ((*ea & 0x1FE) >> 1);
3913 
3914 	/*
3915 	 * In case that's not weird enough, we also need to reverse
3916 	 * the bits in each byte.  This all actually makes more sense
3917 	 * if you think about the EEPROM storage as an array of bits
3918 	 * being shifted into bytes, but that's not how we're looking
3919 	 * at it here...
3920 	 */
3921 	for (i = 0; i < 6 ;i++)
3922 		enaddr[i] = bbr(enaddr[i]);
3923 }
3924 
3925 /*
3926  * sip_mediastatus:	[ifmedia interface function]
3927  *
3928  *	Get the current interface media status.
3929  */
3930 static void
3931 sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
3932 {
3933 	struct sip_softc *sc = ifp->if_softc;
3934 
3935 	ether_mediastatus(ifp, ifmr);
3936 	ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
3937 			   sc->sc_flowflags;
3938 }
3939