xref: /netbsd-src/sys/dev/pci/if_sip.c (revision 23c8222edbfb0f0932d88a8351d3a0cf817dfb9e)
1 /*	$NetBSD: if_sip.c,v 1.96 2004/10/30 18:09:22 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*-
40  * Copyright (c) 1999 Network Computer, Inc.
41  * All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. Neither the name of Network Computer, Inc. nor the names of its
52  *    contributors may be used to endorse or promote products derived
53  *    from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
56  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
58  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
59  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
60  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
61  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
62  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
63  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
64  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
65  * POSSIBILITY OF SUCH DAMAGE.
66  */
67 
68 /*
69  * Device driver for the Silicon Integrated Systems SiS 900,
70  * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
71  * National Semiconductor DP83820 10/100/1000 PCI Ethernet
72  * controllers.
73  *
74  * Originally written to support the SiS 900 by Jason R. Thorpe for
75  * Network Computer, Inc.
76  *
77  * TODO:
78  *
79  *	- Reduce the Rx interrupt load.
80  */
81 
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.96 2004/10/30 18:09:22 thorpej Exp $");
84 
85 #include "bpfilter.h"
86 #include "rnd.h"
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99 
100 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
101 
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105 
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110 
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114 
115 #include <machine/bus.h>
116 #include <machine/intr.h>
117 #include <machine/endian.h>
118 
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/mii_bitbang.h>
122 
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 #include <dev/pci/pcidevs.h>
126 
127 #include <dev/pci/if_sipreg.h>
128 
129 #ifdef DP83820		/* DP83820 Gigabit Ethernet */
130 #define	SIP_DECL(x)	__CONCAT(gsip_,x)
131 #else			/* SiS900 and DP83815 */
132 #define	SIP_DECL(x)	__CONCAT(sip_,x)
133 #endif
134 
135 #define	SIP_STR(x)	__STRING(SIP_DECL(x))
136 
137 /*
138  * Transmit descriptor list size.  This is arbitrary, but allocate
139  * enough descriptors for 128 pending transmissions, and 8 segments
140  * per packet (64 for DP83820 for jumbo frames).
141  *
142  * This MUST work out to a power of 2.
143  */
144 #ifdef DP83820
145 #define	SIP_NTXSEGS		64
146 #define	SIP_NTXSEGS_ALLOC	16
147 #else
148 #define	SIP_NTXSEGS		16
149 #define	SIP_NTXSEGS_ALLOC	8
150 #endif
151 
152 #define	SIP_TXQUEUELEN		256
153 #define	SIP_NTXDESC		(SIP_TXQUEUELEN * SIP_NTXSEGS_ALLOC)
154 #define	SIP_NTXDESC_MASK	(SIP_NTXDESC - 1)
155 #define	SIP_NEXTTX(x)		(((x) + 1) & SIP_NTXDESC_MASK)
156 
157 #if defined(DP83820)
158 #define	TX_DMAMAP_SIZE		ETHER_MAX_LEN_JUMBO
159 #else
160 #define	TX_DMAMAP_SIZE		MCLBYTES
161 #endif
162 
163 /*
164  * Receive descriptor list size.  We have one Rx buffer per incoming
165  * packet, so this logic is a little simpler.
166  *
167  * Actually, on the DP83820, we allow the packet to consume more than
168  * one buffer, in order to support jumbo Ethernet frames.  In that
169  * case, a packet may consume up to 5 buffers (assuming a 2048 byte
170  * mbuf cluster).  256 receive buffers is only 51 maximum size packets,
171  * so we'd better be quick about handling receive interrupts.
172  */
173 #if defined(DP83820)
174 #define	SIP_NRXDESC		256
175 #else
176 #define	SIP_NRXDESC		128
177 #endif /* DP83820 */
178 #define	SIP_NRXDESC_MASK	(SIP_NRXDESC - 1)
179 #define	SIP_NEXTRX(x)		(((x) + 1) & SIP_NRXDESC_MASK)
180 
181 /*
182  * Control structures are DMA'd to the SiS900 chip.  We allocate them in
183  * a single clump that maps to a single DMA segment to make several things
184  * easier.
185  */
186 struct sip_control_data {
187 	/*
188 	 * The transmit descriptors.
189 	 */
190 	struct sip_desc scd_txdescs[SIP_NTXDESC];
191 
192 	/*
193 	 * The receive descriptors.
194 	 */
195 	struct sip_desc scd_rxdescs[SIP_NRXDESC];
196 };
197 
198 #define	SIP_CDOFF(x)	offsetof(struct sip_control_data, x)
199 #define	SIP_CDTXOFF(x)	SIP_CDOFF(scd_txdescs[(x)])
200 #define	SIP_CDRXOFF(x)	SIP_CDOFF(scd_rxdescs[(x)])
201 
202 /*
203  * Software state for transmit jobs.
204  */
205 struct sip_txsoft {
206 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
207 	bus_dmamap_t txs_dmamap;	/* our DMA map */
208 	int txs_firstdesc;		/* first descriptor in packet */
209 	int txs_lastdesc;		/* last descriptor in packet */
210 	SIMPLEQ_ENTRY(sip_txsoft) txs_q;
211 };
212 
213 SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
214 
215 /*
216  * Software state for receive jobs.
217  */
218 struct sip_rxsoft {
219 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
220 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
221 };
222 
223 /*
224  * Software state per device.
225  */
226 struct sip_softc {
227 	struct device sc_dev;		/* generic device information */
228 	bus_space_tag_t sc_st;		/* bus space tag */
229 	bus_space_handle_t sc_sh;	/* bus space handle */
230 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
231 	struct ethercom sc_ethercom;	/* ethernet common data */
232 	void *sc_sdhook;		/* shutdown hook */
233 
234 	const struct sip_product *sc_model; /* which model are we? */
235 	int sc_rev;			/* chip revision */
236 
237 	void *sc_ih;			/* interrupt cookie */
238 
239 	struct mii_data sc_mii;		/* MII/media information */
240 
241 	struct callout sc_tick_ch;	/* tick callout */
242 
243 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
244 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
245 
246 	/*
247 	 * Software state for transmit and receive descriptors.
248 	 */
249 	struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
250 	struct sip_rxsoft sc_rxsoft[SIP_NRXDESC];
251 
252 	/*
253 	 * Control data structures.
254 	 */
255 	struct sip_control_data *sc_control_data;
256 #define	sc_txdescs	sc_control_data->scd_txdescs
257 #define	sc_rxdescs	sc_control_data->scd_rxdescs
258 
259 #ifdef SIP_EVENT_COUNTERS
260 	/*
261 	 * Event counters.
262 	 */
263 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
264 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
265 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
266 	struct evcnt sc_ev_txdintr;	/* Tx descriptor interrupts */
267 	struct evcnt sc_ev_txiintr;	/* Tx idle interrupts */
268 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
269 	struct evcnt sc_ev_hiberr;	/* HIBERR interrupts */
270 	struct evcnt sc_ev_rxpause;	/* PAUSE received */
271 #ifdef DP83820
272 	struct evcnt sc_ev_txpause;	/* PAUSE transmitted */
273 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
274 	struct evcnt sc_ev_rxtcpsum;	/* TCP checksums checked in-bound */
275 	struct evcnt sc_ev_rxudpsum;	/* UDP checksums checked in-boudn */
276 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
277 	struct evcnt sc_ev_txtcpsum;	/* TCP checksums comp. out-bound */
278 	struct evcnt sc_ev_txudpsum;	/* UDP checksums comp. out-bound */
279 #endif /* DP83820 */
280 #endif /* SIP_EVENT_COUNTERS */
281 
282 	u_int32_t sc_txcfg;		/* prototype TXCFG register */
283 	u_int32_t sc_rxcfg;		/* prototype RXCFG register */
284 	u_int32_t sc_imr;		/* prototype IMR register */
285 	u_int32_t sc_rfcr;		/* prototype RFCR register */
286 
287 	u_int32_t sc_cfg;		/* prototype CFG register */
288 
289 #ifdef DP83820
290 	u_int32_t sc_gpior;		/* prototype GPIOR register */
291 #endif /* DP83820 */
292 
293 	u_int32_t sc_tx_fill_thresh;	/* transmit fill threshold */
294 	u_int32_t sc_tx_drain_thresh;	/* transmit drain threshold */
295 
296 	u_int32_t sc_rx_drain_thresh;	/* receive drain threshold */
297 
298 	int	sc_flowflags;		/* 802.3x flow control flags */
299 #ifdef DP83820
300 	int	sc_rx_flow_thresh;	/* Rx FIFO threshold for flow control */
301 #else
302 	int	sc_paused;		/* paused indication */
303 #endif
304 
305 	int	sc_txfree;		/* number of free Tx descriptors */
306 	int	sc_txnext;		/* next ready Tx descriptor */
307 	int	sc_txwin;		/* Tx descriptors since last intr */
308 
309 	struct sip_txsq sc_txfreeq;	/* free Tx descsofts */
310 	struct sip_txsq sc_txdirtyq;	/* dirty Tx descsofts */
311 
312 	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
313 #if defined(DP83820)
314 	int	sc_rxdiscard;
315 	int	sc_rxlen;
316 	struct mbuf *sc_rxhead;
317 	struct mbuf *sc_rxtail;
318 	struct mbuf **sc_rxtailp;
319 #endif /* DP83820 */
320 
321 #if NRND > 0
322 	rndsource_element_t rnd_source;	/* random source */
323 #endif
324 };
325 
326 #ifdef DP83820
327 #define	SIP_RXCHAIN_RESET(sc)						\
328 do {									\
329 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
330 	*(sc)->sc_rxtailp = NULL;					\
331 	(sc)->sc_rxlen = 0;						\
332 } while (/*CONSTCOND*/0)
333 
334 #define	SIP_RXCHAIN_LINK(sc, m)						\
335 do {									\
336 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
337 	(sc)->sc_rxtailp = &(m)->m_next;				\
338 } while (/*CONSTCOND*/0)
339 #endif /* DP83820 */
340 
341 #ifdef SIP_EVENT_COUNTERS
342 #define	SIP_EVCNT_INCR(ev)	(ev)->ev_count++
343 #else
344 #define	SIP_EVCNT_INCR(ev)	/* nothing */
345 #endif
346 
347 #define	SIP_CDTXADDR(sc, x)	((sc)->sc_cddma + SIP_CDTXOFF((x)))
348 #define	SIP_CDRXADDR(sc, x)	((sc)->sc_cddma + SIP_CDRXOFF((x)))
349 
350 #define	SIP_CDTXSYNC(sc, x, n, ops)					\
351 do {									\
352 	int __x, __n;							\
353 									\
354 	__x = (x);							\
355 	__n = (n);							\
356 									\
357 	/* If it will wrap around, sync to the end of the ring. */	\
358 	if ((__x + __n) > SIP_NTXDESC) {				\
359 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
360 		    SIP_CDTXOFF(__x), sizeof(struct sip_desc) *		\
361 		    (SIP_NTXDESC - __x), (ops));			\
362 		__n -= (SIP_NTXDESC - __x);				\
363 		__x = 0;						\
364 	}								\
365 									\
366 	/* Now sync whatever is left. */				\
367 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
368 	    SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops));	\
369 } while (0)
370 
371 #define	SIP_CDRXSYNC(sc, x, ops)					\
372 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
373 	    SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops))
374 
375 #ifdef DP83820
376 #define	SIP_INIT_RXDESC_EXTSTS	__sipd->sipd_extsts = 0;
377 #define	SIP_RXBUF_LEN		(MCLBYTES - 8)
378 #else
379 #define	SIP_INIT_RXDESC_EXTSTS	/* nothing */
380 #define	SIP_RXBUF_LEN		(MCLBYTES - 1)	/* field width */
381 #endif
382 #define	SIP_INIT_RXDESC(sc, x)						\
383 do {									\
384 	struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
385 	struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)];		\
386 									\
387 	__sipd->sipd_link =						\
388 	    htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x))));		\
389 	__sipd->sipd_bufptr =						\
390 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr);		\
391 	__sipd->sipd_cmdsts = htole32(CMDSTS_INTR |			\
392 	    (SIP_RXBUF_LEN & CMDSTS_SIZE_MASK));			\
393 	SIP_INIT_RXDESC_EXTSTS						\
394 	SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
395 } while (0)
396 
397 #define	SIP_CHIP_VERS(sc, v, p, r)					\
398 	((sc)->sc_model->sip_vendor == (v) &&				\
399 	 (sc)->sc_model->sip_product == (p) &&				\
400 	 (sc)->sc_rev == (r))
401 
402 #define	SIP_CHIP_MODEL(sc, v, p)					\
403 	((sc)->sc_model->sip_vendor == (v) &&				\
404 	 (sc)->sc_model->sip_product == (p))
405 
406 #if !defined(DP83820)
407 #define	SIP_SIS900_REV(sc, rev)						\
408 	SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
409 #endif
410 
411 #define SIP_TIMEOUT 1000
412 
413 static void	SIP_DECL(start)(struct ifnet *);
414 static void	SIP_DECL(watchdog)(struct ifnet *);
415 static int	SIP_DECL(ioctl)(struct ifnet *, u_long, caddr_t);
416 static int	SIP_DECL(init)(struct ifnet *);
417 static void	SIP_DECL(stop)(struct ifnet *, int);
418 
419 static void	SIP_DECL(shutdown)(void *);
420 
421 static void	SIP_DECL(reset)(struct sip_softc *);
422 static void	SIP_DECL(rxdrain)(struct sip_softc *);
423 static int	SIP_DECL(add_rxbuf)(struct sip_softc *, int);
424 static void	SIP_DECL(read_eeprom)(struct sip_softc *, int, int,
425 				      u_int16_t *);
426 static void	SIP_DECL(tick)(void *);
427 
428 #if !defined(DP83820)
429 static void	SIP_DECL(sis900_set_filter)(struct sip_softc *);
430 #endif /* ! DP83820 */
431 static void	SIP_DECL(dp83815_set_filter)(struct sip_softc *);
432 
433 #if defined(DP83820)
434 static void	SIP_DECL(dp83820_read_macaddr)(struct sip_softc *,
435 		    const struct pci_attach_args *, u_int8_t *);
436 #else
437 static void	SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc);
438 static void	SIP_DECL(sis900_read_macaddr)(struct sip_softc *,
439 		    const struct pci_attach_args *, u_int8_t *);
440 static void	SIP_DECL(dp83815_read_macaddr)(struct sip_softc *,
441 		    const struct pci_attach_args *, u_int8_t *);
442 #endif /* DP83820 */
443 
444 static int	SIP_DECL(intr)(void *);
445 static void	SIP_DECL(txintr)(struct sip_softc *);
446 static void	SIP_DECL(rxintr)(struct sip_softc *);
447 
448 #if defined(DP83820)
449 static int	SIP_DECL(dp83820_mii_readreg)(struct device *, int, int);
450 static void	SIP_DECL(dp83820_mii_writereg)(struct device *, int, int, int);
451 static void	SIP_DECL(dp83820_mii_statchg)(struct device *);
452 #else
453 static int	SIP_DECL(sis900_mii_readreg)(struct device *, int, int);
454 static void	SIP_DECL(sis900_mii_writereg)(struct device *, int, int, int);
455 static void	SIP_DECL(sis900_mii_statchg)(struct device *);
456 
457 static int	SIP_DECL(dp83815_mii_readreg)(struct device *, int, int);
458 static void	SIP_DECL(dp83815_mii_writereg)(struct device *, int, int, int);
459 static void	SIP_DECL(dp83815_mii_statchg)(struct device *);
460 #endif /* DP83820 */
461 
462 static int	SIP_DECL(mediachange)(struct ifnet *);
463 static void	SIP_DECL(mediastatus)(struct ifnet *, struct ifmediareq *);
464 
465 static int	SIP_DECL(match)(struct device *, struct cfdata *, void *);
466 static void	SIP_DECL(attach)(struct device *, struct device *, void *);
467 
468 int	SIP_DECL(copy_small) = 0;
469 
470 #ifdef DP83820
471 CFATTACH_DECL(gsip, sizeof(struct sip_softc),
472     gsip_match, gsip_attach, NULL, NULL);
473 #else
474 CFATTACH_DECL(sip, sizeof(struct sip_softc),
475     sip_match, sip_attach, NULL, NULL);
476 #endif
477 
478 /*
479  * Descriptions of the variants of the SiS900.
480  */
481 struct sip_variant {
482 	int	(*sipv_mii_readreg)(struct device *, int, int);
483 	void	(*sipv_mii_writereg)(struct device *, int, int, int);
484 	void	(*sipv_mii_statchg)(struct device *);
485 	void	(*sipv_set_filter)(struct sip_softc *);
486 	void	(*sipv_read_macaddr)(struct sip_softc *,
487 		    const struct pci_attach_args *, u_int8_t *);
488 };
489 
490 static u_int32_t SIP_DECL(mii_bitbang_read)(struct device *);
491 static void	SIP_DECL(mii_bitbang_write)(struct device *, u_int32_t);
492 
493 static const struct mii_bitbang_ops SIP_DECL(mii_bitbang_ops) = {
494 	SIP_DECL(mii_bitbang_read),
495 	SIP_DECL(mii_bitbang_write),
496 	{
497 		EROMAR_MDIO,		/* MII_BIT_MDO */
498 		EROMAR_MDIO,		/* MII_BIT_MDI */
499 		EROMAR_MDC,		/* MII_BIT_MDC */
500 		EROMAR_MDDIR,		/* MII_BIT_DIR_HOST_PHY */
501 		0,			/* MII_BIT_DIR_PHY_HOST */
502 	}
503 };
504 
505 #if defined(DP83820)
506 static const struct sip_variant SIP_DECL(variant_dp83820) = {
507 	SIP_DECL(dp83820_mii_readreg),
508 	SIP_DECL(dp83820_mii_writereg),
509 	SIP_DECL(dp83820_mii_statchg),
510 	SIP_DECL(dp83815_set_filter),
511 	SIP_DECL(dp83820_read_macaddr),
512 };
513 #else
514 static const struct sip_variant SIP_DECL(variant_sis900) = {
515 	SIP_DECL(sis900_mii_readreg),
516 	SIP_DECL(sis900_mii_writereg),
517 	SIP_DECL(sis900_mii_statchg),
518 	SIP_DECL(sis900_set_filter),
519 	SIP_DECL(sis900_read_macaddr),
520 };
521 
522 static const struct sip_variant SIP_DECL(variant_dp83815) = {
523 	SIP_DECL(dp83815_mii_readreg),
524 	SIP_DECL(dp83815_mii_writereg),
525 	SIP_DECL(dp83815_mii_statchg),
526 	SIP_DECL(dp83815_set_filter),
527 	SIP_DECL(dp83815_read_macaddr),
528 };
529 #endif /* DP83820 */
530 
531 /*
532  * Devices supported by this driver.
533  */
534 static const struct sip_product {
535 	pci_vendor_id_t		sip_vendor;
536 	pci_product_id_t	sip_product;
537 	const char		*sip_name;
538 	const struct sip_variant *sip_variant;
539 } SIP_DECL(products)[] = {
540 #if defined(DP83820)
541 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83820,
542 	  "NatSemi DP83820 Gigabit Ethernet",
543 	  &SIP_DECL(variant_dp83820) },
544 #else
545 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_900,
546 	  "SiS 900 10/100 Ethernet",
547 	  &SIP_DECL(variant_sis900) },
548 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_7016,
549 	  "SiS 7016 10/100 Ethernet",
550 	  &SIP_DECL(variant_sis900) },
551 
552 	{ PCI_VENDOR_NS,	PCI_PRODUCT_NS_DP83815,
553 	  "NatSemi DP83815 10/100 Ethernet",
554 	  &SIP_DECL(variant_dp83815) },
555 #endif /* DP83820 */
556 
557 	{ 0,			0,
558 	  NULL,
559 	  NULL },
560 };
561 
562 static const struct sip_product *
563 SIP_DECL(lookup)(const struct pci_attach_args *pa)
564 {
565 	const struct sip_product *sip;
566 
567 	for (sip = SIP_DECL(products); sip->sip_name != NULL; sip++) {
568 		if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
569 		    PCI_PRODUCT(pa->pa_id) == sip->sip_product)
570 			return (sip);
571 	}
572 	return (NULL);
573 }
574 
575 #ifdef DP83820
576 /*
577  * I really hate stupid hardware vendors.  There's a bit in the EEPROM
578  * which indicates if the card can do 64-bit data transfers.  Unfortunately,
579  * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
580  * which means we try to use 64-bit data transfers on those cards if we
581  * happen to be plugged into a 32-bit slot.
582  *
583  * What we do is use this table of cards known to be 64-bit cards.  If
584  * you have a 64-bit card who's subsystem ID is not listed in this table,
585  * send the output of "pcictl dump ..." of the device to me so that your
586  * card will use the 64-bit data path when plugged into a 64-bit slot.
587  *
588  *	-- Jason R. Thorpe <thorpej@NetBSD.org>
589  *	   June 30, 2002
590  */
591 static int
592 SIP_DECL(check_64bit)(const struct pci_attach_args *pa)
593 {
594 	static const struct {
595 		pci_vendor_id_t c64_vendor;
596 		pci_product_id_t c64_product;
597 	} card64[] = {
598 		/* Asante GigaNIX */
599 		{ 0x128a,	0x0002 },
600 
601 		/* Accton EN1407-T, Planex GN-1000TE */
602 		{ 0x1113,	0x1407 },
603 
604 		/* Netgear GA-621 */
605 		{ 0x1385,	0x621a },
606 
607 		/* SMC EZ Card */
608 		{ 0x10b8,	0x9462 },
609 
610 		{ 0, 0}
611 	};
612 	pcireg_t subsys;
613 	int i;
614 
615 	subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
616 
617 	for (i = 0; card64[i].c64_vendor != 0; i++) {
618 		if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
619 		    PCI_PRODUCT(subsys) == card64[i].c64_product)
620 			return (1);
621 	}
622 
623 	return (0);
624 }
625 #endif /* DP83820 */
626 
627 static int
628 SIP_DECL(match)(struct device *parent, struct cfdata *cf, void *aux)
629 {
630 	struct pci_attach_args *pa = aux;
631 
632 	if (SIP_DECL(lookup)(pa) != NULL)
633 		return (1);
634 
635 	return (0);
636 }
637 
638 static void
639 SIP_DECL(attach)(struct device *parent, struct device *self, void *aux)
640 {
641 	struct sip_softc *sc = (struct sip_softc *) self;
642 	struct pci_attach_args *pa = aux;
643 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
644 	pci_chipset_tag_t pc = pa->pa_pc;
645 	pci_intr_handle_t ih;
646 	const char *intrstr = NULL;
647 	bus_space_tag_t iot, memt;
648 	bus_space_handle_t ioh, memh;
649 	bus_dma_segment_t seg;
650 	int ioh_valid, memh_valid;
651 	int i, rseg, error;
652 	const struct sip_product *sip;
653 	pcireg_t pmode;
654 	u_int8_t enaddr[ETHER_ADDR_LEN];
655 	int pmreg;
656 #ifdef DP83820
657 	pcireg_t memtype;
658 	u_int32_t reg;
659 #endif /* DP83820 */
660 
661 	callout_init(&sc->sc_tick_ch);
662 
663 	sip = SIP_DECL(lookup)(pa);
664 	if (sip == NULL) {
665 		printf("\n");
666 		panic(SIP_STR(attach) ": impossible");
667 	}
668 	sc->sc_rev = PCI_REVISION(pa->pa_class);
669 
670 	printf(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
671 
672 	sc->sc_model = sip;
673 
674 	/*
675 	 * XXX Work-around broken PXE firmware on some boards.
676 	 *
677 	 * The DP83815 shares an address decoder with the MEM BAR
678 	 * and the ROM BAR.  Make sure the ROM BAR is disabled,
679 	 * so that memory mapped access works.
680 	 */
681 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
682 	    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
683 	    ~PCI_MAPREG_ROM_ENABLE);
684 
685 	/*
686 	 * Map the device.
687 	 */
688 	ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
689 	    PCI_MAPREG_TYPE_IO, 0,
690 	    &iot, &ioh, NULL, NULL) == 0);
691 #ifdef DP83820
692 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
693 	switch (memtype) {
694 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
695 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
696 		memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
697 		    memtype, 0, &memt, &memh, NULL, NULL) == 0);
698 		break;
699 	default:
700 		memh_valid = 0;
701 	}
702 #else
703 	memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
704 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
705 	    &memt, &memh, NULL, NULL) == 0);
706 #endif /* DP83820 */
707 
708 	if (memh_valid) {
709 		sc->sc_st = memt;
710 		sc->sc_sh = memh;
711 	} else if (ioh_valid) {
712 		sc->sc_st = iot;
713 		sc->sc_sh = ioh;
714 	} else {
715 		printf("%s: unable to map device registers\n",
716 		    sc->sc_dev.dv_xname);
717 		return;
718 	}
719 
720 	sc->sc_dmat = pa->pa_dmat;
721 
722 	/*
723 	 * Make sure bus mastering is enabled.  Also make sure
724 	 * Write/Invalidate is enabled if we're allowed to use it.
725 	 */
726 	pmreg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
727 	if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
728 		pmreg |= PCI_COMMAND_INVALIDATE_ENABLE;
729 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
730 	    pmreg | PCI_COMMAND_MASTER_ENABLE);
731 
732 	/* Get it out of power save mode if needed. */
733 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
734 		pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
735 		    PCI_PMCSR_STATE_MASK;
736 		if (pmode == PCI_PMCSR_STATE_D3) {
737 			/*
738 			 * The card has lost all configuration data in
739 			 * this state, so punt.
740 			 */
741 			printf("%s: unable to wake up from power state D3\n",
742 			    sc->sc_dev.dv_xname);
743 			return;
744 		}
745 		if (pmode != PCI_PMCSR_STATE_D0) {
746 			printf("%s: waking up from power state D%d\n",
747 			    sc->sc_dev.dv_xname, pmode);
748 			pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
749 			    PCI_PMCSR_STATE_D0);
750 		}
751 	}
752 
753 	/*
754 	 * Map and establish our interrupt.
755 	 */
756 	if (pci_intr_map(pa, &ih)) {
757 		printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
758 		return;
759 	}
760 	intrstr = pci_intr_string(pc, ih);
761 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, SIP_DECL(intr), sc);
762 	if (sc->sc_ih == NULL) {
763 		printf("%s: unable to establish interrupt",
764 		    sc->sc_dev.dv_xname);
765 		if (intrstr != NULL)
766 			printf(" at %s", intrstr);
767 		printf("\n");
768 		return;
769 	}
770 	printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
771 
772 	SIMPLEQ_INIT(&sc->sc_txfreeq);
773 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
774 
775 	/*
776 	 * Allocate the control data structures, and create and load the
777 	 * DMA map for it.
778 	 */
779 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
780 	    sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
781 	    0)) != 0) {
782 		printf("%s: unable to allocate control data, error = %d\n",
783 		    sc->sc_dev.dv_xname, error);
784 		goto fail_0;
785 	}
786 
787 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
788 	    sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data,
789 	    BUS_DMA_COHERENT)) != 0) {
790 		printf("%s: unable to map control data, error = %d\n",
791 		    sc->sc_dev.dv_xname, error);
792 		goto fail_1;
793 	}
794 
795 	if ((error = bus_dmamap_create(sc->sc_dmat,
796 	    sizeof(struct sip_control_data), 1,
797 	    sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
798 		printf("%s: unable to create control data DMA map, "
799 		    "error = %d\n", sc->sc_dev.dv_xname, error);
800 		goto fail_2;
801 	}
802 
803 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
804 	    sc->sc_control_data, sizeof(struct sip_control_data), NULL,
805 	    0)) != 0) {
806 		printf("%s: unable to load control data DMA map, error = %d\n",
807 		    sc->sc_dev.dv_xname, error);
808 		goto fail_3;
809 	}
810 
811 	/*
812 	 * Create the transmit buffer DMA maps.
813 	 */
814 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
815 		if ((error = bus_dmamap_create(sc->sc_dmat, TX_DMAMAP_SIZE,
816 		    SIP_NTXSEGS, MCLBYTES, 0, 0,
817 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
818 			printf("%s: unable to create tx DMA map %d, "
819 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
820 			goto fail_4;
821 		}
822 	}
823 
824 	/*
825 	 * Create the receive buffer DMA maps.
826 	 */
827 	for (i = 0; i < SIP_NRXDESC; i++) {
828 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
829 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
830 			printf("%s: unable to create rx DMA map %d, "
831 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
832 			goto fail_5;
833 		}
834 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
835 	}
836 
837 	/*
838 	 * Reset the chip to a known state.
839 	 */
840 	SIP_DECL(reset)(sc);
841 
842 	/*
843 	 * Read the Ethernet address from the EEPROM.  This might
844 	 * also fetch other stuff from the EEPROM and stash it
845 	 * in the softc.
846 	 */
847 	sc->sc_cfg = 0;
848 #if !defined(DP83820)
849 	if (SIP_SIS900_REV(sc,SIS_REV_635) ||
850 	    SIP_SIS900_REV(sc,SIS_REV_900B))
851 		sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
852 
853 	if (SIP_SIS900_REV(sc,SIS_REV_635) ||
854 	    SIP_SIS900_REV(sc,SIS_REV_960) ||
855 	    SIP_SIS900_REV(sc,SIS_REV_900B))
856 		sc->sc_cfg |= (bus_space_read_4(sc->sc_st, sc->sc_sh,
857 						SIP_CFG) & CFG_EDBMASTEN);
858 #endif
859 
860 	(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
861 
862 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
863 	    ether_sprintf(enaddr));
864 
865 	/*
866 	 * Initialize the configuration register: aggressive PCI
867 	 * bus request algorithm, default backoff, default OW timer,
868 	 * default parity error detection.
869 	 *
870 	 * NOTE: "Big endian mode" is useless on the SiS900 and
871 	 * friends -- it affects packet data, not descriptors.
872 	 */
873 #ifdef DP83820
874 	/*
875 	 * Cause the chip to load configuration data from the EEPROM.
876 	 */
877 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
878 	for (i = 0; i < 10000; i++) {
879 		delay(10);
880 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
881 		    PTSCR_EELOAD_EN) == 0)
882 			break;
883 	}
884 	if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
885 	    PTSCR_EELOAD_EN) {
886 		printf("%s: timeout loading configuration from EEPROM\n",
887 		    sc->sc_dev.dv_xname);
888 		return;
889 	}
890 
891 	sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
892 
893 	reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
894 	if (reg & CFG_PCI64_DET) {
895 		printf("%s: 64-bit PCI slot detected", sc->sc_dev.dv_xname);
896 		/*
897 		 * Check to see if this card is 64-bit.  If so, enable 64-bit
898 		 * data transfers.
899 		 *
900 		 * We can't use the DATA64_EN bit in the EEPROM, because
901 		 * vendors of 32-bit cards fail to clear that bit in many
902 		 * cases (yet the card still detects that it's in a 64-bit
903 		 * slot; go figure).
904 		 */
905 		if (SIP_DECL(check_64bit)(pa)) {
906 			sc->sc_cfg |= CFG_DATA64_EN;
907 			printf(", using 64-bit data transfers");
908 		}
909 		printf("\n");
910 	}
911 
912 	/*
913 	 * XXX Need some PCI flags indicating support for
914 	 * XXX 64-bit addressing.
915 	 */
916 #if 0
917 	if (reg & CFG_M64ADDR)
918 		sc->sc_cfg |= CFG_M64ADDR;
919 	if (reg & CFG_T64ADDR)
920 		sc->sc_cfg |= CFG_T64ADDR;
921 #endif
922 
923 	if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
924 		const char *sep = "";
925 		printf("%s: using ", sc->sc_dev.dv_xname);
926 		if (reg & CFG_EXT_125) {
927 			sc->sc_cfg |= CFG_EXT_125;
928 			printf("%s125MHz clock", sep);
929 			sep = ", ";
930 		}
931 		if (reg & CFG_TBI_EN) {
932 			sc->sc_cfg |= CFG_TBI_EN;
933 			printf("%sten-bit interface", sep);
934 			sep = ", ";
935 		}
936 		printf("\n");
937 	}
938 	if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
939 	    (reg & CFG_MRM_DIS) != 0)
940 		sc->sc_cfg |= CFG_MRM_DIS;
941 	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
942 	    (reg & CFG_MWI_DIS) != 0)
943 		sc->sc_cfg |= CFG_MWI_DIS;
944 
945 	/*
946 	 * Use the extended descriptor format on the DP83820.  This
947 	 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
948 	 * checksumming.
949 	 */
950 	sc->sc_cfg |= CFG_EXTSTS_EN;
951 #endif /* DP83820 */
952 
953 	/*
954 	 * Initialize our media structures and probe the MII.
955 	 */
956 	sc->sc_mii.mii_ifp = ifp;
957 	sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
958 	sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
959 	sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
960 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, SIP_DECL(mediachange),
961 	    SIP_DECL(mediastatus));
962 
963 	/*
964 	 * XXX We cannot handle flow control on the DP83815.
965 	 */
966 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
967 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
968 			   MII_OFFSET_ANY, 0);
969 	else
970 		mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
971 			   MII_OFFSET_ANY, MIIF_DOPAUSE);
972 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
973 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
974 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
975 	} else
976 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
977 
978 	ifp = &sc->sc_ethercom.ec_if;
979 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
980 	ifp->if_softc = sc;
981 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
982 	ifp->if_ioctl = SIP_DECL(ioctl);
983 	ifp->if_start = SIP_DECL(start);
984 	ifp->if_watchdog = SIP_DECL(watchdog);
985 	ifp->if_init = SIP_DECL(init);
986 	ifp->if_stop = SIP_DECL(stop);
987 	IFQ_SET_READY(&ifp->if_snd);
988 
989 	/*
990 	 * We can support 802.1Q VLAN-sized frames.
991 	 */
992 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
993 
994 #ifdef DP83820
995 	/*
996 	 * And the DP83820 can do VLAN tagging in hardware, and
997 	 * support the jumbo Ethernet MTU.
998 	 */
999 	sc->sc_ethercom.ec_capabilities |=
1000 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
1001 
1002 	/*
1003 	 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1004 	 * in hardware.
1005 	 */
1006 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
1007 	    IFCAP_CSUM_UDPv4;
1008 #endif /* DP83820 */
1009 
1010 	/*
1011 	 * Attach the interface.
1012 	 */
1013 	if_attach(ifp);
1014 	ether_ifattach(ifp, enaddr);
1015 #if NRND > 0
1016 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1017 	    RND_TYPE_NET, 0);
1018 #endif
1019 
1020 	/*
1021 	 * The number of bytes that must be available in
1022 	 * the Tx FIFO before the bus master can DMA more
1023 	 * data into the FIFO.
1024 	 */
1025 	sc->sc_tx_fill_thresh = 64 / 32;
1026 
1027 	/*
1028 	 * Start at a drain threshold of 512 bytes.  We will
1029 	 * increase it if a DMA underrun occurs.
1030 	 *
1031 	 * XXX The minimum value of this variable should be
1032 	 * tuned.  We may be able to improve performance
1033 	 * by starting with a lower value.  That, however,
1034 	 * may trash the first few outgoing packets if the
1035 	 * PCI bus is saturated.
1036 	 */
1037 #ifdef DP83820
1038 	sc->sc_tx_drain_thresh = 6400 / 32;	/* from FreeBSD nge(4) */
1039 #else
1040 	sc->sc_tx_drain_thresh = 1504 / 32;
1041 #endif
1042 
1043 	/*
1044 	 * Initialize the Rx FIFO drain threshold.
1045 	 *
1046 	 * This is in units of 8 bytes.
1047 	 *
1048 	 * We should never set this value lower than 2; 14 bytes are
1049 	 * required to filter the packet.
1050 	 */
1051 	sc->sc_rx_drain_thresh = 128 / 8;
1052 
1053 #ifdef SIP_EVENT_COUNTERS
1054 	/*
1055 	 * Attach event counters.
1056 	 */
1057 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
1058 	    NULL, sc->sc_dev.dv_xname, "txsstall");
1059 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
1060 	    NULL, sc->sc_dev.dv_xname, "txdstall");
1061 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
1062 	    NULL, sc->sc_dev.dv_xname, "txforceintr");
1063 	evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
1064 	    NULL, sc->sc_dev.dv_xname, "txdintr");
1065 	evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
1066 	    NULL, sc->sc_dev.dv_xname, "txiintr");
1067 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1068 	    NULL, sc->sc_dev.dv_xname, "rxintr");
1069 	evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
1070 	    NULL, sc->sc_dev.dv_xname, "hiberr");
1071 #ifndef DP83820
1072 	evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
1073 	    NULL, sc->sc_dev.dv_xname, "rxpause");
1074 #endif /* !DP83820 */
1075 #ifdef DP83820
1076 	evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
1077 	    NULL, sc->sc_dev.dv_xname, "rxpause");
1078 	evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
1079 	    NULL, sc->sc_dev.dv_xname, "txpause");
1080 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
1081 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
1082 	evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
1083 	    NULL, sc->sc_dev.dv_xname, "rxtcpsum");
1084 	evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
1085 	    NULL, sc->sc_dev.dv_xname, "rxudpsum");
1086 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
1087 	    NULL, sc->sc_dev.dv_xname, "txipsum");
1088 	evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
1089 	    NULL, sc->sc_dev.dv_xname, "txtcpsum");
1090 	evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
1091 	    NULL, sc->sc_dev.dv_xname, "txudpsum");
1092 #endif /* DP83820 */
1093 #endif /* SIP_EVENT_COUNTERS */
1094 
1095 	/*
1096 	 * Make sure the interface is shutdown during reboot.
1097 	 */
1098 	sc->sc_sdhook = shutdownhook_establish(SIP_DECL(shutdown), sc);
1099 	if (sc->sc_sdhook == NULL)
1100 		printf("%s: WARNING: unable to establish shutdown hook\n",
1101 		    sc->sc_dev.dv_xname);
1102 	return;
1103 
1104 	/*
1105 	 * Free any resources we've allocated during the failed attach
1106 	 * attempt.  Do this in reverse order and fall through.
1107 	 */
1108  fail_5:
1109 	for (i = 0; i < SIP_NRXDESC; i++) {
1110 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1111 			bus_dmamap_destroy(sc->sc_dmat,
1112 			    sc->sc_rxsoft[i].rxs_dmamap);
1113 	}
1114  fail_4:
1115 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
1116 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
1117 			bus_dmamap_destroy(sc->sc_dmat,
1118 			    sc->sc_txsoft[i].txs_dmamap);
1119 	}
1120 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1121  fail_3:
1122 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1123  fail_2:
1124 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
1125 	    sizeof(struct sip_control_data));
1126  fail_1:
1127 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1128  fail_0:
1129 	return;
1130 }
1131 
1132 /*
1133  * sip_shutdown:
1134  *
1135  *	Make sure the interface is stopped at reboot time.
1136  */
1137 static void
1138 SIP_DECL(shutdown)(void *arg)
1139 {
1140 	struct sip_softc *sc = arg;
1141 
1142 	SIP_DECL(stop)(&sc->sc_ethercom.ec_if, 1);
1143 }
1144 
1145 /*
1146  * sip_start:		[ifnet interface function]
1147  *
1148  *	Start packet transmission on the interface.
1149  */
1150 static void
1151 SIP_DECL(start)(struct ifnet *ifp)
1152 {
1153 	struct sip_softc *sc = ifp->if_softc;
1154 	struct mbuf *m0;
1155 #ifndef DP83820
1156 	struct mbuf *m;
1157 #endif
1158 	struct sip_txsoft *txs;
1159 	bus_dmamap_t dmamap;
1160 	int error, nexttx, lasttx, seg;
1161 	int ofree = sc->sc_txfree;
1162 #if 0
1163 	int firsttx = sc->sc_txnext;
1164 #endif
1165 #ifdef DP83820
1166 	struct m_tag *mtag;
1167 	u_int32_t extsts;
1168 #endif
1169 
1170 #ifndef DP83820
1171 	/*
1172 	 * If we've been told to pause, don't transmit any more packets.
1173 	 */
1174 	if (sc->sc_paused)
1175 		ifp->if_flags |= IFF_OACTIVE;
1176 #endif
1177 
1178 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1179 		return;
1180 
1181 	/*
1182 	 * Loop through the send queue, setting up transmit descriptors
1183 	 * until we drain the queue, or use up all available transmit
1184 	 * descriptors.
1185 	 */
1186 	for (;;) {
1187 		/* Get a work queue entry. */
1188 		if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1189 			SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
1190 			break;
1191 		}
1192 
1193 		/*
1194 		 * Grab a packet off the queue.
1195 		 */
1196 		IFQ_POLL(&ifp->if_snd, m0);
1197 		if (m0 == NULL)
1198 			break;
1199 #ifndef DP83820
1200 		m = NULL;
1201 #endif
1202 
1203 		dmamap = txs->txs_dmamap;
1204 
1205 #ifdef DP83820
1206 		/*
1207 		 * Load the DMA map.  If this fails, the packet either
1208 		 * didn't fit in the allotted number of segments, or we
1209 		 * were short on resources.  For the too-many-segments
1210 		 * case, we simply report an error and drop the packet,
1211 		 * since we can't sanely copy a jumbo packet to a single
1212 		 * buffer.
1213 		 */
1214 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1215 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1216 		if (error) {
1217 			if (error == EFBIG) {
1218 				printf("%s: Tx packet consumes too many "
1219 				    "DMA segments, dropping...\n",
1220 				    sc->sc_dev.dv_xname);
1221 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1222 				m_freem(m0);
1223 				continue;
1224 			}
1225 			/*
1226 			 * Short on resources, just stop for now.
1227 			 */
1228 			break;
1229 		}
1230 #else /* DP83820 */
1231 		/*
1232 		 * Load the DMA map.  If this fails, the packet either
1233 		 * didn't fit in the alloted number of segments, or we
1234 		 * were short on resources.  In this case, we'll copy
1235 		 * and try again.
1236 		 */
1237 		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1238 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1239 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1240 			if (m == NULL) {
1241 				printf("%s: unable to allocate Tx mbuf\n",
1242 				    sc->sc_dev.dv_xname);
1243 				break;
1244 			}
1245 			if (m0->m_pkthdr.len > MHLEN) {
1246 				MCLGET(m, M_DONTWAIT);
1247 				if ((m->m_flags & M_EXT) == 0) {
1248 					printf("%s: unable to allocate Tx "
1249 					    "cluster\n", sc->sc_dev.dv_xname);
1250 					m_freem(m);
1251 					break;
1252 				}
1253 			}
1254 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1255 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1256 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1257 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1258 			if (error) {
1259 				printf("%s: unable to load Tx buffer, "
1260 				    "error = %d\n", sc->sc_dev.dv_xname, error);
1261 				break;
1262 			}
1263 		}
1264 #endif /* DP83820 */
1265 
1266 		/*
1267 		 * Ensure we have enough descriptors free to describe
1268 		 * the packet.  Note, we always reserve one descriptor
1269 		 * at the end of the ring as a termination point, to
1270 		 * prevent wrap-around.
1271 		 */
1272 		if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1273 			/*
1274 			 * Not enough free descriptors to transmit this
1275 			 * packet.  We haven't committed anything yet,
1276 			 * so just unload the DMA map, put the packet
1277 			 * back on the queue, and punt.  Notify the upper
1278 			 * layer that there are not more slots left.
1279 			 *
1280 			 * XXX We could allocate an mbuf and copy, but
1281 			 * XXX is it worth it?
1282 			 */
1283 			ifp->if_flags |= IFF_OACTIVE;
1284 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1285 #ifndef DP83820
1286 			if (m != NULL)
1287 				m_freem(m);
1288 #endif
1289 			SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
1290 			break;
1291 		}
1292 
1293 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1294 #ifndef DP83820
1295 		if (m != NULL) {
1296 			m_freem(m0);
1297 			m0 = m;
1298 		}
1299 #endif
1300 
1301 		/*
1302 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1303 		 */
1304 
1305 		/* Sync the DMA map. */
1306 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1307 		    BUS_DMASYNC_PREWRITE);
1308 
1309 		/*
1310 		 * Initialize the transmit descriptors.
1311 		 */
1312 		for (nexttx = lasttx = sc->sc_txnext, seg = 0;
1313 		     seg < dmamap->dm_nsegs;
1314 		     seg++, nexttx = SIP_NEXTTX(nexttx)) {
1315 			/*
1316 			 * If this is the first descriptor we're
1317 			 * enqueueing, don't set the OWN bit just
1318 			 * yet.  That could cause a race condition.
1319 			 * We'll do it below.
1320 			 */
1321 			sc->sc_txdescs[nexttx].sipd_bufptr =
1322 			    htole32(dmamap->dm_segs[seg].ds_addr);
1323 			sc->sc_txdescs[nexttx].sipd_cmdsts =
1324 			    htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
1325 			    CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
1326 #ifdef DP83820
1327 			sc->sc_txdescs[nexttx].sipd_extsts = 0;
1328 #endif /* DP83820 */
1329 			lasttx = nexttx;
1330 		}
1331 
1332 		/* Clear the MORE bit on the last segment. */
1333 		sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE);
1334 
1335 		/*
1336 		 * If we're in the interrupt delay window, delay the
1337 		 * interrupt.
1338 		 */
1339 		if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
1340 			SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
1341 			sc->sc_txdescs[lasttx].sipd_cmdsts |=
1342 			    htole32(CMDSTS_INTR);
1343 			sc->sc_txwin = 0;
1344 		}
1345 
1346 #ifdef DP83820
1347 		/*
1348 		 * If VLANs are enabled and the packet has a VLAN tag, set
1349 		 * up the descriptor to encapsulate the packet for us.
1350 		 *
1351 		 * This apparently has to be on the last descriptor of
1352 		 * the packet.
1353 		 */
1354 		if (sc->sc_ethercom.ec_nvlans != 0 &&
1355 		    (mtag = m_tag_find(m0, PACKET_TAG_VLAN, NULL)) != NULL) {
1356 			sc->sc_txdescs[lasttx].sipd_extsts |=
1357 			    htole32(EXTSTS_VPKT |
1358 				    (*(u_int *)(mtag + 1) & EXTSTS_VTCI));
1359 		}
1360 
1361 		/*
1362 		 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1363 		 * checksumming, set up the descriptor to do this work
1364 		 * for us.
1365 		 *
1366 		 * This apparently has to be on the first descriptor of
1367 		 * the packet.
1368 		 *
1369 		 * Byte-swap constants so the compiler can optimize.
1370 		 */
1371 		extsts = 0;
1372 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1373 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4);
1374 			SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
1375 			extsts |= htole32(EXTSTS_IPPKT);
1376 		}
1377 		if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1378 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4);
1379 			SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
1380 			extsts |= htole32(EXTSTS_TCPPKT);
1381 		} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1382 			KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4);
1383 			SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
1384 			extsts |= htole32(EXTSTS_UDPPKT);
1385 		}
1386 		sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
1387 #endif /* DP83820 */
1388 
1389 		/* Sync the descriptors we're using. */
1390 		SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1391 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1392 
1393 		/*
1394 		 * The entire packet is set up.  Give the first descrptor
1395 		 * to the chip now.
1396 		 */
1397 		sc->sc_txdescs[sc->sc_txnext].sipd_cmdsts |=
1398 		    htole32(CMDSTS_OWN);
1399 		SIP_CDTXSYNC(sc, sc->sc_txnext, 1,
1400 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1401 
1402 		/*
1403 		 * Store a pointer to the packet so we can free it later,
1404 		 * and remember what txdirty will be once the packet is
1405 		 * done.
1406 		 */
1407 		txs->txs_mbuf = m0;
1408 		txs->txs_firstdesc = sc->sc_txnext;
1409 		txs->txs_lastdesc = lasttx;
1410 
1411 		/* Advance the tx pointer. */
1412 		sc->sc_txfree -= dmamap->dm_nsegs;
1413 		sc->sc_txnext = nexttx;
1414 
1415 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1416 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1417 
1418 #if NBPFILTER > 0
1419 		/*
1420 		 * Pass the packet to any BPF listeners.
1421 		 */
1422 		if (ifp->if_bpf)
1423 			bpf_mtap(ifp->if_bpf, m0);
1424 #endif /* NBPFILTER > 0 */
1425 	}
1426 
1427 	if (txs == NULL || sc->sc_txfree == 0) {
1428 		/* No more slots left; notify upper layer. */
1429 		ifp->if_flags |= IFF_OACTIVE;
1430 	}
1431 
1432 	if (sc->sc_txfree != ofree) {
1433 		/*
1434 		 * Start the transmit process.  Note, the manual says
1435 		 * that if there are no pending transmissions in the
1436 		 * chip's internal queue (indicated by TXE being clear),
1437 		 * then the driver software must set the TXDP to the
1438 		 * first descriptor to be transmitted.  However, if we
1439 		 * do this, it causes serious performance degredation on
1440 		 * the DP83820 under load, not setting TXDP doesn't seem
1441 		 * to adversely affect the SiS 900 or DP83815.
1442 		 *
1443 		 * Well, I guess it wouldn't be the first time a manual
1444 		 * has lied -- and they could be speaking of the NULL-
1445 		 * terminated descriptor list case, rather than OWN-
1446 		 * terminated rings.
1447 		 */
1448 #if 0
1449 		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
1450 		     CR_TXE) == 0) {
1451 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
1452 			    SIP_CDTXADDR(sc, firsttx));
1453 			bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1454 		}
1455 #else
1456 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
1457 #endif
1458 
1459 		/* Set a watchdog timer in case the chip flakes out. */
1460 #ifdef DP83820
1461 		/* Gigabit autonegotiation takes 5 seconds. */
1462 		ifp->if_timer = 10;
1463 #else
1464 		ifp->if_timer = 5;
1465 #endif
1466 	}
1467 }
1468 
1469 /*
1470  * sip_watchdog:	[ifnet interface function]
1471  *
1472  *	Watchdog timer handler.
1473  */
1474 static void
1475 SIP_DECL(watchdog)(struct ifnet *ifp)
1476 {
1477 	struct sip_softc *sc = ifp->if_softc;
1478 
1479 	/*
1480 	 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1481 	 * If we get a timeout, try and sweep up transmit descriptors.
1482 	 * If we manage to sweep them all up, ignore the lack of
1483 	 * interrupt.
1484 	 */
1485 	SIP_DECL(txintr)(sc);
1486 
1487 	if (sc->sc_txfree != SIP_NTXDESC) {
1488 		printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1489 		ifp->if_oerrors++;
1490 
1491 		/* Reset the interface. */
1492 		(void) SIP_DECL(init)(ifp);
1493 	} else if (ifp->if_flags & IFF_DEBUG)
1494 		printf("%s: recovered from device timeout\n",
1495 		    sc->sc_dev.dv_xname);
1496 
1497 	/* Try to get more packets going. */
1498 	SIP_DECL(start)(ifp);
1499 }
1500 
1501 /*
1502  * sip_ioctl:		[ifnet interface function]
1503  *
1504  *	Handle control requests from the operator.
1505  */
1506 static int
1507 SIP_DECL(ioctl)(struct ifnet *ifp, u_long cmd, caddr_t data)
1508 {
1509 	struct sip_softc *sc = ifp->if_softc;
1510 	struct ifreq *ifr = (struct ifreq *)data;
1511 	int s, error;
1512 
1513 	s = splnet();
1514 
1515 	switch (cmd) {
1516 	case SIOCSIFMEDIA:
1517 		/* Flow control requires full-duplex mode. */
1518 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1519 		    (ifr->ifr_media & IFM_FDX) == 0)
1520 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
1521 #ifdef DP83820
1522 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1523 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1524 				/* We can do both TXPAUSE and RXPAUSE. */
1525 				ifr->ifr_media |=
1526 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1527 			}
1528 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1529 		}
1530 #else
1531 		/* XXX */
1532 		if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
1533 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1534 
1535 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1536 			if (ifr->ifr_media & IFM_FLOW) {
1537 				/*
1538 				 * Both TXPAUSE and RXPAUSE must be set.
1539 				 * (SiS900 and DP83815 don't have PAUSE_ASYM
1540 				 * feature.)
1541 				 *
1542 				 * XXX Can SiS900 and DP83815 send PAUSE?
1543 				 */
1544 				ifr->ifr_media |=
1545 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1546 			}
1547 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1548 		}
1549 #endif
1550 		/* FALLTHROUGH */
1551 	case SIOCGIFMEDIA:
1552 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1553 		break;
1554 
1555 	default:
1556 		error = ether_ioctl(ifp, cmd, data);
1557 		if (error == ENETRESET) {
1558 			/*
1559 			 * Multicast list has changed; set the hardware filter
1560 			 * accordingly.
1561 			 */
1562 			if (ifp->if_flags & IFF_RUNNING)
1563 			    (*sc->sc_model->sip_variant->sipv_set_filter)(sc);
1564 			error = 0;
1565 		}
1566 		break;
1567 	}
1568 
1569 	/* Try to get more packets going. */
1570 	SIP_DECL(start)(ifp);
1571 
1572 	splx(s);
1573 	return (error);
1574 }
1575 
1576 /*
1577  * sip_intr:
1578  *
1579  *	Interrupt service routine.
1580  */
1581 static int
1582 SIP_DECL(intr)(void *arg)
1583 {
1584 	struct sip_softc *sc = arg;
1585 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1586 	u_int32_t isr;
1587 	int handled = 0;
1588 
1589 	/* Disable interrupts. */
1590 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
1591 
1592 	for (;;) {
1593 		/* Reading clears interrupt. */
1594 		isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
1595 		if ((isr & sc->sc_imr) == 0)
1596 			break;
1597 
1598 #if NRND > 0
1599 		if (RND_ENABLED(&sc->rnd_source))
1600 			rnd_add_uint32(&sc->rnd_source, isr);
1601 #endif
1602 
1603 		handled = 1;
1604 
1605 		if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
1606 			SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
1607 
1608 			/* Grab any new packets. */
1609 			SIP_DECL(rxintr)(sc);
1610 
1611 			if (isr & ISR_RXORN) {
1612 				printf("%s: receive FIFO overrun\n",
1613 				    sc->sc_dev.dv_xname);
1614 
1615 				/* XXX adjust rx_drain_thresh? */
1616 			}
1617 
1618 			if (isr & ISR_RXIDLE) {
1619 				printf("%s: receive ring overrun\n",
1620 				    sc->sc_dev.dv_xname);
1621 
1622 				/* Get the receive process going again. */
1623 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1624 				    SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
1625 				bus_space_write_4(sc->sc_st, sc->sc_sh,
1626 				    SIP_CR, CR_RXE);
1627 			}
1628 		}
1629 
1630 		if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
1631 #ifdef SIP_EVENT_COUNTERS
1632 			if (isr & ISR_TXDESC)
1633 				SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
1634 			else if (isr & ISR_TXIDLE)
1635 				SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
1636 #endif
1637 
1638 			/* Sweep up transmit descriptors. */
1639 			SIP_DECL(txintr)(sc);
1640 
1641 			if (isr & ISR_TXURN) {
1642 				u_int32_t thresh;
1643 
1644 				printf("%s: transmit FIFO underrun",
1645 				    sc->sc_dev.dv_xname);
1646 
1647 				thresh = sc->sc_tx_drain_thresh + 1;
1648 				if (thresh <= TXCFG_DRTH &&
1649 				    (thresh * 32) <= (SIP_TXFIFO_SIZE -
1650 				     (sc->sc_tx_fill_thresh * 32))) {
1651 					printf("; increasing Tx drain "
1652 					    "threshold to %u bytes\n",
1653 					    thresh * 32);
1654 					sc->sc_tx_drain_thresh = thresh;
1655 					(void) SIP_DECL(init)(ifp);
1656 				} else {
1657 					(void) SIP_DECL(init)(ifp);
1658 					printf("\n");
1659 				}
1660 			}
1661 		}
1662 
1663 #if !defined(DP83820)
1664 		if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
1665 			if (isr & ISR_PAUSE_ST) {
1666 				sc->sc_paused = 1;
1667 				SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
1668 				ifp->if_flags |= IFF_OACTIVE;
1669 			}
1670 			if (isr & ISR_PAUSE_END) {
1671 				sc->sc_paused = 0;
1672 				ifp->if_flags &= ~IFF_OACTIVE;
1673 			}
1674 		}
1675 #endif /* ! DP83820 */
1676 
1677 		if (isr & ISR_HIBERR) {
1678 			int want_init = 0;
1679 
1680 			SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
1681 
1682 #define	PRINTERR(bit, str)						\
1683 			do {						\
1684 				if ((isr & (bit)) != 0) {		\
1685 					if ((ifp->if_flags & IFF_DEBUG) != 0) \
1686 						printf("%s: %s\n",	\
1687 						    sc->sc_dev.dv_xname, str); \
1688 					want_init = 1;			\
1689 				}					\
1690 			} while (/*CONSTCOND*/0)
1691 
1692 			PRINTERR(ISR_DPERR, "parity error");
1693 			PRINTERR(ISR_SSERR, "system error");
1694 			PRINTERR(ISR_RMABT, "master abort");
1695 			PRINTERR(ISR_RTABT, "target abort");
1696 			PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
1697 			/*
1698 			 * Ignore:
1699 			 *	Tx reset complete
1700 			 *	Rx reset complete
1701 			 */
1702 			if (want_init)
1703 				(void) SIP_DECL(init)(ifp);
1704 #undef PRINTERR
1705 		}
1706 	}
1707 
1708 	/* Re-enable interrupts. */
1709 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
1710 
1711 	/* Try to get more packets going. */
1712 	SIP_DECL(start)(ifp);
1713 
1714 	return (handled);
1715 }
1716 
1717 /*
1718  * sip_txintr:
1719  *
1720  *	Helper; handle transmit interrupts.
1721  */
1722 static void
1723 SIP_DECL(txintr)(struct sip_softc *sc)
1724 {
1725 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1726 	struct sip_txsoft *txs;
1727 	u_int32_t cmdsts;
1728 
1729 #ifndef DP83820
1730 	if (sc->sc_paused == 0)
1731 #endif
1732 		ifp->if_flags &= ~IFF_OACTIVE;
1733 
1734 	/*
1735 	 * Go through our Tx list and free mbufs for those
1736 	 * frames which have been transmitted.
1737 	 */
1738 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1739 		SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1740 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1741 
1742 		cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
1743 		if (cmdsts & CMDSTS_OWN)
1744 			break;
1745 
1746 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1747 
1748 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1749 
1750 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1751 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1752 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1753 		m_freem(txs->txs_mbuf);
1754 		txs->txs_mbuf = NULL;
1755 
1756 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1757 
1758 		/*
1759 		 * Check for errors and collisions.
1760 		 */
1761 		if (cmdsts &
1762 		    (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
1763 			ifp->if_oerrors++;
1764 			if (cmdsts & CMDSTS_Tx_EC)
1765 				ifp->if_collisions += 16;
1766 			if (ifp->if_flags & IFF_DEBUG) {
1767 				if (cmdsts & CMDSTS_Tx_ED)
1768 					printf("%s: excessive deferral\n",
1769 					    sc->sc_dev.dv_xname);
1770 				if (cmdsts & CMDSTS_Tx_EC)
1771 					printf("%s: excessive collisions\n",
1772 					    sc->sc_dev.dv_xname);
1773 			}
1774 		} else {
1775 			/* Packet was transmitted successfully. */
1776 			ifp->if_opackets++;
1777 			ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
1778 		}
1779 	}
1780 
1781 	/*
1782 	 * If there are no more pending transmissions, cancel the watchdog
1783 	 * timer.
1784 	 */
1785 	if (txs == NULL) {
1786 		ifp->if_timer = 0;
1787 		sc->sc_txwin = 0;
1788 	}
1789 }
1790 
1791 #if defined(DP83820)
1792 /*
1793  * sip_rxintr:
1794  *
1795  *	Helper; handle receive interrupts.
1796  */
1797 static void
1798 SIP_DECL(rxintr)(struct sip_softc *sc)
1799 {
1800 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1801 	struct sip_rxsoft *rxs;
1802 	struct mbuf *m, *tailm;
1803 	u_int32_t cmdsts, extsts;
1804 	int i, len, frame_len;
1805 
1806 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
1807 		rxs = &sc->sc_rxsoft[i];
1808 
1809 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1810 
1811 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
1812 		extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
1813 
1814 		/*
1815 		 * NOTE: OWN is set if owned by _consumer_.  We're the
1816 		 * consumer of the receive ring, so if the bit is clear,
1817 		 * we have processed all of the packets.
1818 		 */
1819 		if ((cmdsts & CMDSTS_OWN) == 0) {
1820 			/*
1821 			 * We have processed all of the receive buffers.
1822 			 */
1823 			break;
1824 		}
1825 
1826 		if (__predict_false(sc->sc_rxdiscard)) {
1827 			SIP_INIT_RXDESC(sc, i);
1828 			if ((cmdsts & CMDSTS_MORE) == 0) {
1829 				/* Reset our state. */
1830 				sc->sc_rxdiscard = 0;
1831 			}
1832 			continue;
1833 		}
1834 
1835 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1836 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1837 
1838 		m = rxs->rxs_mbuf;
1839 
1840 		/*
1841 		 * Add a new receive buffer to the ring.
1842 		 */
1843 		if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
1844 			/*
1845 			 * Failed, throw away what we've done so
1846 			 * far, and discard the rest of the packet.
1847 			 */
1848 			ifp->if_ierrors++;
1849 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1850 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1851 			SIP_INIT_RXDESC(sc, i);
1852 			if (cmdsts & CMDSTS_MORE)
1853 				sc->sc_rxdiscard = 1;
1854 			if (sc->sc_rxhead != NULL)
1855 				m_freem(sc->sc_rxhead);
1856 			SIP_RXCHAIN_RESET(sc);
1857 			continue;
1858 		}
1859 
1860 		SIP_RXCHAIN_LINK(sc, m);
1861 
1862 		/*
1863 		 * If this is not the end of the packet, keep
1864 		 * looking.
1865 		 */
1866 		if (cmdsts & CMDSTS_MORE) {
1867 			sc->sc_rxlen += m->m_len;
1868 			continue;
1869 		}
1870 
1871 		/*
1872 		 * Okay, we have the entire packet now...
1873 		 */
1874 		*sc->sc_rxtailp = NULL;
1875 		m = sc->sc_rxhead;
1876 		tailm = sc->sc_rxtail;
1877 		frame_len = sc->sc_rxlen;
1878 
1879 		SIP_RXCHAIN_RESET(sc);
1880 
1881 		/*
1882 		 * If an error occurred, update stats and drop the packet.
1883 		 */
1884 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
1885 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
1886 			ifp->if_ierrors++;
1887 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
1888 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
1889 				/* Receive overrun handled elsewhere. */
1890 				printf("%s: receive descriptor error\n",
1891 				    sc->sc_dev.dv_xname);
1892 			}
1893 #define	PRINTERR(bit, str)						\
1894 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
1895 			    (cmdsts & (bit)) != 0)			\
1896 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
1897 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
1898 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
1899 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
1900 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
1901 #undef PRINTERR
1902 			m_freem(m);
1903 			continue;
1904 		}
1905 
1906 		/*
1907 		 * No errors.
1908 		 *
1909 		 * Note, the DP83820 includes the CRC with
1910 		 * every packet.
1911 		 */
1912 		len = CMDSTS_SIZE(cmdsts);
1913 		frame_len += len;
1914 		tailm->m_len = len;
1915 
1916 		/*
1917 		 * If the packet is small enough to fit in a
1918 		 * single header mbuf, allocate one and copy
1919 		 * the data into it.  This greatly reduces
1920 		 * memory consumption when we receive lots
1921 		 * of small packets.
1922 		 */
1923 		if (SIP_DECL(copy_small) != 0 && len <= (MHLEN - 2)) {
1924 			struct mbuf *nm;
1925 			MGETHDR(nm, M_DONTWAIT, MT_DATA);
1926 			if (nm == NULL) {
1927 				ifp->if_ierrors++;
1928 				m_freem(m);
1929 				continue;
1930 			}
1931 			nm->m_data += 2;
1932 			nm->m_pkthdr.len = nm->m_len = len;
1933 			m_copydata(m, 0, len, mtod(nm, caddr_t));
1934 			m_freem(m);
1935 			m = nm;
1936 		}
1937 #ifndef __NO_STRICT_ALIGNMENT
1938 		else {
1939 			/*
1940 			 * The DP83820's receive buffers must be 4-byte
1941 			 * aligned.  But this means that the data after
1942 			 * the Ethernet header is misaligned.  To compensate,
1943 			 * we have artificially shortened the buffer size
1944 			 * in the descriptor, and we do an overlapping copy
1945 			 * of the data two bytes further in (in the first
1946 			 * buffer of the chain only).
1947 			 */
1948 			memmove(mtod(m, caddr_t) + 2, mtod(m, caddr_t),
1949 			    m->m_len);
1950 			m->m_data += 2;
1951 		}
1952 #endif /* ! __NO_STRICT_ALIGNMENT */
1953 
1954 		/*
1955 		 * If VLANs are enabled, VLAN packets have been unwrapped
1956 		 * for us.  Associate the tag with the packet.
1957 		 */
1958 		if (sc->sc_ethercom.ec_nvlans != 0 &&
1959 		    (extsts & EXTSTS_VPKT) != 0) {
1960 			struct m_tag *vtag;
1961 
1962 			vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
1963 			    M_NOWAIT);
1964 			if (vtag == NULL) {
1965 				ifp->if_ierrors++;
1966 				printf("%s: unable to allocate VLAN tag\n",
1967 				    sc->sc_dev.dv_xname);
1968 				m_freem(m);
1969 				continue;
1970 			}
1971 
1972 			*(u_int *)(vtag + 1) = ntohs(extsts & EXTSTS_VTCI);
1973 		}
1974 
1975 		/*
1976 		 * Set the incoming checksum information for the
1977 		 * packet.
1978 		 */
1979 		if ((extsts & EXTSTS_IPPKT) != 0) {
1980 			SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
1981 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1982 			if (extsts & EXTSTS_Rx_IPERR)
1983 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1984 			if (extsts & EXTSTS_TCPPKT) {
1985 				SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
1986 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1987 				if (extsts & EXTSTS_Rx_TCPERR)
1988 					m->m_pkthdr.csum_flags |=
1989 					    M_CSUM_TCP_UDP_BAD;
1990 			} else if (extsts & EXTSTS_UDPPKT) {
1991 				SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
1992 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1993 				if (extsts & EXTSTS_Rx_UDPERR)
1994 					m->m_pkthdr.csum_flags |=
1995 					    M_CSUM_TCP_UDP_BAD;
1996 			}
1997 		}
1998 
1999 		ifp->if_ipackets++;
2000 		m->m_flags |= M_HASFCS;
2001 		m->m_pkthdr.rcvif = ifp;
2002 		m->m_pkthdr.len = frame_len;
2003 
2004 #if NBPFILTER > 0
2005 		/*
2006 		 * Pass this up to any BPF listeners, but only
2007 		 * pass if up the stack if it's for us.
2008 		 */
2009 		if (ifp->if_bpf)
2010 			bpf_mtap(ifp->if_bpf, m);
2011 #endif /* NBPFILTER > 0 */
2012 
2013 		/* Pass it on. */
2014 		(*ifp->if_input)(ifp, m);
2015 	}
2016 
2017 	/* Update the receive pointer. */
2018 	sc->sc_rxptr = i;
2019 }
2020 #else /* ! DP83820 */
2021 /*
2022  * sip_rxintr:
2023  *
2024  *	Helper; handle receive interrupts.
2025  */
2026 static void
2027 SIP_DECL(rxintr)(struct sip_softc *sc)
2028 {
2029 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2030 	struct sip_rxsoft *rxs;
2031 	struct mbuf *m;
2032 	u_int32_t cmdsts;
2033 	int i, len;
2034 
2035 	for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) {
2036 		rxs = &sc->sc_rxsoft[i];
2037 
2038 		SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2039 
2040 		cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts);
2041 
2042 		/*
2043 		 * NOTE: OWN is set if owned by _consumer_.  We're the
2044 		 * consumer of the receive ring, so if the bit is clear,
2045 		 * we have processed all of the packets.
2046 		 */
2047 		if ((cmdsts & CMDSTS_OWN) == 0) {
2048 			/*
2049 			 * We have processed all of the receive buffers.
2050 			 */
2051 			break;
2052 		}
2053 
2054 		/*
2055 		 * If any collisions were seen on the wire, count one.
2056 		 */
2057 		if (cmdsts & CMDSTS_Rx_COL)
2058 			ifp->if_collisions++;
2059 
2060 		/*
2061 		 * If an error occurred, update stats, clear the status
2062 		 * word, and leave the packet buffer in place.  It will
2063 		 * simply be reused the next time the ring comes around.
2064 		 */
2065 		if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
2066 		    CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
2067 			ifp->if_ierrors++;
2068 			if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
2069 			    (cmdsts & CMDSTS_Rx_RXO) == 0) {
2070 				/* Receive overrun handled elsewhere. */
2071 				printf("%s: receive descriptor error\n",
2072 				    sc->sc_dev.dv_xname);
2073 			}
2074 #define	PRINTERR(bit, str)						\
2075 			if ((ifp->if_flags & IFF_DEBUG) != 0 &&		\
2076 			    (cmdsts & (bit)) != 0)			\
2077 				printf("%s: %s\n", sc->sc_dev.dv_xname, str)
2078 			PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
2079 			PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
2080 			PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
2081 			PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
2082 #undef PRINTERR
2083 			SIP_INIT_RXDESC(sc, i);
2084 			continue;
2085 		}
2086 
2087 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2088 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2089 
2090 		/*
2091 		 * No errors; receive the packet.  Note, the SiS 900
2092 		 * includes the CRC with every packet.
2093 		 */
2094 		len = CMDSTS_SIZE(cmdsts);
2095 
2096 #ifdef __NO_STRICT_ALIGNMENT
2097 		/*
2098 		 * If the packet is small enough to fit in a
2099 		 * single header mbuf, allocate one and copy
2100 		 * the data into it.  This greatly reduces
2101 		 * memory consumption when we receive lots
2102 		 * of small packets.
2103 		 *
2104 		 * Otherwise, we add a new buffer to the receive
2105 		 * chain.  If this fails, we drop the packet and
2106 		 * recycle the old buffer.
2107 		 */
2108 		if (SIP_DECL(copy_small) != 0 && len <= MHLEN) {
2109 			MGETHDR(m, M_DONTWAIT, MT_DATA);
2110 			if (m == NULL)
2111 				goto dropit;
2112 			memcpy(mtod(m, caddr_t),
2113 			    mtod(rxs->rxs_mbuf, caddr_t), len);
2114 			SIP_INIT_RXDESC(sc, i);
2115 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2116 			    rxs->rxs_dmamap->dm_mapsize,
2117 			    BUS_DMASYNC_PREREAD);
2118 		} else {
2119 			m = rxs->rxs_mbuf;
2120 			if (SIP_DECL(add_rxbuf)(sc, i) != 0) {
2121  dropit:
2122 				ifp->if_ierrors++;
2123 				SIP_INIT_RXDESC(sc, i);
2124 				bus_dmamap_sync(sc->sc_dmat,
2125 				    rxs->rxs_dmamap, 0,
2126 				    rxs->rxs_dmamap->dm_mapsize,
2127 				    BUS_DMASYNC_PREREAD);
2128 				continue;
2129 			}
2130 		}
2131 #else
2132 		/*
2133 		 * The SiS 900's receive buffers must be 4-byte aligned.
2134 		 * But this means that the data after the Ethernet header
2135 		 * is misaligned.  We must allocate a new buffer and
2136 		 * copy the data, shifted forward 2 bytes.
2137 		 */
2138 		MGETHDR(m, M_DONTWAIT, MT_DATA);
2139 		if (m == NULL) {
2140  dropit:
2141 			ifp->if_ierrors++;
2142 			SIP_INIT_RXDESC(sc, i);
2143 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2144 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2145 			continue;
2146 		}
2147 		if (len > (MHLEN - 2)) {
2148 			MCLGET(m, M_DONTWAIT);
2149 			if ((m->m_flags & M_EXT) == 0) {
2150 				m_freem(m);
2151 				goto dropit;
2152 			}
2153 		}
2154 		m->m_data += 2;
2155 
2156 		/*
2157 		 * Note that we use clusters for incoming frames, so the
2158 		 * buffer is virtually contiguous.
2159 		 */
2160 		memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len);
2161 
2162 		/* Allow the receive descriptor to continue using its mbuf. */
2163 		SIP_INIT_RXDESC(sc, i);
2164 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2165 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2166 #endif /* __NO_STRICT_ALIGNMENT */
2167 
2168 		ifp->if_ipackets++;
2169 		m->m_flags |= M_HASFCS;
2170 		m->m_pkthdr.rcvif = ifp;
2171 		m->m_pkthdr.len = m->m_len = len;
2172 
2173 #if NBPFILTER > 0
2174 		/*
2175 		 * Pass this up to any BPF listeners, but only
2176 		 * pass if up the stack if it's for us.
2177 		 */
2178 		if (ifp->if_bpf)
2179 			bpf_mtap(ifp->if_bpf, m);
2180 #endif /* NBPFILTER > 0 */
2181 
2182 		/* Pass it on. */
2183 		(*ifp->if_input)(ifp, m);
2184 	}
2185 
2186 	/* Update the receive pointer. */
2187 	sc->sc_rxptr = i;
2188 }
2189 #endif /* DP83820 */
2190 
2191 /*
2192  * sip_tick:
2193  *
2194  *	One second timer, used to tick the MII.
2195  */
2196 static void
2197 SIP_DECL(tick)(void *arg)
2198 {
2199 	struct sip_softc *sc = arg;
2200 	int s;
2201 
2202 	s = splnet();
2203 #ifdef DP83820
2204 #ifdef SIP_EVENT_COUNTERS
2205 	/* Read PAUSE related counts from MIB registers. */
2206 	sc->sc_ev_rxpause.ev_count +=
2207 	    bus_space_read_4(sc->sc_st, sc->sc_sh,
2208 			     SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
2209 	sc->sc_ev_txpause.ev_count +=
2210 	    bus_space_read_4(sc->sc_st, sc->sc_sh,
2211 			     SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
2212 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
2213 #endif /* SIP_EVENT_COUNTERS */
2214 #endif /* DP83820 */
2215 	mii_tick(&sc->sc_mii);
2216 	splx(s);
2217 
2218 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2219 }
2220 
2221 /*
2222  * sip_reset:
2223  *
2224  *	Perform a soft reset on the SiS 900.
2225  */
2226 static void
2227 SIP_DECL(reset)(struct sip_softc *sc)
2228 {
2229 	bus_space_tag_t st = sc->sc_st;
2230 	bus_space_handle_t sh = sc->sc_sh;
2231 	int i;
2232 
2233 	bus_space_write_4(st, sh, SIP_IER, 0);
2234 	bus_space_write_4(st, sh, SIP_IMR, 0);
2235 	bus_space_write_4(st, sh, SIP_RFCR, 0);
2236 	bus_space_write_4(st, sh, SIP_CR, CR_RST);
2237 
2238 	for (i = 0; i < SIP_TIMEOUT; i++) {
2239 		if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
2240 			break;
2241 		delay(2);
2242 	}
2243 
2244 	if (i == SIP_TIMEOUT)
2245 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
2246 
2247 	delay(1000);
2248 
2249 #ifdef DP83820
2250 	/*
2251 	 * Set the general purpose I/O bits.  Do it here in case we
2252 	 * need to have GPIO set up to talk to the media interface.
2253 	 */
2254 	bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
2255 	delay(1000);
2256 #endif /* DP83820 */
2257 }
2258 
2259 /*
2260  * sip_init:		[ ifnet interface function ]
2261  *
2262  *	Initialize the interface.  Must be called at splnet().
2263  */
2264 static int
2265 SIP_DECL(init)(struct ifnet *ifp)
2266 {
2267 	struct sip_softc *sc = ifp->if_softc;
2268 	bus_space_tag_t st = sc->sc_st;
2269 	bus_space_handle_t sh = sc->sc_sh;
2270 	struct sip_txsoft *txs;
2271 	struct sip_rxsoft *rxs;
2272 	struct sip_desc *sipd;
2273 #if defined(DP83820)
2274 	u_int32_t reg;
2275 #endif
2276 	int i, error = 0;
2277 
2278 	/*
2279 	 * Cancel any pending I/O.
2280 	 */
2281 	SIP_DECL(stop)(ifp, 0);
2282 
2283 	/*
2284 	 * Reset the chip to a known state.
2285 	 */
2286 	SIP_DECL(reset)(sc);
2287 
2288 #if !defined(DP83820)
2289 	if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
2290 		/*
2291 		 * DP83815 manual, page 78:
2292 		 *    4.4 Recommended Registers Configuration
2293 		 *    For optimum performance of the DP83815, version noted
2294 		 *    as DP83815CVNG (SRR = 203h), the listed register
2295 		 *    modifications must be followed in sequence...
2296 		 *
2297 		 * It's not clear if this should be 302h or 203h because that
2298 		 * chip name is listed as SRR 302h in the description of the
2299 		 * SRR register.  However, my revision 302h DP83815 on the
2300 		 * Netgear FA311 purchased in 02/2001 needs these settings
2301 		 * to avoid tons of errors in AcceptPerfectMatch (non-
2302 		 * IFF_PROMISC) mode.  I do not know if other revisions need
2303 		 * this set or not.  [briggs -- 09 March 2001]
2304 		 *
2305 		 * Note that only the low-order 12 bits of 0xe4 are documented
2306 		 * and that this sets reserved bits in that register.
2307 		 */
2308 		bus_space_write_4(st, sh, 0x00cc, 0x0001);
2309 
2310 		bus_space_write_4(st, sh, 0x00e4, 0x189C);
2311 		bus_space_write_4(st, sh, 0x00fc, 0x0000);
2312 		bus_space_write_4(st, sh, 0x00f4, 0x5040);
2313 		bus_space_write_4(st, sh, 0x00f8, 0x008c);
2314 
2315 		bus_space_write_4(st, sh, 0x00cc, 0x0000);
2316 	}
2317 #endif /* ! DP83820 */
2318 
2319 	/*
2320 	 * Initialize the transmit descriptor ring.
2321 	 */
2322 	for (i = 0; i < SIP_NTXDESC; i++) {
2323 		sipd = &sc->sc_txdescs[i];
2324 		memset(sipd, 0, sizeof(struct sip_desc));
2325 		sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i)));
2326 	}
2327 	SIP_CDTXSYNC(sc, 0, SIP_NTXDESC,
2328 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2329 	sc->sc_txfree = SIP_NTXDESC;
2330 	sc->sc_txnext = 0;
2331 	sc->sc_txwin = 0;
2332 
2333 	/*
2334 	 * Initialize the transmit job descriptors.
2335 	 */
2336 	SIMPLEQ_INIT(&sc->sc_txfreeq);
2337 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
2338 	for (i = 0; i < SIP_TXQUEUELEN; i++) {
2339 		txs = &sc->sc_txsoft[i];
2340 		txs->txs_mbuf = NULL;
2341 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2342 	}
2343 
2344 	/*
2345 	 * Initialize the receive descriptor and receive job
2346 	 * descriptor rings.
2347 	 */
2348 	for (i = 0; i < SIP_NRXDESC; i++) {
2349 		rxs = &sc->sc_rxsoft[i];
2350 		if (rxs->rxs_mbuf == NULL) {
2351 			if ((error = SIP_DECL(add_rxbuf)(sc, i)) != 0) {
2352 				printf("%s: unable to allocate or map rx "
2353 				    "buffer %d, error = %d\n",
2354 				    sc->sc_dev.dv_xname, i, error);
2355 				/*
2356 				 * XXX Should attempt to run with fewer receive
2357 				 * XXX buffers instead of just failing.
2358 				 */
2359 				SIP_DECL(rxdrain)(sc);
2360 				goto out;
2361 			}
2362 		} else
2363 			SIP_INIT_RXDESC(sc, i);
2364 	}
2365 	sc->sc_rxptr = 0;
2366 #ifdef DP83820
2367 	sc->sc_rxdiscard = 0;
2368 	SIP_RXCHAIN_RESET(sc);
2369 #endif /* DP83820 */
2370 
2371 	/*
2372 	 * Set the configuration register; it's already initialized
2373 	 * in sip_attach().
2374 	 */
2375 	bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
2376 
2377 	/*
2378 	 * Initialize the prototype TXCFG register.
2379 	 */
2380 #if defined(DP83820)
2381 	sc->sc_txcfg = TXCFG_MXDMA_512;
2382 	sc->sc_rxcfg = RXCFG_MXDMA_512;
2383 #else
2384 	if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
2385 	     SIP_SIS900_REV(sc, SIS_REV_960) ||
2386 	     SIP_SIS900_REV(sc, SIS_REV_900B)) &&
2387 	    (sc->sc_cfg & CFG_EDBMASTEN)) {
2388 		sc->sc_txcfg = TXCFG_MXDMA_64;
2389 		sc->sc_rxcfg = RXCFG_MXDMA_64;
2390 	} else {
2391 		sc->sc_txcfg = TXCFG_MXDMA_512;
2392 		sc->sc_rxcfg = RXCFG_MXDMA_512;
2393 	}
2394 #endif /* DP83820 */
2395 
2396 	sc->sc_txcfg |= TXCFG_ATP |
2397 	    (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) |
2398 	    sc->sc_tx_drain_thresh;
2399 	bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg);
2400 
2401 	/*
2402 	 * Initialize the receive drain threshold if we have never
2403 	 * done so.
2404 	 */
2405 	if (sc->sc_rx_drain_thresh == 0) {
2406 		/*
2407 		 * XXX This value should be tuned.  This is set to the
2408 		 * maximum of 248 bytes, and we may be able to improve
2409 		 * performance by decreasing it (although we should never
2410 		 * set this value lower than 2; 14 bytes are required to
2411 		 * filter the packet).
2412 		 */
2413 		sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT;
2414 	}
2415 
2416 	/*
2417 	 * Initialize the prototype RXCFG register.
2418 	 */
2419 	sc->sc_rxcfg |= (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT);
2420 #ifdef DP83820
2421 	/*
2422 	 * Accept long packets (including FCS) so we can handle
2423 	 * 802.1q-tagged frames and jumbo frames properly.
2424 	 */
2425 	if (ifp->if_mtu > ETHERMTU ||
2426 	    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
2427 		sc->sc_rxcfg |= RXCFG_ALP;
2428 
2429 	/*
2430 	 * Checksum offloading is disabled if the user selects an MTU
2431 	 * larger than 8109.  (FreeBSD says 8152, but there is emperical
2432 	 * evidence that >8109 does not work on some boards, such as the
2433 	 * Planex GN-1000TE).
2434 	 */
2435 	if (ifp->if_mtu > 8109 &&
2436 	    (ifp->if_capenable &
2437 	     (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))) {
2438 		printf("%s: Checksum offloading does not work if MTU > 8109 - "
2439 		       "disabled.\n", sc->sc_dev.dv_xname);
2440 		ifp->if_capenable &= ~(IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|
2441 				       IFCAP_CSUM_UDPv4);
2442 		ifp->if_csum_flags_tx = 0;
2443 		ifp->if_csum_flags_rx = 0;
2444 	}
2445 #else
2446 	/*
2447 	 * Accept packets >1518 bytes (including FCS) so we can handle
2448 	 * 802.1q-tagged frames properly.
2449 	 */
2450 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2451 		sc->sc_rxcfg |= RXCFG_ALP;
2452 #endif
2453 	bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg);
2454 
2455 #ifdef DP83820
2456 	/*
2457 	 * Initialize the VLAN/IP receive control register.
2458 	 * We enable checksum computation on all incoming
2459 	 * packets, and do not reject packets w/ bad checksums.
2460 	 */
2461 	reg = 0;
2462 	if (ifp->if_capenable &
2463 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2464 		reg |= VRCR_IPEN;
2465 	if (sc->sc_ethercom.ec_nvlans != 0)
2466 		reg |= VRCR_VTDEN|VRCR_VTREN;
2467 	bus_space_write_4(st, sh, SIP_VRCR, reg);
2468 
2469 	/*
2470 	 * Initialize the VLAN/IP transmit control register.
2471 	 * We enable outgoing checksum computation on a
2472 	 * per-packet basis.
2473 	 */
2474 	reg = 0;
2475 	if (ifp->if_capenable &
2476 	    (IFCAP_CSUM_IPv4|IFCAP_CSUM_TCPv4|IFCAP_CSUM_UDPv4))
2477 		reg |= VTCR_PPCHK;
2478 	if (sc->sc_ethercom.ec_nvlans != 0)
2479 		reg |= VTCR_VPPTI;
2480 	bus_space_write_4(st, sh, SIP_VTCR, reg);
2481 
2482 	/*
2483 	 * If we're using VLANs, initialize the VLAN data register.
2484 	 * To understand why we bswap the VLAN Ethertype, see section
2485 	 * 4.2.36 of the DP83820 manual.
2486 	 */
2487 	if (sc->sc_ethercom.ec_nvlans != 0)
2488 		bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
2489 #endif /* DP83820 */
2490 
2491 	/*
2492 	 * Give the transmit and receive rings to the chip.
2493 	 */
2494 	bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
2495 	bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
2496 
2497 	/*
2498 	 * Initialize the interrupt mask.
2499 	 */
2500 	sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR|
2501 	    ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
2502 	bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
2503 
2504 	/* Set up the receive filter. */
2505 	(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
2506 
2507 #ifdef DP83820
2508 	/*
2509 	 * Tune sc_rx_flow_thresh.
2510 	 * XXX "More than 8KB" is too short for jumbo frames.
2511 	 * XXX TODO: Threshold value should be user-settable.
2512 	 */
2513 	sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
2514 				 PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
2515 				 (PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
2516 #endif
2517 
2518 	/*
2519 	 * Set the current media.  Do this after initializing the prototype
2520 	 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2521 	 * control.
2522 	 */
2523 	mii_mediachg(&sc->sc_mii);
2524 
2525 #ifdef DP83820
2526 	/*
2527 	 * Set the interrupt hold-off timer to 100us.
2528 	 */
2529 	bus_space_write_4(st, sh, SIP_IHR, 0x01);
2530 #endif
2531 
2532 	/*
2533 	 * Enable interrupts.
2534 	 */
2535 	bus_space_write_4(st, sh, SIP_IER, IER_IE);
2536 
2537 	/*
2538 	 * Start the transmit and receive processes.
2539 	 */
2540 	bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
2541 
2542 	/*
2543 	 * Start the one second MII clock.
2544 	 */
2545 	callout_reset(&sc->sc_tick_ch, hz, SIP_DECL(tick), sc);
2546 
2547 	/*
2548 	 * ...all done!
2549 	 */
2550 	ifp->if_flags |= IFF_RUNNING;
2551 	ifp->if_flags &= ~IFF_OACTIVE;
2552 
2553  out:
2554 	if (error)
2555 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2556 	return (error);
2557 }
2558 
2559 /*
2560  * sip_drain:
2561  *
2562  *	Drain the receive queue.
2563  */
2564 static void
2565 SIP_DECL(rxdrain)(struct sip_softc *sc)
2566 {
2567 	struct sip_rxsoft *rxs;
2568 	int i;
2569 
2570 	for (i = 0; i < SIP_NRXDESC; i++) {
2571 		rxs = &sc->sc_rxsoft[i];
2572 		if (rxs->rxs_mbuf != NULL) {
2573 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2574 			m_freem(rxs->rxs_mbuf);
2575 			rxs->rxs_mbuf = NULL;
2576 		}
2577 	}
2578 }
2579 
2580 /*
2581  * sip_stop:		[ ifnet interface function ]
2582  *
2583  *	Stop transmission on the interface.
2584  */
2585 static void
2586 SIP_DECL(stop)(struct ifnet *ifp, int disable)
2587 {
2588 	struct sip_softc *sc = ifp->if_softc;
2589 	bus_space_tag_t st = sc->sc_st;
2590 	bus_space_handle_t sh = sc->sc_sh;
2591 	struct sip_txsoft *txs;
2592 	u_int32_t cmdsts = 0;		/* DEBUG */
2593 
2594 	/*
2595 	 * Stop the one second clock.
2596 	 */
2597 	callout_stop(&sc->sc_tick_ch);
2598 
2599 	/* Down the MII. */
2600 	mii_down(&sc->sc_mii);
2601 
2602 	/*
2603 	 * Disable interrupts.
2604 	 */
2605 	bus_space_write_4(st, sh, SIP_IER, 0);
2606 
2607 	/*
2608 	 * Stop receiver and transmitter.
2609 	 */
2610 	bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
2611 
2612 	/*
2613 	 * Release any queued transmit buffers.
2614 	 */
2615 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2616 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2617 		    SIMPLEQ_NEXT(txs, txs_q) == NULL &&
2618 		    (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) &
2619 		     CMDSTS_INTR) == 0)
2620 			printf("%s: sip_stop: last descriptor does not "
2621 			    "have INTR bit set\n", sc->sc_dev.dv_xname);
2622 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2623 #ifdef DIAGNOSTIC
2624 		if (txs->txs_mbuf == NULL) {
2625 			printf("%s: dirty txsoft with no mbuf chain\n",
2626 			    sc->sc_dev.dv_xname);
2627 			panic("sip_stop");
2628 		}
2629 #endif
2630 		cmdsts |=		/* DEBUG */
2631 		    le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts);
2632 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2633 		m_freem(txs->txs_mbuf);
2634 		txs->txs_mbuf = NULL;
2635 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2636 	}
2637 
2638 	if (disable)
2639 		SIP_DECL(rxdrain)(sc);
2640 
2641 	/*
2642 	 * Mark the interface down and cancel the watchdog timer.
2643 	 */
2644 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2645 	ifp->if_timer = 0;
2646 
2647 	if ((ifp->if_flags & IFF_DEBUG) != 0 &&
2648 	    (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC)
2649 		printf("%s: sip_stop: no INTR bits set in dirty tx "
2650 		    "descriptors\n", sc->sc_dev.dv_xname);
2651 }
2652 
2653 /*
2654  * sip_read_eeprom:
2655  *
2656  *	Read data from the serial EEPROM.
2657  */
2658 static void
2659 SIP_DECL(read_eeprom)(struct sip_softc *sc, int word, int wordcnt,
2660     u_int16_t *data)
2661 {
2662 	bus_space_tag_t st = sc->sc_st;
2663 	bus_space_handle_t sh = sc->sc_sh;
2664 	u_int16_t reg;
2665 	int i, x;
2666 
2667 	for (i = 0; i < wordcnt; i++) {
2668 		/* Send CHIP SELECT. */
2669 		reg = EROMAR_EECS;
2670 		bus_space_write_4(st, sh, SIP_EROMAR, reg);
2671 
2672 		/* Shift in the READ opcode. */
2673 		for (x = 3; x > 0; x--) {
2674 			if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
2675 				reg |= EROMAR_EEDI;
2676 			else
2677 				reg &= ~EROMAR_EEDI;
2678 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2679 			bus_space_write_4(st, sh, SIP_EROMAR,
2680 			    reg | EROMAR_EESK);
2681 			delay(4);
2682 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2683 			delay(4);
2684 		}
2685 
2686 		/* Shift in address. */
2687 		for (x = 6; x > 0; x--) {
2688 			if ((word + i) & (1 << (x - 1)))
2689 				reg |= EROMAR_EEDI;
2690 			else
2691 				reg &= ~EROMAR_EEDI;
2692 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2693 			bus_space_write_4(st, sh, SIP_EROMAR,
2694 			    reg | EROMAR_EESK);
2695 			delay(4);
2696 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2697 			delay(4);
2698 		}
2699 
2700 		/* Shift out data. */
2701 		reg = EROMAR_EECS;
2702 		data[i] = 0;
2703 		for (x = 16; x > 0; x--) {
2704 			bus_space_write_4(st, sh, SIP_EROMAR,
2705 			    reg | EROMAR_EESK);
2706 			delay(4);
2707 			if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
2708 				data[i] |= (1 << (x - 1));
2709 			bus_space_write_4(st, sh, SIP_EROMAR, reg);
2710 			delay(4);
2711 		}
2712 
2713 		/* Clear CHIP SELECT. */
2714 		bus_space_write_4(st, sh, SIP_EROMAR, 0);
2715 		delay(4);
2716 	}
2717 }
2718 
2719 /*
2720  * sip_add_rxbuf:
2721  *
2722  *	Add a receive buffer to the indicated descriptor.
2723  */
2724 static int
2725 SIP_DECL(add_rxbuf)(struct sip_softc *sc, int idx)
2726 {
2727 	struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
2728 	struct mbuf *m;
2729 	int error;
2730 
2731 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2732 	if (m == NULL)
2733 		return (ENOBUFS);
2734 
2735 	MCLGET(m, M_DONTWAIT);
2736 	if ((m->m_flags & M_EXT) == 0) {
2737 		m_freem(m);
2738 		return (ENOBUFS);
2739 	}
2740 
2741 #if defined(DP83820)
2742 	m->m_len = SIP_RXBUF_LEN;
2743 #endif /* DP83820 */
2744 
2745 	if (rxs->rxs_mbuf != NULL)
2746 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2747 
2748 	rxs->rxs_mbuf = m;
2749 
2750 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2751 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2752 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2753 	if (error) {
2754 		printf("%s: can't load rx DMA map %d, error = %d\n",
2755 		    sc->sc_dev.dv_xname, idx, error);
2756 		panic("sip_add_rxbuf");		/* XXX */
2757 	}
2758 
2759 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2760 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2761 
2762 	SIP_INIT_RXDESC(sc, idx);
2763 
2764 	return (0);
2765 }
2766 
2767 #if !defined(DP83820)
2768 /*
2769  * sip_sis900_set_filter:
2770  *
2771  *	Set up the receive filter.
2772  */
2773 static void
2774 SIP_DECL(sis900_set_filter)(struct sip_softc *sc)
2775 {
2776 	bus_space_tag_t st = sc->sc_st;
2777 	bus_space_handle_t sh = sc->sc_sh;
2778 	struct ethercom *ec = &sc->sc_ethercom;
2779 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2780 	struct ether_multi *enm;
2781 	u_int8_t *cp;
2782 	struct ether_multistep step;
2783 	u_int32_t crc, mchash[16];
2784 
2785 	/*
2786 	 * Initialize the prototype RFCR.
2787 	 */
2788 	sc->sc_rfcr = RFCR_RFEN;
2789 	if (ifp->if_flags & IFF_BROADCAST)
2790 		sc->sc_rfcr |= RFCR_AAB;
2791 	if (ifp->if_flags & IFF_PROMISC) {
2792 		sc->sc_rfcr |= RFCR_AAP;
2793 		goto allmulti;
2794 	}
2795 
2796 	/*
2797 	 * Set up the multicast address filter by passing all multicast
2798 	 * addresses through a CRC generator, and then using the high-order
2799 	 * 6 bits as an index into the 128 bit multicast hash table (only
2800 	 * the lower 16 bits of each 32 bit multicast hash register are
2801 	 * valid).  The high order bits select the register, while the
2802 	 * rest of the bits select the bit within the register.
2803 	 */
2804 
2805 	memset(mchash, 0, sizeof(mchash));
2806 
2807 	/*
2808 	 * SiS900 (at least SiS963) requires us to register the address of
2809 	 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
2810 	 */
2811 	crc = 0x0ed423f9;
2812 
2813 	if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2814 	    SIP_SIS900_REV(sc, SIS_REV_960) ||
2815 	    SIP_SIS900_REV(sc, SIS_REV_900B)) {
2816 		/* Just want the 8 most significant bits. */
2817 		crc >>= 24;
2818 	} else {
2819 		/* Just want the 7 most significant bits. */
2820 		crc >>= 25;
2821 	}
2822 
2823 	/* Set the corresponding bit in the hash table. */
2824 	mchash[crc >> 4] |= 1 << (crc & 0xf);
2825 
2826 	ETHER_FIRST_MULTI(step, ec, enm);
2827 	while (enm != NULL) {
2828 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2829 			/*
2830 			 * We must listen to a range of multicast addresses.
2831 			 * For now, just accept all multicasts, rather than
2832 			 * trying to set only those filter bits needed to match
2833 			 * the range.  (At this time, the only use of address
2834 			 * ranges is for IP multicast routing, for which the
2835 			 * range is big enough to require all bits set.)
2836 			 */
2837 			goto allmulti;
2838 		}
2839 
2840 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2841 
2842 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2843 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
2844 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
2845 			/* Just want the 8 most significant bits. */
2846 			crc >>= 24;
2847 		} else {
2848 			/* Just want the 7 most significant bits. */
2849 			crc >>= 25;
2850 		}
2851 
2852 		/* Set the corresponding bit in the hash table. */
2853 		mchash[crc >> 4] |= 1 << (crc & 0xf);
2854 
2855 		ETHER_NEXT_MULTI(step, enm);
2856 	}
2857 
2858 	ifp->if_flags &= ~IFF_ALLMULTI;
2859 	goto setit;
2860 
2861  allmulti:
2862 	ifp->if_flags |= IFF_ALLMULTI;
2863 	sc->sc_rfcr |= RFCR_AAM;
2864 
2865  setit:
2866 #define	FILTER_EMIT(addr, data)						\
2867 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
2868 	delay(1);							\
2869 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
2870 	delay(1)
2871 
2872 	/*
2873 	 * Disable receive filter, and program the node address.
2874 	 */
2875 	cp = LLADDR(ifp->if_sadl);
2876 	FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
2877 	FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
2878 	FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
2879 
2880 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2881 		/*
2882 		 * Program the multicast hash table.
2883 		 */
2884 		FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
2885 		FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
2886 		FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
2887 		FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
2888 		FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
2889 		FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
2890 		FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
2891 		FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
2892 		if (SIP_SIS900_REV(sc, SIS_REV_635) ||
2893 		    SIP_SIS900_REV(sc, SIS_REV_960) ||
2894 		    SIP_SIS900_REV(sc, SIS_REV_900B)) {
2895 			FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
2896 			FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
2897 			FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
2898 			FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
2899 			FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
2900 			FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
2901 			FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
2902 			FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
2903 		}
2904 	}
2905 #undef FILTER_EMIT
2906 
2907 	/*
2908 	 * Re-enable the receiver filter.
2909 	 */
2910 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
2911 }
2912 #endif /* ! DP83820 */
2913 
2914 /*
2915  * sip_dp83815_set_filter:
2916  *
2917  *	Set up the receive filter.
2918  */
2919 static void
2920 SIP_DECL(dp83815_set_filter)(struct sip_softc *sc)
2921 {
2922 	bus_space_tag_t st = sc->sc_st;
2923 	bus_space_handle_t sh = sc->sc_sh;
2924 	struct ethercom *ec = &sc->sc_ethercom;
2925 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2926 	struct ether_multi *enm;
2927 	u_int8_t *cp;
2928 	struct ether_multistep step;
2929 	u_int32_t crc, hash, slot, bit;
2930 #ifdef DP83820
2931 #define	MCHASH_NWORDS	128
2932 #else
2933 #define	MCHASH_NWORDS	32
2934 #endif /* DP83820 */
2935 	u_int16_t mchash[MCHASH_NWORDS];
2936 	int i;
2937 
2938 	/*
2939 	 * Initialize the prototype RFCR.
2940 	 * Enable the receive filter, and accept on
2941 	 *    Perfect (destination address) Match
2942 	 * If IFF_BROADCAST, also accept all broadcast packets.
2943 	 * If IFF_PROMISC, accept all unicast packets (and later, set
2944 	 *    IFF_ALLMULTI and accept all multicast, too).
2945 	 */
2946 	sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
2947 	if (ifp->if_flags & IFF_BROADCAST)
2948 		sc->sc_rfcr |= RFCR_AAB;
2949 	if (ifp->if_flags & IFF_PROMISC) {
2950 		sc->sc_rfcr |= RFCR_AAP;
2951 		goto allmulti;
2952 	}
2953 
2954 #ifdef DP83820
2955 	/*
2956 	 * Set up the DP83820 multicast address filter by passing all multicast
2957 	 * addresses through a CRC generator, and then using the high-order
2958 	 * 11 bits as an index into the 2048 bit multicast hash table.  The
2959 	 * high-order 7 bits select the slot, while the low-order 4 bits
2960 	 * select the bit within the slot.  Note that only the low 16-bits
2961 	 * of each filter word are used, and there are 128 filter words.
2962 	 */
2963 #else
2964 	/*
2965 	 * Set up the DP83815 multicast address filter by passing all multicast
2966 	 * addresses through a CRC generator, and then using the high-order
2967 	 * 9 bits as an index into the 512 bit multicast hash table.  The
2968 	 * high-order 5 bits select the slot, while the low-order 4 bits
2969 	 * select the bit within the slot.  Note that only the low 16-bits
2970 	 * of each filter word are used, and there are 32 filter words.
2971 	 */
2972 #endif /* DP83820 */
2973 
2974 	memset(mchash, 0, sizeof(mchash));
2975 
2976 	ifp->if_flags &= ~IFF_ALLMULTI;
2977 	ETHER_FIRST_MULTI(step, ec, enm);
2978 	if (enm == NULL)
2979 		goto setit;
2980 	while (enm != NULL) {
2981 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2982 			/*
2983 			 * We must listen to a range of multicast addresses.
2984 			 * For now, just accept all multicasts, rather than
2985 			 * trying to set only those filter bits needed to match
2986 			 * the range.  (At this time, the only use of address
2987 			 * ranges is for IP multicast routing, for which the
2988 			 * range is big enough to require all bits set.)
2989 			 */
2990 			goto allmulti;
2991 		}
2992 
2993 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2994 
2995 #ifdef DP83820
2996 		/* Just want the 11 most significant bits. */
2997 		hash = crc >> 21;
2998 #else
2999 		/* Just want the 9 most significant bits. */
3000 		hash = crc >> 23;
3001 #endif /* DP83820 */
3002 
3003 		slot = hash >> 4;
3004 		bit = hash & 0xf;
3005 
3006 		/* Set the corresponding bit in the hash table. */
3007 		mchash[slot] |= 1 << bit;
3008 
3009 		ETHER_NEXT_MULTI(step, enm);
3010 	}
3011 	sc->sc_rfcr |= RFCR_MHEN;
3012 	goto setit;
3013 
3014  allmulti:
3015 	ifp->if_flags |= IFF_ALLMULTI;
3016 	sc->sc_rfcr |= RFCR_AAM;
3017 
3018  setit:
3019 #define	FILTER_EMIT(addr, data)						\
3020 	bus_space_write_4(st, sh, SIP_RFCR, (addr));			\
3021 	delay(1);							\
3022 	bus_space_write_4(st, sh, SIP_RFDR, (data));			\
3023 	delay(1)
3024 
3025 	/*
3026 	 * Disable receive filter, and program the node address.
3027 	 */
3028 	cp = LLADDR(ifp->if_sadl);
3029 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
3030 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
3031 	FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
3032 
3033 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3034 		/*
3035 		 * Program the multicast hash table.
3036 		 */
3037 		for (i = 0; i < MCHASH_NWORDS; i++) {
3038 			FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2),
3039 			    mchash[i]);
3040 		}
3041 	}
3042 #undef FILTER_EMIT
3043 #undef MCHASH_NWORDS
3044 
3045 	/*
3046 	 * Re-enable the receiver filter.
3047 	 */
3048 	bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
3049 }
3050 
3051 #if defined(DP83820)
3052 /*
3053  * sip_dp83820_mii_readreg:	[mii interface function]
3054  *
3055  *	Read a PHY register on the MII of the DP83820.
3056  */
3057 static int
3058 SIP_DECL(dp83820_mii_readreg)(struct device *self, int phy, int reg)
3059 {
3060 	struct sip_softc *sc = (void *) self;
3061 
3062 	if (sc->sc_cfg & CFG_TBI_EN) {
3063 		bus_addr_t tbireg;
3064 		int rv;
3065 
3066 		if (phy != 0)
3067 			return (0);
3068 
3069 		switch (reg) {
3070 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3071 		case MII_BMSR:		tbireg = SIP_TBISR; break;
3072 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3073 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3074 		case MII_ANER:		tbireg = SIP_TANER; break;
3075 		case MII_EXTSR:
3076 			/*
3077 			 * Don't even bother reading the TESR register.
3078 			 * The manual documents that the device has
3079 			 * 1000baseX full/half capability, but the
3080 			 * register itself seems read back 0 on some
3081 			 * boards.  Just hard-code the result.
3082 			 */
3083 			return (EXTSR_1000XFDX|EXTSR_1000XHDX);
3084 
3085 		default:
3086 			return (0);
3087 		}
3088 
3089 		rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
3090 		if (tbireg == SIP_TBISR) {
3091 			/* LINK and ACOMP are switched! */
3092 			int val = rv;
3093 
3094 			rv = 0;
3095 			if (val & TBISR_MR_LINK_STATUS)
3096 				rv |= BMSR_LINK;
3097 			if (val & TBISR_MR_AN_COMPLETE)
3098 				rv |= BMSR_ACOMP;
3099 
3100 			/*
3101 			 * The manual claims this register reads back 0
3102 			 * on hard and soft reset.  But we want to let
3103 			 * the gentbi driver know that we support auto-
3104 			 * negotiation, so hard-code this bit in the
3105 			 * result.
3106 			 */
3107 			rv |= BMSR_ANEG | BMSR_EXTSTAT;
3108 		}
3109 
3110 		return (rv);
3111 	}
3112 
3113 	return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
3114 	    phy, reg));
3115 }
3116 
3117 /*
3118  * sip_dp83820_mii_writereg:	[mii interface function]
3119  *
3120  *	Write a PHY register on the MII of the DP83820.
3121  */
3122 static void
3123 SIP_DECL(dp83820_mii_writereg)(struct device *self, int phy, int reg, int val)
3124 {
3125 	struct sip_softc *sc = (void *) self;
3126 
3127 	if (sc->sc_cfg & CFG_TBI_EN) {
3128 		bus_addr_t tbireg;
3129 
3130 		if (phy != 0)
3131 			return;
3132 
3133 		switch (reg) {
3134 		case MII_BMCR:		tbireg = SIP_TBICR; break;
3135 		case MII_ANAR:		tbireg = SIP_TANAR; break;
3136 		case MII_ANLPAR:	tbireg = SIP_TANLPAR; break;
3137 		default:
3138 			return;
3139 		}
3140 
3141 		bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
3142 		return;
3143 	}
3144 
3145 	mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
3146 	    phy, reg, val);
3147 }
3148 
3149 /*
3150  * sip_dp83820_mii_statchg:	[mii interface function]
3151  *
3152  *	Callback from MII layer when media changes.
3153  */
3154 static void
3155 SIP_DECL(dp83820_mii_statchg)(struct device *self)
3156 {
3157 	struct sip_softc *sc = (struct sip_softc *) self;
3158 	struct mii_data *mii = &sc->sc_mii;
3159 	u_int32_t cfg, pcr;
3160 
3161 	/*
3162 	 * Get flow control negotiation result.
3163 	 */
3164 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3165 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3166 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3167 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3168 	}
3169 
3170 	/*
3171 	 * Update TXCFG for full-duplex operation.
3172 	 */
3173 	if ((mii->mii_media_active & IFM_FDX) != 0)
3174 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3175 	else
3176 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3177 
3178 	/*
3179 	 * Update RXCFG for full-duplex or loopback.
3180 	 */
3181 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3182 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3183 		sc->sc_rxcfg |= RXCFG_ATX;
3184 	else
3185 		sc->sc_rxcfg &= ~RXCFG_ATX;
3186 
3187 	/*
3188 	 * Update CFG for MII/GMII.
3189 	 */
3190 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
3191 		cfg = sc->sc_cfg | CFG_MODE_1000;
3192 	else
3193 		cfg = sc->sc_cfg;
3194 
3195 	/*
3196 	 * 802.3x flow control.
3197 	 */
3198 	pcr = 0;
3199 	if (sc->sc_flowflags & IFM_FLOW) {
3200 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
3201 			pcr |= sc->sc_rx_flow_thresh;
3202 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
3203 			pcr |= PCR_PSEN | PCR_PS_MCAST;
3204 	}
3205 
3206 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
3207 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3208 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3209 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
3210 }
3211 #endif /* ! DP83820 */
3212 
3213 /*
3214  * sip_mii_bitbang_read: [mii bit-bang interface function]
3215  *
3216  *	Read the MII serial port for the MII bit-bang module.
3217  */
3218 static u_int32_t
3219 SIP_DECL(mii_bitbang_read)(struct device *self)
3220 {
3221 	struct sip_softc *sc = (void *) self;
3222 
3223 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
3224 }
3225 
3226 /*
3227  * sip_mii_bitbang_write: [mii big-bang interface function]
3228  *
3229  *	Write the MII serial port for the MII bit-bang module.
3230  */
3231 static void
3232 SIP_DECL(mii_bitbang_write)(struct device *self, u_int32_t val)
3233 {
3234 	struct sip_softc *sc = (void *) self;
3235 
3236 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
3237 }
3238 
3239 #ifndef DP83820
3240 /*
3241  * sip_sis900_mii_readreg:	[mii interface function]
3242  *
3243  *	Read a PHY register on the MII.
3244  */
3245 static int
3246 SIP_DECL(sis900_mii_readreg)(struct device *self, int phy, int reg)
3247 {
3248 	struct sip_softc *sc = (struct sip_softc *) self;
3249 	u_int32_t enphy;
3250 
3251 	/*
3252 	 * The PHY of recent SiS chipsets is accessed through bitbang
3253 	 * operations.
3254 	 */
3255 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
3256 		return (mii_bitbang_readreg(self, &SIP_DECL(mii_bitbang_ops),
3257 		    phy, reg));
3258 
3259 #ifndef SIS900_MII_RESTRICT
3260 	/*
3261 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3262 	 * MII address 0.
3263 	 */
3264 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3265 		return (0);
3266 #endif
3267 
3268 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3269 	    (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
3270 	    ENPHY_RWCMD | ENPHY_ACCESS);
3271 	do {
3272 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3273 	} while (enphy & ENPHY_ACCESS);
3274 	return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
3275 }
3276 
3277 /*
3278  * sip_sis900_mii_writereg:	[mii interface function]
3279  *
3280  *	Write a PHY register on the MII.
3281  */
3282 static void
3283 SIP_DECL(sis900_mii_writereg)(struct device *self, int phy, int reg, int val)
3284 {
3285 	struct sip_softc *sc = (struct sip_softc *) self;
3286 	u_int32_t enphy;
3287 
3288 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
3289 		mii_bitbang_writereg(self, &SIP_DECL(mii_bitbang_ops),
3290 		    phy, reg, val);
3291 		return;
3292 	}
3293 
3294 #ifndef SIS900_MII_RESTRICT
3295 	/*
3296 	 * The SiS 900 has only an internal PHY on the MII.  Only allow
3297 	 * MII address 0.
3298 	 */
3299 	if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
3300 		return;
3301 #endif
3302 
3303 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
3304 	    (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
3305 	    (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
3306 	do {
3307 		enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
3308 	} while (enphy & ENPHY_ACCESS);
3309 }
3310 
3311 /*
3312  * sip_sis900_mii_statchg:	[mii interface function]
3313  *
3314  *	Callback from MII layer when media changes.
3315  */
3316 static void
3317 SIP_DECL(sis900_mii_statchg)(struct device *self)
3318 {
3319 	struct sip_softc *sc = (struct sip_softc *) self;
3320 	struct mii_data *mii = &sc->sc_mii;
3321 	u_int32_t flowctl;
3322 
3323 	/*
3324 	 * Get flow control negotiation result.
3325 	 */
3326 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
3327 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
3328 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
3329 		mii->mii_media_active &= ~IFM_ETH_FMASK;
3330 	}
3331 
3332 	/*
3333 	 * Update TXCFG for full-duplex operation.
3334 	 */
3335 	if ((mii->mii_media_active & IFM_FDX) != 0)
3336 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3337 	else
3338 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3339 
3340 	/*
3341 	 * Update RXCFG for full-duplex or loopback.
3342 	 */
3343 	if ((mii->mii_media_active & IFM_FDX) != 0 ||
3344 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
3345 		sc->sc_rxcfg |= RXCFG_ATX;
3346 	else
3347 		sc->sc_rxcfg &= ~RXCFG_ATX;
3348 
3349 	/*
3350 	 * Update IMR for use of 802.3x flow control.
3351 	 */
3352 	if (sc->sc_flowflags & IFM_FLOW) {
3353 		sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
3354 		flowctl = FLOWCTL_FLOWEN;
3355 	} else {
3356 		sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
3357 		flowctl = 0;
3358 	}
3359 
3360 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3361 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3362 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
3363 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
3364 }
3365 
3366 /*
3367  * sip_dp83815_mii_readreg:	[mii interface function]
3368  *
3369  *	Read a PHY register on the MII.
3370  */
3371 static int
3372 SIP_DECL(dp83815_mii_readreg)(struct device *self, int phy, int reg)
3373 {
3374 	struct sip_softc *sc = (struct sip_softc *) self;
3375 	u_int32_t val;
3376 
3377 	/*
3378 	 * The DP83815 only has an internal PHY.  Only allow
3379 	 * MII address 0.
3380 	 */
3381 	if (phy != 0)
3382 		return (0);
3383 
3384 	/*
3385 	 * Apparently, after a reset, the DP83815 can take a while
3386 	 * to respond.  During this recovery period, the BMSR returns
3387 	 * a value of 0.  Catch this -- it's not supposed to happen
3388 	 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3389 	 * PHY to come back to life.
3390 	 *
3391 	 * This works out because the BMSR is the first register
3392 	 * read during the PHY probe process.
3393 	 */
3394 	do {
3395 		val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
3396 	} while (reg == MII_BMSR && val == 0);
3397 
3398 	return (val & 0xffff);
3399 }
3400 
3401 /*
3402  * sip_dp83815_mii_writereg:	[mii interface function]
3403  *
3404  *	Write a PHY register to the MII.
3405  */
3406 static void
3407 SIP_DECL(dp83815_mii_writereg)(struct device *self, int phy, int reg, int val)
3408 {
3409 	struct sip_softc *sc = (struct sip_softc *) self;
3410 
3411 	/*
3412 	 * The DP83815 only has an internal PHY.  Only allow
3413 	 * MII address 0.
3414 	 */
3415 	if (phy != 0)
3416 		return;
3417 
3418 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
3419 }
3420 
3421 /*
3422  * sip_dp83815_mii_statchg:	[mii interface function]
3423  *
3424  *	Callback from MII layer when media changes.
3425  */
3426 static void
3427 SIP_DECL(dp83815_mii_statchg)(struct device *self)
3428 {
3429 	struct sip_softc *sc = (struct sip_softc *) self;
3430 
3431 	/*
3432 	 * Update TXCFG for full-duplex operation.
3433 	 */
3434 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
3435 		sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
3436 	else
3437 		sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
3438 
3439 	/*
3440 	 * Update RXCFG for full-duplex or loopback.
3441 	 */
3442 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
3443 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
3444 		sc->sc_rxcfg |= RXCFG_ATX;
3445 	else
3446 		sc->sc_rxcfg &= ~RXCFG_ATX;
3447 
3448 	/*
3449 	 * XXX 802.3x flow control.
3450 	 */
3451 
3452 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg);
3453 	bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg);
3454 
3455 	/*
3456 	 * Some DP83815s experience problems when used with short
3457 	 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
3458 	 * sequence adjusts the DSP's signal attenuation to fix the
3459 	 * problem.
3460 	 */
3461 	if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
3462 		uint32_t reg;
3463 
3464 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
3465 
3466 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3467 		reg &= 0x0fff;
3468 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
3469 		delay(100);
3470 		reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
3471 		reg &= 0x00ff;
3472 		if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
3473 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
3474 			    0x00e8);
3475 			reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
3476 			bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
3477 			    reg | 0x20);
3478 		}
3479 
3480 		bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
3481 	}
3482 }
3483 #endif /* DP83820 */
3484 
3485 #if defined(DP83820)
3486 static void
3487 SIP_DECL(dp83820_read_macaddr)(struct sip_softc *sc,
3488     const struct pci_attach_args *pa, u_int8_t *enaddr)
3489 {
3490 	u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
3491 	u_int8_t cksum, *e, match;
3492 	int i;
3493 
3494 	/*
3495 	 * EEPROM data format for the DP83820 can be found in
3496 	 * the DP83820 manual, section 4.2.4.
3497 	 */
3498 
3499 	SIP_DECL(read_eeprom)(sc, 0,
3500 	    sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data);
3501 
3502 	match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
3503 	match = ~(match - 1);
3504 
3505 	cksum = 0x55;
3506 	e = (u_int8_t *) eeprom_data;
3507 	for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
3508 		cksum += *e++;
3509 
3510 	if (cksum != match)
3511 		printf("%s: Checksum (%x) mismatch (%x)",
3512 		    sc->sc_dev.dv_xname, cksum, match);
3513 
3514 	enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
3515 	enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
3516 	enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
3517 	enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
3518 	enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
3519 	enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
3520 }
3521 #else /* ! DP83820 */
3522 static void
3523 SIP_DECL(sis900_eeprom_delay)(struct sip_softc *sc)
3524 {
3525 	int i;
3526 
3527 	/*
3528 	 * FreeBSD goes from (300/33)+1 [10] to 0.  There must be
3529 	 * a reason, but I don't know it.
3530 	 */
3531 	for (i = 0; i < 10; i++)
3532 		bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
3533 }
3534 
3535 static void
3536 SIP_DECL(sis900_read_macaddr)(struct sip_softc *sc,
3537     const struct pci_attach_args *pa, u_int8_t *enaddr)
3538 {
3539 	u_int16_t myea[ETHER_ADDR_LEN / 2];
3540 
3541 	switch (sc->sc_rev) {
3542 	case SIS_REV_630S:
3543 	case SIS_REV_630E:
3544 	case SIS_REV_630EA1:
3545 	case SIS_REV_630ET:
3546 	case SIS_REV_635:
3547 		/*
3548 		 * The MAC address for the on-board Ethernet of
3549 		 * the SiS 630 chipset is in the NVRAM.  Kick
3550 		 * the chip into re-loading it from NVRAM, and
3551 		 * read the MAC address out of the filter registers.
3552 		 */
3553 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
3554 
3555 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3556 		    RFCR_RFADDR_NODE0);
3557 		myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3558 		    0xffff;
3559 
3560 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3561 		    RFCR_RFADDR_NODE2);
3562 		myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3563 		    0xffff;
3564 
3565 		bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
3566 		    RFCR_RFADDR_NODE4);
3567 		myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
3568 		    0xffff;
3569 		break;
3570 
3571 	case SIS_REV_960:
3572 		{
3573 #define	SIS_SET_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3574 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3575 
3576 #define	SIS_CLR_EROMAR(x,y)	bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR,	\
3577 				    bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3578 
3579 			int waittime, i;
3580 
3581 			/* Allow to read EEPROM from LAN. It is shared
3582 			 * between a 1394 controller and the NIC and each
3583 			 * time we access it, we need to set SIS_EECMD_REQ.
3584 			 */
3585 			SIS_SET_EROMAR(sc, EROMAR_REQ);
3586 
3587 			for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
3588 				/* Force EEPROM to idle state. */
3589 
3590 				/*
3591 				 * XXX-cube This is ugly.  I'll look for docs about it.
3592 				 */
3593 				SIS_SET_EROMAR(sc, EROMAR_EECS);
3594 				SIP_DECL(sis900_eeprom_delay)(sc);
3595 				for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
3596 					SIS_SET_EROMAR(sc, EROMAR_EESK);
3597 					SIP_DECL(sis900_eeprom_delay)(sc);
3598 					SIS_CLR_EROMAR(sc, EROMAR_EESK);
3599 					SIP_DECL(sis900_eeprom_delay)(sc);
3600 				}
3601 				SIS_CLR_EROMAR(sc, EROMAR_EECS);
3602 				SIP_DECL(sis900_eeprom_delay)(sc);
3603 				bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
3604 
3605 				if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
3606 					SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3607 					    sizeof(myea) / sizeof(myea[0]), myea);
3608 					break;
3609 				}
3610 				DELAY(1);
3611 			}
3612 
3613 			/*
3614 			 * Set SIS_EECTL_CLK to high, so a other master
3615 			 * can operate on the i2c bus.
3616 			 */
3617 			SIS_SET_EROMAR(sc, EROMAR_EESK);
3618 
3619 			/* Refuse EEPROM access by LAN */
3620 			SIS_SET_EROMAR(sc, EROMAR_DONE);
3621 		} break;
3622 
3623 	default:
3624 		SIP_DECL(read_eeprom)(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
3625 		    sizeof(myea) / sizeof(myea[0]), myea);
3626 	}
3627 
3628 	enaddr[0] = myea[0] & 0xff;
3629 	enaddr[1] = myea[0] >> 8;
3630 	enaddr[2] = myea[1] & 0xff;
3631 	enaddr[3] = myea[1] >> 8;
3632 	enaddr[4] = myea[2] & 0xff;
3633 	enaddr[5] = myea[2] >> 8;
3634 }
3635 
3636 /* Table and macro to bit-reverse an octet. */
3637 static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3638 #define bbr(v)	((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3639 
3640 static void
3641 SIP_DECL(dp83815_read_macaddr)(struct sip_softc *sc,
3642     const struct pci_attach_args *pa, u_int8_t *enaddr)
3643 {
3644 	u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
3645 	u_int8_t cksum, *e, match;
3646 	int i;
3647 
3648 	SIP_DECL(read_eeprom)(sc, 0, sizeof(eeprom_data) /
3649 	    sizeof(eeprom_data[0]), eeprom_data);
3650 
3651 	match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
3652 	match = ~(match - 1);
3653 
3654 	cksum = 0x55;
3655 	e = (u_int8_t *) eeprom_data;
3656 	for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
3657 		cksum += *e++;
3658 	}
3659 	if (cksum != match) {
3660 		printf("%s: Checksum (%x) mismatch (%x)",
3661 		    sc->sc_dev.dv_xname, cksum, match);
3662 	}
3663 
3664 	/*
3665 	 * Unrolled because it makes slightly more sense this way.
3666 	 * The DP83815 stores the MAC address in bit 0 of word 6
3667 	 * through bit 15 of word 8.
3668 	 */
3669 	ea = &eeprom_data[6];
3670 	enaddr[0] = ((*ea & 0x1) << 7);
3671 	ea++;
3672 	enaddr[0] |= ((*ea & 0xFE00) >> 9);
3673 	enaddr[1] = ((*ea & 0x1FE) >> 1);
3674 	enaddr[2] = ((*ea & 0x1) << 7);
3675 	ea++;
3676 	enaddr[2] |= ((*ea & 0xFE00) >> 9);
3677 	enaddr[3] = ((*ea & 0x1FE) >> 1);
3678 	enaddr[4] = ((*ea & 0x1) << 7);
3679 	ea++;
3680 	enaddr[4] |= ((*ea & 0xFE00) >> 9);
3681 	enaddr[5] = ((*ea & 0x1FE) >> 1);
3682 
3683 	/*
3684 	 * In case that's not weird enough, we also need to reverse
3685 	 * the bits in each byte.  This all actually makes more sense
3686 	 * if you think about the EEPROM storage as an array of bits
3687 	 * being shifted into bytes, but that's not how we're looking
3688 	 * at it here...
3689 	 */
3690 	for (i = 0; i < 6 ;i++)
3691 		enaddr[i] = bbr(enaddr[i]);
3692 }
3693 #endif /* DP83820 */
3694 
3695 /*
3696  * sip_mediastatus:	[ifmedia interface function]
3697  *
3698  *	Get the current interface media status.
3699  */
3700 static void
3701 SIP_DECL(mediastatus)(struct ifnet *ifp, struct ifmediareq *ifmr)
3702 {
3703 	struct sip_softc *sc = ifp->if_softc;
3704 
3705 	mii_pollstat(&sc->sc_mii);
3706 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
3707 	ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
3708 			   sc->sc_flowflags;
3709 }
3710 
3711 /*
3712  * sip_mediachange:	[ifmedia interface function]
3713  *
3714  *	Set hardware to newly-selected media.
3715  */
3716 static int
3717 SIP_DECL(mediachange)(struct ifnet *ifp)
3718 {
3719 	struct sip_softc *sc = ifp->if_softc;
3720 
3721 	if (ifp->if_flags & IFF_UP)
3722 		mii_mediachg(&sc->sc_mii);
3723 	return (0);
3724 }
3725